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Abstract

Urban Three Dimensional (3D) reconstruction is one of the favorite remote sensing tasks for
different applications. In this regard, a particular interest lies in the generation of a build-
ing model with a potential of large-scale coverage. One of the significant remote sensing
sources for this purpose is the medium-resolution Digital Elevation Model (DEM). For ex-
ample, launching a new mission called TanDEM-X has provided a global covering DEM with
an unprecedented relative accuracy, which can potentially be applied to 3D building model-
ing. However, visual and quality inspections reveal that the TanDEM-X DEM quality drops in
urban areas because of an inherent imaging property of the Synthetic Aperture Radar (SAR)
sensor. In this dissertation, two solutions are proposed to improve the quality of medium-
resolution DEMs, such as TanDEM-X DEM in urban areas. The first solution is to fuse DEM
with elevations produced by another type of sensor with different properties. Then, the DEM
quality can be improved by taking advantage of multi-sensor DEM fusion to integrate instruc-
tive properties of input DEMs and reduce the effects of their defects. For instance, Cartosat-1
DEM is an appropriate choice for fusion with TanDEM-X DEM. This multi-sensor DEM fu-
sion is performed by implementing a sophisticated Artificial Neural Network (ANN)-based
fusion framework. It consists of three main steps: spatial feature extraction and correspond-
ing height residual estimation respective to LiDAR ground truth data, data preprocessing to
generate primary feature-error patterns, and finally inputting those patterns into fully con-
nected ANNs to explore appropriate weight maps corresponding to each input DEM. The
results demonstrate the efficiency of the designed fusion framework for improving the qual-
ity of TanDEM-X DEM, as well as increased absolute accuracy of Cartosat- 1 DEM. The next
potential solution is to fuse multi-modal DEM acquisitions using advanced data fusion tech-
niques instead of using simple Weighted Averaging (WA). For example, WA is currently used
in the process of TanDEM-X raw DEM mosaicking for global DEM generation. The idea is
to take advantage of L; norm Total Variational (TV-L,) and Huber models for DEM fusion.
These models can efficiently be used in urban areas by smoothing noise influences while
preserving edges such as building footprints which are frequently found in these areas. The
final obtained fused DEM illustrates an excellent performance of variational models for the
DEM quality enhancement in urban areas.

Apart from DEMs, another potential remote sensing resource for urban 3D reconstruction
on a large scale is spatial information produced from SAR-optical imagery such as TerraSAR-
X and WorldView-2. In this dissertation, a 3D reconstruction stereogrammetric framework is
developed for this task. This framework includes several steps: generating Rational Polyno-
mial Coefficient (RPC) for SAR imagery, establishing an epipolarity constraint between SAR
and optical imagery, developing a multi-sensor block adjustment, generating disparity map
by a dense matching algorithm and finally a forward intersection for producing a point cloud.
The final results demonstrate the potential of 3D reconstruction from SAR-optical imagery



using the proposed stereogrammetry framework.

Finally, the possibility of generating 3D building model at the first Level Of Details (LOD1)
using elevations derived from either enhanced fused DEMs or a point cloud produced by
SAR-optical stereogrammetry in combination with building footprints from OpenStreetMap
(OSM) is investigated. The results confirm the potential of LOD1 building model generation
from those multi-sensor-derived heights and OSM building footprints.



Zusammenfassung

Die stddtische dreidimensionale Rekonstruktion ist eine der beliebtesten Fernerkun-
dungsaufgaben fiir verschiedene Anwendungen. In diesem Zusammenhang liegt ein beson-
deres Interesse auf der Erstellung von Gebdude Modellen mit einem Potenzial fiir eine
grof3flachige Abdeckung. Eine der wichtigsten Quellen fiir Daten fiir dieses Ziel ist das mit-
telauflosende digitale Hohenmodell. So hat beispielsweise der Start der neuen TanDEM-X
Mission einem global abdeckenden DEM-eine beispiellose relative Genauigkeit verliehen,
die fiir die 3D-Geb4dudemodellierung potenziell genutzt werden kann. Visuelle und qual-
itdtive kontrollen zeigen jedoch, dass die TanDEM-X DEM-Qualitét in stddtischen Gebieten
aufgrund der inhdrenten Abbildungseigenschaften des SAR-Sensors sinkt. In dieser Disser-
tation werden zwei Losungen vorgeschlagen, um die Qualitdt von mittelauflésenden DEMs,
wie dem TanDEM-X DEM, in stiddtischen Gebieten zu verbessern. Die erste Idee ist, das
DEM mit Héhen zu verschmelzen, die von einem anderen Sensortyp mit unterschiedlichen
Eigenschaften erzeugt werden. Anschliefend kann die Verbesserung der DEM-Qualitét
durch den Einsatz der Multisensor-DEM-Fusion realisiert werden, um die instruktiven
Eigenschaften der DEMs zu integrieren und die Auswirkungen ihrer Fehler zu reduzieren.
So ist beispielsweise der Cartosat-1 DEM eine geeignete Wahl fiir die Fusion mit dem
TanDEM-X DEM. Diese Multisensor-DEM-Fusion basiert auf der Implementierung eines
anspruchsvollen Frameworks mit ANNs. Diese DEM-Fusion besteht aus drei Hauptschrit-
ten: Raumliche Merkmalsextraktion und entsprechende Hohenrestschidtzung gemall den
LiDAR-Bodenwahrheitsdaten, Datenvorverarbeitung zur Erzeugung primdrer Merkmals-
fehlermuster und schlief}lich Eingabe dieser Muster in vollstindig verkniipfte ANNs, um
geeignete Gewichtskarten gemil jeder eingegebenen DEM zu untersuchen. Die Ergebnisse
zeigen die Effizienz des Fusionsrahmens zur Verbesserung der Qualitdt des TanDEM-X DEM
und zur Erh6hung der absoluten Genauigkeit des Cartosat-1 DEM. Eine alternative Lésung
besteht darin, multimodale DEM-Akquisitionen mit fortschrittlichen Datenfusionstechniken
zu fusionieren, anstatt einfache WA zu verwenden. So wird beispielsweise die WA derzeit im
Prozess des TanDEM-X Roh-DEM-Mosaiks fiir die globale DEM-Generierung verwendet. Die
Idee ist, die Vorteile der TV-L1 und Huber Modelle fiir die DEM-Fusion zu nutzen. Diese Mod-
elle konnen in urban Raume effizient eingesetzt werden, indem Larmeffekte unter Beibehal-
tung der in diesen Gebieten {iblichen Kanten, wie z.B. Gebdudeaufstandsflaichen, geglittet
werden. Das final fusionierte DEM veranschaulicht die hervorragende Leistung von Varia-
tional modellen zur Verbesserung der DEM-Qualitét in stddtischen Gebieten.

Neben DEMs ist eine weitere potenzielle Fernerkundungsressource fiir die gro3flachige
stddtische 3D-Rekonstruktion rdumliche Informationen, die aus SAR-optischen Bildern,
wie TerraSARX und WorldView-2 gewonnen werden. In dieser Arbeit wird ein stere-
ogrammetrisches 3D-Rekonstruktionsgeriist fiir diese Aufgabe entwickelt. Dieses Frame-
work umfasst mehrere Schritte: Rationelle Polynomkoeffizientengenerierung fiir SAR-Bilder,



Etablierung einer Epipolaritdtsbeschrankung zwischen SAR und optischer Bildgebung, En-
twicklung einer Multisensor-Blockanpassung, Disparitdtskartengenerierung durch einen
dichten Matching-Algorithmus und schlieBlich ein Vorwirtsschnitt zur Erzeugung einer
Punktwolke. Die Endergebnisse zeigen das Potenzial der 3D-Rekonstruktion aus SAR-
optischen Bildern unter Verwendung des vorgeschlagenen Stereogrammetrie-Rahmens.

Schlieflich wird die Méglichkeit der 3D-Gebdudemodellgenerierung auf der ersten De-
tailebene unter Verwendung von Elevationen untersucht, die entweder aus verbesserten fu-
sionierten DEMs oder einer Punktwolke stammen, die durch SAR-optische Stereogrammetrie
in Kombination mit Gebaude-Footprints aus OSM erzeugt wurde. Die Ergebnisse bestidtigen
das Potenzial der LOD1-Gebdudemodellgeneration aus diesen multisensorisch gewonnenen
Hoéhen und den von OSM bereitgestellten Gebdudegrundrissen.
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1 Introduction

1.1 Motivation

3D reconstruction from remote sensing data has a range of applications across various fields,
such as 3D city modeling, urban and crisis management, environmental studies, and geo-
graphic information systems. Manifold high-resolution sensors in space provide the possi-
bility of reconstructing natural and human-made landscapes over large-scale areas.
Buildings are one of the main categories of objects in urban scenes, which are modeled for
diverse applications such as air pollution simulation, energy consumption estimation, urban
heat island detection and many others [1]. Buildings can be modeled in different level of
detail gathered under the standard of the City Geography Markup Language (CityGML) [2].
Figure 1.1 schematically displays the amount of details required to be presented at each level.

LODO FootPrint LOD1 LOD2 LOD3 LOD4

Figure 1.1: Different level of detail of building models according to CityGML 2.0. Image courtesy of [3]

As displayed in Figure 1.1, the first level is LOD1 which describes building models as block
models with flat roof structure and provides the coarsest volumetric representation of build-
ings [4]. Thus, for LOD1 only the outlines of buildings along with height information are
required. The next level is LOD2 that represents building shapes with more details. There-
fore, LOD2 building reconstruction demands high-resolution data in comparison to the first
level. Among the mentioned models, a particular interest lies in generating building models
on a large scale at the LOD1 level for diverse applications such as global population density
estimation, urban heat island detection, etc. Thus, city modeling with building details at the
LODI1 level is quite enough for those applications.

Building height information can be provided using versatile remote sensing data sources
such as airborne laser scanning [5], high-resolution optical stereo imagery [6], interferomet-
ric DEMs produced from SAR data [7], and others [8]. Conventionally, height information is
provided using airborne LiDAR data that leads to highly accurate LOD1 representations of
buildings; however, it is computationally expensive to produce wide area covering models.
Valuable LiDAR data are usually not available on a large scale. Consequently, heights can
come from different sources, and data fusion is an efficient way to exploit complementary
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1 Introduction

advantages and mitigate distinct disadvantages.

One option of data fusion for large-scale height retrieval could be DEM fusion, as there exist
DEMs such as TanDEM-X and Cartosat-1, which have different attributes. Moreover, another
option would be to generate heights using SAR-optical stereogrammetry.

1.2 Objectives

The main objective of this research is to investigate the potential and possibility of 3D urban
reconstruction and subsequently building modeling using remote-sensing-derived geodata.
For this purpose, different data fusion techniques are employed to promote the quality of
large-scale mapping as well as to produce heights for 3D building modeling of urban areas.
In this regard, the secondary objectives of this work can be categorized into two main issues
as follows:

12

* Large-scale height generation over urban areas through DEM fusion: Primary pro-

duced DEMs called raw DEMs such as TanDEM-X raw DEMs are not usually perfect,
especially for large-scale urban mapping, due to existing errors induced from defects
of sensors, which consequently influence the final quality of raw products [9]. As a so-
lution, DEM fusion as an application of data fusion in remote sensing can be employed
to improve the quality of produced DEMs. For instance, TanDEM-X DEM as a new
global DEM with unprecedented accuracy and nearly complete coverage of earth is
produced through the TanDEM-X mission using bistatic SAR interferometric data [10].
However, the quality of the achieved TanDEM-X DEM drops in urban areas because of
the inherent SAR imaging geometry such as layover and shadowing effects [9].

One possible solution for improving elevation data is fusion with other available eleva-
tion data, which do not suffer from sensor-inherent imaging effects. In the TanDEM-X
DEM case, the alternative data are DEMs derived from high-resolution optical stereo
imagery such as those acquired by Cartosat-1. Consequently, in order to reach a bet-
ter result, an efficient multi-sensor-based DEM fusion technique is proposed in this
research.

Another possibility to improve the quality of final DEM is to fuse the acquired multi-
modal raw DEMs, i.e.; fusing raw DEMs derived from data-takes with different prop-
erties acquired by the same sensor. For instance, the standard TanDEM-X DEM is the
output of a processing chain with interferometry, phase unwrapping, data calibration,
DEM block adjustment, and raw DEM mosaicking. In the mosaicking step, raw DEMs
are fused to reach the target accuracy. A conventional method for doing DEM fusion
in DEM Mosaicking Processor (DMP) is WA, in which heights are summed with respect
to their weights derived from a Height Error Map (HEM). While the WA approach can
realize the predefined goals in DMP for global DEM generation, it does not perform
optimally under challenging terrains with complex morphology, such as urban areas,
and contains many high-frequency contents such as edges. After WA-based DEM fu-
sion, visualization shows that the outlines of buildings are not perfectly sharp and still
some amount of existing noise spoils building footprints. Therefore, this work inves-



1.3 Thesis Structure

tigates the application of more sophisticated multi-modal DEM fusion approaches to
efficiently preserve the edges and outlines of buildings while removing noise.

* SAR-optical stereogrammetry for 3D urban reconstruction: Regarding the growing
archive of Very High-Resolution (VHR) SAR and optical imagery, developing a frame-
work that takes advantages of both SAR and optical imagery can provide a great op-
portunity to produce 3D spatial information over urban areas. This dissertation also
focuses on the potential of 3D building reconstruction from VHR SAR-optical image
pairs such as TerraSAR-X/WorldView-2 through a dense matching process as a form of
cooperative data fusion. In this context, the main idea is to investigate the applicability
of the Semi-Global Matching (SGM) algorithm for SAR-optical stereogrammetry and
design a framework for accomplishing this task.

Finally, this research investigates the possibility of generating LOD1 building models from
both Volunteered Geographic Information (VGI) and remote sensing-derived geodata, which
is available on a wide scale. More specifically, , the study exploit building footprints provided
by OSM and height data derived from the fusion of different kinds of multi-sensor data.

1.3 Thesis Structure

The main contributions of this cumulative dissertation come from four peer-reviewed jour-
nal papers published by the first author. These publications can be found in the appendices.

The dissertation is organized into four chapters. The motivations and objectives of the the-
sis are already addressed in this chapter. In the following, comprehensive reviews of previous
studies corresponding to each of the mentioned objectives are reported in Section 1.4. Chap-
ter 2 reviews some basic concepts and fundamentals required for research implementations.
Chapter 3 provides a summary of the contributions of the author. Finally, the conclusions of
the implemented investigations and the achievements are discussed in Chapter 4.

1.4 State-of-the-Art

In line with the objectives of the dissertation, a literature review of previous studies is re-
ported in this section within three main categories including previous research on 3D build-
ing model generation from large-scale remote sensing-derived geodata, state-of-the-art DEM
fusion techniques, and finally, investigations on 3D reconstruction from SAR-optical imagery.
Reviews of each category are presented in a distinct section in the following.

1.4.1 3D Building Models from Remote Sensing-derived Geodata

One of the significant requirements for LOD1 building modeling is height information that
can be provided by versatile remote sensing data sources such as airborne laser scanning
[5], high-resolution optical stereo imagery [6], and interferometric DEMs produced from SAR
data [7]. Among different levels for CityGML-based modeling, a particular interest lies in
generating building models on a large scale at the LOD1 level. While height information

13
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provided by airborne LiDAR data leads to highly accurate LOD1 representations of build-
ings, high point densities demand high computational loads and expenditure for a large scale
modeling. In addition, valuable LiDAR data are usually not available on a large scale. In the
literature, few investigations illustrate the possibility of using medium-resolution, large scale
covering remote sensing data types for 3D building reconstruction. As an example, the pos-
sibility of LOD1-level 3D building model generation from Cartosat-1 and Ikonos DEMs has
been investigated in [11]. The researchers used semi and fully automatic methods for build-
ing footprint extraction from satellite imagery. Heights were derived from DEMs generated
by stereo image pairs. The results demonstrated that the highest accuracy was achieved us-
ing the automatic method for building footprint extraction. However, the both methods de-
manded a long time to perform the process. In another study, Marconcini et al. proposed a
method for building height estimation from TanDEM-X data [12]. They implemented an un-
supervised approach to discriminate building points from points lying on the ground surface
to finally produce a Digital Terrain Model (DTM) of the study area. Then, building heights
were estimated by subtracting the produced DTM from the original DEM. Using open DEMs
such as SRTM for 3D reconstruction has been evaluated in different studies [13, 14, 15]. It
has been concluded that SRTM elevation data could be used for recognizing tall buildings.
In a recent investigation, Misra et al. compared different global height data sources such as
SRTM, ASTER, AW3D as well as TanDEM-X for digital building height model generation [16].

The investigations mentioned above attempt to extract building footprints directly from
DEMs or satellite imagery. Since medium-resolution DEM data are often not detailed and
sufficiently accurate to provide sufficient information for modeling individual buildings and
also extracting footprints from satellite imagery demands a considerable effort, this work in-
vestigates the potential of using footprints provided by OSM for LOD1 building modeling.
Furthermore, because of defects and limitations alongside unique properties of medium-
resolution DEMs such as TanDEM-X and Cartosat-1 DEMs, the proposed DEM fusion tech-
niques are used for improving the height accuracy and quality of input DEMs. Moreover, the
potential of using height information produced by SAR-optical stereogrammetry is investi-
gated as another possible source of elevations for LOD1 building modeling.

1.4.2 DEM Fusion

Data fusion approaches with many applications in remote sensing can be employed for DEM
fusion tasks [17]. To this end, various methods have been investigated for different kinds of
DEM:s.

Among all DEM fusion methods, WA is frequently used for DEM fusion purposes because
of its simple implementation and low computational cost. Benefits of the WA-based fusion
of multi-sensor-derived DEMs such as an optical-derived DEM along with Interferometric
SAR (InSAR) data were demonstrated in [18]. In this research, firstly, a DEM was produced
from stereo SPOT images, and then the achieved DEM was employed for phase unwrapping
during the InSAR DEM generation. Finally, the both DEMs were fused using weights cor-
respondingly derived from coherence estimations for InSAR and local image correlation for
optical images. Schultz et al. applied self-consistency measures for detecting outliers in op-
tical DEMs and then fused elevations using WA [19]. Reinartz et al. [20] employed WA for the

14
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fusion of SPOT-5 and SRTM DEMs. In another study [21], WA was used to fuse ERS TanDEM
data and SRTM data with MOMS-2P data. The potential of a global DEM generation by the
WA fusion of SRTM data and ERS TanDEM data was investigated in [22]. Yet another study
investigated the fusion of SRTM-X and -C bands using WA with weights estimated based on
relative discrepancy analysis [23].

In addition to WA, most advanced techniques also apply weights to assist the fusion pro-
cess in order to reach the desired output. This means that weights play a crucial role for
the efficient fusion of DEMs, especially in the case of multi-sensor DEM fusion such as,
optical stereoscopic-derived and InSAR DEMs [9]. In the investigations mentioned earlier,
weights are mostly computed from values delivered as HEMs, which are produced by error-
propagation analysis through the DEM generation process. However, evaluations demon-
strate that the HEMs do not reflect all errors existing in input DEMs and cannot always lead to
a successful DEM fusion [9]. Moreover, HEMs are not always available especially for optical-
derived DEMs. One study used the prior knowledge of DEM qualities along with HEMs for
the WA-based fusion of multi-sensor-derived DEMs such as TanDEM-X and Cartosat-1 DEMs
over urban and non-urban areas [24], in which only TanDEM-X DEM was improved over non-
urban areas. This signifies that even with prior knowledge, a more advanced approach should
be devised to produce appropriate weights with respect to each type of input DEM particu-
larly for multi-sensor DEM fusion using WA. In this research, an innovative and sophisticated
framework is designed and implemented for producing appropriate weights usable in the
WA-based fusion of multi-sensor-derived DEMs such as TanDEM-X and Cartosat-1 DEMs
over urban areas.

In recent investigations, the WA-based DEM fusion has been applied for fusing multi-
modal TanDEM-X raw DEMs such as ascending and descending pass DEMs [25]. Gruber et
al. designed a fusion pipeline based on WA for operational mosaicking of multiple TanDEM-
X acquisitions. In addition to WA, some logic for clustering consistent heights and upgrading
weights regarding the influences of other significant factors such as HoA, phase unwrapping
methodology and pixel locations relative to the border of the DEM scene is considered. The
aim is to reach the target relative accuracy and minimize Phase Unwrapping (PU) errors re-
maining from initial steps [26]. While results demonstrate that the designed WA-based DEM
fusion procedure can realize the target DEM, more inspections indicate that the produced
TanDEM-X is not perfect in urban areas and a more advanced fusion method should be car-
ried out for multi-modal TanDEM-X raw DEM fusion[27].

A more advanced DEM fusion technique was proposed by Papasaika [28], in which sparse
representation supported by weights served for the fusion of DEMs from various data
sources. The weight map for each input DEM was generated by the geomorphological prop-
erties of terrain and the nominal accuracy of the study DEM [29]. While the proposed method
in [28] can finally fuse input DEMs successfully, it is still a more expensive fusion approach
and strictly depends on the prior knowledge of input DEM qualities. Zach et al. implemented
a TV-L; model for VHR multi-modal range image fusion [30]. The main drawback of TV-L,
is a staircasing phenomenon which appears in the results of the fusion of VHR DEMs and
range images. For removing this adverse effect, Pock et al. [31] proposed the Total Gener-
alized Variation (TGV) method for the fusion of multi-modal, airborne, optical-stereoscopic
DEMs, which could ultimately produce a polished DEM. A weighted version of TV and TGV
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was examined by Kuschk et al. [32] on different multi-modal, multi-sensor, spaceborne, op-
tical DEMs. The weighted TGV could favorably remove noise in VHR optical-derived DEMs,
but the overall performance of the fusion method decreased for multi-sensor DEM fusion.
Fuss et al. utilized the modified K-means clustering algorithm to fuse multiple overlapping
radargrammetric Envisat-2 DEMs [33]. While the proposed method needs lower computa-
tional load than TV-based models, its application is limited to flat areas.

Most of the mentioned advanced methods, especially TV-based models, have shown excel-
lent performance for VHR multi-modal DEM fusion tasks. However, no study has assessed
the efficiency of these types of models for fusion of the low-resolution, multi-modal DEMs
such as TanDEM-X raw DEMs. On the other hand, as explained earlier, WA-based fusion
does not perform flawlessly in urban areas. Thus, this research investigates the potential of
TV-based models for multi-modal TanDEM-X raw DEM fusion over urban areas.

1.4.3 3D Reconstruction from SAR-Optical Imagery

In the recent decade, launching high and very high-resolution spaceborne optical and SAR
sensors such as WorldView-1,2,3, TerraSAR-X, etc. has provided the possibility of 3D recon-
struction of urban areas. Regarding the specific properties of each sensor type and its ad-
vantages and drawbacks, multi-sensor data fusion with an application of 3D reconstruction
can be applied to benefit by integrating their instructive characteristics and reducing their
defects. For example, SAR imagery with the characteristic of weather-independent imagery
provides the possibility of absolute geolocalization with higher accuracy in comparison to
optical imagery [34]. Moreover, a relatively perfect radiometric illumination as well as the
possibility of zero nadir viewing by optical imagery makes it appropriate for stereogramme-
try. Furthermore, the enormous available archive of high-resolution SAR imagery such as
TerraSAR-X and growing and updating it with new data-takes in a short period as well as the
archive of high-resolution optical imagery provides an opportunity to investigate pipelines
for generating 3D spatial information by multi-sensor fusion.

One principal methodology for 3D reconstruction from high-resolution images is stere-
ogrammetry, in which the 3D spatial information is produced by the intersection of rays com-
ing from conjugate image points located in at least two stereo images with sufficient overlaps.
Mostly, high-resolution optical stereo images are employed for highly accurate stereogram-
metric 3D reconstruction of urban areas because of their relatively desired imaging geome-
tries and also great radiometric representations of urban scenes. High-resolution SAR images
are mostly applied for 3D reconstruction using phase information rather than gray values
[35]. However, some investigations demonstrate the possibility of stereogrammetric 3D re-
construction from SAR imagery, namely radargrammetry, mostly for non-urban areas with a
focus on specific applications such as phase unwrapping [36, 37]. Regarding the properties of
SAR and optical imagery, grayscale images derived by the both sensor types can be employed
to produce spatial information through the dense matching of SAR-optical image pairs.

The initial idea for stereogrammetric 3D reconstruction from SAR-optical imagery was pro-
vided by Bloom et al. [38]. They applied low-resolution images, SIR-B and Landsat-4/5 im-
ages for 3D reconstruction of rural areas using simplified stereophotogrammetric equations.
Similarly, efforts were made for 3D reconstruction with a focus on rural areas utilizing low-
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resolution Seasat and SPOT/Landsat images [39, 40, 41]. These studies presented more com-
plicated rigorous sensor models for the applied SAR and optical imagery and finally used a
block adjustment pipeline to produce a coarse DEM in non-urban areas. In another study,
Xing et al. used ERS-2/Radarsat-1 and SPOT data to produce 3D information [42]. They de-
signed a block adjustment tool employing the co-linearity equations for spaceborne optical
imagery and the range-Doppler equations for SAR imagery. They could finally estimate the
positions of ground points by solving the defined adjustment equations. While the accuracy
of all investigations as mentioned earlier lies in the domain of dekameter, Wegner et al. esti-
mated building footprints with an accuracy of several meters from a single-pass InSAR image
pair and aerial imagery but not using SAR-optical stereogrammetry [43]. The challenges and
possibility of SAR-optical stereogrammetry from high-resolution imagery were investigated
in [44, 45]. An object-based strategy applying the SIFT similarity measure in a template-based
matching was used in [44] to explore the heights of target points. More similarity measures
were assessed in [45]. This study also proposed a strategy for simultaneous tie point matching
and 3D reconstruction, which exploits an epipolar-like search window constraint. Moreover,
the study discussed the effects of SAR-optical intersection geometry and acquisition config-
urations on the final accuracy of 3D reconstruction.

As illustrated earlier that relatively few studies have dealt with 3D reconstruction from
SAR-optical image pairs, there has yet been no investigation into the feasibility of a dense
multi-sensor stereo pipeline as known from photogrammetric computer vision. Thus, this
research investigates the possibility and potential of urban 3D reconstruction and height
generation from VHR SAR-optical imagery such as TerraSAR-X and WorldView-2 by imple-
menting a dense matching pipeline.
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2 Fundamentals

This chapter provides some necessary information and fundamentals used in this Ph.D. re-
search, which include the LOD1 building modeling process, the initial concepts of multi-
sensor data fusion, an introduction to DEMs and specifically short descriptions of TanDEM-
X and Cartosat-1 DEMs, prerequisites and essential preprocessing for DEM uncertainty as-
sessment and also basics of DEM fusion. Furthermore, some materials and principles are
presented, such as those applied for SAR-optical stereogrammetry. Useful references are also
introduced to provide opportunities for enthusiasts to go into the depth of the presented in-
formation and concepts.

2.1 LOD1 3D Reconstruction

The main objective of this dissertation is to investigate the possibility of LOD1-based 3D
building modeling from different remote sensing data sources which can be efficiently ap-
plied to wide areas. For this purpose, the heights improved by multi-sensor and multi-modal
DEM fusion techniques or produced by SAR-optical stereogrammetry will be used for 3D
building modeling and finally prismatic model generation. Due to employing the medium
resolution of the input DEMs and consequently insufficient details for building outline de-
tection, only LOD1 models can be reconstructed from those heights. Also, as will be shown in
Section 3.2.2, the point cloud resulted from SAR-optical stereogrammetry is partially sparse
and as a result, building outlines cannot be recognized.

One popular option is to exploit the building footprint layer provided by OSM. Then, the
heights of building outlines can be derived from either those fused DEMs or the point cloud
achieved by SAR-optical stereogrammetry. Technically, this can be realized in two steps. The
first step is to classify heights to those located inside and outside building outlines. Then, only
points that are within building outlines are kept while the remaining points are discarded. Af-
ter that, for each remaining height, the Id of the corresponding building (in which the height
islocated) is assigned. It facilitates the process of joining building footprints layer to heights.

There are several elevation references that should be considered for estimating an ultimate
height for a building outline [46]. These references are displayed in Figure 2.1. 3D reconstruc-
tion based on those levels can be realized by using high-resolution data such as LiDAR point
clouds along with precise cadastral maps. It should be noted that among different vertical
references, the optimal LOD1 building modeling can be realized by choosing the half of the
roof height as elevation reference [47]. Specifying this level in medium resolution remote-
sensing-derived heights, however, is not possible. Therefore, for LOD1 3D building recon-
struction using medium resolution data such as those applied in this research, only median
or mean of heights inside a building outline is used. The main advantage of the median is its
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Figure 2.1: Examples of elevation references for different kinds of buildings [46]

robustness against outliers in comparison to the mean measure. Finally, LOD1 model can be
produced by reconstructing each building as a simple box using its outline and the median-
based allocated height.

2.2 Data Fusion in Remote Sensing

Today, a growing number of satellites equipped with various kinds of sensors provide a huge
archive of various remotely-sensed data and images of our planet with different specifica-
tions regarding resolution, accuracy, coverage and spectral imaging ability, etc. Among dif-
ferent types of remote sensing sensors, SAR and optical data are more popular because of
their broad ranges of applications in different fields. For example, the TanDEM-X mission
provides high-resolution bistatic SAR images for the whole earth. Moreover, a large cover-
age of landmasses is enabled by the Sentinel-1, 2 and 3 missions. Furthermore, high and
very high-resolution images are acquired by the modern generation of optical sensors like
WorldView-2, 3 and 4. As a result, extensive archives of satellite imagery acquired by different
sensors are available and will not stop growing in the future. Figure 2.2 confirms an increasing
number of different types of remote sensing sensors in space.

Each kind of sensor has its distinct properties, e.g. wavelength, resolution, accuracy;,
and coverage, etc. For instance, the Sentinel-1 mission provides a global, cloud-free
medium-resolution SAR dataset, while the Sentinel-2 mission provides easy-to-interpret
multi-spectral data that is well-suited for land-use/land-cover mapping tasks, the acquired
data is profoundly affected by cloud coverage.

Data fusion can be applied for integrating datasets with different specifications to enhance
information extraction by beneficially combining the properties of individual sensors [17,

1.

In remote sensing applications, data fusion mainly includes several steps. The first step is
data alignment which mainly refers to the spatial and temporal coregistration of sensor data.
After that, data is correlated and commonly achieved by resampling. To this end, a reference
frame is defined and all input data are transformed into the defined reference frame by an
interpolation algorithm. Then, appropriate identities or attributes depending on data and
the fusion objective such as 3D coordinates, size or area are extracted as features. At the final
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step, extracted features are integrated depending on types of sensors [17].
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Figure 2.3: Flowchart of the generalized data fusion system [17]

A flowchart of the generalized fusion system consisting of the described fusion steps is de-
picted in Figure 2.3. For example, in this research, "Data Alignment" is performed for align-
ing input DEMs in DEM fusion as well as for coregistration of optical and SAR imagery in
SAR-optical stereogrammetry. Moreover, "Data Correlation" is performed by image matching
in SAR-optical stereogrammetry and by fusion techniques in DEM fusion to finally estimate
heights in the "Attribute Estimation" module.

2.3 Digital Elevation Models

DEMs in different resolutions, levels of height accuracy and coverages are routinely produced
by different techniques for a varied range of applications in different fields, such as naviga-
tion, geographical studies of the environment, or the ortho-rectification of remote sensing
imagery.

Particular attention is paid to the production of global DEMs, which represent homoge-
neous topography information for nearly all landmasses of the world. Different technolo-
gies have been employed for producing nearly global DEMs like the SRTM DEM [50],[51], the
ASTER GDEM [52] or AW3D30 [53, 54] which lie in two categories: SAR-interferometric and
optical stereoscopic procedures. Each one of them has its own advantages and drawbacks
that lead to DEMs with specific properties and limitations regarding final resolution and cov-
erage. As an example, the SRTM DEM with a grid spacing of 1” only covers the latitudes
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between 56°S and 60°N. An example for an elevation model derived from optical stereo data
is the AW3D30 DEM based on ALOS PRISM data, which provides both higher accuracy and
larger coverage (between 82°S and 83°N) than the SRTM DEM, but contains some void areas
due to missing information caused by clouds, snow etc. [55].

Recently, a new global topography dataset was attained through the TanDEM-X mission,
which provides a spatial resolution of 12m with coverage of nearly the whole earth. In the fol-
lowing, the main characteristics of the TanDEM-X DEM are presented. After that, the prop-
erties of Cartosat-1 DEM which will be used for the quality improvement of TanDEM-X DEM
are also introduced.

2.3.1 TanDEM-X DEM

The TanDEM-X mission realized a new global DEM covering almost the whole planet. The
TanDEM-X mission comprises twin SAR satellites (TerraSAR-X and TanDEM-X launched in
June 2007 and June 2010, respectively), which fly in adjacent orbits to acquire bistatic SAR
images. The mission was devised to produce DEMs with a target accuracy according to High-
Resolution Terrain Information standard level 3 (HRTI-3) [56]: i.e., with a relative height ac-
curacy better than 2 m for areas including slopes lower than 20%, and 4 m for slopes steeper
than 20% [10].

The particular satellite constellation equipped with X-band SAR sensors exploits a bistatic
SAR interferometry configuration with single pass acquisitions free of atmospheric and tem-
poral decorrelation effects and consequently provides the first high-resolution global DEM.

Form raw SAR data takes to the final global DEM, a workflow including different phases
such as interferogram generation, phase unwrapping, data calibration, DEM block adjust-
ment, and mosaicking is implemented at German Aerospace Center (DLR) [57]. A primary
step of the DEM generation procedure is carried out in the Integrated TanDEM-X Processor
(ITP). The initial DEM product, the so-called raw TanDEM-X DEM with nominal pixel spacing
of 0.2 arcsec (6 m at the equator), is the output of ITP [58, 59].

During the raw DEM generation, some potential error sources are removed by instrument
and baseline calibration [60]. After that, the vertical bias which usually lies between 1 m to
5m is corrected by the least squares block adjustment [61]. The block adjustment is per-
formed by using ICESat data and connecting points in the overlapping areas of raw DEM
tiles. However, dependent on the terrain morphology, some error sources remain after the
block adjustment. The effect of these errors can be decreased through the fusion of several
DEM coverages within DMP [62].

The TanDEM-X raw DEM coverage over different terrain types is displayed in Figure 2.4. As
can be seen, most of the world is covered by at least two nominal acquisitions with Height of
Ambiguities (HoA) between 30 m and 55 m. The main objective of TanDEM-X DEM fusion is
to improve the final accuracy by employing several coverages over different areas [26].

The raw TanDEM-X DEM is finally cast in a grid with a pixel spacing of 0.4 arcsec (12 m at
the equator) after DEM fusion to obtain the global DEM according to HRTI-3 standard [26].

While the standard DEM globally represents non-urban areas with unprecedented relative
accuracy [63], the drop of the DEM’s spatial resolution makes the final standard DEM un-
suitable for high-resolution 3D reconstruction in urban areas [64]. Consequently, the raw
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Figure 2.4: TanDEM-X coverage in different areas [57]

TanDEM-X DEM provides a more spatially detailed mapping of urban areas in comparison to
the standard version of the global TanDEM-X DEM.

2.3.2 Cartosat-1 DEM

Cartosat-1 (also called IRS-P5) is an Indian satellite (launched in May 2005) equipped with
a pushbroom sensor consisting of an ensemble of CCDs with a size of 2.5m in two lines for
along track scanning of scenes with a stereo angle of 3 1° [65].

Cartosat-1 data provides a series of DEMs with the relative accuracy of HRTI-3 standard
(2—-3m). It is particularly intended to produce a high-resolution DEM with coverage of a
relatively wide area [66] and is used, for instance, for large-scale DEM generation in Europe
[67]. Figure 2.5 illustrates the capability of using the Cartosat-1 stereo images for a large scale
DEM generation [68].

The Cartosat-1 data are provided with Rational Polynomial Coefficients (RPCs) computed
from the mission’s orbit and attitude information. Evaluations have demonstrated that their
accuracy is restricted to multiple hundred meters [69], i.e. the final produced DEM despite
fairly high relative accuracy is absolutely located in an incorrect position. The poor accu-
racy of the RPCs affects the stereo intersection results and causes residuals in the final DEM
product.

