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The annihilation cross section of TeV scale dark matter particles χ0 with electroweak charges into 
photons is affected by large quantum corrections due to Sudakov logarithms and the Sommerfeld effect. 
We calculate the semi-inclusive photon energy spectrum in χ0χ0 → γ + X in the vicinity of the maximal 
photon energy Eγ = mχ with NLL’ accuracy in an all-order summation of the electroweak perturbative 
expansion adopting the pure wino model. This results in the most precise theoretical prediction of the 
annihilation rate for γ -ray telescopes with photon energy resolution of parametric order m2

W /mχ for 
photons with TeV energies.
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1. Introduction

Within the large variety of dark matter (DM) candidates a 
weakly interacting particle with mass mχ in the 100 GeV to 10 TeV 
range (WIMP) stands out due to its conceptual minimality and its 
relation to the electroweak scale. Although loop suppressed, the 
pair annihilation of WIMPs into two photons or a photon and 
a Z boson often provides a distinctive signature in the form of 
a monochromatic component of high-energy cosmic γ -rays. The 
strongest limit on such γ -line signals are currently set by the 
H.E.S.S. experiment [1]. This limit is expected to be improved by 
an order of magnitude by the Cherenkov Telescope Array (CTA) [2]
under construction, which will severely constrain generic WIMP 
models. This motivates a thorough theoretical investigation of the 
basic pair annihilation cross section given a particular model.

It is well-known that TeV-scale DM annihilation is not accu-
rately described by the leading-order annihilation rate, but is mod-
ified by the Sommerfeld effect [3] generated by the electroweak 
Yukawa force on the DM particles prior to their annihilation. In 
terms of Feynman diagrams the Sommerfeld effect corresponds to 
ladder diagrams with W , Z , photon and Higgs boson exchange, 
which contribute O((mχα2/mW )n) at order n, where mW is the 
W boson mass and α2 the SU(2) gauge coupling. For annihila-
tion rates to exclusive final states, in addition to the Sommer-
feld effect large logarithmically enhanced quantum corrections of 
O((α2 ln2(mχ/mW ))n), also known as electroweak Sudakov loga-
rithms, arise [4] from the restriction on the emission of soft ra-
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diation.1 Electroweak Sudakov logarithms in DM annihilation into 
photons have been identified as a potential source of large cor-
rections and resummed to all orders in perturbation theory in 
previous work [5–9] in models with an electroweak triplet scalar 
or fermionic DM particle.

In this letter we revisit this question starting from the ob-
servation that telescopes do not measure two photons from a 
single decay in coincidence. Rather, the observable is the semi-
inclusive single-photon energy spectrum γ + X , where X denotes 
the unidentified other final state particles. This spectrum is com-
posed of two spectral line features related to the γ γ and γ Z final 
states and a continuum from multi-body final states. While the 
leading term in the expansion in α2 is indeed exclusively from 
the γ γ and γ Z final state, the logarithmically enhanced quantum 
corrections are different for the exclusive and the semi-inclusive 
measurement. If Eγ

res � mχ denotes the energy resolution of the 
instrument for photon energies Eγ ≈ mχ , the maximal invariant 
mass of the unobserved final state X is m2

X = 4mχ Eγ
res � m2

χ . Since 
X must balance the large momentum of the observed photon, 
X is forced to have a ‘jet-like’ structure. The kinematic situation 
involving non-relativistic heavy particles in the initial state and en-
ergetic, small-invariant mass objects in the final state is naturally 
described by a combination of non-relativistic and soft-collinear 
effective field theory, similar to the QCD treatment of the ‘inverse’ 
situation of hadronic production of two heavy particles [10].

1 Since the DM particles carry electroweak charges, Sudakov logarithms remain 
even in the inclusive annihilation rate relevant to relic density calculations, but the 
effect is suppressed due to the presence of coannihilation of the nearly degenerate 
full electroweak multiplet.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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In the following sections we first summarize briefly the ba-
sic elements of an effective field theory (EFT) treatment of the 
single-inclusive photon spectrum d(σ v)/dEγ in DM pair annihi-
lation near the kinematic endpoint. For the DM model we refer 
to the widely discussed pure wino model, which features an elec-
troweak triplet whose electrically neutral component is the DM 
particle, although all results except the one for the soft function 
and the Sommerfeld factor apply more generally to DM particles 
in an arbitrary isospin- j multiplet. We then present and discuss 
our result for the all-order resummed spectrum including both the 
Sommerfeld and Sudakov corrections. A more detailed exposition 
of the formalism as well as extensions will be reported in a longer 
article. While this work was being finalized, a similar EFT calcula-
tion of the endpoint of the γ + X spectrum has appeared [11]. The 
present EFT formulation refers to a finer photon energy resolution, 
but includes the one-loop corrections to all matching coefficients, 
soft and jet functions thus achieving NLL’ rather than LL accuracy 
for the observable in question.

