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ABSTRACT Vitreoretinal (VR) surgery is typical microsurgery with delicate and complex surgical proce-
dures. The vision-based navigation for robot-assisted VR surgery has not been fully exploited because of
the challenges that arise from illumination, high precision, and safety assessments. This paper presents a
novel method to estimate the 6DOF needle pose specifically for the application of robotic intraocular needle
navigation using optical coherence tomography (OCT) volumes. The key ingredients of the proposedmethod
are 1) 3D needle point cloud segmentation in OCT volume and 2) needle point cloud 6DOF pose estimation
using a modified iterative closest point (ICP) algorithm. To address the former, a voting mechanism with
geometric features of the needle is utilized to robustly segment the needle in OCT volume. Afterward,
the CAD model of the needle point cloud is matched with the segmented needle point cloud to estimate
the 6DOF needle pose with a proposed shift-rotate ICP (SR-ICP). This method is evaluated by the existing
ophthalmic robot on ex-vivo pig eyes. The quantitative and qualitative results are evaluated and presented
for the proposed method.

INDEX TERMS Biomedical engineering, biomedical image processing, biomedical signal processing,
medical robotics.

I. INTRODUCTION
The present situation of eye pathologies, which contribute
to more than 280 million visual impairments [1], raises
an increasing demand for the ophthalmic surgery. Vitreo-
retinal (VR) disease is the disease located at the posterior
segment of the eye that is related to the vitreous body and the
retina. The VR diseases include age-related macular degen-
eration, epiretinal membranes, diabetic eye disease, retinal
detachments, etc., which make up 10% visual impairments.
VR surgery is a typical ophthalmic surgery consisting of
complex manual tasks, shown as in Fig. 1. Three tools:
surgical tool, irrigation cannula, and light source [2] are
inserted inside the eye through the trocars, which are placed
on the sclera. The irrigation cannula is used for liquid injec-
tion to maintain appropriate intraocular pressure. The light

The associate editor coordinating the review of this manuscript and
approving it for publication was Qingsong Ai.

source is used to illuminate the intended area on the retina,
allowing the planar view of the area obtained and analyzed
by surgeons through the microscope. During the surgery,
the insufficient intraocular illumination and the en-face view
from microscopy limit the visual feedback for the surgeon.

Besides the inadequate visual feedback, the ophthalmolo-
gist also suffer from hand tremors, which are normally around
100 µm and also may increase with the aging. However
the accuracy of VR surgery varies depending on the spe-
cific operation. For the internal limiting membrane (ILM)
peeling, which removes a very thin and transparent acellular
membrane on the surface of the retina, the surgeon can do it
quite well manually, so this means that the 182 µm accuracy
(the hand tremor RMS amplitude [3]) is enough. For the
sub-retinal injection, the average thickness of retina is around
200 µm, therefore, 20 µm would be an acceptable position
accuracy. For the retinal vein cannulation (RVC), the ideal
position accuracy would be 20 µm, since the diameter of
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FIGURE 1. (a) The robot-assisted retinal surgery setup on the ex-vivo pig
eye using iRAM!S robot [4]. The robot hold the instrument instead of the
surgeon’s hand. (b) The cross-section view of surgical setup. The
movement of needle is restricted by RCM control where two translation
movements are constrained.

branch retinal veins is typically less than 200 µm. Thus most
of robot for VR surgery are designed to have the position
accuracy of 10 µm to meet these surgical requirements [2].

The robot-assisted surgery (RAS) is a promising technol-
ogy to help the surgeon to improve the treatment outcome,
reduce the learning curve and extend the ability of surgeon
in micro-operation. A series of ophthalmic robots have been
developed to assist the surgeon to cope with their physical
condition and extend their service life. In September 2016,
surgeons at Oxford’s John Radcliffe Hospital performed the
world’s first robotic Internal LimitingMembrane (ILM) peel-
ing, using a Robotic Retinal Dissection Device (R2D2) [5],
[6], which proved the feasibility of robot-assisted VR surgery.
Among various ophthalmic surgery routines, the beveled nee-
dle is used to deliver the drug to the particular part of eye,
e.g. the operation of subretinal injection and RVC. In robot-
assisted ophthalmic surgery, the accurate 6DOF pose infor-
mation of the needle is essential for image guided operation.
However, it is inaccurate to estimate 6DOF pose of the needle
tip part via forward kinematics due to the very thin, long and
relatively flexible needle body [7].