Generally, a proper distribution of Ground Control Points (GCPs) is needed for RPC refine-
ment and bias compensation [70] of high-resolution optical images like those provided by
Cartosat-1, but the availability of GCPs cannot always be ensured. The conventional solution
is to use available global DEMs—Ilike the SRTM DEM —as an external vertical reference for
bias compensation and RPC refinement [71]. The process of RPC correction is depicted as a
diagram displayed in Figure 2.6.
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Figure 2.5: Stack of stereo Cartosat-1 images acquired over the north of Italy for producing a DEM on
alarge scale [68]

As illustrated in Figure 2.6, RPCs of Cartosat-1 imagery can be corrected in two steps. First,
the Cartosat-1 imagery is aligned to reference imagery to generate required tie points and
GCPs. Then, the horizontal bias compensation performed by a preliminary RPC correction
using achieved GCPs. For instance, Landsat ETM+ or Sentinel-2 imagery can be applied as
reference horizontal data for large scale mapping purposes. For DEM generation over a local
area especially urban areas, the highly accurate horizontal data such as aerial orthophotos
are suitable choices. In the next step, the vertical bias is compensated using an external DEM
such as SRTM [63].

After RPC correction and bias compensation during a block adjustment, the final DEM is
produced by implementing a dense matching algorithm. More details of Cartosat-1 DEM
generation can be found in [72].

2.3.3 DEM Uncertainty Assessment

For uncertainty assessment, the differences of vertical and horizontal datums between the
test DEMs and the reference DEM should be removed. Therefore, all data must first be trans-
ferred to one reference datum with identical pixel spacing.

After datum homogenization, the test DEMs must be precisely aligned to the reference
DEM in order to remove any rotational and horizontal translations. Several algorithms such
as Iterative Closest Point (ICP) algorithm [73], least square matching [74], or manual registra-
tion can be used for DEM coregistration.

After data preparation, the DEMs can be evaluated with respect to the reference dataset.
The accuracy of the DEMs is evaluated in terms of absolute and relative accuracy with re-
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Figure 2.6: Two-step process of the Cartosat-1 RPC correction [68]

spect to the LiDAR data. The absolute vertical accuracy is indicated by the average vertical
differences between the compared DEMs and the ground truth while the relative accuracy
refers to pixel-wise height precision and undulation.

The usual metrics for precision evaluation are Root Mean Square Error (RMSE) and LE90
(Linear Error in 90% confidence interval; a common metric in the TanDEM-X specification
document to express TanDEM-X DEM accuracy locally and globally [75]). LE90 is calculated
based on the Standard Deviation (LE90=1.645 x STD) in case that height residuals follow a
normal distribution. However, in general, one can not assure the underlying normal distri-
bution for errors. In addition, if the quantile-quantile plot of the height errors over any study
area demonstrates that the errors do not follow a normal distribution, other robust metrics
like Normal Median Absolute Deviation (NMAD) are recommended for error analysis [76]
and LE90 is computed by 1.645 x NMAD. Finally, the RMSE is gained after outlier removal by
marginal LE90 as a threshold.

2.4 DEM Fusion Basics

Similar to the uncertainty assessment of DEMs, the datum homogenization, coregistration
and subsequently data correlation should be performed before implementing any DEM fu-
sion pipelines. For stability reasons, in addition, the height data should be normalized to the
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interval [0, 1][32]:

hku%yy_hnﬁn

hmax_lhnm

hi(x,y) = , 2.1
where hi(x, y) > 0 is the elevation of the study DEM with index k at location (x, ¥), hpyax > 0
and hy,in > 0 (Mmin < hmax) are the lowest and highest elevations among all input DEMs. The
output gives the normalized height in the considered location.

The most famous, high-speed and low computational cost method for DEM fusion is WA
which is implemented by

k
f=) w;oh;, (2.2)
i=1

where h; are 2D arrays representing the input DEMs, w; are the corresponding weight maps
and o is a pixel-wise product. It is worth to note that other simple methods such as pixel-wise
median or mode based fusion can also be employed for DEM fusion especially when multiple
DEMs are available [77].

The main critical issue for using WA for DEM fusion is to apply appropriate weights that are
fairly representative of expected height errors in the source DEMs. For instance, for TanDEM-
X DEM mosaicking and multiple raw DEM fusion, generally, these weights are delivered as
HEMs from the ITP. For each height of the TanDEM-X DEM, the corresponding HEM value
can be estimated by

9¢.j
oj=H —_—, 2.3
j amb o (2.3)
where Hg,p is the height of ambiguity and o,; is the interferometric phase error that is
estimated from the interferometric coherence and the InSAR geometry [10]. Then, from these
values, the respective weights can be calculated for each pixel location by
L1
7
wj ZN._L. (2.4)
j=1 0?2

For optical-derived DEMs such as Cartosat-1 DEM, the standard deviation of the stereo
matching process can be used to produce a similar HEM.

2.5 Fundamentals of Stereogrammetry

Conventionally, 3D reconstruction in remote sensing is either based on exploiting phase in-
formation provided by InSAR, or on space intersection in the frame of photogrammetry with
optical images or radargrammetry with SAR image pairs. In all these stereogrammetric ap-
proaches, at least two overlapping images are required to extract 3D spatial information. For
this aim, a 3D reconstruction framework is implemented. The main stage of this framework is
to carry out a dense matching algorithm for 3D reconstruction, but before that, some primary
processes such as establishing epipolarity constraint and implementing a block adjustment
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are fulfilled. Finally, the 3D reconstruction is realized by a forward intersection and using
disparities achieved through a dense matching process.

2.5.1 Epipolarity Constraint

In most stereogrammetric 3D reconstruction scenarios, the epipolarity constraint facilitates

the procedure of image matching by reducing the search space from 2D to 1D [78]. The epipo-
larity constraint always exists for optical stereo images captured by frame-type cameras that
follow a perspective projection [79]. This phenomenon is illustrated in Fig. 2.7.
Lo i e . — i - S
& epipole _t;ofhﬂé'r ~., ) ﬁ\'\ﬁ\c "~ epipole

LEVEWE!

Figure 2.7: Epipolarity constraint for frame-type camera [78]

For a point, p in the left-hand image, the conjugate point in the corresponding right-hand
image is located on the so-called epipolar line. This epipolar line lies on the plane passing
through both image projection centers (O, 0) and the image point p. It can also be obtained
by changing the depth or height of p in the reference coordinate system. While it is known
that epipolar lines exist for images captured from frame-type cameras, straightness cannot
be ensured for other sensor types [79]. Thus, epipolar curves are referred instead of epipolar
lines to express generality in the remainder of this dissertation. In general, epipolar curves in
image pairs captured by frame-type cameras (as shown in Fig. 2.7) can be described as [30]

I.=FTyp/, (2.5)

where [, refers to the epipolar curve in the right-hand image associated with the image point
p' on the left-hand image. F is the fundamental matrix, which includes interior and exte-
rior orientation parameters for projecting coordinates between the two images. Similarly, an
epipolar curve in the left-hand image can be written as [; = Fp".

Since in remote sensing, optical satellites are usually equipped with linear array push-
broom sensors instead of frame type cameras, the epipolarity constraint becomes more com-
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plicated. Consequently, the fundamental matrix for push-broom sensors is more compli-
cated than that for frame-type sensors. This is caused by the fact that there is no unique
projection center for the whole acquired scene. In addition, the satellite trajectory tracking is
not as simple as for frame-type airborne platforms [81, 82, 83]. For push-broom satellite im-
age pairs, the epipolarity constraint can be verified similarly, but linear arrays are substituted
for a frame image.

With respect to remote sensing, several studies have demonstrated that the epipolar curves
for scenes acquired by linear array push-broom sensors are not straight [31, 84]. For example,
Kim [84] used the model developed by Orun and Natarajan [35] to prove that the epipolar
curves in SPOT scenes look like hyperbolas. Orun and Natarajan’s model assumes that the
rotational roll and pitch parameters are constant during the flight, while time-dependent
quadratic polynomials can model the yaw. Morgan et al. [86] demonstrated that the epipolar
curves would not be straight even with uniform motion.

For a SAR sensor, the imaging geometry is entirely different from that of optical sensors,
as data are collected in a side-looking manner based on the range-Doppler geometry [87].
However, the possibility of establishing the epipolarity constraint in stereo SAR image pairs
has been investigated by Gutjahr et al. [37] and Li and Zhang [88] for radargrammetric 3D
reconstruction. Gutjahr et al. experimentally showed that epipolar curves in SAR image pairs
are also not perfectly straight, but can be approximately assumed to be straight for radar-
grammetric 3D reconstruction tasks through dense matching [37].

2.5.2 Block Adjustment

Before carrying out the dense matching process, a block adjustment approach should be im-
plemented to align the corresponding images to a reference image. The output of the block
adjustment will lead to relatively bias compensation of the corresponding images. This pro-
cess can be performed using a block adjustment which is based on RPCs instead of rigorous
sensor models as proposed in [89] and consequently RPCs of corresponding images are mod-
ified. Generally, designing an appropriate function for modeling the existing bias in the RPCs

given by the optical image depends on the sensor properties [90], but for most sensors, an
affine model can be applied [91]. The affine model for RPC bias compensation can be formu-
lated as

Ax = mo+mix,+mzYy,

Ay (2.6)

no+nyxe+nzy,,

where x,,y, represent column and row of tie points in the corresponding images and m; and
n; (i =0,1,2) are unknown affine parameters to be estimated through the block adjustment
procedure.

For implementing block adjustment, tie points are selected between a reference image and
a corresponding image. The tie points can either be selected by a sparse key point matching
method or manually. In the end, the block adjustment equations can be constituted and
solved by least squares.

29



2 Fundamentals

2.5.3 Dense Matching: SGM

The core step in a stereogrammetric 3D reconstruction workflow is the dense image match-
ing algorithm to obtain the disparity map, which can then be transformed into the desired
3D point cloud. Generally, two different dense matching rationales can be used according to
whether local or global optimization is more important [92]. For the case of global optimiza-
tion, an energy functional consisting of two terms is established to find the optimal disparity
map [93]:

E(d) = Ega1a(d) + AEsmoorn(d), 2.7)

where E;4:4(d) is a fidelity term that makes the computed disparity map consistent with the
input image pairs, Egmno0:h(d) considers the smoothness condition for the disparity map, and
A is a regularization parameter that balances the fidelity and smoothness terms.

For a given image pair, the disparity map is calculated by minimizing the energy func-
tional in (2.7). The main advantage of global dense matching over local matching methods

is greater robustness against noise [92], although most existing algorithms for global dense
image matching have a higher computational cost [94].
SGM as a well-known dense matching method devised by [94], offers acceptable computa-

tional cost and high efficiency and performs very similarly to global dense image matching.

In SGM, the disparity map is computed by minimizing a cost function, defined as a data
term, over the whole image along paths toward the target pixel. The global energy functional
for SGM can be expressed as

S(p,d) =) Le(p,d), 2.8)

where L; includes a cost function and two penalties, one smaller value P; for pixels where
the disparity difference is small and another higher value P, for pixels where the disparity
difference is larger. The costs along different predefined paths toward the target pixel p are
then aggregated to generate a semi-global energy. L, is configured as

Ly(p-r,d),
Le(p—-r,d—-1)+ Py,
Li(p-r,d+1)+ Py,
min; Ly(p—r,i) + P,

Le(p,d) =C(p,d)+ min 2.9)

Thus, for target pixel p at disparity d and in direction r, the cost function is calculated using
a similarity measure. The equation also adds the minimum cost of the previous pixel p—r
including the penalties P;, P, for the nearest and farthest disparities to smooth any disconti-
nuities in the final disparity map.

To determine the optimal disparity map, a hierarchical matching procedure is adopted to
rapidly estimate the higher-level disparity maps from the initial disparity values. In each level
(from top to bottom), the disparity map computed by minimizing {S(p, d)} in the previous
level is employed as the initial disparity map in the current level. At the lowest level, the final
disparity is estimated for the left-hand image.
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2.5.4 Similarity Measure

As described in the previous section, the SGM cost function measures the cost of candidate
conjugate points to achieve the optimum disparity map. In the following, a great cost func-
tion, applied in this work, namely Mutual Information (MI) is described. MI is formed based
on the entropies of the source images by

MIL,IY=HODO+HI)-HU,TI), (2.10)

where H(I) and H(I') are the entropies of the source images I and I’, and H(I, I') is the joint
entropy of the two images. In a discrete space like image, theses entropies and the joint en-
tropy can be defined as

1 o .
H(I) =Z—;(logm(1) x g(i)) * g(i) 2.11a)
1
H(I') =)~ (ogpr (i) = g(i") * g (i) (2.11b)
H(I, I = Z—%(log prr(i,i") * g(i,i") * g(i,i"), (2.11c)

i,i’

where p;(i) and py (i) are the marginal probability density functions and prr(i, i") is the
joint probability density function. *g() is the Gaussian convolution that is applied to the
entropy and joint entropy functions. Matched points are points with higher MI information
that can become through minimizing the joint entropy.

2.5.5 Sensor Geometry

In the process of 3D reconstruction, the sensor geometry of each applied imagery has a sig-
nificant role in different steps such as establishing epipolarity constraint, block adjustment
and finally forward intersection for generating 3D spatial information from disparity maps.
Since this dissertation investigates the possibility of 3D reconstruction from SAR-optical im-
age pairs, the geometries of spaceborne SAR and optical sensors are introduced in the follow-
ing.

Most of the spaceborne optical imagery especially VHR images are collected by linear array
push-broom sensors. A collinearity condition can be used to formulate a rigorous model
for reconstructing the imaging geometry of a linear array push-broom sensor. This rigorous
model can be expressed by [95]

x;=0 X- Xa(t)
( i )=/1Rw(t)¢(t)x(t)( Y=Y ), (2.12)
f Z-27°(1)

where (x;, y;) are the coordinates of point p in the linear array coordinate system, f is the
focal length, (X°(#), Y°(t), Z°(t)) represents the satellite position at time ¢ in the reference
coordinate system, (X, Y, Z) are the ground coordinates of the target point T, A is the scale
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factor, and Ry (n¢(nx(p is the 3D rotational matrix computed from rotations w(z), ¢ (1), (£)
along the three dimensions at time ¢. Note that those as mentioned earlier rotational and
translational components are estimated by time-dependent polynomials.

Similarly, a rigorous model describing the range-Doppler geometry [96] (displayed in Fig.
3.14 as well) can also be applied to SAR imagery. In this model, the slant-range equation is
first used to describe the range sphere as [87]

R=|Rcr —Rcsll, (2.13)

where R is the slant-range and R¢r, Rcg are the target point and SAR sensor position vectors
in the reference coordinate system. C refers to the center of the reference coordinate system.
For a given pixel y; in the slant-range SAR scene, equation (2.13) can be reformulated as

Yr Yr
R=ct=c(tp+=—)=ctp+c=——
2f; 2f;

where R is the slant-range of the target point, c is the velocity of light, #, ¢ are the one-way
signal transmission times for the first range pixel and range pixel coordinate y,, respectively,

=Ro+Tyr, (2.14)

c
and f; is the range sampling rate. Ry gives the slant-range for the first range pixelandI' = —-.

The second equation describes the geometry of the Doppler cone:
o= 2 V- (R Rcs) (2.15)
D= 1R cr —Rcs), .

where fp is the Doppler frequency, A, is the SAR signal wavelength, V is the velocity vector
and - denotes the inner product operator.

As another possibility for describing a sensor geometry, RPCs are a well-established sub-
stitute for the rigorously derived optical imaging model. They are widely used for different
purposes such as epipolar curve reconstruction [89, 97, 98, 99, , , , ]. The rela-
tion between the image space and the geographic reference system is created by the rational
functions [104]:

Pi(A, ¢, h)

OO e h 2.16

=g AN 210
and Pyl )
_bBon _

r= —P4(/1,(,b, A g(/l, o, h), (2.17)

where r, ¢ are normalized image coordinates, i.e. normalized rows and columns of points in
the scene and ¢, A, and & denote the normalized latitude, longitude, and height of the respec-
tive ground point. The relationship between normalized and un-normalized coordinates is
given by [105]

Xy - X,
Sy

where X is the normalized coordinate, X, is the un-normalized value of the coordinate, and
Xo, Sy are the offset and scale factor, respectively.

X= (2.18)
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In equations (2.16) and (2.17), P; (i = 1,...,4) are n-order polynomial functions that are used
to model the relationship between the image space and the reference system. They can be
written as

Pi=ajo+aiih+aixdp+aizl

+6l,'y4h(,b +ais hA+ al',ﬁ(/)A + a7 h2 + di,g(,l)z + diyg/lz
, , , ) (2.19)
+a;10hpA+a;11h“d+a;12h"A+a; 139" h+a;14¢ A

2 2 3 3 3
+ai1shA +a;16pA +ai17h” +a;8p +a;i9 ,

where a; , (n=0,1,...,19) are the polynomial coefficients.
For projection from the image space to terrain, the inverse form of the rational function

models is used:
_ Ps(e,rh)

= =f ’ ’}l 2.20
PG(C,r,h) f(c ' ) ( )
7\C, T, /

= - 1, h). 2.21
Pg(C, T, h) § (C ’ h) ( )

For this task, another set of RPCs for inverse projection as well as the terrain height h is
needed.

The RPCs for optical sensors are usually delivered by vendors alongside the image files. For
SAR sensors RPCs can be estimated using ephemerids and orbital parameters attached to the
data based on the terrain-independent approach [106].
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3 Summary of Investigations

Regarding the objectives of this dissertation mentioned in Section 1.2, this chapter provides
summaries of contributions and investigations published as peer-reviewed papers. More de-
tails can be found by respecting to the papers available in the appendices. This chapter is
organized into three sections. The first section summarizes the research implemented for
improving DEM quality, especially over urban areas using innovative multi-sensor and multi-
modal DEM fusion techniques. Section 3.2 provides a summary of the devised framework for
stereogrammetric 3D reconstruction from SAR-optical image pairs. The heights derived from
DEM fusion and SAR-optical stereogrammetry are applied in the final section. This section
investigates the potential of 3D building model generation using building footprints provided
by OSM as VGI and those elevations produced by the methods described in the earlier sec-
tions.
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3.1 Height Retrieval by DEM Fusion

A great remote sensing source that provides height information for 3D reconstruction is DEM.
As explained in Section 2.3, DEMs are mainly produced from optical stereoscopy or SAR in-
terferometry or are derived from LiDAR data. Medium-resolution DEMs such as TanDEM-X
DEM are more popular as they provide the global coverage of the planet with unprecedented
relative accuracy, which can potentially be applied for large-scale 3D reconstruction. How-
ever, the primary produced DEM quality is not perfect in the first place. For instance, the
preliminary visual inspection of raw TanDEM-X DEM data still indicates unfavorable spa-
tial resolution and drop of height precision, especially for areas with topographically difficult
surfaces —such as urban areas [107]—and also reveals the requirement for primary produced
DEM quality enhancement in these areas.

One solution for refining a DEM such as TanDEM-X DEM in difficult terrains can be a fusion
with elevation data derived from other sources with different acquisition properties which do
not suffer from sensor-inherent imaging effects such as layover and shadowing. Examples for
these alternative data are DEMs derived from optical stereo imagery.

Another possibility to gather reliable height information is to fuse multi-modal DEM prod-
ucts. For instance, WA is currently applied as a fast and straightforward method for TanDEM-
X raw DEM fusion, in which weights are computed from HEMs delivered from ITP. While the
WA approach can realize the predefined goals in DMP for global DEM generation, it does not
perform well in difficult terrains with complex morphology such as urban areas which con-
tains many high-frequency contents such as edges. Accordingly, advanced fusion approaches
can be substituted for WA in the process of DEM mosaicking.

This study focuses on the two aforementioned possible solutions: multi-sensor-based, and
multi-modal-based DEM fusion strategies for improving the quality of medium-resolution
DEMs —e.g. TanDEM-X DEM, —and subsequently generating highly accurate elevations for
urban 3D reconstruction. Thus, this section is a summary of the two contributions presented
in Appendices A.1 and A.2.

H. Bagheri, M. Schmitt, and X. X. Zhu. Fusion of TanDEM-X and Cartosat-1 elevation
data supported by neural network-predicted weight maps. In: ISPRS Journal of Pho-
togrammetry and Remote Sensing 144 (2018), pp. 285-297 [108].

H. Bagheri, M. Schmitt, and X. X. Zhu. Fusion of Urban TanDEM-X Raw DEMs Using
Variational Models. In: IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 11.12 (2018), pp. 4761-4774 [109].

3.1.1 Multi-sensor DEM Fusion Supported by Neural Network-predicted
Weights

As illustrated in Section 1.4.2, WA is frequently used for DEM fusion purposes because of
its simple implementation and low computational cost. In addition, most advanced tech-
niques apply weights to assist the fusion process to reach the desired output. This means
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3.1 Height Retrieval by DEM Fusion

the weights play a key role for efficient fusion of DEMs, especially in the case of multi-sensor
DEM fusion, like stereoscopic-optical and InSAR DEMs [9]. The critical problem with us-
ing DEM fusion approaches, especially for WA, is applying appropriate weight maps recep-
tive to each DEM—which used to be proportional to the expected height residuals. For this
purpose, prior knowledge about existing DEM errors will always be beneficial for the fusion
process. One solution for predicting the expected errors is based on an error propagation
analysis through the DEM generation procedure. However, usually, such a model can only be
an approximation and may not model all potential error sources. An alternative is to learn
the error patterns by comparing exemplary areas of interest and corresponding ground truth
reference data: e.g., derived from high-precision LiDAR measurements. In this way, suitable
weights can be predicted for newly incoming datasets for which neither detailed information
about the height errors nor any ground truth data are available. In this regard, a sophisticated
framework for appropriate weight map prediction is proposed.

Figure 3.1 displays the framework of the proposed DEM fusion algorithm. In the heart of
the proposed framework, an ANN is used to learn the relationship patterns of height errors
and corresponding DEM features, which can subsequently be used for forecasting weight
maps. The proposed framework (Figure 3.1) can be summarized in three main steps:

1. spatial feature extraction from DEMs and height error calculation
2. datarefinement

3. a) training the ANN on dedicated training subsets for which ground truth data is avail-
able and b) applying the ANN parameters to target subsets.

The output of the ANN is a predictive model that works as a weight predictor in target areas
to which DEMs are fused based on the patterns explored in training subsets. More details of
the framework’s steps will be explained in the following.

For the training of the ANN, training data are selected from representatives of different land
types that can usually be observed over urban areas. From those, different kinds of spatial
features describing landscaping and roughness properties of the land surface such as slope,
aspect, Anisotropic Coefficient of Variation (ACV), Topographic Ruggedness Index (TRI), To-
pographic Position Index (TPI), roughness, ruggedness, Surface Roughness Factor (SRF), en-
tropy, edginess, and HEM are extracted. Several studies clarify the relationship between the
spatial features and DEM qualities [29, 110, 111, 112]. Figure 3.2 exemplarily shows the maps
for these features extracted from the Cartosat-1 data in the industrial area. Moreover, height
residual maps are calculated for all training subsets by subtracting the LiDAR ground truth
elevations from the corresponding DEM elevations.

Prior to constituting the ANN structure, another important step is to refine the height er-
rors oriented to extracted spatial feature values to get rid of outliers and decrease the noise
effects. The calculated height residuals are polluted by high-frequency noise, which will af-
fect the training of the ANN. The performance of the network in the case of using smoothed
residual maps derived from the refinement step, as well as using raw data without smooth-
ing, only removing the outliers, are illustrated in Figure 3.3. Figure 3.3(b) indicates that noisy
height residuals disrupt the training procedure and prevent the ANN from recognizing the er-
ror patterns. Without implementing the refinement, the training performances of networks
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Figure 3.1: A framework designed to estimate the adaptive weights by ANN for the TanDEM-X and
Cartosat-1 DEM fusion

are significantly lower, exemplarily illustrated by output with correlations lower than 0.50 and
0.35 for the TanDEM-X DEM and the Cartosat-1 DEM, respectively.

To reduce the noise effects with the aim of promoting the training, a smoothing process,
characterized by two-step mean filtering is carried out. The first step of the refinement is to
bin the feature values that can be obtained by a simple empirical-statistical binning tech-
nique. At first, errors exceeding 3xNMAD are detected as outliers and then eliminated along
with their corresponding feature values from the training dataset. After removing outliers,
the values of the feature vector j (F}) and their corresponding height residuals E are binned
by the Freedman-Diaconis rule [113]:

J J
_ fmux_fmm

N )
h

(3.1
where h =2 x I x k~'/3, The output of above formulation is the number of bins (N) for feature
J with bin width of £, just by detecting the max and min values of measured feature ( £} 0 and
f r{“. )+ 1 is the interquartile range and k is the number of measurements that are remaining
height residuals after outlier removal. In other words, k refers to number of pixels whose
height errors (e;) are lower than the threshold 3xNMAD. The mean filter is applied bin-wise
to generate smoother height residual. The output of this filtering is the numerical feature-
error model in which each feature vector Fi corresponds to a new smoothed height residual

; T
J j J :
lavg  ©avg €mavg ] . It has to be noted that infrequent feature values

are thrown away by a threshold. This procedure should be followed for each type of feature.
Figure 3.4 presents the graphical depictions of feature-error models derived for an

map, E!wg =| e
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Figure 3.2: Feature maps extracted from DEM from industrial area (D1) of Cartosat-1 DEM

industrial area for TanDEM-X and Cartosat-1 after binning and mean filtering. Con-
sequently, for each pixel, n height residual values at last are acquired. This means
there are n residual maps, which are linked to n numerical feature-error models
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Figure 3.3: Regression plot of training data for industrial area (subset D1)

((F' P .. F" | Eu, Ei, .. Eig ).

Next, the second step of the smoothing process is to average again the achievements of the
former step (smoothed height residuals) to finally create a unique height residual. After this
refinement, the data are ready to insert into the ANN for training and exploring the patterns.

The filtered outcomes from the refinement stage are employed to train a fully connected
feed-forward neural network. The ANN is trained using the filtered feature vectors as inputs

and the modified height residuals as outputs, which are cast in the form of:
[®) @2 .. Oy | E ],
r (3.2)
where @; = fi1 fi2 S |7, ie{1,2,..,m}

contains the values of the different features for a given pixel i and E; is the final smoothed
residual map obtained through the two-step mean filtering. Figure 3.5 shows the structure of
the network, which consists of an input layer in which neurons with the label of the feature
values of each pixel (®;) are connected to the smoothed height residual of the corresponding
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Figure 3.4: Height error patterns of the TanDEM-X DEM (in red) and the Cartosat-1 DEM (in black
dashed) for the industrial area (subset D1): horizontal directions show the feature values
and vertical directions indicate mean absolute height residuals in each bin achieved from

the refinement step
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Figure 3.5: Structure of neural network for weight map prediction

pixel through the hidden layers. In the repetitive process, with back propagation training, the
weights of neurons are gradually modified to decrease the discrepancy between smoothed
height residual maps and the map achieved by the network. The main achievement of the
ANN after successful training is that a model can estimate the weight maps for each part of
DEMs from forecasting the height residuals just by measuring the spatial features.

3.1.2 Multi-modal DEM Fusion Using Variational Models

As explained in Section 3.1, one possibility for improving the quality of medium-resolution
DEMs such as TanDEM-X DEM in difficult terrains is fusion with elevation data derived from
a different sensor using an ANN-based fusion pipeline. However, the ground truth data used
for weight map generation is not necessarily available for every arbitrary study area. Apart
from WA, another major part of fusion techniques are based on variational models to de-
crease noise in DEMs while preserving the sharpness. As illustrated in Section 1.4.2, this type
of fusion technique has been mostly tried to fuse VHR DEMs, particularly in urban areas.
Thus, this study investigates the potential of using variational models for medium-resolution
DEM fusion such as TanDEM-X over urban areas. In comparison to WA, variational models
can efficiently fuse DEMs without a requirement to weights. Thus, these models are mostly
applied for fusing multi-modal DEMs [30, 31].

Variational models were firstly used for signal and image denoising [114, ]. A favorite
type of variational models is the TV-based model in which the gradient of the desired output
image is selected to form the regularization term based on different norms. The main advan-
tage of the TV-based variational model is its convexity that guarantees to find a solution by
minimizing the energy functional [31].
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In the problem of DEM fusion, several input DEMs are fused using variational models. The
data term makes the fused DEM similar to the input tiles while the TV-based regularization
term is defined to provide a sharp output at the end by preserving the edges and reducing the
noise.

The basic gradient-based variational model for image denoising and data fusion is a
quadratic model in which L, norm is used for both regularization and data terms [116]. How-
ever, the quadratic regularization term causes over-smoothing for edges. Therefore, using
the L; norm instead was proposed by Rudin, Osher, and Fatemi which is called ROF model
correspondingly [114]. Since the ROF model still uses the L, norm for the data term, it does
not provide robustness against outliers when applied to DEM fusion. As a solution, the L;
norm can be substituted for the L, norm [117]. The TV-L; model consists of the data fidelity
and the penalty term:

k
min{ 1= hyly + V8L, (3.3)

i=
where h; are noisy input DEMs and f is the desired DEM should be achieved by minimizing
the functional energy above. The penalty term is formed based on the gradients of the newly
estimated DEM to preserve the edges at the end. The regularization parameter y trades off
between penalty and fidelity terms. Increasing y will influence the smoothness and will pro-

duce a smoother fused DEM in the end.

While the main advantage of TV-L, is its robustness against strong outliers as well as edge
preservation [31], it suffers from the staircasing effect, a phenomenon that creates artificial
discontinuities in the final output and particularly affects high resolution DEM fusion [118].
Moreover, the L; norm is not necessarily the best choice for all data fusion and denoising
cases. As an alternative, the Huber regularization model is proposed to rectify the drawbacks
of the TV-L; model [31]. It applies the Huber norm instead of the L; norm in both fidelity and
penalty terms [119]:

';—'2 if |x|< 7.
Ixly =427 (3.4)
|x|—3 if | x|> 7.

Here, 1 is a parameter that determines a threshold between the L; and L, norm in the model.
Based on this, the Huber model can be defined as [120]

k
min{ 3> 3 I ~hilla +v 3 IVEl), (3.5)

i=1 Q Q

where both data and penalty terms are constituted based on the thresholds a and S that are
substituted as i) in the Huber norm relation (3.4) to form these terms and Q denotes the raster
DEM space. It should be noted that the Huber norm is a generalized form of the L, norm.
However, in this study the Huber norm is also used to strictly penalize the outliers. Using
quadratic norm in the regularization term penalizes high-frequency changes more than L,
norm, and thus, it reduces the noise at the cost of over-smoothing edges.

It is mathematically proven that the TV-based energy functional using either L, or Huber
norm is convex. One popular strategy for finding the minimum of a convex optimization is
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to reformulate the functional energy as primal-dual problem [121]. More details of the dual-
problem algorithm used for minimizing equations (3.3, 3.5) can be found in A.2 and [121].

3.1.3 Experiments

In this dissertation, TanDEM-X is selected as a great source of elevations for urban 3D recon-
struction with a potential of large-scale modeling. As mentioned earlier, TanDEM-X DEM
is not perfect in urban areas, and DEM fusion techniques can be applied for improving its
quality. In the following, summaries of results from two main experiments of the TanDEM-X
DEM quality enhancement through the DEM fusion are presented. In the first experiment,
the TanDEM-X DEM is fused with Cartosat-1 DEM using the weights generated by the pro-
posed ANN-based framework. In the second experiment, variational models as advanced
fusion techniques are employed for TanDEM-X raw DEM fusion instead of WA.

3.1.3.1 TanDEM-X and Cartosat-1 DEM Fusion Using Proposed ANN-based
Framework

Before DEM fusion, the height accuracies and errors of both the TanDEM-X and the Cartosat-
1 elevation data for different land types are investigated. The output of this assessment can
illustrate the performance of each DEM for a specific land type and allows for an educated
judgment about which DEM shows favorable accuracy for which land type, thus provid-
ing a basis for the consideration of DEM fusion. The main characteristics of the employed
TanDEM-X and Cartosat-1 DEMs are presented in Table 3.1.

Raw TanDEM-X DEM Cartosat-1 DEM
Center incidence angle 38.25° Stereoscopic angle 31°
Equator crossing direction Ascending Max number of rays 11
Look direction Right Min number of rays 2
HoA 45.81m Horizontal reference BKG orthophotos*
Total number of looks 22 Vertical reference SRTM DEM
Pixel spacing 0.2 arcsec Pixel spacing 5m
HEM mean 1.33m Mean height error (10) 2-3m

Table 3.1: Properties of TanDEM-X and Cartosat-1 tiles. * For more information look up

For height accuracy assessment as well as DEM fusion experiment, study subsets repre-
senting six different land types that are usually found over urban areas and their surround-
ings are chosen. The subsets are selected from Industrial areas (D1, D2), Inner-city areas (I1,
12), High buildings (H1, H2), Residential areas (R1, R2), Forested areas (F1 ,F2), classical land
farms (F1, A, L) and Lake (L) which are displayed in Figure 3.6. All these test areas are located
in the area of Munich, Bavaria, so that for each of them a highly-accurate LiDAR point cloud
(with a density of at least 1 point per m?), provided by the Bavarian surveying administration,
is available as a reference.

Before uncertainty assessment and subsequently implementing the fusion process, the
Cartosat-1 and TanDEM-X data should be homogenized in terms of horizontal and vertical
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Figure 3.6: Display of land types and locations of study subsets from Munich area

references, as well as pixel spacing. More technical details were already explained in Section
2.3.3. In addition, after preparing the elevation data in the form of the desired grid and ref-
erence, the tiles of study DEMs (TanDEM-X and Cartosat-1) should be aligned together to
compensate any rotational and translational discrepancies.

At first, the vertical offset of the TanDEM-X and the Cartosat-1 DEM in comparison to the
reference DEM in each subset was calculated. On average, the vertical offset of the Cartosat-
1 elevation data over the different test areas is 2.657 m while the mean absolute height offset
of the TanDEM-X raw DEM over all subsets is found to be 1.503m. The precision assess-
ment results over urban and non-urban areas after vertical bias removal are collected in Ta-
ble 3.2. The height residual maps for some exemplary urban study subsets extracted from the
TanDEM-X and the Cartosat-1 DEM are displayed in Figure 3.7.

The results of the precision assessment of the TanDEM-X and Cartosat-1 DEM collected
in Table 3.2 show that the Cartosat-1 DEM has a higher height precision than the TanDEM-
X DEM in urban areas. The main source of errors in the TanDEM-X DEM comes from the
layover effect which leads to wrong height reconstructions [122]. In contrast, the TanDEM-X
and the Cartosat-1 DEMs have almost identical height accuracy in agricultural and forested
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Figure 3.7: Height residual maps of subsets located in different land types (In each residual map pair,
left: Cartosat-1, right: TanDEM-X
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Areas TanDEM-X Cartosat-1
LE90 LE90 RMSE LE90 LE90 RMSE
(STD) (NMAD) (STD) (NMAD)
Industrial D1: 7.18 3.88 4.38 5.41 2.69 3.29
Industrial D2: 8.33 4.98 5.09 5.67 3.85 3.46
Inner city I1: 11.20 9.28 6.82 8.31 6.56 5.11
Urban Inner city 12: 9.79 9.11 5.96 8.06 6.88 4.94
High building H1: 29.22  10.63 18.37 20.23 5.07 12.44
High building H2: 13.83  6.04 8.44 11.96 3.65 7.33
Residential R1: 5.09 4.49 3.10 4.16 3.65 2.55
Residential R2: 4.10 3.34 2.51 3.75 2.97 2.32
Forested F1: 7.48 7.30 4.56 7.19 6.864 4.371
Forested F2: 7.30 5.86 4.47 7.55 5.287 4.60
Non-Utban Agricultural F1 2.31 1.84 1.43 3.23 1.95 1.98
Agricultural A 1.38 1.03 0.84 1.28 1.06 0.78
Agricultural L 2.70 1.64 1.64 2.71 1.29 1.65
Lake (L) 21.42 17.00 14.58 2.93 2.64 1.87

Table 3.2: Height precision (in meter) of TanDEM-X and Cartosat-1 DEMs over different areas. The
bold values indicate the best metric values for the respective land type if the margin between
the TanDEM-X and Cartosat-1 data is at least 10%

areas.