2. The resummed energy spectrum

We add to the Standard Model (SM) Lagrangian a fermionic 
multiplet χ (which can be of Majorana or Dirac type) in an arbi-
trary isospin- j representation of the electroweak (EW) SU(2) gauge 
group. For the Majorana case, only integer j are allowed, while for 
the Dirac case also half-integer j are possible. In the calculations 
below we assume zero hypercharge (Y = 0), in which case only 
integer j multiplets provide a realistic DM particle as the electri-
cally neutral member χ0 of the 2 j + 1 dimensional multiplet. The 
Lagrangian is

L = LSM + χ(i/D − mχ )χ (1)

when χ is a Dirac fermion. For the Majorana case, χ is self-
conjugate and its Lagrangian is multiplied by 1/2. The SU(2) co-
variant derivative is Dμ = ∂μ − ig2 AC

μ T C where T C , C = 1, 2, 3, 
are the SU(2) generators in the isospin- j representation and AC

μ
are the EW gauge bosons. In these models the dark matter particle 
obtains the correct relic density from thermal freeze-out for mχ

in the 1–10 TeV range [12] for the favoured small representations 
j = 1, 2.

2.1. Effective theory framework

We consider the process

χ0(p1) + χ0(p2) → γ (pγ ) + X(p X ) (2)

for nearly maximal photon energy. Since the kinetic energy of the 
dark matter particles is negligible, Eγ

max = mχ . The theoretically 
calculated energy spectrum is distribution-valued. We integrate the 
energy spectrum over an interval Eγ

res from the endpoint,

〈σ v〉(Eγ
res) =

mχ∫
mχ −E

γ
res

dEγ
d(σ v)

dEγ
. (3)

Roughly speaking, for a γ -telescope with resolution Eγ
res, this to-

gether with the astrophysical line-of-sight factor determines the 
flux of photons from dark matter annihilation into the energy bin 
that contains the photon line signal. To turn experimental limits 
into model constraints, requires to replace the above integral by 
an integral with the experiment-specific response function. Eq. (3)
is useful to quantify the importance of radiative corrections and 
resummation for the semi-inclusive energy spectrum from dark 
matter annihilation for Eγ near mχ , and will be used below.

The photon endpoint spectrum depends on four important 
scales: mχ (hard), the small invariant mass mX =

√
4mχ Eγ

res

(collinear) of the unobserved, energetic final state, enforced by 
the kinematics of the endpoint, the electroweak scale mW (soft) 
and the energy resolution scale Eγ

res (ultrasoft). We shall now 
assume that the energy resolution is parametrically of order 
Eγ

res ∼ m2
W /mχ , which implies mX ∼ mW and the scale hierar-

chy Eγ
res � mW , mX � mχ . The factorization of the multi-scale 

Feynman diagrams into single-scale contributions, which is a pre-
requisite to all-order resummation, then requires the introduction 
of momentum modes with the following parametric scaling:

hard (h) : kμ ∼ mχ (1,1,1)

collinear (c) : kμ ∼ mχ (1, λ2, λ)

anti-collinear (c̄) : kμ ∼ mχ (λ2,1, λ)

soft (s) : kμ ∼ mχ (λ,λ,λ) (4)

potential (p) : k0 ∼ m2
W /mχ , k ∼ mW

ultrasoft (s) : kμ ∼ mχ (λ2, λ2, λ2)

Here λ =
√

Eγ
res/mχ and kμ ∼ (n+ · k, n− · k, k⊥) where nμ

+, nμ
− are 

two light-like vectors with pμ
γ = Eγ nμ

+ and n+ ·n− = 2. We remark 
that the collinear, anti-collinear, soft and potential modes all have 
the same virtuality O(m2

W ). The interactions of these modes are 
described by standard potential non-relativistic and soft-collinear 
effective Lagrangians (similar to [10], generalized from QCD to the 
electroweak interaction).

The energy resolution of existing instruments is considerably 
larger than assumed here. For mχ = 3 TeV, allowing for Eγ

res ∼
4m2

W /mχ amounts to a resolution of about 10 GeV or 0.3% com-
pared to 10% of, for example, H.E.S.S. One might also consider the 
wider resolution Eγ

res ∼ mW , which implies Eγ
res, mW � mX � mχ

and a different mode structure. Conceptually, the main difference 
is caused by the fact that the previous, narrower resolution does 
not allow the radiation of soft particles with electroweak-scale 
masses into the unobserved final state. Although the resolution of 
the up-coming γ -ray telescopes is probably closer to the wide res-
olution case, in this work we concentrate on the narrow resolution 
Eγ

res ∼ m2
W /mχ to stay close to the line-like signal. The wide res-

olution case, which is in fact simpler from the EFT point of view, 
will be discussed in subsequent work, which will also provide the 
explicit forms of the effective Lagrangians.

