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Abstract We examine the dark matter phenomenology of
a composite electroweak singlet state. This singlet belongs
to the Goldstone sector of a well-motivated extension of
the Littlest Higgs with T -parity. A viable parameter space,
consistent with the observed dark matter relic abundance
as well as with the various collider, electroweak precision
and dark matter direct detection experimental constraints is
found for this scenario. T -parity implies a rich LHC phe-
nomenology, which forms an interesting interplay between
conventional natural SUSY type of signals involving third
generation quarks and missing energy, from stop-like particle
production and decay, and composite Higgs type of signals
involving third generation quarks associated with Higgs and
electroweak gauge boson, from vector-like top-partners pro-
duction and decay. The composite features of the dark matter
phenomenology allows the composite singlet to produce the
correct relic abundance while interacting weakly with the
Higgs via the usual Higgs portal coupling λDM ∼ O(1%),
thus evading direct detection.

1 Introduction

The Hierarchy problem of the Standard Model (SM) could
be solved by assuming that the Higgs is a pseudo Nambu-
Goldstone Boson (pNGB) of a spontaneously broken global
symmetry [1–4]. In this scenario, the Higgs is not an elemen-
tary particle but rather a composite state whose constituents
are held together by some new strong force. In this respect,
the Composite Higgs resembles other scalars found in nature,
the QCD pions. An extended composite sector could also
explain the origin of dark matter (DM) [5–12]. The same
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strong dynamics responsible for the Higgs may produce a
stable neutral scalar bound state, a composite DM candidate.
This could be considered in analogy to the Proton, another
QCD bound state, which is an abundant particle in our uni-
verse, whose stability is insured by an (accidental) global
symmetry. The composite DM candidate is a pNGB and it
could be naturally as light as the weak scale, which fits in the
weakly interacting massive particle (WIMP) paradigm.

One realization of the composite Higgs scenario is the
Littlest Higgs [13–19]. The original model is strongly con-
strained by electroweak precision tests (EWPT) due to
tree level contributions to electroweak observables [20–27].
These constraints required the symmetry breaking scale f to
be a few TeV, thus reintroducing considerable fine-tuning.

T -Parity has been proposed in order to prevent tree-level
exchanges of heavy states [28–31]. The new heavy states
are odd under a discrete T -parity, therefore contributions to
electroweak observables are possible only at the 1-loop level.
This allows the symmetry breaking scale f to be O(1) TeV.
As an added benefit, T -Parity can be used as a stabilizing
symmetry for a DM candidate, as the lightest T -odd particle
is guaranteed to be stable.

In this work, we consider the phenomenology of a Littlest
Higgs model with T -parity (LHT) with a consistent imple-
mentation of T -parity in the fermionic sector [32]. Com-
pared to the simplest LHT model, one enlarges the symmetry
breaking pattern and also the unbroken symmetry group H
which allows a complete composite representation contain-
ing just one fermion doublet. In particular, we analyze the
DM phenomenology of a composite singlet scalar. In Sect. 2
we present the model and motivate the extension leading
to the larger Goldstone sector. In Sect. 3 we briefly review
the scalar potential structure. A detailed discussion of the
scalar potential can be found in Appendix 1. In Sects. 4 and
5 we derive constraints on the model parameters from recent
LHC searches and EWPT. In Sect. 6 we discuss the DM phe-
nomenology of the composite singlet DM. We finally sum-
marize our results and conclude in Sect. 7.
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2 Model

The model is based on the Littlest Higgs (LH) SU (5)
SO(5)

non-
linear sigma model [13]. We define the scalar field � in the
symmetric 15 representation of SU (5):

� → U�UT . (1)

� develops a vacuum expectation value (VEV),

〈�〉 ≡ �0 =
⎛
⎝

12

1
12

⎞
⎠ , (2)

spontaneously breaking SU (5) to SO(5). The 10 unbroken
SO(5) generators denoted by Ti satisfy

Ti�0 + �0T
T
i = 0, (3)

and the 14 broken SU(5) generators denoted by X j satisfy

X j�0 − �0X
T
j = 0. (4)

We gauge two subgroups of SU (5), denoted by
[SU (2) × U (1)]i with i = 1, 2. The gauged generators are

Qa
1 ≡

⎛
⎝

σ a

2 0 0
0 0 0
0 0 0

⎞
⎠ , Y1 = 1

10

⎛
⎜⎜⎜⎜⎝

3
3

−2
−2

−2

⎞
⎟⎟⎟⎟⎠

, (5a)

Qa
2 ≡

⎛
⎝

0 0 0
0 0 0
0 0 −σ a∗

2

⎞
⎠ , Y2 = 1

10

⎛
⎜⎜⎜⎜⎝

2
2

2
−3

−3

⎞
⎟⎟⎟⎟⎠

. (5b)

σ a with a = 1, 2, 3 are the Pauli matrices.
�0 spontaneously breaks the gauge symmetry to its diag-

onal subgroup [SU (2) × U (1)]1+2, which we identify as
the SM electroweak gauge group. The Nambu-Goldstone
bosons (NGB’s) associated with the broken SU (5) gener-
ators decompose under the SM gauge group to the following
representations

10 ⊕ 30 ⊕ 21/2 ⊕ 31. (6)

We can parameterize the low energy degrees of freedom of
the � field using the NGB’s, defining �� ≡ πa Xa :

� = ei��/ f �0e
i�T

�/ f = e2i��/ f �0, (7a)

�� =

⎛
⎜⎜⎜⎝

τ ·σ
2 + φ0

2
√

5
12

H√
2

	

H†√
2

− 2φ0√
5

HT√
2

	† H∗√
2

τ ·σ ∗
2 + φ0

2
√

5
12

⎞
⎟⎟⎟⎠ , (7b)

with 	 =
(

	++ 	+/
√

2

	+/
√

2 	0

)
. (7c)

In the original LH model, the triplet τ and the singlet φ0

are “eaten” by the heavy gauge bosons. The physical scalar
spectrum contains the complex doublet H which we identify
as the SM Higgs field, and a heavy charged triplet 	. The
gauge spectrum contains the SM gauge fields and additional
heavy gauge fields with masses mWH ∼ g f,mBH ∼ g′ f,
with g, g′ the SM gauge couplings. The heavy gauge states
contribute at tree level to the electroweak oblique parame-
ters. These contributions lead to stringent constraints from
electroweak precision tests (EWPT), pushing the symmetry
breaking scale of the original LH model f ∼ a few TeV
(e.g Ref. [20]). The corrections to electroweak observables
from the heavy gauge states are made smaller by introducing
a discrete symmetry which forbids tree level exchanges of
heavy states. The addition of a discrete symmetry stabilizes
the lightest odd particle, making it a viable DM candidate.
This discrete symmetry, usually referred to as T -parity, is
defined as [28]

T -parity: Ti → 
Ti
, X j → −
X j
 (8)

with


 = − exp[2π i Q3
1+2] = diag(1, 1,−1, 1, 1), (9)

which is an automorphism defined on the SU (5) generators.
This definition determines the T -parity of all the fields asso-
ciated with the SU (5) generators, namely the Goldstone and
gauge fields. The 
 rotation is introduced to make the Higgs
even under T -parity, while keeping the rest of the Goldstone
fields odd. For the gauge fields, the T -parity transformation
can be interpreted as an exchange symmetry between the
gauge groups 1 ↔ 2. Hence the diagonal combination is
even, and the broken combination is odd.

Let us understand how linear representations of SU (5)

transform under T -parity. One can use Eq. (9) to show that
each transformation g = eiα j X j+iβi Ti ∈ SU (5) is mapped
under T -parity to

g → g̃ ≡ 
�0g
∗�0
. (10)

Therefore, up to a constant matrix, fundamental and anti-
fundamental indices of SU (5) are mapped to each other

Vi︸︷︷︸
5

↔ (�0
)i j U j︸︷︷︸
5

. (11)

The � field transforms with two fundamental SU (5) indices,
so under T -parity

� → �̃ ≡ 
�0�
†�0
. (12)

2.1 A UV doubling problem, making the T -odd doublet
massive

The coset structure of LH with T -parity is in tension with the
SM matter content [32,33]. The low energy theory must con-
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tain a T -even massless SU (2) doublet, the left-handed quark
doublet of the SM. Since T -parity can be understood as an
exchange symmetry between the two gauged SU (2) sub-
groups of SU (5) (we omit the U (1) factors for the following
discussion), one must therefore introduce two doublets ψi ,
each transforming under a different SU (2)i with i = 1, 2.
Under T -parity the two doublets are mapped into each other

ψ1 ↔ ψ2. (13)

We would like to write a mass term for theT -odd combination
ψ− ≡ (ψ1 − ψ2) that respects the SM gauge group. Let us
introduce a right-handed field ψc transforming as a doublet
under the SM gauge group [SU (2)]1+2

L 
 (ψ1 − ψ2)ψ
c. (14)

This term respects the SM gauge group, however each term
by itself breaks SU (2)1 × SU (2)2 and cannot be gener-
ated by a reasonable UV theory which respects those gauge
symmetries, unless they are spontaneously broken. Assum-
ing that ψc cannot be a doublet of just one of the SU (2)′s,
we expect the mass term to arise as a result of spontaneous
symmetry breaking

L 
 (ψ1〈φ1〉 − ψ2〈φ2〉)ψc, (15)

where we introduced two sources of spontaneous symmetry
breaking, the VEV’s 〈φ1〉 and 〈φ2〉.
Let us examine now the VEV’s which we can use to write this
term in a gauge-invariant way. In Sects. 2.1.1 and 2.1.2 we
briefly examine two different constructions presented in the
literature that generate the mass term of Eq. (14). We mention
possible shortcomings of these constructions, which motivate
the construction used in this work, presented in Sect. 2.1.3.
Readers interested only in the details of the model used in
this work, may skip directly to Sect. 2.1.3.