By successful alignment of the Cartosat-1 and TanDEM-X DEMs, the Cartosat-1 DEM is ver-
tically positioned in the location of TanDEM-X, which indicates an improvement of the abso-
lute geolocation through DEM fusion. After vertical alignment, the ANN-based approach is
examined to increase the height precision of both DEMs. The training data are selected from
diverse land types introduced earlier. The usage of training data from different land types
guarantees the presence of all possible values of features respective to height residuals in the
process of pattern recognition by the NN, and give the assurance of discovering a more gen-
eral model that can be used for any arbitrary land type. After successful training, the ANN
can be applied for predicting the height residual in selected target areas where two DEMs are
supposed to be fused. The predicted residual maps are used as weight maps in the WA fu-
sion. Thus, two separate ANNs are needed for both the TanDEM-X and Cartosat-1 DEM to
generate individual weight maps for each DEM separately.

All subsets of all different land types are simultaneously used as training data to create a
general predictor model that can be used for weight map generation in arbitrary target sub-
sets. In this experiment, the subsets D1, I1, H1, R1, and F1 are used to train the ANN, and the
resulting output model is used for all target subsets. 70% of data from the training subsets
are devoted to training, and 15% are for validation to control the training process in order
to avoid over-fitting and under-fitting, tuning the networks’ parameters such as depth and
number of neurons in each layer, and the remaining data (15%) are devoted to monitoring
the performance of NN during the training. However, the whole process of the proposed
framework will be implemented on the independent subsets (D2, 12, H2, R2 and F2, A) for
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measuring the performance of the DEM fusion pipeline.

Table 3.3 compares the results of ANN-based fusion with simple HEM-based fusion. The
ANNs with one hidden layer and 20 neurons in the hidden layer were applied for this DEM
fusion.

Areas TanDEM-X Cartosat-1 Fused DEM
HEM ANN
NMAD RMSE NMAD RMSE | NMAD RMSE NMAD RMSE
Industrial: D2 3.43 5.11 2.43 3.56 2.91 4.26 2.42 3.46
Inner city: 12 5.92 5.81 4.62 5.21 5.09 5.13 4.90 4.84

High building: H2  3.75 8.41 3.29 8.13 3.14 7.93 3.13 7.75
Residential: R2 2.30 2.61 2.02 2.45 2.13 2.44 1.99 2.33
Forested: F2 3.88 4.82 3.23 4.65 3.51 4.35 3.19 4.18
Agricultural: A 0.57 0.84 0.65 0.81 0.98 0.76 0.49 0.68

Table 3.3: Results of fusion of TanDEM-X and Cartosat-1 DEM (in meters) by using weight maps gen-
erated by different methods. The bold values indicate the best values of metrics relevant to
the quality of the compared DEMs

The optimal structures of ANNs for both study DEMs were investigated by tracking the cost
function values during the training stage. The performances of networks were evaluated by
considering one hidden layer and changing the number of neurons in this layer. Then, deeper
networks were examined by adding another hidden layer. Figure 3.8 depicts the performance
of the neural networks on test data for an increasing number of neurons in the ANNs with
one hidden layer, as well as for structures designed with two hidden layers. The plots display
that the rise in the number of neurons in the first layer is more influential than adding the
layers and making the networks deeper. In ANNs with one hidden layer, the general trend of
changing costs remained stable after adding more than 20 neurons.

Figure 3.9 visualizes the absolute residual maps of TanDEM-X, Cartosat-1, HEM, and ANN-
based DEM fusion results in comparison to reference data for some exemplary study areas.
As the obtained NMAD and RMSE results show, standard HEMs generally cannot be reliably
used to produce a fused DEM whose height precision exceeds the Cartosat-1 DEM precision.
This confirms the assumption that standard HEMs do not reflect all possible error sources in
the original DEM data. As an example, the HEM delivered with the TanDEM-X raw DEM just
contains error values derived from interferometric coherence and baseline configuration,
while deterministic error sources such as layover are not considered. Nevertheless, standard
HEMSs can be used as a fall-back solution should ground truth for ANN-based weight map
prediction be unavailable.

In contrast, the results obtained for the ANN-supported fusion shows an improvement
of the fused DEM product with respect to both input datasets, indicating that the designed
ANNs can properly model the existing error patterns related to spatial features that describe
the landscaping and the roughness of the land surface under investigation. While the ANN-
supported DEM fusion significantly improves the height precision of the TanDEM-X DEM, it
also enhances the quality of the Cartosat-1 DEM: As an additional analysis reveals, more than
51% of all fused DEM pixels are more accurate than their Cartosat-1 counterparts.
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Figure 3.8: The performance of the ANNs with different structures measured by SSE (Sum of Squared
Errors); a) The structure with one hidden layer. b) The structure that organized by two hid-
den layers: first, with number of neurons fixed to n=20, and second with varying number

of neurons
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Figure 3.9: Absolute residual maps of TanDEM-X and fused DEM using ANN-predicted weight maps
in some exemplary subsets

Last but not least, the absolute vertical accuracy of the fused DEM is also better than the
absolute accuracy of the original Cartosat-1 DEM, which is achieved through the alignment
to the more accurately localized TanDEM-X DEM. Thus, eventually, the proposed DEM fusion
can lead to a final DEM product that provides a higher quality than the individual input DEMs
in both absolute and relative measures.
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3.1.3.2 TanDEM-X Raw DEM Fusion by TV-based Variational Models

A current approach for implementing the TanDEM-X raw DEM fusion in DMP is WA. After
WA-based DEM fusion, visualization shows that outlines of buildings are not perfectly sharp
and still some amount of existing noise spoils the footprints of buildings. Another possible
solution for the TanDEM-X quality improvement is to use variational models instead of WA
in DMP. For this aim, different experiments are carried out to evaluate the performance of
variational models such as TV-L; and Huber models for multi-modal TanDEM-X DEM fusion.

The first investigation includes data takes that have similar baseline configurations as well
as HoAs. The study subsets are selected from two nominal TanDEM-X raw DEMs over Munich
city in Germany. The characteristics of these raw DEMs are presented in Table 3.4. From
those, four subsets as representatives of different land types are extracted for the DEM fusion
task.

TanDEM-X raw DEMs: Munich area

Acquisition Id 1023491 1145180 1058842
Acquisition mode Stripmap  Stripmap  Stripmap
Center incidence angle 38.25° 37.03° 38.33°
Equator crossing direction Ascending Ascending Ascending
Look direction Right Right Right
Polarization HH HH HH
HoA 45.81m 53.21m 72.02m
Pixel spacing 0.2 arcsec  0.2arcsec 0.2 arcsec
HEM mean 1.33 m 1.58 2.58

Table 3.4: Properties of the TanDEM-X raw DEM tiles for Munich area

The results of raw DEM fusion using TV-L; and Huber models for study areas are presented
in Table 3.5. In addition to statistical analysis, to evaluate the performance of variational
models, the residual maps of the input DEMs and the fused DEMs achieved by different
methods for the industrial and inner-city 1 study areas are displayed in Figure 3.10. The re-
sults illustrate using variational models in the fusion process can finally improve the quality
of the TanDEM-X DEM over the quality achievable with classic WA. It is explicitly displayed
on residual maps that variational models can finally reduce the noise effects and also makes
the footprints of buildings more apparent than WA.

In the second experiment, the performance of variational models for fusing TanDEM-X
raw DEMs with different HoAs over urban areas is investigated. For this purpose, one exper-
imental ITP raw DEM with different HoA over Munich city in Germany is considered. The
specifications of this raw DEM are shown in Table 3.4 (tile 1058842).

In this experiment, a study subset is extracted from an area that has lots of inconsistent
heights due to PU errors. For this aim, a relatively large subset from an urban area which
is covered by trees and also includes a river crossing is selected. Figure 3.11 displays the
selected study area suffering from PU errors. The corresponding DEM data are derived from
tiles 1023491 and 1058842 with HoAs about 45 m and 72 m respectively.

The PU errors appearing in this subset originate from the volume decorrelation phe-
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Study area DEM Mean RMSE MAE NMAD STD
id: 1023491 | 0.71 440 3.08 237 434
Raw DEM
aw id: 1145180 | 0.71 464 327 3.01 458
Industrial WA 077 416 293 224  4.09
Fused DEM TV-L, 0.69 3.67 269 203 3.60
Huber 071 374 284 240 3.67
id:1023491 | 078 7.79 595 649  7.75
RawDEM 41145180 | 078 808 630 715 8.04
Inner 1 WA 084 751 583 649  7.46
Fused DEM TV-L, 077 6.1 5.00 572 6.06
Huber 078 614 509 5.67 6.09
id:1023491 | 0.18  7.00 544 636  7.00
RawDEM 41145180 | 018 7.16 557 651  7.16
Inner 2 WA 020 682 533 623  6.82
Fused DEM TV-L, 012 583 478 6.6 583
Huber 018 5.82 482 623 5.82
id:1023491 | 0.95 268 210 205 250
RawDEM 141145180 | 095 292 225 231 276
Residential WA 096 261 205 199 243
Fused DEM TV-L, 0.89 241 1.96 1.98 224
Huber 095 244 198 1.98 2.24
id:1023491 | 0.13 086 057 059 084
RawDEM 41145180 | 013 164 113 120 164
Agricultural WA 0.14 0.78  0.51 0.54 0.76
Fused DEM TV-L, 0.06 055 029 020 0.54
Huber 013 072 048 047 071
id:1023491 | 2.25 484 354 3.46 4.8
RawDEM 41145180 | 2.25 458 336 324  3.99
Forested WA 228 451 330 317 3.89
Fused DEM TV-L, 225 434 3.18 3.09 3.71
Huber 225 436 321 312 3.73

Table 3.5: Height accuracy (in meter) of the TanDEM-X data before and after DEM fusion in the differ-
ent study areas over Munich

nomenon that happens in an area covered by trees (like the selected study subset) and also a

coherence change due to transition from dry land to water (river). PU errors typically are at

the range of multiples of the HoA value. The inconsistent heights can be determined by [26]
dhs, =0.75x min(|[HoAl) — 4. (3.6)

Those height residuals bigger than dh;j, are denoted as inconsistent height values emerging
because of PU errors.
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Figure 3.10: Absolute residual maps of the initial input raw DEMs and the fused DEMs obtained by
different approaches for the industrial (a) and inner city (b) study areas over Munich

Figure 3.11: The study subset selected for DEM fusion in a problematic area (4.5 km x 2.8 km)

Table 3.6 collects the results of fusing DEMs with different HoAs in the selected study area.
Moreover, Table 3.7 compares the fused DEMs with different approaches and initial DEMs in
terms of the number of PU errors, maximum and minimum height residuals. The PU thresh-
old for each DEM is computed based on the respective HoA value using (3.6). It is evident

52



3.1 Height Retrieval by DEM Fusion

that the DEM 1058842 has the lower number of PU errors because of larger HoA, but for DEM
fusion quality analysis, the minimum value of HoAs (here 45.81) is considered to enumerate
the number of PU errors.

DEM Mean RMSE MAE NMAD STD

id: 1023491 | -2.35 10.77 846 10.10 1051

RawDEM .4 1058842 | -2.35 1057 827 969  10.30
WA 237 1045 823 981 10.17

Fused DEM TV-L, 2263 924 713 803 886
Huber 235 860 6.70 7.65 8.277

Table 3.6: Height accuracy (in meter) of the TanDEM-X data with different HoAs before and after DEM
fusion in the problematic study area

PU No. of Max Min
DEM HoA Threshold PU Errors Discrepancy Discrepancy
id: 1023491 | 45.81  30.36 2032 51.80 7313
RawDEM 4 1058842 | 72,02 50.01 51 58.82 -54.76
WA 4581  30.36 1339 50.74 -53.39
Fused DEM TV-L; 4581  30.36 102 19.16 -33.76
Huber 45.81  30.36 0 16.97 -28.71

Table 3.7: Effect of DEM fusion to reduce the number of PU errors using tiles with different HoAs in
the problematic study area

The results from Tables 3.6 and 3.7 demonstrate the efficiency of the Huber model for the
fusion of two tiles of TanDEM-X raw DEMs in the problematic area. This proves, in addition
to DEM fusion methodology, selecting appropriate raw DEM tiles dependent on the problem
is significant for a successful fusion.

In the final experiment, it is focused on the fusion of DEMs acquired by different baseline
configurations including different orbit directions and HoAs. Table 3.8 provides the proper-
ties of the tiles used for this experiment.

The raw DEMs covering Terrassa and Vacarisses cities located in Spain were produced by
ascending and descending acquisitions. In addition to orbit directions, the HoAs of tiles is
also not similar to each other. Again, from these tiles, study subsets located in different land
types were selected.

The results of fusing ascending and descending raw DEMs in different land types over the
urban area are provided in Table 3.9. The results of DEM fusion again illustrate using varia-
tional models can increase the accuracy of the initial input raw DEMs. In urban study subsets,
the performance of the Huber model is slightly better than TV-L; according to the statistical
metrics, but their differences are not really significant. It can be concluded that both models
produce similar results in terms of statistical measurements. In comparison to WA, varia-
tional models also give a more accurate DEM in urban areas and the agricultural subset.

In conclusion, The results of all experiments illustrated that variational models are more
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TanDEM-X raw DEMs

Acquisition Id 1058683 1171358
Acquisition mode Stripmap Stripmap
Center incidence angle 33.71° 34.82°
Equator crossing direction Ascending Descending
Look direction Right Right
Polarization HH HH
HoA 60.18 m 48.58 m
Pixel spacing 0.2 arcsec 0.2 arcsec
HEM mean 1.17m 1.40

Table 3.8: Properties of the nominal ascending and descending TanDEM-X raw DEM tiles over Ter-
rassa and Vacarisses cities

Study area DEM Mean RMSE MAE NMAD STD
1058683 | -0.19 349 249 2.60  3.48

RawDEM 121358 | 019 3.56 244 234 3.55

Industrial WA 2026 306 213 207  3.05
Fused DEM TV-L, | -034 292 209 207 290

Huber -0.19 289 210 2.14 2.88
1058683 | -0.78 5.05  3.52 3.70 4.99

RawDEM 1171358 | 078 511 353 362 505

Inner WA 2076 466 322 336 459
Fused DEM TV-L, | -091 435 3.08 340 4.25

Huber | -0.78 4.34 3.13 352 427

1058683 | -0.54 424 311 3.19 420

RawDEM 1101358 | -054 442 321 326 438

Residential WA 2062 394 287 283 3.90
Fused DEM TV-L, | -0.76 3.96 2.88 277 3.88

Huber | -0.54 3.86 2.86 2.74 3.82

hawDpy 1008683 | 0.44 238 168 171 234

1171358 | 0.44 193 1.23 0.98 1.88

Agricultural WA 0.35 1.60 1.04 0.83 1.57
Fused DEM TV-L, 0.27 160 1.04 0.78 1.59

Huber 0.44 1.62 1.12 0.91 1.56

Table 3.9: Height accuracy (in meter) of the ascending and descending TanDEM-X data before and
after DEM fusion in the different study areas over Vacarisses and Terrassa

efficient than WA for TanDEM-X raw DEM fusion, especially over urban areas. However, the
Huber model tends to provide a smoother fused DEM than TV-L1. Figure 3.12 shows that
the Huber model produces a smoother output in comparison to TV-L; because of mixing the
quadratic norm and the L; norm to form data and regularization terms.
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(d) Huber model (e) TV-L1 model (f) LIDAR

Figure 3.12: 3D display of initial TanDEM-X raw data and the results of DEM fusions using different
methods in the industrial area used in the first experiment.

3.2 Height Generation by SAR-Optical Stereogrammetry

In addition to DEMs which are typically produced by SAR interferometry or optical stere-
oscopy, height information for 3D reconstruction and building modeling can be provided
from archive-stored VHR SAR and optical imagery through a cooperative fusion. This coop-
erative integration can rectify optical imagery with modern SAR sensors such as TerraSAR-X
and consequently provide 3D spatial information with high absolute geolocation accuracy.
A review on the literature of 3D reconstruction from SAR-optical imagery identifies that only
a limited number of studies have dealt with stereogrammetric 3D reconstruction from high-
resolution SAR-optical imagery over urban areas. Moreover, their pipelines for 3D recon-
struction are just founded using sensor geometry in a sparse matching manner. Thus, this
section presents a summary of investigation on the possibility and potential of implement-
ing a dense multi-sensor stereo pipeline for 3D reconstruction of urban areas from high-
resolution SAR-optical image pairs. More details are provided in Appendix A.3.

H. Bagheri, M. Schmitt, P d’Angelo, and X. X. Zhu. A framework for SAR-optical stere-
ogrammetry over urban areas. In: ISPRS Journal of Photogrammetry and Remote Sens-
ing 146 (2018), pp. 389-408 [123].
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Figure 3.13: Framework for stereogrammetric 3D reconstruction from SAR-optical image pairs

3.2.1 A Framework for SAR-Optical Stereogrammetry

Figure 3.13 shows the general framework of SAR-optical stereogrammetric 3D reconstruction.
Similar to optical stereogrammetry, one grayscale optical image and one amplitude SAR im-
age form a stereo image pair that can be processed by suitable matching methods to find all
possible conjugate pixels. However, some important pre-processing steps are required before
the matching and 3D reconstruction.

Currently, most VHR optical images are delivered using RPCs. Thus, the primary step in the
SAR-optical stereogrammetry framework is to estimate the RPCs for SAR imagery as well. This
process homogenizes the geometry models of both sensors and simplifies the subsequent
processes of SAR-optical block adjustment and establishing an epipolarity constraint. The
RPCs are estimated from Virtual GCPS (VGCPs) achieved by the range-Doppler model of SAR
imagery. The accuracy of the RPCs can be estimated using independent virtual checkpoints
that are produced in a similar way to VGCPs using the range-Doppler model. The accura-
cies of the fitted RPCs for the TerraSAR-X data acquired over Munich and Berlin study areas
are listed in Table 3.10. The analysis was performed based on the residuals of the rows and
columns, given by the differences between image coordinates computed by RPCs and range-
Doppler. The analysis results confirm that the RPCs can model the range-Doppler geometry
for TerraSAR-X data to within a millimeter, and can thus well be used in the 3D reconstruction
process.

Table 3.10: Accuracy (STD) of RPCs fitted on SAR sensor model (units: m)
Virtual GCPs Check points

row column row column

Munich | 0.00026 0.00114 | 0.00025 0.00031

Berlin 0.00024 0.00027 | 0.00026 0.00118

Area

Conceptually, the epipolar plane can not be formed for SAR-optical image pairs due to
specific imaging geometries and consequently, the classic, straight forward epipolar geome-
try does not exist for a SAR-optical image pair. However, using the epipolar curve equation
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Figure 3.14: Imaging geometry for configuration of SAR-optical imagery

presented in equation (2.5) and the rigorous models describing sensor geometries of SAR and
optical imagery (Section 2.5.5), a rigorous model representing epipolarity constraint for SAR-
optical image pairs acquired by space-borne platforms can be established. For this task, the
optical image is considered as the left-hand image and the SAR image is the right-hand im-
age. Figure 3.14 shows the configuration of the SAR-optical stereo case. Mathematically, it is
proved that a general rigorous model representing the epipolarity constraint for SAR-optical
image pairs is formulated as (more details in A.3)

Ty, =\ Fx2+Fi x, + Fo—Ro. 3.7)

This shows that an epipolarity-like constraint can be established for SAR-optical image pairs.
However, the non-linear relation between y, and x, in equation (3.7) shows that SAR-optical
epipolar curves are not straight, even under the assumption of linear motion for the SAR
system.

In addition to mathematical proof, the epipolarity constraint will be experimentally inves-
tigated for an RPC-based imaging model. The validity of the derived SAR-optical epipolar-
ity constraint is analyzed for an exemplary point located at the corner of the Munich cen-
tral train station building (p). This point was projected to the terrain space by changing the
heights in specific steps, e.g., 10 m, starting from the lowest possible height and proceeding
to the highest possible height in the scene (for this experiment, the interval [0 m, 1200 m] is
used). The output will be an ensemble of points with different heights, such as depicted in
Figure 3.15(c). All these points were then back-projected to the WorldView-2 image space
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(c) WorldView-2: Munich

Figure 3.15: Epipolar curves for the WorldView-2 image (of Munich) given by changing the heights of
point p (located at the corner of the Munich central train station in the TerraSAR-X scene)
for all possible height values in the image scene. The epipolar curves look like straight,
but are not actually straight

using RPCs. The corresponding epipolar curve for all possible heights in the study area is
constructed by connecting the image points obtained in this way, as shown in Figure 3.15(c).
Although the epipolar curve appears to be straight, more analysis is required to determine
whether this is the case. By expanding the image, it can be seen in Figure 3.15(b) that the
epipolar curve nearly passes through the conjugate point of p in the WorldView-2 image.

To clarify the straightness of the epipolar curve constructed for point p, linear and
quadratic polynomials were fitted to the image points of the epipolar curve. Figure 3.16(a)
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Figure 3.16: a) Linear and quadratic polynomials fitted on the epipolar curves in the WorldView-2
images; b) Difference of two corresponding epipolar curves over the column direction.
The maximum difference between the two epipolar curves is less than one pixel
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Figure 3.17: Corresponding epipolar curves in the Munich TerraSAR-X image (left) derived from two
points, g; and g, on the epipolar curve of the Munich WorldView-2 image (right)

represents the least-squares residuals with respect to the point heights for the epipolar curves
created in both study subsets. The residuals of the linear fit for the epipolar curve established
for the Munich WorldView-2 image range from -0.25 to 0.1 pixels (i.e., meters), whereas the
residuals of the quadratic fit are close to zero.

To investigate the conjugacy of the SAR-optical epipolar curves, two distinct points (g;,g>)
were selected from the epipolar curve in the WorldView-2 image. From each of these points,
the corresponding epipolar curves were constructed in the TerraSAR-X image for all possible
heights as in the experiment before. Figure 3.17 displays the corresponding epipolar curves
in TerraSAR-X given by g; and g» located in the WorldView-2 image. The epipolar curves
appear to pass through point p located in the SAR image. Further analysis clarifies that the
differences in the column direction between the two epipolar curves passing through point
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p are less than one pixel, allowing the matching of the two epipolar curves (Figure 3.16(b)).

Similarly, all experiments as mentioned above were also performed for the TerraSAR-
X/WorldView-2 image pair of Berlin and analyses illustrated that the epipolarity constraint
could also be established for this image pair. Further information is presented in [123].

The next phase is to carry out a multi-sensor block adjustment to align the optical image to
the SAR image. The main peculiarity of multi-sensor block adjustment is to rectify the RPCs
of the optical imagery with respect to the SAR imagery without any requirement of GCPs
which leads to improving the absolute geolocalization of the optical imagery and correcting
the positions of the epipolar curves on the optical imagery . For this aim, tie points, the
common points between the SAR and optical images, are obtained by manual or automatic
sparse matching between two images. Then the geographic coordinates of the tie points in
the SAR image are calculated by the inverse rational functions (equation 2.20) computed for
the SAR imagery and the mean height of the study area. The output is a collection of GCPs
that can be applied for the RPC rectification of the optical imagery. The resulting GCPs are
then projected by the rational function associated with the optical images to give the image
coordinates of the GCPs. The block adjustment equations can then be written as

F}C = —xf, + cfm +Ax + vfc =0, (3.8)

and
Ey==Yo+Tou+Ay' +v),=0, (3.9)

where, x! and y! denote the column and row of tie point i in the optical scene, and c’,, and
rl, are the un-normalized coordinates of the tie point after projection and back-projection
using the RPCs. Ax’ and Ay’ are affine corrections presented in equation 2.6. Finally, through
an iterative least-squares adjustment [89], the unknown parameters m; and n; are estimated
and the affine model can be formed. This affine model is added to the rational functions of
the optical image to improve the geolocation accuracy to that of the SAR image.

For the experiment, eight and six tie points were selected to match the WorldView-2 im-
ages to the TerraSAR-X images in the Munich and Berlin study areas, respectively. Figures
3.18(a) and 3.18(b) show the residuals of the full multi-sensor block adjustment for each tie
point. The results demonstrate that the residuals of most points are less than one pixel in
both experiments, which indicates a successful implementation of SAR-optical block adjust-
ment. Table 3.11 presents the bias of the row and column components resulting from the
block adjustment of WorldView-2 and TerraSAR-X image pairs for both study areas. Figures

Table 3.11: Block adjustment results (units: m)

Area Sensor Bia§ STD MAD Min Max ,No' (.)f
Coefficients Tie Points
Munich WorldView-2 | -2.47 -0.53 0.50 0.14 0.07 1.46 8
TerraSAR-X 0 0 0.50 0.14 0.07 1.46
Berlin WorldView-2 | -0.73 0.28 0.51 0.13 0.19 1.59 6
TerraSAR-X 0 0 0.42 0.11 0.16 1.30
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Figure 3.18: Residuals of tie points after full multi-sensor block adjustment in the TerraSAR-X image
space.

3.19(a) and 3.19(b) display the locations of the epipolar curves before and after adjustment.
By enlarging the images, it is possible to confirm that the displacement of the epipolar curves
is minimal, yet noticeable.

In the following, the ability to perform dense image matching for SAR-optical image pairs
using SGM is investigated. The RPC model is used to realize the SAR-optical epipolar ge-
ometry implicitly without the need to generate normal images. In addition, the minimum
and maximum disparity values should be selected to restrict the length of the search space
along the epipolar curves. These values can be determined using external data such as the
SRTM DEM [124]. Among the different matching measures, MI is recommended for SGM
as it is known to perform well for images with complicated illumination relationship, such
as SAR-optical image pairs [125]. The next setting is to switch off the minimum region size
option. Experimental results show that, for SAR-optical image pairs, the complex illumina-
tion relationship between the images and the different imaging effects (especially for urban
areas) make the minimum region size criterion useless, as connectivity cannot be ensured in
the disparity map. Similar to other dense matching cases, the LR (Left-Right) check is used
to investigate binocular half-occlusions [126]. Finally, SGM is implemented at four hierarchy
levels, and the aggregated cost is calculated along 16 directions around each point.

A disparity map is then produced in the frame of the reference image via SGM. This dispar-
ity map should be transferred from the reference sensor geometry to a terrestrial reference
coordinate system such as UTM.

3.2.2 Experiments

For the experiments, two study areas were selected, one in Berlin and one in Munich (both
located in Germany). First, the SAR images were filtered with a non-local speckle filter. Then,
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—--- Before BA
— After BA

—-- Before BA
—— After BA

(b) Berlin

Figure 3.19: Displacement of epipolar curves after block adjustment by RPCs. Left images show the
epipolar curve positions before and after the bundle adjustment, and right images display
the selected patch (identified by dashed yellow rectangles) in an enlarged image

all images were resampled to 1m x 1m pixel spacing to enhance the general image simi-
larity and facilitate the matching process. After implementing bundle adjustment for both
datasets, two sub-scenes (with a size of 1000 x 1500 pixels each) from overlapped parts of the
study areas were cropped. These sub-scenes are displayed in Figure 3.20 .

The dense matching of TerraSAR-X/WorldView-2 imagery produces a sparse point cloud
over each of the urban study areas. Among different similarity measures which commonly
used in SGM, MI could provide the best results (see A.3). Figures 3.21(a) and 3.21(b) display
the reconstructed point clouds from SAR-optical sub-scenes of Munich and Berlin. The dif-
ference of SAR and optical observation geometries, the lack of jointly visible scene parts, and
the complicated radiometric relationship between SAR and optical imagery cause that stere-
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(a) Munich (b) Berlin

Figure 3.20: Display of SAR-optical sub-scenes extracted from Munich and Berlin study areas. In each
pair, the left-hand image is from WorldView-2, right-hand image is from TerraSAR-X

(a) Munich (b) Berlin

Figure 3.21: Point clouds reconstructed from Munich and Berlin sub-scenes

ogrammetric 3D reconstruction leads to sparse rather than dense point clouds over urban
areas.
The accuracy of these sparse point clouds was compared to that of reference LiDAR point
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clouds along the X, Y, and Z directions by least-squares plane fitting [127]. Table 3.12 sum-
marizes the mean, STD, and RMSE of the distances along the different axes. Table 3.13 ad-

Table 3.12: Accuracy assessment of reconstructed point clouds with respect to LiDAR reference
Mean (m) STD (m) RMSE (m)

X Y Z X Y Z X Y Z

Munich | -0.003 0.025 0.080 | 1.285 1.350 2.652 | 1.285 1.351 2.653

Berlin 0.000 -0.041 0.273 | 1.566 1.692 3.091 | 1.566 1.693 3.103

Area

ditionally shows results corresponding to point clouds that were cleaned by removing points
deviating from the SRTM model by more than 5 m.

Table 3.13: Accuracy assessment of point clouds after SRTM-based outlier removal

Area Point Cloud | 25%-quantile 50%-quantile 75%-quantile | Mean (m)
original 0.77 1.89 3.58 2.44

Munich filtered 0.67 1.56 3.04 2.12
SRTM 0.73 1.64 3.25 2.21
original 0.89 2.01 3.67 2.75

Berlin filtered 0.79 1.76 3.22 2.35
SRTM 0.86 1.93 3.63 2.65

In conclusion, the quantitative analysis shows that 25% of all points are reconstructed with
clear sub-pixel accuracy, while the median accuracy lies at about 1.5 to 2 m. The experiments
also show that the results can be further improved by filtering outliers from the reconstructed
point clouds. In this study, the globally available SRTM DEM as prior knowledge was em-
ployed for outlier removal. As Table 3.13 shows, discarding points with a height difference to
SRTM greater than 5m improves the results significantly.

3.3 Urban 3D Reconstruction Using Multi-sensor-derived
Heights

The final objective of this dissertation is to use multi-sensor-derived information for LOD1
building modeling of urban scenes. LOD1 models are usually generated automatically by
combining building footprints with height values. While high-resolution DEMs or dense Li-
DAR point clouds are typically used to generate these building models, these height sources
are usually not available on a larger scale. Another possibility is to derive elevations from
globally available DEM data, but they are often not detailed and accurate enough to provide
sufficient input to the modeling of individual buildings. Therefore, this research investigates
the possibility of LOD1-based 3D building modeling from both volunteered geographic infor-
mation and different remote sensing data sources which can potentially be applied on a large
scale. More specifically, OSM building footprints and height data derived from dedicated ex-
periments, i.e. DEM fusion and SAR-optical stereogrammetry presented in Sections 3.1, and
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3.2 are employed. The following sections provide a summary of the paper in Appendix A.4.

H. Bagheri, M. Schmitt, and X. X. Zhu. Fusion of Multi-sensor-derived Heights and
OSM-derived Building Footprints for Urban 3D Reconstruction. In: ISPRS Interna-
tional Journal of Geo-Information 8.4 (2019) [128].

3.3.1 Input Data for 3D Building Modeling

In this research, the heights for 3D building reconstruction are provided by different sources.
For the experiment, the inner-city subset located in Munich, Germany and commonly used
in three previous experiments (Sections 3.1.3, and 3.2.2), was selected. The list of the different
input height sources used in this experiment are presented in the following.

* Cartosat-1 DEM: The Cartosat-1 DEM used in this study is as same as that applied in
Section 3.1.3.1 and its specifications were already presented in Table 3.1.

* TanDEM-X raw DEM: Among three tiles of TanDEM-X raw DEM acquired over Munich
city, the highly accurate one, tile 1023491 is selected. The properties of this tile are
presented in Table 3.4.

* DEM generated by TanDEM-X and Cartosat-1 DEM fusion: The output of the TanDEM-
X and Cartosat-1 DEM fusion using ANN-based weight map generation pipeline is an-
other source of heights that will be employed in this study. It should be noted through
the DEM fusion, the overall quality of the TanDEM-X DEM was improved over urban
areas (see Section 3.1.3.1).

* DEM generated by TanDEM-X raw DEM fusion: Another experiment for improving the
quality of TanDEM-X raw DEMs was implemented in Section 3.1.3.2. Using the vari-
ational models for TanDEM-X raw DEM fusion could also lead to a high-quality DEM
over urban areas.

* Point cloud generated by SAR-optical stereogrammetry: By implementing the SAR-
optical stereogrammetry framework for the TerraSAR-X and WorldView-2 image pair,
a sparse point cloud could be produced (see Section 3.2). The produced heights can be
potentially employed for 3D building modeling.

3.3.2 LOD1 Building Model Generation

For LOD1 reconstruction using OSM-provided footprints, two scenarios will be considered.
The first one is to model buildings based on primary footprint layers provided by OSM. The
second is to update building outlines in the primary footprint layer of OSM. This updating is
implemented because of defects in building footprints of OSM in which a building can con-
sist of several intra-blocks with different heights while the blocks appear as a single outline
with the same heights in OSM. Thus, modification of building outlines respective to height
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changes should be considered. In more details, As displayed in Figure 1.1, for a building con-
sisting of two blocks, each with different height level, it may appear as an integrated build-
ing outline in OSM, and thus, only one height value can be assigned for it while the outline
should be split into two outlines. In other words, the heights lying in two actually separate
clusters are substituted by a median value located somewhere in the middle. While this ulti-
mately leads to a significant height bias, modifying and producing a precise outline map can
decrease the risk of bias appearance in the final reconstruction.

In this research, this building modification is performed semi-automatically. The candi-
date outlines are detected by clustering heights. The number of clusters determines the num-
ber of height levels and implies potential building blocks. Then, this is verified by looking up
to LiDAR data or even open satellite imagery such as Google Earth. Horizontal displacements
of OSMs’ building footprints respective to highly accurate data such as LiDAR can also lead to
a height bias. This phenomenon makes the inclusion of some non-building points in build-
ing outlines, and due to substantial height differences between non-building and building
points, the final height estimations are affected by bias. In this study, inside building points
are selected by buffering from each outline inwards.

Figure 3.22 displays LOD1 3D reconstruction results for the study area consisting of pris-
matic building models generated by combining the height information derived from differ-
ent sources discussed in the previous experiments (Sections 3.1, and 3.2) and building foot-
prints provided by OSM. As displayed in Figure 3.22, all models systematically underestimate
the building heights in comparison to a model produced from high-resolution LiDAR data.
However, this underestimation becomes minimum for a model using heights derived from
SAR-optical stereogrammetry, as can be seen when comparing large buildings. However, for
better evaluation, quantitative assessment should be performed. Therefore, the height accu-
racy of each LOD1 model was validated by comparing it with a model was created from the
reference LiDAR DSM in a similar manner. For that purpose, the original LiDAR point cloud
first is interpolated to a grid with a 1 m pixel spacing. Then, TV-L; denoising [109] is used to
reduce potential noise effects. This TV-L; denoising mitigates biases in building height esti-
mation induced by height outliers and inconsistencies such as those caused by crane-towers.
Then, the final height of each building outline can be computed according to the process de-
scribed earlier. Those can be correspondingly applied for the quality measurements of the 3D
building reconstructions obtaining from other height information sources. The quantitative
evaluations for the LOD1 reconstructions implemented based on scenario 1 (using original
OSM) and 2 (using updated outlines) are presented in Tables 3.14, and 3.15, respectively.

Regarding the median values in Table 3.14, using the original building outlines causes a bias
affecting estimated final heights (RMSE values) while standard deviations are much smaller,
thus confirming a systematic change in building heights. This bias can be significantly re-
duced by modifying building outlines in a preprocessing step (Table 3.15).

The results demonstrate that using heights derived from outputs of multi-sensor DEM fu-
sion can still lead to better reconstruction in comparison to the primary TanDEM-X DEM.
While the highest accuracy is obtained by Cartosat-1 data, it owes the accuracy to the bias
compensation through the alignment to TanDEM-X. Without the alignment, the existing bias
would be propagated to the final building heights.

