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Summary 

Ecological restoration has great potential for counteracting global losses in biodiversity 

and ecosystem functioning caused by unsustainable human land use. It aims at assisting the 

recovery of degraded ecosystems. Many restoration projects focus on peatlands, because of 

the significance of these ecosystems for adaptation and mitigation of climate change. Intact 

peatlands provide important ecosystem services like storage of water and carbon, and offer 

habitats for rare and endangered species, while they are highly threatened by drainage, peat 

extraction and afforestation. Peatland restoration supports biodiversity and ecosystem 

functions by creating near-natural habitat conditions, mostly through rewetting. While most 

meta-analyses report an incomplete short-term recovery of restored ecosystems, their long-

term dynamics remain largely unknown. Peatland recovery is commonly monitored shortly 

after restoration, but peatlands develop slowly and initial trends may not continue. Moreover, 

restored peatlands are expected to provide multiple ecosystem services. This makes their 

assessment and evaluation of success challenging and requires novel monitoring 

approaches.  

Thus, the goals of this thesis are (1) to contribute to the scientific understanding of 

peatland recovery and its temporal dynamics, and (2) to improve monitoring indicators and 

analytical methods. For this purpose, I established a chronosequence of 18 years after 

rewetting in 14 peatlands in a mountainous region in Central Germany comparing three 

drained, 19 restored and one near-natural peatland transect. Peatlands in the study region 

had been previously drained and afforested, and from 1998 onwards were rewetted by 

damming, filling of drainage ditches and removing of trees. For monitoring several ecosystem 

properties (i.e. water table, peat decomposition, water holding capacity, nutrient level) and 

characteristic peatland biodiversity (plants, dragonflies and butterflies) were assessed. I also 

set up a field experiment on phytometer plants in seven restored peatlands and an associated 

greenhouse experiment.  

In the first article of the PhD thesis, temporal trends of plant, dragonfly and butterfly 

diversity were analysed and related to restored habitat conditions. It showed that, rewetting 

improved habitat conditions, vegetation structure and species diversity. Plants and 

dragonflies benefitted most from rewetting, while no specialized butterfly species were found 

within two decades after rewetting, and also generalists increased only temporarily. This is 

most likely due to poor regional connectivity of the (restored) peatlands. Dragonflies colonized 

immediately, once suitable bog pools were present in restored sites. Plants more slowly 

developed towards reference conditions, and mostly depended on undegraded peat with a 
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high water holding capacity. These findings suggest, that recovery is not complete after 18 

years and that the three species groups are complementary indicators for restored peatlands. 

The second article studied the responses of three characteristic peatland plants (Drosera 

rotundifolia, Eriophorum vaginatum, Vaccinium oxycoccos) to restored environmental 

conditions by measuring various fitness traits in two phytometer experiments. While all three 

species are indicators for intact peatlands, their responses to rewetting were species-specific. 

E. vaginatum performed best, since all individuals survived under field conditions. The 

development of D. rotundifolia and V. oxycoccos was less successful, but also those species 

locally found suitable habitat conditions. These results highlight that local site limitation 

occurs, but also point at dispersal limitation. Among all measured fitness traits, many growth 

traits were partly redundant, and survival provided the most conclusive results for species 

adapted to stressful habitats. Generally, the most suitable fitness trait depends on the growth 

form of the respective species. 

The third article analyses the simultaneous recovery of multiple peatland properties with 

time since restoration using different multifunctionality approaches. As a reference, an 

optimum level was defined as the mean of the eleven highest values, while the intact peatland 

was excluded from the analysis. Nine out of 13 studied properties as well as the combined 

index significantly improved with time since restoration. Most important changes were 

observed within the first five years, inside the rewetted ditches, and at low or intermediate 

levels of functioning. A simultaneous recovery of multiple properties at high levels of 

functioning was not observed. These results highlight, that heavily degraded peatlands show 

considerable improvements in the first years after restoration, while they cannot fully recover 

within two decades. 

The general discussion compares the main findings in order to derive overall conclusions 

and recommendations for future monitoring and peatland management. New approaches like 

the use of phytometers or multifunctionality approaches are promising, but differ in their 

degree of comprehensiveness and explanatory power and therefore need to be carefully 

selected according to project goals. Indicators (ecosystem properties, taxonomic groups, 

species traits) differ in their response to the same treatment and therefore have to be 

thoroughly chosen. Restored peatlands need to be surveyed even longer than two decades 

in order to understand if full recovery is possible. Finally, additional management measures 

(dam reinforcement, repeated tree removal, improved connectivity, species introduction) 

should be further explored in order to advance peatland restoration to its best.  
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Zusammenfassung 

Ökologische Renaturierung kann durch ungeeignete Landnutzung verursachten globalen 

Verlusten an Biodiversität und Ökosystemfunktionen entgegenwirken. Ihr Ziel ist es die 

Regeneration degradierter Ökosysteme zu unterstützten. Moore stehen dabei aufgrund ihrer 

großen Bedeutung für den Klimaschutz häufig im Fokus von Renaturierungsprogrammen. 

Intakte Moore stellen wertvolle Ökosystemdienstleistungen zur Verfügung. Sie dienen 

beispielsweise als Wasserrückhalt, Kohlenstoffspeicher und Lebensraum für seltene und 

gefährdete Arten. Gleichzeitig sind sie bedroht durch Entwässerung, Torfentnahme und 

Aufforstung. Moorrenaturierung soll die Biodiversität und Funktionen dieser Ökosysteme 

fördern, indem durch Wiedervernässung naturnahe Habitatbedingungen geschaffen werden. 

Mehrere Meta-Analysen berichten von einer unvollständigen Regeneration renaturierter 

Ökosysteme über kurze Zeiträume. Über die langfristige Entwicklung renaturierter Moore ist 

jedoch noch wenig bekannt. Obwohl sie sich nur langsam erholen und anfängliche Trends 

sich manchmal nicht fortsetzen, finden Erfolgskontrollen meist kurz nach 

Maßnahmenumsetzung statt. Außerdem wird meist erwartet, dass Moore gleichzeitig 

mehrere Ökosystemdienstleistungen erbringen. Dies stellt eine zusätzliche Herausforderung 

für Erfolgskontrollen dar und erfordert neue Monitoringansätze. 

Diese Dissertation soll (1) zum wissenschaftlichem Verständnis der Regeneration von 

Mooren und ihrer zeitlichen Entwicklung beitragen und (2) Indikatoren der Erfolgskontrolle 

sowie Auswertungsmethoden verbessern. Dazu wurden 14 Moore im Fichtelgebirge und 

Steinwald ausgewählt und anhand einer unechten Zeitreihe drei entwässerte, 19 renaturierte 

und ein naturnaher Bereich miteinander verglichen. Die Moore des Untersuchungsgebietes 

waren zuvor entwässert und aufgeforstet worden. Ab 1998 wurden sie mit Hilfe von Dämmen, 

Grabenverfüllung und Baumentnahme wiedervernässt. Als Bestandteil der Erfolgskontrolle 

wurden verschiedene Ökosystemeigenschaften (Wasserstand, Torfzersetzung, 

Wasserhaltekapazität, Nährstoffe) und die moortypische Biodiversität (Pflanzen, Libellen und 

Tagfalter) erfasst. Zusätzlich wurden in sieben Mooren ein Freiland- und ein 

Gewächshausexperiment mit Phytometern angelegt. 

Der erste Artikel dieser Dissertation analysiert die zeitlichen Entwicklung der Pflanzen-, 

Libellen- und Tagfalterdiversität und setzt sie in Bezug zu abiotischen Bedingungen. Er zeigt, 

dass eine Wiedervernässung moortypische Lebensräume, Vegetationsstruktur und 

Artenvielfalt verbessern konnte. Pflanzen und Libellen profitierten dabei am meisten, 

während mooorspezifische Tagfalter zwei Jahrzehnte nach der Renaturierung nicht 

nachgewiesen werden konnten; auch Generalisten nahmen nur vorrübergehend zu. Der 
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Grund hierfür liegt vermutlich in einer schlechten regionalen Vernetzung der (renaturierten) 

Moore. Libellen besiedelten die renaturierten Moore dagegen unmittelbar, sobald geeignete 

Gewässer verfügbar waren. Pflanzen näherten sich dem Zielzustand langsamer an. Dabei ist 

ihre Wiederansiedlung in erster Linie von intakten Torfen mit einer hohen 

Wasserhaltekapazität abhängig. Diese Ergebnisse zeigen, dass sich Moore innerhalb von 18 

Jahren nicht vollständig regenerieren und, dass die drei untersuchten Artengruppen 

komplementäre Indikatoren darstellen.  

Der zweite Artikel untersucht in zwei Phytometer-Experimenten die Reaktion dreier 

moortypischer Pflanzenarten (Drosera rotundifolia, Eriophorum vaginatum, Vaccinium 

oxycoccos) auf renaturierte Habitatbedingungen. Die Ausprägung ihrer Wuchseigenschaften 

wurde dabei als Indikator ihrer Fitness vermessen. Während alle drei Arten Zeiger intakter 

Moore sind, reagierten sie unterschiedlich auf die Wiedervernässung. E. vaginatum 

entwickelte sich am besten, da im Freilandversuch alle Individuen überlebten. D. rotundifolia 

und V. oxycoccos waren weniger erfolgreich, aber auch diese Arten fanden lokal geeignete 

Bedingungen vor. Dies deutet auf eine lokale Standortlimitierung in den renaturierten Mooren 

hin. Ein Abgleich dieser Ergebnisse mit natürlichen Vorkommen der Arten lässt aber auch 

eine Ausbreitungslimitierung vermuten. Die Korrelation aller gemessenen 

Pflanzeneigenschaften zeigte, dass viele Wachstumsgrößen redundant sind. Für wenig 

stresstolerante Arten lieferte das Überleben der Pflanzen die schlüssigsten Ergebnisse. Im 

Allgemeinen entscheidet die Wuchsform der jeweiligen Art darüber, welche Eigenschaften 

am besten ihre Fitness beschreiben. 

Der dritte Artikel untersucht die gleichzeitigte Regeneration zahlreicher 

Mooreigenschaften seit der Renaturierung anhand verschiedener Ansätze zur Berechnung 

von Multifunktionalität. Als Referenz bzw. Optimum diente das Mittel der elf höchsten 

gemessenen Werte; das naturnahe Moor wurde dahingegen von der Analyse 

ausgeschlossen. Neun von 13 Mooreigenschaften sowie ihr kombinierter Index verbesserten 

sich signifikant seit Beginn der Renaturierung. Dabei geschahen die größten Veränderungen 

in den ersten fünf Jahren, innerhalb der wiedervernässten Gräben und bei einem niedrigen 

bis mittleren Funktionalitätslevel. Diese Ergebnisse heben hervor, dass sich stark degradierte 

Moore in den ersten fünf Jahren nach der Renaturierung entscheidend verbessern, aber sich 

auch innerhalb von zwei Jahrzehnten nicht vollständig regenerieren. 

Die übergeordnete Diskussion vergleicht die wichtigsten Ergebnisse der drei Artikel 

miteinander, um allgemeine Schlussfolgerungen sowie Empfehlungen für künftiges 

Monitoring und Management ableiten zu können. Neue Ansätze wie die Verwendung von 

Phytometern oder Multifunktionalitätsberechnungen sind vielversprechend, unterscheiden 
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sich aber stark in ihrem Anwendungsbereich und insbesondere im Grad der Vollständigkeit 

sowie ihrem Erklärungswert. Deshalb muss ihr Nutzen entsprechend der jeweiligen 

Projektziele abgewogen werden. Auch einzelne Indikatoren (Ökosystemeigenschaften, 

Artengruppen, Wuchseigenschaften von Pflanzen) können unterschiedlich auf die gleiche 

Veränderung reagieren und sind daher ebenso sorgfältig auszuwählen. Renaturierte Moore 

sollten zukünftig mehr als zwei Jahrzehnte beobachtete werden, um zu verstehen, ob eine 

vollständige Regeneration möglich ist. Um die Renaturierungspraxis nicht nur im 

Untersuchungsgebiet maximal voranzutreiben, sollten zudem verschiedene Maßnahmen 

(Verstärkung der Dämme, wiederholte Baumentnahmen, Verbesserung der Vernetzung, 

Wiederansiedlung von Arten) weiter untersucht werden. 
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GENERAL INTRODUCTION 

Restoring degraded ecosystems 

Ecological restoration is no longer an option but a necessity in a world, that has undergone 

considerable changes with far-reaching consequences for the natural and human 

environment (JONES et al. 2018). Humans have transformed landscapes and ecosystems by 

favouring productive ecosystem attributes, such as exploitation of natural resources, while 

ignoring or accepting the associated trade-offs of ecosystem resilience and degradation 

(KAREIVA et al. 2007). SANDERSON et al. (2002) estimated that 83% of the global land surface 

have experienced direct human influence. The consequences are losses of certain 

ecosystem attributes, whose significance is not directly visible but can be crucial for 

maintaining vital ecosystem functions like climate regulation, freshwater provision or even 

food production (FOLEY et al. 2005). Also, unsustainable human land use has caused marked 

biodiversity losses (SALA et al. 2000), so that currently species extinctions occur faster than 

ever before and many more threatened biodiversity is likely to vanish in near future (PIMM et 

al. 1995).  