2.1.1 Non-linear formulation of a massive odd doublet

One construction commonly presented in the literature uses
the CCWZ formalism [34,35]. The main advantage of this
approach is that no new sources of spontaneous symmetry
breaking are needed.

First we have the linear representations of SU (5) [29]

�1 =
⎛
⎝

ψ1

0
0

⎞
⎠

5

, �2 =
⎛
⎝

0
0
ψ2

⎞
⎠

5

, (16)

with the following T -parity transformation

�1 → 
�0�2. (17)

A mass term for the T -odd combination is constructed using
a non-linearly transforming field

�̃c =
⎛
⎝

ψc
1

χc

ψc
2

⎞
⎠ , a 5 of SO(5). (18)

Under a transformation g ∈ SU (5)

�̃c → O(��, g)�̃c, O ∈ SO(5). (19)

ei��/ f transforms under a transformation g ∈ SU (5) in the
following way

ei��/ f → gei��/ f O† = Oei��/ f (�0g
T�0). (20)

The kinetic term for �̃c contains the eμ symbol defined
by [34,35]

ie−i��/ f (∂μe
i��/ f ) ≡ d j

μX
j + eiμT

i . (21)

Using the automorphism defined in Eq. (9) we can write
eμ ≡ eiμT

i in a T -parity symmetric form

eμ = i

2

(
e−i��/ f ∂μe

i��/ f + ei��/ f ∂μe
−i��/ f

)
. (22)

The eμ symbol transform as a covariant derivative

(∂μ + eμ) → O(∂μ + eμ)O†, (23)

which allows us to write an invariant kinetic term for �̃c.
Note that under T -parity

eμ → 
eμ
, (24)

therefore the transformation of �̃c under T -parity is

�̃c → −
�̃c. (25)

The benefit of the CCWZ formalism is that the pion matrix
can be used to “dress” the field �̃c as linear representations
of SU (5), e.g 5 and 5̄

ei��/ f �̃c → g(ei��/ f �̃c), (26)

and

�0e
−i��/ f �̃c → g∗(�0e

−i��/ f �̃c), (27)

with g ∈ SU (5). Finally the mass term is given by [29]

L 
 κ f√
2
(�1�0e

−i��/ f − �2e
i��/ f )�̃c + h.c

= κ f√
2

(
ψ1 − ψ2

)
ψc

2 + .... (28)

The field �̃c must be a complete SO(5) representation, oth-
erwise the kinetic term for �̃c would explicitly break the
global symmetry protecting the Higgs mass [29]. The field
ψc

1 is still massless at this point. One could formally intro-
duce an additional doublet η and write a mass term

L 
 M(η̄ψc
1 + h.c). (29)
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This term breaks the global symmetries protecting the Higgs
mass, generating O(M2) contributions to the Higgs mass.

2.1.2 Adding a third SU (2) × U (1)

We conclude that the model requires additional structure in
order to give mass to the T -odd combination without explicit
breaking of the global symmetry.

One possible solution is to add an additional gauge
group [33,36], denoted by [SU (2) × U (1)]3. Now ψc of
Eq. (15) transforms as a doublet under [SU (2) × U (1)]3 and
the scalars φi transform as a bi-fundamentals of [SU (2) ×
U (1)]i ×[SU (2)×U (1)]3 with i = 1, 2. This solution intro-
duces new heavy T -even gauge fields. The new T -even gauge
fields can be made heavy by making the coupling constant
of the third SU (2) × U (1) gauge group large, effectively
decoupling them from the theory without spoiling the natu-
ralness of the model. One has the choice of how to enlarge the
global symmetry to incorporate this additional gauge group.
The most naive extension is

SU (5) → SU (5) × [SU (2) × U (1)]3 (30)

We introduce additional scalars 	1 and 	2 transform under
the enlarged group as (5̄, 2̄) and (5, 2̄) respectively (disre-
garding the U (1) charges), namely

	1 → g∗	1g
†
3, 	2 → g	2g

†
3,

g ∈ SU (5), g3 ∈ [SU (2) × U (1)]3. (31)

Under T -parity

	1 → �0
	2, ψc → −ψc. (32)

The T -odd doublet gets a mass

L 
 κ√
2

(
�1〈	1〉 − �2〈	2〉

)
ψc

= κ f√
2

(
ψ1 − ψ2

)
ψc + ..., (33)

after 	1 and 	2 acquire VEV’s given by

〈	1〉 = f

⎛
⎝
12 × 2

01 × 2

02 × 2

⎞
⎠ = �0
〈	2〉. (34)

The appearance of	1,	2 results in a deviation from the orig-
inal coset structure of the LH, with the altered coset structure

SU (5) × SU (2) × U (1)

[SU (2) × U (1)]1+2+3
. (35)

We now identify [SU (2) × U (1)]1+2+3 as the SM gauge
group. This coset contains in the original 14 NGB’s of the
LH coset, and additional 10 NGB’s from the spontaneously
broken SO(5). These 10 additional states decompose under
the SM gauge group as

10 ⊕ 30 ⊕ 21/2 ⊕ 11/2. (36)

The additional neutral singlet 10 and triplet 30 are “eaten”
by the additional T -even gauge fields. This naive approach
unavoidably introduces additional physical NGB’s in the
form of a T -odd doublet 21/2 and a T -even complex scalar
11/2. These states must be made massive without spoiling the
symmetry protection of the SM Higgs. Additional NGB’s are
a generic result of the enlarged global symmetry structure,
even more so when the additional SU (2) is a gauged sub-
group of a larger global symmetry [33].

2.1.3 Mirroring the 1 ↔ 2 exchange symmetry

In this work we consider a concrete solution suggested in
Ref. [32]. We extend the global symmetry

SU (5)→ SU (5) × [SU (2) ×U (1)]L × [SU (2) ×U (1)]R .

(37)

We introduce a scalar field, X , which transforms linearly
under [SU (2) ×U (1)]L × [SU (2) ×U (1)]R
X → gL Xg

†
R . (38)

When the � and X acquire VEV’s, 〈�〉 = �0 and 〈X〉 = 12,
the symmetry is spontaneously broken to

SU (5)

SO(5)
× [SU (2) ×U (1)]L × [SU (2) ×U (1)]R

[SU (2) × U (1)]V . (39)

We gauge two SU (2) × U (1) subgroups defined as the com-
binations [SU (2) ×U (1)]1+L and [SU (2) ×U (1)]2+R . The
residual gauge symmetry [SU (2) ×U (1)]1+2+L+R is identi-
fied as the SM gauge group. We can parametrise X using the
non-linearly transforming Goldstone fields associated with
this symmetry breaking,

X ≡ e
i
f ′ �X 〈X〉e i

f ′ �X = e
2i
f ′ �X

, (40a)

�X = 1

2

(
πiσ

i + π012

)
. (40b)

Note that the symmetry breaking scale f ′ may be different
than f , the symmetry breaking scale of the original coset
defined in Eq. (7). T -parity in the additional coset is realized
as an L ↔ R exchange, mirroring the 1 ↔ 2 exchange
symmetry of the original coset. Under T -parity,

�X → −�X , (41)

We introduce a non-linear representation of

[SU (2) ×U (1)]L × [SU (2) ×U (1)]R .

ψc is a doublet of the unbroken subgroup [SU (2) ×
U (1)]L+R , transforming non-linearly under

gL , gR ∈ [SU (2) ×U (1)]L × [SU (2) ×U (1)]R,

ψc → V (�X , gL , gR)ψc, (42a)

V ∈ [SU (2) ×U (1)]L+R . (42b)
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The transformation properties under [SU (2) × U (1)]L ×
[SU (2) ×U (1)]R of ei�X / f ′

in this case are

ei�X / f ′ → gLe
i�X / f ′

V † = Vei�X / f ′
g†
R . (43)

This object can be used to “dress”ψc as linear representations

ei�X / f ′
ψc → gL(ei�X / f ′

ψc), (44a)

e−i�X / f ′
ψc → gR(ei�X / f ′

ψc). (44b)

Finally the mass term can be written as [32]

L 
 (ψ1e
i�X / f ′ − ψ2�0e

−i�X / f ′
)ψc + h.c. (45)

This extension allows us to add a single SU (2) doublet to
the spectrum, ψc, and write a mass term for the T -odd dou-
blet, without any explicit breaking of the global symmetry. In
additional to the 14 original NGB’s of Eq. (6), our spectrum
includes now an additional NGB’s, a real singlet 10 and a
real triplet 30.

2.2 Gauge sector

We write the Lagrangian for the non-linear σ model

Lnlσ = f 2

8
Tr[(Dμ�)(Dμ�∗)] + f ′

4
Tr[(DμX)(DμX†)].

(46)

We parameterize �, X using the NGB’s as defined in Eq. (7)
and Eq. (40). The exact form of the covariant derivatives can
be found in App. Appendix A

Once we set �, X to their respected VEV’s, we find that
the following linear combinations,

Wa
H = 1√

2
(Wa

1 − Wa
2 ), BH = 1√

2
(B1 − B2), (47)

acquire a mass

M2
WH

= g2 f 2(1 + r2), M2
BH

= 1

5
g′2 f 2

(
1 + 1

5
r2
)

, (48)

with

r ≡ f ′

f
. (49)

We recognize the orthogonal linear combinations,

Wa = 1√
2
(Wa

1 + Wa
2 ), B = 1√

2
(B1 + B2), (50)

as the SM gauge fields.