2.2. Factorization

The primary annihilation process is described at leading or-
der in an expansion in λ, which is also an expansion in mW /mχ , 
by operators Oi for the S-wave annihilation of the dark matter 
particles into two EW gauge bosons. Once the hard modes are 
integrated out into the coefficient functions Ci of these opera-
tors, the collinear, anti-collinear and potential fields can no longer 
interact directly, since their momenta would add up to hard virtu-
alities. The collinear modes build up the unobserved final state X , 
while the anti-collinear modes must result in the single, observed 
photon. The non-relativistic DM particles are described by the po-
tential fields exchanging potential EW gauge bosons, which causes 
the Sommerfeld effect.

The factorization formula then follows from an analysis of the 
coupling of the (ultra) soft modes to any of the above. The decou-
pling of soft gauge boson attachments from heavy-particle fields in 
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the presence of the Sommerfeld effect by a time-like Wilson-line 
field redefinition of the heavy-particle field has been demonstrated 
in [10] for an unbroken gauge theory. Although in the present 
case the Sommerfeld effect must be computed in the broken the-
ory with gauge boson masses, soft attachments still factorize from 
the ladder diagrams, since a soft momentum throws the potential 
heavy particle off-shell, which removes the enhancement of the 
ladder rungs between the soft attachment and the hard vertex. It 
follows that the Sommerfeld factor S I J completely factorizes from 
the Sudakov resummed annihilation rate �I J (Eγ ),

d(σ vrel)

dEγ
=

∑
I, J

S I J �I J (Eγ ) , (5)

where the sums over I, J run over all electrically neutral two-
particle states that can be formed from the 2 j + 1 single-particle 
states of the electroweak DM multiplet. For example, in the triplet 
(‘wino’) model, I, J = χ0χ0, χ+χ− . Since gauge boson exchange 
between the DM particles prior to annihilation can change the ini-
tial two-particle state χ0χ0 into any I, J , the annihilation rate 
with the Sommerfeld effect factored out is a matrix describ-
ing the amplitude for the annihilation of two-particle state I
times the complex conjugate of the annihilation amplitude for 
state J . The Sommerfeld factor is defined in terms of the ma-
trix element of non-relativistic DM fields of the schematic form 
〈χ0χ0|[χχ ] J |0〉〈0|[χχ ]I |χ0χ0〉 such that S I J = δI J in the absence 
of the potential force causing the Sommerfeld effect (see [13] for 
the full definitions).

The coupling of soft gauge fields to collinear and anti-collinear 
fields is removed by a redefinition of the (anti) collinear fields with 
light-like Wilson lines [14]. Since the small energy resolution for-
bids soft radiation into the final state X , the soft function is a vac-
uum matrix element of Wilson lines that can be regarded as a soft 
Wilson coefficient D of the annihilation amplitude [15,16] on top 
of the hard Wilson coefficients Ci of the operators Oi . At this point 
all modes have been factored into separate functions except for the 
coupling of ultrasoft fields. At leading order in the expansion in λ, 
the coupling of ultrasoft gauge fields is again described by Wil-
son lines, where now the gauge field must be the photon. Since 
the initial state is electrically neutral and at rest, the coupling of 
ultrasoft photons is of higher-order, leaving ultrasoft Wilson lines 
from the (anti) collinear fields. There is no kinematic restriction on 
the radiation of ultrasoft particles with energy and masses of order 
Eres
γ into the final state, hence the ultrasoft function corresponds to 

an amplitude squared summed over the unobserved ultrasoft final 
state.

