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It is well known that structures exhibit uncertainty due to various sources, such as manufacturing tolerances and variations in
physical properties of individual components. Modeling and accurate representation of these uncertainties are desirable in many
practical applications. In this paper, spectral-based method is employed to represent uncertainty in the natural frequencies of
fiber-reinforced composite plates. For that, experimental modal analysis using noncontact method employing Laser-Vibrometer is
conducted on 100 samples of plates having identical nominal topology. The random frequencies then are represented employing
generalized Polynomial Chaos (gPC) expansions having unknown deterministic coefficients.This provides us withmajor advantage
to approximate the random experimental data using closed form functions combining deterministic coefficients and random
orthogonal basis. Knowing the orthogonal basis, the statistical moments of the data are used to estimate the unknown coefficients.

1. Introduction

Uncertainty quantification concerns representation and solu-
tion of simulation models, e.g., a differential equation or a
finite element model, when some levels of modeling such as
input parameters are not exactly known. In such conditions,
the model is said to be stochastic, i.e., it exhibits some degree
of uncertainty. Probabilistic structural dynamics, in particu-
lar, endeavor to take into account uncertainties relating vari-
ous aspects of real structures such as material and geometric
parameters, loading terms, and initial/boundary conditions
and exploring related impacts on the structure responses.
To improve the performance, durability, and efficiency of
structures, an exact knowledge of geometrical and material
parameters is required. Characterization of the stochastic
response due to these uncertainties by stochasticmethods has
gained interest among researchers in past decades. Stochastic
methods in conjunction with finite element method (FEM)
have been widely used to quantify uncertainty in structural
responses [1–9]. Two major issues have to be addressed

regarding stochastic analysis of such structures under uncer-
tainty: first, how the uncertainties can be efficiently identified
and modeled in numerical simulations, particularly in finite
element models and, secondly, how uncertainties affect the
behavior of aforesaid structures.

The former issue requires quantifying the randomness
in uncertain parameters. This can be efficiently character-
ized by the statistical properties of the parameters, e.g.,
probability density function (PDF). However, identification
of the appropriate PDF type characterizing the parameter
uncertainties demands to know a priori information which
may be collected from experimental tests. Various methods
have been developed in past decades for PDF identification
from experimental data (cf. [10–13]).The latter issue depends
on the availability of an exact model relating inputs to
outputs. Construction of such model is not possible due
to many common assumptions in modeling of structural
dynamics. For that reason, experimental methods are still
the most reliable approach for investigation of the uncertain-
ties.
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In this paper, uncertainties relating to the experimentally
identified natural frequencies of composite plates are inves-
tigated. Uncertainties in such materials may have different
sources, e.g., manufacturing tolerances, fiber orientations, or
physical properties of individual components. To this end,
experimental modal analysis using the noncontact method
by employing Laser-Vibrometer is conducted on 100 samples
of plates having identical nominal topology. The statistical
properties of the identified natural frequencies of the plates,
in particular, are discussed in detail. The random frequen-
cies then are represented employing generalized Polynomial
Chaos (gPC) expansion [14–17]. This provides us with major
advantage to approximate the experimental data using closed
form functions combining deterministic coefficients and
random orthogonal basis. The coefficients then are estimated
employing optimization procedure comparing theoretical
and experimental values of statistical moments.

This paper is organized as follows: the basic formulation
of the spectral-based representation of random parameters
is given in the next section. The numerical-experimental
simulations are presented in Section 3 and the last section
denotes the conclusion.

2. Spectral-Based Representation of
Random Parameters

The spectral discretization methods are the key advantage
for the efficient stochastic reduced basis representation of
uncertain parameters in finite element modeling. This is
because these methods provide a similar application of the
deterministic Galerkin projection and collocation methods
to reduce the order of complex systems. In this way, it
is common to employ a truncated expansion to discretize
the input random quantities of the structure and system
responses. The unknown coefficients of the expansions then
can be calculated based on the FE model outputs. Let us
consider the uncertain parameter 𝑃(𝜉) where 𝜉 ∈ Ω is
the vector random variable characterizing the uncertainty
in the parameter and Ω denotes the random space. Under
the limited variance, i.e., 𝜎2 < ∞, the parameter can be
approximated by

𝑃 (𝜉) ≈ 𝑁∑
𝑖=0

𝑝𝑖Ψ𝑖 (𝜉) (1)

which is known as the truncated generalized Polynomial
Chaos (gPC) expansion of the parameter. The determinis-
tic coefficients 𝑝𝑖 are calculated employing the stochastic
Galerkin projection as [17]