2.3 Goldstone sector

In addition to the complex Higgs doublet H and the charged
triplet 	, the Goldstone sector includes additional physical

states: a real singlet s and a real triplet ϕ ≡ 1
2ϕaσ

a , defined
as the following linear combinations

s = c0π0 + s0φ0, ϕa = c3τa − s3πa, (51)

with the mixing angles

s0 =
√

1 − c2
0 ≡ r√

5 + r2
, (52a)

c3 =
√

1 − s2
3 ≡ r√

1 + r2
. (52b)

The orthogonal linear combinations,

G0 = −s0π0 + c0φ0, Ga = s3τa + c3πa, (53)

are “eaten” by the heavy gauge fields and removed from the
spectrum in the unitary gauge.

2.4 Matter sector

The top Yukawa generates the largest quadratically divergent
contribution to the Higgs mass, therefore we limit our dis-
cussion to the third quark family. The terms in the top sector
must respect enough of the global symmetries in order for
the Higgs mass to be protected from 1-loop quadratically
divergent contributions. This mechanism is usually referred
to as “collective” symmetry breaking. In order to respect
these symmetries we enlarge the multiplets introduced in
Eq. (16) and introduce top partners. The quadratically diver-
gent contribution to the Higgs mass from these top partners
would eventually cancel out with the top contribution. We
start by introducing left-handed Weyl fermions. We embed
the doublets ψ1,2 with the singlets χ1,2 (the top partners) in
incomplete SU (5) multiplets

�1 =
⎛
⎝

ψ1

χ1

0

⎞
⎠

5

, �2 =
⎛
⎝

0
χ2

ψ2

⎞
⎠

5

. (54)

Under T -parity,

�1 → 
�0�2, (55)

or equivalently

ψ1 ↔ ψ2, χ1 ↔ −χ2. (56)

We introduce 3 right-handed singlets denoted by t̃R, τ1,2.
Under T -parity,

t̃R ↔ t̃R, τ1 ↔ τ2. (57)

The top Yukawa is given by [13,30]

Ltop = λ1 f

2

(
�1i Oi + (�2
�0)i Õi

)
t̃R (58a)

+λ2 f√
2

(
χ1τ1 − χ2τ2

)+ h.c,

Oi ≡ εi jk� j4�k5, Õi ≡ εi jk�̃ j4�̃k5. (58b)
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�̃ is defined in Eq. (12). The indices i, j, k are summed over
1, 2, 3. We define the T -parity eigenstates

�+ = 1√
2

(�1 + 
�0�2) ≡
⎛
⎝

σ2QL

χ+
0

⎞
⎠ , (59a)

�− = 1√
2

(�1 − 
�0�2) ≡
⎛
⎝

σ2ψ
−
L

T−
L
0

⎞
⎠ , (59b)

with

QL =
(
t̃L
bL

)
= 1√

2
σ2(ψ1 + ψ2), (60a)

ψ−
L = 1√

2
σ2(ψ1 − ψ2). (60b)

The singlet T -parity eigenstates are defined as

χ+ = 1√
2

(χ1 − χ2) , τ+ = 1√
2

(τ1 + τ2) , (61a)

T−
L = 1√

2
(χ1 + χ2) , T−

R = 1√
2

(τ1 − τ2) . (61b)

Note that the T -even fields, and in particular t̃L , t̃R , are not
the mass eigenstates (hence the tilde). After the Higgs field
acquires its VEV, 〈H〉 = 1√

2
(0, v)T , we find the following

mass matrix for the T -even fermions

Ltop 
 f
(
t̃ L χ+

)( λ1sv
2 0

λ1(1+cv)
2
√

2
λ2√

2

)(
t̃R
τ+

)
+ h.c. (62)

We denoted

sv = sin
√

2ξ, cv = cos
√

2ξ, ξ ≡ v2

f 2 . (63)

The physical basis is given by

(
tL
T+
L

)
=
(
cL −sL
sL cL

)(
t̃L
χ+

)
, (64a)

(
tR
T+
R

)
=
(
cR −sR
sR cR

)(
t̃R
τ+

)
, (64b)

with sin θL/R ≡ sL/R and cos θL/R ≡ cL/R . The mixing
angles are given by [31]

θL = 1

2
tan−1

(
2
√

2λ2
1sv(1 + cv)

4λ2
2 + (1 + cv)2λ2

1 − 2λ2
1sv

)
, (65a)

θR = 1

2
tan−1

(
4λ1λ2(1 + cv)

4λ2
2 − λ2

1(2s
2
v + (1 + cv)2)

)
. (65b)

The masses at leading order in ξ are

m2
t = 1√

2

⎛
⎝ λ1λ2√

λ2
1 + λ2

2

⎞
⎠√ξ f, (66a)

mT+ =
√

λ2
1 + λ2

2√
2

f. (66b)

The top Yukawa coupling at leading order in ξ is therefore

yt = λ1λ2√
λ2

1 + λ2
2

. (67)

We shall keep λ2 as a free parameter and fix λ1 to produce
the correct top Yukawa yt ≈ 1. The mixing angles at leading
order in ξ are

sL = λ2
1

λ2
1 + λ2

2

√
ξ =

(
yt
λ2

)2√
ξ, (68a)

sR = λ1√
λ2

1 + λ2
2

= yt
λ2

. (68b)

For the T -odd sector we must introduce a mass term for
the doublet similar to the term in Eq. (45). We intro-
duce a RH doublet ψ−

R transforming non-linearly under
[SU (2) × U (1)]L × [SU (2) × U (1)]R according to
the CCWZ formalism. ψ−

R is odd under T -parity

ψ−
R → −ψ−

R . (69)

The mass term is given by [32]

Lκ = κ f√
2

(
ψ1σ2e

i
f ′ �X − ψ2σ2e

− i
f ′ �X

)
ψ−

R + h.c. (70)

Our spectrum contains a T -odd singlet T− and a T -odd dou-
blet ψ− with the following masses

mT− = λ2√
2
f, mψ− = κ f. (71)

Lastly, the explicit form of the kinetic terms can be found in
App. Appendix A.

3 Scalar potential

At tree level, the pNBG’s interact only through derivative
interactions and their classical potential vanishes. The gauge
and top sector couplings explicitly break the global sym-
metry. The classical scalar potential is radiatively generated
from fermion and gauge loops. At 1-loop the fermion and
gauge loops contributions are given by [37]
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V f (H,	, s, ϕ) = − Nc

8π2 �2a1 Tr
[
M f M

†
f

]

− Nc

16π2 a2Tr

[(
M f M

†
f

)2
log

(
M f M

†
f

�2

)]
, (72a)

VV(H,	, s, ϕ) = 3

32π2 �2a3 Tr
[
M2

V

]

+ 3

64π2 a4Tr

[
M4

V log

(
M2

V

�2

)]
, (72b)

respectively. M f (H,	, s, ϕ) and M2
V(H,	, s, ϕ) are the

fermion and gauge bosons mass matrices in the background
of the pNGB’s. The ai parameters with i = 1, .., 4 are
unknown O(1) numbers originating from unknown UV con-
tributions to these operators. � ∼ 4π f is the cutoff scale of
the theory. Expanding the scalar potential V = V f + VV in
the NGB fields, we find that

V = m2
	Tr[	†	] − μ2|H |2 + m2

ϕTr[ϕ2] + λ|H |4
+λDMs2|H |2 + λϕsH

†ϕH + .... (73)

We have omitted additional radiatively generated operators
that are inconsequential for the upcoming discussions. A
detailed analysis of the symmetries of the scalar potential
of this model can be found in Appendix 1. In this section we
summarize the most important features of the scalar poten-
tial.

The mass of the charged triplet 	 is quadratically diver-
gent,

m	 ∼ a few TeV. (74)

We consider energy scales well below m	. We remove 	

from our spectrum by integrating it out. Due to T -parity,
integrating out 	 at tree-level does not influence any of the
couplings explicitly written in the scalar potential of Eq. (73).
Like m2

	, the Higgs quartic λ is generated by 1-loop quadrat-
ically divergent diagrams.

The rest of the operators in Eq. (73), including the Higgs
mass term μ2, are generated through logarithmically diver-
gent loops, and as such they exhibit a mild dependence
on the UV cutoff scale. The explicit calculations, found in
Appendix 1, give us an order of magnitude estimation for
the IR contribution to these operators at 1-loop. However
quadratically divergent 2-loop diagrams as well as UV con-
tributions can have comparable effects on these operators.
Therefore we do not presume to be able to predict these cou-
plings accurately in terms of the fundamental parameters of
this model. In this work we treat the couplings in Eq. (73) as
free parameters, except μ2 and λ which are already fixed by
experiment. Our goal is to allow the free parameters to take
values that are reasonable in light of the approximation given
by the 1-loop IR contribution, and state explicitly when this
is not the case.

In addition tom2
ϕ, λDM, λϕ , we must introduce a mass term

for the singlet s. The singlet remains massless at 1-loop, and
a mass for s is generated at the 2-loop level. We take the
pre-EWSB mass term of the singlet, denoted as m̃2

s , as a free
parameter as well. The sizes and ranges of m2

ϕ, λϕ, m̃2
s , λDM

are dictated by the DM phenomenology and are discussed in
Sect. 6.