Last but not least, it has to be mentioned that for generating a complete 3D city model, it
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Table 3.14: Quantitative evaluations (in meter) of the LOD1 reconstructions of the urban scene using
heights derived from different sources along with original building outlines of OSM

Input Heights Median RMSE STD
Cartosat-1 (primary aligned DEM) 8.63 10.01 4.67
TanDEM-X raw DEM 9.68 10.16 4.28
ANN-based fused DEM: Cartosat-1 and TanDEM-X 9.56 9.97 4.28
WA based fused DEM: TanDEM-X 7.91 9.50 4.81
TV-L; based fused DEM: TanDEM-X 8.94 8.95 3.82
Huber based fused DEM: TanDEM-X 8.97 9.00 3.83
SAR-optical stereogrammetry: TerraSAR-X/WorldView-2 6.51 9.73 5.83

Table 3.15: Quantitative evaluations (in meter) of the LOD1 reconstructions of the urban scene using
heights derived from different sources along with modified building outlines of OSM

Input Heights Median RMSE STD
Cartosat-1 (primary aligned DEM) -0.96 2.85 2.27
TanDEM-X raw DEM -0.93 343 283
ANN-based fused DEM: Cartosat-1 and TanDEM-X -0.92 3.09 248
WA based fused DEM: TanDEM-X -0.72 2.81 2.5
TV-L; based fused DEM: TanDEM-X -0.68 2.86 2.56
Huber based fused DEM: TanDEM-X -0.67 296 2.64
SAR-optical stereogrammetry: TerraSAR-X/WorldView-2 | -0.29 3.61  3.57

is needed to compute the height of the bottom and the top of a building along with the un-
derlying terrain. Due to the limited the resolution of the height data utilized in this study, the
focus did not lie on full 3D city model reconstruction but on simple prismatic building model
reconstruction. For that purpose, the assumption of flat terrain at a constant height, which
is valid in the selected study area was worked. For a complete 3D city model, more accurate
measurements of the terrain and the bottom of building elevations would be necessary.
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(a) Cartosat-1 DEM (b) TanDEM-X raw DEM

(c) Fusion of Cartosat-1 and TanDEM-X  (d) WA-based fusion of TanDEM-X raw DEMs

0 meter 10.5
Figure 3.22: LOD1 reconstructions of the study urban scene using heights derived from different

sources and building outlines obtained from building foot prints layer of OSM. Colors
indicate absolute height residuals
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Figure 3.22: Continued
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4 Conclusions and Outlooks

This dissertation summarized the results of investigations carried out according to the objec-
tives delineated in Chapter 1. The main focus of these studies was to evaluate the potential
of 3D reconstruction of urban areas using multi-sensor-derived data. To this end, data fusion
techniques were employed to produce high-quality geospatial information such as elevations
to ultimately reconstruct urban areas, especially buildings. In this regard, the following con-
clusions can be drawn:

* In this study, as a main objective, the potential of LOD1 3D reconstruction on a large
scale was investigated using data exploited from remote-sensing-derived geodata and
volunteered geographic information. For this purpose, heights provided for global ur-
ban mappings were applied such as heights generated through DEM fusion and SAR-
optical stereogrammetry. Since building outlines as an essential requirement for 3D
reconstruction cannot be accurately recognized in medium-resolution height sources,
outlines provided by OSM were employed. It was also shown that the primary outlines
were not perfect and should be modified and updated for accurate reconstruction. Fi-
nally, the median of heights within a building outline was calculated for LOD1 recon-
struction. The final results demonstrated the possibility of prismatic building model
generation (at the LODI1 level) on a large scale from easily accessible, remote sensing-
derived geodata. The results also showed that the best LOD1 model was achieved us-
ing heights derived from the outputs of multi-sensor/multi-modal DEM fusion. The
quantitative analysis also illustrated that the accuracy of LOD1 building modeling us-
ing heights provided by DEM fusion was better than 2.5 m i.e. less than the height
of a building storey on average. In addition to DEM fusion, heights reconstructed
from SAR-optical image pairs through stereogrammetry could potentially be applied
for large scale LOD1 building modeling. However, the accuracy of the generated LOD1
model using heights achieved by SAR-optical stereogrammetry was lower than that of
the LOD1 model produced using heights obtained by DEM fusion.

As an outlook, the accuracy of the generated LOD1 models can be improved using
other sources of information such as metadata (e.g., building heights, number of sto-
ries, etc.) provided along with VGI. In addition, the building heights for LOD1 modeling
can be estimated using volunteered photos of buildings, i.e. single perspective images
of buildings freely available on the Internet

* One of the potential remote sensing sources for 3D building reconstructions is eleva-
tions derived from medium-resolution DEMs such TanDEM-X. TanDEM-X DEM as a
global DEM is not as perfect as optical-derived DEMs such as Cartosat-1 DEM. One
possibility is to take advantage of data fusion techniques to fuse medium-resolution
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DEMs. The output is a DEM with higher quality than primary input DEMs in urban
areas. For this task, a typical data fusion technique, namely weighted averaging, is
employed to pixel-wise fuse the elevation data. To achieve optimal fusion results, an
innovative framework was developed to predict weight maps using a fully connected
artificial neural network. The results demonstrated that the proposed method could
efficiently improve the height precision of both Cartosat-1 and TanDEM-X DEMs up
to 50% in urban areas and 22% in non-urban areas. Moreover, the proposed method
was shown to increase the absolute accuracy through the data alignment. While the
height precision improvement by the HEM-based method did not exceed 20% and 10%
in urban and non-urban areas, respectively, if even HEMs would be available for DEM
fusion.

Future research should consider the potential of using deep neural networks for DEM
fusion. For example, a convolutional neural network can be designed for fusing DEMs,
in which primary DEMs are considered as inputs and highly accurate elevations such as
those provided by DEMs produced from high resolution LiDAR data are used as ground
truth for training. The main advantage of this structure is to discard feature extraction
and feature engineering steps for fusion. However, appropriately training a deep net-
work demands quite a lot of training data.

* Another solution for improving the quality of medium-resolution DEMs such as

TanDEM-X in urban areas is to use more sophisticated but efficient multi-modal DEM
fusion techniques in the multiple TanDEM-X raw DEM mosaicking phase instead of
simple WA. In this regard, it was proposed to apply TV-based variational models (TV-L;
and Huber models) for TanDEM-X raw DEM fusion with the main focus on enhancing
final DEM in urban areas, where building footprints are influenced by noise effects due
to SAR imaging properties. For this purpose, different study subsets were selected from
different land types which were explored over urban areas and surroundings. Apart
from this, DEM fusion was investigated for raw DEMs with different geometries. At first,
two nominal acquisitions with similar baseline configurations and HoAs were fused
over different land types. In the next experiment, two raw DEMs with different HoAs
were fused over a problematic terrain that suffering from PU errors. In the end, two
DEMs were used with ascending and descending orbit directions along with different
HoAs. In all the experiments, it was demonstrated that using variational models led to
DEMs with high quality. A great performance of the Huber model was recorded for fus-
ing two raw DEMs with different HoAs over the selected problematic area. Moreover, in
urban areas, the variational models absolutely performed better than WA by reducing
the noise effect and enhancing the outlines of buildings. However, the Huber model
tended to provide a smoother fused DEM than TV-L;. The results also demonstrated
that the variational models, particularly TV-L,, could significantly improve the quality
of DEMs in comparison to WA. In addition, using the variational models was observed
to improve the DEM quality by up to 2 m, particularly in inner-city subsets. In conclu-
sion, carrying out TanDEM-X raw DEM fusion using the variational models with the
ability to enhance building footprints and other useful high-frequency contents along
with the ability to smooth the noise contributed to the production of a DEM with high



quality.

One other potential remote sensing source for generating elevations in urban areas is to
use archive stored VHR SAR and optical imagery. This can be realized by developing a
full 3D reconstruction framework based on the classic photogrammetric workflow. Ac-
cordingly, first, all prerequisites were analyzed for this task. The main requirement for
SAR-optical stereogrammetry was to establish an epipolarity constraint to reduce the
search space of the matching process. It was mathematically proved that the epipo-
larity constraint could be established for SAR-optical image pairs. Furthermore, the
experimental analysis demonstrated that the epipolarity constraint could be employed
for SAR-optical image pairs such as those from TerraSAR-X/WorldView-2. The analysis
also showed that the epipolar curves were sufficiently straight. Because of the limited
accuracy of RPCs delivered with optical data, the relative orientation between both SAR
and optical images could be improved with respect to highly accurate SAR orientation
parameters using multi-sensor block adjustment. This shifted the epipolar curves to-
ward their correct positions. Then, the SGM-based dense matching algorithm was im-
plemented using the MI similarity measure. The outputs were sparse point clouds with
a median accuracy of about 1.5 to 2m and the 25%-quantile of best points was in the
sub-pixel accuracy domain. Overall, it is concluded that a 3D reconstruction frame-
work can be designed and implemented for SAR-optical image pairs over urban areas.

Future investigations are necessary to specifically design a similarity measure suitable
for SAR and optical imagery, which is used as a cost function in the heart of SGM dur-
ing dense matching. As a proposal, deep learning techniques can be applied for this
purpose.
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ARTICLE INFO ABSTRACT

Keywords: Recently, the bistatic SAR interferometry mission TanDEM-X provided a global terrain map with unprecedented
TanDEM-X accuracy. However, visual inspection and empirical assessment of TanDEM-X elevation data against high-re-
Cartosat-1

solution ground truth illustrates that the quality of the DEM decreases in urban areas because of SAR-inherent

Data fusion imaging properties. One possible solution for an enhancement of the TanDEM-X DEM quality is to fuse it with

Aft{ﬁCIal neulral network (ANN) other elevation data derived from high-resolution optical stereoscopic imagery, such as that provided by the
Digital elevation model (DEM)

ASTER GDEM Cartosat-1 mission. This is usually done by Weighted Averaging (WA) of previously aligned DEM cells. The main
SRTM contribution of this paper is to develop a method to efficiently predict weight maps in order to achieve optimized
fusion results. The prediction is modeled using a fully connected Artificial Neural Network (ANN). The idea of
this ANN is to extract suitable features from DEMs that relate to height residuals in training areas and then to
automatically learn the pattern of the relationship between height errors and features. The results show the DEM
fusion based on the ANN-predicted weights improves the qualities of the study DEMs. Apart from increasing the
absolute accuracy of Cartosat-1 DEM by DEM fusion, the relative accuracy (respective to reference LiDAR data)
of DEMs is improved by up to 50% in urban areas and 22% in non-urban areas while the improvement by the

HEM-based method does not exceed 20% and 10% in urban and non-urban areas respectively.

1. Introduction

Digital Elevation Models (DEMs) in diverse resolutions, levels of
height accuracy and coverages are routinely produced by different
techniques for a varied range of applications in different fields, such as
navigation, geographical studies of the environment, or the ortho-rec-
tification of remote sensing imagery. Particular attention is paid to the
production of global DEMs, which represent homogeneous topography
information for nearly all landmasses of the world. Different technol-
ogies have been employed for producing nearly global DEMs like the
SRTM DEM (Rabus et al., 2003; Rodriguez et al., 2006), the ASTER
GDEM (Tachikawa et al., 2011) or AW3D30 (Takaku et al., 2014;
Tadono et al., 2014) which methodologically lie in two categories: SAR-
interferometric and optical stereoscopic procedures. Each one of them
has its own advantages and drawbacks that lead to DEMs with specific
properties and limitations regarding final resolution and coverage. As
an example, the SRTM DEM with a grid spacing of 1” only covers the
latitudes between 56°S and 60°N. An example for an elevation model
derived from optical stereo data is the AW3D30 DEM based on ALOS

PRISM data, which provides both higher accuracy and larger coverage
(between 82°S and 83°N) than the SRTM DEM, but contains some void
areas due to missing information caused by clouds, snow, etc. (Takaku
et al., 2016).

Recently, a new global topography dataset was attained through the
TanDEM-X mission, which provides a spatial resolution of 12m with
coverage of nearly the whole earth. The TanDEM-X mission comprises
twin SAR satellites (TerraSAR-X and TanDEM-X launched in June 2007
and June 2010, respectively), which fly in adjacent orbits to acquire
bistatic SAR images. The mission was devised to produce DEMs with a
target accuracy according to High-Resolution Terrain Information
standard level 3 (HRTI-3) Heady et al. (2009): i.e., with a relative
height accuracy finer than 2m for areas including slopes lower than
20%, and 4 m for slopes steeper than 20% (Krieger et al., 2007). The
special satellite constellation equipped with X-band SAR sensors ex-
ploits a bistatic SAR interferometry configuration with single pass ac-
quisitions free of atmospheric and temporal decorrelation effects and
consequently provides the first high-resolution global DEM. The initial
DEM product, the so-called raw TanDEM-X DEM with nominal pixel
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spacing of 0.2 arcsec (6 m at the equator), is the output of the Integrated
TanDEM-X Processor (ITP) (Fritz et al., 2011). The raw TanDEM-X DEM
is finally cast in a grid with pixel spacing of 0.4 arcsec (12m at the
equator) after DEM calibration (Gruber et al., 2012; Rossi et al., 2012)
and mosaicking (Gruber et al., 2016) to obtain the global DEM ac-
cording to HRTI-3 standard. While the standard DEM globally re-
presents non-urban areas with unprecedented relative accuracy (Zink
et al., 2014), the drop of the DEM’s spatial resolution makes the final
standard DEM unsuitable for high-resolution 3D reconstruction in
urban areas (Rossi et al., 2013a). Consequently, the raw TanDEM-X
DEM provides a more spatially detailed mapping of urban areas in
comparison to the standard version of the global TanDEM-X DEM.
However, preliminary visual inspection of raw TanDEM-X DEM data
still indicates unfavorable spatial resolution and drop of height preci-
sion, especially for areas with topographically difficult surfaces—like
urban areas (Rossi et al., 2011)—and the requirement for TanDEM-X
quality enhancement in these areas.

One solution for refining the TanDEM-X DEM in difficult terrains
can be a fusion with elevation data derived from other sources with
different acquisition properties. Optical imagery, e.g., does not suffer
from SAR-intrinsic imaging effects, such as layover and shadowing,
which influence the appearance of InSAR DEM products.

Optical DEMs result from stereoscopic 3D reconstruction of high-
resolution optical images. For example, Cartosat-1 data provides a
series of DEMs with relative accuracy of HRTI-3 standard (2-3 m).
Cartosat-1 (also called IRS-P5) is an Indian satellite (launched in May
2005) equipped with a pushbroom sensor consisting of an ensemble of
CCDs with a size of 2.5 m in two lines for along track scanning of scenes
with a stereo angle of 31° (Srivastava et al., 2007). It is particularly
intended to produce a high-resolution DEM with coverage of a rela-
tively wide area (Ahmed et al., 2007), and is used, for instance, for
large-scale DEM generation in Europe (Uttenthaler et al., 2013). The
Cartosat-1 data are provided with Rational Polynomial Coefficients
(RPCs) computed from the mission’s orbit and attitude information.
Evaluations have demonstrated that their accuracy - for instance
measured by Root Mean Square Errors (RMSE) - is restricted to mul-
tiple hundred meters (Lehner et al., 2007) i.e. the final produced DEM
in spite of fairly high relative accuracy is absolutely located in an in-
correct position. The poor accuracy of the RPCs affects the stereo in-
tersection results and causes residuals in the final DEM product. Gen-
erally, a good distribution of Ground Control Points (GCPs) is needed
for RPC refinement and bias compensation (Teo, 2011) of high-re-
solution optical images like those provided by Cartosat-1, but avail-
ability of GCPs cannot always be ensured. The conventional solution is
to use available global DEMs—like the SRTM DEM—as an external
vertical reference for bias compensation and RPC refinement (Kim and
Jeong, 2011). The emergence of the TanDEM-X DEM as global DEM of
HRTI-3 standard, as opposed to the SRTM DEM of DTED-2 standard
(Krieger et al., 2007), provides the required height reference with
higher accuracy for refining the RPCs of Cartosat-1 that will ultimately
result in more accurate Cartosat-1 DEM.

Considering the aforementioned defects of the Cartosat-1 and
TanDEM-X elevation data, the main objective of this paper is to develop
a framework for efficient fusion of TanDEM-X and Cartosat-1 DEM over
urban areas. Eventually, this fusion will increase the height precision of
the final DEM over urban areas, while its absolute vertical accuracy is
improved to the level of the TanDEM-X DEM.

Data fusion approaches with great deal of applications in remote
sensing can be adapted for DEM fusion tasks (Schmitt and Zhu, 2016),
and for this aim, various methods have been investigated for different
kinds of DEMs. Reinartz et al. (2005) employed weighted averaging for
the fusion of SPOT-5 and SRTM DEM:s. In a similar study (Roth et al.,
2002), weighted averaging was used to fuse ERS TanDEM data and
SRTM data with MOMS-2P data. A more advanced technique was
proposed by Papasaika et al. (2011), in which sparse representation
supported by weights served for fusion of DEMs from various data
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sources. Pock et al. (2011) proposed Total Generalized Variational
(TGV) methods for fusion of airborne optical-stereoscopic DEMs, while
a weighted version of total variational (TV) method and TGV were
examined by Kuschk et al. (2017) on different space borne optical
DEMs. Fuss et al. utilized the modified K-means clustering algorithm to
fuse multiple overlapping radargrammetric Envisat-2 DEMs (Fuss et al.,
2016). The first experience for fusion of TanDEM-X and Cartosat-1
DEMs over urban and non-urban areas comes with Rossi et al. (2013b),
in which only the TanDEM-X DEM was improved over non-urban areas
by weighted averaging and prior knowledge of DEM qualities.

Among the aforementioned methods, weighted averaging (WA) is
wellknown and frequently used for DEM fusion purposes (Gruber et al.,
2016; Reinartz et al.,, 2005; Roth et al., 2002; Rossi et al., 2013b;
Bagheri et al., 2017a; Deo et al., 2015), because of its simple im-
plementation and low computational cost. In addition, most advanced
techniques apply weights to assist the fusion process to reach the de-
sired output. This means the weights play a key role for efficient fusion
of DEMs, especially in the case of multi-sensor DEM fusion, like ste-
reoscopic-optical and InSAR DEMs (Bagheri et al., 2017a). The key
problem with using DEM fusion approaches, especially for WA, is ap-
plying appropriate weight maps receptive to each DEM—which used to
be proportional to the expected height residuals. For this purpose, prior
knowledge about existing DEM errors will always be beneficial for the
fusion process. One solution for predicting the expected errors is based
on an error propagation analysis through the DEM generation proce-
dure. However, usually such a model can only be an approximation and
may not model all potential error sources.

An alternative is to learn the error patterns by comparing exemplary
areas of interest and corresponding ground truth reference data: e.g.,
derived from high-precision LiDAR measurements. This way, suitable
weights can be predicted for newly incoming datasets for which neither
detailed information about the height errors nor any ground truth data
are available.

This paper is an extension of Bagheri et al. (2017a,b), in which we
mostly focused on evaluating the accuracy of Cartosat-1 and TanDEM-X
DEMs with respect to high-resolution LiDAR reference data to provide a
judgment about the potential of the Cartosat-1 and TanDEM-X DEM
fusion over urban areas. The evaluation confirmed that the TanDEM-X
DEM quality over urban areas is not ideal in comparison to the Cartosat-
1 elevation data, and that data fusion can improve the quality of the
final DEM product.

In this paper, a sophisticated framework for appropriate weight map
prediction is proposed (Section 4.1). Firstly, suitable spatial features,
along with height residuals, are extracted from the training DEMs. After
that, the pattern of refined height errors in relation to features are
learned by an artificial neural network (ANN) to predict weights for WA
DEM fusion. In order to provide a baseline result, first simple DEM
fusion using the weights derived from the TanDEM-X Height Error Map
(HEM) and the Cartosat-1 matching standard deviations are shown and
discussed in Sections 4 and 5. The final results (Section 5) illustrate the
ANN-supported DEM fusion can improve the quality of both DEMs over
urban areas to generate a global high-resolution DEM in contrast to
standard HEM-based weights. Finally, fusion framework is validated
using SRTM DEM and the ASTER GDEM data to investigate the possi-
bility of transferring the proposed approach to DEMs of other specifi-
cations as well (Section 7).

2. Study area and DEMs

The data used for the experiments described in this paper were
acquired over the area of Munich, Germany. The Cartosat-1 DEM with
nominal grid size of 5m was generated from stacks of overlapping
images by the dense matching and 3D stereoscopic reconstruction
toolboxes embedded in the XDibias image processing system of DLR.
The description of the DEM generation procedure has been detailed in
d’Angelo et al. (2008). The TanDEM-X raw DEM produced by DLR’s
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Table 1
Properties of raw TanDEM-X tile.

Raw TanDEM-XDEM

Center incidence angle 38.25°
Equator crossing direction Ascending
Look direction Right
Height of ambiguity 45.81m
Total number of looks 22
Pixel spacing 0.2 arcsec
HEM mean 1.33m
Table 2

Properties of Cartosat-1 tile. * For more information, look up (The
Federal Agency for Cartography and Geodesy of Germany (BKG),
2016).

Cartosat-1 DEM

Stereoscopic angle 31°

Max number of rays 11

Min number of rays 2
Horizontal reference BKG orthophotos™

Vertical reference SRTM DEM
Pixel spacing 5m
Mean height error (10) 2-3m

Integrated TanDEM-X Processor (ITP), in which bistatic SAR data-takes
acquired in strip map mode are processed interferometrically. It is de-
livered with a grid spacing of 0.2 arcsec. More details about the used
TanDEM-X and Cartosat-1 tiles are collected in Tables 1 and 2.

For representative experiments, we chose study subsets representing
6 different land types that are usually found over urban areas and their
surroundings (see Fig. 1). The main characteristics of these land types
are briefly stated in Table 3. The naming abbreviations are meant to
facilitate referencing each subset throughout this paper.

Both for training and evaluation of the ANN-fusion framework,
highly accurate reference elevation models are provided by high-re-
solution LiDAR point clouds with a density of one point per square
meter.

3. Data preparation and alignment

Before implementing the fusion process, the Cartosat-1 and
TanDEM-X data should be homogenized in terms of horizontal and
vertical references, as well as pixel spacing. The initial coordinate
systems and the pixel spacing of the study DEMs are expressed in
Table 4. The final DEM specifications identify the reference systems and
nominal pixel spacing of all used DEMs after the data preparation
process. To prepare the data for the actual fusion, the Cartosat-1 and
the TanDEM-X DEMs are resampled to 5m pixel spacing, which is
nearly identical to their own initial resolutions and grid spacing.

In addition, after preparing the elevation data in the form of the
desired grid and reference, the tiles of study DEMs (TanDEM-X and
Cartosat-1) should be aligned together to compensate any rotational
and translational discrepancies. Usually, the best operational way for
this purpose would be to utilize the well calibrated TanDEM-X data as
an external DEM for a refinement of the Cartosat-1 RPCs. However,
since this study does not focus on Cartosat-1 DEM generation and only
starts with an available Cartosat-1 DEM product, DEM coregistration
needs to be carried out. For this purpose, the ICP (Iterative Closest
Point) algorithm is used to align the Cartosat-1 DEM tile to the
TanDEM-X DEM tile (Ravanbakhsh and Fraser, 2013).

4. TanDEM-X and Cartosat-1 DEM fusion

The results of relative and absolute accuracy assessment presented
in Bagheri et al. (2017a) demonstrated that over urban areas the height
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precision and resolution of the TanDEM-X DEM is not as fine as that of
the Cartosat-1 DEM, whereas both DEMs have nearly identical quality
over non-urban areas such as agricultural and forested fields. On the
other hand, the TanDEM-X is absolutely more accurate than Cartosat-1
DEM. As explained in Section 1, data fusion techniques can be applied
to take advantage of the properties of both kinds of DEMs to finally
reach a DEM product with higher precision and absolute accuracy.

While the simplest method for DEM fusion is weighted averaging, its
main challenge is to employ suitable weight maps respective to each
DEM. For example, the TanDEM-X and Cartosat-1 data can be fused by
using weight maps delivered from the provided height error maps using
simple weighted averaging:

Dr = W7 © Dy + W¢ © De (€3]

where Wr and W, are the normalized weights of the TanDEM-X and the
Cartosat-1 heights, respectively, Dr and D¢ are the height values taken
from the TanDEM-X and Cartosat-1 DEMs, ® denotes the element-wise
product and D refers to final fused DEM.

Usually, attached to InSAR DEMs such as TanDEM-X data, an ad-
ditional product (called Height Error MAP: HEM) is provided, which
roughly describes the quality of the generated DEM by the interfero-
metric process based on coherence analysis (Martone et al., 2012), the
number of the looks and the baseline configuration (Just and Bamler,
1994). Similarly, For optical DEMs such as Cartosat-1 DEM, the quality
map (also can be called HEM) is computed from stereo matching ana-
lysis. Both HEMs are produced by error propagation analysis through
the chain of DEM generation from the source data takes.

The main disadvantage of HEM-based fusion is that HEMs are not
always available in the form of DEM metadata, which holds in parti-
cular for DEMs generated from optical stereo data. This limits a broader
applicability of HEM-based DEM fusion.

For DEM fusion, pixel-wise weight maps should be created from the
HEM maps. Two strategies can be pursued for weight map generation.
The first one is to calculate weights as the inverse proportional of the
squared height errors ¢;:

1

w = —
e @)

Another way is to compute weights from the normalized residuals
eint

3

w; = 1—ey,

4.1. DEM fusion support by neural network-predicted weights

As an alternative to the standard weight map generation process, in
this paper we propose applying supervised learning that exploits high-
resolution LiDAR ground truth data available for selected areas as
training data to predict the height residual patterns and the corre-
sponding weights for test data subsets. Fig. 2 displays the framework of
the proposed DEM fusion algorithm. In the heart of the proposed fra-
mework, an ANN is used to learn the relationship patterns of height
errors and corresponding DEM features, which can subsequently be
used for forecasting weight maps. The proposed framework (Fig. 2) can
be summarized in three main steps:

1. spatial feature extraction from DEMs and height error calculation

. data refinement

. (a) training the ANN on dedicated training subsets for which ground
truth data is available and (b) applying the ANN parameters to
target subsets.

The output of the ANN is a predictive model that works as a weight
predictor in target areas to which DEMs are fused based on the patterns
explored in training subsets. More details of the framework’s steps will
be explained in the following subsections.
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Fig. 1. Display of land types and location of study subsets from Munich area.

Table 3
The main properties of study subsets.
Subsets Descriptions of study areas Naming Areas
Characteristics (km?)
Industrial Open mid rise rectangular buildings D1,D2  1.77,0.78
Inner city Compact mid rise with complicated shape 11, 12 0.92,
and perhaps relatively high 1.384
High building High rise buildings and skyscrapers H1,H2 0.09, 0.15
Residential Open low rise buildings for single family =~ R1, R2 0.26, 2.12
Forested Dense canopy of trees F1, F2 0.54, 1.0
Agricultural Classical land farms F1, A 0.68, 0.66
Table 4

Specifications of initial DEMs and final DEM, output of preparation step.

Horizontal reference Vertical reference Pixel spacing

Cartosat-1 UTM(WGS84) EGM96 5m
TanDEM-X WGS84 WGS84 0.2 arcsec(~6 m)
LiDAR Gauss Kriiger(Bessel) Bessel 1m
Final DEM UTM(WGS84) WGS84 S5m

4.1.1. Feature extraction and height residual computation

For the training of the ANN, training data are selected from re-
presentatives of different land types that can usually be observed over
urban areas. The description of these land types are in Section 3. From
those, different kinds of spatial features describing landscaping and
roughness properties of the land surface are extracted. Several studies
clarify the relationship between the spatial features and DEM qualities
(Toutin, 2002; Papasaika et al., 2009; Reinartz et al., 2010). The
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following spatial features are useful for DEM fusion (Olaya, 2009):

® Geometrical parameters such as (1) Slope, which expresses the
maximal rate of varying heights and (2) Aspect, which is the di-
rection of the steepest slope in the mask window.

Statistical land surface parameters like (1) Anisotropic Coefficient of
Variation (ACV), which describes the general geometry of local
surfaces for distinguishing elongated and oval landforms; (2)
Topographic Ruggedness Index (TRI), which is the 2D standard
deviation filter; (3) Topographic Position Index (TPI), which is the
difference between height of a pixel and mean height of neighboring
pixels; (4) Roughness, which is the largest height difference of target
pixel and its surrounding cells; (5) Ruggedness, which is defined as
the range value within an area; (6) Surface Roughness Factor (SRF),
which is related to the normals to land surface; and (7) Entropy,
which determines the uncertainty of height estimation in the se-
lected window.

In addition to these parameters, edge values can also be extracted
pixel-wisely by common edge detectors like the Sobel filter. At last, the
HEM delivered with the TanDEM-X DEM and the quality map of
Cartosat-1 DEM can also be used as a feature that reflects one source of
induced errors in DEM. Apart from the HEM and the quality map, all
mentioned features are extracted by convolution with a 3 x 3 square
window as a mask around each cell. Fig. 3 exemplarily shows the maps
for these features extracted from the Cartosat-1 data in the industrial
area, subset I1.

Moreover, height residual maps are calculated for all training sub-
sets by subtracting the LiDAR ground truth elevations from the
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Fig. 2. The framework designed to estimate the adaptive weights by ANN for the TanDEM-X and Cartosat-1 DEM fusion.

corresponding DEM elevations. The obtained feature maps, along with
these height residuals, are used to train an ANN to model the re-
lationship between feature values and height errors. Fig. 5 exemplarily
depicts the variation of errors with respect to feature values in the
subset of the industrial area (I1) for both study DEMs. The height re-
siduals, at first, are very noisy, so that a low pass filter (details ex-
plained in the following subsection) is required to reveal the error
patterns as depicted in Fig. 5.

4.1.2. Data refinement

Prior to constituting the ANN structure, another important step is to
refine the height errors oriented to extracted spatial feature values to
get rid of outliers and decrease the noise effects. The calculated height
residuals are polluted by high-frequency noise, which will affect the
training of the ANN.

The performance of the network in the case of using smoothed re-
sidual maps derived from the refinement step, as well as using raw data
without smoothing, only removing the outliers, are illustrated in Fig. 4.
Fig. 4b indicates that noisy height residuals disrupt the training pro-
cedure and prevent the ANN from recognizing the error patterns. The
correlation evaluation of desired outputs and results achieved by ANNs
demonstrates the efficiency of the refinement step. By employing the
refinement framework, the networks can learn the error pattern re-
spective to features with high correlation (more than 0.98) between
outputs of training and target values for TanDEM-X and Cartosat-1
DEMs, respectively. Without implementing the refinement, the training
performances of networks are significantly lower, illustrated by an
output with correlations lower than 0.50 and 0.35 for the TanDEM-X
and the Cartosat-1 DEM, respectively.

To reduce the noise effects with the aim of promoting the training, a
smoothing process, characterized by two-step mean filtering is carried
out. The first step of the refinement is to bin the feature values that can
be obtained by a simple empirical-statistical binning technique. The
feature values fl.j correspond to the height residuals e; by:

B e
LB fe|e
S N
T A @
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where fij is the value of the feature j € {1, 2, ..,n} and ¢; is corre-
sponding height residual value in pixel i € {1, 2, ..., m}.

At first, errors exceeding 3 X NMAD (e;, which are identified by
index ¢) are detected as outliers and then eliminated along with their
corresponding feature values [f{1 ff - Iy ] from the training dataset.
The normalized median absolute deviation (NMAD) is recommended as
a robust accuracy measure rather than the classical root mean square
error (RMSE) for the mitigation of outliers affecting the elevation data
of the study DEMs (Hohle and Hohle, 2009).

The relation (4) can be rewritten in the form of feature vectors that
include the values of each feature type for all pixels of the DEM:

[Ft F? ..
F=[f fi .7

frle E
(5)

After removing outliers, The values of the feature vector (F)) and
their corresponding height residuals E are binned by the Freedman-
Diaconis rule (Birgé and Rozenholc, 2006):

fj _fj_
= T

N O]
where h = 2 X I X k~'/. The output of above formulation is the number
of bins (N) for feature j with bin width of h, just by detecting the max
and min values of measured feature ( f,{l o and f,{u.n). I'is the interquartile
range and k is the number of measurements that are remaining height
residuals after outlier removal. In other words, k refers to number of
pixels whose height errors (¢;) are lower than the threshold 3 x NMAD.
The mean filter is applied bin-wise to generate smoother height re-
sidual. The output of this filtering is the numerical feature-error model
in which each feature vector Fi corresponds to a new smoothed height
residual map Ef;vg = [el{wg ezjavg e,{mvg]T. It has to be noted that in-
frequent feature values are thrown away by a threshold. This procedure
should be followed for each type of feature. Fig. 5 presents the gra-
phical depictions of feature-error models derived for an industrial area
(subset I1) for TanDEM-X and Cartosat-1 after binning and mean fil-
tering. Consequently, for each pixel, n height residual values at last are
acquired. This means there are n residual maps, which are linked to n
numerical feature-error models (F! F2 .. F* | E,,, Eg,. .. EXg].

Next, the second step of the smoothing process is to average again
the achievements of the former step (smoothed height residuals) to
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Fig. 3. Feature maps extracted from DEM from industrial area (I1) of Cartosat-1 DEM.

finally create a unique height residual. After this refinement, the data
are ready to insert into the ANN for training and exploring the patterns.

4.1.3. Weight map generation by ANN

The filtered outcomes from the previous stage are employed to train
a fully connected feed-forward neural network. After feature extraction,
height residual computation and refinement based on the pipeline de-
scribed in Section 4.1.2, the outputs become the input into the ANN.
The ANN is trained using the filtered feature vectors as inputs and the
modified height residuals as outputs, which are cast in the form of:
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7)
contains the values of the different features for a given pixel i and E; is
the final smoothed residual map obtained through the two-step mean
filtering. Fig. 7 shows the structure of the network, which consists of an
input layer in which neurons with the label of the feature values of each
pixel (®;) are connected to the smoothed height residual of the corre-
sponding pixel through the hidden layers. In the repetitive process, with
back propagation training, the weights of neurons are gradually mod-
ified to decrease the discrepancy between smoothed height residual
maps and the map achieved by the network. The main achievement of
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Fig. 4. Regression plot of training data for industrial area (Sub D1).

the ANN after successful training is that a model can estimate the
weight maps for each part of DEMs from forecasting the height re-
siduals just by measuring the spatial features.

The optimal structures of ANNs for both study DEMs were in-
vestigated by tracking the cost function values during the training
stage. The performances of networks were evaluated by considering one
hidden layer and changing the number of neurons in this layer. Then,
deeper networks were examined by adding another hidden layer.
Fig. 6a and b depicts the performance of the neural networks on test
data for an increasing number of neurons in the ANNs with one hidden
layer, as well as for structures designed with two hidden layers. The
plots display that the rise in the number of neurons in the first layer is
more influential than adding the layers and making the networks
deeper. In ANNs with one hidden layer, the general trend of changing
costs remained stable after adding more than 20 neurons. In other
words, adding more neurons to a hidden layer does not change the
performance of the networks and the subsequent DEM fusion result.
This evaluation systematically determined the optimal structure of NNs
considered for both DEMs.

5. TanDEM-X and Cartosat-1 DEM fusion results

One additional advantage of Cartosat-1 and TanDEM-X DEM fusion
is to increase the absolute vertical accuracy with respect to the data
accuracy provided by the original Cartosat-1 DEM. By successful
alignment of the Catosat-1 and TanDEM-X DEMs, the Cartosat-1 DEM is
vertically positioned in the location of TanDEM-X, which indicates an
improvement of the absolute geolocation through DEM fusion. After
vertical alignment, the HEM- and ANN-based approaches are examined
to increase the height precision of both DEMs.

HEM-based fusion was implemented for all subsets except subsets
F1 and L, due to unavailability of values of STD of matching for these
areas. The HEM-based fusion results for the other subsets are presented
in Table 5. The common metric for measuring the accuracy of DEMs is
root mean square error (RMSE). Additionally, Normal Median Absolute
Deviation (NMAD) is used as another measure for height precision
analysis (Hohle and Hohle, 2009). The RMSE measure reflects the
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effects of whole larger and small errors but NMAD implies the presence
of small errors in elevation data.

The results indicate that using the HEM of the TanDEM-X data and
STD of matching for Cartosat-1 DEM could only increase the height
precision of TanDEM-X elevations and an improvement for Cartosat-1
data cannot always be fulfilled for all land types.