𝑝𝑖 = 1ℎ2𝑖 ∫Ω 𝑃 (𝜉) Ψ𝑖 (𝜉) 𝑓 (𝜉) d𝜉 (2)

where 𝑓 is the joint probability density function (PDF) of
random vector 𝜉 which for independent random variables 𝜉𝑖
can be written as the multiplication of the individual PDF for
each variable 𝑓𝑖(𝜉𝑖); i.e.,

𝑓 (𝜉) 𝑑𝜉 = 𝑓1 (𝜉1) 𝑓2 (𝜉2) ⋅ ⋅ ⋅ 𝑓𝑛 (𝜉𝑛) d𝜉1d𝜉2 ⋅ ⋅ ⋅ d𝜉𝑛 (3)

and ℎ𝑖 denotes the norm of polynomials defined as

ℎ2𝑖 = ⟨Ψ𝑖 (𝜉) , Ψ𝑖 (𝜉)⟩ = ∫
Ω
Ψ2𝑖 (𝜉) 𝑓 (𝜉) d𝜉 (4)

For the sake of simplicity, we will focus onmonodimensional
random input in this work; i.e., 𝜉 = {𝜉}.
2.1. Estimation of the gPC Coefficients from Experimental
Data. Calculation of the coefficients using (2) requires prior
information on the PDF of uncertain parameters which may
not be available. Statistical moments, in contrast, exhibit
adequate implicit information on the probability properties
of random quantities. Once the experimental data on the
uncertain parameters are available, the estimation of the
gPC coefficients from statistical moments [11, 17] is possible.
Here, the statistical moments derived analytically from the
gPC expansion are compared to those calculated from the
data. For the truncated gPC expansion, only the first few
orders of moments are required to calculate the coefficients.
The major benefit is that information on the probability
distribution of uncertain parameters does not have to be
known a priori. The coefficients are then estimated compar-
ing statistical moments constructed from the gPC expansion
and experimental data via an optimization procedure. The𝑘th-oder statistical moment, 𝑚𝑘, of uncertain 𝑃 having the
gPC expansion given in (1) is calculated as

𝑚𝑘 = E [𝑃𝑘] = ∫
Ω
[ 𝑁∑
𝑖=0

𝑝𝑖Ψ𝑖 (𝜉)]
𝑘

𝑓 (𝜉) d𝜉,
𝑘 = 0, 1, . . .

(5)

with 𝑚0 = 1 and 𝑚1 = 𝑝0. In this paper, we use the
probabilistic orthonormal Hermite polynomials for Ψ𝑖(𝜉)
and, accordingly, 𝑓(𝜉) = (1/√2𝜋)exp(−𝜉2/2). The 𝑘th-order
central statistical moment is then calculated as

𝜇𝑘 = E [(𝑃 − E [𝑃])𝑘] = 𝑘∑
𝑖=0

(𝑘𝑖) (−1)𝑘−𝑖𝑚𝑖𝑚𝑘−𝑖1 ,
𝑘 = 2, 3, . . .

(6)

This leads imminently to the following expression for the sec-
ond central statistical moment (variance) 𝜇2 of the uncertain
parameter 𝑃 as

𝜇2 = 𝑚2 − 𝑚21 =
𝑁∑
𝑖=1

𝑝2𝑖 ℎ2𝑖 (7)

in which ℎ2𝑖 = 𝑖! for the Hermite polynomials. Similar
expressions can be derived for the higher order moments as
functions of the gPC coefficients. The calculated moments
form the gPC expansion can be compared to the correspond-
ing values obtained from experimental data for an uncertain
parameter. In such a way, one can attempt to estimate the
unknown coefficients from the available experimental data.
That is, for a given set of experimental data {𝑃1, 𝑃2, . . . , 𝑃𝑀}
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Table 1:The first three statistical moments of the first nine measured natural frequencies; mean value, 𝜇𝑓, the standard deviation 𝜎𝑓, and the
skewness 𝛾3.

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9𝜇𝑓 [Hz] 115 145 275 396 504 530 556 704 781
𝜎𝑓 [Hz] 4.60 5.90 8.93 15.22 11.92 15.92 15.35 17.98 25.95
𝛾3𝑓 [–] 0.485 0.366 0.895 0.292 0.166 1.086 1.312 0.622 1.419

on𝑃, the experimental central moments, 𝜇expri
𝑘

, are calculated
as

𝜇expri
𝑘

= 1𝑀
𝑀∑
𝑗=1

[𝑃𝑗 − E (𝑃)]𝑘 , 𝑘 = 2, 3, . . . (8)

in which E(𝑃) = (1/𝑀)∑𝑀𝑗=1 𝑃𝑗 is the mean value of
samples. An error function based on the least-square crite-
rion corresponding to the difference between the moments
derived from (5) and (8) can be used to estimate the optimal
coefficients 𝑝𝑖. This leads to a minimization problem as
follows:

minimize
𝑝𝑖

𝑘∑
𝑛=1

𝑓2𝑛 (𝑝𝑖)
s.t. 𝑓0 (𝑝𝑖) = 𝜇expri1 − 𝜇1 = 0

𝑓𝑛 (𝑝𝑖) = 𝜇expri𝑘 − 𝜇𝑘, 𝑛 ≥ 2
(9)