Many researches have addressed on instrument pose esti-
mation in 2D microscope images [8]. However, 2D images
from single microscope are insufficient to estimate the 6DOF
movements during the operation. Traditional navigation solu-
tions such as optical tracking or electromagnetic tracking
are not applicable as they usually have an accuracy in the
range of 200 to 1400 µm. To overcome the above men-
tioned challenges, Probst et al. [9] first proposed to use a
stereo-microscope to detect and localize the instrument in
robot-assisted VR surgery, which can achieve a precision
of 100µm. However, VR surgery presents unique challenges,
such as strong illumination changes, blur and even higher
accuracy requirements, which limits the stereo-microscope
method in some scenarios, e.g. subretinal injection and RVC.
Optical Coherence Tomography (OCT), which is originally
used for diagnosis of ophthalmic diseases because of its
suitable resolution, has been developed to present real-time
image interactions between the surgical tool and intraoc-
ular tissue. Microscope-mounted intraoperative OCT solu-
tion developed by Carl Zeiss Meditec (RESCAN700), firstly

described in clinical use in 2014 [10], can share the same
optical path with the microscope and give real-time cross
section information of the target scan area, which is an ideal
imaging modality for ophthalmic surgery. Taking advantage
of OCT image modality, we have the chance to obtain the 3D
scan of target area intraoperatively.

Estimating 6DOF pose of an object from incomplete
point cloud has drawn much attention in computer vision
with significant applications. Kehl et al. [11] introduced a
light-weight 3D tracking with 6DOF pose estimation. How-
ever, their method cannot be directly applied in our study
since the iterative closest point (ICP) with 6DOF parameters
heavily relies on the initial guess from the object viewpoint
features, e.g. clustered viewpoint feature histogram (CVFH),
and the geometrical feature of the needle is cylindrical and
has a bevel shape at the needle tip without strong features.
This will lead to a local optima result and may not be suitable
for safety-critical surgical applications.

In this paper, we introduce a modified iterative closest
point to estimate the 6DOF pose of the needle directly from
the OCT volume data. The main premise for the proposed
method is that the actual dimensions of needle are within
the range that obeys the standard for manufacturing medi-
cal devices (ISO 9626:2016), typical ±6.4 µm in diameter
and ±1◦ in bevel angle. The method consists of two main
parts. The first part is a robust needle segmentation method
introduced to get the 3D needle point cloud in OCT volume.
Due to the infrared light source of OCT and geometrical
feature of the needle, the segmentation result will be robust
to illumination variation and speck reflection. The second
part is a shift-rotate ICP (SR-ICP) to estimate the 6DOF pose
of the segmented needle point cloud. Using the geometrical
features of the needle, the 6DOF pose is reduced to a 2DOF
optimization problem, which can dramatically decrease the
chance of getting local optima. Furthermore, different from
the typical methods which use object viewpoint features to
start the initial guess, we propose to align the CAD model tip
to the visual needle tip in the OCT volume. This initial guess
is very close to the global optimum. To validate the proposed
method, we compare the result with brutal grid search (GS)
and standard ICP. The experiment performed on the ex-vivo
pig eyes demonstrated that the proposed method is qualified
in 6DOF needle pose estimation for the VR surgery appli-
cation. Especially, the position accuracy can be controlled
within 10 µm with 95% confidence, which meets the most
of the surgical requirements.

The rest of this paper is organized as follows: Section II
briefly presents related work. The proposed method is intro-
duced in Section III. Then, Section IV gives the experimen-
tal evaluations to prove the effectiveness of our proposed
method. Section V concludes this paper with discussion and
future work.

II. RELATED WORK
Many studies have been carried out with significant progress
in the needle tracking through microscopic images [12]–[14].
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FIGURE 2. (a) The needle placed above the retina in microscope image. (b) The 3D OCT volume with needle and retina inside ( 1© denotes retina, 2©
denotes needle, and 3© denotes needle reflection). (c) 2D detected ellipses are colored in blue and used for voting of needle segmentation. The red
cluster is the voted needle cluster which is the 2© in the OCT volume. The red point show up only when it is not overlapped by the blue point. The
green cluster is the retina. Some blue points on the retina cluster means that there are votes in wrong cluster, however, the needle cluster will get
the most of the votes. tv denotes the visual needle tip.