4 LHC phenomenology

4.1 T -even singlet T+

The T -even singlet is responsible for cancelling the quadrati-
cally divergent top loop contribution to the Higgs mass, hence
it is the standard top partner predicted by composite Higgs
models. It can be doubly produced at the LHC via QCD pro-
cesses, as well as singly produced with an associated third
generation quark through the following EW interactions

L 
 g

2
CbW T̄+

L
/WbL + g

2
CtZ T̄

+
L

/ZtL + h.c. (75)

In this model,

CbW = √
2sL ≈

√
2ξ

λ2
2

≈ 0.35

(
1

λ2

)2 (1 TeV

f

)
, (76a)

CtZ = sLcL
cW

≈
√

ξ

cWλ2
2

≈ 0.28

(
1

λ2

)2 (1 TeV

f

)
. (76b)

Decay modes

We consider the limit mT+ � mH ,mW ,mZ . In this regime
EWSB effects are negligible and we can formally take ξ →
0. The dominant decays of T+ are to the physical Higgs or
to the longitudinal components of the SM gauge bosons with
an associated third generation quark, in accordance with the
equivalence theorem. We can parameterize the Higgs field in
a general Rξ gauge using these would-be longitudinal com-
ponents as

H =
(

φ+
1√
2
(v + h + iφ0)

)
. (77)

The relevant interactions between the Higgs doublet and T+
are

Ltop 
 − 1√
2
λ1sR

(
t L(v + h + iφ0) − √

2bLφ+
)
T+
R , (78)

predicting that in the high energy limit,

Br[T+ → h t] : Br[T+ → Z t] : Br[T+ → W+ b]
= 1 : 1 : 2. (79)

The exact branching ratios T+ including EWSB and phase
space effects can be found on the left panel in Fig. 1.
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Fig. 1 Left panel : Numeric results for branching ratios of T+ for
f = 1 TeV. Right Panel: Numeric results for branching ratios of T− for
f = 1 TeV, r = 3 and ms = 200 GeV. The mass of BH is a function
of f, r , in this case mBH = 270 GeV

LHC searches

Single production T+ can be singly produced at the LHC in
association with a third generation quark. A recent search
from CMS [38] looked for (T+ → Z t)bq with a fully lep-
tonic Z decay. The search places a lower bound on the mass
of the singlet LH Top partner at 1.2 TeV, assuming negligi-
ble width and BR[T+ → Zt] = 0.25. The bound strongly
relies on a model-dependent production cross-section, which
in term depends on the coefficients of Eq. (76). In the CMS
search the coupling is fixed atCbW = 0.5. Conservatively we
consider the mT+ > 1.2 TeV bound at face value, although
we expect a smaller value forCbW , as can be seen in Eq. (76).
CbW is further suppressed for λ2 > 1, which is the region in
parameters space that, as we later show, is consistent with the
LHC constraints on the T -odd top partners masses. The mass
of the T -odd singlet is bound from below to bemT+ >

√
2 f .

The lower bound of 1.2 TeV can be trivially satisfied by tak-
ing f > 850 GeV.

Double production T+ can also be doubly-produced via
QCD processes. A recent search from ATLAS [39] looked
for a pair produced top partners in a range of final states,
assuming that at least one of the top partner decays to th.

The quoted nominal bound of the singlet top partner is

mT+ > 1.02 TeV. (80)

This bound can be satisfied by taking f > 700 GeV.

4.2 T -odd singlet T−

The phenomenology of the T -odd singlet resembles that of
a stop squark with conserved R-parity. It can be doubly pro-
duced at the LHC via QCD processes, and consequently
decay to tops and missing energy.

Decay modes

We consider the limit mT− � ms,mBH ,mt . T− couples to
the singlet φ0 of the original SU (5)

SO(5)
coset. In a general Rξ

gauge, φ0 is composed of the physical singlet and the would-
be longitudinal component of BH ,

φ0 = s0s + c0G0. (81)

The relevant interactions are

Ltop 
 iλ1

√
2

5

(
φ0T̄

−tR
)+ h.c

= iλ1

√
2

5

(
s0 s T̄−tR + c0 G0 T̄−tR

)+ h.c. (82)

Leading to the simple prediction in the high energy limit

�(T− → s t) : �(T− → BH t) =
(
s0

c0

)2

= r2

5
. (83)

The exact branching ratios of T− including EWSB and phase
space effects can be found on the right panel in Fig. 1.

LHC searches

We performed a simple recast of recent stop bounds by
accounting for the enhanced production cross section of the
fermionic T− relative to the scalar stop squark case. We
would like to account for the presence of the T -odd dou-
blet, which contributes to the same final states as T−. We
postpone the derivation of these bounds to Sect. 4.3.

4.3 T -odd doublet ψ−

The phenomenology of the T -odd doublet resembles that of
a mass-degenerate stop and sbottom squarks with conserved
R-parity. The upper (lower) component up ψ− can be doubly
produced at the LHC via QCD processes, and consequently
decay to tops (bottoms) and missing energy.
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Decay modes

We consider the limit wheremψ− � mBH ,mWH ,ms,mϕ . In
a general Rξ gauge, we can express our original pNGB’s in
terms of the physical pNGB’s and the would-be longitudinal
modes of the heavy gauge fields defined in Eqs. (51) and (53),
(

τ a

πa

)
=
(

c3 s3

−s3 c3

)(
ϕa

Ga

)
, (84a)

(
π0

φ0

)
=
(
c0 −s0

s0 c0

)(
s
G0

)
. (84b)

with the mixing angles c0, c3, s0, s3 defined in Eq. (52). The
relevant interaction in the ξ → 0 limit originate from Lκ .
For (ψ−

R )1,

Lκ 
 iκ

2

1

r

[
(c0s − s0G0)t L + (−s3ϕ3 + c3G3)t L

+√
2(−s3ϕ

− + c3G
−)bL

]
(ψ−

R )1, (85)

and similarly for (ψ R−)2,

Lκ 
 iκ

2

1

r

[
(c0s − s0G0)bL − (−s3ϕ3 + c3G3)bL

+√
2(−s3ϕ

+ + c3G
+)t L

]
(ψ−

R )2. (86)

In the high energy limit

Br[ψ− → q s] = c2
0

4
, Br[ψ− → q G0] = s2

0

4
, (87a)

Br[ψ− → q ϕ3] = 1

2
[ψ− → q ϕ±] = s2

3

4
, (87b)

Br[ψ− → q G3] = 1

2
[ψ− → q G±] = c2

3

4
. (87c)

with the final state with q = {b, t} depending on the electric
charge of the initial state. The exact branching ratios for ψ−
including EWSB and phase space effects can be found in
Fig. 2.

LHC searches

The T -odd sector contains two top-like and one bottom-like
fermions. We perform a recast of recent bounds on stop and
sbottom masses by accounting for the enhanced production
cross section of a fermionic colored top partner, along the
lines of [40] and [41]. The quoted bounds in Ref. [42] for the
stop and sbottom masses are

mt̃ ≥ 1070 GeV, mb̃ ≥ 1175 GeV, (88)

respectively. We denote the QCD pair production cross sec-
tion at

√
s = 13 TeV for a spin s coloured particle with mass

M as σ s
pair(M). We require that
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Fig. 2 Numeric results for the branching ratios of the upper
(lower) component of ψ− presented in the left (right) panel, with
f = 1 TeV, r = 3,ms = 200 GeV,mϕ = 1 TeV and λ2 = 2.5.
The masses of the heavy gauge boson are fixed at mBH = 270 GeV and
mWH = 2.1 TeV. The dashed colored lines indicate the branching ratios
to the different exclusive final states. The solid thick lines indicate the
sum of branching ratios with either a top (purple curve) or a bottom
(yellow curve) at the final state

σ 0
pair(1070 GeV) ≥ σ

1/2
pair (mT−) (89)

+ σ
1/2
pair (mψ−) × BR[(ψ−)1 → t + MET]

and

σ 0
pair(1175 GeV) ≥ σ

1/2
pair (mψ−) (90)

×BR[(ψ−)2 → b + MET],

with mψ− = κ f and mT− = λ2 f√
2

the masses of the T -
odd doublet and T -odd singlet top partners respectively. We
use σ 0

pair(M) reported by the CMS collaboration [43] and

σ
1/2
pair (M) calculated using HATHOR [44]. The combination

of Eqs. (90) and (90) in the (mψ− ,mT−) plane is plotted in
the left panel of Fig. 3. We conservatively assume all the
branching ratios to be 100%. We thus obtain the following
lower bounds on the T -odd fermion masses

mψ− ,mT− > 1.6 TeV. (91)
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Fig. 3 Left Panel: Exclusion limits (blue region) in the (mψ− ,mT− )

plane, using recasted limits from the CMS SUSY search of Ref. [42].
We impose the condition of Eqs. (90) and (90), assuming branching
ratios of 100%. Right Panel: Exclusion limits in the ( f, λ2) plane using
Ref. [42] (blue region, using the bound from Eq. (92)), Ref. [38] (orange
region) and Ref. [39] (green region)

The combination of all LHC constrains in the ( f, λ2) plane
is shown in the right panel of Fig. 3. We summarize the
constraints for the couplings for a for a given f ,

1.6 TeV

f
< κ < 4π, (92a)

Max

[
1,

2.3 TeV

f

]
< λ2 < 4π. (92b)

5 Electroweak precision tests

The main contributions to electroweak precision observ-
ables are unaffected by the extended coset structure. The

mixing in the left-handed sector generates a correction to
the T oblique parameter due to loops of the T -even singlet
T+ [31]

TT+ = TSM sL2
[
sL 2

xt
− 2 + sL2 − 2sL 2

1−xt
log xt

]
, (93)

with

TSM = 3

16π

1

s2
wc

2
w

m2
t

m2
Z

≈ 1.24, (94a)

xt ≡ m2
t

m2
T+

�

(
λ2

2 − 1

λ4
2

)
ξ, , (94b)

and

sL ≡ sin θL �

√
xt

λ2
2 − 1

. (95)

We express TT+ in terms of xt using Eq. (95). In light of the
LHC constrains on the T -even top partner mass of Eq. (80),
we expect xt ≤ 0.03 � 1. We therefore expand Eq. (93) to
leading order in xt :

TT+

TSM
≈
(

xt
λ2

2 − 1

)(
2 log

1

xt
+
[

1

λ2
2 − 1

]
− 2

)
(96a)

=
(

ξ

λ4
2

)(
2 log

[
λ4

2

(λ2
2 − 1)ξ

]
+
[

1

λ2
2 − 1

]
− 2

)
.