Degraded ecosystems are losing their functionality in many aspects. Ecosystem 

processes like primary production, nutrient and carbon cycles or decomposition are altered, 

and also ecosystem services, that directly or indirectly benefit humans are affected (MEYER 

et al. 2015). At the same time, degraded ecosystems are not capable of providing habitat for 

specialized and often threatened species. Though, biodiversity is not only valuable in its own 

right, but also an important driver of ecosystem functions, as shown by the field of biodiversity-

ecosystem functioning (BEF) research (CARDINALE et al. 2012, GAMFELDT et al. 2013, BYRNES 

et al. 2014). However, current changes and processes are threatening biodiversity. Many 

species suffer from a lack of suitable habitats due to unsustainable land-use changes (KERR 

& DEGUISE 2004). Furthermore, increasing fragmentation, i.e. smaller and more isolated 

habitats, limits dispersal and negatively affects population dynamics (FAHRIG 2001, TUCKER 

et al. 2018). These developments highlight the crucial need not only for conserving remaining 

habitats and species, but for actively reversing anthropogenic changes by restoring the 

degraded ecosystems in order to halt losses in biodiversity and ecosystem functions. 

Ecological restoration is most commonly defined as “the process of assisting the recovery 

of an ecosystem that has been degraded, damaged or destroyed” (SOCIETY FOR ECOLOGICAL 

RESTORATION INTERNATIONAL 2004). Its major goal is to bring an ecosystem on a trajectory of 

recovery, while focusing on key ecosystem attributes, i.e. suitable physical conditions, plant 
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and animal species composition, structural diversity, ecosystem functionality, the absence of 

threats by contamination or invasive species, and external exchanges like connectivity and 

processes at the landscape scale (MCDONALD et al. 2016). As people have become aware of 

ongoing global changes, restoration projects have been increasingly implemented in nature 

conservation practice; they are supported by policy commitments and large public 

investments (e.g. ZHANG et al. 2000). The success of these projects depends on the capacity 

to effectively and efficiently implement restoration measures, while the science of restoration 

is relatively young and many questions remain open. For answering them, restoration practice 

and science should benefit from each other. While research can take advantage of the large 

number of accomplished restoration projects and use them as experiments that can inform 

ecological theory (HOLL et al. 2003), practitioners can learn from their results and translate 

them into future restoration actions. 

Several meta-analyses have studied the overall potential of ecosystem restoration by 

summing up numerous case studies in order to understand overall processes. REY BENAYAS 

et al. (2009) were the first to globally evaluate the effectiveness of restoration actions with 

respect to ecosystem services and biodiversity. MORENO-MATEOS et al. (2017) estimated the 

degree of ecosystem recovery, while differentiating between biomes and degrading factors. 

Most recently JONES et al. (2018) analysed the benefits of active vs passive restoration – in 

the latter case allowing an ecosystem to recover without human intervention, but ceasing 

negative effects. Their conclusions are similar, as they all state an incomplete recovery 

compared to intact reference systems or – as MORENO-MATEOS et al. (2017) called it – a 

‘recovery debt’ (Fig. 1). They highlight the importance of conservation as a key strategy and 

criticize restoration as a compensation tool for new habitat destruction, while they clearly 

show that significant improvements can be achieved. However, they fail to differentiate 

between trial-and-error approaches and projects based on ecological hypothesis testing. So 

finally and maybe most importantly, this research shows that for progressing we need to 

understand the underlying drivers of this incomplete recovery, that can be global, but also 

ecosystem-specific and dependent on time-scales. Since to date there is no universal recipe 

for ecosystem restoration, monitoring of past (un)successful projects is crucial for 

understanding and improving future efforts (GEIST & HAWKINS 2016). 
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Fig. 1: Degradation and restoration of ecosystem integrity with time. Restoration can be passive after the end of 

human disturbance or include active intervention measures (e.g. rewetting). After restoration multiple recovery 
trajectories are possible. Figure modified after JONES et al. (2018) with elements of BULLOCK et al. (2011) and 
MORENO-MATEOS et al. (2017). 

Challenges in monitoring restoration success 

The extensive literature on ecological monitoring (see LINDENMAYER & LIKENS 2010) 

stresses its crucial role for verifying the effectiveness of restoration efforts and advancing 

future project success. Monitoring is used in a large variety of contexts ranging from curiosity-

driven over mandated to question-driven approaches (LINDENMAYER & LIKENS 2010). Yet, it 

is certainly not only a management activity, but an important basis for scientific research. 

Against this background, the need for thorough theory-driven evaluations becomes even 

more evident. However, evaluating restoration is not straightforward and has caused intense 

discussions on (i) what characterizes restoration success, and (ii) when and (iii) how best to 

measure it (WORTLEY et al. 2013). 

Objectives and references of restoration 

Above all else, the definition of success first depends on goals and references (Fig. 2) that 

are realistic and verifiable (PALMER et al. 2005, LINDENMAYER & LIKENS 2010), while 

acknowledging the fact that they might be conflicting (BULLOCK et al. 2011). Practitioners do 

monitoring for management reasons and can focus on the goals set beforehand, whereas 
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scientists search for a more fundamental ecological understanding that requires to more 

comprehensively assess ecosystem integrity. For doing so, most commonly, restoration 

ecologists have compared restored sites to (historic) natural reference systems (e.g. 

KLIMKOWSKA et al. 2007, HEDBERG et al. 2013), and restoration guidelines also recommend 

this approach to practitioners (e.g. SOCIETY FOR ECOLOGICAL RESTORATION INTERNATIONAL 

2004, MCDONALD et al. 2016). However, target states based on the comparison to reference 

conditions might be too narrow for some types of restoration in a changing world (HIGGS et 

al. 2018), and are certainly not feasible in the absence of suitable natural references, as for 

example in novel ecosystems or extensively degraded landscapes. Therefore, multiple 

potential outcomes should be targeted and processes should be favoured over structures in 

attempts to evaluate restoration success (HIGGS et al. 2014). 

 

Fig. 2: The process of restoration and its monitoring includes a step-by-step procedure from stating restoration 

objectives to their achievement. A well-designed monitoring is the prerequisite for judging restoration success. 
Figure modified after PANDER & GEIST (2013) and SIDDIG et al. (2016). 

Time scale of restoration assessment 

Another challenge in ecological monitoring addresses its time frame (Fig. 3). For judging 

restoration success, we need to have sufficiently long monitoring periods, that capture the 

moment of maximum recovery. Nevertheless, many authors report, that most studies are 

carried out too short after restoration activities (HOLL et al. 2003, WORTLEY et al. 2013, 

KOLLMANN et al. 2016), mostly due to limited funding and a ‘culture of short-termism’ 

(LINDENMAYER & LIKENS 2010). This can have far-reaching consequences, as it might give a 

false picture of restoration success. For example, JONES et al. (2018) discuss, that the 

incomplete recovery of restored ecosystems shown in their study could be due to an 
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insufficient amount of time. Moreover, for a scientific understanding the ecological processes 

and dynamics induced by restoration, we also need repeated measurements; particularly 

because ecosystem recovery is not always a linear process.  

 

Fig. 3: Restoration trajectories can be different resulting in varying levels of success. Repeated observations of 

several sites reveal, if the degraded systems all develop towards the restoration target (a) continue degradation 
after initial recovery (b), or differ in restoration response (c). Figure modified after SUDING (2011). 

While there is a lack of empirical research on general recovery patterns (JONES et al. 

2018), ecological theory on this topic is abundant. For example, BULLOCK et al. (2011) 

propose different trajectories of restored biodiversity against time, which can develop in an 

asymptotic, linear, unimodal or stochastic way (Fig. 1). MATTHEWS & SPYREAS (2010) and 

SUDING (2011) highlight the importance of spatio-temporal comparisons of restored and 

reference conditions, as (a) several restored sites may all converge towards target conditions, 

(b) all deviate from the target, or (c) unintendedly diverge among each other (Fig. 3). In the 

first case restoration can be considered successful, while the third one suggests differences 

in (a)biotic conditions like nutrient loads or dispersal limitation at least in some sites. In the 

second case the system seems to be in a ‘stable alternative state’ (BEISNER et al., 2003). This 

can be associated to what STANDISH et al. (2014) called ‘unhelpful resilience’ meaning that 

an ecosystem returns to a degraded state, because of a threshold that cannot be passed by 

restoration (ANDRADE et al. 2015). Consequently, monitoring needs to reflect these dynamics 

by covering sufficiently long time scales with repeated measurements. However, these 

dynamics are highly ecosystem- and species-specific, e.g. at least as long as the generation 

time of dominant organisms (LINDENMAYER & LIKENS 2010), highlighting the need for 

ecosystem-specific studies of recovery trajectories.  
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Indicators for restoration success 

A third highly debated field in monitoring ecological restoration concerns the selection of 

indicators for most adequately describing the response of an ecosystem to restoration 

actions; like addressed by reviews of RUIZ-JAEN & AIDE (2005), WORTLEY et al. (2013) and 

KOLLMANN et al. (2016). While the first two suggested to test for ecosystem attributes as 

stated by the Primer of the SOCIETY FOR ECOLOGICAL RESTORATION INTERNATIONAL (2004), 

they found that none of the previously published articles had included all of them. Studies had 

rather focused on diversity, vegetation structure and ecological processes, with ecosystem 

functions becoming only recently more important (KOLLMANN et al. 2016). Diversity measures 

in these reviews included richness, functional and genetic diversity of several taxonomic 

groups, i.e. plants, vertebrates, invertebrates, microbes and fungi. Structural attributes 

covered plant growth, vegetation height and cover, biomass, wood density, basal area and 

litter structure (cover, biomass, number of layers). Processes cover, nutrient cycling, carbon 

dynamics, productivity, decomposition, soil development, but also dispersal, reproductive 

success, pollination and other trophic interactions. This large range of potential indicators 

emphasises even more, that their careful selection at the onset of a project is important, 

especially when resources or time are limited and not everything can be assessed. Most 

importantly, the selection of indicators should be driven by the context, and their suitability 

largely depends on well-thought-out questions (LINDENMAYER & LIKENS 2010, SIDDIG et al. 

2016).  

Generally, there seems to be a trade-off between the comprehensive assessment of a 

restored ecosystem and the power of an approach to explain the underlying drivers of change 

(Fig. 4). Indicators, including terms like ‘bioindicators’, ‘umbrella’, ‘keystone’  or ‘flagship 

species’, ecosystem engineers or foundation species (SIMBERLOFF 1998, SIDDIG et al. 2016), 

have a long tradition in conservation biology. Indicator species integrate or predict the 

conditions of their environment via their current status or trend in diversity, abundance or 

fitness (BURGER 2006), and thus are used as a proxy for other biota or environmental change 

(LINDENMAYER & LIKENS 2011). They are frequently monitored, because their survey is easier, 

more efficient and cost-effective, while being reliable and meaningful (SIDDIG et al. 2016). 

However, a single population, species or taxonomic group rarely reflects the complexity of 

the environment (LINDENMAYER & LIKENS 2011), while the integration of multiple (a)biotic 

components leads to a more holistic understanding of a restored ecosystem (GEIST 2011). 

Ecological or environmental indices summarise a broad number of species or properties, and 

usually express it as a final single value. They are well-known for monitoring water quality 

(THIEBAUT et al. 2002), but are also useful indicators for other ecosystems, as they are simple, 
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fast and easy to perform. Furthermore, they capture the complexity of an ecosystem, as they 

include many different properties (Fig. 4). However, underlying trends of indices might 

become invisible, when their components move to different directions (MUELLER et al. 2014). 

