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Recent progress in Lattice QCD and subsequent Next-to-Leading Or-
der analysis of the ratio ε′/ε resulted in a 2.9σ discrepancy between the
Standard Model predictions and experimental data. This inconsistency
could have several sources, one of which could be the missing contribution
of new particles in the theory predictions. However, a reliable Standard
Model prediction is essential to disentangle possible new physics effects
from the Standard Model background. Indeed, possible higher order cor-
rections could significantly alter the theory prediction. This is particularly
true for ε′/ε where the Next-to-Leading Order corrections have been found
to be large. To close this gap, we aim to calculate the relevant matching
corrections at Next-to-Next-to-Leading Order for this physical quantity and
present a more accurate theoretical prediction within the Standard Model.
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1. Introduction

The observed matter–antimatter asymmetry is still one of the biggest
mysteries of the Universe. The violation of the CP-symmetry is a necessary
condition to generate this anomaly. Within the Standard Model (SM), this
effect is parametrized by the CP-violating phases generated in the complex
Yukawa-type interactions of the fermion fields with the Higgs doublet. Yet,
not enough CP violation (CPV) is present in this model to explain the
matter–antimatter asymmetry in the Universe. New sources of CPV could
modify the Standard Model expectations for direct and indirect CP violation
of hadronic decays such as K → ππ. For these decays, the Standard Model
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prediction of CP violation contains an additional flavour suppression due to
the smallness of some Cabibbo–Kobayashi–Maskawa (CKM) factors. This
mechanism is typically not present in models of new physics (NP). The
understanding of CPV could shed some light on this curious puzzle, and it
has been of big interest since its discovery more than 50 years ago. One of
the most important experimental results in the field was the observation of
direct CP violation parametrized by the ratio ε′/ε and measured by a long
series of precision counting experiments. The experimental determination of
this observable is given by measuring the ratio

R =

∣∣∣∣ η00

η+−

∣∣∣∣2 =
Γ
(
KL → π0π0

)
/Γ
(
KS → π0π0

)
Γ (KL → π+π−) /Γ (KS → π+π−)

, (1)

where ηi (i = 00,+−) refer to the CP-violating amplitude ratios of KL and
KS into two-pion final states. This quantity is directly accessible experimen-
tally and is related to the observable ε′/ε by

R ' 1− 6Re
(
ε′

ε

)
. (2)

The world average based on the recent results of NA48 [1] and KTeV [2]
collaborations stands at(

ε′

ε

)
exp

= (16.6± 2.3)× 10−4 . (3)

On the other hand, theoretical predictions of ε′/ε rely on a combination of
continuum perturbation theory to evaluate the short-distance contributions,
that are sensitive to physics beyond the Standard Model, and the evaluation
of long-distance contributions to matrix elements using Lattice QCD. This
estimation is notoriously difficult due to the presence of the strong interac-
tions and confinement at low-energy scales. Indeed, it is still subject to very
large hadronic uncertainties even though in the past years there has been a
huge progress in the Lattice community and the matrix elements could be
determined with controlled systematics [3, 4]. The latter achievement and
the prospects of Lattice improvement open the possibility for a precision
theory prediction of direct CP violation. Moreover, the recent theoretical
determination of this observable at the Next-to-Leading Order (NLO) within
the SM found a 2.9σ tension between theory and experiment [5](

ε′

ε

)
SM

= (1.9± 4.5)× 10−4 . (4)

This inconsistency could have several sources, one of which could be the
missing contribution of new particles in the theory prediction. However, a
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reliable SM prediction is essential to disentangle possible NP effects from the
SM background. As rapid progress on the lattice is bringing non-perturbative
long-distance effects under control, a more precise knowledge of short-dis-
tance contributions is needed. In this proceedings, we have focused on the
study of the latter and their impact effects on ε′/ε.