These work obtained satisfactory results using either
color-based or geometry-based features. However, due to the
limitation of single 2D microscopic images, these methods
can not provide enough information to estimate 6DOF needle
pose.

Other 3D medical imaging technologies, including
computed tomography (CT) scans, fluoroscopy, magnetic
resonance (MR) and ultrasound technology are already
applied in the cardiac, brain, and thoracic surgeries, not only
for diagnostic procedures but also as a real time surgical
guidance [15]–[17]. However, these imaging technologies
can hardly achieve the ideal resolution for application of
ophthalmic surgery. For MRI-guided interventions with
resolution in millimeters in breast and prostate biop-
sies, 18 gauge needle with the diameter of 1.27 mm
is used, while for ophthalmic surgery, 30 gauge needle,
which has the diameter of 0.31 mm, requires resolution of
submillimeter [18].

Some researchers used OCT for estimation of distance
between the surgical tool and eye tissue. Song et al. [19]
developed a robotic-surgical tool with an OCT probe inte-
grated to estimate the one-dimensional distance between tool
tip and tissue. Yu et al. [20], and Liu et al. [21] applied the
OCT probe to assist robotic ophthalmic surgery. However,
they focused on integrating the OCT into the surgical system,
rather than estimating the instrument pose. Weiss et al. [22]
developed an algorithm to track the needle 5DOF pose with-
out needle rotation information. Gessert et al. [23] proposed a
3D convolutional neural network (CNN) to segment and esti-
mate the pose of a small marker geometry fromOCT volumes
directly with a mean error of 14.89 ± 9.3 µm. They used a
special marker instead of the needle with more geometrical
features. The benefit of deep learning is that it can archive
the end-to-end pose estimation while reducing the progress
of geometrical modeling. However, the drawback is that a
big amount of data is required to get a well-trained network,

meanwhile, the different type of needles, e.g. with different
diameter, contributes to an evenmore data set preparation and
network tuning overhead.

In contrast to deep learning approach, which is based on
the geometric features of beveled needle and its imaging
characteristic in OCT cube, in this paper, a modified ICP
algorithm is proposed and evaluated to obtain the 6DOF pose
of needle for ophthalmic surgery.

III. METHOD
Themethod section contains two parts. The first part is to seg-
ment the needle point cloud from the scan area. In the second
part, we propose the segmented needle point cloud for needle
pose estimation.

A. NEEDLE SEGMENTATION
The OCT 3D volume is obtained by setting the OCT engine
into C-scan mode. One C-scan is constituted by multi B-scan
gray images that are two dimensional, cross-sectional images
of the scan area, as shown in Fig. 5. Due to the fact that
one needle is sufficient to perform most the movement of
surgery andmulti needles simultaneous operation are avoided
to reduce the incision ports on the sclera, there is only one
needle at most in the scan view. As soon as the operation
area is targeted by surgeon, the scan area could be fixed
and cover the operation area. The needle will be controlled
moving in this area. Afterwards, the captured original B-scan
gray image is transformed into a binary image by the adaptive
thresholding method [24]. We eliminate the noise inside the
binary image by applying amedian filter and aGaussian filter.
A voting mechanism is used to specify whether a point in the
B-scan image belongs to the needle body or not. Since the
needle body part in the B-scan image is a half ellipse, which
can be considered as a strong feature, the ellipse fitting is
applied to the topmost contours of each B-scan [24]. In order
to filter any fitted ellipse Ei other than the needle body,
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FIGURE 3. (a) The correct fitting of ellipse. (b) The fitting of ellipse with
large deviation. The fitting of ellipse (green dash line) and bounding box
(yellow solid line). The correct fitting ellipse is tangent with the bounding
box.

we constrain the ellipse’s minor axis me to a value less than
mt , where me is related to the diameter of the needle. The
contour with fitted ellipse Ei can also be overlapped by a
bounding box B = (Bxi,Bzi,wi, hi), as shown in Fig. 3,
where Bzi and Byi are the left corner of the bounding box
and wi and hi are the width and height of the bounding box,
respectively. The information of bounding box location can
be used to remove the needle reflection part in the original
OCT volume. The needle reflection part is generated because
needle reaches out of OCT imaging range, while blocking the
imaging path as shown in Fig. 2(b). TheEi will also be filtered
if the upper edge of corresponding bounding box Bw reaches
close to the image range. The Ei is represented as,