(96b)

An additional contribution to the T parameter is due to loops
of T -odd heavy gauge bosons. The correction is proportional
to the mass splitting after EWSB,

�m2
WH

≡ m2
W 3

H
− m2

W±
H

= 1

2
f 2g2 sin4

(√
ξ

2

)
, (97)

neglecting corrections of order O(g′2). The T -odd gauge
loops generate the following correction to the T parame-
ter [31]

TWH = − 9

16πc2
ws

2
wM2

Z

�m2
WH

log

(
�2

f 2g2(1 + r2)

)

= − 9

16πs2
w

ξ log

(
�

f g
√

1 + r2

)
. (98)

This correction is λ2 independent, and becomes the dom-
inant one for higher values of λ2 as TT+ → 0. We
assume that the UV contributions to these loop processes
are sub-leading with respect to the log-enhanced IR contri-
bution.

Let us mention that the oblique S and U parameters also
receive corrections due to the mixing the LH fermion sec-
tor. As noted in Ref. [31], the size of these corrections are
an order of magnitude smaller than the correction to the T
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Fig. 4 Combined EWPT and LHC exclusion regions in the ( f, λ2)

plane, for r = 3 and � = 4π f . The EWPT exclusion regions due
to T-parameter (blue region) and δgZb̄bL (orange region) are plotted at
the 3σ level using the results of Ref. [45], T = 0.12 ± 0.07 and
δgbb̄L = 0.002 ± 0.001. The LHC exclusion (green region) is due to
Ref. [42] using the lower bound of Eq. (92)

parameter and are therefore sub-leading. Additionally, the
Zb̄LbL vertex receives corrections due to T+ loops [31]

δgZb̄bL = g

cw

α

8πs2
w

m4
t

m2
Wm2

T+

(
1

λ2
2 − 1

)
log

m2
T+

m2
t

, (99)

with δgZb̄bL ≡ gZb̄bL − gZb̄bL SM and gZb̄bL SM = − 1
2 + s2

w

3 .
We constrain the parameters of the model using the results
of Ref. [45], namely

T = 0.12 ± 0.07, (100a)

δgZb̄bL = 0.002 ± 0.001. (100b)

The combinations of the EWPT and LHC constraints are
plotted in Fig. 4. For f � 1.5 TeV values of λ2 < 1.5
are excluded by LHC. The correction TT+ decreases as λ2

increases, and in the allowed regions we find that TWH �
TT+ . We conclude that the correction from T -odd gauge
loops to the T-parameter is the dominant constraint in the
allowed region where λ2 is large. We find the following lower
bound on f from Eq. (98) at 3σ after taking � = 4π f

f > (1240 GeV) ×
√

1 − 1

6
log(1 + r2)

≈ (970 GeV) × (1 − 0.08(r − 3))) . (101)

Therefore we set the lower bound on the symmetry breaking
scale to be f > 1 TeV.

6 Dark matter phenomenology

6.1 Spectrum

The lightest T -odd particle (LTP) in the spectrum is stable
and therefore a natural DM candidate. One possible LTP is
the gauge field BH . This possibility has been considered in
the past in the context of the original LHT model [46]. In
this work we explore the possibility of DM being part of
the composite scalar sector, in particular the singlet s. The
singlet mass ms is a free parameter in our model. The mass
mBH , given in Eq. (48), is of order O(200) GeV. The region
in which s is the LTP corresponds to r ∼ 2 − 3 and thus
would be the focus of our study. In this region we may safely
neglect co-annihilation effects of s with BH . Since larger
values of r correspond to heavier T -odd gauge bosons, there
is a small increase in the fine-tuning of the Higgs mass from
the gauge sector. We can easily see by comparing the loga-
rithmically divergent contributions to the Higgs mass from
the two sectors

μ2
gauge

μ2
top

∼ g4(1 + r2)

λ2
1λ

2
2

∼
(
g4

λ2
2

)
(1 + r2)

∼ a few precent × (1 + r2). (102)

that this increase is negligible compared to the dominant
source of tuning from the top sector.

6.2 Singlet-triplet mixing

The last term of the scalar potential in Eq. (73) induces mix-
ing between the singlet s and the neutral component of the
triplet ϕ3 after EWSB. The effects of singlet-triplet mixing on
the DM phenomenology have been considered in Ref. [47].
We focus on the composite nature of the singlet DM. For sim-
plicity, we limit ourselves to the region in parameter space
where we may neglect the mixing effects. The mixing angle
is given by

sin2 θsϕ = 1

2

[
1 −

√
1

1 + t2

]
= t2

4
+ O(t4), (103a)

t ≡ 1

2

λϕv2

|m2
ϕ − m2

s |
. (103b)

Assuming for simplicity thatms ∼ v, λϕ ∼ 1 and demanding
conservatively that sin θsϕ < 5%, we find the following
lower bound

mϕ

ms
� 2.5, (104)
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which implies mϕ � 600 GeV, consistent with current col-
lider bounds.1 We note that the assumption λϕ ∼ 1 as well as
the lower bound onmϕ are consistent with the IR contribution
of Eq. (73) to these operators. We find that the operator corre-
sponding to λϕ enjoys an accidental factor ∼ 5 enhancement
to its coefficient in the CW potential. The IR contributions
can be found in Appendix 1 in Eqs. (B.47) and (B.48). We
conclude that a moderate mass separation is sufficient in order
to neglect the singlet-triplet mixing effects.

6.3 Annihilation cross section

The DM relic abundance is calculated by solving the Boltz-
mann equation for the particle density [50]

ṅs + 3Hns = −〈σv〉
[
n2
s − (nEQ

s )2
]
. (105)

The thermally averaged cross section for a non-relativistic
gas at temperature T is given by [51]

〈σv〉 =
∫∞

4m2
s

ds σ(s − 4m2
s )

√
sK1(

√
s/T )

8m4
s T K 2

2 (m/T )
, (106)

and the usual approximation yields [50]


sh2

0.12
≈
(

3 × 10−26 cm3 s−1

〈σv〉
)

=
(

1 pb c

〈σv〉
)

. (107)

The measured DM relic abundance is [52]


DMh2 = 0.1199 ± 0.0027. (108)

In the following we consider three types of interactions rel-
evant to our model that determine the annihilation cross sec-
tion, the Higgs portal, the derivative couplings and the contact
term [5,6].

6.3.1 Higgs portal

Due to the explicit breaking of the global symmetry, the scalar
potential of Eq. (73) is generated radiatively, and in particular
the following operators are present in the theory

L 
 −1

2
m̃2

s s
2 − λDMs2H†H. (109)

λDM is the usual Higgs portal coupling of the singlet DM
model [53–55]. The Higgs mediates s-channel annihilation
to SM gauge fields and fermions. The annihilation channel
ss → hh is also possible via the s,t and u channels as well as
directly via the dimension 4 operator s2h2. We assume that

1 The LHC phenomenology of ϕ resembles that of the Wino, which
implies that the charged components can be doubly produced via elec-
troweak processes and decay to W± and missing energy. However, the
relevant SUSY searches, e.g [48,49], do not pose strong constraints on
mϕ , especially in light of the reduced production cross section of the
scalar triplet in comparison to the fermionic Wino.

freeze-out occurs after the EW phase transition. In unitary
gauge, we can rewrite Eq. (109) as

L 
 −1

2

(
m̃2

s + λDMv2
)
s2 − λDMv s2h − λDM

2
s2h2.

(110)

We define the physical mass of the singlet

m2
s ≡ m̃2

s + λDMv2. (111)

As discussed in Sect. 3, we take ms, λDM to be free parame-
ters. We note a posteriori that the phenomenologically viable
regions not excluded by direct detection have λDM � 1%.
The naive IR contribution to λDM is O(10%). To obtain a
viable model we assume that additional contributions gener-
ate cancellations of order a few in order for the Higgs portal
coupling to take smaller values. These additional contribu-
tions can originate from UV physics, e.g loops of heavier
resonances, and higher loop order diagrams containing the
lightest top partners . The latter can be quadratically depen-
dent on the UV scale, since we expect the collective break-
ing mechanism to break down at higher loop order. These
additional contributions are expected to be comparable to
the leading logarithmic contributions, allowing a substantial
cancelation with the leading order contributions to take place
in some parts of parameter space.

6.3.2 Goldstone derivative interaction

The kinetic term of the non linear sigma model of Eq. (46)
contains derivative interactions among the Goldstone fields,
in particular

Lnlσ 
 5s2
0

12 f 2

[
s(∂μs)∂

μ(H†H) − s2(∂μH†∂μH)

−(∂μs)
2H†H

]
. (112)

These derivative interactions scales like m2
s/ f

2, and we
expect them to become increasingly stronger for heavier DM
masses or lower values of f . They affect all the annihilation
channels of the Higgs portal couplings, typically resulting in
destructive interferences [5]. We discuss this effect in detail in
Sect. 6.4. As r increases, s0 increases and approaches unity.
This is equivalent to decreasing the effective scale of this
operator f̃ = f/s0, thus making these interactions stronger
for lower DM masses.