2. Effective Hamiltonian for the ∆S = 1 transitions

The transition K → ππ is described by the following effective Hamilto-
nian:

Heff =
GF√
2
VudV

∗
us

10∑
i=1

(zi(µ) + τyi(µ))Qi , (5)

where the Wilson coefficients zi(µ) and yi(µ) encode information from higher
order regimes and can be calculated perturbatively, GF is the Fermi con-
stant, the factor τ is defined in terms of the CKM matrix elements: τ =
−VtdV ∗ts/(VudV ∗us), the operators Qi are built up of light particles and clas-
sified as: current–current (i = 1, 2), QCD penguin operators (i = 3–6),
and electroweak penguin operators (i = 7–10), (see reference [6] for their
definition).

In order to study the CP-violating observable ε′/ε , it is important to
improve both the estimation of long-distance contributions (hadronic matrix
elements) [3, 4] and the theoretical calculations of short-distance contribu-
tions [6–14]. The completion of the QCD Next-to-Next-to-Leading Order
(NNLO) corrections and their impact on the theoretical estimation of this
observable comprise the content of our project.

Several contributions are required to determine the effective Hamiltonian
relevant for the study of direct CP violation at the NNLO. First, the ini-
tial conditions for the Wilson coefficients at the electroweak scale, zi(MW )
and yi(MW ), have to be determined. This is achieved by matching the
SM Green’s functions to those in the five-flavour theory. Subsequently, the
Wilson coefficients are evolved down to the bottom-quark scale using the
renormalisation group equations (RGE): U(µW , µb) with µi ∼ O(mi). At
an energy scale below the bottom-quark mass, µ < mb, the threshold cor-
rections due to the removal of the bottom quark as a dynamical particle
has to be included, M(µb). These effects can be obtained perturbatively by
matching two effective field theories at scales µb = O(mb). The resulting
Wilson coefficients are then evolved down to the charm-quark scale using the
RGE: U(µb, µc), and at this scale µc = O(mc), the matching equation for
the charm quark is now evaluated. Here, we match the four-flavour theory
onto the three-flavour theory and find the new threshold corrections,M(µc).
Finally, we incorporate these results and perform the renormalisation group
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evolution down to the scales where the hadronic matrix elements are com-
puted. For technical reasons, another operator basis different from Qi was
employed [7, 9, 15, 16]. In this manner, we avoided the need to calculate
traces that involve γ5. To analyse the impact of these threshold corrections
on direct CP violation, we transformed our results to the traditional oper-
ator basis [5]. Moreover, we introduced a new formalism in terms of renor-
malisation group invariant factors (denoted by hats), which are scale- and
scheme-independent. More details can be found in references [17] and [18].

3. Formalism for ε′/ε within the Standard Model

The phenomenological analysis of ε′/ε is based on the following formula:

ε′

ε
= −i ω+√

2|εK |
ei(δ2−δ0−φεK )

[
ImA0

ReA0

(
1− Ω̂eff

)
− 1

a

ImA2

ReA2

]
, (6)

where the term ω+ is determined from the charged decay mode, and AI ≡
〈(ππ)I |Heff|K〉 correspond to the amplitudes for the two isospin states with
their strong phases δ0,2 removed. The latter, as well as the phase φεK and the
magnitude |εK | of εK , which parametrizes indirect CP violation are all de-
termined from experimental data. Isospin breaking effects are parametrized
by the coefficients a and Ω̂eff [19]. The numerical value for the latter is
extracted from chiral perturbation theory [19–21]. The ratios of the imagi-
nary and the real parts of the isospin limit amplitudes are the main pieces
for the theoretical prediction of the observable ε′/ε. The determination of
these important terms is based on the work published in reference [6]. Here,
the authors assume that the amplitudes ReA0 and ReA2 originate already
at tree level within the SM. Consequently, these quantities are expected
to be only marginally affected by NP contributions. Moreover, some Fierz
identities relating current–current and (V −A)×(V −A) type QCD and elec-
troweak penguin operators allow them to reduce the hadronic uncertainty
in the Standard Model prediction. We have extended this formalism to in-
corporate the non-zero zi coefficients with i > 2 and, consistently, adapt it
to incorporate higher order corrections by working with the renormalisation
group invariant quantities (denoted by hats).