We can therefore write down the following factorization for-
mula for the energy spectrum of DM annihilation (more precisely, 
the off-diagonal annihilation matrix �I J in the DM two-particle 
states) into a single identified-photon inclusive final state near the 
maximal photon energy:

�I J (Eγ ) = 1

(
√

2)nid

1

4

2

πmχ

∑
i, j = 1,2

∑
V ,W ,X,Y

C∗
j (μW )Ci(μW )

× D j ∗
J ,XY (μW , νs)Di

I,V W (μW , νs)

× V (μW , νs, ν j) Z Y W
γ

×
∫

dω J X V (4mχ (mχ − Eγ − ω),μW , ν j) Sγ (ω)

(6)

The prefactors account for the spin average, flux factor and pho-
ton momentum angular integration, C and D refer to the hard and 
soft matching coefficients of the annihilation amplitude.2 The for-
mer is evolved from the scale 2mχ to the electroweak scale μW . 
The indices V , W , X, Y refer to the SU(2) adjoint representation of 
the electroweak gauge bosons. In the second line Zγ is the anti-
collinear factor for the observed photon, J the jet function for the 
unobserved collinear final state X , convoluted with the ultrasoft 
function S . Since the (anti) collinear and soft modes have paramet-
rically equal virtualities, a rapidity evolution factor V (μW , νs, ν j)

is needed. We postpone the derivation of this formula and techni-
cal details to a separate paper and proceed by defining the appear-
ing functions and providing the results of their calculation.

2.2.1. Operator basis and hard matching coefficients
The relevant hard annihilation operators can be written as

O1 = χ
c†
v �μνχv AB⊥c,μ(sn+)AB

⊥c̄,ν(tn−) , (7)

O2 = 1

2
χ

c†
v �μν{T B , T C }χv AB⊥c,μ(sn+)AC

⊥c̄,ν(tn−) . (8)

Here χv is a two-component non-relativistic spinor field in the 
SU(2) weak isospin j representation, χ c

v = −iσ 2χ∗
v the charge-

conjugated field, and AB⊥c,μ the collinear gauge-invariant collinear 
gauge field of soft-collinear effective theory (SCET). Collinear fields 
have large momentum component n+ p. A similar definition ap-
plies to the anti-collinear direction with n+ and n− interchanged. 
Fields without position arguments are evaluated at x = 0. The oper-
ators are non-local along the light-cone of the collinear directions. 
T A are SU(2) generators in the isospin- j representation. The spin 
matrix is defined by (conventions nμ

± = (1, 0, 0, ∓1), ε0123 = −1)

�μν = i

4
[σμ,σ ν ]σα(n−α − n+α) = 1

2i
[σm,σ n]σ · n

d=4 only= 1

2
εμναβn+αn−β ≡ ε

μν
⊥ . (9)

The first form holds in d dimensions in dimensional regular-
ization, but it turns out that evanescent operators are not im-
portant, since the non-relativistic, soft and collinear dynamics is 
spin-independent. n is a unit vector in the three-direction. Since 
the (anti) collinear gauge field in the operator is transverse, the 
Lorentz indices μ, ν and corresponding spatial indices m, n are 
effectively always transverse. Note that the DM bilinear is in a 
spin-singlet configuration. The above operator basis is consistent 
with the basis employed in [8,9].

We normalize the effective annihilation Lagrangian as

1

2mχ

∑
i=1,2

Ci(μ)Oi . (10)

The one-loop calculation of the MS-subtracted matching coeffi-
cients results in

C1(μh) = ĝ4
2(μh)

16π2
c2( j)

[
(2 − 2iπ) ln

( μ2
h

4m2
χ

)
−

(
4 − π2

2

)]
,

(11)

C2(μh) = ĝ2
2(μh) + ĝ4

2(μh)

16π2

[
16 − π2

6
− c2( j)

(
10 − π2

2

)

− 6 ln
( μ2

h

4m2
χ

)
+ 2iπ ln

( μ2
h

4m2
χ

)
− 2 ln2

( μ2
h

4m2
χ

)]
,

(12)

2 The factor 1/(
√

2)nid with nid = 0, 1, 2 depending on how often the identical 
particle state χ0χ0 appears in I J arises, because we employ what was termed 
‘method-2’ in [13] to evaluate the Sommerfeld effect.
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Fig. 1. Evolution of the real part of the matching coefficients in various approximations for mχ = 5 TeV, μh = 2mχ .
where ĝ2(μh) is the SU(2) gauge coupling in the MS scheme at the 
matching scale μh ∼ 2mχ , and c2( j) = j( j + 1) the SU(2) Casimir 
of the isospin- j representation.3 The coefficients are evolved to the 
EW scale μW � μh . The evolution is diagonal [17] in the basis O′

i
where the DM bilinear transforms in an irreducible SU(2) repre-
sentation given by

O′ = V̂ T O, V̂ =
(

1 − c2( j)
3

0 1

)
, (13)

such that

C(μW ) = V̂

(
U (0)(μh,μW ) 0

0 U (2)(μh,μW )

)
V̂ −1 C(μh). (14)

The evolution factor in the irreducible isospin- J representation 
satisfies the renormalization group equation

d

d lnμ
U ( J )(μh,μ)

=
{

1

2
γcusp

[
2c2(ad)