In ANN-based fusion approach, training data are selected from di-
verse land types mentioned in Table 3, such as industrial, inner city,
residential areas, high building subset, agricultural and forested areas.
The usage of training data from different land types guarantees the
presence of all possible values of features respective to height residuals
in the process of pattern recognition by the NN, and give the assurance
of discovering a more general model that can be used for any arbitrary
land type. After successful training, the ANN can be applied for pre-
dicting the height residual in selected target areas where two DEMs are
supposed to be fused. The predicted residual maps are used as weight
maps in the weighted average fusion. Thus, two separate ANNs are
needed for both the TanDEM-X and Cartosat-1 DEM to generate in-
dividual weight maps for each DEM separately. For the experiments in
this paper, two strategies are followed regarding the combination of
training subsets.

In strategy A, separate ANN are trained for each specific land type in
order to provide class-specific weight map predictions. In this case, the
subsets D1, I1, H1, R1 as well as F1 separated into its forested and its
agricultural segments are used as training subsets, on which six dif-
ferent ANNs are trained. The resulting weight map predictors that are
used for DEM fusion in the respective target areas are then applied on
the corresponding test areas D2, 12, H2, R2, F2 and A.

In strategy B, all subsets of all different land types are simulta-
neously used as training data to create a general predictor model that
can be used for weight map generation in arbitrary target subsets. In
this experiment, the subsets D1, I1, H1, R1 and F1 are used to train the
ANN, and the resulting output model is used for all target subsets.

In both experiments, 70% of data from the training subsets are
devoted to training, and 15% are for validation to control the training
process in order to avoid over-fitting and under-fitting. However, the
whole process of the proposed framework will be implemented on the
independent subsets, tuning the networks’ parameters such as depth
and number of neurons in each layer, and the remaining data (15%) are
devoted to monitoring the performance of NN during the training.

Table 7 presents the results of DEM fusion over individual target
areas, employing different strategies of data selection for training. The
results show nearly identical results for both strategies. Thus, pouring
all subsets from different land types to make a general predictor model
decreases the number of necessary ANNs from six to one for each kind
of DEM. On the contrary, the size of the input data for the training
becomes larger; thus, training requires more runtime. The runtime of
NN training adopting different strategies (A and B), implemented in a
system equipped with Intel(R) Core(TM) i7-6700, 3.40 GHz CPU and
16 GB RAM is collected in Table 6. The total runtime of strategy A for
training both networks of Cartosat-1 and TanDEM-X is 158.1 s while
training according to strategy B takes 519.6s. This confirms that
strategy A is computationally more economical for training.

In Table 7, we can also observe the RMSEs of fused DEMs generated
by the weight maps that computed by adopting different weighting
strategies. The results display slightly lower RMSE values by the Liz

weighting formulation for some areas like industrial, inner city and
forested areas. On the other, the qualities of fused DEMs following the
different training strategies (A and B) are almost same. The benefit of
using strategy B is the establishment of a general predictor model that
can be used for any arbitrary land types; while in strategy A, the net-
works have to be trained six times (for six different land types) and
achieved predictor models must be used for respective land types in
target areas, requiring semantic classification of the study area to
identify different land types for DEM fusion.
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Fig. 5. Height error patterns of the TanDEM-X DEM (in red) and the Cartosat-1 DEM (in black dashed) for industrial area (Subset 11): horizontal directions show the
feature values and vertical directions indicate mean absolute height residuals in each bin achieved from the refinement step. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

A final experiment was implemented for comparing the DEM fusion
results by employing ANN-based and HEM-based approaches with the
initial DEMs. For this purpose, using ANNs with one hidden layer and
20 neurons in the hidden layer and the training based on the subsets
D1, I1, H1, R1 and F1 (following strategy B as the economical way), the
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predictive models were created. At last, the full DEM fusion chain was
carried out on totally independent subsets to evaluate the capability of
the proposed algorithm for DEM fusion. These independent subsets
were selected as target areas from different land types (subsets D2, 12,
H2, R2, F2 and A). The TanDEM-X and Cartosat-1 DEMs of these subsets
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Fig. 6. The performance of the ANNs with different structures measured by SSE (Sum of Squares Error); (a) The structure with one hidden layer. (b) The structure
that organized by two hidden layers: first, with number of neurons fixed to n = 20, and second with varying number of neurons.

were fused together by weighted averaging using the achieved height
error maps as weights of the input DEMs by the - weighting for-

2
mulation. It has to be noted, as illustrated in Sectionll, the quality of
the TanDEM-X DEM is significantly worse than the Cartosat-1 DEM in
the Lake subset, so that heights of the TanDEM-X DEM should be
completely substituted by the heights of the Cartosat-1 DEM.

The results are summarized in Table 8 and compared to simple
HEM-based fusion. Fig. 8 visualizes the absolute residual maps of
TanDEM-X, Cartosat-1, HEM and ANN-based DEM fusion results in
comparison to reference data for some exemplary study areas.

6. Discussion

As the obtained NMAD and RMSE results show, standard HEMs
generally cannot be reliably used to produce a fused DEM whose height
precision exceeds the Cartosat-1 DEM precision. This confirms the as-
sumption that standard HEMs do not reflect all possible error sources in
the original DEM data. As an example, the HEM delivered with the
TanDEM-X raw DEM just contains error values derived from inter-
ferometric coherence and baseline configuration, while deterministic
error sources such as layover are not considered. Nevertheless, standard
HEMs can be used as a fall-back solution should ground truth for ANN-

based weight map prediction be unavailable.

In contrast, the results obtained for the ANN-supported fusion shows
an improvement of the fused DEM product with respect to both input
datasets, indicating that the designed ANNs can properly model the
existing error patterns related to spatial features that describe the
landscaping and the roughness of the land surface under investigation.
While the ANN-supported DEM fusion significantly improves the height
precision of the TanDEM-X DEM, it also enhances the quality of the
Cartosat-1 DEM: As an additional analysis reveals, more than 51% of all
fused DEM pixels are more accurate than their Cartosat-1 counterparts.

As can be seen in Table 3, the size of training subsets is usually at
least as large as the size of the corresponding target subsets, which
could lead to the misconception that the number of training and test
samples needs to be similar necessarily. In order to show that this is not
the case, we conducted an exemplary experiment evaluating the impact
of the training dataset size for the inner city subset. Fig. 9 illustrates the
influence of the training sample number on the ANN-predicted weights.
Since the actual DEM fusion results depend only on those weights, it can
be seen that as few as about 2000 training samples already provide a
stable weight prediction and thus stable fusion results. This is due to
using a shallow ANN architecture with only a couple of neurons, which
produces stable predictions already with a limited amount of training

Back propagation

Sigmoid !

Feature maps

Input Layer Hidden Layer

Output of NN Smoothed
Residual

Output Layer

Fig. 7. Structure of neural network for weight map prediction.
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Table 5
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Height precision (in meters) of TanDEM-X DEM, the Cartosat-1 DEM and final fused DEM using the HEMs and
STD of matching as weight maps in WA (in meters). The green shaded values indicate the best values of
metrics relevant to the quality of the compared DEMs.

Areas TanDEM-X Cartosat-1 Fused DEM
NMAD RMSE NMAD RMSE NMAD RMSE
Industrial: D1 2.68 4.61 1.66 3.24 1.95 3.57
Industrial: D2 3.44 5.12 2.44 3.56 2.92 4.27
Inner city: I1 5.57 6.43 4.34 5.27 4.64 5.33
Urban Inner city: 12 5.92 5.81 4.63 5.22 5.09 5.13
High building: H1 = 6.72 18.17 3.63 13.10 4.69 16.12
High building: H2  3.76 8.41 3.29 8.13 3.14 7.93
Residential: R1 2.95 3.10 2.56 2.83 2.81 2.90
Residential: R2 2.30 2.61 2.02 2.45 2.13 2.44
Forested: F1 — — — — — —
Non-Urban Forested: F2 3.88 4.82 3.23 4.65 3.51 4.35
Agricultural (F1) — — — — — —
Agricultural (A) 0.93 0.84 0.65 0.81 0.98 0.76

Table 6
The training computational cost using different strategies, A and B.

Strategy DEM Subset Runtime (second)
A Cartosat-1 Industrial: D1 33.2
Inner city: I1 10.8
High building: H1 0.1
Residential: R1 0.8
Forested: F1 2.4
Agricultural: F1 8.9
TanDEM-X Industrial: D1 59.7
Inner city: I1 15.6
High building: H1 0.1
Residential: R1 1.4
Forested: F1 6.8
Agricultural: F1 18.3
B Cartosat-1 All 187.5
TanDEM-X All 332.1
Table 7

Results of fusing TanDEM-X and Cartosat-1 DEM (in meters) by employing
weight maps predicted by ANN with the application of different training stra-
tegies and different types of weighting.

Fused DEM
Training strategy Individual Individual All All
Weight 1 1—ejp 1 1—ejp
e? e?
Areas RMSE RMSE RMSE RMSE
Industrial: D2 3.46 3.63 3.52 3.62
Inner city: 12 4.84 4.94 4.85 4.92
High building: H2 7.75 7.71 7.75 7.66
Residential: R2 2.33 2.38 2.34 2.35
Forested: F2 4.18 4.28 4.18 4.25
Agricultural: A 0.70 0.69 0.68 0.69
Table 8

data. This is also supported by the preprocessing phase described in
Section 4.1.2. The experiment confirms that the sizes of training and
target areas need not be similar for our method to work. Nevertheless,
for the preprocessing and feature extraction, as well as for providing
validation data during the training, patch-shaped subsets should be
selected instead of selecting only few independent DEM pixels.

Last but not least, the absolute vertical accuracy of the fused DEM is
also better than the absolute accuracy of the original Cartosat-1 DEM,
which is achieved through the alignment to the more accurately loca-
lized TanDEM-X DEM. Thus, eventually, the proposed DEM fusion is
able to provide a final DEM product that provides a higher quality than
the individual input DEMs in both absolute and relative measures.

7. Evaluation of the ANN-based fusion algorithm using other DEM
data

While the main focus of this study is to fuse the TanDEM-X and
Cartosat-1 DEMs according to the reasons mentioned in Section 1, we
also seek to validate the proposed framework for the fusion of other
global DEM data. Thus, we carried out similar experiments for ASTER
GDEM and SRTM-C DEMs over the Munich area. Fig. 10 displays both
the training and target areas including the same different urban and
sub-urban land types. SRTM data with pixel spacing of 1 arcsec (about
30 m) from the C-band data-takes by Shuttle Radar Topography Mission
(operated in February 2000) are globally available by USGS portal as
InSAR DEMs (USGS, 2000). In this experiment the void filled SRTM
DEM was used. Moreover, version 002 of the ASTER GDEMs was pro-
duced from thermal ASTER (Advanced Spaceborne Thermal Emission
and Reflection Radiometer) sensor (initially launched in 1999) by ste-
reoscopic 3D reconstruction (USGS, 1999). In addition, the Cartosat-1
data are used as a ground truth both for purposes of height residual
estimation for training of the ANN and assessing the final fusion chain.

Results of fusion of TanDEM-X and Cartosat-1 DEM (in meters) by using weight maps generated by different methods.
. 1 R N .
The weight maps generated by P and strategy B (see Section 4.1.3) were finally adopted for training the ANNs. The

green shaded values indicate the best values of metrics relevant to the quality of the compared DEMs.

Areas TanDEM-X Cartosat-1 Fused DEM
HEM ANN
NMAD RMSE NMAD RMSE | NMAD RMSE NMAD RMSE
Industrial: D2 3.43 5.11 2.43 3.56 2.91 4.26 2.42 3.46
Inner city: 12 5.92 5.81 4.62 5.21 5.09 5.13 4.90 4.84
High building: H2 3.75 8.41 3.29 8.13 3.14 7.93 313 7.75
Residential: R2 2.30 2.61 2.02 2.45 2.13 2.44 1.99 2.3
Forested: F2 3.88 4.82 3.23 4.65 3.51 4.35 3.19 4.18
Agricultural: A 0.57 0.84 0.65 0.81 0.98 0.76 0.49 0.68
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Fig. 8. Absolute residual maps of TanDEM-X and Fused DEM using ANN-predicted weight maps in some exemplary subsets.

120 The results confirm the efficiency of the proposed algorithm for new
'go i cases of DEM fusion as well. It can be clearly inferred from the results
= that simple averaging just improves the accuracy of the ASTER DEM,
5 80 and RMSE value of fused DEM does not exceed the RMSE of SRTM
% DEM, while by using the ANN and following the invented framework in
£ 60 this study, the final RMSE of fused DEM becomes better than initial
E study DEMs—meaning the more reliable DEM can be obtained by NNs.
g % In terms of NMAD metric, the quality of ANN-based DEM fusion is
:‘g 2% significantly higher than simple averaging.

s
0 8. Conclusion
0 2000 4000 6000 8000 10000 12000 14000 16000
Training Size This study focused on the fusion of TanDEM-X and Cartosat-1 DEM

Fig. 9. The change of weight map (percentage) according to change in size of
training data.

As we illustrated in Section 5, it is not so necessary to take care of
strategies A or B for training or different ways of weighting, but for
making the process of DEM fusion easier, following strategy B can cope
with the task of DEM fusion. As a result, ANN-based fusion according to
strategy B was employed for the new DEM data fusion. The fusion re-
sults are expressed in Table 9. Because no weight maps were provided
with the elevation data, the simple averaging approach was used in-
stead of WA for comparison of the results with our proposed method.
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over urban areas and their surroundings. The main objective of the
investigation was to ultimately obtain the final fused DEM with higher
height precision and absolute accuracy. For this task, a typical data
fusion technique, weighted averaging, is employed to pixel-wise fuse
the elevation data. To achieve optimal fusion results, an innovative
framework was developed to predict weight maps using a fully con-
nected artificial neural network. The results demonstrated that the
proposed method can efficiently improve the height precision of both
Cartosat-1 and TanDEM-X DEMs up to 50% in urban areas and 22% in
non-urban areas as well as the absolute accuracy could be increased
through the data alignment. While the height precision improvement by
the HEM-based method does not exceed 20% and 10% in urban and
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Fig. 10. Location of training and target areas for ASTER and SRTM DEM fusion study.

Table 9
ASTER GDEM and SRTM-C data fusion results over Munich area using the
proposed NN-based approach.

SRTM-C ASTER GDEM Fused DEM

Original Original Averaging ANN

NMAD RMSE NMAD RMSE NMAD RMSE NMAD RMSE

Target area 2.25 4.01 4.92 6.51 3.14 4.51 2.34 3.89

non-urban areas respectively if HEMs would be available for DEM fu-
sion. Finally, for validating the application of the NN-based approach in
other cases of InSAR and optical DEM fusions, different data such as the
ASTER GDEM and the SRTM-C elevation data were fused in this way.
The results again proved the efficiency of the proposed algorithm for
optical and InSAR DEM fusion applications.
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Fusion of Urban TanDEM-X Raw DEMs Using
Variational Models

Hossein Bagheri *, Michael Schmitt

Abstract—Recently, a new global digital elevation model (DEM)
with pixel spacing of 0.4 arcsec and relative height accuracy finer
than 2 m for flat areas (slopes < 20%) and better than 4 m for
rugged terrain (slopes > 20%) was created through the TanDEM-
X mission. One important step of the chain of global DEM genera-
tion is to mosaic and fuse multiple raw DEM tiles to reach the target
height accuracy. Currently, weighted averaging (WA) is applied as
a fast and simple method for TanDEM-X raw DEM fusion, in which
the weights are computed from height error maps delivered from
the Integrated TanDEM-X Processor (ITP). However, evaluations
show that WA is not the perfect DEM fusion method for urban
areas, especially in confrontation with edges such as building out-
lines. The main focus of this paper is to investigate more advanced
variational approaches such as TV-L; and Huber models. Fur-
thermore, we also assess the performance of variational models for
fusing raw DEMs produced from data takes with different baseline
configurations and height of ambiguities. The results illustrate the
high efficiency of variational models for TanDEM-X raw DEM fu-
sion in comparison to WA. Using variational models could improve
the DEM quality by up to 2 m, particularly in inner city subsets.

Index Terms—Data fusion, Huber model, L, norm total varia-
tion, TanDEM-X DEM, weight map.

I. INTRODUCTION

LOBAL digital elevation models (DEMs) with large cov-
G erage of the landmasses are an important source of geoin-
formation for different applications such as environmental stud-
ies, geographic information systems, remote sensing, etc. SAR
interferometry is one of the main techniques being employed
for global DEM productions because of its capability to cover
large areas independent of daylight or weather. For example, a
global DEM with coverage of most of the planet (between 56 °S
and 60 °N) was generated by Shuttle Radar Topography Mis-
sion (SRTM). The SRTM DEM is provided in the form of tiles
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with pixel spacings of 1 arcsec (~30 m) and 3 arcsec (~90 m),
respectively [1].

Recently, a new global DEM with even higher resolution
(namely a pixel spacing of 0.4 arcsec) covering almost the
whole planet was realized by the TanDEM-X DEM mission.
Again, bistatic SAR acquisitions are used as input to a SAR
interferometric processing chain to produce the DEM. The pri-
mary target of the mission was to provide global DEM with
relative height accuracy better than 2 m for flat areas (slopes
lower than 20%) and finer than 4 m for remaining steeper slopes
[2]. For this, bistatic SAR data serve as an excellent data source,
reducing atmospheric effects and avoiding temporal decorrela-
tion in the InSAR process. Form raw SAR data take to the final
global DEM, a workflow including different phases such as
interferogram generation, phase unwrapping (PU), data calibra-
tion, DEM block adjustment, and mosaicking is implemented
at DLR [3]. A main step of the DEM generation procedure is
carried out in the Integrated TanDEM-X Processor (ITP), which
leads to primary raw DEMs for each bistatic acquisition [4].
During the raw DEM generation, some potential error sources
are removed by instrument and baseline calibration [5]. After
that, the vertical bias, which usually lies between 1 and 5 m,
is corrected by a least squares block adjustment [6]. The block
adjustment is performed by using ICESat data and connecting
points in the overlapping areas of raw DEM tiles. However,
dependent on the terrain morphology, some error sources still
remain after the block adjustment. The effect of these errors can
be decreased through fusion of several DEM coverages within
the DEM Mosaicking Processor (DMP) [7]. The TanDEM-X
raw DEM coverage over different terrain types is displayed in
Fig. 1. As can be seen, the most of the world is covered by at
least two nominal acquisitions with height of ambiguities (HoA)
between 30 and 55 m. The main objective of TanDEM-X DEM
fusion is to improve the final accuracy by employing several
coverages over different areas [8].

Diverse methods have been designed for the fusion DEMs
with different properties, which can be seen as an application of
data fusion in remote sensing [9]. Among them, weighted aver-
aging (WA) is well established as a simple approach with low
computational cost [8], [10]-[12]. However, its performance
strongly depends on the weights that describe the height er-
ror distribution for each pixel [13]. For SAR interferometric-
derived DEMs, the weights can be achieved from height error
maps (HEM) [14], which are a byproduct of the InSAR process
and derived from the coherence values and the given geometri-
cal configuration [15]. However, it should be noted that HEMs

1939-1404 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. TanDEM-X coverage in different areas [3].

cannot represent all error sources as they do not reflect deter-
ministic effects such as layover and shadow effects. Another
way is to compute weight maps by a comparison with ground
truth data that are not necessarily available for every arbitrary
study area [16].

A current approach for implementing the DEM fusion in DMP
is WA. In addition to WA, some logic for clustering consistent
heights and upgrading weights regarding the influences of other
significant factors such as HoA, PU methodology, and pixel lo-
cations relative to the border of the DEM scene is considered to
finally reach the target relative accuracy and minimize PU er-
rors remaining from primary steps [8]. While the WA approach
can realize the predefined goals in the DMP for global DEM
generation, it does not perform optimally in difficult terrains
with complex morphology such as urban areas, which contains
many high-frequency contents such as edges. After WA-based
TanDEM-X DEM fusion, visualization shows that outlines of
buildings are not perfectly sharp and still some amount of ex-
isting noise spoils the footprints of buildings [for example, see
Fig. 9(c)]. As Fig. 1 illustrates, most areas are only covered
by two nominal acquisitions (shown in green). Since this holds
for many important urban areas as well, this also motivates the
development of more sophisticated approaches.

An advanced approach for DEM fusion was proposed by
Papasaika et al. [17]. They exploited sparse representations for
multisensor DEM fusion. Zach et al. implemented an L; norm
total variational model for range image fusion [18]. In another
study, Pock et al. proposed to use total generalized variation
(TGV) for fusing DEMs derived from airborne optical imagery
[19]. Kuschk et al. evaluated weighted TGV to fuse DEMs de-
rived from spaceborne optical imagery with different resolutions
[20]. In another study, weighted TV-L;, in which weights were
predicted by neural networks, were applied for the Cartosat-1
and TandEM-X DEM fusion over urban areas [21]. Overall, in
spite of the high computational cost of advanced methods for
DEM fusion, they perform more efficiently than simple WA.

In this paper, we will investigate the application of more so-
phisticated DEM fusion approaches that are able to efficiently
preserve edges and outlines of buildings while still reducing
noise effects. For this purpose, two variational models, namely
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Ly norm total variation (TV-L;) and Huber model are imple-
mented. Apart from these regularization approaches, we will
also investigate the potential of employing raw DEMs with dif-
ferent properties such as different baseline configuration for the
TanDEM-X DEM fusion. Therefore, this paper is structured into
several sections. In Section II, the methodology of DEM fusion
based on regularization methods is explained. Then, the descrip-
tion of the study subsets and experimental results from DEM
fusion are provided in Section III. Finally, the performance of
the implemented DEM fusion methods for TanDEM-X data over
urban areas will be discussed in Section IV.

II. METHODS FOR TANDEM-X RAw DEM FUSION

In this paper, two approaches are implemented for TanDEM-
X raw DEM fusion. The characteristics of each model will be
explained in the following. Before the fusion, raw DEMs at first
are aligned to each other by DEM coregistration approaches
such as least squares matching [22], iterative closest point [23],
or manual registration. The coregistration of DEMs decreases
their translational and rotational differences. For stability rea-
sons, in addition, the height data should be normalized to the
interval [0, 1] [20]
R (z,y) = P (2, y) = omin
hmin
where hy, (z,y) > 0is the elevation of the study DEM with index
k at location (z,y), hmax > 0 and hmin > 0 (Amin < hmax) are
the lowest and highest elevations among all input DEMs. The
output gives the normalized height in the considered location.

ey

hmax -

A. Background: Weighted Averaging

The most popular, very fast, and low computational cost
method for DEM fusion is WA, which is implemented by

k
f=) wioh )

i=1
where h; are 2-D arrays representing the input DEMs, w; are

the corresponding weight maps, and © is a pixelwise product. It
is worth to note that other simple methods, such as a pixelwise



BAGHERI et al.: FUSION OF URBAN TANDEM-X RAW DEMS USING VARIATIONAL MODELS

median- or mode-based fusion, can also be employed for DEM
fusion, especially when multiple DEMs are available [24].

As explained in Section I, the main critical issue for using WA
for DEM fusion is to apply appropriate weights that are fairly
representative of expected height errors in the source DEMs. For
TanDEM-X DEM fusion, generally, these weights are delivered
as HEMs from the ITP. For each height of the TanDEM-X DEM,
the corresponding HEM value can be estimated by

9¢.j
0; = Hymp —= 3
j amb o ( )
where Hp, is the height of ambiguity and o ; is the interfer-
ometric phase error that is estimated from the interferometric
coherence and the InSAR geometry [2]. Then, from these values,

the respective weights can be calculated for each pixel location
by

-

“

Ay
Zie1 oy

J

B. Regularization-Based Models

Variational models were first used for signal and image
denoising [25], [26]. Generally, in variational denoising ap-
proaches, an energy functional is constituted by fidelity and
regularization terms. The fidelity is considered to enforce the
output image being similar to the input images while the regu-
larization term (also called penalty term) is embedded to reduce
the effect of noise in the final result. The desired output is
achieved by minimizing the constructed energy functional. Di-
verse energy functionals can be formed according to different
functions for defining data and penalty terms [19].

A popular type of variational models is the total variation-
based model (TV) in which the gradient of a desired output
image is selected to form the regularization term based on dif-
ferent norms. The main advantage of the TV-based variational
model is its convexity that guarantees to find a solution by min-
imizing the energy functional.

In the problem of TanDEM-X DEM fusion, several input
raw DEMs are fused using variational models. The data term
makes the fused DEM similar to the input tiles while the TV-
based regularization term is defined to provide a sharp output
at the end by preserving the edges and reducing the noise. This
property is beneficial for fusing TanDEM-X raw DEMs over
urban areas where footprints of buildings as edges often appear
very noisy because of the inherent SAR imaging properties.

The basic gradient-based variational model for image denois-
ing and data fusion is a quadratic model in which Ly norm is
used for both regularization and data terms [27]. However, the
quadratic regularization term causes oversmoothing for edges.
Therefore, using the L; norm instead was proposed by Rudin
et al. which is called ROF model correspondingly [25]. Since
the ROF model still uses the Lo, norm for the data term, it does
not provide robustness against outliers when applied to DEM
fusion. As a solution, the L; norm can be substituted for the Lo
norm [28]. The TV-L; model consists of the data fidelity and
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the penalty term

k
mfm{izlf—hih +wnwu1} )

where h; are noisy input DEMs and f is the desired DEM, which
should be achieved by minimizing the functional energy men-
tioned above. The penalty term is formed based on the gradients
of the newly estimated DEM to preserve the edges at the end.
The regularization parameter ~ trades off between penalty and
fidelity terms. Increasing ~ will influence the smoothness and
will produce a smoother fused DEM in the end.

While the main advantage of TV-L; is its robustness against
strong outliers as well as edge preservation [19], it suffers from
the staircasing effect, a phenomenon that creates artificial dis-
continuities in the final output and particularly affects high res-
olution DEM fusion [29]. Moreover, the L; norm is not nec-
essarily the best choice for all data fusion and denoising cases.
As an alternative, the Huber regularization model is proposed to
rectify the drawbacks of the TV-L; model [19]. It applies to the
Huber norm instead of the L,; norm in both fidelity and penalty
terms [30]

[

3 if|z| <n
lelly = § ™ (©)
|z| — 2 if |z| > 7.

Here, 7 is a parameter that determines a threshold between the
Ly and Ly norm in the model. Based on this, the Huber model
can be defined as [31]

k
RS 95 BILEETERD I\ SC

i=1 Q Q

where both data and penalty terms are constituted based on the
thresholds « and (3 that are substituted as n in the Huber norm
relation (6) to form these terms and €2 denotes the raster DEM
space. It should be noted that the Huber norm is a generalized
form of the L; norm. However, in this study, the Huber norm is
also used to strictly penalize the outliers.

Using the quadratic norm in the regularization term penal-
izes high-frequency changes more than L; norm, and thus, it
reduces the noise at the cost of oversmoothing edges. The Huber
norm, dependent on 7 values, treats as a norm between L; and
Ly norms. However, for n = 1, its behavior is nearly similar
to L;. In other words, the Huber norm with higher n provides
DEMs with smoother building footprints but not as much as
the quadratic norm. The influence of the parameters of varia-
tional models on the quality of fused DEM will be discussed in
Section IV-A with more details. In the remainder of this paper,
we use a = 4 to smooth relative height errors larger than 4 m
(considering the relative accuracy of the TanDEM-X DEM), and
£ =1 based on data-driven experiments on different datasets.
Consequently, v can be calculated by the L-curve method [32].

C. Implementation

It is mathematically proven that the TV-based energy func-
tional based on L; or the Huber norm is convex. The main
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Algorithm 1: Dual primal algorithm.

Input: Primary DEMs to configure primal problem
1: Initialization: 7o || K|| < 1, (0% v") € U x V,
a’ =u’, 0 €[0,1],
2: for i = 0 to stopping criteria do

Vit = (I +00F) (v + oK)

ui+1 _ (I+T8g)—1(ui _ TKTVi+1)

ﬁi+1 — ui+l + e(uH»l _ uL)
3: end for
Output: u

characteristic of a convex problem is that the desired output
(i.e., the global minimum) will be certainly found through an
optimization process. One popular strategy for finding the min-
imum of a convex optimization is to reformulate the functional
energy as a primal-dual problem [33]. For variational models,
the energy functional can be expressed in a general form such
as

min {G(n) + F(Ku)} ®)

where G(u) is the data term, and F (K u) is the regularization
term. K refers to an operator that is used for defining the reg-
ularization term (for TV-based variational models, this is the
gradient V of the desired output). In the TanDEM-X raw DEM
fusion, u (as primal variable) is the final fused DEM (f) and the
energy functional (terms G(u) , (K u)) is defined by relations
(5) and (7). Then, the dual-problem formulation of the energy
functional can be written as

rr}linm\flx{g(u) + (v, Ku) — f*(v)} )

where F*(v*) = sup(v",v) — F(v)

vev

10)

and v is the dual variable and F* is defined as the convex
conjugate of F . The dual-problem algorithm for minimizing (9)
is presented in Algorithm 1. It should be noted that the median-
based fusion of the input DEMs can be used to initialize u® to
speed up the optimization. More details of the algorithm can be
found in [33].

III. EXPERIMENTS

In this paper, we investigate TanDEM-X raw DEM fusion
over urban areas by using diverse TV-based variational models
such as TV-L; and Huber models. In addition, the effect of
fusing raw DEMs with different baseline configurations will be
investigated. The baseline configurations for TanDEM-X data
differ by changing orbit direction (ascending or descending) and
also changing HoA values. Furthermore, the results of DEM
fusion implementation will be evaluated for different land types
with an emphasize on urban areas. These land types are as
follows.

1) Industrial areas that are characterized as areas with large

buildings, often not very high.
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TABLE 1
PROPERTIES OF THE NOMINAL TANDEM-X RAw DEM
TILES FOR MUNICH AREA

TanDEM-X raws DEMs: Munich area

Acquisition Id 1023491 1145180
Acquisition mode Stripmap Stripmap
Center incidence angle 38.25° 37.03°
Equator crossing direction ~ Ascending  Ascending
Look direction Right Right
Polarization HH HH
Height of ambiguity 45.81m 5321 m
Pixel spacing 0.2 arcsec 0.2 arcsec
HEM mean 1.33 m 1.58

2) Inner city areas that include very densely packed build-

ings, relatively high.

3) Residential areas that are typically specified with low-rise

single family homes.

In addition, we also considered some nonurban study areas
such as agricultural and forested areas to evaluate the perfor-
mance of variational models in those areas too.

In TanDEM-X raw DEMs produced with a pixel spacing of
0.2 arcsec (around 6 m), most building footprints in industrial
and inner city areas can be visualized but the height accuracy
and quality of building shapes suffer from noise and systematic
errors such as layover and shadow. The visualization and qual-
ity of building become worse in residential areas because of the
small sizes and heights of buildings in these areas. However, we
will evaluate the performance of variational models for enhanc-
ing the quality of buildings appeared in the final fused DEM
over different aforementioned land types. After resampling and
coregistration, the raw DEMs are fused by the different ap-
proaches explained in Section II.

A. Fusion of TanDEM-X Raw DEMs With Similar Baseline
Configuration

Most of the global coverage achieved with the TanDEM-X
raw DEMs is generated by two nominal bistatistic acquisition
(see Fig. 1), but there are more tiles in overlapping areas at the
border of the tiles. The first investigation includes data takes that
have similar baseline configurations as well as HoAs. The study
subsets are selected from two nominal TanDEM-X raw DEMs
over Munich city in Germany. The characteristics of these raw
DEMs are presented in Table 1.

Fig. 2 displays the raw DEM tiles used for this experiment.
From those, four subsets as representatives of different land
types are extracted for the DEM fusion task. A display of these
subsets is provided in Fig. 3.

The quality of the input raw TanDEM-X DEMs as well as
the fused version are determined by using the reference LiDAR
DEM, which is produced from a high resolution airborne Li-
DAR point cloud acquired over Munich and provided by Bavar-
ian Surveying Administration. The density of the LiDAR point
cloud changes for each subset, but at least there is one point per
square, and the vertical accuracy of the point cloud is better than
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(a) (b)

Fig. 2.
area. (a) 1145180 tile. (b) 1023491 tile.

Two nominal acquisitions of TanDEM-X raw DEMs over the Munich

=+ 20 cm. The final reference DEM is achieved by interpolation
in a grid with pixel spacing as same as input TanDEM-X DEMs.

The results of raw DEM fusion using TV-L; and Huber mod-
els for study areas are presented in Table II. The regularization
parameter is calculated using the L-curve method. For compari-
son with the common fusion method, the results of fusion by WA
are also provided. The DEM quality after and before fusion was
evaluated by statistical metrics, mean, root mean square error
(RMSE), mean absolute error (MAE), normal median absolute
deviation (NMAD), and standard deviation (STD).

In addition to the statistical analysis, to evaluate the perfor-
mance of variational models, the residual maps of the input
DEMs and the fused DEMs achieved by different methods for
the industrial and inner city 1 study areas are displayed in Fig. 4.
The results illustrate that using variational models in the fusion
process can finally improve the quality of the TanDEM-X DEM
over the quality achievable with classic WA. It is explicitly
displayed on residual maps that variational modes can finally
reduce the noise effects and also makes the footprints of build-
ings more apparent than WA. Furthermore, fusing ascending and
descending DEMs can improve the DEM quality in particular
for the shadow- and layover-affected areas in which significant
eITors occur.

B. Fusion of TanDEM-X Raw DEMs With Different HoAs

In the first experiment, the study areas were selected from two
TanDEM-X raw DEMs that have nearly similar properties. Both
DEMs were acquired in the same orbit, same look directions,
and also with nearly the same incidence angles and HoAs.

As an additional experiment, we investigate the performance
of variational models for fusing TanDEM-X raw DEMs with
different HoAs over urban areas. For this purpose, one experi-
mental ITP raw DEM with different HoA over Munich city in
Germany is considered. It should be noted that this product has
not been used in final global DEM generation but in this study
is applied for implementing an experiment of fusing rawDEMs
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Fig. 3. Display of the study subsets selected from different urban land types
for TanDEM-X raw DEM fusion over Munich city. a) Industrial area (1.5 km x
1.2 km). b) Inner city 1 (1.5 km x 0.6 km). ¢) Inner city 2 (1.6 km x 0.9 km).
d) Residential area (1.6 km x 1.3 km). e) Agricultural (1.05 km x 0.6 km). f)
Forested (1.25 km x 0.85 km).

with different HoAs. The specifications of this raw DEM are
provided in Table III. Fig. 5 also provides a depiction of the
new raw DEM, which is acquired over the same location as tile
1023491 with identical overlap.

The main property that discriminates this tile from those in-
troduced in the previous section is its bigger HoA. Regarding
nearly similar incidence angle and slant range, the larger value
for HOA means this tile is derived from data takes that were
acquired with a shorter baseline is considered helpful in areas
where PU errors are dominant [34]. On the other hand, the qual-
ity and resolution of this DEM is lower than those with smaller
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TABLE 11
HEIGHT ACCURACY (IN METER) OF THE TANDEM-X DATA BEFORE AND AFTER DEM FUSION IN THE DIFFERENT STUDY AREAS OVER MUNICH

Study area DEM Mean RMSE MAE NMAD STD
id 1023491 | 071 440  3.08 237 434

RawDEM . 1145180 | 071 464 327 301 458

Industrial WA 077 416 293 224 409
Fused DEM  TV-L, 0.69 3.67 269 203 3.60

Huber 071 374 284 240 367

1023491 | 078 779 595 649 775

RawDEM 441145180 | 078 808 630  7.15 804

Inner 1 WA 084 751 58 649 746
Fused DEM  TV-L, 077 611 500 572 6.6

Huber 078 614 509 567 609

1023491 | 0.18 700 544 636  7.00

RawDEM 1145180 | 018 716 557 651  7.16

Inner 2 WA 020 682 533 623 682
Fused DEM  TV-L, 012 58 478 616 583

Huber 018 58 48 623 582

id:1023491 | 095 268 210 205 250

RawDEM 1145180 | 095 292 225 231 276

Residential WA 096 261 205 199 243
Fused DEM  TV-I, 089 241 196 198 224

Huber 095 244 198 198 224

1023491 | 0.13 086 057 059 084

RawDEM 41145180 | 013 164 113 120 164

Agricultural WA 014 078 051 054 076
Fused DEM  TV-L, 006 055 029 020 0.54

Huber 013 072 048 047 071

1023491 | 2.25 484 354 346 428

RawDEM 1145180 | 225 458 336 324 3.99

Forested WA 228 451 330 317  3.89
Fused DEM  TV-L, 225 434 318 3.09 371

Huber 225 436 321 312 373

The bold values indicate the best results.