6.3.3 Contact term

The non-renormalizable nature of the theory and the mixing
in the top sector leads to the appearance of the following
contact term,

Ltop 
 cs2 t̄ t

f
s2 t̄ t. (113)
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with

cs2 t̄ t = −yt s
2
0

(
2
√

2

5

)(
cL

(
7
√

ξ

12

)
+ sL

)
. (114)

As opposed to the standard singlet DM which interacts with
the SM only through the Higgs portal, this dimension 5 oper-
ator allows the singlet to annihilate directly into tops without
the mediation of the Higgs. Similarly to the derivative inter-
actions, the contact term becomes increasingly important at
higher energies. At leading order in ξ , we obtain

cs2 t̄ t ≈ s2
0

(
7

15
√

2

)√
ξ

(
1 + 12

7λ2
2

)
+ O(ξ). (115)

As r increases, the effective scale of this operator f̃ = f/
√
s0

decreases, thus making this interaction stronger for lower DM
masses.

6.4 Relic abundance

We can characterize the DM phenomenology in 3 distinct
mass regions, see also [56]. In the first region where ms �√

λDM f , all the effects of the interactions originating from
higher dimensional operators, namely the derivative inter-
actions and contact term, are negligible compared to the
portal coupling interaction. The DM phenomenology in this
region coincides with the standard singlet DM [53–55]. In
regions where ms ∼ √

λDM f , the effect of higher dimen-
sional operators becomes comparable with the marginal por-
tal coupling operator. In particular we find a destructive inter-
ference between the Higgs portal coupling and the derivative
interactions. Lastly, for heavy DM masses ms � √

λDM f ,
the higher dimensional derivative operators dominate. For
the following discussion it would be useful to parameterize
the thermal cross section as

〈σv〉 = σ0 (x)
[
(λDM − f1 (x))2 + f2(x)�(ms − mt )

]
,

x ≡ ms

f
. (116)

σ0, f1, f2 are monotonically increasing functions of x . Fur-
thermore, σ0, f1, f2 depend in general on f, r, λ2. f1(x)
parametrizes the destructive effects of the dimension 6 oper-
ator of Eq. (112), hence we expect f1 ∼ x2 . f2(x) accounts
for the dimension 5 operator of Eq. (113), which allows the
singlet to annihilate into two tops independently of the Higgs
interactions, therefore we expect f2 ∼ x .

6.4.1 Portal coupling dominance

In regions of parameter space where

ms � √
λDM f, (117)

the composite features of the DM are negligible, and the
phenomenology is that of the standard singlet DM [53–
55], where irrelevant operators are irrelevant. In this area
of parameter space, the thermally averaged cross section is
approximately

〈σv〉 ≈ σ0 (x) λ2
DM, (118)

and the observed relic abundance is produced for

λ+
DM(x) ≈

√
1 pb

σ0 (x)
. (119)

For λDM < λ+
DM the singlet is over-abundant. These regions

are experimentally excluded. In the range λDM > λ+
DM the

singlet is under-abundant. In this region an additional source
of DM must be present in order to account for the observed
relic abundance. For a fixed value of f , this region is charac-
terized by a large portal couplings or small DM masses. The
mass region ms < mh/2 is severely constrained by the LHC
due to the Higgs invisible width to singlets. For ms ≈ mh/2,
the Higgs mediator is resonantly produced and λDM must be
extremely suppressed in order to produce the correct relic
abundance, making this finely tuned region hard to probe
experimentally. We shall focus on DM masses above mh/2
the avoid the above-mentioned issues.

This region can be seen in the left panel of Fig. 5 where
ms < 150 GeV. In this region the total annihilation cross sec-
tion for a fixed portal coupling decreases withms , as expected
in the standard singlet DM scenario for ms > mh/2. In the
right panel of Fig. 5, the portal coupling dominance region
is to the right of the minima of the curves. In this region, for
a fixed value of the mass, the total annihilation cross section
increases with λDM.

6.4.2 Contact term dominance

In region of masses where

ms ∼ √
λDM f, (120)

the derivative interactions and Higgs portal are compara-
ble. In this region λDM ∼ x2 ∼ f1(x) such that the portal
coupling and derivative interactions interfere destructively,
implying that

〈σv〉 ≈ σ0 f2(x)�(ms − mt ). (121)

In regions where x < mt/ f , 〈σv〉 becomes arbitrarily small
and the singlet is over-abundant. This parameter space is
experimentally excluded. In the range where x > mt/ f we
find that 〈σv〉 is positive since the singlet is kinematically
allowed to decay into tops. For a particular value x = xmax

defined by

σ0(xmax) f2(xmax) = 1 pb, (122)
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the observed relic abundance is produced. In the parameter
space where mt/ f < x < xmax we find that 〈σv〉 < 1 pb and
the singlet is over-abundant. This range is also experimentally
excluded. For coupling and masses such that xmax < x we
find that 〈σv〉 > 1 pb and the singlet is under-abundant.
In this region an additional source of DM must be present
in order to account for the observed relic abundance. We
conclude that for a given point in (λ2, r, f ) parameter space,
the largest DM mass for which the singlet can account for
the entire DM relic abundance is therefore given by mmax

s =√
xmax f .
The relevant parameter space in the left panel of Fig. 5

corresponds to the region where ms ∼ 220 GeV, close to
the minimal value of the cross section. The annihilation to
the Higgs and gauge bosons is effectively suppressed by
the destructive interference between the portal coupling and
the derivative interactions. As this suppression occurs where
ms > mt , the remaining annihilation cross section is exclu-
sively to tops. In the right panel of Fig. 5, the minima of the
different curves are precisely mapped to this area of maximal
interference. For the fixed mass ms = 150 GeV, the singlet is
not allowed kinematically to decay into tops and the annihi-
lation cross section vanishes. Conversely, forms = 200 GeV
the decay into tops is allowed and the annihilation cross sec-
tion is dominated by the contact term. Lastly, the minimum of
the curve corresponding to ms = 250 GeV is approximately
1 pb, meaning that for this particular point in the (λ2, r, f )
parameter space, xmax ≈ 250/1000 = 1/4.

6.4.3 Derivative interaction dominance

In the regions of parameters space where

ms � √
λDM f, (123)

the irrelevant operators, namely the dimension 6 operators
corresponding to the derivative interactions, are dominat-
ing, and the annihilation cross section grows with the singlet
mass. The observed relic abundance is produced for

λ−
DM ≈ f1(x) −

√
1 pb

σ0 (x)
− f2(x)�(ms − mt ) (124)

for x > xmin, with xmin defined by

f1(xmin) =
√

1 pb

σ0 (xmin)
− f2(xmin)�

(
xmin − mt

f

)
. (125)

For x ∼ xmin the correct relic abundance is recovered with
λ−

DM � 1 and with DM mass mmin
s ≡ √

xmin f . The nuclear
cross section is typically ∼ 10−11 pb, beyond the reach of
current direct detection experiments. For λDM > λ−

DM the
singlet is over-abundant. This regions are experimentally
excluded. In the region λDM < λ−

DM the singlet is under-

Fig. 5 Left panel: The thermally averaged cross section as a function
of the DM mass ms for λDM = 0.07, f = 1000 GeV, r = 3 and
λ2 = 3. The dashed line at 〈σv〉 = 1 pb represents the cross section
that produces the correct relic abundance according to Eq. (107). Right
panel: The thermally averaged cross section as a function of λDM for
different values of ms with f = 1000 GeV, r = 3 and λ2 = 3. The
dashed line at 〈σv〉 = 1 pb represents the cross section that produces
the correct relic abundance according to Eq. (107)

abundant. In this region an additional source of DM must be
present in order to account for the observed relic abundance.

In the left panel of Fig. 5, the derivative interactions
become dominant at ms > 225 GeV. The total annihila-
tion cross section increases with ms for a fixed λDM, and
the annihilation channels to the Higgs and gauge bosons
become dominant compared to the annihilation channel to
tops. In the right panel of Fig. 5 the derivative interactions
dominance region can be identified to the left of the minima,
where λDM is small. The annihilation cross section increases
as λDM decreases. In this region smaller values of λDM cor-
respond to smaller destructive interference between the por-
tal coupling and the derivative interactions, and therefore an
increased overall annihilation cross section. For the curve
corresponding to ms = 150 GeV, we see that λ+

DM ≈ 0.065
and λ−

DM � 1, meaning that for this particular point in the
(λ2, r, f ) parameter space, xmin ≈ 150/1000 = 0.15.

6.5 Direct detection

The model was implemented using FeynRules [57] and
exported to micrOMEGAs [58]. The strongest direct detec-
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Fig. 6 Singlet relic abundance in the ms , λDM plane for f = 1 TeV
(left), f = 1.2 TeV (middle) and f = 1.4 TeV (right), for fixed r = 3
and minimal λ2 ∼ 2300 GeV

f . The solid blue lines represent areas where

s = 
DM. The blue areas are regions where 
s > 
DM, and there-
fore are excluded. The grey regions are excluded by XENON1T [59]
after 34.2 live days. The Dashed lines are the projected sensitivities for
XENON1T at 1.1yrs × Ton[60]

tion bounds are due to XENON1T [59] after 34.2 live days.
Scan results for this model can be seen in Fig. 6. The two
branches appearing in each panel represent the two possi-
ble solutions for λDM for each mass value which produce
the observed relic abundance. The branches meet at some
maximal DM mass, above which the singlet is always under-
abundant. The upper branch is ruled out by direct detection.
Some of the lower branch is still consistent with experimen-
tal bounds. In the region where ms ≈ √

xmin f , λDM can

100 120 140 160 180 200 220 240
1.× 10- 4

5.× 10- 4
0.001

0.005
0.010

0.050
0.100

Fig. 7 The effects of changing r and λ2 on the relic abundance curves,
shown as solid curves. The dashed curves represent the XENON1T [59]
bounds after 34.2 live days. Increasing r has similar effects to lowering
f - the coefficients of the non-renormalizable terms increase and their
effect is noticeable at lower DM masses. Increasing λ2 reduces the size
of the coefficient of the dimension 5 contact term, therefore increasing
mmax

s = √
xmax f

be arbitrarily small, thus avoiding direct detection. In this
regions, the theory gives a sharp prediction for the DM mass.
At mentioned previously, the naive IR contribution to λDM

is too big and of O(10%). We therefore assume that addi-
tional contributions from UV physics and higher loops gen-
erate mild cancellations, allowing this coupling to take the
allowed O(1%) values.