The operators Q−, Q3, Q5, Q6 are pure I = 1/2 operators, hence in
the isospin limit their matrix elements for I = 2 vanish: 〈Q−〉2 = 〈Q3〉2 =
〈Q5〉2 = 〈Q6〉2 = 0. As a result, in the isospin limit, they do not contribute
to A2 and we find for the real part of the amplitudes

ReA2 =
GF√
2
λu

[(
ẑ+ +

3

2
[ẑ9 + ẑ10]

)〈
Q̂+

〉
2
+ ẑ7

〈
Q̂7

〉
2
+ ẑ8

〈
Q̂8

〉
2

]
,
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ReA0=
GF√
2
λu

[(
ẑ++

3

2
[ẑ9 + ẑ10]

)〈
Q̂+

〉
0
+

(
ẑ−+

1

2
[4ẑ4−3ẑ9+ẑ10]

)〈
Q̂−
〉

0

+
1

2
(2ẑ3+2ẑ4−ẑ9−ẑ10)

〈
Q̂3

〉
0
+ẑ5

〈
Q̂5

〉
0
+ẑ6

〈
Q̂6

〉
0
+ẑ7

〈
Q̂7

〉
0
+ẑ8

〈
Q̂8

〉
0

]
, (7)

where λu = VudV
∗
us and we explicitly keep the small penguin contribution.

The dominant contribution to these terms comes from the current–current
operators. Similarly, the imaginary parts of the isospin amplitudes A0 and
A2 take the following form:

ImA2 =
GF√
2
λuImτ

[
3

2
(ŷ9 + ŷ10)

〈
Q̂+

〉
2
+ ŷ7

〈
Q̂7

〉
2
+ ŷ8

〈
Q̂8

〉
2

]
,

ImA0 =
GF√
2
λuImτ

[
3

2
b(ŷ9 + ŷ10)

〈
Q̂+

〉
0
+

(
2 ŷ4 −

b

2
[3ŷ9 − ŷ10]

)〈
Q̂−
〉

0

+

(
ŷ3 + ŷ4 −

b

2
[ŷ9 + ŷ10]

)〈
Q̂3

〉
0
+ ŷ5

〈
Q̂5

〉
0
+ ŷ6

〈
Q̂6

〉
0

+bŷ7

〈
Q̂7

〉
0
+ bŷ8

〈
Q̂8

〉
0

]
, (8)

with the important contribution coming from QCD and electroweak pen-
guins, respectively. The factor b, which appears in the previous equation,
describes the corrections to the isospin zero amplitude

ImA0 = (ImA0)
QCDP + b (Im0)

EWP , b =
1

a(1− Ω̂eff)
. (9)

In the ratio of isospin amplitudes, note that the same (V−A)×(V−A) op-
erators appear in the numerators and the denominators. This suggests that
we split the numerator into (V −A)× (V −A) and (V −A)× (V +A) pieces.
Whereas the first type are dominated by short distance (Wilson coefficients)
due to a cancellation of the matrix elements, the contributions coming from
the (V − A) × (V + A) operators are very sensitive to long-distance effects
(hadronic matrix elements). To minimize the non-perturbative uncertain-
ties, one can extract the denominators from CP-averaged K → ππ decay
rates to remove the dependence on the (V − A) × (V − A) operators. For
the isospin 2 amplitude, we obtain

ImA2

ReA2
= Imτ

[
3

2

ŷ9 + ŷ10

ẑ+
(1 + δz2) +

GF√
2
λu (ŷ8 + p72y7)

〈
Q̂8

〉
2

ReA2

]
, (10)

where we performed an expansion in the small penguin contribution

δz2 = −3

2

(ẑ9 + ẑ10)

ẑ+
− GF√

2
λu

〈
Q̂8

〉
2

ReA2
(p72ẑ7 + ẑ8) (11)
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and defined

p72 =

〈
Q̂7

〉
2〈

Q̂8

〉
2

. (12)

Note that the first term in (10) is completely free of hadronic matrix el-
ements. This is because data have not been used for the denominator of
this part of the ratio. In case of having used ReA0 and ReA2 from data
also in the (V − A) × (V − A) part, a dependence on (mainly) the matrix
element of the operator Q4 and its Wilson coefficients would be introduced,
and this should be avoided. Indeed, this is the main reason why the predic-
tion of [5] is more accurate than that of RBC and UKQCD [3], and leads
to a more pronounced tension with the data, in spite of employing the same
non-perturbative matrix elements.