The first condition of the process denotes that the expected
value of the data represents the first coefficient of the gPC
expansion. Since the calculated moments for the gPC expan-
sion are nonlinear functions of the coefficients, one has to
employ nonlinear optimization procedure. The optimization
leads to unique solution under the convergence condition for
coefficients of one-dimensional gPC; i.e., ‖𝑝𝑖+1‖ < ‖𝑝𝑖‖.
3. Experimental and Numerical Study

As a case study, in this section, the natural frequencies of
fiber-reinforced composite (FRC) plates are represented as
random parameters. The experimental modal analysis has
been performed on 100 sample plates with nominal identical
topology of 𝑎 = 250 mm, 𝑏 = 125 mm, and thickness
of 2 mm; see Figure 1. The plates were suspended by very
thin elastic bands to simulate free boundary conditions. The
Laser-Vibrometer has been employed to collect the vibration
responses due to the excitation force from impulse hammer
with tip force transducer at some predefined points of the
plates. The average of 5 impacts at each point was recorded.
The sample test has returned to rest before the next impact
is taken. A standard data acquisition facility along with a
postprocessing modal analysis software has been used to
extract modal data, e.g., natural frequencies. The measured
first nine natural frequencies of plates are given in Figure 2.
As shown, a considerable range of uncertainty is observed in
frequencies. Spectral representation of the measured random
frequencies requires estimating the statistical moments. The
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Figure 1: Experiment setup for modal analysis of FRC plates.

second-order gPC expansion is employed to approximate
the frequencies. This leads to three unknown coefficients
and, consequently, estimation of the first three statistical
moments as given in Table 1. The third statistical moment is
given by the skewness, 𝛾3𝑓 , defined as 𝜇expri3 /𝜎3𝑓. The random
natural frequencies are represented using second-order gPC
expansions having random Hermite polynomials 𝐻(𝜉) as
basis; i.e.,

𝑓𝑛 = 2∑
𝑖=0

𝑝𝑛𝑖𝐻𝑖 (𝜉) = 𝑝𝑛0 + 𝑝𝑛1𝜉 + 𝑝𝑛2 (𝜉2 − 1) ,
𝑛 = 1, 2, . . . , 9

(10)

The unknown deterministic coefficients 𝑝𝑛𝑖 are calculated by
equality of the statistical moments of the gPC expansions
given in (6) and the experimental estimations given in Table 1.
The optimization Application optimtool in MATLAB� for
constrained nonlinear problem is employed for this purpose.
This leads immediately to the following expressions for
optimization problem defined in (9):

𝑓1 (𝑝𝑛0) = 𝜇𝑓 − 𝑝𝑛0 = 0
𝑓2 (𝑝𝑛1 , 𝑝𝑛2) = 𝜎2𝑓 − 𝑝2𝑛1 + 2𝑝2𝑛2
𝑓3 (𝑝𝑛1 , 𝑝𝑛2) = 𝛾3𝑓 − 1𝜎3

𝑓

(6𝑝2𝑛1𝑝𝑛2 + 8𝑝3𝑛2)
(11)

The nonlinear optimization problem is then solved to esti-
mate 𝑝𝑛𝑖 as given in Table 2.The second-order coefficients are
very small compared to the first two coefficients.This denotes
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Figure 2: Measured first nine natural frequencies of 100 FRC plates (all in Hz).

Table 2: The coefficients of the gPC expansions approximating the measured uncertain natural frequencies.

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9𝑝𝑛0 115 145 275 396 504 530 566 704 781
𝑝𝑛1 4.53 5.87 8.72 15.18 11.90 15.36 14.53 17.78 24.32
𝑝𝑛2 0.37 0.36 1.35 0.74 0.33 2.95 3.48 1.88 6.40

that the second-order gPC expansion has enough accuracy to
represent uncertainty in the random frequencies. Once the
unknown coefficients are known, the statistical properties of
the measured data can be calculated using the constructed
gPC expansions.

4. Conclusion

Natural frequencies of composite plates have been considered
as random parameters. The generalized Polynomial Chaos
expansions has been employed to approximate the uncer-
tainty in the measured natural frequencies. The method
offers the major advantage that the unknown deterministic
coefficients of the expansions have to be calculated instead of
random parameters. This has been performed by comparing
the statistical moments of the experimental results for 100
identical plates and from the expansions via theminimization
of least-square based error. The results have been given
for the first nine natural frequencies using second-order
expansions.
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