The impact of varying λ2, r for a fixed value of f can
be seen in Fig. 7. The largest effect is seen for increasing r ,
which in turn raises the importance of the non-renormalizable
interactions at lower DM masses. A smaller effect due to
the increase of λ2 can be seen in the meeting point of the
two branches. Larger values of λ2 decrease the contact term,
pushing mmax

s = √
xmax f to higher values.

7 Conclusions

In this work we have presented a viable composite dark mat-
ter (DM) candidate within the Littlest Higgs with T -parity
framework. We started by motivating a minimal extension of
the original coset which allows the T -odd doublet to acquire a
mass without introducing additional sources of explicit sym-
metry breaking. The extended coset contains a T -odd elec-
troweak singlet. This singlet is naturally light and therefore
it is reasonable to assume it is the lightest T -odd particle,
which insures its stability.

The top sector is implemented using a collective breaking
mechanism, insuring the absence of quadratically divergent
contribution to the Higgs mass at 1 loop. T -parity implies
a rich LHC phenomenology: in addition to the usual (T -
even) top partners, the top sector contains T -odd top part-
ners. This T -odd top partners can be doubly produced via

123



104 Page 16 of 20 Eur. Phys. J. C (2018) 78 :104

QCD in the LHC and decay to standard model (SM) parti-
cles and missing energy. We have derived lower bounds on
the masses of the T -even and T -odd top partners from various
LHC searches. When combined with electroweak-precision-
test (EWPT) bounds, we derived a set of constraints on the
parameter space of the model.

We examined the DM phenomenology of the composite
singlet DM within the allowed parameter space. The usual
“elementary” singlet DM scenario is heavily constrained
by direct detection experiments. In the composite singlet
DM scenario, the composite nature of the DM allows it to
escape detection in areas with O(1%) portal coupling, while
still producing the observed relic abundance via its deriva-
tive interactions with the Higgs. The “elementary” singlet
can only hide in the finely tuned “resonance” valley where
ms ≈ mh/2. Conversely, the composite singlet can exist in
a broader region, corresponding to different values of f and
r , in which it can evade detection. In these regions the cor-
rect relic abundance can be produced only due to the deriva-
tive interactions. The small portal coupling needed in these
regions would in general require some mild amount of fine
tuning, unless one can find a way to suppress it e.g using
symmetries or additional dynamics.
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Appendix A:The complete Lagrangian

The model is defined by the global symmetry

G = SU (5) (A.1)

× [SU (2)L ×U (1)L ] × [SU (2)R ×U (1)R] ×U (1)Q .

A global unbroken U (1)Q is added in order to fix the
hyper charges of the matter fields. SU (5) contains two
SU (2) × U (1) subgroups defined in Eqs. (5a) and (5b),
denoted by [SU (2) × U (1)]1/2. We gauge the following
subgroup

SU (2)1+L ×U (1)1+L+Q × SU (2)2+R ×U (1)2+R+Q .

(A.2)

We implicitly include SU (3)c as an external gauge symme-
try. We introduce fields in representations of G denoted by
(R,RL ,RR)qL ,qR ,qQ . A generic representation of Eq. (A.1)
is mapped under T -parity to

(R,RL ,RR)qL ,qR ,qQ → (R,RR,RL)qR ,qL ,qQ . (A.3)

The representation R is defined by the automorphism of
Eq. (9). The Lagrangian is described by the following sum

L = Lgauge + Lkin + Ltop + Lκ . (A.4)

The gauge kinetic terms are given as usual by

Lgauge = − 1

4

∑
i=1,2

Wμν
ia W ia

μν − 1

4

∑
i=1,2

Bμν
i Bi

μν

− 1

4
Gμν

a Ga
μν. (A.5)

We introduce two scalar fields with the following G repre-
sentation

� : (15, 1, 1)0,0,0, X : (1, 2, 2)qX ,−qX ,0. (A.6)

The charges of X under U (1)L × U (1)R are constrained
by the requirement to preserve the T -even combination
U (1)R+L . We determine the value of qX in Eq. (A.21). The
global symmetry is spontaneously broken by the VEV’s of
� and X with the following coset structure

SU (5)

SO(5)
× [SU (2) ×U (1)]L × [SU (2) ×U (1)]R ×U (1)Q

[SU (2) ×U (1)]L+R ×U (1)Q
.

(A.7)

We parametrize � and X following Eqs. (7) and (40) and
write down the kinetic terms of the non-linear sigma model

Lnlσ = f 2

8
Tr[(Dμ�)(Dμ�∗)] + f ′2

4
Tr[(DμX)(DμX†)],

(A.8)

with

D� = ∂� − i
∑
i=1,2

giW
a
i (Qa

i � + �Qa
i
T
)

−i
∑
i=1,2

g′
i Bi (Yi� + �Yi

T ), (A.9)

DX = ∂X − i

2
(g1W

a
1 σ a X − g2W

a
2 Xσ a)

−iqX (g′
1B1 − g′

2B2). (A.10)

T -parity dictates that

g1 = g2 = √
2g, g′

1 = g′
2 = √

2g′, (A.11)

with g, g′ the SM gauge couplings.
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The matter sector contains the following linearly trans-
forming fields

�1 =
⎛
⎝

ψ1

χ1

0

⎞
⎠ : (5, 1, 1)0,0, 1

3
, (A.12a)

�2 =
⎛
⎝

0
χ2

ψ2

⎞
⎠ : (5, 1, 1)0,0, 1

3
, (A.12b)

and

τ1 : (1, 1, 1) 8
15 , 2

15 ,0, (A.13a)

τ2 : (1, 1, 1) 2
15 , 8

15 ,0, (A.13b)

t̃R : (1, 1, 1)0,0, 1
3
. (A.13c)

We introduce a non linearly transforming doublet ψ−
R . Non-

linear representations are described in terms of representa-
tions of the unbroken subgroup

H = SO(5) × SU (2)L+R ×U (1)L+R ×U (1)Q . (A.14)

ψ−
R transforms non-linearly under the full global group G

using the CCWZ formalism. In our case

ψ−
R : (1, 2)qX ,qψ under H. (A.15)

TheU (1)Q charge of ψ−
R , denoted here by qψ , is determined

in Eq. (A.21). qX is the same charge appearing in Eq. (A.10).
Under T -parity,

�1 → 
�0�2, τ1 ↔ τ2, (A.16a)

t̃R → t̃R, ψ−
R → −ψ−

R . (A.16b)

The U (1) charge assignments are fixed by matching the
required SM hyper charges and requiring that all the gauged
U (1) symmetries are conserved. The SM hyper charge is
given by

YSM = Y1 + Y2 + qL + qR + 2qQ . (A.17)

e.g for ψ1,

YSM = − 3

10
− 2

10
+ 0 + 0 + 2 × 1

3
= 1

6
. (A.18)

Let us determine the qX and qψ charges.

Defining U ≡ e
i�X
f ′ , the combinations Uψ−

R and U †ψ−
R

transform linearly under the global group

Uψ−
R : (1, 2, 1)qX ,0,qψ , U †ψ−

R : (1, 1, 2)0,qX ,qψ . (A.19)

Using these identifications as linear representations, it is clear
that conservation of U (1)1+L+Q and U (1)2+R+Q , e.g in the
first term of Eq. (70), requires

−
(

− 3

10
+ 1

3

)
+ qX + qψ = 0 (A.20)

and

−
(

−1

5
+ 1

3

)
+ qψ = 0 → qψ = 2

15
, qX = − 1

10
.

(A.21)

We introduce the kinetic terms

Lkin = i
∑
i=1,2

� i /D�i + i
∑
i=1,2

τ i /Dτi

+i t̃R /Dt̃R + iψ−
R

/Dψ−
R . (A.22)

The kinetic term for the non-linearly transforming doublet
ψ−

R is given by

Dμψ−
R = (∂μ + eμ − iqψ(g′

1B1μ + g′
2B2μ))ψ−

R . (A.23)

The eμ ≡ eiμT
i symbol of the CCWZ formalism connects

the non-linearly transforming field and the NGB’s via the
matrix U [34,35]

U †(DμU ) ≡ d j
μX

j + eiμT
i , (A.24a)

DμU =
(

∂μ − ig1W
a
1

σ a

2
− iqX g

′
1B1

)
. (A.24b)

Using the automorphism defined by T -parity we can also
write

U (DμU
†) ≡ −d j

μX
j + eiμT

i , (A.25a)

DμU
† =

(
∂μ − ig2W

a
2

σ a

2
− iqX g

′
2B2

)
. (A.25b)

This automorphism allows us to write the eμ symbol in terms
of the pion matrix U and the gauge fields

eμ = 1

2

(
U †DμU +UDμU

†
)

. (A.26)

The covariant derivatives of �1 and �2 are

Dμ�1 =
(

∂μ + i
∑
i=1,2

[giWa
iμQ

a∗
i + g′

i BiμY
∗
i ]

− i

3
(g′

1B1μ + g′
2B2μ)

)
�1, (A.27)

Dμ�2 =
(

∂μ − i
∑
i=1,2

[giWa
iμQ

a
i + g′

i BiμYi ]

− i

3
(g′

1B1μ + g′
2B2μ)

)
�2. (A.28)

The covariant derivative of a singlet field χ transforming as
(1, 1, 1)qL ,qR ,qQ is given by

Dμχ = (∂μ − i(qL + qQ)g′
1B1μ − i(qR + qQ)g′

2B2μ)χ.