Ei =

{
∅, if me ≥ mt or Z − Bzi ≤ µ
Ei, if me < mt or Z − Bzi > µ

(1)

where Z is the OCT imaging range in Z direction, µ is the
tolerance between the upper edge of corresponding bounding
box and image range in Z direction.
The OCT volume is represented as a point cloud structure

P (see Fig. 2(b)) with (xi, yi, zi, bi), where (xi, yi, zi) is the
position of point fromP, and bi is the boolean value to identify
whether the point belongs to the needle or not. Afterwards,
we differentiate between objects (needle and retina) in the
point cloud with Euclidean cluster extraction [25]. In this
way we can obtain a set of Euclidean point clusters. The
cluster that has the greatest number of points with bi = 1
(i.e. most voting, blue color in Fig. 2(c)) is treated as the
needle. To ensure that the visual needle tip is located in the
first B-scan of the segmented needle, the B-scan direction
can be adjusted manually or automatically to match with
the needle insertion direction [24]. The yellow point (shown
in Fig. 2(c)), which represents the needle visual tip tv, is the
centroid of the needle cluster in this slice.

B. NEEDLE 6DOF POSE ESTIMATION
The part of needle tip can be treated as a rigid body and
the needle pose in OCT can be shown as in Fig. 5(a). Then,
The 6DOF of the needle can be defined by the needle tip
point position, the needle center axis direction n and the
rotation angle ϕ. In order to localize the space line L, which
is the center axis of the needle, the center of the ellipse ei in
each B-scan needs to be calculated. The straightforward way
is to fit the needle pixel with a ellipse equation. However,

FIGURE 4. The geometrical relationship of the ellipse and the bounding
box.

this half ellipse contains noise, which could easily lead to a
large deviation from the ground truth, see Fig. 3. Therefore,
we investigate the geometrical relationship of the ellipse and
the bounding box, which is robust and has less computation
overhead. As shown in Fig. 4, η is the angle between n and
YOZ , and θ is the angle between n and XOY . From the YOZ
plane view, we can find that with η changing, the distance
between pi and ei remains the same, where ei is the center of
ellipse and pi is the mid-point for the top border of bounding
box. The distance of piei can be obtained by the known needle
diameter d and θ . Then we can calculate the ei as follows,

ei = (Bxi,Byi,Bzi −
d

2 cos θ
) (2)

To analyze the needle pose in 3D OCT volume, we can
refer to Fig. 5(a). Considering that the target needle point
cloud has a fixed axis L, which we could calculate from ei by
RANSAC line fitting, the source needle point cloud can be
slid along and rotated around L. Therefore, the needle pose
can be determined by L, δ and ϕ, where δ is the shift distance
along this axis, and ϕ is the rotation angle around this axis.

In order to make the needles in OCT and the CAD model
as the same length while keep most of the point infor-
mation (bevel part), which helps to determine the 6DOF
pose, we crop the OCT point cloud to have a consistent
length with the CAD model by using split plane 0, shown
in Fig. 5(a). The CAD needle point cloud and OCT needle
point cloud are respectively denoted asC = {ci}

Nc
i=1 ∈ R3 and

O = {oi}
No
i=1 ∈ R3. The cropped OCT needle point cloud

O′ = {o′i}
No′
i=1 ∈ R3

⊆ O is cropped by 0, which can be
calculated as:

0 : nx(x − xv − lnx)+ ny(y− yv − lny)

+ nz(z− zv − lnz) = 0 (3)
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FIGURE 5. (a) The illustration of needle pose in OCT volume. (b) The
initial guess of SR-ICP is shifted and rotated value of C to match t ′

v and t ′

t
on the projection.

where n = (nx , ny, nz) denotes the unit direction vector for
space line L, tv = (xv, yv, zv) denotes the visual needle tip in
the OCT needle point cloud and l denotes the length of needle
for matching. l is selected by minimum value between the
length of bevel part of needle in CAD model and the length
of needle in OCT volume, which can be calculated as,

l = min(lc, lo)

{
lc = d/ cos(β)
lo = ‖pvpe‖ − d tan θ/2

(4)

where pv is the projection point of tv on the center axis line L,
and pe is the intersection point of line L and the last B-scan
plane. pv is calculated by,

pv = pa +
patv · papb
papb · papb

× papb (5)

where pa and pb are any two different points on the line L. tv
is obtained from needle segmentation.