All the above-mentioned indices and their components (i.e. species or properties) are 

based on observations of the current status of an ecosystem. Thus, many different factors, 

including those not related to restoration activities, can potentially influence them, making it 

difficult to disentangle the drivers responsible for a specific observation. Therefore, for an 

easier interpretation it can be helpful to formulate testable hypotheses and use manipulative 

experiments to systematically test them (DIETRICH et al. 2013). Experimental approaches 

reduce confounding effects by minimizing differences among replicates and by controling the 

factor of interest (e.g. water, light, plant age; GIBSON 2002), thus having a great potential for 

understanding the underlying drivers of specific restoration outcomes or single targets (Fig. 

4), especially when used as complementary to observational field surveys. 

 

Fig. 4: Monitoring approaches depend on restoration targets, that can range from single targets (e.g. re-

establishment of one species, carbon storage etc.) to a fully functional ecosystem. While integrative indices can 
comprehensively inform about ecosystem integrity, they are usually too general for understanding the underlying 
drivers of incomplete recovery. Observing a suite of single properties or indicator species can point at ongoing 
processes. Indicator species (e.g. keystone or umbrella species, SIMBERLOFF 1998) represent other species and 
ecosystem properties. Experimental approaches can help to understand the underlying causes of processes.  
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Monitoring approaches used in this thesis 

For addressing the above-mentioned challenges of monitoring ecological restoration, the 

present thesis employs novel and complementary approaches, including (i) a unique 

chronosequence, (ii) the combination of both plant and animal species as collective indicators 

for ecological restoration, (iii) phytometers and (iv) a new multifunctionality approach.  

Chronosequence for measuring long-term restoration success (Article 1 and 3) 

While it is generally agreed, that the best source of evidence for analysing ecosystem 

changes are long-term time series, that are sufficiently repeated in space and time (WALKER 

et al. 2010), there is often a lack of resources for sufficiently long studies. Chronosequences 

using a space-for-time substitution are a common alternative, as they allow researchers to 

sample a large dataset within a short time period (BANET & TREXLER 2013), particularly in 

slowly developing ecosystems like forests or peatlands (ANDERSEN et al. 2017). This 

approach is valid under the assumption that the spatial relationship between an 

environmental driver and a response can be used as a proxy for the temporal relationship 

(BANET & TREXLER 2013). This implies the presence of ecological succession (WORTLEY et 

al. 2013). While there has been some debate about the validity of this approach (WALKER et 

al. 2010), it can substantially advance our understanding of ecological processes. In 

restoration ecology, this approach is particularly promising for cases, where restoration 

measures have been carried out in the past, but initially have not been accompanied by 

(scientific) monitoring. Furthermore, restoration activities usually trigger ecological 

succession.  

In articles 1 and 3 of this thesis, I make use of a chronosequence approach for tracking 

recovery trajectories of biodiversity and ecosystem functions within a region, where 

restoration measures had been regularly undertaken by practitioners over almost 20 years 

with similar methods, but without a large-scale systematic assessment. 

Animals as part of assessing biodiversity recovery after restoration (Article 1) 

While ecologists equally use invertebrates and vegetation (SIDDIG et al. 2016), restoration 

ecologists have traditionally focused on abiotic and vegetation-based properties as a goal 

and as a monitoring criteria, while animals and trophic interactions have been studied to a 

lesser extent (CRISTESCU et al. 2013, FRASER et al. 2015, KOLLMANN et al. 2016). This is 

related to the assumption, that if habitat quality and vegetation structure recover, the fauna 

will spontaneously follow (PALMER et al. 1997). At the same time, vascular plants are easier 
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to assess and show less seasonal variation in most regions (RUIZ-JAEN & AIDE 2005). 

However, it has been shown that the correlation between flora and fauna recovery is not 

always true, but that insect communities do not recover to the same extent as plant 

communities (BABIN-FENSKE & ANAND 2010). FRASER et al. (2015) called for an increased 

integration of animal species into ecological monitoring, since animals are a significant part 

of ecosystem recovery, given their role as decomposers, herbivores and predators strongly 

affecting plant diversity and ecosystem functioning (FRASER et al. 2015).  

Article 1 of this thesis follows this recommendation by comparing recovery trajectories of 

vegetation structure and plant diversity to those of butterflies and dragonflies, and their habitat 

requirements. 

Phytometers for understanding site limitation of restored ecosystems (Article 2) 

Plants are most frequently used for monitoring restored ecosystems, because they 

integrate site conditions over relatively long time periods (ELLENBERG et al. 2001). This 

potential is used in so-called phytometer experiments, that have a long tradition in agricultural 

sciences (DIETRICH et al. 2013), while the idea of using phytometers for evaluating restoration 

success is rather recent (DIETRICH et al. 2013). Phytometers are standardized plants, that are 

experimentally transplanted to indicate differences between sites via growth, mortality and 

fitness (ANTONOVICS & PRIMACK 1982). Therefore, they combine the advantages of plants as 

indicators and of experimental approaches, that can be useful for understanding underlying 

drivers of restoration success, as mentioned above. More specifically, their experimental 

addition to restored sites allows to discriminate between site limitation, i.e. abiotic constraints 

on species establishment (e.g. nutrients, water, light) and dispersal limitation, i.e. constraints 

imposed by dispersal and (re)colonization potential of the respective species (EMSENS et al. 

2018). The differences in performance are best assessed by measuring plant traits related to 

survival, growth and reproduction (VIOLLE et al. 2007). The list of traits, that can potentially 

indicate within-species differences is long and various traits have been used in transplant 

experiments.  

For article 2 of this thesis, three peatland species were used and numerous plant traits 

measured in order to systematically compare plant responses. The goal was to advance the 

application of the phytometer approach in the field of ecological restoration. 
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Multifunctionality approach for assessing restored ecosystem integrity (Article 3) 

Biodiversity-ecosystem function (BEF) researchers have developed approaches for 

simultaneously assessing (MEYER et al. 2015) and analysing several functions (BYRNES et al. 

2014). These results show, that the loss of species impacts single ecosystem processes like 

productivity or nutrient cycling (BALVANERA et al. 2006, CARDINALE et al. 2006), authors 

claimed, that the relationship between diversity and ecosystem functioning might be different 

or even stronger, when multiple functions are considered (GAMFELDT et al. 2008). Therefore, 

there is a need for developing methods to assess this so-called multifunctionality, and to 

standardise the approach for increasing the comparability of studies (BYRNES et al. 2014).  

Article 3 of this thesis identified a similar need for evaluating restored ecosystems, as 

trajectories of single properties might differ and not necessarily correlate with the overall 

ecosystem trajectory. For more comprehensively describing the ecosystem multifunctionality 

approaches - as recently suggested by BYRNES et al. (2014), i.e. the ‘averaging approach’, 

the ‘single threshold approach’ and the ‘multiple threshold approach’ – were modified for this 

purpose. Hence, instead of analysing the multifunctionality response to diversity, this study 

focuses on ecosystem recovery and analysed multiple properties as a function of time since 

restoration. 

Peatlands as study ecosystems of the thesis 

For this PhD thesis, restored peatlands were chosen as most suitable study systems, since 

restoration activities currently often focus on them with varying targets ranging from the 

provision of habitats for specialized and rare species over the attenuation of flood peaks to 

the reduction of greenhouse gas emissions (GRAND-CLEMENT et al. 2013). At the same time, 

their monitoring is particularly challenging, as (i) natural reference sites are scarce due to 

their widespread and profound degradation, (ii) they slowly recover and (iii) are supposed to 

fulfil multiple ecosystem functions. 

Peatlands are wetland ecosystems, that are characterised by the presence of a naturally 

accumulated peat layer (SUCCOW & JOOSTEN 2001), for which most commonly a minimum 

depth of 30 cm is defined (AD-HOC-ARBEITSGRUPPE BODEN 2005). Peat is sedentarily 

accumulated plant and soil material consisting of at least 30% (dry mass) of dead organic 

matter (JOOSTEN & CLARKE 2002, AD-HOC-ARBEITSGRUPPE BODEN 2005). Following this 

definition, the term ‘peatland’ includes drained sites, where peat is no longer actively 

accumulating, but still present at the soil surface; and it is opposed to the term ‘mire’, that 
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describes a peatland, where peat is currently being formed (JOOSTEN & CLARKE 2002). Thus, 

mires are characterised by an incomplete nutrient cycle, where the production of organic 

matter (mainly plant material) exceeds its decay (decomposition) due to permanent 

waterlogged conditions and an associated lack of oxygen (JOOSTEN & CLARKE 2002). While 

the presence of water is crucial for the development of a mire, its origin is decisive for the two 

resulting peatland types. While bogs or ombrogenous mires are fed by rainwater and usually 

raise above the surrounding landscape, fens or geogenous mires are depend on ground 

water and are usually situated in depressions (Fig. 5). Differences in pH and base richness 

of the water determine the floristic variation between these two mire types with ombrotrophic 

communities in bogs and minerotrophic communities in fens (CONRADI & FRIEDMANN 2013). 

 

Fig. 5: Different hydrogenetic mire types depending on their topographic situation and inflow water origin, mainly 

its nutrient and base content. Figure modified after KOLLMANN et al. (2019) 

Peatlands are amongst the most valuable ecosystems (COSTANZA et al. 1997). They 

provide essential functions that are beneficial to the human well-being (BONN et al. 2016); 

many of them related to the above-mentioned incomplete decomposition processes. The 

most prominent function, that has become a major political focus in the attempt to mitigate 

global warming, is their capacity to act as a carbon sink (QUINTY & ROCHEFORT 2003). While 

peatlands only cover around 3% of the global land surface (SUCCOW & JOOSTEN 2001), they 

store around 540 Gt of carbon, i.e. 30% of global carbon stored in plants and soil (PARISH et 
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al. 2008). They are also assumed to store 10% of the global freshwater resources (JOOSTEN 

& CLARKE 2002), thus attenuating runoff and discharge rates, and therefore reducing flooding 

(BONN et al. 2016). Other examples include the preservation of historic records (e.g. 

stratigraphical archive, pollen record, archaeological artefacts) and the use of peatland plants 

for medicinal purposes (e.g. Drosera spp., Menyanthes spp.; BONN et al. 2016). Many of these 

services are only provided by intact or marginally degraded peatlands, but sometimes 

sustainable use is compatible with certain functions. For example, ‘paludiculture’ is a type of 

agriculture, that conserves the peat body and reduces greenhouse gas emissions or other 

forms of pollution (JOOSTEN et al. 2016). However, there are some provisioning services (e.g. 

intensively produced timber, peat as a horticultural substrate), that require drainage and 

negatively affect the peat body (SCHUMANN & JOOSTEN 2008). 

Another major function of peatlands is the provision of habitats for specialized species. 

Most of the above-mentioned ecosystem services depend on biodiversity, and conservation 

of biodiversity has an ethical foundation (JAX et al. 2013, MINAYEVA et al. 2016). Generally, 

besides water and peat, plants play a crucial role in peatlands so that these three components 

are considered mutually dependent (JOOSTEN 2016). The role of vegetation in peatlands is 

two-sided: on one side, only few specialized plant species occur under the prevalent extreme 

site conditions, on the other side, plants substantially determine these site conditions 

(MINAYEVA et al. 2016). For example, peat mosses (Sphagnum spp.) act as ecosystem 

engineers and contribute to creating acidic, nutrient-poor, cold and anoxic conditions of 

peatlands (VAN BREEMEN 1995). This environment creates restrictions for other living 

organisms and explains, why peatlands are usually species-poor compared to mineral soil 

ecosystems within the same region (MINAYEVA et al. 2017). At the same time peatland species 

are usually highly specialized and not found in other habitats, which underlines the 

significance of peatlands for biodiversity (JOOSTEN 2016). Most peatland species have 

specific strategies in order to cope with the particular conditions, e.g. aerenchyma facilitating 

gas exchange between roots and shoots, carnivory or mycorrhiza improving nutrient and 

mineral uptake, and small, thick leaves conserving water during dry summer months 

(MINAYEVA et al. 2016). Many invertebrates are also very specialized. They can be obligatorily 

(‘tyrphobiontic’) or predominantly associated (‘tyrphophilous’) to peatlands (SPITZER & DANKS 

2006). Most vertebrates only use peatlands at certain life stages, but have also developed 

strategies for coping with the specific conditions of peatlands, e.g. amphibian and bird egg 

shells, that resist to the acidic environment (MINAYEVA et al. 2016). 