4\ |
e o 1 - I .
Fused DEM: Huber Fused DEM: TV-L1

TDX (1023491) TDX (1145180) Fused DEM:  Fused DEM:  Fused DEM:

WA Huber TV-L1
o 2 4 6 8 10m
I )

Fig. 4. Absolute residual maps of the initial input raw DEMs and the fused DEMs obtained by different approaches for the industrial areas. (a) Inner city areas.
(b) Study areas over Munich.
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TABLE III
PROPERTIES OF THE NONOFFICIAL TANDEM-X RAW
DEM TILE FOR MUNICH AREA

TanDEM-X raws DEMs: Munich area

Acquisition Id 1058842
Acquisition mode Stripmap
Center incidence angle 38.33°
Equator crossing direction ~ Ascending
Look direction Right
Polarization HH
Height of ambiguity 72.02
Pixel spacing 0.2 arcsec
HEM mean 2.58

HoAs. Comparing the raw tiles displayed in Figs. 2 and 5 con-
firms a drop of quality of DEM, i.e., with much more noise, with
id 1058842, which has larger HoA.

In this experiment, a study subset is extracted from an area that
has lots of inconsistent heights due to PU errors. For this aim,
a relatively large subset from an urban area, which is covered
by trees and also includes a river crossing, is selected. Fig. 6
displays the selected study area suffering from PU errors. The
corresponding DEM data are derived from tiles 1023491 and
1058842 with HoAs about 45 m and 72 m, respectively.

The PU errors appearing in this subset originate from the vol-
ume decorrelation phenomenon that happens in an area covered
by trees (like the selected study subset) and also a coherence
change due to transition from dry land to water (river). PU errors
typically are at the range of multiples of the HoA value. The
inconsistent heights can be determined by [8]

dhg, = 0.75 x min(|HoA|) — 4. an
Those height residuals bigger than dhy, are denoted as inconsis-
tent height values emerging because of PU errors.

Table IV collects the results of fusing DEMs with differ-
ent HoAs in the selected study area. Again, the accuracy was
evaluated respective to a reference DSM interpolated from a
point cloud with high density (more than eight points per square
meters). Moreover, Table V compares the fused DEMs with
different approaches and initial DEMs in terms of number of
PU errors, maximum and minimum height residuals. The PU
threshold for each DEM is computed based on the respective
HoA value using (11). It is obvious that the DEM 1058842
has lower number of PU errors because of larger HoA, but
for DEM fusion quality analysis, the minimum value of HoAs
(here 45.81) is considered to enumerate the number of PU er-
rors. It should be noted that mean values presented in Tables II
and IV do not present the real level of canopy penetration of
the X-band radar signal. In our previous study [35], we found
some amount of vegetation penetration to remain after DEM
coregistration.

The results from Tables IV and V demonstrate the efficiency
of the Huber model for fusion of two tiles of TanDEM-X raw
DEMs in the problematic area. The results show that using
the Huber model can significantly improve the RMSE of fused
DEMs by up to nearly 2 m while the DEM quality enhancement
by means of WA is not remarkable. Apart from this, the Huber
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Fig.5. Nonofficial TanDEM-X raw DEM tile produced with bigger HoA over
the Munich area.

Fig. 6.  Study subset selected for DEM fusion in a problematic area (4.5 km
x 2.8 km).

model is absolutely more powerful than WA to reduce the PU
errors. The maximum and minimum discrepancies also confirm
the better performance of the Huber model to deal with PU errors
in comparison to the other method. TV-L; also can decrease the
noise effect in the final fused DEM and reduce the number of
PU errors but the improvement is not as large as for the Huber
model.

C. Fusion of TanDEM-X Raw DEMs With Different Baseline
Configuration

In the final experiment, we focus on the fusion of DEMs
acquired by different baseline configurations including different
orbit directions and HoAs. Table VI provides the properties of
the tiles used for this experiment. The raw DEMs covering
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TABLE IV
HEIGHT ACCURACY (IN METER) OF THE TANDEM-X DATA WITH DIFFERENT HOAS BEFORE AND AFTER DEM FUSION IN THE PROBLEMATIC STUDY AREA

DEM Mean RMSE MAE NMAD STD
id: 1023491 | -2.35 1077 846  10.10 1051
RawDEM 4 1058842 | 235 1057 827 969 1030
WA 237 1045 823 981  10.17
Fused DEM  TV-L, 263 924 713 803 886
Huber 235 860 670 7.65 8277

The bold values indicate the best results.

TABLE V

EFFECT OF DEM FUSION TO REDUCE THE NUMBER OF PU ERRORS USING TILES WITH DIFFERENT HOAS IN THE PROBLEMATIC STUDY AREA

DEM HoA  PU Threshold No. of PU Errors Max Discrepancy  Min Discrepancy
Raw DEM id: 1023491 | 45.81 30.36 2032 51.80 -73.13
id: 1058842 | 72.02 50.01 51 58.82 -54.76
WA 45.81 30.36 1339 50.74 -53.39
Fused DEM  TV-L; 45.81 30.36 102 19.16 -33.76
Huber 45.81 30.36 0 16.97 -28.71
The bold values indicate the best results.
TABLE VI

PROPERTIES OF THE NOMINAL ASCENDING AND DESCENDING TANDEM-X
RAW DEM TILES OVER TERRASSA AND VACARISSES CITIES

TanDEM-X raws DEMs

Acquisition Id 1058683 1171358
Acquisition mode Stripmap Stripmap
Center incidence angle 33.71° 34.82°
Equator crossing direction ~ Ascending Descending
Look direction Right Right
Polarization HH HH
Height of ambiguity 60.18 m 48.58 m
Pixel spacing 0.2 arcsec 0.2 arcsec
HEM mean 1.17m 1.40

Terrassa and Vacarisses cities located in Spain were produced
by ascending and descending acquisitions. In addition to orbit
directions, the HoAs of tiles are also not similar to each other.
Fig.7 shows the TanDEM-X raw DEMs used in this study, which
mostly covers difficult terrain, the common area is specified by
black polygons. Due to morphologically difficult type of terrain,
the acquisitions from ascending and descending flight paths have
been applied for global DEM generation in this area. However,
the study cities are located in the relatively flat part of the area
common between tiles. Again, from these tiles, study subsets
located in different land types were selected. Fig. 8 display each
study subsets from different types extracted from the common
area of ascending and descending raw tiles.

The results of fusing ascending and descending raw DEMs in
different land types over urban area are provided in Table VII.
The accuracy evaluation is performed by comparing each DEM
respective to a LIDAR DSM, which was achieved by interpo-
lation of the LiDAR point cloud presented by the ISPRS foun-
dation as a benchmark [36]. On an average, the density of the
point cloud is about one point per square meter.

The results of DEM fusion again illustrate that using varia-
tional models can increase the accuracy of the initial input raw
DEMs. In urban study subsets, the performance of the Huber

Fig. 7.
produced over Terrassa and Vacarisses cities.

(a) Ascending and (b) descending tiles of TanDEM-X raw DEMs

model is slightly better than TV-L; according to the statistical
metrics, but their differences are not really significant. It can
be concluded that both models produce similar results in terms
of statistical measurements. In comparison to WA, variational
models also give a more accurate DEM in urban areas and the
agricultural subsets.

IV. DIScUSSION

In this study, the TV-L; and Huber variational models were
implemented to fuse TanDEM-X raw DEMs over urban areas as
well as surroundings. In particular, we investigated these models
with respect to the fusion of raw DEMs produced from data takes
with different baseline configurations and HoAs. In conclusion,
the results demonstrated the efficiency of variational models in
comparison to simple WA for the TanDEM-X raw DEM fusion.
To clarify the role of smoothness constraint and data term, we
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Fig. 8. Display of study subsets selected from different land types for raw
TanDEM-X fusion over urban areas. a) Industrial area located in Terrassa (1.5 km
% 1.4 km). b) Residential area located in Vacarisses (1.3 km x 0.9 km). ¢) Inner
city subset located in Terrassa (1 km x 0.8 km). d) Agricultural area (1.5 km x
0.8 km).

carried out an experiment regarding the DEM quality improve-
ment to be achieved by just carrying out TV-L1 denoising of a
single input DEM. Comparing these results with those achieved
by TV-L1 DEM fusion (which employs elevation data of at
least two DEM tiles) revealed that fusion is always favorable
(cf. Table VIII). Furthermore, it can be seen that in the indus-
trial subset, the main improvement arises from the smoothness
term, which is caused by the regular scene structure. However,
adding another tile in a fusion manner can still improve the
quality of the final DEM. In contrast, for the agricultural sub-
set, the TV-L1 denoising could not change the DEM quality,
while DEM fusion could finally produce a DEM with higher
accuracy. Using more DEM tiles is furthermore vital for areas
suffering from layover and shadowing effects or containing PU
errors. More examples of these areas and requirement for em-
ploying several tiles can be found in [8]. In addition, regarding
the strict quality control policy of the TanDEM-X mission, ob-
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taining lower than 2 m relative height accuracy for slopes lower
than 20% and better than 4 m for steeper slopes in each pixel
means that the pixelwise TanDEM-X target accuracy can only
be realized by DEM fusion. Table VIII provides some statistics
relevant to TanDEM-X quality control indicating percentages
of pixels with an accuracy better than 2 and 4 m as well as the
percentage of pixels with accuracy worse than 4 m. The results
confirm that DEM fusion can lead to obtaining more reliable
pixels in comparison to just the denoising of single DEMs. An-
other important problem with using a single tile is the selection
of the accurate subsets in different land types. As an example, in
experiment 1, the accuracy of DEM with id 1145180 is higher
than the accuracy of DEM 1023491 for the forested area while
for other study subsets the quality of DEM 1023491 is better
than for the other DEMs. As a result, in practice, it is beneficial
to carry out DEM fusion in general, as this always improves the
quality of the final DEM.

A. Use of TV-Based Variational Models

The main property of TV-based models is to reduce the effect
of noise by minimizing the TV term. It should be noted that both
data and regularization terms in the energy functional defined
for TV-L; and Huber models are positive terms. Choosing TV
as a regularization term leads to preserving the beneficial high-
frequency image contents such as footprints of buildings while
minimizing its value through the fusion causes to reduce the
effects of undesirable noise. Fig. 9 shows the performance of
TV-based variational models in comparison to WA in a 3-D
view. The displayed patch was selected from an industrial area
located in Munich, which was used in the first experiment.

The 3-D display of the fused DEMs clearly shows that the
TV-based model can reduce the noise effect and excellently
reveal the edges while the WA-based fused DEM still suffers
from noise effects. As displayed, the Huber model produces a
smoother output in comparison to TV-L; because of mixing
the quadratic norm and the L; norm to form data and regu-
larization terms. Since the quadratic norm tends to penalize
the high-frequency contents more severe than L, it leads to
DEMs with more smoother edges. Apart from the type of norm
used to form an energy functional, the amount of smoothing
induced by TV-based variational models depends on the reg-
ularization parameter, which trades off between the TV term
as a regularization term and the data fidelity term. While only
one regularization parameter is required to be tuned for DEM
fusion by TV-L;, using the Huber model for fusion demands to
tune three parameters. Selecting different thresholds to form the
norms used in the Huber model changes the amount of smooth-
ness that emerges in the final output of DEM fusion. Fig. 10
displays the effect of changing one of the parameters while the
others are constant on the final output. Selecting small «, which
is used for a data term, does not severely penalize discrepancies
between the initial DEMs and the desired output strongly, i.e.,
giving an output fused DEM with more similarity to input data.
In contrast, increasing o penalizes the discrepancies intensively
and the optimization process tries to lower the total energy that
provides a smoother DEM at the end. An identical interpreta-
tion can be derived for S while this parameter performs in a
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TABLE VII

DIFFERENT STUDY AREAS OVER VACARISSES AND TERRASSA

Study area DEM Mean RMSE MAE NMAD STD
1058683 | -0.19 349 249 260 348

RawDEM 1171358 | 019 356 244 234 355

Industrial WA 026 306 213 207  3.05
Fused DEM TV-L; | -034 292 209 207 290

Huber | -0.19 289 210 214 2.88

1058683 | -0.78  5.05 352 3.0 499

RawDEM 171358 | 078 511 353 362 505

Inner WA 076 466 322 336 459
Fused DEM  TV-L; | -091 435 3.08 340 425

Huber | -0.78 434 313 352 427

1058683 | -0.54 424 311  3.19 420

RawDEM 171358 | 054 442 321 326 438

Residential WA 062 394 287 283 390
Fused DEM TV-L; | -0.76 396 288 277 388

Huber | -0.54 386 286 274 3.82

1058683 | 044 238 168 171 234

RawDEM 171358 | 044 193 123 098 1.8

Agricultural WA 035 1.60 104 083 157
Fused DEM TV-L; | 027 1.60 104 078 159

Huber 044 162 112 091 156

The bold values indicate the best results.
TABLE VIII

COMPARISON OF TV-L; DENOISING AND TV-L; DEM FUSION IN INDUSTRIAL AND AGRICULTURAL
AREAS USED IN THE FIRST EXPERIMENT

Study area Strategy RMSE MAE NMAD
Residential TV-L; DEM denoising 3.88 2.88 2.20
TV-L, DEM fusion 3.67 2.69 2.03
Error < 2m  Error <4m  Error >= 4m
Residential TV-L; DEM denoising 49 % 78 % 22 %
TV-L; DEM fusion 54 % 81 % 19%
Study area Strategy RMSE MAE NMAD
Agricultural TV-L; DEM denoising 0.86 0.57 0.59
TV-L; DEM fusion 0.55 0.29 0.20
Error <2m  Error <4m Error >= 4m
Agricultural TV-L; DEM denoising 95 % 100 % 0 %
TV-L, DEM fusion 100 % 100 % 0%

The bold values indicate the best results.

reverse manner because it is used to form the regularization
term. It should be noted that the regularization parameter
trades off between two terms in functional energy that means by
increasing 7, the effect of TV will become lower such that ul-
timately smoother DEM is produced. Appropriately tuning the
regularization parameter and the Huber model thresholds also
influences the accuracy of the final fused DEM. The effect of
Huber model parameter values on the final accuracy of DEM
fusion is depicted in Fig. 11. Different methods can be used
for tuning the regularization parameter. One option is to learn it
from data if some training data are available. Another option is
to use the L-curve approach [32]. Finally, the parameter can be
manually selected based on a visual analysis of different output
DEMs.

B. Fusion Over Different Land Types

In this study, the TanDEM-X DEM fusion by variational mod-
els was implemented over different land types that are typically
found in urban areas and in their surroundings. Fig. 12 de-
picts the accuracy improvement (in meters) by means of dif-
ferent fusion algorithm respective to the quality of the initial
DEMs for each study land type used in the first experiment
(see Section III-A). Similarly, Fig. 13 compares the perfor-
mance of fusion methods for different land types that were
used in the third experiment (see Section III-C). It should be
noted that since both variational model have similar perfor-
mance in terms of RMSE, for each plot in Figs. 12 and 13,
just the performance of the best variational model is compared
to WA.
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Fig. 9. 3-D display of initial TanDEM-X raw data and the results of DEM
fusions using different methods in the industrial area used in the first experiment.
(a) TanDEM-X (tile a). (b) TanDEM-X (tile b). (c) WA. (d) Huber model.
(e) TV-L1 model. (f) LiDAR.

Fig. 10.
y=1lLa=05p=10by=1a=10,=1.(c)y=1,a=1,5=0.5.
dy=1La=1,5=10.

Effect of varying Huber models’ parameters on the final DEM. (a)
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Fig. 12. Improvement of the TanDEM-X DEM tiles (a), (b) using variational
models (here, TV-L1) in comparison to WA in different study areas located in
Munich. The bars indicate the difference between the RMSE of input TanDEM-
X DEM and final fused DEM. (a) Refers to tile 1023491. (b) Refers to tile
1145180.
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Fig. 13. Improvement of the TanDEM-X DEM tiles (a), (b) using variational
models (here, Huber) in comparison to WA in different study areas located in
Vacarisses and Terrassa. The bars indicate the difference between the RMSE of
input TanDEM-X DEM and final fused DEM. (a) Refers to tile 1058683. (b)
Refers to tile 1171358.
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Fig. 14.

The plots demonstrate that variational models exhibit max-
imum efficiency in inner city land types in both experiments
while WA has a nearly similar performance in different land
types. The lowest accuracy improvement by variational models
is for residential subset and nonurban study areas. The inner city
land type includes a lot of building footprints that mostly appear
as noisy edges because of inherent properties of SAR sensor
imaging. Consequently, using the TV-based variational model
can significantly improve the DEM quality in these areas. On the
other hand, residential subset areas include single family, small
homes usually located in a sparse pattern, and the footprint of
buildings, which cannot appear as a strong edge in TanDEM-X
raw DEM due to resolution restriction of data takes acquired in
the stripmap mode. In nonurban areas, the edginess is usually
lower than in urban subsets. Thus, the smoothness term of the
variational models has lower performance in those kinds of land
types. However, the quality of the final DEM still increases due
to the DEM fusion encoded in the data term.

C. Effect of Geometry

While most urban areas covered by global TanDEM-X dataset
are generated by two nominal acquisitions that mostly have sim-
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DEMs produced by fusing ascending and descending DEMs over industrial study area located in Terrassa. (a) LIDAR. (b) WA. (c) Huber. (d) TV-L;.

ilar HoAs and geometries, we also investigated the fusion of
several TanDEM-X DEMs with different properties to investi-
gate the performance of variational models for these data. In the
first experiment, the results identified that the variational models
can perfectly fuse the raw DEMs with nearly similar baseline
configuration and HoAs acquired over urban areas. The output is
a DEM with higher accuracy and more enhanced building foot-
prints. However, the Huber model generates a smoother DEM
at the end.

A significant result was yielded for problematic areas where
the effects of PU errors are dominant. The selected study subset
(see Fig. 6) is mostly affected by noise because of the volume
decorrelation due to trees and the low coherence due to river. For
these problematic areas fusing one DEM with nominal HoA to
another DEM with larger HoA is more useful to reduce the effect
of PU errors. In this experiment, fusing two DEMs with different
HoAs by using the Huber model could substitute inconsistent
heights with logical values and also resulted in a more accurate
DEM. This proves, in addition to the DEM fusion methodology,
that selecting appropriate raw DEM tiles dependent to problem
is significant for a successful fusion. Among variational models,
TV-L; can decrease the number of PU errors and improve the
accuracy but more quality enhancement is achieved by the Huber
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model. Since, the Huber model also uses the quadratic norm,
it produces a smoother fused DEM while TV-L; tends to save
more high-frequency contents that can also be caused by noise.
Fusing ascending and descending DEMs in problematic areas
reduces the layover and shadow effects in the final fused DEM.
Consequently, in the final experiment, two ascending and de-
scending DEMs with different HoAs were fused. As shown in
plots 12 and 13, in comparison to results of fusing DEMs with
similar baseline configuration and HoAs, the variational models
lead to least significant quality improvement in the final fused
DEM in terms of RMSE. However, a display of an exemplary
study subset (industrial area) in Fig. 14 demonstrates the effi-
ciency of variational models in comparison to WA for fusing
these types of DEMs. For making a correct judgment about
the performance of variational models on fusing ascending and
descending DEMs versus DEMs with similar flight paths, two
DEMs with similar baseline configuration and HoA from the
study areas are required. Theoretically, apart from the DEM
fusion method, using ascending and descending DEMs instead
of using DEMs with similar orbit directions improves the final
DEM quality in the difficult terrains and problematic areas such
as urban areas that are under the shadow and layover effects. In
practice, it is confirmed in [8] that using ascending and descend-
ing raw TanDEM-X DEMs can produce highly accurate fused
DEM at the end in the shadow- and layover-affected areas.

V. CONCLUSION

In this paper, we proposed to apply TV-based variational
models (TV-L; and Huber models) for TanDEM-X raw DEM
fusion at the phase of DEM mosaicking instead of WA. The
main focus of this study was to enhance final DEMs in urban
areas where the footprints of buildings are influenced by noise
effects due to SAR imaging properties. For this purpose, dif-
ferent study subsets were selected from different land types,
which mostly are explored over urban areas and surroundings.
Apart from this, DEM fusion was investigated for raw DEMs
with different geometries. At first, two nominal acquisitions
with similar baseline configurations and HoAs were fused over
different land types. In the next experiment, two raw DEMs
with different HoAs were fused over a problematic terrain that
suffers from PU errors. At the end, two DEMs with ascending
and descending orbit directions as well as with different HoAs
were used. In all experiments, it was demonstrated that using
variational models leads to DEMs with higher quality. A great
performance of the Huber model was recorded for fusing two
raw DEMs with different HoAs over the selected problematic
area. Also, in urban areas, variational models with reducing the
noise effect and enhancing the outlines of buildings, absolutely
performs better than WA. However, the Huber model tends to
provide a smoother fused DEM than TV-L;. The results also
demonstrated that the variational models, particularly TV-L,,
could improve the quality of DEMs significantly in compari-
son to WA. Using variational models could improve the DEM
quality by up to 2 m particularly in inner city subsets. In conclu-
sion, carrying out TanDEM-X raw DEM fusion using variational
models with an ability to enhance the building footprints and
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other useful high-frequency contents along with smoothing the
noise, finally produced a DEM with higher quality.
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ARTICLE INFO ABSTRACT

Keywords:
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Currently, numerous remote sensing satellites provide a huge volume of diverse earth observation data. As these
data show different features regarding resolution, accuracy, coverage, and spectral imaging ability, fusion
techniques are required to integrate the different properties of each sensor and produce useful information. For
example, synthetic aperture radar (SAR) data can be fused with optical imagery to produce 3D information using
stereogrammetric methods. The main focus of this study is to investigate the possibility of applying a stereo-
grammetry pipeline to very-high-resolution (VHR) SAR-optical image pairs. For this purpose, the applicability of
semi-global matching is investigated in this unconventional multi-sensor setting. To support the image matching
by reducing the search space and accelerating the identification of correct, reliable matches, the possibility of
establishing an epipolarity constraint for VHR SAR-optical image pairs is investigated as well. In addition, it is
shown that the absolute geolocation accuracy of VHR optical imagery with respect to VHR SAR imagery such as
provided by TerraSAR-X can be improved by a multi-sensor block adjustment formulation based on rational
polynomial coefficients. Finally, the feasibility of generating point clouds with a median accuracy of about 2 m is
demonstrated and confirms the potential of 3D reconstruction from SAR-optical image pairs over urban areas.

1. Introduction

Three-dimensional reconstruction from remote sensing data has a
range of applications across different fields, such as urban 3D modeling
and management, environmental studies, and geographic information
systems. Manifold high-resolution sensors in space provide the possi-
bility of reconstructing natural and man-made landscapes over large-
scale areas. Conventionally, 3D reconstruction in remote sensing is ei-
ther based on exploiting phase information provided by interferometric
SAR, or on space intersection in the frame of photogrammetry with
optical images or radargrammetry with SAR image pairs. In all these
stereogrammetric approaches, at least two overlapping images are re-
quired to extract 3D spatial information. Both photogrammetry
and radargrammetry, however, suffer from several drawbacks.
Photogrammetry using high-resolution optical imagery is limited by
relatively poor absolute localization accuracy and cloud effects,
whereas radargrammetry suffers from the difficulty of image matching
for severely different oblique viewing angles.

On the other hand, the huge archives of high-resolution SAR images
provided by satellites such as TerraSAR-X and the regular availability of
new data alongside archives of high-resolution optical imagery pro-
vided by sensors such as WorldView provide a great opportunity to
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investigate data fusion pipelines for producing 3D spatial information
(Schmitt and Zhu, 2016). As relatively few studies have dealt with 3D
reconstruction from SAR-optical image pairs (Bloom et al., 1988;
Raggam et al., 1994; Wegner et al.,, 2014), there has been no in-
vestigation into the feasibility of a dense multi-sensor stereo pipeline as
known from photogrammetric computer vision yet. This paper in-
vestigates the possibility of implementing such a pipeline, and describes
all processing steps required for 3D reconstruction from very-high-re-
solution (VHR) SAR-optical image pairs.

In detail, this paper discusses both an epipolarity constraint and a
bundle adjustment formulation for SAR-optical multi-sensor stereo-
grammetry first. Regarding the complicated radiometric relationship
between SAR and optical imagery, the epipolarity constraint accelerates
the matching process and helps to identify reliable and correct con-
jugate points (Morgan et al., 2004; Scharstein et al., 2001). For this
objective, we first demonstrate the existence of an epipolarity con-
straint for SAR-optical imagery by reconstructing the rigorous geometry
models of SAR and optical sensors using both collinearity and range-
Doppler relationships. We prove that a SAR-optical epipolarity con-
straint can be rigorously modeled using the sensor geometries. Subse-
quently, rational polynomial coefficients (RPCs) are fitted to the SAR
sensor geometry to ease further processing steps. Consequently,
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open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).



H. Bagheri et al.

epipolar curves can be established using projection and back-projection
from SAR imagery to terrain and then from terrain to optical imagery
using RPCs. In addition, the RPCs ease the formulation of multi-sensor
block adjustment for SAR-optical imagery.

The block adjustment is used to align the optical imagery with re-
spect to the SAR data. Generally, the absolute geolocalization accuracy
of optical satellite imagery is lower than that of modern SAR sensors.
Evaluations show that the absolute accuracy of geopositioning using
TerraSAR-X imagery is within a single resolution cell in both the azi-
muth and range directions, and can even go down to the cm-level
(Eineder et al., 2011). In contrast, the absolute accuracy of geolocali-
zation using basic WorldView-2 products is generally no better than 3 m
(DigitalGlobe, 2018). Consequently, the block adjustment propagates
the high geometrical accuracy of SAR data into the final 3D product,
thus avoiding the need for external control points.

The main stage of SAR-optical stereogrammetry, however, is a dense
matching algorithm for 3D reconstruction (Bagheri et al., 2018). In this
study, we use the semi-global matching (SGM) method, which in-
corporates both mutual information and census, as well as their
weighted sum as cost functions, in its core.

The remainder of this paper is organized as follows. First, the
modeling of SAR sensor geometries with RPCs is explained in Section
2.1. After briefly introducing the epipolarity constraint and its benefits,
a mathematical proof of this constraint for SAR-optical image pairs is
presented in Section 2.2. In Section 2.3, the application of multi-sensor
block adjustment using RPCs for SAR-optical image pairs is introduced.
The principle of the SGM algorithm is recapitulated in Section 2.4.
Section 3 summarizes experiments and results of our implementation of
the SAR-optical stereogrammetry workflow for TerraSAR-X/World-
View-2 image pairs over two urban study areas. Based on these results,
the feasibility of stereogrammetric 3D reconstruction from SAR-optical
image pairs over urban areas, as well as its advantages and limitations,
are discussed in Section 4. Finally, Section 5 presents the conclusions to
this study.

2. SAR-optical stereogrammetry

Fig. 1 shows the general framework of SAR-optical stereogram-
metric 3D reconstruction. Similar to optical stereogrammetry, one
grayscale optical image and one amplitude SAR image form a stereo
image pair that can be processed by suitable matching methods to find
all possible conjugate pixels. However, some important pre-processing
steps are required before the matching and 3D reconstruction. Cur-
rently, most VHR optical images are delivered using RPCs. Thus, the
primary step in the SAR-optical stereogrammetry framework is to es-
timate the RPCs for SAR imagery as well. This process homogenizes the
geometry models of both sensors and simplifies the subsequent pro-
cesses of SAR-optical block adjustment and establishing an epipolarity
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constraint. The next phase is to carry out multi-sensor block adjustment
to align the optical image to the SAR image. This rectifies the RPCs of
the optical imagery with respect to the SAR imagery, thus improving
the absolute geolocalization of the optical imagery and correcting the
positions of the epipolar curves on the optical imagery. A disparity map
is then produced in the frame of the reference image via a dense image
matching algorithm such as SGM. From this map, the 3D positions of
the points can be determined by reconstructing the geometry of the SAR
and optical imagery for a particular exposure. However, the success of
the aforementioned framework relies on the possibility of establishing
an epipolarity constraint for SAR-optical image pairs. Thus, the ex-
istence of the epipolarity constraint for SAR-optical image pairs must be
investigated. In the following, the details of each step of the SAR-optical
stereogrammetry framework are explained and the potential of using an
epipolarity constraint for SAR-optical image pairs is investigated.

2.1. Preparation: RPCs for SAR imagery

RPCs are a well-established substitute for the rigorously derived
optical imaging model. They are widely used for different purposes
such as epipolar curve reconstruction (Oh et al., 2010), block adjust-
ment (Grodecki and Dial, 2003), space resection-intersection and 3D
reconstruction (Fraser et al., 2006; Li et al., 2007; Tao and Hu, 2002;
Tao et al., 2004; Toutin, 2006) or image rectification (Tao and Hu,
2001). The relation between the image space and the geographic re-
ference system is created by the rational functions (Grodecki et al.,
2004)

_h@ ¢ h)

= =f@, b, h
g TEED &)
and
P, ¢, h)
= LN _ @, 6 h),
=Rt em  fAHN @

where r, ¢ are normalized image coordinates, i.e. normalized rows and
columns of points in the scene and ¢, 1, and h denote the normalized
latitude, longitude, and height of the respective ground point. The re-
lationship between normalized and un-normalized coordinates is given
by Tao and Hu (2001)

x= X=X

Sy (3

where X is the normalized coordinate, X, is the un-normalized value of
the coordinate, and X,, Sy are the offset and scale factors, respectively.

In Egs. (1) and (2), P, (i = 1, ...,4) are n-order polynomial functions
that are used to model the relationship between the image space and
the reference system. They can be written as

Matching
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Optical SAR Image Metadata
Image
Range-Doppler
" — - Equation
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Virtual GCPs
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I

Fig. 1. Framework for stereogrammetric 3D reconstruction from SAR-optical image pairs.
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Fig. 2. Procedure of estimating RPCs by terrain-independent approach.
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where a;, (n = 0, 1, ...,19) are the polynomial coefficients.
For projection from the image space to terrain, the inverse form of
the rational function models is used:

i= Ps(c, r, h)

“Rerm TGP ®)
and

_ P, _
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For this task, another set of RPCs for inverse projection as well as the
terrain height h is needed.

The main reason for using RPCs is to facilitate the computational
process of the subsequent processing tasks. Instead of describing the
stereogrammetric intersection with a combination of the range-Doppler
model for the SAR image and a push-broom model for the optical
image, from a mathematical point of view the RPC formulation
homogenizes everything to a comparably simple joint model. However,
fitting RPCs to a sensor model is challenging in its own way and de-
mands sufficient, well-distributed control points. RPCs are usually cal-
culated with either a terrain-independent or terrain-dependent ap-
proach (Tao and Hu, 2001). In the terrain-dependent approach,
accurate Ground Control Points (GCPs) are used to estimate the RPCs.
Thus, the final accuracy of the RPCs depends on the number, accuracy,
and distribution of GCPs.

While the terrain-dependent approach is an expensive way of esti-
mating RPCs (and GCPs may not be available for every study area), the
terrain-independent method allows RPCs to be estimated without any
GCPs (Tao and Hu, 2001). Instead, a set of virtual GCPs (VGCPs), which
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are related to the image through the rigorous imaging model of the
respective sensor, are used to approximate the RPCs. The VGCPs are
arranged in a grid-shape format on planes located at different heights
over the study area, such as depicted in Fig. 2. The resulting cube of
points is then projected to the image space, and their corresponding
image coordinates are determined by reconstructing the rigorous
model. The RPCs can subsequently be estimated using a least-squares
calculation. Note that, when using higher-order RPCs, the least-squares
estimation suffers from an ill-posed configuration that causes the results
to deviate from their optimal values. In these circumstances, a reg-
ularization approach based on Tikhonovs method can be employed to
obtain acceptable solutions (Tikhonov and Arsenin, 1977).

The RPCs for optical sensors are usually delivered by vendors
alongside the image files. For SAR sensors — with the exception of the
Chinese satellite GaoFen-3 — however usually only ephemerids and
orbital parameters are attached to the data. Therefore, Zhang et al.
investigated the generation of RPCs for various SAR sensors based on
the terrain-independent approach (Zhang et al., 2011). Their results
show that RPCs can be used as substitutes for the range-Doppler
equations with acceptable accuracy. In this study, we use this terrain-
independent approach for SAR RPC generation.

2.2. Epipolarity constraint for SAR-optical image matching

In most stereogrammetric 3D reconstruction scenarios, the epipo-
larity constraint facilitates the procedure of image matching by redu-
cing the search space from 2D to 1D (Morgan et al., 2004). The epi-
polarity constraint always exists for optical stereo images captured by
frame-type cameras that follow a perspective projection (Cho et al.,
1993). This phenomenon is illustrated in Fig. 3.

For a point p in the left-hand image, the conjugate point in the
corresponding right-hand image is located on the so-called epipolar line.
This epipolar line lies on the plane passing through both image
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Fig. 3. Epipolarity constraint for frame-type camera (Morgan et al., 2004).

projection centers (O, O') and the image point p. It can also be obtained
by changing the depth or height of p in the reference coordinate system.
While it is known that epipolar lines exist for images captured from
frame-type cameras, straightness cannot be ensured for other sensor
types (Cho et al., 1993). We thus refer to epipolar curves instead of
epipolar lines to express generality in the remainder of this paper.

With respect to remote sensing, several studies have demonstrated
that the epipolar curves for scenes acquired by linear array push-broom
sensors are not straight (Gupta and Hartley, 1997; Kim, 2000). For
example, Kim (2000) used the model developed by Orun (1994) to
prove that the epipolar curves in SPOT scenes looks like hyperbolas.
Orun and Natarajan’s model assumes that the rotational roll and pitch
parameters are constant during the flight, while the yaw can be mod-
eled by quadratic time-dependent polynomials. Morgan et al. (2004)
demonstrated that the epipolar curves would not be straight even with
uniform motion.

For a SAR sensor, the imaging geometry is completely different from
that of optical sensors, as data are collected in a side-looking manner
based on the range-Doppler geometry (Curlander, 1982). However, the
possibility of establishing the epipolarity constraint in stereo SAR image
pairs has been investigated by Gutjahr et al. (2014) and Li and Zhang
(2013) for radargrammetric 3D reconstruction. Gutjahr et al. experi-
mentally showed that epipolar curves in SAR image pairs are also not
perfectly straight, but can be approximately assumed to be straight for
radargrammetric 3D reconstruction tasks through dense matching
(Gutjahr et al., 2014).

In this research, we investigate the epipolarity constraint mathe-
matically and experimentally for the unconventional multi-sensor si-
tuation of SAR-optical image pairs. In general, epipolar curves in image
pairs captured by frame-type cameras (as shown in Fig. 3) can be de-
scribed as (Hartley and Zisserman, 2004)
L, =Fp (7
where I, refers to the epipolar curve in the right-hand image associated
with the image point p’ on the left-hand image. F is the fundamental
matrix, which includes interior and exterior orientation parameters for
projecting coordinates between the two images. Similarly, an epipolar
curve in the left-hand image can be written as [; = Fp”. For push-broom
satellite image pairs, the epipolarity constraint can be verified in a si-
milar way, but linear arrays are substituted for a frame image.

392

Furthermore, the fundamental matrix for push-broom sensors is more
complex than that for frame-type sensors. In the following, inspired by
the mathematical proof of the epipolarity constraint for stereo optical
imagery given in Morgan et al. (2004) and using the epipolar curve
equation presented in (7), a rigorous epipolar model for SAR-optical
image pairs acquired by space-borne platforms will be constructed. For
this task, the optical image is considered as the left-hand image and the
SAR image is the right-hand image. Fig. 4 shows the configuration of
the SAR-optical stereo case. The points o and s mark the positions of the
optical linear array push-broom sensor and the SAR sensor, respec-
tively. Using a collinearity condition, a rigorous model for re-
constructing the imaging geometry of linear array push-broom sensors
can be expressed as (Kratky, 1989)

x=0 X - Xg(t)
N = Rau@prn| Y = Y0 |,
f Z —Z°(t) (8)

where (x;, y;) are the coordinates of point p in the linear array co-
ordinate system, f is the focal length, (X°(t), Y°(t), Z°(t)) represents the
satellite position at time t in the reference coordinate system, (X, Y, Z)
are the ground coordinates of the target point T, 1 is the scale factor,
and R, ¢()x() is the 3D rotational matrix computed from rotations
w(t), ¢(t), x(t) along the three dimensions at time t. Note that the
aforementioned rotational and translational components are estimated
by time-dependent polynomials.