As previously mentioned, we obtain the adjusted target
needle point cloud O′ from OCT images and the source point
cloud C from the CAD model, as well as the fixed needle
center axis L. In the following, we introduce the SR-ICP
with 2DOF (shift along and rotate around L). We achieve
the 2DOF by constraining the center axis of C by the center
axis ofO′. The proposed matching algorithm is consecutively
minimizing the following functions,

C(i) = argmin
j∈{1,...,Nc}

‖(Ak−1ci + tk−1)− o′i‖
2
2,

for all i ∈ {1, . . . ,No′} (6)

(Ak , tk ) = argmin
A,t

1
No′

No′∑
i=1

‖(Aci + t)− ci‖22 (7)

s.t.


A = (cosϕ)I + (sinϕ)[n]×

+(1− cosϕ)(n⊗ n),
t = pv − δn

(8)

Equation 6 finds the correspondence C(i) (i = 1, . . . ,N
whereN is the number of correspondence) between CAD and
OCT point cloud. This equation 6 minimizes the Euclidean
distance between the cropped needle points in OCT volume
and the transformed points of the needle CAD model under

constrains of Equation 7. A and t are the affine and transla-
tional matrices. Ak and tk are the desired affine and transla-
tional matrices at iteration k . Equation 8 is the constraint for
angle ϕ rotating around L and shifting distance δ along L. The
rotation is clockwise and the shift is starting from the visual
tip, pv. I is the identitymatrix. [n]× is the cross product matrix
of n, which can be calculated as,

[n]× =

 0 −nz −ny
nz 0 −nx
−ny nx 0

 (9)

⊗ is the tensor product, where can be calculated as,

n⊗ n =

 n2x nxny nxnz
nxny n2y nynz
nxnz nynz n2z

 (10)

The Equation. 7 is typical hyperparameter optimization
problem that can be solved by gradient-based and grid search
methods. The grid search method is exhaustive searching
through amanually specified subset of hyperparameter space,
and it can avoid local minima, but at the cost of high compu-
tation overhead. Gradient-based method, by contrast, is much
less in computation overhead but can lead to local minima.

The proper search space of hyperparameter and initial
guess are critical for the performance of both methods.
As shown in Fig. 5 (b), L ′, n′, t ′t , and t

′
v are the projection of L,

n, tt , and tv on plane XOY , respectively. tt is the needle CAD
model tip after transformation from the original position. Due
to the fact that the OCT scan has a certain resolution and
the optical coherence feature would miss the needle tip point
reflection in the OCT images, the visual needle tip tv is not the
actual position of real needle tip but the distance between tv
and the real needle tip is small. The projection of actual needle
tip onXOY is also close to t ′v. Therefore, we could use t

′
v as the

initial guess, and ϕ and δ could be adjusted to make the two
points t ′v and t

′
t overlapping with each other. The outputs of

rotation angle and shift distance value are denoted as ϕ0 and
δ0, which are the initial search values for SR-ICP. The search
space can be box restricted with reference to the initial guess.

(δ0, ϕ0) = argmin
δ,ϕ

‖(Att + t)XOY − t ′v‖
2
2 (11)

where (Att+ t)XOY donates the projection of (Att+ t) on XOY
plane. The Levenberg-Marquardt algorithm is introduced to
solve Equation 11. The gradient-basedmethod, which is com-
bined with Levenberg-Marquardt algorithm (LM based SR-
ICP) and grid search (GS based SR-ICP) method with several
iterations, are programmed to solve Equation 7 to obtain the
optimized A and t . The search area is constrained in a box
area with δ ∈ [δ0 +4δ, δ0 −4δ], δ ∈ [ϕ0 +4ϕ, ϕ0 −4ϕ],
where 4ϕ and 4δ are the regulation parameter for adjusting
the searching range.