(
ln

(4m2
χ

μ2

)
− iπ

)
+ iπc2( J )

]

+ 2γad + γ
J

H,s

}
U ( J )(μh,μ) (15)

with anomalous dimensions

γcusp(α2) = γ
(0)

cusp
α2

4π
+ γ

(1)
cusp

( α2

4π

)2 +O(α3
2) , (16)

γ
(0)

cusp = 4,

γ
(1)

cusp =
(

268

9
− 4π2

3

)
c2(ad) − 80

9
nG − 16

9
, (17)

γad(α2) = γ
(0)

ad

α2

4π
+O(α2

2) , (18)

γ
(0)

ad = −β0,SU(2) = −
(

43

6
− 4

3
nG

)
, (19)

γ
J

H,s(α2) = γ
(0)
H,s c2( J )

α2

4π
+O(α2

2) , (20)

γ
(0)
H,s = −2 . (21)

3 For the wino model j = 1, the one-loop coefficients were previously given in 
analytic form in [9] in the context of resumming the annihilation rate to the exclu-
sive γ γ , γ Z final state. When transforming to their operator basis, we find that our 
coefficient of ĝ4

2/(16π2) differs by +4 (−4) from their C1 (C2). We could track this 
difference to an error in the external field renormalization for the DM field and an 
inconsistency in combining counterterms for Dirac and Majorana χ fields. We note 
that the final result for the coefficients functions is independent of whether the DM 
particle is a Majorana or Dirac fermion.
Here c2(ad) = 2 is the Casimir for the adjoint representation and 
nG = 3 denotes the number of fermion generations. (The Higgs 
contribution −16/9 to the two-loop cusp anomalous dimension 
has been obtained from the ε-scalar contribution in [18].) The 
NLL’ and NLL approximations require the SU(2) cusp anomalous di-
mension in the SM in the two-loop approximation, and the other 
anomalous dimensions at the one-loop order, as given explicitly 
above. The LL approximation makes use only of the one-loop cusp 
term and neglects the other anomalous dimensions.

In Fig. 1 we show the evolved coefficient functions in the 
above mentioned approximations. The evolution equation is solved 
by numerical solution of the differential equation in the given 
approximation after solving the coupled system of renormal-
ization group equations for the three gauge couplings, the top 
Yukawa and the Higgs self-coupling in the two-loop approx-
imation. The input values for the couplings are specified at 
the scale mZ = 91.1876 GeV in the MS scheme: α̂2(mZ ) =
0.0350009, α̂3(mZ ) = 0.1181, ŝ2

W (mZ ) = ĝ2
1/(ĝ2

1 + ĝ2
2)(mZ ) =

0.222958, λ̂t(mZ ) = 0.952957, λ(mZ ) = 0.132944. The MS gauge 
couplings are computed via one-loop relations from mZ , mW =
80.385 GeV, the on-shell electromagnetic coupling αOS(mZ ) =
1/128.943 at the Z mass scale, and the top Yukawa and Higgs 
self-coupling, which enter our calculation only implicitly through 
the two-loop evolution of the gauge couplings, via tree-level rela-
tions to mt(mt) = 163.35 GeV (corresponding to the top pole mass 
173.2 GeV at four loops) and mH = 125.0 GeV.

2.2.2. Soft functions
The soft renormalization factor of the annihilation vertex is 

given by the vacuum expectation value of the Wilson lines that 
arise from decoupling soft EW gauge bosons from the fields that 
appear in the operators Oi . In (6) the soft factor Di

I,V W is defined 
in the basis of DM two-particle states with respect to the SU(2) 
indices of the DM bilinear, which corresponds to the definition

Di
I,V W = K I,ab 〈0|[Y †

v T AB
i Y v ]ab Y AV

n− Y BW
n+ |0〉 . (22)

The matrix K takes the linear combination appropriate to the two-
particle state I , and T AB

1 = δAB , T AB
2 = 1

2 {T A, T B} for the two 
operators i = 1, 2. The light-like Wilson lines Y AV

n− , Y BW
n+ arise from 

the gauge fields and are in the adjoint representation. The time-
like Wilson line Y v is in the isospin- j representation of the DM 
field. All four Wilson lines extend from x = 0 to infinity in their 
respective directions. Note that although V , W = 1, 2, 3 are the 
gauge boson indices referring to W A rather than the mass eigen-
states W ± , Z , γ , the soft function lives at the electroweak scale 
and must be computed with the Feynman rules of the SM af-
ter electroweak symmetry breaking, including gauge boson masses, 
contrary to the hard coefficient functions discussed above, which 
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Fig. 2. Wilson-line and self-energy type one-loop contributions to the jet function.
can be computed in the unbroken theory, neglecting the masses of 
the SM particles.