Peatlands have suffered severe losses of biodiversity and ecological functions due to non-

sustainable human use. The main causes are direct peat extraction for fuel or horticultural 



GENERAL INTRODUCTION 

25 

substrate production, indirect changes in landscape hydrology, atmospheric nitrogen 

deposition and changes in land use by agriculture, forestry and urban transformation 

(GROOTJANS et al. 2012). As a consequence, 500,000 km2 or 12% of the global mires have 

been altered in a way, that peat is not accumulating any more (GROOTJANS et al. 2012). In 

Europe, where mire losses are particularly pronounced, almost half of the peatlands have 

been degraded (JOOSTEN 2016), and in Germany this figure reaches almost 80% (JOOSTEN 

2010). Until today, more peatland is lost than naturally expanding, so that global peat volumes 

are still decreasing (JOOSTEN 2016). When peatlands are drained – as necessary for peat 

extraction or intensive agricultural or silvicultural use – peat gets oxidised and biogeochemical 

processes, that were previously inhibited, set in. Thus, when peat decomposes, greenhouse 

gases (carbon dioxide and nitrous oxide), are released to the atmosphere, summing up to 2 

Gt of CO2 per year (PARISH et al. 2008). Moreover, anthropogenic disturbance at different 

spatial scales led to habitat loss, degradation and fragmentation with severe impacts for 

peatland biodiversity (MINAYEVA et al. 2016). 

For counteracting these changes, peatland restoration activities are initiated and research 

on peatland restoration has emerged as an active scientific field in the past 30 years 

(ROCHEFORT & ANDERSEN 2017). In Europe, the EU LIFE nature programme alone invested 

167.6 M€ in 80 projects between 1993 and 2015 (ANDERSEN et al. 2017), and it is 

complemented by many regional and local incentives. The most widely acknowledged goal 

of peatland restoration is the re-establishment of a self-sustaining naturally functioning mire 

ecosystem, including the accumulation of peat (WHEELER & SHAW 1995, QUINTY 

& ROCHEFORT 2003, ROCHEFORT & ANDERSEN 2017). Specific measures depend on the 

degree and type of degradation as well as on the ecosystem components affected 

(SCHUMANN & JOOSTEN 2008).  

As most peatlands in Central Europe have been degraded due to drainage (ANDERSEN et 

al. 2017), rewetting is the most commonly applied restoration method. It generally consists of 

raising and stabilising the water table close to the surface by blocking drainage ditches, in 

order to recover waterlogged, anoxic conditions and therefore peat accumulation. In 

eutrophied fen meadows, another frequent action is topsoil removal (KLIMKOWSKA et al. 

2015). While often species are expected to recover or re-establish spontaneously (e.g. by re-

colonizing from surrounding populations), in some cases species (mostly plants) are actively 

reintroduced (MINAYEVA et al. 2016). After large-scale peat cutting, sites are often too 

degraded for spontaneous plant recovery, and diaspores have to be introduced (e.g. 

ROCHEFORT et al. 2003). In this way, functions like water or carbon storage as well as specific 

habitat conditions, and characteristic peatland biodiversity are expected to recover. While full 
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recovery is rarely possible, the overall potential of peatland restoration largely depends on 

site-specific factors like peatland type and degradation stage (SCHUMANN & JOOSTEN 2008). 

Peatland are slowly recovering ‘complex adaptive systems’ (GORHAM & ROCHEFORT 

2003), that are capable of rapid change and reorganization in response to environmental 

change (DISE 2009), e.g. induced by restoration activities. Several studies reported on the 

recovery trajectories of restored peatlands or wetlands. Generally restoration activities like 

rewetting and diaspore transfer in formerly block-cut peatland (POULIN et al. 2013, 

ROCHEFORT et al. 2013, GONZÁLEZ & ROCHEFORT 2014) or forestry-drained peatlands 

(HAAPALEHTO et al. 2017) moved most sites towards the expected development trajectory 

within the first 10 years after restoration. However, POULIN et al. (2013) reported an 

incomplete recovery compared to the undisturbed references, GONZÁLEZ & ROCHEFORT 

(2014) found alternate restoration conditions in early phases, and HAAPALEHTO et al. (2017) 

recorded important within-site spatial variability. While those peatland studies only described 

vegetation change, MELI et al. (2014) showed for wetlands that biodiversity as well as 

ecosystem functions and services could be substantially improved after restoration, but 

vegetation recovery was again incomplete and ecosystem functions were more difficult to 

recover than biodiversity. Furthermore, MATTHEWS et al. (2009) and MATTHEWS & SPYREAS 

(2010) pointed at unexpected deviation and non-linear developments in restored wetlands. 

These results highlight the crucial importance of long-term repeated observations in 

peatlands, while no studies on peatland trajectories of more than 10 years exist until now, 

and a minimum of 10–30 years seems more appropriate for tracking their recovery (POULIOT 

et al. 2011), including possible non-linear developments.  



OBJECTIVES AND OUTLINE 

27 

OBJECTIVES AND OUTLINE 

This thesis makes use of past peatland rewetting activities to evaluate the beneficial effects 

on peatland restoration and to understand their recovery dynamics. By using several 

observational and experimental monitoring approaches, the thesis aims at reflecting the wise 

selection of indicators (ecosystem properties, taxonomic groups and species) depending on 

the context. The Fichtelgebirge mountains in NE Bavaria were selected for this purpose, since 

here degraded peatlands have been restored in different years albeit with similar methods. 

Therefore, I could use a chronosequence approach for studying long-term developments and 

implement ecological experiments for assessing their suitability for monitoring. I 

hypothesized, that peatland recovery would be incomplete compared to an intact reference 

system. Peatland recovery was also expected to be slow (several decades) and non-linear, 

meaning that outcomes would vary depending on the monitoring period. Moreover, I 

anticipated considerable differences in the recovery of individual properties and species 

(groups), that would influence the conclusions drawn depending on the assessed indicators. 

Finally, I assumed that an experimental approach would considerably extend the 

understanding of underlying drivers of incomplete recovery, but that a careful indicator 

selection also has to precede this approach. 

These assumptions were tested in three steps, that correspond to the three articles 

constituting this cumulative PhD thesis. Article 1 analyses the trajectories of different 

taxonomic groups in terms of diversity (structure, richness, assemblage) and compares them 

among each other as well as with an intact reference (Fig. 4). It detects potential non-linear 

recovery curves and the role of monitoring timeframes for drawing conclusions on restoration 

outcomes. Article 2 tests the potential of experimental approaches for evaluating restoration 

success. By using three characteristic peatland plants as phytometers, it expands the method 

to this specific ecosystem. It also compares a large variety of measured plant traits for 

advancing the approach with respect to the selection of suitable indicators of plant growth in 

a restoration monitoring context. Article 3 is an integrative assessment of multiple peatland 

properties and draws the most comprehensive picture of the ecosystem complexity. It uses 

different approaches, that are inspired from multifunctionality approaches in BEF research, in 

order to assess to what extent peatlands can be restored and which role time plays in their 

recovery. It also juxtaposes trajectories of individual properties and the combined index. 
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STUDY REGION AND METHODS 

Study region and site selection 

Field data for this thesis was sampled in montane peatlands in NE Bavaria (longitude 

E11°44’59’’–12°5’5’’, latitude N49°53’46’’–50°5’45’’, altitude 660–1000 m a.s.l.) in the natural 

regions ‘Hohes Fichtelgebirge’ and ‘Selb-Wunsiedler Hochfläche’ (MEYNEN & SCHMITHÜSEN 

1959) that are part of the continental biogeographical region (SSYMANK 1994). Geologically it 

belongs to the Eastern base rock mountains of Bavaria, with the highest peaks being the 

Schneeberg (1051 m a.s.l.) and the Ochsenkopf (1024 m a.s.l.). Peatlands within the region 

developed under cool and humid climatic conditions with mean annual temperatures of 5.5–

6.2 °C and annual precipitations of 910–1120 mm (BAYERISCHES LANDESAMT FÜR UMWELT 

2017). However, the sloping and sometimes rocky terrain and rather well-drained soils have 

allowed peat to form only on specific sites with clayey and therefore mostly impermeable 

substrate (REGER 2007). Typically, peatlands formed on slopes or saddles, and most of them 

can be characterized as acidic transitional bogs with varying proportions of soligenous water 

and some being solely fed by rainwater (ombrotrophic). 

Historically intensive drainage has altered the water regime of almost all peatlands within 

the area. The main period of drainage and peat cuttings was in the 19th and 20th century, while 

one of the first drainage ditches in the relatively well-preserved Fichtelseemoor dates from 

1956 (FIRBAS & ROCHOW 1956). Peatlands were mostly used for wood production; only in 

some larger peatlands peat was cut for fuel use. Restoration started with small manual ditch 

blockings in the beginning of the 1990s, rewetting on a larger scale in 1998. Trees, mainly 

spruce (Picea abies) were removed along former drainage ditches and the ditches blocked 

by wooden dams, or (partially) filled with peat from the direct surrounding. This resulted in the 

creation of small pools, that should benefit a characteristic peatland fauna, mainly amphibians 

and dragonflies. After restoration, sites were mostly left to natural succession (Fig. 9) and 

generally no plants introduced. Only locally, tree species (Betula pubescens, Pinus mugo 

ssp. rotundata) were planted, and regenerating Picea abies removed by forest authorities. 

For the PhD project I selected 14 characteristic peatlands within the region, that are 

comparable in terms of bedrock, landform, hydrological conditions and past peat formation 

as well as (former) land use and restoration method, but have been restored in different years 

between 1998 and 2015 (Fig. 6 & Table 1). This allowed me to assess their succession in a 

space-for-time substitution (chronosequence). In order to increase the available time span, 

data was sampled in two subsequent years (2015, 2016). Some sites were subsequently 
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restored in several years and therefore divided in sub-sites. The full time series included: 

degraded (non-restored) sites, sites that were restored 0, 1, 2, 3, 4, 5, 7, 8, 9, 13, 15, 16, 17 

or 18 years before sampling, and a near-natural reference site. 

 
Fig. 6: Overview of the selected study sites within the natural regions (after MEYNEN & SCHMITHÜSEN 1959) ‘Hohes 

Fichtelgebirge’ and  ‘Selb-Wunsiedler Hochfläche’. For abbreviations see Table 1. 
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Table 1: Overview of the selected study sites and sampling effort. For sites that were subsequently restored, only years considered in this study are displayed (oral communication 

by land owners and public forest management authorities). 

Site name 
Code 

(Fig. 6) 
Peatland type 

Size 
(ha) 

Height 
(m a.s.l.) 

Coordinates Restoration year 

Fauna Plants Phytometer 

Plot 
number  

Study 
year 

Transects Study year Transects 

Backöfele bo sloping mire 6 1000 
4489914 
5545819 

2008 5 2016 1 2016 0 

Brunnschlag br sloping spring mire 3 750 
4482554 
5544249 

2011 4 2016 1 2016 0 

Fichtelseemoor NW fnw 

bog (ancient lake 
mire) & sloping 

mires 

9 770 
4490345 
5542756 

reference 1 2016 1 2016 1 

Fichtelseemoor S fs 5 740 
4491229 
5541877 

2014 2 2015 2 
2015 
2016 

1 

Fichtelseemoor NO fn 5 780 
4489765 
5543398 

2011 2 2016 1 2015 0 

Fuchsloh/ Wolfsloh wf sloping mire 23 820 
4502861 
5530065 

1998, 2012, 2015 10 2015 3 
2015 
2015 
2015 

2 

Hahnenfalzlohe hl sloping mire 8 830 
4502172 
5529699 

1998, 2000,2002 4 2015 3 
2015 
2016 

1 

Hopfenwinkel sps 
sloping mire 

(saddle) 
6 760 

4506032 
5531692 

2011, degraded 4 
2016 
2015 

2 
2015 
2015 

1 
0 

Kalkloh kl 
degraded sloping 

mire 
2 650 

4494175 
5541038 

degraded 1 2016 1 2016 0 

Königsheide ko sloping mire 48 800 
4482321 
5541132 

2008 
2011 

17 2016 2 2016 0 

Palmlohe pl sloping mire 3 820 
4502525 
5528887 

1998 
2000 

5 2015 2 
2015 
2016 

1 

Spitzerberg Ost spo 
degraded sloping 

spring mire 
8 710 

4504368 
5532046 

degraded, 2011 2 2015+16 1 2015 0 

Spitzerberg West spw sloping spring mire 3 710 
4503661 
5532009 

2011 7 2016 1 2016 0 

Torfmoorhölle th 
sloping mire 

(saddle) 
26 670 

4487306 
5550554 

2007 16 2015 2 
2015 
2016 

1 
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Study design and data sampling 

In total seven datasets were generated for this thesis including five field observations, one 

field experiment and one greenhouse experiment (Fig. 7). They were sampled in a 

complementary way, so that they could be combined for several articles. For example, the 

abiotic environment could be used in all three articles. 