With the desired output affine and translation value Ak and
tk , the estimated needle tip position can be calculated as,

tt = Ak tc + tk (12)
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FIGURE 6. (a) The experiment setup with iRAM!S eye surgical robot.
(b) The needle rotation experiment setup with a servo motor.

where tc is the tip position for needle CAD model in the
original position, which can be calculated by,

tc = (d/2, 0, 0) (13)

IV. EXPERIMENTS AND RESULTS
The experimental setup is depicted in Fig. 6. The OCT engine
is set to the maximum speed available with 27000 A-scans
per second in cube resolution of 128 × 512 × 1024 in
the corresponding scan range of 3 mm×3 mm×2 mm. The
movement of needle can be controlled by the surgical robot
named iRAM!S [26] with accuracy of 1 µm with piezo
motors (SmarACT GmbH, Germany), as shown in Fig. 6(a).
Since there is no roll control of needle in the robot, we use
a servo motor (Security GmbH, Germany) with 1◦ accuracy
to estimate the performance of different rotation of needle,
see Fig. 6(b). Due to the fact that one volume capture takes
500 ms, all the movements are proceeded by the robot until
the volume capture is finished. The framework is imple-
mented on the CALLISTO eye assistance computer system
with Intel Core i7 CPU of 200 ms processing time for needle
segmentation to obtain the needle point cloud with parallel
programming in C++ with OpenCV 3.4 and Point Cloud
Library (PCL) 1.8. The experiments contains two parts, (1)
the performance analysis of SR-ICP (GS and LM based) and
normal ICP (standard algorithm from PCL 1.8), and (2) the
accuracy validation of needle movement and needle rotation
for SR-ICP.

Fig. 7 shows needle point cloud matching results for the
LM based SR-ICP. As we can see in Fig. 7(c), SR-ICP
resulted in a better matching (white) compared to the normal
ICP method (purple). The normal ICP trends to mismatch
with the point cloud without the constraint of the needle cen-
ter axis. Fig. 8 shows the performance of three methods with
different point cloud sample size. As soon as the larger sample
size is selected, the sparser point cloud is obtained. The sum
of distance is the all over distance for the correspondencewith
the optimized Ak and t̃k , which can be calculated as,

No′∑
i=1

‖(Akci + tk )− ci‖22 (14)

We can see that the ML based SR-ICP and GS based SR-
ICP perform is better than ICP in matching with smaller

TABLE 1. Descriptive statistics for needle tip position error (in micron).

sum of distances for corresponding points (see Fig. 8(a)).
In Fig. 8(b), the distance between estimated and visual needle
tip does not have significant difference, which means that the
estimated needle tip would be similar for all three methods.
When the sample size increases to 60µm, the ICP trends to be
far away from the visual tip than the ICP, so this indicates that
the SR-ICP has a better performance when the point sample
size is large.

Fig. 8(c) shows that LM based SR-ICP has the best compu-
tation performance. When the sample size is 10µm, the com-
putation time is 335.4 ms for the LM based SR-ICP, which is
4.9 and 18.6 times faster than the ICP and GS based SR-ICP,
respectively.

In the second part of the experiment, we demonstrate the
effectiveness of the proposedmethod. The point cloud sample
size is set as 10 µm considering the algorithm processing
speed. As the experiment setup in Fig. 6, the robot is con-
trolled to move the needle in X , Y , and Z direction with
20 and 40 µm and each movement is repeated 25 times. The
robot is also controlled to yaw and pitch around the needle
tip as the RCM control point with virtual fixture control [27].
The yaw and rotation angle is set from −45◦ to 45◦ with
15 ◦ as the step. The servo motor is controlled to rotate the
needle from −45◦ to 45◦ in 15◦ increments and each angle
is collected 10 times. As we can see from Fig 9, the mean
error of needle tip distance estimation is 3.1 µm (maximum
18.7µm) for LMbased SR-ICP, 2.4µm for GS based SR-ICP
(maximum 29.9 µm), and 2.6 µm for visual tip (maximum
34.8 µm). We can find that the mean error accuracy does
not have significant difference, while the SR-ICP has the
lower maximum value compared to visual tip method. The
main reason is that the visual tip is directly obtained from
the images which varies more depending on the resolution
of the OCT scan in each direction. The standard deviation is
6.0 µm for GS based SR-ICP, 10.1 µm for LM based SR-
ICP, and 10.7 µm for visual tip, which demonstrates that
the GS based SR-ICP have the most steady output results.
This verifies that the GS based SR-ICP is slow but more
robust for single evaluation. In order to further analysis the
performance of these method, we put all the movement error
data in processing method with different evaluation metrics
and list them in Table 1.