Extending this formalism to the isospin-zero ratio, we have

ImA0

ReA0
= Imτ

[(
2 ŷ4 − b

2 [3ŷ9 − ŷ10]
)

ẑ−(1 + q̂)
+

3b
2 [ŷ9 + ŷ10]q̂

ẑ+(1 + q̂)

+

(
ŷ3 + ŷ4 − b

2 [ŷ9 + ŷ10]
)

ẑ−(1 + q̂)
p3 +

GF√
2

λu
ReA0

×
(
[ŷ6 + p5ŷ5 + p8gŷ8g]

〈
Q̂6

〉
0
+ b[ŷ8 + p70ŷ7 + p70γ ŷ7γ ]

〈
Q̂8

〉
0

)]
,(13)

where we again expanded in the small penguin contribution

δz0 =
(−2ẑ3 − 2ẑ4 + ẑ9 + ẑ10)

2(q̂ + 1)ẑ−
p3 −

4ẑ4 − 3ẑ9 + ẑ10

2(q̂ + 1)ẑ−
− 3q̂ (ẑ9 + ẑ10)

2(q̂ + 1)ẑ+

−GF√
2

λu
ReA0

[
(p5ẑ5 + ẑ6)

〈
Q̂6

〉
0
+ (p7ẑ7 + ẑ8)

〈
Q̂8

〉
0

]
, (14)

and defined the following ratios of matrix elements:

p̂3 =

〈
Q̂3

〉
0〈

Q̂−
〉

0

, p̂5 =

〈
Q̂5

〉
0〈

Q̂6

〉
0

, p̂8g =

〈
Q̂8g

〉
0〈

Q̂6

〉
0

, p̂70 =

〈
Q̂7

〉
0〈

Q̂8

〉
0

, p̂70γ =

〈
Q̂7γ

〉
0〈

Q̂8

〉
0

,

(15)
where the first two ratios are colour-suppressed, but still important enough
to be included for a proper analysis of direct CP violation. Moreover, the
weakly scale-dependent parameter q̂, which appears in expressions (13) and
(14), is defined in terms of the current–current Wilson coefficients and op-
erators

q̂ = ẑ+

〈
Q̂+

〉
0

/
ẑ−
〈
Q̂−
〉

0
. (16)

The small ratio z+/z− implies that only modest accuracy is needed for the
hadronic matrix elements entering the isospin-zero ratio through q̂. As a
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result, the prediction for ε′/ε involves predominantly two hadronic matrix
elements (often parametrised in terms of parameters B(1/2)

6 and B(3/2)
8 , refer

to Section 5.2 of reference [6]), as well as perturbative Wilson coefficients
ẑ1,2 and ŷ6,8. Our new calculation essentially removes the perturbative un-
certainty on ŷ6. The uncertainties on ẑ1,2 are already tiny, leaving ŷ8 and an
improved treatment of isospin-breaking corrections as the main objectives
for the future.