The requirement of an observed energetic photon implies Y =
W = 3, and then electric charge conservation implies that also V =
X = 3. Hence, only the index values V , W , X, Y = 3 contribute to 
(6), so the corresponding sums disappear. The NLL’ approximation 
requires the one-loop calculation of every function that appears in 
the factorization formula. For the triplet (‘wino’) model we find

D1
(00), 33(μ,ν) = 1 + ĝ2

2(μ)

16π2

(
8 ln2 mW

μ
− 8iπ ln

mW

μ
− π2

3

− 16 ln
mW

μ
ln

mW

ν

)
, (23)

D2
(00), 33(μ,ν) = ĝ2

2(μ)

16π2
(8 − 8iπ) ln

mW

μ
, (24)

D1
(+−), 33(μ,ν) = D1

(00), 33(μ,ν) , (25)

D2
(+−), 33(μ,ν) = D1

(00), 33(μ,ν) − 1

2
D2

(00), 33(μ,ν) (26)

for the two operators and the two distinct two-particle states 
I = 00, +−. Since there are three regions with equal virtuality 
O(m2

W ) but different light-cone momentum component n+ · k, the 
soft function is not well defined with only a dimensional regulator. 
We use the rapidity regulator [19] in addition to dimensional reg-
ularization to obtain the above result and the jet functions below. 
The scale ν is related to the rapidity regulator. The soft function 
contains no large logarithms if μ, ν ∼O(mW ).

2.2.3. Photon jet function
The ‘jet’ function for the exclusive anti-collinear photon state is 

defined by the squared matrix element

−g⊥,μν Z BC
γ =

∑
λ

〈0|AB⊥μ(0)|γ (pγ ,λ)〉〈γ (pγ ,λ)|AC⊥ν(0)|0〉

(27)

of the three-component of the transverse SU(2) gauge field. AB⊥μ

denotes the gauge field dressed with anti-collinear Wilson lines, 
g2AB⊥μT B = W †

c̄ [iD⊥μWc̄], hence Z 33
γ /ŝ2

W can be interpreted as 
the on-shell photon field renormalization constant in light-cone 
gauge.

At the one-loop order we obtain

Z 33
γ (μ,ν) = ŝ2

W (μ) − α̂(μ)

4π

{
− 16 ln

mW

μ
ln

2mχ

ν
+ 8 ln

mW

μ

− ŝ2
W (μ)

80
(

ln
m2

Z
2

− 5
)

− ŝ2
W (μ)

16
ln

m2
t
2
9 μ 3 9 μ
+ ŝ2
W (μ)

(
3 ln

m2
W

μ2
− 2

3

)
− 4

m2
W

m2
Z

ln
m2

W

μ2

}

− ŝ2
W (μ)�α , (28)

where �α determines the difference between the fine structure 
constant α = 1/137.036 and αOS(mZ ) = α/(1 − �α).

2.2.4. Jet function of the unobserved final state
The jet function pertaining to the inclusive (unobserved) col-

linear final state is defined as the total discontinuity

J BC (p2) = 1

π
Im

[
iJ BC (p2)

]
(29)

of the gauge-boson two-point function

−gμν J BC (p2) ≡
∫

d4x eip·x〈0|T{
AB⊥μ(x)AC⊥ν(0)

}|0〉 . (30)

Again the field AB⊥μ refers to the collinear gauge-invariant gauge 
field, which equals the ordinary gauge field in light-cone gauge.

We compute the 33 component in Feynman gauge to the one-
loop order and write J 33(p2) in the form

J 33(p2) = ŝ2
W (μ) δ(p2) + ĉ2

W (μ) δ(p2 − m2
Z )

+ J 33
Wilson line(p2) + J 33

se (p2) . (31)

The one-loop correction is split into two contributions, of which 
the first refers to diagrams that involve at least one contraction 
with a gauge field from a Wilson line in the definition of AB⊥μ and 
the second to the remaining diagrams, which are of self-energy 
type, as shown in the first and second line of Fig. 2, respectively. 
Only the Wilson-line diagrams require the rapidity regulator, and 
their sum is given by

J 33
Wilson line(p2,μ,ν)

= − ŝ2
W (μ)g2

2(μ)

16π2

{
δ(p2)

[
− 16 ln

mW

μ
ln

2mχ

ν
+ 8 ln

mW

μ

]

+ 1

p2
θ(p2 − 4m2

W )
[

4β + 8 ln
1 − β

1 + β

]}

− ĉ2
W (μ)ĝ2

2(μ)