The evaluation metrics includes average error of esti-
mated value to the ground truth (AE), the error of maximum
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FIGURE 7. (a) The cropped OCT needle point cloud ( 1© denotes needle point cloud with green color, the red points are the middle point for the top
border of bounding box, and the red line is the fitted axis line L). (b) The LM based SR-ICP matching result ( 2© denotes the transformed CAD needle point
cloud using SR-ICP in white color). (c) The comparison of LM based SR-ICP matching and ICP result ( 3© denotes the transformed CAD needle point cloud
using ICP in purple color). tv denotes visual needle tip with white dot, tt1 and tt2 denotes the estimated needle tip via SR-ICP with green dot and ICP
with blue dot, respectively.

FIGURE 8. (a) Sum of distances between corresponding points calculated by three methods with change of sample size. (b) The distance between
estimated and visual needle tip calculated by three methods with change of sample size. (c) The computation time by three methods with change of
sample size.

FIGURE 9. The actual movement for the needle tip and the estimated movement calculated by the Grid based SR-ICP, LM based SR-ICP, and visual tip
with 20 and 40 µm in (a) X direction, (b) Y direction, and (c) Z direction. The whiskers show the minimum and maximum recorded change of the
distance while the first and third quartile show the start and the end of the box. Band, red dot, and cross represent median, mean, and outliers of the
recorded changes respectively.

estimated value and actual value (ME), the root mean square
error (RSME),and the 95% of estimated confidence inter-
val (0.95CI). ēGn, ēLn and ēV n denote average of randomly
selected n estimated error values from 150 data samples using
LM based SR-ICP, GS based SR-ICP, and visual tip, respec-
tively. The 0.95CI for ēGn, ēLn and ēV n can be significantly
narrowed down with the increasing of n. The advantage of
the GS based SR-ICP method is that the processing speed is
faster with the benefit of averagingmore data in the same time

duration. Table 1 shows that with more data samples aver-
aging, the accuracy of the needle position can be increased.
When 3 data samples are averaged, 10µm needle tip position
accuracy can be achieved with confidence of 95% for GS
based SR-ICP and LM based SR-ICP.

Fig. 10 shows the performance of needle rotation. The
needle roll angle around L can be calculated by the methods
of GS based SR-ICP and LM based SR-ICP. The yaw and
pitch angle is calculated by the equation of line L, thus
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FIGURE 10. (a) Sum of distances between corresponding points
calculated by three methods with different sample size. (b) The distance
between estimated and visual needle tip calculated by three methods
with change of sample size. (c) The computation time by three methods
with change of sample size.

the result of yaw and pitch angle are the same for the GS
based SR-ICP and LM based SR-ICP. The mean error of
the estimated needle roll angle is 0.367◦(maximum 7.5◦) and
0.0835◦(maximum 8.5◦) for the GS based SR-ICP and LM
based SR-ICP, respectively. The performance of roll angle
estimation between two methods is similar with the consider-
ation of the servo motor error is 1◦. The mean error is 0.010◦

(maximum 0.290◦) for yaw angle, and 0.008◦ (maximum
0.112◦) for pitch angle. The above two parts of experiment
demonstrate that the SR-ICP has a better estimation result
compared to the normal ICP algorithm. There is no significant
difference between the GS based SR-ICP, LM based SR-ICP,
and visual tip regarding the performance for relative posi-
tion accuracy of the needle tip. However, visual tip method
only provide needle tip information without needle rotation
information. LM based SR-ICP have the advantage of similar
optima output ability with GS based SR-ICP but much less
computational overhead.

V. CONCLUSION
This paper presents a novel approach to estimate the 6DOF
needle pose directly from the OCT volume. A SR-ICP
algrithm is proposed to estimated the incompleted needle
point cloud after the segmentation of needle from OCT vol-
ume. Two solving strategies are used to solve the optimum
problem that is GS based SR-ICP and LM based SR-ICP.
Both of the methods have the ability of estimating the needle
tip position in accuracy of 10 µm with confidence of 95%,
which meets the positioning accuracy requirement for most
surgical applications in VR surgery. The mean error of roll
angle, yaw angle, and pitch angle are 0.0835◦, 0.010◦, and
0.008◦, respectively. Our future work will focus on path
planning and trajectory design in a way that the drug can
be delivered directly and precisely to the designed area with
6DOF needle navigation.
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