A rigorous model based on the range-Doppler geometry (Curlander
and McDonough, 1991) (displayed in Fig. 4 as well) can also be applied
to the SAR imagery. In this model, the slant-range equation is first used
to describe the range sphere as (Curlander, 1982):

R =IRcr — Rgll )]

where R is the slant-range and Rcr, Res are the target point and SAR
sensor position vectors in the reference coordinate system. C refers to
the center of the reference coordinate system.

For a given pixel . in the slant-range SAR scene, Eq. (9) can be
reformulated as

yr yr
R=ct=c(ty+ =—=—)=cty+c—=Ry+ Ty,
(to Zf) 0 o 0 Y

r r

(10)

where R is the slant-range of the target point, c is the velocity of light,
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X

Fig. 4. Imaging geometry for configuration of SAR-optical imagery.

to, t are the one-way signal transmission times for the first range pixel
and range pixel coordinate y,, respectively, and f, is the range sampling
rate. R, gives the slant-range for the first range pixel and T = 5

The second equation describes the geometry of the Doppler cone:

2
—V-(Rer — Res),

o R

aan

where f;, is the Doppler frequency, A, is the SAR signal wavelength, V is
the velocity vector and - denotes the inner product operator.

For the epipolarity constraint, we assume that the target point T is
imaged at time 7 by the push-broom sensor. If we fix the time variable ¢
with 7 and consider the corresponding image coordinate in the linear
array coordinate system as (0, y;, f), we can use Eq. (8) to back-project
from the linear array coordinate system to the terrestrial reference
system as follows:

X-X°
Y—-Y°
zZ—-2z°

where M 4 = R£¢K. For imaging time ¢, all time-dependent parameters
are estimated under the constraint ¢ = 7. Thus, for this specific instance,
the variable index t is eliminated from Eq. (8). By expanding Eq. (12)
and removing the scale factor effect, we have:

0
= kle»{ M
12)

m; 0+ m + m m +m
X—X°0=(Z - 29 11 12)) i3S —z-2 12 ) 13 f
my 0 + may y) + mas f may Y + mas f
a3
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My 0 + My y, + mys f
mz1 0 + may y; + mas f

my Y + My f
my Y+ mas f
a4

Y-Y°=(Z-2° =(Z -2

where m;; are elements of matrix M ..

If the velocity vector of the SAR sensor is computed in the zero-
Doppler frequency transition, we can reformulate Eq. (11) as:
V(O =X*®) + V(O =Y (1) + V,()(Z - Z° (1)) =0 (15)

where (Vi(t), V,(t), V;(t)) are the components of velocity vector V.
Hence:

V(DX = Vi(OX* (D) + V()Y = V()Y (0) + V(D) Z = V(D Z° (1) = 0

(16)
From Egs. (13) and (14), we can derive.
x _ | M2 +msf 7= xo _ M2 + mis f 70
mz Y + mas f ms Yy + mas f aa7z)
Yy — (mzz}’z + mzsf)z —yo_ (m22y1 + mzsf)za
mz Y + mas f may Y + mas f (18)

Multiplying both sides of the Egs. (17) and (18) by — Vi (¢) and — V,(¢),
respectively, and then combining them with Eq. (16), Z can be calcu-
lated as follows:
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_ may + my ) [V:OX (1) = X0 + OX* (@) - Y°) + (02 0)]
T (i y + mus ) Vi(t) + (myz yy + mas ) Vi () + (map yy + ma ) Ve ()
+ [(miy; + mys f) Vi () + (M2 yy + ma3 f) V, ()] 2°
(M y; + myz ) Vi (£) + (M y; + myz )V, (8) + (maz yy + ma3 f) Vo (0)
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Changing the position of target point T in the Z direction is
equivalent to changing the corresponding image coordinates on the
epipolar curve. Consequently, the determination of image coordinates
in the SAR scene can be realized by tracking the sensor positions in the
respective instances. In fact, in spite of fixing the position of the target
point for the optical sensor at time 7, the location components
(X5(t), YS(t), Z°(t)) and the velocity components of the SAR sensor
(Ve (1), V,,(t), V,(t)) are time-dependent and can be estimated for each
instant using time-dependent polynomials. For the sake of simplicity,
the SAR sensor trajectory can be approximated by a linear motion
model. Thus, the velocity components (Vi (t), V;(t), V;(t)) will remain
constant with time at (X*(¢), Y*(¢), Z°(¢)) i.e., the acceleration is 0 and
the location components (X*(t), Y(t), Z5(t)) can be calculated using
linear time-dependent functions:

X(ta) =Xo + Vit
Yo(ta) = Yg + Vy tq

Z5(ta) = Z5 + Vi g (20)

where (X5, Y3, Z3) is the position of the SAR sensor at initial time t,.
The time ¢, is the azimuthal time, which can be expressed according to
the line coordinate x, in the SAR scene as

X,
fy = —~

= =kx,
PRF

(21D

where PRF is the pulse repetition frequency in Hz.
Substituting the parameters expressed in Egs. (20) and (21) into
(19), we obtain:
_ (M y; + mss ) Vi = X0) + V(Y5 — Y°) + V.25
T Moy + m ) Vit (mny + mya )V, + (myy + ms f)V,
[(mypy, + mis ) Vi + (mn yy + mas f) V,12°
(mpy, + ms ) Ve + (muy, + mys f)V, + (may y, + maz f) V,

+ k x,
i+ Vi+ V2
(M y, + miz f) Ve + (M yp + mua )V, + (mpy + ms f) V;
(22)
Eq. (22) can be simplified to:
Z=cy+c1x (23)
and substituting (23) into (17) and (18) gives:
X =X0 - (—m”y’ * me)Z" + (—m“ % me)(co +01%,)
mz Y+ mas f my Y+ mas f
- xo my y, + my f 704 mypy + ms f c
mz Yy + maz f my Y+ mas f
m; +m
+ 12 ) 13 f o x
ms y; + mas f 24
+ +
y=7yo_ My Y + My f 70 4+ My + my f (co+ €1 %)
my Y+ mas f mz Y+ mas f
—yo_ (mzz)ﬁ + mzsf)zo + (mzzy, + mzsf) ¢
my Y+ mas f mz Y+ mas f
m; + m
+( 22 ) Z3f)clx,
ms Y, + maz f (25)
Egs. (24) and (25) can be written in the form:
X=ay+ax (26)
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Y=>by+ b x, 27)

The slant-range represented by Eq. (10) can be reformulated as:

E=-XP+T-Y)P+(Z-2)=Ro+Ty) (28)
Substituting (26), (27), (23) and (20) into (28), we have:

(ap + a1 xr — X5 — Vi k x.)? + (bo + by x, — Y5 — V}, k x,)?
+(co+ X, —Z§ — Vo kx> =(Ro + Ty)? (29)

For simplicity, setting Ao =ap— X, A =a — Vi k,
By =by — Yy, Bi=by =V, k, Co = ¢y — Zj, C; = ¢; — V; k gives:
(Ao + Ay X)* + (Bo + B1 X)* + (Co + C1 x,)? = (Rg + T'y,)? (30)
which can be expanded to yield:

(A2 + B2 + C3) + 2(Ag A, + By By + Co C)) x, + (A% + B + CP) x?

=R + Ty (31)
If A +B}+Ci{=F , 2(A¢A +ByB +CC)=F, and

Af + B + Cf = F,, this can be rewritten as:
Iy =Bx2+Fx +F —R (32)

Eq. (32) is a general rigorous model representing the epipolarity
constraint for SAR-optical image pairs based on their imaging para-
meters contained in F, Fj, F>, I and R,. This shows that an epipolarity-
like constraint can be established for SAR-optical image pairs. However,
the non-linear relation between y, and x, in Eq. (32) shows that SAR-
optical epipolar curves are not straight, even under the assumption of
linear motion for the SAR system. In Section 3.3, this epipolarity con-
straint will be experimentally investigated for an RPC-based imaging
model.

2.3. SAR-optical multi-sensor block adjustment

As illustrated in Fig. 1, the main step before implementing dense
image matching is to align the optical image to the SAR image. This
process is performed using a multi-sensor block adjustment which is
based on RPCs instead of rigorous sensor models as proposed in
Grodecki and Dial (2003). The block adjustment process improves the
relative orientation between both images fixed to the more accurate
SAR image orientation parameters. Through the block adjustment, the
bias components induced by attitude, ephemeris, and drift errors in the
optical image are compensated (d’Angelo and Reinartz, 2012).

The main bias compensation for the RPCs of the optical image in-
volves translating the locations of the epipolar curves to accurate po-
sitions using the SAR geopositioning accuracy. Generally, designing an
appropriate function for modeling the existing bias in the RPCs given by
the optical image depends on the sensor properties (Tong et al., 2010),
but for most sensors an affine model can be applied (Fraser and Hanley,
2005). Even for the current generation of VHR linear push-broom array
sensors such as WorldView-2, employing only the shift parameters will
be sufficient. The affine model for RPC bias compensation can be for-
mulated as

Ax =my+ my x, + myy),

Ay =ng+ mx, + mp Y, (33)

where x,, y, represent column and row of tie points in the optical
images and m; and n; (i = 0, 1, 2) are unknown affine parameters to be
estimated through the block adjustment procedure. Note that tie points
are the common points between the SAR and optical images, and can be
obtained by manual or automatic sparse matching between two images.
Since the automation of the tie point generation process is not the focus
of this study, we refer the reader to possible solutions described in Suri
and Reinartz (2010), Perko et al. (2011), Merkle et al. (2017).

The geographic coordinates of the tie points in the SAR image are
calculated by the inverse rational functions computed for the SAR
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Fig. 5. Display the location of SAR-optical image pairs of the Munich study area. The red and blue rectangles identify areas covered by the WorldView-2 and
TerraSAR-X images, respectively, and the black rectangle displays the study subset selected for stereogrammetrix 3D reconstruction over Munich. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

imagery as described in Section 2.1:

A= f1 0, vl H) (34)
and
¢ =g/ (xl, y,, H) (35)

where A and ¢ are the normalized longitude and latitude of tie point i
with normalized image coordinates x; and )/ (index s denotes the SAR
scene), and here, H is a constant, e.g., the mean height of the study area.
f; and g/ are inverse rational functions computed for the SAR sensor to
project the tie points from the SAR image to the reference system. The
output is a collection of GCPs that can be applied for the RPC rectifi-
cation of the optical imagery. The resulting GCPs are then projected by
the rational function associated with the optical images to give the
image coordinates of the GCPs:

¢y =f,A. ¢ H) (36)
and
rh =g, ¢, H) 37)

where cl, rl are the normalized image coordinates of tie point i com-
puted by the forward rational functions of the optical sensor, f, and g,.

From Egs. (33), (36), and (37), the primary equations for SAR-
optical block adjustment are formed as:

xt=cl, + Axt + vl (38)
and
Yy =Tout Y+ (39)

where, x/ and y(f denote the column and row of tie point i in the optical
scene, and ¢/, and r, are the un-normalized coordinates of the tie point
after projection and back-projection using the RPCs. The block
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adjustment equations can then be written as:

Fl=—xl+c, +Axi+vi=0, (40)
and
Fy=—=)l +r,+ Ay +v=0. (41)

Finally, through an iterative least-squares adjustment (Grodecki and
Dial, 2003), the unknown parameters m; and n; are estimated and the
affine model can be formed. This affine model is added to the rational
functions of the optical image to improve the geolocation accuracy to
that of the SAR image.

2.4. SGM for dense multi-sensor image matching

The core step in a stereogrammetric 3D reconstruction workflow is
the dense image matching algorithm to obtain the disparity map, which
can then be transformed into the desired 3D point cloud. Generally,
there are two different dense matching rationales that can be used ac-
cording to whether local or global optimization is more important
(Brown et al., 2003). For the case of global optimization, an energy
functional consisting of two terms is established to find the optimal
disparity map (Scharstein et al., 2001):

E(d) = Egata(d) + AEgnoorn (d) (42)

where Eyq,(d) is a fidelity term that makes the computed disparity map
consistent with the input image pairs, Egnoomn(d) considers the
smoothness condition for the disparity map, and 1 is a regularization
parameter that balances the fidelity and smoothness terms.

For a given image pair, the disparity map is calculated by mini-
mizing the energy functional in (42). The main advantage of global
dense matching over local matching methods is greater robustness
against noise (Brown et al., 2003), although most existing algorithms
for global dense image matching have a greater computational cost
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Fig. 6. Display the location of SAR-optical image pairs of the Berlin study area. The red and blue rectangles identify areas covered by the WorldView-2 and TerraSAR-
X images, respectively, and the black rectangle displays the study subset selected for stereogrammetrix 3D reconstruction over Berlin. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

Specifications of the TerraSAR-X and WorldView-2 images used for dense matching.

Area Sensor Acquisition Mode Off-Nadir Angle (°) Ground Pixel Spacing (m) Acquisition date

Munich TerraSAR-X Spotlight 22.99 0.85 x 0.45 03.2015
WorldView-2 Panchromatic 5.2 0.5 x 0.5 07.2010

Berlin TerraSAR-X Staring Spotlight 36.11 0.17 x 0.45 04.2016
WorldView-2 Panchromatic 29.1 0.5 x 0.5 05.2013

(Hirschmiiller, 2008).

For the experiments presented in this paper, we use the well-known
SGM method (Hirschmiiller, 2008), which offers acceptable computa-
tional cost and high efficiency, and performs very similarly to global
dense image matching.

2.4.1. Cost functions used in SGM

In this study, the ability of performing dense image matching for
SAR-optical image pairs using SGM is investigated. For this purpose,
two different cost functions, namely Mutual Information (MI) and
Census, as well as their weighted sum, are examined for the dense
matching of high-resolution SAR and optical imagery. Typically, the
similarity measures employed in the cost function are either signal-
based or feature-based metrics (Hassaballah et al., 2016). Classically,
signal-based similarity measures such as Normalized Cross Correlation
(NCC) and MI are preferable to feature-based similarity measures when
used in dense image matching algorithms because of faster calculation.

Among the signal-based matching measures, MI was recommended
for SGM as it is known to perform well for images with complicated
illumination relationship, such as SAR-optical image pairs (Suri and
Reinartz, 2010).

Another similarity measure used in the SGM cost function is Census,
which actually acts as a nonparametric transformation. The weighted
sum of MI and Census is beneficial for 3D reconstruction in urban areas,
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especially for reconstructing the footprints of buildings to produce
sharper and clearer images (Zhu et al., 2011). The weighted similarity
measure can be defined as

SM = a MI + (1 — a) Census, (43)

where a changes from O to 1 to weigh the effect of Census cost in re-
lation to ML

2.4.2. SGM settings for efficient SAR-optical dense matching

To increase the efficiency of the SGM performance, some important
settings for the dense matching of SAR-optical image pairs must be
considered. The basic principle of 3D reconstruction by dense matching
is to use the epipolarity constraint to limit the search space. Usually,
before dense matching, normal images are created by resampling the
original images according to epipolar geometry (Morgan et al., 2004;
Oh et al., 2010). In this study, we use the RPC model to realize the SAR-
optical epipolar geometry implicitly without the need to generate
normal images. This is done by implementing projections and back-
projections from the reference image to the ground and back to the
corresponding image, respectively, for a specified height range using
rational functions. Then, the search for computing disparities can be
performed along the thus-created epipolar curves.

In addition, the minimum and maximum disparity values should be
selected to restrict the length of the search space along the epipolar
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Fig. 8. Display of SAR-optical sub-scenes extracted from Berlin study areas (the left-hand image is from WorldView-2, right-hand image is from TerraSAR-X).

curves. In general, there is more flexibility regarding the selection of
this disparity interval for optical image pairs than for SAR-optical image
pairs, and using unsuitable values will result in more outliers. The
minimum and maximum disparity values can be determined using ex-
ternal data such as the SRTM digital elevation model, which is available
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for most land surfaces around the world (USGS, 2000). For sake of
exploiting the simplicity offered by comparably flat study scenes, we
just add and subtract 20-m height differences to the mean terrain
heights of the study scenes to obtain the disparity thresholds.

The next setting is to switch off the minimum region size option in the
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Table 2
Accuracy (standard deviation: STD) of RPCs fitted on SAR sensor model (units:
m).

Area Virtual GCPs Check points

Row Column Row Column
Munich 0.00026 0.00114 0.00025 0.00031
Berlin 0.00024 0.00027 0.00026 0.00118

SGM algorithm, which is usually used to decrease the noise level in the
stereogrammetric 3D reconstruction of optical image pairs by elim-
inating isolated patches from the disparity map based on their small
size. Experimental results show that, for SAR-optical image pairs, the
complex illumination relationship between the images and the different
imaging effects (especially for urban areas) make the minimum region
size criterion useless, as connectivity cannot be ensured in the disparity
map.

ISPRS Journal of Photogrammetry and Remote Sensing 146 (2018) 389-408

Similar to other dense matching cases, we use the LR (Left-Right)
check to investigate binocular half-occlusions (Egnal and Wildes,
2002). This strategy changes the reference images from left to right, and
consequently produces two disparity maps that can be checked against
each other. To reach sub-pixel accuracy, the disparity in each point is
estimated by a quadratic interpolation of neighboring disparities.

In this study, SGM is implemented at four hierarchy levels and the
aggregated cost is calculated along 16 directions around each point.

3. Experiments and results
3.1. Study areas and datasets

We selected two study areas, one in Berlin and one in Munich (both
located in Germany), to investigate the potential for 3D reconstruction
from high-resolution SAR-optical image pairs over urban areas. The
locations of TerraSAR-X and WorldView-2 images are displayed in
Figs. 5 and 6. The properties of the image pairs for each study area are

(¢) WorldView-2: Munich

Fig. 9. Epipolar curves for the WorldView-2 image (of Munich) given by changing the heights of point p (located at the corner of the Munich central train station in
the TerraSAR-X scene) for all possible height values in the image scene. The epipolar curves look like straight, but are not actually straight.
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(c) WorldView-2: Berlin

Fig. 10. Epipolar curves for the WorldView-2 image (of Berlin) given by changing the heights of point p (a distinct corner of a building in the Berlin TerraSAR-X
scene) for all possible height values in the image scene. The epipolar curves look like straight, but are not actually straight.

presented in Table 1. In order to enhance the general image similarity
and facilitate the matching process, all images were resampled to
1m x 1 m pixel spacing and the SAR images were filtered with a non-
local speckle filter. After implementing bundle adjustment for both
datasets, two sub-scenes (with a size of 1000 x 1500 pixels each) from
overlapped parts of the study areas were cropped. These sub-scenes are
displayed in Figs. 7 and 8.

3.2. Validation of RPCs to model SAR sensor geometry

As described in Section 2.1, RPCs can be used as a substitute for the
rigorous range-Doppler model, similar to the standard RPCs delivered
with optical imagery. This step is performed to simplify the multi-
sensor block adjustment and epipolarity constraint construction. The
accuracy of the RPCs can be estimated using independent virtual
checkpoints that are produced in a similar way to VGCPs using the
range-Doppler model. The word independent implies that the virtual
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checkpoints are never used in the RPC fitting, i.e., they are located in
different positions respective to the VGCPs. The accuracy of the fitted
RPCs for the TerraSAR-X data in each study area is listed in Table 2.
Analysis was performed based on the residuals of the rows and columns,
given by the differences rowgpc — rowpr and colgpc — colpg, i.e., the
differences between image coordinates computed by RPCs and range-
Doppler. The analysis results confirm that the RPCs can model the
range-Doppler geometry for TerraSAR-X data to within a millimeter,
and can thus well be used in the 3D reconstruction process.

3.3. Validity of the epipolarity constraint

A general model that proves the epipolarity constraint for SAR-op-
tical image pairs was described in Section 2.2. It was also concluded
that epipolar curves are usually not straight. Experimentally, the epi-
polarity constraint for SAR-optical image pairs can also be modeled
based on RPCs. In this paper, we evaluate the epipolarity constraint for
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Fig. 11. Linear and quadratic polynomials fitted on the epipolar curves in the WorldView-2 images.
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Fig. 12. Corresponding epipolar curves in the Munich TerraSAR-X image (left) derived from two points, ¢, and g, on the epipolar curve of the Munich WorldView-2

image (right).
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Fig. 13. Difference of two corresponding epipolar curves over the column direction.

TerraSAR-X and WorldView-2 image pairs acquired over the two study

areas.

3.3.1. Existence of epipolar curves

We analyzed the validity of the derived SAR-optical epipolarity
constraint for an exemplary point located at the corner of the Munich
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The maximum difference between the two epipolar curves is less than one pixel.
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central train station building (p). This point was projected to the terrain
space by changing the heights in specific steps, e.g., 10 m, starting from
the lowest possible height and proceeding to the highest possible height
in the scene (for this experiment we used the interval [0 m, 1200 m]).
The output will be an ensemble of points with different heights, such as
depicted in Fig. 9(c). All these points were then back-projected to the
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Fig. 15. Residuals of tie points after full multi-sensor block adjustment in the TerraSAR-X image space.

Table 3
Block adjustment results (units: m).
Area Sensor Bias Coefficients ~STD MAD Min Max No. of
Tie
Points
Munich WorldView-2 ~ —2.47 —0.53 050 0.14 0.07 1.46 8
TerraSAR-X 0 0 0.50 0.14 0.07 1.46
Berlin WorldView-2  —0.73 0.28 0.51 0.13 0.19 1.59 6
TerraSAR-X 0 0 0.42 0.11 0.16 1.30

WorldView-2 image space using RPCs. The corresponding epipolar
curve for all possible heights in the study area is constructed by con-
necting the image points obtained in this way, as shown in Fig. 9(c).
Although the epipolar curve appears to be straight, more analysis is
required to determine whether this is the case. By expanding the image,
it can be seen in Fig. 9(b) that the epipolar curve nearly passes through
the conjugate point of p in the WorldView-2 image. Similarly, another
experiment was carried out using the Berlin dataset. The epipolar curve
was constructed for an exemplary point located on the corner of a

building and for all possible heights in the scene. Fig. 10(d) displays the
position of the selected point on the SAR image as well as the corre-
sponding epipolar curve in the WorldView-2 imagery (Figs. 10(e) and
).

3.3.2. Straightness of epipolar curves

To clarify the straightness of the epipolar curve constructed for
point p, linear and quadratic polynomials were fitted to the image
points of the epipolar curve. Figs. 11(a) and (b) represent the least-
squares residuals with respect to the point heights for the epipolar
curves created in both study subsets. The residuals of the linear fit for
the epipolar curve established for the Munich WorldView-2 image
range from —0.25 to 0.1 pixels (i.e. meters), whereas the residuals of
the quadratic fit are close to zero.

Similar results were given by fitting linear and quadratic poly-
nomials to the image points of the epipolar curve established in the
WorldView-2 image of Berlin. Fig. 11(b) clearly shows that the re-
siduals of the epipolar points fitted to the quadratic model are zero,
whereas those of the linear fit vary between —0.15m and 0.25 m. Both
analyses illustrate that the constructed epipolar curves are not straight.
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(b) Berlin

Fig. 16. Displacement of epipolar curves after block adjustment by RPCs. Left images show the epipolar curve positions before and after the bundle adjustment and
right images display the selected patch (identified by dashed yellow rectangles) in an enlarged image. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Table 4

Residuals (unit: m) of the control points for block adjustment validation.
Original indicates the residuals before the adjustment, modified those after ad-
justment.

Area RPCs Mean Max RMSE No. of Points

Munich Original 1.301 2.359 1.364 31
Modified 0.666 2.142 0.923

Berlin Original 0.775 1.736 0.866 32
Modified 0.600 1.600 0.752

However, their curvatures do not exceed more than one pixel over the
whole possible range of heights in these scenes.

3.3.3. Conjugacy of epipolar curves

To investigate the conjugacy of the SAR-optical epipolar curves, two
distinct points (g,, g,) were selected from the epipolar curve in the
WorldView-2 image. From each of these points, the corresponding
epipolar curves were constructed in the TerraSAR-X image for all pos-
sible heights as in the experiments before. Fig. 12 displays the corre-
sponding epipolar curves in TerraSAR-X given by g, and g, located in
the WorldView-2 image. The epipolar curve appears to pass through
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point p located in the SAR image. Further analysis clarifies that the
differences in the column direction between the two epipolar curves
passing through point p are less than one pixel, allowing the matching
of the two epipolar curves (Fig. 13(a)). In addition, Fig. 14(a) shows
that the gradients of the two epipolar curves change at each point, as
illustrated by the column index, whereas the maximum difference is
less than 0.001, i.e., 0.1%. This indicates that the epipolar curves can be
assumed to be parallel. The gradient changes at each point also confirm
that the epipolar curves in TerraSAR-X are not perfectly straight.

In a similar manner, the conjugacy of the epipolar curves was
evaluated for the Berlin dataset. Fig. 13(b) shows that the difference
between the epipolar curves is less than one pixel, so these lines can be
paired. Similarly, the maximum difference between the slopes of the
epipolar curves is less than 0.2%, which confirms the possibility of
epipolar curve conjugacy (Fig. 14(b)).

From the above investigations and discussions, it is clear that the
epipolarity constraint can be established for SAR-optical image pairs
such as those from TerraSAR-X and WorldView-2 data. As expected, the
epipolar curves are not perfectly straight and there are tiny differences
between the epipolar curve in one image produced from points on the
epipolar curve in the other image. However, analyses show that the
epipolar curves can be approximated as straight lines without
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(a) Munich (b) Berlin
Fig. 17. Point clouds reconstructed from Munich and Berlin sub-scenes.
Table 5
Accuracy assessment of reconstructed point clouds with respect to LiDAR reference.
Area Mean (m) STD (m) RMSE (m)
X Y Z X Y Z X Y z
Munich —0.003 0.025 0.080 1.285 1.350 2.652 1.285 1.351 2.653
Berlin 0.000 —0.041 0.273 1.566 1.692 3.091 1.566 1.693 3.103
Munich: Before outlier filtering Munich: After outlier filtering
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Fig. 18. Euclidian distances between reconstructed points and reference planes for Munich.

sacrificing too much, and that they can be paired together well. This 3.4. Use of block adjustment
means that the epipolarity constraint can be used to ease the sub-

sequent stereogrammetric matching process. As discussed in Section 3.3 and mathematically proved in Section

2.2, the epipolarity constraint can be established for a SAR-optical
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Fig. 19. Euclidian distances between reconstructed points and reference planes for Berlin.

Table 6
Accuracy assessment of point clouds after SRTM-based outlier removal.
Area Point Cloud 25%-quantile 50%-quantile = 75%-quantile Mean (m)
Munich original 0.77 1.89 3.58 2.44
filtered 0.67 1.56 3.04 2.12
SRTM 0.73 1.64 3.25 2.21
Berlin original 0.89 2.01 3.67 2.75
filtered 0.79 1.76 3.22 2.35
SRTM 0.86 1.93 3.63 2.65

image pair. However, the positions of epipolar curves in the optical
image can be placed in a more accurate position by exploiting the high
geolocalization accuracy of the SAR image through a multi-sensor block
adjustment. The experiments described in Section 3.3 demonstrate that,
for the case of WorldView-2 imagery, the curvature of the epipolar
curves does not exceed one pixel, and using only two bias terms as shifts
in the column and row directions suffice to modify the position of the
epipolar curves.

Implementing block adjustment using RPCs requires some conjugate
points to be assigned as common tie points between the target
(WorldView-2) and the reference (TerraSAR-X) images. Theoretically,
just one tie point would be sufficient to estimate the bias in the least-
squares adjustment based on Eq. (33) (two unknowns and two equa-
tions), but using more redundancy and incorporating more tie points
allows for more accurate estimations of the bias parameter. For this
experiment, eight and six tie points were selected to match the
WorldView-2 images to the TerraSAR-X images in the Munich and
Berlin study areas, respectively. The block adjustment equations were
then established as described in Section 2.3. During the iterative least-
squares adjustment, tie points with residuals exceeding a threshold
were removed from the full adjustment process. Fig. 15(a) and (b) show
the residuals of the full multi-sensor block adjustment for each tie point.
The results demonstrate that the residuals of most points are less than
one pixel in both experiments, which indicates a successful im-
plementation of SAR-optical block adjustment. Table 3 presents the bias
of the row and column components resulting from the block adjustment
of WorldView-2 and TerraSAR-X image pairs for both study areas. As
the SAR image was selected as the reference to which the optical
imagery was aligned, the bias components for the reference SAR ima-
gery are zero. The quality of block adjustment has been evaluated by
calculating the positional errors of tie points under projection and re-
projection from the SAR image to terrain and from terrain to the optical
image, and vice versa. Statistical metrics such as the standard deviation
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(STD), median absolute deviation (MAD), and minimum (Min)/max-
imum (Max) errors were calculated. The results illustrate that the major
bias component is in the row direction in both study areas and that the
epipolar curves will mostly shift in this direction after block adjust-
ment. Fig. 16(a) and (b) display the locations of the epipolar curves
before and after adjustment. By enlarging the images, it is possible to
confirm that the displacement of the epipolar curves is minimal, yet
noticeable.

To verify the success of SAR-optical block adjustment, we require
highly accurate GCPs, which are not available for the study areas.
However, we evaluated the accuracy of block adjustment in sub-scenes
of the two study areas with the assistance of available LiDAR point
clouds. First, we manually found some matched points that had been
measured in the SAR and optical sub-scenes, similar to the tie point
selection step. Next, the measured points located in the optical imagery
were projected to the terrain using the corresponding reverse rational
polynomial functions (f; (c, r, k) and g, (c, r, h)). To ensure exact back-
projection, the height h of each point was extracted from the available
high-resolution LiDAR point clouds of the target sub-scenes. To over-
come the noise in the LiDAR data, we considered neighboring points
around the selected measured point, and the final height of the target
point was selected based on the mode of the heights in the considered
neighborhood. The resulting ground points ( fD’ (c, r, h), gu’ (¢, r, h), h)
were then back-projected to the SAR scene using the forward RPCs
fitted to the SAR imagery. Finally, comparing the image coordinates of
the measured points on the SAR imagery (from manual matching) with
their coordinates derived by projection from the optical to the SAR
imagery using RPCs and LiDAR data provides an evaluation of the SAR-
optical block adjustment performance. The residuals can be calculated
as:

de = f.(f,(c, r, h), g,(c, 1, h), h) — ¢

dr = gs(fo’(c, r, h), go’(c, r, h), h) —r" (44)

where (dc, dr) is the column and row difference between the measured
point (¢, r{") located on the SAR imagery and the corresponding co-
ordinates given by the projection from the optical to the SAR imagery
using RPCs.

Table 4 presents some statistical analysis on residuals calculated
according to Eq. (44) for two states: using the original WorldView-2
RPCs for the projections and using the WorldView-2 RPCs modified
with respect to the TerraSAR-X SAR imagery. The results demonstrate
the successful implementation of RPC-based multi-sensor block ad-
justment for SAR-optical image pairs. This means that the existing bias
in the RPCs of optical imagery such as WorldView-2 can be modified
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meter 1

Fig. 20. Position of points with subpixel accuracy (1 m) achieved by dense
matching over Munich city.

according to high-resolution SAR imagery such as TerraSAR-X to im-
prove the absolute geolocalization accuracy of the optical imagery, and
consequently the modification of epipolar curves in stereo cases.

3.5. Dense matching results

The output of dense matching by SGM is a disparity map that is
calculated in the frame of the reference sensor geometry. This disparity
map should be transferred from the reference sensor geometry to a
terrestrial reference coordinate system such as UTM. The difference of
SAR and optical observation geometries and the lack of jointly visible
scene parts means that stereogrammetric 3D reconstruction leads to
sparse rather than dense point clouds over urban areas. Fig. 17(a) and
(b) display the reconstructed point clouds from SAR-optical sub-scenes
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of Munich and Berlin.

The accuracy of these sparse point clouds was compared to that of
reference LiDAR point clouds with densities of 6 and 6.5 points per
square meter acquired by airborne sensors over Munich and Berlin,
respectively.

Different approaches can be used to assess the accuracy of point
clouds. The simplest way is to calculate the Euclidean distance to the
nearest-neighbor of each target point in the reference point cloud (Muja
and Lowe, 2009). This strategy, however, should only be used when
both point clouds are very dense. We therefore used another approach,
which is based on fitting a plane to the k (here is 6) nearest neighbors of
each target point in the reference point cloud (Mitra et al., 2004). The
perpendicular distance from the target point to this plane is then the
measured reconstruction error. To speed up the process of point cloud
evaluation, an octree data structure is used for the binary partitioning
of both reconstructed and reference point clouds (Schnabel and Klein,
2006). The measured distances between both point clouds are decom-
posed into three components that represent the accuracy of the re-
constructed points along the X, Y, and Z directions. Table 5 sum-
marizes the mean, STD, and Root Mean Square Error (RMSE) of the
distances along the different axes.

In addition, histograms of the Euclidean distances between re-
constructed points and k-nearest neighbors-based reference planes are
depicted in Figs. 18 and 19, while the corresponding metrics are sum-
marized in Table 6. In order to also provide an outlier-free accuracy
assessment, we additionally show results corresponding to point clouds
that were cleaned by removing points deviating from the SRTM model
by more than 5m.

Finally, Figs. 20 and 21 display high-accuracy points (i.e. those with
a Euclidean distance of less than 1 m to the reference) achieved by SGM
dense matching for TerraSAR-X- WorldView-2 image pairs in Munich
and Berlin, respectively.

4. Discussion
4.1. Feasibility of SAR-optical stereogrammetry workflow

The results described in the previous section demonstrate the po-
tential of the proposed SAR-optical stereogrammetry framework. Our
analyses show that all primary steps involved in SAR-optical stereo-
grammetry, such as RPC fitting, epipolar-curve generation, and multi-
sensor block adjustment, can be successfully implemented for VHR
SAR-optical image pairs. In addition to the mathematical proof of the
existence of an epipolarity constraint for arbitrary SAR-optical image
pairs in Section 2.2, the experimental results have illustrated the va-
lidity of establishing an epipolarity constraint by showing that SAR-
optical epipolar curves are approximately straight. Using RPCs for both
sensor types paves the way for the implementation of stereogrammetry.
As a result, estimating the RPCs for SAR imagery is a prerequisite for
SAR-optical stereogrammetry. The RPCs delivered with optical imagery
must be improved with respect to the SAR sensor geometry using RPC-
based multi-sensor block adjustment. The block adjustment aligns pairs
of SAR and optical images and improves the absolute geopositioning
accuracy of the optical imagery. This ensures that the epipolar curves
pass through the correct positions of conjugate points. Applying a dense
matching algorithm such as SGM then produces a disparity map.

4.2. Potential and limitations of SAR-optical stereogrammetry

As discussed in Section 3.5, the dense matching of TerraSAR-X/
WorldView-2 imagery produces a sparse point cloud over each of the
urban study areas. However, the resulting point clouds are affected by a
significant amount of noise because of the difficult radiometric and
geometric relationships between the SAR and the optical images.
Hence, the SGM algorithm struggles to find the exact conjugate points.
On the one hand, this is related to the similarity measures employed in



H. Bagheri et al.

ISPRS Journal of Photogrammetry and Remote Sensing 146 (2018) 389-408

meter 1

Fig. 21. Position of points with subpixel accuracy (1 m) achieved by dense matching over Berlin city.

this prototypical study. The influence of similarity measures on the
height accuracy of the Munich point cloud is shown in Fig. 22.

The RMSE of the estimated heights decreases when Census and MI
are combined and used as a weighted sum cost function, although the
number of outliers increases. Identifying the optimum weighting to
balance the percentage of outliers against the height accuracy is im-
practical, because the output disparity maps are rather sparse; a vi-
sualization would not be helpful for this task. In stereogrammetric 3D
reconstruction using optical image pairs, visualizing the disparity map
enables the weight value to be tuned so as to preserve the edges and
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sharpness of building footprints, whereas in the SAR-optical case, there
is no perfectly dense disparity map. Using Census alone produces points
with higher accuracy than the MI-only results, but a higher percentage
of outliers. In general, a similarity measure specifically designed for
SAR-optical matching is required.