16π2

{
δ(p2 − m2

Z )

[
− 16 ln

mW

μ
ln

2mχ

ν

+ 8 ln
mW

μ
− 8 + 4π2

+ 4πβ̄Z − (16π + 8β̄Z )arctan(β̄Z ) + 16 arctan2(β̄Z )

]

+ 1

p2 − m2
θ(p2 − 4m2

W )
[

4β + 8 ln
1 − β

1 + β

]}
, (32)
Z
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Fig. 3. Integrated jet function (upper panel) at next-to-leading order for μ = ν =
mW and mχ = 2 TeV. The straight lines represent the leading-order result. The 
lower panel shows the integrated jet function at NLO normalized to its LO value.

where

β =
√

1 − 4m2
W

p2
, β̄Z =

√
4m2

W

m2
Z

− 1 . (33)

The self-energy type contribution J 33
se (p2) can be expressed in 

terms of conventional one-loop gauge-boson self-energies, which 
can be found, for example in [20]. We have taken the massless-
quark limit of these expressions except for the top quark. We will 
provide the lengthy expressions in the detailed write-up.

In Fig. 3 we show the dependence of the integrated jet func-
tion on the invariant mass of the unobserved collinear final state. 
The integrated function jumps from a value around ŝ2

W (mW ) to a 
value around 1 as the invariant mass passes through mZ , and then 
slowly increases. The range shown contains the W +W − , Z H and 
tt̄ thresholds (mt = 173.2 GeV is used here), which, however, are 
barely visible. The singularity of the NLO correction near mZ can 
be removed by a proper treatment of Z boson resonance. However, 
below we will adopt values Eγ

res > m2
Z /(4mχ ), which implies that 

p2
max is always larger than m2

Z .
The jet functions contain no large logarithms when μ = O(mW )

and ν = O(mχ ). The ‘rapidity logarithms’ related to the different 
value of ν that minimizes the logarithms in the soft and jet func-
tions, respectively, can be summed at NLL’ by solving the rapidity 
renormalization group equations [19] in the one-loop approxima-
tion. For the case at hand we find

V (μW , νs, ν j) = exp

[
4c2(ad)

β0,SU(2)

ln

(
α̂2(μW )

α̂2(mW )

)
ln

ν2
j

ν2

]
. (34)
s

We checked that in the sum of all contributions the poles in the 
dimensional and rapidity regulator cancel. The hard, soft and jet 
functions above are defined by minimally subtracting the poles.

2.2.5. Ultrasoft function
The kinematics of the process does not allow soft radiation 

with momentum of order mW into the final state, which pro-
hibits EW gauge boson radiation. However, radiation of photons 
and light quarks with masses of order or less than m2

W /mχ is pos-
sible, which implies the convolution of the unobserved-final state 
jet function with an ultrasoft function accounting for the energy 
taken away from the collinear final state by ultrasoft radiation. The 
ultrasoft function is defined in terms of Wilson lines of ultrasoft 
photons and depends on the electric charges and directions of the 
particles in the initial and final state. After factoring the Sommer-
feld effect, also the χ+χ− initial state must be considered. But for 
the S-wave annihilation operators Oi only the total charge of the 
initial state is relevant for ultrasoft radiation, which vanishes. Fur-
thermore, only the electrically neutral 33 components of the (anti) 
collinear functions appear for the γ + X final state. We therefore 
conclude that the ultrasoft function is trivial, Sγ (ω) = δ(ω). For 
this reason did not indicate the ultrasoft scale dependence of the 
functions in (6), and the convolution integral in (6) disappears.

2.2.6. Sommerfeld factor
The various functions discussed above are assembled according 

to (6) into the annihilation matrix �I J of the χ0χ0 and χ+χ−
DM two-particle states. In the process we checked the consis-
tency of (6) by verifying that after renormalizing the parameters 
in the tree-level annihilation rates, all 1/ε and rapidity regulator 
poles that appear in the various factors of the factorization formula 
cancel among each other, leaving logarithms consistent with the 
anomalous dimensions of these factors. The photon energy spec-
trum is then obtained according to (5) by tracing this matrix with 
the Sommerfeld factor S I J . For the fermionic DM triplet model, 
the Sommerfeld factors were first computed in [3]. In the present 
work we employ the modified variable phase method [13] for solv-
ing the Schrödinger equation and, different from the above, use the 
on-shell value α2 = 0.0347935 of the SU(2) coupling as well as 
αOS(mZ ) in the Yukawa–Coulomb potential for the two-state sys-
tem. Near the Sommerfeld resonance, the result is very sensitive 
to the mass splitting between the electrically charged and neutral 
members of the triplet. The mass splitting with two-loop accuracy 
can be inferred from [21,22], and is given after adjustment to our 
input coupling parameters by

δmχ = 164.1 MeV. (35)

The first and second Sommerfeld resonances are located at
2.285 TeV and 8.817 TeV, respectively, for the coupling parame-
ters and mass splitting employed in this work.