 

Fig. 7: Overview of the datasets and their use in the three articles of this thesis.  

Fauna and pools 

At each site, dragonflies (Odonata) as well as butterflies (Lepidoptera) were assessed. 

Therefore, the 14 peatland sites were divided into plots containing potential dragonfly and 

butterfly habitats, i.e. the open areas of the peatland excluding afforested parts. Two 

collectors walked along a path linking all plots and crossing all ponds. They stopped at every 

pond and every plot for 10–15 min for catching butterflies and dragonflies with butterfly nets 

and released them after identification. All sites were sampled three times (in June, July and 

August) on warm and windless days (>17 °C) between 9:30 and 17:00.  

For characterizing dragonfly habitats, pool quality and quantity was assessed in 

September 2016. At each site the number of ponds was counted and mapped. At each water-

filled pond, pond area was visually estimated and pond depth measured in about 1 m distance 

from the bank. I measured temperature, pH and conductivity using a field pH and conductivity 

meter (PCE-PHD 1). Cover of floating vegetation was estimated on the pond surface and 

riparian vegetation in a perimeter of 3 m around the pond, again following the scale of Londo 

(1976). The number of sunny spots counted in a perimeter of 3 m around the ponds. Shading 

was recorded on a scale ranging from 1 (‘full sun’) to 5 (‘full shade’; WÖRLEIN 1992). 

For characterizing butterfly habitats, presence and abundance of butterfly host plants was 

assessed. Their cover was estimated following the scale of LONDO (1976). Recorded host 
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plants were Vaccinium myrtillus, V. oxycoccos, V. uliginosum and V. vitis-idaea, as 

caterpillars of the specialized butterflies feed on them (Kuhn & Burbach 1998).  

 
Fig. 8: Sampling design demonstrated at one example site (spw, see also Table 1). 

Vegetation and abiotic environment 

For the vegetation surveys I randomly established 23 transects of 65 m parallel to former 

drainage ditches in the 14 study sites. In larger peatlands and sites, that were subsequently 

restored in different years, I selected ≤3 transects, while I selected only one in the five 

smallest peatlands. The distance between transects was at least 50 m. Transects within sites 

were independent, as they were separated by woodland strips, that effectively isolated plant 

and animal populations. Along each transect I randomly placed 10 plots (0.5 m2), i.e. five plots 

(‘ditch’) within the former drainage ditch and five plots (‘field’) at 1, 2, 4, 7 and 11 m distance 

(Fig. 8). At each plot, vascular plants and bryophytes were identified at species level and 

vegetation cover visually estimated following the scale of LONDO (1976) between June and 

August 2015 or 2016.  

For characterizing the abiotic environment, I recorded water level, shading by trees and 

peat characteristics (moisture, decomposition, water holding capacity, pH, conductivity, 

nutrient content). Water level was recorded manually as well as automatically at each 
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transect. The ‘manual’ dipwells were placed at one randomly chosen ‘ditch’ plot and at the 

11-m ‘field’ plots (Fig. 8) and water level recorded once per month from April to September 

2016. The ‘automatic’ data loggers (Schlumberger Mini-DIVER®) were placed at ‘field’ plots 

in 4-m distance (Fig. 8). They automatically recorded water levels every 12 hours.  

Shading, i.e. light conditions below canopy, were measured at 1.5 m above ground level 

using a Solariscope (SOL 300, Ing.-Büro Behling, Wedemark), which analyses hemispherical 

photographs and models various shading indicators. I chose the total site factor (TSF) as the 

most appropriate measure for our purposes. It is defined as the proportion of direct (DSF) 

and diffuse (ISF) solar radiation and expressed as a percentage of the radiation received 

above the canopy (RICH 1990). The degree of peat decomposition was estimated following 

the scale of POST (1924). Peat moisture was measured as the mean value of three 

measurements per subplot (Soil Moisture Meter HH2). 

In order to determine water holding capacity, pH, conductivity and nutrient content in the 

laboratory, mixed samples (3x 100 ml) of the upper 5 cm were taken with a soil corer at every 

plot in August 2015 and 2016. The maximum water holding capacity was defined as the 

amount of water absorbed by 100 g of dry peat. The peat samples were placed in filters and 

200 ml of distilled water poured over them to determine the saturated ‘fresh mass’. ‘Dry 

mass’ was obtained after oven drying at 65 °C for >72 h. The pH was measured in 5 g peat 

(dry mass) stirred up in 100 ml distilled water. Nutrient concentrations (anions and cations) 

were obtained using ion chromatography (Dionex ICS-1600, Thermo Fisher Scientific Inc.). 

Phytometer experiments 

Three specialist bog species were selected, that are naturally occurring in the study area 

and were commercially available, as phytometers, i.e. Drosera rotundifolia L., Eriophorum 

vaginatum L. and Vaccinium oxycoccos L (STROBL et al. 2018b, Fig. 10).  

Drosera rotundifolia (Droseraceae) is a carnivorous hemicryptophyte (NORDBAKKEN et al. 

2004), that overwinters as a resting bud, the so-called hibernaculum (THOREN et al. 2003). Its 

leaves are spirally arranged in a basal rosette of 3–6 cm and covered in mucilage in order to 

trap and digest prey (NORDBAKKEN et al. 2004). The seeds are wind- or water-dispersed. It 

usually grows on Sphagnum mats, but can also be found on bare sand or peat (THOREN et 

al. 2003). It is classified as ‘vulnerable’ (category 3) on the German and Bavarian Red List of 

vascular plants (LUDWIG & SCHNITTLER 1996, BAYERISCHES STAATSMINISTERIUM FÜR UMWELT, 

GESUNDHEIT UND VERBRAUCHERSCHUTZ 2005). 
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Eriophorum vaginatum (Cyperaceae) is a tussock-forming hemicryptophyte sedge 

(BENNINGTON et al. 2012) with mature tussocks of 300–600 tillers (FETCHER & SHAVER 1982). 

Individual tillers generally live <8 years, while tussocks reproduce vegetatively and can persist 

more than 100 years. Mature tussock size largely varies between regions and ranges from 

around 15 to 50 cm (BENNINGTON et al. 2012). It is dominant in many plant communities of 

moist arctic tundra and is known to quickly and successfully colonize bare peat (FETCHER 

& SHAVER 1982). Its flowers are wind-pollinated and the seeds wind-dispersed. In Germany 

it is not threatened or specifically protected. 

Vaccinium oxycoccos (Ericaceae) is an evergreen chamaephyte with thread-like, woody, 

flexible stems up to 80 cm long and ascending flowering branches (JACQUEMART 1997). Its 

leaves are about 5–7 mm long, 2–3 mm wide and evergreen with a thick wax layer. The plant 

produces red berries (8–10 mm, cranberries), that contain 3–11 seeds and often stay on the 

plant during winter. Flowers are insect-pollinated and fruits are dispersed by water, birds or 

mammals. It usually occurs in the wetter parts of peatlands and often grows in Sphagnum 

carpets. The species is listed as ‘vulnerable’ in the Bavarian and German Red List (LUDWIG 

& SCHNITTLER 1996, BAYERISCHES STAATSMINISTERIUM FÜR UMWELT, GESUNDHEIT UND 

VERBRAUCHERSCHUTZ 2005). 

The field experiment was conducted in eight out of the 23 transects (Table 1) and 

integrated within the vegetation sampling design. The experiment was established at the 

three first ‘ditch’ plots and at the 2, 4 and 11 m-distance ‘field’ plot, resulting in six 

experimental plots per transect (Fig. 8). In May 2015 the plots were prepared by removing all 

naturally present vascular plants within a triangle with 45-cm-long sides, in order to reduce 

the effects of competition at the time of planting. Only the upper layer of 2–3 cm of moss was 

removed, as the transition between living Sphagnum spp. and subjacent peat was gradual in 

most cases. One individual of each of the three phytometer species (D. rotundifolia, E. 

vaginatum, V. oxycoccos) was planted in the corners of the triangular plots at a distance of 

25 cm from each other and 10 cm away from the edges of the plot. Possible competing 

vegetation (such as herbaceous plants and Sphagnum spp.) was removed from the plots 

every other month in April–October.  

A greenhouse experiment with two treatments, i.e. ‘peat provenances’ and water level 

was established. Therefore, in May 2015 peat was collected from the eight phytometer field 

sites and brought to the greenhouse. All individuals of the three species were planted in 

separate pots with different diameters according to the size of the species (5 cm for D. 

rotundifolia, 15 cm for E. vaginatum, 19 cm for V. oxycoccos). The peat obtained from the 

eight field sites was used as substrate, i.e. the ‘peat provenance’ treatment. Then, three 
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different species, but in substrate of same ‘peat provenance’, were placed in a tray to apply 

the ‘water treatment’. Trays were flooded with rain water at either 3 or 8 cm below pot level, 

imitating belowground water levels in the study sites. Each block (peat provenance x water 

level) was repeated twice, leading to a total of 32 trays and 96 pots. A constant water level 

was assured by watering 2–3 times a week depending on weather conditions. The experiment 

was kept in a greenhouse with a constant temperature of about 10 °C during winter and 

transferred to a half-open greenhouse with wire mesh walls in summer, allowing for more 

natural variation of temperature. Light was not manipulated in the greenhouse and 

corresponded to natural conditions in Freising. The trays were randomly placed on four tables 

and their position was changed once per month. 

Species classification 

For data analyses, species were grouped as generalists or specialists. Plants were 

categorized as specialists of Bavarian montane peatlands following QUINGER & SIUDA (2009) 

and can mainly be attributed to Oxycocco-Sphagnetea communities (Oberdorfer et al. 2001). 

Odonata and Lepidoptera specialists were defined according to KUHN & BURBACH (1998). 

This definition resulted in a total of 11 specialist vascular plant species (Agrostis canina, 

Andromeda polifolia, Carex canescens, C. echinata, C. nigra, C. rostrata, Drosera 

rotundifolia, Empetrum nigrum, Eriophorum angustifolium, E. vaginatum and V. oxycoccos) 

and nine bryophytes (Calliergon cordifolium, C. stramineum, Calypogeia sphagnicola, 

Sphagnum angustifolium, S. capillifolium, S. cuspidatum, S. fallax, S. magellanicum and 

Warnstorfia exannulata).  

Dragonfly specialists were defined as the two potentially occurring tyrphobiontic (Aeshna 

subarctica ssp. elisabethae and Somatochlora arctica) and nine tyrphophilous Odonata 

species (Aeshna juncea, Coenagrion hastulatum, Lestes virens, Leucorrhinia dubia, L. 

pectoralis, L. rubicunda, Libellula quadrimaculata, Somatochlora alpestris and Sympetrum 

danae). Three butterfly specialists were defined (Boloria aquilonaris, Colias palaeno and 

Plebejus optilete). Nomenclature follows Buttler & Hand (2008) for vascular plants, KOPERSKI 

et al. (2000) for bryophytes and SCHAEFER et al. (2000) for Odonata and Lepidoptera 

(Supporting information of STROBL et al. 2019, Table S1).  
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Fig. 9: Degradation and restoration of montane peatlands. Pictures show (a) a drained and afforested peatland 

before restoration, (b) largely bare peat after tree removal and freshly created pools less than one year after 
damming of drainage ditches, (c) colonization of graminoids around six years after rewetting, (d) dead trees and 
spreading Eriophorum vaginatum and Vaccinium uliginosum eight years after rewetting, (e) Sphagnum 
overgrowing pools behind dams around 14 years after rewetting, and (f) colourful Sphagnum mats colonized by 
Drosera rotundifolia and Vaccinium oxycoccos in a largely undisturbed peatland. 
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Fig. 10: The three characteristic peatland species, that were used for the phytometer experiments, in their natural 
environment. Pictures show (a) the rosette and (b) fruit stand of Drosera rotundifolia, (c) shoots and (d) fruit stands 
of Eriophorum vaginatum, and (e) flowers and (f) fruits of Vaccinium oxycoccos. 
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MANUSCRIPT OVERVIEW 

The thesis contains three articles, for which the publication status, the contribution of all 

authors, a brief summary and a graphical abstract are given:  
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ARTICLE 1: Positive trends in plant, dragonfly and butterfly diversity of 
rewetted montane peatlands 

Strobl, K., Moning, C., Kollmann, J. (2019): Positive trends in plant, dragonfly and butterfly 

diversity of rewetted montane peatlands. Restoration Ecology, in press, doi: 

10.1111/rec.12957 

Author contributions  

KS and JK conceived and designed the study. KS sampled vegetation and habitat 

characteristics. CM designed and supervised the mapping of dragonflies, butterflies and 

ponds. JK and KS discussed the data analysis and manuscript structure. KS analysed the 

data and wrote a first draft. JK and CM corrected the manuscript. 