4. Impact of the NNLO QCD corrections

In the absence of QED corrections, the isospin I = 2 ratio would van-
ish, and the isospin-zero part would receive corrections only from QCD and
current–current operators. The pure QCD calculation gives the dominant
contribution to the observable ε′/ε, even though the QED part is important
through its contribution to the isospin I = 2 ratio. Incorporating the recent
Lattice determination of the isospin zero matrix elements, we can analyse
the effect of our results on the ImA0/ReA0 contribution to ε′/ε in the isospin
limit. For the numerical analysis, we kept the values of the isospin I = 2
amplitudes fixed to the values of the work quoted in reference [5], and we
perform the scale variation in the Wilson coefficients that contribute to the
isospin I = 0 amplitude ratio. The resulting dependence on the matching
scale µc is shown in Fig. 1. This plot exhibits a significant reduction of the
residual scale dependence order-by-order in perturbation theory, where the
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Fig. 1. Residual scale dependence of ε′/ε using non-perturbative parameter from
Lattice QCD at LO, NLO and NNLO. The scale variation is due to the residual scale
dependence of the Wilson coefficients ŷ3–ŷ6, ẑ+, ẑ− and ẑ3–ẑ6 and measures part
of the remaining perturbative uncertainty. The different lines at LO (dotted line),
NLO (dashed, dash-dotted and dash-double-dotted lines) and NNLO (solid lines)
correspond to different solutions of the renormalisation group equations. Their
variation provides an additional measure of the remaining perturbative uncertainty.
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perturbative corrections are estimated through the respective scale varia-
tions. The perturbative uncertainties stemming from current–current and
QCD penguin operators are reduced to around 12% at NNLO level. This
removes the largest part of the perturbative uncertainty in this quantity and
also strengthens the approach to treat the charm quark contribution pertur-
batively. After incorporating the NNLO corrections to the isospin I = 0, we
find that the uncertainties in the isospin I = 2 decay mode will dominate the
perturbative error. Following the procedures of reference [5], we estimate an
associated uncertainty of ±0.8 × 10−4 to the Standard Model prediction of
ε′/ε for the electroweak penguins.

5. Limitations and future improvements

Several subtleties are still present in the phenomenological analysis of
ε′/ε. Indeed, Lattice computations of the relevant matrix elements are cur-
rently performed only in the isospin limit (αe, degenerate masses). This
limit is not very good since pions are not exact I = 1 states and electro-
magnetic effects cannot be neglected when charged particles are present. In
fact, it receives at O(10%) corrections, which have been parametrised by the
factor Ω̂eff, together with a particular scheme for ω, which defines ω+. The
parameter a is also an attempt to include a class of higher-order isospin-
breaking effects. While the latter factors introduce isospin-breaking effects,
the phases δ0,2 are still defined in the isospin limit, even if they are no
longer the true strong phases of the amplitudes. Moreover, the definition of
the isospin limit is not self-consistent as the electroweak Wilson coefficients
have scale dependence that is due to electromagnetism, and this does not
cancel against the scale dependence of an isospin-symmetric evaluation of
the matrix elements. In practice, one matches a QCD×QED evolution to
a pure QCD Lattice calculation at some scale (µ = mc). This can only be
resolved by including electromagnetism into the matrix elements, which in-
troduces an IR problem. Moreover, the practical evaluation of the hadronic
matrix elements involves a theory with three light quarks (u, d, s). To con-
trol possible non-perturbative effects of virtual charm quarks, it would be
desirable to calculate the matrix elements in a theory with four or even five
flavours. In the future, Lattice QCD will be able to include the dynamical
charm quark and a phenomenological analysis of direct CP violation would
be able to be performed at the four-flavour theory. In the meantime, we can
use our NNLO results to provide an estimation of the four-flavour matrix
elements. More details of this calculation and the extension of the formalism
to nf > 3 will be published in a future publication [22] .
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6. Summary and outlook

Motivated by the fact that the experimental data for direct CP violation
is in tension with the SM prediction, and that further progress is expected
in the near future for the non-perturbative sector, we have updated the
theoretical prediction of direct CP violation by incorporating the NNLO
QCD corrections. The main message of our analysis is that the inclusion
of these higher order corrections does not move the central value of ε′/ε
and that these new contributions reduce the theoretical uncertainty by a
factor 0.12. With this update, the perturbative uncertainty on ε′/ε is now
dominated by the NNLO corrections to the I = 2 amplitude ratio. All the
results presented in this conference are preliminary. For further details and
the exact analysis of ε′/ε, we refer to the future publication [22].
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