3. Results

It is straightforward to calculate the one-dimensional integral 
(3) that defines the γ + X yield from DM pair annihilation in a 
photon energy bin of size Eγ

res. For the discussion below we shall 
assume 4mχ Eγ

res = (300 GeV)2, which implies that the unobserved 
final state includes γ , Z , W +W − , Z H and light fermion pairs in 
the collinear jet function.

Fig. 4 shows (upper panel) our results for 〈σ v〉(Eγ
res) as defined 

in (3). The displayed DM mass range includes the first two Som-
merfeld resonances. The four lines refer to the Sommerfeld-only 
calculation, which employs the tree-level approximation to �I J
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Fig. 4. Integrated photon energy spectrum within Eγ
res from the endpoint mχ

in the tree (Sommerfeld only) and LL, NLL, NLL’ resummed approximation. The 
shaded/hatched bands show the scale variation of the respective approximation as 
described in the text. For the NLL’ result the theoretical uncertainty is given by the 
thickness of the red line.

(black-dotted) and the successive LL (magenta-dashed), NLL (blue-
dashed) and NLL’ (red-solid) resummed expressions for the same 
quantities with the latter representing the best approximation.

The importance of resummation of electroweak Sudakov loga-
rithms becomes more apparent by normalizing to the Sommerfeld-
only result (lower panel). As expected and already seen in previ-
ous LL and NLL calculations [5–9] of related exclusive and semi-
inclusive final states, resummation reduces the annihilation rate 
and increasingly so at larger DM mass. In the interesting mass 
range around 3 TeV where wino DM accounts for the observed 
relic density, the rate is suppressed by about a factor of two.

The resummed predictions are shown with theoretical un-
certainty bands computed from the separate variations of the 
scales μh , ν j in the interval [mχ , 4mχ ] and the scales μW , νs

in [mW /2, 2mW ], added in quadrature. We find that at the NLL’ 
order the residual theoretical uncertainty from scale dependence 
is negligible – in the figure it is given by the width of the red 
line. Our result can be compared most directly with the recent 
work by Baumgart et al. [11] who considered the same γ + X
final state at larger resolution Eγ

res � mW with LL accuracy. We 
observe that the inclusion of one-loop corrections to the hard, 
soft and jet functions in our NLL’ computation has the main ef-
fect of eliminating the theoretical uncertainty of resummation 
by reducing the scale dependence from 24% (LL) to 3% (NLL) to 
0.3% at NLL’ at mχ = 2 TeV. A similar reduction of scale depen-
dence was already observed in the NLL’ calculation of the exclusive 
γ γ , γ Z final state [9]. In numbers we find that at mχ = 2 TeV 
(10 TeV), the ratio of the resummed to the Sommerfeld-only rate 
is 0.513+0.128 (0.268+0.101) at LL, 0.585+0.032 (0.323+0.017) at NLL 
−0.120 −0.082 −0.004 −0.002
and 0.575+0.003
−0.000 (0.316+0.002

−0.000) at NLL’. The central values are evalu-
ated at the central scales of the intervals above. We also varied all 
four scales simultaneously within these intervals and determined 
the maximal variation. The scale dependence at NLL’ with this 
more conservative procedure increases by about a factor of two, 
which does not change the general picture.

In conclusion, we computed the γ + X spectrum near maximal 
photon energy from electroweak triplet (‘wino’) DM annihilation 
including the resummation of the Sommerfeld effect and elec-
troweak Sudakov logarithms in the NLL’ order. The inclusion of 
the electroweak one-loop corrections at NLL’ renders the theoret-
ical uncertainty of resummation negligible. It is plausible that the 
dominant theoretical uncertainty now arises from the fact that the 
non-relativistic EFT is only employed at leading order in the com-
putation of the Sommerfeld enhancement, and from O(mW /mχ )

power corrections. In a subsequent paper we shall present an ex-
tension of this work to the case of wider photon resolution, further 
details on the EFT framework, the derivation of the factorization 
formula, and a comparison with expected experimental limits. The 
computations performed here are presently restricted to simple 
DM models, which add to the SM a single electroweak multiplet. 
It would be of interest to extend them to more complex models 
such as the MSSM, which would put the analysis of indirect detec-
tion constraints for mixed DM models [23] on the same theoretical 
footing as for minimal models.
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