Summary 

The first article analyzes long-term trends in diversity of different peatland-specific 

taxonomic groups (plants, dragonflies, butterflies) in terms of diversity (structure, richness, 

assemblage). Previous research has shown, that drainage and afforestation cause extensive 

habitat degradation and species losses in peatlands. Restoration efforts usually aim at 

reversing these damages and supporting peatland biodiversity by creating suitable habitat 

conditions, often focusing on stable high water tables. However, the expected colonization by 

characteristic species can take decades or even fail. Monitoring programs need to detect 

these developments in order to adapt management strategies, if necessary. For choosing 

suitable monitoring time scales, intervals and indicators, we need to know, if initial trends are 

continued on the long term, and if results differ among taxonomic groups. Therefore, this 

study aims at comparing the recovery of plant, dragonfly and butterfly diversity about two 

decades after rewetting of montane peatlands in central Germany. We compared diversity 

and species composition of 19 restored sites with three drained peatlands and one near-

natural reference site in a chronosequence approach. Peatland rewetting improved habitat 

conditions, vegetation structure and species diversity, while there were marked differences 

among taxa. Plant and dragonfly diversity benefitted most from restoration, while no peatland-

specific butterflies were observed in the rewetted sites (Fig. 11). More specifically, 

characteristic peatland plants increased when peat was intact, while dragonflies colonized 

rapidly freshly created ponds. Plant species reached around 50% of similarity to reference 

conditions after 18 years. However, plant specialist richness was only temporarily higher 

compared to degraded conditions and slightly decreased after more than 7 years, and plant 

assemblage rather slowly approached reference conditions. Dragonflies respond markedly to 

early-successional stages, at least partly due to newly created bog pools, while plants 
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integrate long-term changes in site conditions and peatland plant specialists are positively 

correlated with peat accumulation. Butterflies were unsuitable indicators in our study, while 

they could be useful in regions with a more abundant peatland butterfly community. These 

findings demonstrate that peatland restoration improves habitat conditions and thus benefits 

characteristic diversity, but recovery is still incomplete after two decades. Also, developments 

were not always linear and there were species-specific responses to restoration, highlighting 

the importance of repeated long-term monitoring and a strategic selection of indicators. 

 

Graphical abstract 

 

Fig. 11: Recovery of plant, butterfly and dragonfly diversity after restoration of montane peatlands. Figure modified 

after STROBL & KOLLMANN (2018)  
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ARTICLE 2: Selecting plant species and traits for phytometer 
experiments. The case of peatland restoration 

Strobl, K., Schmidt, C., Kollmann, J. (2018): Selecting plant species and traits for 

phytometer experiments. The case of peatland restoration. Ecological Indicators, 88, 263-

273, doi: 10.1016/j.ecolind.2017.12.018 

Author contributions 

KS, CS and JK conceived and designed the study. CS and KS set up the experiments. 

CS sampled and analysed the data of a preliminary experiment. KS sampled and analysed 

the data of the main experiment. KS wrote the first draft of the manuscript. KS, CS and JK 

discussed the results. CS and JK improved and edited all manuscript versions.  

Summary 

The second article evaluates the potential of a novel monitoring approach using 

phytometers for assessing peatland restoration success. Phytometers are indicator 

transplants that provide information on site conditions based on plant fitness, i.e. survival, 

growth and reproduction. Since a key attribute of successfully restored peatlands is their 

capacity to sustain viable populations of characteristic species, the phytometer approach 

seems a promising assessment method. More than descriptive approaches, they should be 

capable of detecting the underlying causes, when target species do not spontaneously 

colonize as expected. In comparison with the observation of natural populations of the 

respective species, they can inform about site or dispersal limitation. However, their use is 

comparatively new in ecological restoration and has not yet been applied to peatlands. The 

goal of this study is to advance the definition of standards for a more common implementation 

of phytometers in restoration monitoring by comparing the responses of several species and 

traits to environmental conditions in restored peatlands. Three characteristic peatland species 

(Drosera rotundifolia, Eriophorum vaginatum, Vaccinium oxycoccos; Fig. 10) were planted in 

seven restored montane peatlands in central Germany. In a simultaneous greenhouse 

experiment, the same species were grown on peat from the field sites and exposed to two 

different water levels (-3 and -8 cm below surface). We measured numerous plant traits and 

compared them with varying light, water and soil conditions. We saw, species-specific 

responses to abiotic conditions, highlighting that the use of several phytometer species 

increases the reliability of monitoring. Survival and growth traits were suitable to assess a 

wide range of habitat conditions, while reproductive traits were more time-consuming to 

measure. Survival provided the most conclusive results for species sensitive to stressful 

habitat conditions. Biomass and other size metrics of the phytometers, as well as growth and 

https://doi.org/10.1016/j.ecolind.2017.12.018
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reproductive traits were partly redundant. Thus, we suggest recording survival and biomass. 

Non-destructive growth measurements are useful for repeated assessments, while the choice 

of the most suitable size trait should generally depend on the growth form. Our study stresses 

the potential of phytometers for monitoring a restoration outcome, expands the method to the 

specific ecosystem of peatlands and highlights the importance of species and trait selection 

(Fig. 12). 

 

Graphical abstract 

 

Fig. 12: Phytometer species and traits are indicators of restoration success, that have to be carefully chosen 

according to the restoration goal to be evaluated, since they considerably affect the monitoring outcomes. 

  



ARTICLE 3: Integrated assessment of ecosystem recovery using a multifunctionality 
approach 

44 

ARTICLE 3: Integrated assessment of ecosystem recovery using a 
multifunctionality approach 

Strobl, K.*, Teixeira, L.H.*, Kollmann, J. (in revision): Integrated assessment of peatland 

recovery using a multifunctionality approach. Ecological Applications (equal contribution) 

Author contributions  

KS and JK conceived the field survey. KS sampled the data. LT had the idea for the data 

analysis and performed it. KS, LT and JK discussed the data analysis and manuscript 

structure. KS and LT wrote the manuscript. JK improved and edited the manuscript. 

Summary 

The third article is an integrative assessment of peatland recovery based on multiple 

properties including characteristic plants, vegetation structure, water level, peat quality 

indicators and nutrient level. Since ecological restoration – as it is the case also for peatlands 

- often aims at the simultaneous recovery of numerous ecosystem functions and services, it 

can be challenging to comprehensively analyse and interpret those potentially contradicting 

targets. This is even more true, when numerous indicators have to be sampled or when there 

are no natural references. Therefore, we used different multifunctionality approaches, that 

were inspired from biodiversity and ecosystem function (BEF) research. In order to study 

peatland recovery, we analysed this multifunctionality against time since restoration. We 

wanted to know, to what extent restored peatlands recover and how time since restoration is 

controlling the simultaneous development of multiple properties. We studied rewetted 

drainage ditches and their direct surrounding in a chronosequence (0–18 years after 

restoration) and compared their recovery to an optimum value, that was defined as the mean 

of the seven highest values. Thus, we argue that this approach can be used for evaluating 

ecosystem restoration without natural references. We found, that nine out of 13 properties as 

well as the combined index significantly increased with time since restoration (Fig. 13). 

However, improvements were strongest within the restored drainage ditch and rewetting 

effects did not spread to the whole peatland. While we could not observe the simultaneous 

recovery of multiple properties at a high level of functioning, there was significant progress 

with time at low and intermediate levels of functioning (Fig. 13). Our results show that heavily 

degraded peatlands cannot fully recover within 18 years, instead restoration should rather 

focus on fewer or lower targets at these time scales. Some properties might also have longer 

time lags than others. However, even if not all properties can simultaneously be restored, a 

considerable improvement is possible. We believe, that multifunctionality approaches can 

help summarize large monitoring datasets and give an integrative picture of ecosystem 



ARTICLE 3: Integrated assessment of ecosystem recovery using a multifunctionality 
approach 

45 

recovery. While the integrated assessment informs about the degree of ecosystem recovery, 

juxtaposing trajectories of individual properties helps understanding ecosystem-specific 

dynamics, that are crucial for deciding on potential future management.  

 

Graphical abstract 

 

 

Fig. 13: Nine out of 13 properties were significantly affected by the interaction of location (inside/ outside the ditch) 

and time since restoration. The simultaneous analysis of multiple properties showed significant improvements with 
time at low and intermediate levels of functioning.  
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GENERAL DISCUSSION 

Ecological restoration has become a major strategy for recovering biodiversity and 

functioning of degraded ecosystems. There is a strong focus on peatlands, because of their 

critical status and their great potential to store carbon and to mitigate climate change. 

However, their recovery is complex and slow, making it particularly difficult to adequately 

assess and judge their restoration success. The goal of this thesis was to improve the 

scientific understanding of peatland recovery potentials and dynamics as well as to reflect the 

wise selection of monitoring methods. For this purpose, I used several observational and 

experimental approaches and numerous indicators of rewetting success. This chapter of the 

thesis summarises the different approaches and compares the main findings based on 

numerous indicators in order to point out the effectiveness of rewetting measures and derive 

recommendations for future monitoring as well as peatland restoration management (Fig. 14). 

 

Fig. 14: Main findings of the thesis and their implications for peatland management. 
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Identifying references and targets for restoration 

A key principle for evaluating success of ecological restoration is the identification of an 

appropriate reference model, that informs about the target of restoration and serves for 

comparison with restored systems (MCDONALD et al. 2016). For example, Article 1 and 3 of 

this thesis aimed at estimating the degree of peatland recovery after rewetting. Supported by 

previous meta-analyses (REY BENAYAS et al. 2009, MORENO-MATEOS et al. 2017, JONES et 

al. 2018), I concluded twice a considerable peatland improvement, but an incomplete 

recovery after two decades, that might be interpreted as a recovery debt (MORENO-MATEOS 

et al. 2017). The latter is defined as the temporal reduction of ecosystem properties occurring 

during recovery, and is estimated via the comparison to a reference at a certain point in time. 

Hence, the reference considerably influences the interpretation of results. In this thesis, I used 

two different reference models, i.e. an extant (Article 1) and a theoretical reference one 

(Article 3).  

In Article 1 the least degraded peatland within the study area was used as a reference 

despite some methodological constraints. It was not completely undisturbed and turned out 

to be only useful for plants, while being largely unsuitable for comparison of dragonfly and 

butterfly diversity due to a lack of data (Article 1). Furthermore, there was only one available 

reference peatland making statistical comparisons with degraded or restored sites impossible 

or rather not meaningful. Consequently, the data had to be supported by the literature in order 

to derive reliable and convincing conclusions. This problem is common for heavily degraded 

ecosystems, where intact references are scarce, like for example peatlands in Central Europe 

(JOOSTEN & CLARKE 2002), grasslands in Southern Brazil (ANDRADE et al. 2015) or old-growth 

forests in the Northern boreal zone (JOSEFSSON et al. 2009).  

When real-world reference data are missing, historical records could be used as an 

alternative (MCDONALD et al. 2016). Yet, these are even more scarce and the implementation 

of historic information into statistical analyses even more challenging. Also, we are facing 

rapid environmental changes like global warming or species invasions causing a shifting 

baseline (HIGGS et al. 2014) and questioning the suitability of historic information. Instead of 

defining a narrow and static target, references should incorporate the capacity of an 

ecosystem to resiliently evolve with changing environmental conditions (MCDONALD et al. 