On the other hand, the reconstruction suffers from the fact that the
SGM search strategy is designed for relatively simple isotropic geo-
metric distortions and was not adapted to the peculiarities of SAR-op-
tical matching yet. Therefore, the differences in the imaging geometries
of SAR and optical sensors in terms of their off-nadir and horizontal
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Fig. 22. Performance of MI, Census, and weighted sum of both measures as cost
functions in SGM.

viewing angles can further decrease the matching accuracy. For ex-
ample it is known from previous research that the optimal geometrical
condition for SAR-optical stereogrammetry would be an image pair
acquired with similar viewing geometries (Qiu et al., 2018). This,
however, would make the geometrically induced dissimilarities in the
images even larger and render the matching more complicated. If both
sensors were at the same position, and thus would share the same
viewing angle, the intersection geometry would be perfect (Qiu et al.,
2018). However, due to the different imaging geometries, elevated
objects would appear to collapse away from the sensor in the optical
image, while they would appear to collapse towards the sensor in the
SAR image. Thus, the choice of a good stereo geometry will always need
to be a trade-of between image similarity and favorable intersection
angle in the SAR-optical case.

Last, but not least, many points cannot be sensed by a nadir-looking
optical sensor but are well observed by a side-looking SAR sensor, such
as points located on building facades. As has been shown before, the
joint visibility between SAR and optical VHR images of urban scenes
can be as low as about 50% (Hughes et al., 2018). In the present study,
the situation was most complicated in the Berlin case, because of dif-
ferences in both the horizontal viewing directions and the off-nadir
angles. The horizontal viewing direction of the WorldView-2 sensor was
approximately north-south, whereas that of TerraSAR-X was east-west.
This affected the visibility of common points between the two images
during 3D reconstruction negatively. Consequently, most of the re-
constructed points are located on the flat areas or outlines of buildings
that are observed by both sensors (see Figs. 20 and 21).

Finally, some differences in the image pairs may be caused by the
interval between the acquisition times of the WorldView-2 and
TerraSAR-X data (5 and 3 years for Munich and Berlin, respectively).
This can cause the matching process to fail in problematic areas, thus
affecting the quality and density of the disparity maps.

In spite of the differences in sensor geometries, acquisition times,
and illumination conditions between the two SAR-optical image pairs,
the quantitative analysis demonstrated in Section 3.5 shows that 25% of
all points are reconstructed with clear sub-pixel accuracy, while the
median accuracy lies at about 1.5-2 m. The experiments also show that
the results can be further improved by filtering outliers from the re-
constructed point clouds. In this study, we employed the globally
available SRTM DEM as prior knowledge for outlier removal. As Table 6
shows, discarding points with a height difference to SRTM greater than
5m improves the results significantly.

Of course, this simple filtering strategy will probably also remove
some accurate points that just deviate a lot from the SRTM DEM (e.g.
newly built skyscrapers). In conclusion, a more sophisticated algorithm
should be developed for removing noise and outliers from derived point
clouds in the future. Nevertheless it can be confirmed that the SAR-
optical stereo results have the potential to provide both higher accuracy
and higher point density than the SRTM data, making SAR-optical
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stereogrammetry another possible means for 3D reconstruction in re-
mote sensing.

5. Conclusion

In this study, we investigated the possibility of stereogrammetric 3D
reconstruction from VHR SAR-optical image pairs by developing a full
3D reconstruction framework based on the classic photogrammetric
workflow. First, we analyzed all prerequisites for this task. The main
requirement for SAR-optical stereogrammetry is to establish an epipo-
larity constraint to reduce the search space of the matching process. We
mathematically proved that the epipolarity constraint can be estab-
lished for SAR-optical image pairs. Furthermore, experimental analysis
demonstrated that the epipolarity constraint can be employed for SAR-
optical image pairs such as those from TerraSAR-X/WorldView-2, and
showed that the epipolar curves are sufficiently straight. Because of the
limited accuracy of the RPCs delivered with optical data, the relative
orientation between both images can be improved with respect to the
more accurate SAR orientation parameters using multi-sensor block
adjustment. This shifts the epipolar curves toward their correct posi-
tions. An SGM-based dense matching algorithm was implemented using
the MI and Census similarity measures, as well as their weighted sum.
The outputs were sparse point clouds with a median accuracy of about
1.5 to 2m and the 25%-quantile of best points well in the sub-pixel
accuracy domain. Finally, SRTM data were used to remove outliers
from the point clouds. This improved the accuracy of the point clouds
further. Overall, this study has demonstrated that a 3D reconstruction
framework can be designed and implemented for SAR-optical image
pairs over urban areas. Future work will have to focus on the devel-
opment of similarity metrics specific to the multi-sensor matching
problem, and on an adaption of the semi-global search strategy that
accounts for the anisotropic geometric distortions between SAR and
optical images.
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Abstract: So-called prismatic 3D building models, following the level-of-detail (LOD) 1 of the
OGC City Geography Markup Language (CityGML) standard, are usually generated automatically
by combining building footprints with height values. Typically, high-resolution digital elevation
models (DEMs) or dense LiDAR point clouds are used to generate these building models. However,
high-resolution LiDAR data are usually not available with extensive coverage, whereas globally
available DEM data are often not detailed and accurate enough to provide sufficient input to the
modeling of individual buildings. Therefore, this paper investigates the possibility of generating
LOD1 building models from both volunteered geographic information (VGI) in the form of
OpenStreetMap data and remote sensing-derived geodata improved by multi-sensor and multi-modal
DEM fusion techniques or produced by synthetic aperture radar (SAR)-optical stereogrammetry.
The results of this study show several things: First, it can be seen that the height information
resulting from data fusion is of higher quality than the original data sources. Secondly, the study
confirms that simple, prismatic building models can be reconstructed by combining OpenStreetMap
building footprints and easily accessible, remote sensing-derived geodata, indicating the potential
of application on extensive areas. The building models were created under the assumption of flat
terrain at a constant height, which is valid in the selected study area.

Keywords: 3D building reconstruction; building model; OpenStreetMap (OSM); building foot prints;
multi-sensor fusion; digital elevation models (DEM); LOD1; SAR-optical stereogrammetry

1. Introduction

One particular interest in remote sensing is the 3D reconstruction of urban areas for diverse
applications such as 3D city modeling, urban, and crisis management, etc. Buildings belong to the
most important objects in urban scenes and are modeled for diverse applications such as simulation
of air pollution, estimating energy consumption, detecting urban heat islands, and many others [1].
There are different levels of building modeling which have been described under the standard of the
OGC City Geography Markup Language (CityGML). These are summarized in [2].

Figure 1 displays different levels-of-detail as defined in the CityGML standard. As shown in
this figure, the lowest level of detail (LOD) is 1 (LOD1), which describes building models as block
models with flat roof structure and provides the coarsest volumetric representation of buildings [3].
Thus, LOD1 models are frequently produced by extruding a building footprint to a height provided
by separate sources [4]. The next level is LOD2, which represents building shapes with more details.
Therefore, this type of building modeling demands high-resolution data in comparison to the first level.
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Comprehensive technical information about variants of the LOD of a 3D building model can be found
in [5]. In many cases, the building height information can be provided by versatile remote sensing
data sources such as airborne laser scanning [6], high-resolution optical stereo imagery [7], or DEMs
produced by synthetic aperture radar (SAR) interferometry [8]. Other sources for LOD modelling are
described in [9].

LODO FootPrint LOD1

Figure 1. Different levels of detail of building models according to OGC City Geography Markup
Language (CityGML) 2.0 [10].

A special interest lies in automatically generating building models for extensive areas at LOD1
level. While height information provided by airborne LiDAR data leads to highly accurate LOD1
representations of buildings [11,12], it is computationally expensive to produce models that cover
wide areas. In addition, expensive LiDAR data are often not available for extensive areas. On the
other hand, several investigations illustrate the possibility of using other remote sensing data types
for 3D building reconstruction for that purpose [13,14]. As an example, the possibility of LOD1 3D
building model generation from Cartosat-1 and Ikonos DEMs has been investigated in [15]. In another
study, Marconcini et al. proposed a method for building height estimation from TanDEM-X data [16].
Using open DEMs such as SRTM for 3D reconstruction has been evaluated in different studies [17-19].
They concluded that SRTM elevation data can be used for recognizing tall buildings. In a recent
investigation, Misra et al. compared different global height data sources such as SRTM, ASTER, AW3D,
as well as TanDEM-X for digital building height model generation [20].

The main objective of this paper is to investigate the possibility of LOD1-based 3D building
modeling from different remote sensing data sources which can be efficiently applied to wide areas.
Regarding that each remote sensing source provided by a sensor with specific properties, using
multi-sensor data fusion techniques can ultimately provide high quality geodata for 3D reconstruction
by instructively integrating the sensors’ properties and mitigating their drawbacks [21]. For that
purpose, height information is extracted from different sources: medium-resolution DEMs derived
from optical imagery such as the Cartosat-1 DEM, and interferometric DEMs generated from bistatic
TanDEM-X acquisitions. Due to the limitations and specific properties of those DEMs, state-of-the art
DEM fusion techniques are used for improving the height accuracy. More details of those techniques
and the logic behind the fusion are explained in the respective sections.

In another experiment, the potential of using heights from SAR-optical stereogrametry for 3D
building reconstruction is investigated. Regarding the growing archive of very high-resolution SAR
and optical imagery, developing a framework that takes advantages of both SAR and optical imagery
can provide a great opportunity to produce 3D spatial information over urban areas. Besides the
globally available DEMs derived from optical and SAR remote sensing, this information can also
potentially be employed for producing 3D building models at LOD1 level.

Besides height data, building outlines are needed for LOD1 modelling, since the aforementioned
height sources are not detailed enough to reliably determine accurate building outlines. We therefore
use OpenStreetMap as a form of volunteered geographic information (VGI) that is available with
global coverage as well. In this paper, we evaluate the potential of 3D building reconstruction from
both building footprints provided by OSM and heights derived by multi-sensor remote sensing data
fusion. Since the study area in this research is flat, we consider a constant height for ground and finally
generate a building model with this assumption.



ISPRS Int. ]. Geo-Inf. 2019, 8, 193 30f17

In Section 2, different fusion techniques used for height derivation over urban areas are
summarized. It includes three fusion experiments: TanDEM-X and Cartosat-1 DEM fusion (Section 2.1),
multiple TanDEM-X raw DEM fusion (Section 2.2), and SAR-optical stereogrammetry for 3D urban
reconstruction (Section 2.3). After that, a simple procedure for LOD1 building model reconstruction
from the multi-sensor-fusion-derived heights and OSM building footprints is presented in Section 3.
The properties of the applied data and the study area are described in Section 4, including a summary
of the benefits of multi-sensor DEM fusion and SAR-optical stereogrammetry. The outputs and results
of LOD1 building model reconstruction using both VGI and different remote-sensing-derived geodata
are provided in Section 5. Finally, the potential of LOD1 3D reconstruction using the mentioned data
sources, as well as challenges and open issues, are discussed in Section 6.

2. Multi-Sensor Data fusion for Height Generation over Urban Scenes

In this paper, elevation data are derived from different sensor types for 3D building reconstruction.
As mentioned earlier, those data sources can be categorized as digital elevation models derived
from optical or SAR imagery and also as point clouds reconstructed from SAR-optical image pairs
through stereogrammetry. The main idea is to apply data fusion techniques to finally produce more
accurate height information. In the following sections, more details of applied fusion techniques will
be presented.

2.1. TanDEM-X and Cartosat-1 DEM Fusion in Urban Areas

Cartosat-1 is an Indian satellite equipped with optical sensors for stereo imagery acquisitions.
The Cartosat-1 sensor with resolution of 2.5 m and partially large swath width of 30 km makes
the acquired stereo images perfect for producing high-resolution DEMs with a wide coverage [22].
However, the main defect of this sensor is the poor absolute localization accuracy [23]. In parallel,
the TanDEM-X mission is a recent endeavour for producing a global DEM through an interferometric
SAR processing chain. Evaluation with respect to LIDAR reference data illustrates that the TanDEM-X
DEM has a better absolute accuracy than the Cartosat-1 DEM, while its precision drops out in urban
areas because of intrinsic properties of INSAR-based height construction [24]. Figure 2b shows the
performance of both DEMs in a subset selected for height precision evaluation over an urban scene.
As displayed in Figure 2b, the overall precision of the Cartosat-1 DEM is better than the overall
precision of the TanDEM-X DEM.

Regarding the drawbacks of both DEMs, data fusion is used to finally reach a high quality DEM.
In more detail, first the absolute accuracy of Cartosat-1 is increased to the level of absolute accuracy of
the TanDEM-X DEM by vertical alignment. Next, both DEMs can be integrated using a sophisticated
approach presented in our previous research [25]. The fusion method is developed for multi-sensor
DEM fusion with the support of neural-network-predicted fusion weights. For this task, appropriate
spatial features are extracted from both target DEMs as well as respective height residuals from some
training subsets. The height residuals are calculated respective to available LiDAR over training data.
After that, a refinement process is carried out to explore numerical feature-error relations between each
type of extracted features and height residuals. Then, the refined feature-error relations are input into
fully-connected neural networks to predict a weight map for each DEM. The predicted weight maps
can be applied for weighted averaging-based fusion of the input Cartosat-1 and TanDEM-X DEMs.
Figure 3 displays the designed pipeline for ANN-based fusion of TanDEM-X and Cartosat-1 DEMs.
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(b)

Figure 2. (a) Study subset selected over Munich, (b) Precision of the Cartosat-1 (left) and TanDEM-X
(right) digital elevation models (DEMs) over an exemplary urban subset respective to high-resolution
LiDAR data. Both DEMs were assessed with respect to a co-aligned LiDAR DEM.

Cartosat-1 DEM TanDEM-X DEM

e
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Figure 3. Different DEM fusion modules for improving the TanDEM-X quality. Left: The proposed
pipeline for TanDEM-X and Cartosat-1 DEM fusion, Right: Process of multi-modal TanDEM-X
DEM fusion.
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2.2. TanDEM-X Raw DEM Fusion over Urban Areas

As mentioned earlier, another possibility to gather reliable height information is to fuse
multi-modal TanDEM-X raw DEMs. The standard TanDEM-X DEM is the output of a processing chain
consisting of interferometry, phase unwrapping (PU), data calibration, DEM block adjustment, and raw
DEM mosaicking [26]. In the mosaicking step, raw DEMs are fused to reach the target accuracy. The
fusion method is weighted averaging using weights derived from a height error map produced during
the interferometry process. Evaluation demonstrates that weighted averaging does not perform well
in urban areas. We proposed to use a more sophisticated fusion approach for fusing TanDEM-X raw
DEMs in [27]. For this, we used variational models like TV-L; and Huber models and finally produced
a high quality DEM over urban areas in comparison to weighted averaging. In this paper, we also
apply TV-L; and Huber models for fusion of TanDEM-X raw DEMs over the study urban subset to
improve height accuracy for 3D building reconstruction. A comparison between the multi-modal
TanDEM-X DEM fusion process and the multi-sensor ANN-based fusion is depicted in Figure 3.

2.3. Heights from SAR-Optical Stereogrammetry

In the literature, a few papers can be found that deal with the combination of SAR and optical
imagery for the 3D reconstruction of urban objects, e.g., [28]. In this research, we focus on the
potential of 3D building reconstruction from very high-resolution SAR-optical image pairs such as
TerraSAR-X/WorldView-2 through a dense matching process as a form of cooperative data fusion [21].

A full framework for stereogrammetric 3D reconstruction from SAR-optical image pairs was
presented in our previous work [29] is displayed in Figure 4. It consists of several steps: generating
rational polynomial coefficients (RPCs) for each image to replace the different physical imaging models
by a homogenized mathematical model; RPC-based multi-sensor block adjustment to enhance the
relative orientation between both images; establishing a multi-sensor epipolarity constraint to reduce
the matching search space from 2D to 1D.

SAR Tmage }—J.\/Ietada\a
Image
Range-Doppler
— - Equation
Finding Conjugate
Tie points
Block Adjustment
RPC Bias of
Optical Images

Figure 4. Framework for 3D reconstruction from synthetic aperture radar (SAR)-optical image
pairs [29].

RPCs

Forward 3D Point
Tpipolar Curve Intersection Cloud
Generation

Virtual GCPs

The core challenge in SAR-optical stereogrammetry is to find disparity maps between two images
by using a dense matching algorithm. For the presented research, we have investigated the application
of classical SGM for that purpose. SGM computes the optimum disparity maps by minimizing an
energy functional which is constructed by a data and a fidelity term [30]. While the data term is
defined by a similarity measure, the fidelity term employs two penalties to smooth the final disparity
map. Because of aggregating cost values computed by a cost function in the heart of SGM along with
a regularizing smoothness term, SGM is more robust and lighter than other typical dense matching
methods [30], which can be ptentially applied for SAR-optical stereogrammetry. According to [31],
pixel-wise Mutual information (MI), and Census are more appropriate for difficult illumination
relationships than, e.g., normalized cross-correlation (NCC).

3. LOD1 Building Model Generation

The heights output by the different fusion approaches are then used for 3D building modeling
and finally prismatic model generation. Due to the medium resolution of the input DEMs, only LOD1
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models can be reconstructed from those heights; also the resolutions of the DEMs are not sufficient for
detecting building outlines. As shown in Section 4.3, the point cloud resulting from SAR-optical
stereogrammetry is partially sparse and consequently building outlines can not be recognized.
One popular option is to exploit the building footprints layer provided by OpenStreetMap (OSM).
Then, the heights of building outlines can be derived from either those fused DEMs or the point cloud
achieved by SAR-optical stereogrammetry. Technically, this can be realized in two steps. The first
step is to classify heights to those located inside and outside building outlines. Then, only points that
are within building outlines are kept while the remaining points are discarded. After that, for each
remaining height, the ID of the corresponding building (in which the height is located) is assigned.
It facilitates the process of joining building footprints layer to heights.

There are several elevation references that should be considered for estimating the building height
within its outline [32]. These references are displayed in Figure 5. Three-dimensional reconstruction
based on those levels can be realized by using high-resolution data such as LiDAR point clouds along
with precise cadastral maps. Specifying those levels in medium resolution remote-sensing-derived
heights, however, is not possible. Therefore, for LOD1 3D building reconstruction using medium
resolution data such as those applied in this paper, we will only use median or mean of heights inside
a building outline. The main advantage of median is its robustness against outliers in comparison to
the mean measure. Thus, we propose that LOD1 models can be produced by modeling each building
as a coarse volumetric representation using its outline and the median-based allocated height.

---highestPoint highestPoint

-topOfConstruction topOfConstruction

... generalRoof . generalRoof

- highestEave generalEave
lowestEave generalRoofEdge
-highestRoofEdge
lowestRoofEdge

lowestFloorAboveGround
highestGroundPoint ‘
general ground

entrancePoint
generalGround

lowestGroundPoint - bottomOfConstruction

Figure 5. Examples of elevation references for different kinds of building [32].

Furthermore, for LOD1 reconstruction, we will consider two scenarios. The first one is to model
buildings based on the original footprint layers provided by OSM. The second is to update these
building outlines in a pre-processing step. This updating has proved to be helpful, because of OSM
building footprints often consist of several intra-blocks with different heights. As displayed in Figure 1,
a building consisting of two blocks, each with different height level, may appear as an integrated
building outline in OSM and thus, only one height value could be assigned for it in a simple LOD1
reconstruction process, while the outline should actually be split into two separate outlines. The result
will be that the heights that actually lie in two separate clusters will erroneously be substituted by
their median value located somewhere in the middle. While this ultimately leads to a significant
height bias, modifying the outlines appropriately optimizes the final reconstruction. In this paper,
this building modification is performed semi automatically: The candidate outlines are detected
by clustering heights. The number of clusters determines the number of height levels and implies
potential separate building blocks. Then, this is verified by visual comparison with open satellite
imagery such as provided by Google Earth. Finally, the individual, newly separated building blocks
are reconstructed by assigning separate median height values.

In addition to that, horizontal displacements of OSMs’ building footprints respective to highly
accurate data such as LiDAR can also lead to a height bias. This phenomenon leads to an inclusion of
non-building points to building outlines. Due to significant height differences between non-building
and building points, the final height estimations are affected by an underestimation bias. To mitigate
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this effect, we use a buffer from the building outline inwards to make sure only building points
are selected.

4. Test Data

In this paper, as explained in Section 2, the heights for 3D building reconstruction are provided
by different sources. For the experiments, a study scene located in Munich, Germany, was selected
because of the availability of high-quality LiDAR reference data. Figure 2a displays the considered
study urban subset. The characteristics of the different input datasets used in the experiments are
listed in following.

e  Cartosat-1 DEM: The Cartosat-1 DEM used in this study is produced from stacks of images
acquired over the Munich area based on the pipeline described in [33]. The main characteristics
of the Cartosat-1 DEM are expressed in Table 1.

Table 1. Properties of Cartosat-1 tile. For more information about BKG orthophotos, please refer to [34].

Cartosat-1 DEM

Stereoscopic angle 31°

Max number of rays 1

Min number of rays 2
Horizontal reference BKG orthophotos
Vertical reference SRTM DEM
Pixel spacing 5m

Mean height error (10) 2-3m

e  TanDEM-X raw DEMs: In this study two tiles of TanDEM raw DEM acquired over Munich city
are used. The properties of those tiles are represented in Table 2.

Table 2. Properties of the nominal TanDEM-X raw digital elevation models (DEMs) tiles for the
Munich area.

TanDEM-X Raws DEMs: Munich Area

Acquisition Id 1023491 1145180
Acquisition mode Stripmap Stripmap
Center incidence angle 38.25° 37.03°
Equator crossing direction ~ Ascending  Ascending
Look direction Right Right
Polarization HH HH
Height of ambiguity 45.81m 53.21m
Pixel spacing 0.2 arcsec 0.2 arcsec
HEM mean 1.33m 1.58 m

o TerraSAR-X and WordView-2 images: For the experiment based on heights retrieved by SAR-optical
stereogrammetry, a high-resolution TerraSAR-X/WorldView-2 image pair, acquired over the
Munich test scene, is used. For the pre-processing, first, the SAR image was filtered by a non-local
filter to reduce the speckle [35]. After that, they were resampled to 1 m x 1 m pixel size to
homogenize the study scenes with respect to better similarity estimation. After multi-sensor
bundle adjustment, sub-images from the overlapped part of the study area were selected. These
sub-images are displayed in Figure 6. The specifications of the TerraSAR-X and WorldView-2
images are provided in Table 3.
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Table 3. Specifications of the TerraSAR-X and WorldView-2 images.

Sensor Acquisition Mode Off-Nadir Angle (°) Ground Pixel Spacing (m) Acquisition Date

TerraSAR-X Spotlight 22.99 0.85 x 0.45 03.2015
WorldView-2 Panchromatic 5.20 0.50 x 0.50 07.2010

Figure 6. Display of SAR-optical sub-scenes extracted from Munich study areas (the left-hand image is
from WorldView-2, the right-hand image is from TerraSAR-X).

e  LiDAR point cloud: High-resolution airborne LiDAR data serves for performance assessment and
accuracy evaluation of 3D building reconstruction resulting from different height information
sources. It is also used for measuring accuracy of data fusion outputs. The vertical accuracy of the
LiDAR point cloud is better than £20 cm and its density is higher than 1 point per square meter.
Some preprocessing steps are implemented to prepare LiDAR data for the accuracy assessment in
different experiments. Details are explained in corresponding sections.

e Building footprints: The building footprints layer of the study area is provided by OpenStreetMap.
The footprints layer is used in combination with heights derived from different sources for LOD1
3D reconstruction

4.1. Input DEM Generated by TanDEM-X and Cartosat-1 DEM Fusion

The first input data we used for LOD1 building model reconstruction, is a refined DEM resulting
from a fusion of Cartosat-1 and TanDEM-X DEMs. As mentioned in Table 1, Cartosat-1 tiles are
registered to highly accurate airborne orthophoto images to compensate horizontal misalignment.
Before launching the TanDEM-X mission, Cartosat-1 tiles were vertically aligned with SRTM DEM as
an almost global, open DEM. However, due to limited vertical accuracy of SRTM, TanDEM-X data can
be substituted for vertical bias compensation of Cartosat-1 products. Thus, the alignment improves the
vertical accuracy of the Cartosat-1 DEM. The evaluation illustrates that the absolute vertical accuracy
of Cartosat-1 DEM increased more than 2 m. The evaluations were performed with respect to a LIDAR
DSM created from the LiDAR point cloud by reducing and interpolating the 3D points into a 2.5D grid
with a pixel spacing of 5 m. It should be noted that the TanDEM-X raw DEM is also converted into a
5 m pixel spacing DEM by interpolation. As we were able to show in [24], this fusion improves the
final DEM quality; quantitative results for the test scene are repeated in Table 4.
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Table 4. Accuracy (in meter) of Cartosat-1 and TanDEM-X DEM fusion in the urban study subset over
Munich. The bold values indicate the best results which were obtained through the proposed DEM
fusion pipeline.

DEM Mean RMSE STD
Cartosat-1 —0.68 5.27 5.23

RawDEM 1 \DEM-X | —036 643 6.42
Fused DEM  ANN-based | —0.55 5.02 4.98

4.2. Input DEM Generated by TanDEM-X Raw DEM Fusion

In the TanDEM-X mission, at least two primary DEMs are produced over all landmass tiles to
reach the target relative accuracy [36]. This is realized by data fusion techniques such as weighted
averaging. However, the weighted averaging performance is not optimal over urban areas. Therefore,
in [27] we proposed to use efficient variational methods such as TV-L; and Huber models for fusing
raw DEMs. We improved the height precision of the applied TanDEM-X raw DEM by employing
another available tile (see Table 2). For this purpose, both TanDEM-X DEMs are converted to DEMs
with pixel spacing of 6 m. The fusion performances using weighted averaging and variational models
are shown in Figure 7. The quantitative results are collected in Table 5. Those evaluations are carried
out with respect to a LIDAR DEM with 6 m pixel spacing achieved from the input LiDAR point cloud
by interpolation.

Table 5. Height accuracy (in meters) of the TanDEM-X data before and after DEM fusion in the
study area over Munich. The bold values indicate the best results which obtained through the
TV-Lq-based fusion.

DEM Mean RMSE STD

WA 0.84 7.51 7.46

Fused DEM  TV-L; 0.77 6.11 6.06
Huber | 0.78 6.14 6.09

WA Huber TV-L1
0 2 4 [} 8 0m
B )

Figure 7. Absolute residual maps of the initial input raw DEMs and the fused DEMs obtained by
different approaches for the study area over Munich.

As illustrated in Figure 7 and Table 5, the fusion can improve the quality of TanDEM-X raw DEMs.
It becomes apparent that variational models, especially TV-L;, outperform conventional weighted
averaging model.
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4.3. Input Point Cloud Generated by SAR-Optical Stereogrammetry

In [29], we have shown that by implementing a SAR-optical stereogrammetry framework for
the TerraSAR-X and WorldView-2 image pairs, a sparse point cloud can be produced as a product
of cooperative data fusion. A stereogrammetrically generated point cloud using MI as a similarity
measure is shown in Figure 8.

To validate the accuracy of the resulting 3D point clouds, we employed the accurate airborne
LiDAR point cloud described in Section 4. For accuracy calculation, after Least Square (LS) plane
fitting on k (here: k = 6 points) nearest neighbors of each target point in the reference point cloud [37],
the Euclidean distance between the target point to the fitted reference plane was measured along
different directions. Table 6 summarizes accuracy assessments of the reconstructed point clouds using
MI similarity measures along different coordinate axes by LS plane fitting. Additionally, the mean
absolute difference between the achieved point cloud respective to the LIDAR data is applied for total
accuracy evaluation.

Table 6. Accuracy assessment of reconstructed point clouds using different similarity measures with
respect to LiDAR reference.

Similarity M . Mean (m) STD (m) RMSE (m) Mean (m)
arity Mieasures | x Y Z | x Y z|XxX Y z d
MI 0.00 -—-0.04 027 | 157 169 3.09 | 157 1.69 3.10 2.75

Figure 8. Achieved point cloud from stereogrammetric 3D reconstruction of TerraSAR-X/WorldView-2
over the Munich study subset.
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5. Result of LOD1 Building Model Reconstruction

Figure 9 displays LOD1 3D reconstruction results for the study area consisting of prismatic
building models generated by combining the height information derived from different sources
discussed in the previous sections and building footprints provided by OpenStreetMap. As displayed
in Figure 9, on average, all models are systematically biased in comparison to a model produced from
high-resolution LiDAR data. However, this bias becomes minimum for a model using heights derived
from SAR-optical stereogrammetry, as can be seen when comparing large buildings. However, for
better evaluation, quantitative assessment should be performed. Therefore, the height accuracy of
each LOD1 model was validated by comparing it with a model was created from the reference LiDAR
DSM in a similar manner. For that purpose, we first interpolated the original LIDAR point cloud to a
grid with a 1 m pixel spacing. Then, we used TV-L; denoising [27] to reduce potential noise effects.
This TV-L; denoising mitigates biases in building height estimation induced by height outliers and
inconsistencies such as those caused by crane-towers. As described in [27], TV-L; comprises two
terms: a fidelity term and a penalty term. The effect of each term on the final output can be tuned
by regularization parameters as weighting factors. Using a higher weight devoted to the penalty
term will lead to better edge-preservation. Thus, we used the double weight for the penalty term
to enhance urban structures. Then, the final height estimate within each building outline can be
computed according to the process described in Section 3. The same process can be applied for the
quality measurements of the 3D building reconstructions obtaining from other height information
sources. The quantitative evaluations for the LOD1 reconstructions implemented based on scenario 1
(using original OSM) and 2 (using updated outlines) are presented in Tables 7 and 8, respectively.

Table 7. Quantitative evaluations (in meters) of the level-of-detail 1 (LOD1) reconstructions of the
urban scene using heights derived from different sources along with original building outlines of

OpenStreetMap (OSM).
Elevations Median RMSE STD
. Cartosat-1 8.63 10.01 4.67
input DEM TanDEM-X 968 1016 428
ANN?-based: Cartosat-1 and TanDEM-X 9.56 9.97 428
Fused DEM Weighted Averaging:TanDEM-X 7.91 9.5 481
TV-Lq: TanDEM-X 8.94 8.95 3.82
Huber: TanDEM-X 8.97 9 3.83
SAR-optical stereogrammetry  TerraSAR-X/WordlView-2 6.51 9.73 5.83

Table 8. Quantitative evaluations (in meters) of the LOD1 reconstructions of the urban scene using
heights derived from different sources along with modified building outlines of OSM.

Elevations Median RMSE STD

. Cartosat-1 —0.96 2.85 2.27
input DEM TanDEM-X —093 343 283
ANN-based: Cartosat-1 and TanDEM-X —0.92 3.09 2.48

Fused DEM Weighted Averaging:TanDEM-X —0.72 2.81 25
TV-L;: TanDEM-X —0.68 2.86 2.56

Huber: TanDEM-X —0.67 2.96 2.64

SAR-optical stereogrammetry = TerraSAR-X/World View-2 —0.29 3.61 3.57
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(e) TV-L; fusion of TanDEM-X raw DEMs (f) Huber-based fusion of TanDEM-X raw DEMs

.
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Figure 9. Level-of-detail 1 (LOD1) reconstructions of the study urban scene using heights derived from
different sources and building outlines obtained from building foot prints layer of OpenStreetMap
(OSM). Colors indicate absolute height residuals.
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6. Discussion

6.1. Multi-Sensor Fusion for Height Exploitation

In this research, we employed different sensor fusion techniques to use heights as a requirement
for 3D building reconstruction. Two categories of techniques were used to improve the quality of
TanDEM-X DEM as a global DEM. In the first method, using Cartosat-1 DEM could improve the
quality of TanDEM-X. During DEM fusion, the issue of low absolute localization accuracy of Cartosat-1
DEM could be solved. It is also recommended to use TanDEM-X as an external DEM during the
Cartosat-1 DEM generation to compensate bias existing in the sensor geometry. As a drawback, the
Cartosat-1 data is not globally available such as TanDEM-X. Furthermore, due to different natures
of TanDEM-X and Cartosat-1 DEMs, we implemented an ANN-based algorithm which utilizes both
feature engineering and supervised training for weight map prediction. The weight maps are used
for weighted averaging-based fusion to integrate TanDEM-X and Cartosat-1 DEMs. Nevertheless,
the training samples do not necessarily exist in an arbitrary study area. The next possibility is to use
other TanDEM-X covers acquired through the mission to guarantee target relative accuracy. For this,
we implemented variational models to smooth noise appearing in DEMs while preserving the building
outlines. The main advantage of variational techniques is that they do not need highly accurate
training samples such as those derived from LiDAR data. In addition, it only employs TanDEM-X
raw DEM tiles and does not require a higher quality DEM such as that derived from Cartosat-1 data.
However, by comparing quantitative results represented in Tables 4 and 5 using different metrics, it is
demonstrated that the first solution i.e., employing Cartosat-1 DEM and implementing ANN-based
DEM fusion could ultimately generate a more accurate urban DEM.

Another opportunity for producing heights is to carry out stereogrametry for 3D reconstruction
from archived SAR-optical image pairs such as TerraSAR-X and WorldView-2 images. The promising
outputs demonstrated potential and possibility of 3D reconstruction from SAR-optical stereogrammetry.
However, some development such as improving dense matching performance to produce a denser
point cloud as well as noisy point and outlier removal are demanded.

6.2. LOD1 Building Reconstruction

After implementing data fusion techniques for height retrieval, we reconstructed building models
using the derived heights and the building outlines provided by OSM. The achieved model is not
a complete 3D city model since it provides building heights only. However, this model can be used
for applications that require the building volume, which is not affected by the lack of information on
the precise elevations of the building bottom/top. We investigated the reconstruction using original
building outlines provided by OSM as well as using an updated building footprints layer. Regarding
the median values in Table 7, using the original building outlines causes a bias affecting estimated
final heights (RMSE values) while standard deviations are much smaller, thus confirming a systematic
change in building heights. This bias can be significantly reduced by modifying building outlines in a
preprocessing step (Table 8).

Using heights derived from outputs of multi-sensor DEM fusion can still lead to better
reconstruction results in comparison to the primary TanDEM-X DEM. While the highest accuracy is
obtained by Cartosat-1 data, it owes the accuracy to the bias compensation through the alignment to
TanDEM-X. Without the alignment, the existing bias would be propagated to the final building heights.

Last but not least, it has to be mentioned that for generating a complete 3D city model, computing
the height of the bottom and the top of a building along with the underlying terrain is required. Due to
the limited the resolution of the height data utilized in this study, our focus did not lie on full 3D
city model reconstruction but on simple prismatic building model reconstruction. For that purpose,
we worked with the assumption of flat terrain at a constant height, which is valid in the selected study
area. For a complete 3D city model, more accurate measurements of the terrain and the bottom of
building elevations would be necessary.
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7. Conclusions

In this research, we evaluated the potential of LOD1 3D reconstruction using data from
remote-sensing-derived geodata and volunteered geographic information (VGI). For this purpose,
we used heights derived from sources provided for global mapping such as those produced through
the TanDEM-X mission. We implemented two DEM fusion experiments to improve the quality of
TanDEM-X in urban areas. First is to fuse the TanDEM-X and Cartosat-1 DEMs using corresponding
weight maps generated through a supervised ANN-based pipeline. In the second experiment, multiple
TanDEM-X raw DEMs are fused by variational models. The results confirm the quality improvement of
TanDEM-X after DEM fusion. In another experiment, heights were from an archived TerraSAR-X and
WorldView-2 image pair through a stereogrammetry framework. The output was a sparse point cloud
with a promising accuracy. Since building outlines as an essential requirement for 3D reconstruction
cannot be accurately recognized in those height sources, we employed outlines provided by OSM. It
was also shown that the primary outlines are not perfect and should be modified and updated for
an accurate reconstruction. The final results demonstrate the possibility of prismatic building model
generation (at LOD1 level) on a wide area from easily accessible, remote sensing-derived geodata.
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