(A.29)
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For completeness we report the top sector Lagrangian

Ltop = λ1 f

2

(
�1i Oi + (�2
�0)i Õi

)
t̃R

+λ2 f√
2

(
χ1τ1 − χ2τ2

)+ h.c, (A.30a)

Oi ≡ εi jk� j4�k5, Õi ≡ 2εi jk�̃ j4�̃k5, (A.30b)

and the terms that gives the T -odd doublet combination a
mass

Lκ = κ f√
2

(
ψ1σ2U − ψ2σ2U

†
)

ψ−
R + h.c. (A.31)

Appendix B:The scalar potential and its symmetries

In this appendix we discuss in detail the symmetry structure
of the model and the scalar potential. The Higgs doublet is
protected by two different shift symmetries. Each of the shift
symmetries is contained inside a different SU (3) subgroup
of SU (5)

exp

⎡
⎣ i√

2 f

⎛
⎝

ε

εT

⎞
⎠
⎤
⎦ ∈ [SU (3)]1, (B.32a)

exp

⎡
⎣ i√

2 f

⎛
⎝ εT

ε

⎞
⎠
⎤
⎦ ∈ [SU (3)]2. (B.32b)

All the couplings that explicitly break the global symmetry
in this model, namely the gauge couplings and the top sector
couplings, preserve at least one of the SU (3) subgroups. A
Higgs potential is generated only when at least two couplings
are non zero, such that all the shift symmetries are broken.
This so-called “Collective Breaking” mechanism insures the
absence of quadratically divergent contributions to the Higgs
mass. The couplings and their T -parity conjugate respect
different symmetries, therefore it is useful to denote the T-
conjugate couplings with a tilde

Ltop = f

4

(
λ1�1i Oi + λ̃1(�2
�0)i Õi

)
t̃R

+ f√
2

(
λ2χ1τ1 − λ̃2χ2τ2

)
+ h.c, (B.33)

Lκ = f√
2

(
κψ1σ2U − κ̃ψ2σ2U

†
)

ψ−
R + h.c. (B.34)

In order to better understand the structure of the generated
scalar potential, we assign spurionic U (1) charges to our
fields and couplings, which can be found in Table 1.

The combinations of couplings appearing in the quadrati-
cally divergent contribution to the scalar potential must be
of the form gg† or g̃g̃†. We can deduce from the resid-
ual symmetries a generic form for the quadratically diver-
gent potential. For concreteness let us consider the cou-

Table 1 Spurionic U (1) assignment for the couplings and fields

�1 �2 t τ1 τ2 ψ−
R

a b c d e f

λ1 λ̃1 λ2 λ̃2 κ κ̃

a − c b − c a − d b − e a − f b − f

pling λ1 and set all the other explicit symmetry breaking
couplings to zero. The original coset in Eq. (A.7) contains
(24 − 10) + (9 − 5) = 18 NGB’s, out of which 4 are
eaten, leaving us with 14 physical NGB’s with the following
SUL(2) ×UY (1) representations

3±1 ⊕ 2±1/2 ⊕ 30 ⊕ 10. (B.35)

Turning on only λ1 breaks the global symmetry and changes
the coset structure

SU (3) × [SU (2) ×U (1)]2

[SU (2) ×U (1)]1+2

×[SU (2) ×U (1)]L × [SU (2) ×U (1)]R ×U (1)Q

[SU (2) ×U (1)]L+R ×U (1)Q
,

(B.36)

This coset contains (8 + 4) − 4 + (9 − 5) = 12 NGB’s, out
of which 4 are eaten, leaving us with 8 physical NGB’s with
the following SUL(2) × UY (1) representations

2±1/2 ⊕ 30 ⊕ 10. (B.37)

There must exist a non-linear combination of the goldstone
fields

	̃i j ≡ f1

(
1,

s

f
,
s2

f 2 ,
ϕ2

f 2 ,
|H |2
f 2 , ...

)
	i j

+ f2

(
1,

s

f
,
s2

f 2 ,
ϕ2

f 2 ,
|H |2
f 2 , ...

)
Hi Hj

f
(B.38)

with f1, f2 some functions of gauge-invariants, such that the
quadratically divergent potential can be written as gauge-
invariant function of only 	̃

V (	, H, s, ϕ) = V (	̃). (B.39)

This constraint limits the form of the quadratically divergent
scalar potential. E.g the mass term in the RHS of Eq. (B.39)
would appear in the original NGB basis as

�2|λ1|2Tr[	̃	̃∗] =
�2|λ1|2(| f1|2Tr[		∗] + 1

f
f1 f

∗
2 Tr[H†	H∗]

+ 1

f
f ∗
1 f2Tr[HT	∗H ] + 1

f 2 | f2|2(H†H)2). (B.40)

This argument can be repeated for every coupling c ∈
{λ̃1, g1, g2, g′

1, g
′
2} which generates a scalar potential propor-
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tional to |c|2�2. We can immediately see that the symmetry
structure allows a quadratically divergent mass term for 	.
The collective breaking structure prevents the appearance of
|H |2 in the quadratically divergent potential, as well other
operators, such as

s2, ϕ2, s2|H |2 and sH†ϕH. (B.41)

Logarithmically divergent 1-loop contributions to the scalar
potential contain four couplings. Possible combinations are
trivial combination like |c|2|c′|2, and non trivial combina-
tions like

λ1λ̃
†
1κ̃κ†, λ̃1λ

†
1κκ̃† + T-conjugates. (B.42)

At this level all scalar operators can be generated except
the singlet mass. The singlet remains exactly massless at
1-loop and must acquire a mass from higher order loops,
e.g 2-loop diagram by closing the Higgs loop in the 1-loop
induced s2|H |2 interaction. We report the radiatively gen-
erated couplings calculated from Eq. (72) after setting all
the T-conjugate couplings to their respective values c̃ = c.
We neglect the gauge contributions which generate O(1%)

corrections to the fermion loops contribution. We define

C ≡ Nc
16π2 a2 log

(
�2

f 2

)
. Note that C ∼ 0.1 for a2 = 1 and

� = 4π f .

m2
	 = Nc

4π2 a1|λ1|2�2, (B.43)

λ = Nc

16π2 a1|λ1|2
(

�

f

)2

, (B.44)

λDM = C |λ1|2r2
(
25|λ2|2 + 6|κ|2(r + 5)2

)

30
(
r2 + 5

) > 2.3C,

(B.45)

μ2 = −C f 2|λ1|2|λ2|2 < −4C f 2, (B.46)

λϕ = C |λ1|2r2
(
5|λ2|2 + 6κ2(r + 1)(r + 5)

)

3
√

5
√
r4 + 6r2 + 5

> 5.2C,

(B.47)

The bounds are calculated assuming κ, r > 1. We find the
minimal/maximal value with respect to λ1, λ2 under the top
Yukawa constraint. The triplet mass is generated only from
gauge loops.

We define D ≡ 3
64π2 a4 log

(
�2

f 2

)
= C

4
a4
a2

∼ 0.025. The

triplet mass is given by

m2
ϕ = Df 2

(
8g4r2(1 + r)2

1 + r2

)

≈
(

D

0.025

)(
f

1200 GeV

)2

(850 GeV)2 , (B.48)

where we used r = 3. Lastly, we report the Higgs potential.
The Higgs potential in the unitary gauge up to order O(sin4 h)

Vh = Nc

16π2 f 2�2a1

(
|λ1|2 + |λ̃1|2

)
s4
h

+C f 4
(
|λ̃1|2|κ̃|2 − λ̃1λ

†
1κκ̃† − |λ̃1|2|λ̃2|2 + [g ↔ g̃]

)
s2
h

+1

4
C f 4

(
−|λ1|2|λ̃1|2 − |λ1|2|λ1|2 + 2|λ̃1|2|λ̃2|2

+4
(
λ

†
1λ̃1κκ̃† − |λ̃1|2|κ̃|2

)
+ [g ↔ g̃]

)
s4
h

(
h√
2 f

)
.

(B.49)

where we defined snh ≡ sinn
(

h√
2 f

)
. After setting g̃ = g, we

find

Vh = −2C f 4|λ1|2|λ2|2s2
h

+
[
Nc

8π2 �2a1 + C f 2
(
|λ2|2 − |λ1|2

)]
f 2|λ1|2s4

h .

(B.50)

Although terms proportional to |λ1|2|κ|2 could have appeared
a priori in the Higgs potential, they vanish due to T -parity.
Clearly if we were to set κ̃ = −κ , which is equivalent to
flipping the parity of ψ−

R and coupling it to the T -even com-
bination 1√

2
(ψ1 + ψ2), the κ coupling would have appeared

in the Higgs potential. Since κ does not appear in the Higgs
potential, taking large values of κ would have no influence
on the tuning of the Higgs potential at one loop.
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