2016). Finally, novel ecosystems, that differ in composition and/or function from present and 

past ecosystems (HOBBS et al. 2009), lack any recent and historic references. In this case, 

alternative approaches have to be used for evaluating restoration success. 
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In Article 3, such an alternative approach for evaluating ecosystem recovery without a real-

world reference is proposed. The target is defined based on a percentage of the highest 

observations (see threshold approach and multiple threshold approach in BYRNES et al. 2014) 

and can therefore be applied for any of the above cited cases. While it was developed in BEF-

research (GAMFELDT et al. 2008, ZAVALETA et al. 2010), we were among the first to extend it 

to the field of restoration ecology (but see also CRUZ-ALONSO et al. 2019). It is most useful, 

when aiming at multiple goals or the so-called multifunctionality (HECTOR & BAGCHI 2007). 

Similarly, restoration usually measures ecosystem recovery based on several attributes 

(SOCIETY FOR ECOLOGICAL RESTORATION INTERNATIONAL 2004). Furthermore, it sometimes 

even has different targets, e.g. productivity, recreation or politically important ecosystem 

functions like the reduction of greenhouse gas emissions. Those can be contradicting, when 

several stakeholders are involved. In this case, the approach could be extended by weighting 

goals through stakeholder judgement (MANNING et al. 2018), and serve as a basis for 

decision-making. 

Despite the above-cited theoretical benefits, the implementation of the approach is still at 

the beginning and needs to be further advanced. In terms of references, the definition of the 

theoretical optimum is object to discussion. While most authors suggest to use the 5% highest 

values (ZAVALETA et al. 2010, BYRNES et al. 2014), this (and any other) proportion is arbitrary 

(BYRNES et al. 2014). Furthermore, the approach assumes, that highest (or lowest) values 

are most desirable, while the ecological optimum could also correspond to intermediate 

values. An example from peatlands concerns the water table, that is often considered optimal 

around -10 cm. At higher water tables (i.e. flooding) CH4 emissions are strongly increased, 

while at lower water tables peat is decomposing and CO2 released (COUWENBERG et al. 

2010). Finally, it can underestimate the recovery potential, since it only uses current values 

as an optimum, while ignoring the possibility of further improvement exceeding the existing 

state. This is especially problematic for small datasets, when comparing only few sites or 

short-time series. Nevertheless, in this thesis it appeared to be particularly useful for 

evaluating several sites in a time series. 

Designing a long-term repeated monitoring for peatlands 

Ecological restoration aims at the highest possible recovery relative to a reference 

(MCDONALD et al. 2016). However, the definition of full recovery depends not only on the 

reference, but also on the moment of evaluation. In most cases, targets are not reached 

immediately, but recovery is an ongoing process and ideally a continued trajectory towards 

the desired outcome. When evaluating success, it is therefore fundamental to estimate the 
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degree of progression, i.e. where the ecosystem can be located on the trajectory. Thus, time 

series of previously restored ecosystems can help identifying common dynamics and 

processes. In this thesis, I tracked 18 years of peatland recovery, that can serve as a model 

for future monitoring and evaluation of success. 

There are important temporal trends in peatland recovery in the 18 years after rewetting 

(Article 1 and 3). Even if changes are significant from the first year on (Article 1 and see also 

MELI et al. 2014), trajectories are not linear over the whole time period. Instead, fastest 

changes occur in the first five years (Article 3). Those are explained by an early-successional 

transitional state, that differs in vegetation structure and diversity from later-successional 

phases (Article 1). At the same time, older peatlands show large variation. While some sites 

(Article 1) or parts of these sites (i.e. ditches; Article 3) seem to progress towards the target, 

others deviate from this trajectory. These findings highlight the need for long-term monitoring 

(>20 years). For peatlands, I suggest more frequent observations (i.e. 2–3 years) in the first 

10 years, while 5–10 years’ intervals should be sufficient later. This enables the flexible 

adaptation of goals and potentially necessary management intervention. Generally, a self-

sustaining peat accumulation can be expected after about 30 years (GORHAM & ROCHEFORT 

2003), so that at least 30 years of monitoring are necessary for adequately concluding on 

peatland restoration success and making sure, that no further intervention is necessary. 

While long-term time series are scarce due to limited funding within short-term projects, 

peatland restoration has become common practice in nature conservation. In regions, where 

several comparable sites have been restored with similar methods, chronosequences can 

serve as a substitute in the absence of long-term longitudinal data and generate reliable 

results. Obviously, they have some disadvantages like the risk of false extrapolations 

(WALKER et al. 2010). Therefore, some assumptions must be met. For example, in restoration 

ecology, they can only be used, if restoration methods do not evolve too much with time; they 

are more appropriate for convergent successional trajectories and ecosystems with low 

frequency and severity of disturbance (WALKER et al. 2010) as well as ecosystems with low 

beta-diversity, high connectivity and rapid response of organisms (BANET & TREXLER 2013). 

In this thesis, most sites had been restored with similar methods, which allowed for a reliably 

study of a long chonosequence. However, it was not possible to compare different methods 

without a considerable (and not feasible) increase in sampling effort. Furthermore, the oldest 

restoration sites were spatially clumped, because restoration had been initiated by one local 

forestry authority. Nevertheless, they can help understand ecological processes under 

circumstances, where long-term data cannot be generated in any other way (WALKER et al. 
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2010). However, comparable sites have to be carefully selected in order to avoid 

misinterpretations.  

Besides temporal aspects, the spatial configuration is crucial for designing a monitoring 

program, that is well-adapted to the phenomenon of interest. In this thesis, I decided to 

sample vegetation and abiotic environment directly inside the (blocked) ditches as well as 

their direct surrounding from 1 to 11 m distance. Positive effects of rewetting should first 

become visible within the blocked ditches, while the subsequent gradual benefits to the whole 

peatland are slower (HEDBERG et al. 2012). Article 3 confirmed this, since many ecosystem 

properties inside the ditch recovered faster than outside the ditch. However, a gradual 

spreading could not be proven. For example, the water table outside the ditch did not increase 

with time, highlighting the spatial limitation of rewetting. While HAAPALEHTO et al. (2017) 

observed the contrary, i.e. a better recovery farther away from the ditch, their findings also 

prove a spatial gradient, that consequently has to be reflected by a spatial monitoring design. 

I recommend assessing changes in different distances to drainage ditches, that depend on 

the size of the dam and the expected rise of the water table. In this thesis, 11 m were enough, 

while HEDBERG et al. (2012) saw differential responses up to 25 m away from the ditch. 

Selecting adequate indicators of restoration success 

Conclusions on success or failure of restoration projects largely depend on the indicators 

used (LINDENMAYER & LIKENS 2010). Article 3 showed for example, that the water table was 

not significantly increased on the long-term by the rewetting measures. If this had been the 

only assessed environmental indicator, the restoration measures would seem unsuccessful. 

However, a decreased degree of decomposition and an increased water holding capacity 

prove, that restoration could sufficiently activate peat accumulation. For citing another 

example, an analysis of butterflies alone would have led to different conclusions than an 

analysis of dragonflies or plants, since only specialist species of the two latter successfully 

colonized the restored peatlands (Article 1). This confirms, that judgements of biodiversity 

recovery are highly influenced by the assessed taxonomic organisms (MELI et al. 2014). 

Moreover, Article 2 revealed species-specific responses to rewetting, showing that E. 

vaginatum benefitted more from restoration than D. rotundifolia and V. oxycoccos. Therefore, 

the statement of MELI et al. (2014) from assessed taxonomic groups expands even to the 

species level. 

Monitoring outcomes are also strongly influenced by the assessment scale. Single species 

or properties are not able to reflect the full complexity range of an ecosystem (LINDENMAYER 
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& LIKENS 2011), especially when several restoration goals are to be fulfilled. This can be 

achieved with integrative methods like the multifunctionality approach suggested in Article 3. 

Another tool, that was proposed by MUELLER et al. (2014), involves a standardised 

multivariate approach including different taxonomic groups. On the other hand, integrative 

approaches or indices are often not useful for deriving detailed decisions on how to improve 

the current management as needed for ‘adaptive restoration’ (Article 3), that includes an 

adaptation of the initial management in case of unforeseen deviations from the goals (ZEDLER 

& KERCHER 2005, HERMANN & KOLLMANN 2015). Instead, the study of single species as 

phytometers for example (Article 2), gives detailed information on the reasons for their 

presence and therefore enables conclusions for an improved management, e.g. the need for 

further manipulation of site conditions or reintroductions. All in all, a suitable scale of peatland 

monitoring cannot be generalised, but needs to be chosen according to project goals. 

While there are numerous possibilities of indicators, that could potentially be assessed in 

restoration monitoring, usually financial resources and time are limiting in most projects (RUIZ-

JAEN & AIDE 2005). For this thesis, a large range of peatland restoration indicators was 

studied (Table 2), that can be used as a basis for future monitoring planning. Most indicators 

showed a significant response with time since restoration or a significant improvement of the 

degraded state, highlighting their general suitability for tracking peatland recovery. However, 

while their associated role in peatlands largely differs, many of them are interrelated (Fig. 15). 

For example, many growth traits (e.g. length of shoots and plant biomass, tussock diameter 

and biomass) are correlated (Article 2). Some peatland properties of Article 3 (e.g. Sphagnum 

cover and number of peatland specialists, calcium and magnesium, ammonium and water 

holding capacity) were also strongly correlated. Even more generally, the recovery of 

biodiversity and ecosystem services is correlated (MELI et al. 2014). These dependencies 

show on the one hand, that many properties can be simultaneously restored. On the other 

hand, they highlight, that it is not necessary to assess all indicators, when resources are 

limited. Instead, a careful selection can significantly reduce the sampling effort, while still 

providing sufficient data in order to report on project-relevant dynamics. The results of this 

thesis can help in this selection process (Fig. 15, Table 2). A detailed evaluation of peatland 

restoration indicators is also given by TIEMEYER et al. (2017). 
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Fig. 15: Relationship between peatland restoration properties at the site scale, that were individually assessed for 

the thesis (grey boxes; microtopography was not measured). Their dependency was analysed in the three included 
articles. The main articles for analysis are indicated via the respective numbers in brackets. Grey arrows indicate 
a unilateral relationship, black arrows a reciprocal influence of the involved properties. 

Ecosystem functions of restored peatlands are best described by abiotic conditions. The 

water table, the degree of peat decomposition, water holding capacity and nutrients are 

directly related to decomposition processes, that indicate, if peat is actively accumulating 

(Article 3). Some of these measures can also indirectly indicate the potential of restored 

peatlands to mitigate climate change. Greenhouse gas emissions have not been directly 

measured in this thesis. Possible methods include the eddy covariance technique (TIEMEYER 

et al. 2017) or modelling approaches like the “peatland emissions predictor” (PEP)-modell 

(DRÖSLER et al. 2013) or the GEST approach (COUWENBERG et al. 2011). Species 

assemblages also indicate the functionality of the ecosystem. PH and conductivity have been 

assessed, but did not differentiate within or between the assessed sites, since the selected 

peatlands were very similar in terms of mire type (CONRADI & FRIEDMANN 2013). Plants are 

suitable indicators of abiotic conditions (ELLENBERG et al. 2001). When used as phytometers 

they can indicate site limitation (Article 2). However, plants can show some delay in response 

to habitat changes. The abundance of plant functional groups indicates the successional 

stage of peatland recovery (Article 1). More mobile taxonomic groups like dragonflies colonize 

faster and indicate restoration success at early-successional stages. Butterflies largely 

depend on vegetation as larval food plants, and are therefore more suitable indicators at later 

successional stages. They also indicate a good connectivity with suitable habitats and source 

populations in the peatland surrounding. 
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Table 2: Indicators for peatland recovery, that have been studied in this thesis and most important results, their indicator potential, their recovery with time over a period of 18 

years (as studied in Article 3) or compared to the degraded state (as studied in Article 2) and their development trajectory. The last two columns indicate, in which article the 
respective indicator was studied and give examples of further literature. 

Indicator Associated role in peatlands 

Significant 

recovery 

Temporal trend Article Further literature (examples) 
with 

time 

from 

degra-

ded 

Ecosystem functions 

Peat decomposition 
influences hydraulic conductivity, 

indicates active peat accumulation +  linear 3 

BADEN & EGGELSMAN 1963; GROVER & BALDOCK 

2013; FRANK et al. 2014; MUSTAMO et al. 2016; 

REZANEZHAD et al. 2016 

Water table 

influences habitats for plants, 

influences decomposition and nutrient 

dynamics, indirect measure of 

greenhouse gas fluxes 

- - slightly unimodal 2 

JUNGKUNST & FIEDLER 2007; BREEUWER et al. 

2009; VERHAGEN et al. 2009; COUWENBERG et al. 

2010; BEETZ et al. 2013 

Water holding capacity 
indicates porosity and decomposition 

of peat, influences habitats for plants +  linear 1, 2, 3 
BOELTER 1964; HALLEMA et al. 2015; REZANEZHAD 

et al. 2016 

Nitrate indicate mineralisation, aerobic 

conditions, influence habitats for plants 

-  no change 

1, 2, 3 

FREEMAN et al. 1993; HOLDEN et al. 2004; 

KIECKBUSCH & SCHRAUTZER 2007; SCHUMANN 

& JOOSTEN 2008; FRANK et al. 2014 

Phosphate +  slightly unimodal 

Ammonium +  slightly unimodal 

Sulfate 
indicates oxidation, peat compaction, 

eutrophication +  slightly asymptotic 

Potassium influence habitat conditions for plants +  slightly asymptotic 

Calcium indicate drainage +  slightly asymptotic 

Magnesium +  slightly asymptotic 

Plants 

Graminoid cover 
indicates early recovery phases, 

minerotrophic conditions  - unimodal 1 
KLÖTZLI & GROOTJANS 2001; MATTHEWS et al. 

2009; POTVIN et al. 2015 

Ericaceae cover 
indicates later recovery phases, 

ombrotrophic conditions  - linear 1 GONZÁLEZ et al. 2013, POTVIN et al. 2015 

Moss coverage indicates humid conditions + - linear 3 
TURETSKY et al. 2012; LABERGE et al. 2013; 

MILLER et al. 2015 
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Indicator Associated role in peatlands 

Significant 

recovery 

Temporal trend Article Further literature (examples) 
with 

time 

from 

degra-

ded 

Sphagnum coverage 
indicates wet conditions, (future) active 

peat accumulation +  linear 1, 3 

VAN BREEMEN 1995; SOTTOCORNOLA et al. 2007; 

BREEUWER et al. 2009; GROOTJANS et al. 2012; 

POTVIN et al. 2015 

Richness indicates (past) disturbance   - slightly unimodal 1 
MINAYEVA et al. 2017; PRACH & WALKER 2018 

 

Specialist number 
indicates poorly decomposed peat, 

medium-term peatland recovery 

- + unimodal 1, 3 

GUNNARSSON et al. 2000; PARISH et al. 2008, 

HAAPALEHTO et al. 2017 
Specialist coverage +  

linear, slightly 

unimodal 
3 

Assemblage  + - 1 

Phytometer fitness 

indicate adequate habitat conditions 

for the respective species, indicate 

dispersal limitation when compared to 

local occurrence 

   2 

VERHEYEN & HERMY 2004; BAKKER et al. 2006; 

BAETEN et al. 2010; DIETRICH et al. 2013; DIETRICH 

et al. 2015; BOURGEOIS et al. 2016 

Dragonflies 

Richness 

indicate early-successional stages of 

peatland recovery with suitable ponds 

 + slightly unimodal 

1 

ROUSH & AMON 2003; KADOYA et al. 2008; ELO et 

al. 2015 
Habitat specialists  +/- slightly unimodal 

Assemblage  + - 

Ponds  + - 
MAZEROLLE et al. 2006; HANNIGAN et al. 2011; 

BROWN et al. 2016 

Butterflies 

Richness indicate later-successional stages of 

peatland recovery with good 

connectivity to nectar and forage 

plants in the surrounding 

 - slightly unimodal 

1 
RÁKOSY & SCHMITT 2011; SWENGEL & SWENGEL 

2015; NOREIKA et al. 2016 

Habitat specialists  - no change 

Assemblage  + - 

Forage plants  +/- 
Linear or no 

change 
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Implications for peatland management 

All three main articles of this thesis point out, that rewetting could improve the ecological 

status of peatlands, but that even after two decades, conditions similar to intact peatlands 

were not reached (Fig. 16). Article 1 showed that most biodiversity variables were enhanced 

by rewetting, but almost none of them reached the level of the reference peatland. Article 3 

showed that a 50% recovery or intermediate levels of functioning could be achieved within 18 

years. This is also very similar to results of MORENO-MATEOS et al. (2017) for wetlands, as 

they showed that around 50% could be restored in terms of abundance, while it was less for 

diversity. HAAPALEHTO et al. (2017) drew similar conclusions for forestry-drained peatlands, 

as their recovery was promising, but spatially heterogeneous. Nevertheless, more than half 

of the important peatland properties could be significantly improved with time since restoration 

(Article 3). 

 

Fig. 16: Recovery trajectories of rewetted montane peatland. The figure is based on a generalisation of the main 

findings of this thesis. The shaded area represents potentially different results depending on the position within 
the peatland (inside/ outside the rewetted drainage ditch), its connectivity to intact or successfully restored sites 
with source populations and its initial degree of degradation. 

These findings can be interpreted in two ways: First, they prove that rewetting is effective 

for counteracting peatland degradation related to drainage and afforestation. Second, pre-

degraded intact conditions or simultaneous desirable levels of multiple properties could not 



GENERAL DISCUSSION 

57 

be reached within the observed time span (Article 1 and 3). Since peatlands are slowly 

recovering (Article 3) there certainly is more time needed until full recovery (Fig. 16). However, 

while there are still considerable fluctuations in diversity attributes in early phases (e.g. plant 

species assemblage, dragonfly richness; Article 1), there are generally only few further 

changes after 5–10 years (averaging approach; Article 3). It seems most likely, that not all 

properties could be simultaneously restored to the most desirable level. For example, 

specialist species number and nitrate concentrations did not improve with time (Article 3), and 

characteristic butterfly diversity and some expected plant species were missing in the 

restored sites (Article 1). 

For wetlands, the degree of recovery mainly depends on restoration actions, ecosystem 

type and degree of degradation (MELI et al. 2014). While additional restoration measures (see 

below) might further improve the restored sites, the ecosystem type and degradation cannot 

be influenced by management. Those factors should be the basis for estimating the recovery 

potential and need to be considered during the planning process of restoration projects or 

adaptive management approaches. It is crucial to set achievable goals based on peatland 

history of origin and level of degradation (SCHUMANN & JOOSTEN 2008, SCHRAUTZER et al. 

2013; Fig. 16) for effectively and efficiently evaluating restoration success. Nevertheless, 

additional management possibilities should be further explored. Even if the study design of 

the thesis does not allow for the comparison of different restoration methods (since the most 

similar peatlands were selected for the chronosequence), the three main articles of this thesis 

give some ideas on further improvement of rewetted peatlands, that are worth being pointed 

out. 

The two major problems are local site limitation, especially further away from the filled 

ditches (Article 2 and 3), and dispersal limitation of some species or taxonomic groups. 

(Article 2, STROBL & KOLLMANN 2018). In heavily degraded peatlands highly altered peat and 

hydrology are often hindering a full recovery (SCHOPP-GUTH & GUTH 2003, SCHUMANN 

& JOOSTEN 2008). Article 3 showed, that peatland properties mostly improved locally in the 

direct surrounding of rewetted drainage ditches, and the water table was not significantly 

increased with time. Instead, it seemed to slightly decrease after a first increase. An 

insufficient water supply is also emphasized by the high cover of Ericaceae, a low cover of 

Sphagnum (Article 1) and the partial site limitation of D. rotundifolia and V. oxycoccos (Article 

2). Where the water table is lower than -30 cm, Sphagnum cover stayed below 30% of 

coverage (STROBL et al. 2018a), since low water tables favour plants of hummocks and 

peatland margins like Calluna vulgaris or Vaccinium spp. (POTVIN et al. 2015). Furthermore, 

even if the degree of peat decomposition significantly decreased with time, it was still below 
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levels of intact peatlands after two decades (Article 3). Decomposed peat loses its water 

storage capability, prevents peat moss (Sphagnum spp.) colonization (SMOLDERS et al. 2003) 

and consequently compromises peat formation and a stable high water table (VAN BREEMEN 

1995). However, site limitation is unlikely to be the only cause for incomplete recovery. Article 

2 also proves dispersal limitation for all three study species and Article 1 for characteristic 

peatland butterflies, since the restored sites are poorly connected to source populations. 

For counteracting problems of site limitation, three management possibilities should be 

further explored in the field. First, I observed that with time trees re-established at rewetted 

peatlands, leading to higher transpiration and thus lowering the water table. Their removal 

would decrease transpiration and increase light availability for peatland-specific species 

(HEDBERG et al. 2012). Dragonflies benefitted from sunny pools (Article 1) as well as D. 

rotundifolia and E. vaginatum (Article 2). However, when removed in early phases of peatland 

recovery, tree removal might enhance peat mineralisation due to high solar irradiation 

(BERNRIEDER 2003). Second, the dams might be too small. If they are too narrow, the water 

is not sufficiently spreading into the whole peatland. If they are too low, water might not be 

hold back in times of high runoff, which not only leads to the loss of water, but also causes 

erosion. Third, the partial removal of the (upper) decomposed peat layer can initiate the 

establishment of peat mosses and other characteristic plants. 

Dispersal limitation – like observed for D. rotundifolia and E. vaginatum (Article 2) as well 

as for butterflies (Article 1) – should preferentially be counteracted by an improved 

connectivity. Since the study area is largely forested, butterflies could benefit from open 

corridors connecting peatland sites to flower rich grassland (LIPSKY 1999). New rewetting 

projects should ideally be carried out near intact or successfully restored peatlands, that can 

serve as source populations. If peatlands within the dispersal distance of characteristic 

species are restored, they are more easily colonized and (meta-)populations strengthened by 

the increased availability of habitat patches. If sufficient connectivity cannot be created within 

a region and characteristic species are not yet present in the restored sites, they might 

alternatively be reintroduced. Potential reintroduction methods include sowing, planting or 

transfer of vegetation or peat from source peatlands (SLIVA & PFADENHAUER 1999, 

ROCHEFORT et al. 2003, GROSVERNIER & STAUBLI 2009). 

While this thesis does not inform about the suitability of different measures, the above cited 

additional restoration measures (e.g. dam reinforcement, further tree removal, plant 

reintroduction) might further improve the rewetted peatlands. They should be systematically 

tested in an adaptive restoration process, that adjusts measures on a trial-and-error basis 
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(ZEDLER & KERCHER 2005) and/ or an experimental setup, that simultaneously compares 

different measures (HERMANN & KOLLMANN 2015).
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CONCLUDING REMARKS 

At the beginning of this thesis, I wanted to know, how rewetted peatlands recover with time 

and how the conclusions change depending on the applied evaluation approach. The answer 

is not straightforward. The results generally show, that peatlands do recover, but not all 

properties recover fully within two decades and not all develop linearly. The three articles, 

that are the basis of this thesis, identify which monitoring targets need further attention, and 

the general discussion gives recommendations for further improvement. Nevertheless, the 

here collected data does not tell, if recovery is still to be continued after two decades or if the 

maximum status that can be reached with the applied methods, has already been achieved. 

Therefore, future studies should investigate even longer time series. Furthermore, the 

chronosequence approach has its limits, since it does not allow for the comparison of different 

restoration methods. Experimental and engineering approaches in long-term longitudinal data 

series are needed to better understand their functioning and further advance the current 

rewetting techniques. 

As stated in the introduction the applied monitoring approaches mainly differ in their scale 

of comprehensiveness and explanatory potential. I cannot recommend one method more than 

another, since their usefulness depends on the restoration and monitoring targets; be it the 

protection of one population of a rare species, the restoration of a characteristic species 

assemblage, the recovery of a specific function like carbon storage, or the conservation of 

ecosystem processes. Sometimes one site is expected to fulfil all of these goals. However, 

conservation and restoration targets can be heavily contradicting making it difficult to find an 

adequate management. Monitoring is then laborious and results often disappointing, since a 

high functionality in divergent properties is not possible. It is therefore crucial to realistically 

think about the possibilities beforehand. Since some developments cannot be foreseen, it is 

also advisable to adapt the vision throughout the recovery process. However, before giving 

up and accepting an incomplete recovery, we should still try to understand the underlying 

reasons and advance the management strategies to their best.
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