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SUMMARY 

Most of the inorganic phosphorus in mature seeds is stored in the form of phytic acid 

(myo-inositol-1,2,3,4,5,6-hexakisphosphate, InsP6) which is a strong chelator of 

cationic metal micronutrients and therefore considered as an antinutrient in food and 

feed. In addition, undigested phytate in animal waste contributes to phosphorus 

pollution and eutrophication of waterways. One approach to overcome these nutritional 

and environmental problems associated with InsP6 is the generation of low phytic acid 

(lpa) crops. Such lpa mutants often show inferior agronomic performance, and cross-

breeding with commercial cultivars is being applied to improve not only their nutritional 

but also their agronomic characteristics. However, the consequences of such crossing 

steps on the contents of InsP6, lower inositol phosphate isomers (InsP2-InsP5) and the 

metabolite profiles of the resulting homozygous lpa soybean progenies were unknown. 

Therefore, the previously developed MIPS1 lpa soybean mutants Gm-lpa-TW-1 and 

Gm-lpa-TW-1-M as well as the IPK1 lpa soybean mutant Gm-lpa-ZC-2 were crossed 

with three commercial wild-type (WT) cultivars or among themselves, and the InsP6 

and InsP2-InsP5 contents in the resulting homozygous lpa mutant and homozygous 

WT progenies of various generations and from different growing seasons were 

determined via high pressure ion chromatography (HPIC). For the MIPS1 mutant, the 

lpa trait was not changed by cross-breeding with a WT cultivar, and lpa progenies 

showed InsP6 reductions of about 44% compared to WT progenies. In contrast, IPK1 

progenies exhibited distinct accumulations of specific InsP3-InsP5 isomers (up to 

12.4 mg/g) in comparison to the progenitor lpa mutant (4.7 mg/g). The magnitude of 

InsP6 reduction in IPK1 mutant progenies varied between 43% and 71% and was 

dependent on the WT crossing parent. Double lpa mutants simultaneously carrying the 

IPK1 and MIPS1 mutation target exhibited the highest InsP6 reductions up to 87%, with 

only moderate accumulations of InsP3-InsP5 (2.5 mg/g). Overall, the homozygous lpa 

mutant soybean progenies always displayed significantly lower contents of InsP6 than 

the original WTs subjected to the mutations, independent from cross-breeding steps, 

crossing parents or environmental influence. This makes cross- and selection-breeding 

a useful tool to generate new lpa soybean cultivars with the intended lpa trait. 

In addition, the lpa soybean mutant Gm-lpa-TW-1-M, resulting from a 2 bp deletion in 

the third exon of the myo-inositol 3-phosphate synthase (MIPS1) gene, was used as 
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an example to investigate the stability of the mutation-induced metabolic changes in 

homozygous lpa mutant and homozygous WT progenies resulting from the cross-

breeding with a commercial WT cultivar. The application of a non-targeted GC-based 

metabolite profiling approach allowed the analysis of a broad range of lipophilic and 

polar low molecular weight soybean constituents including fatty acid methyl esters, free 

fatty acids, fatty alcohols, tocopherols, phytosterols, sugars, sugar alcohols, acids, 

amino acids, amines, and organic as well as inorganic acids. Multivariate und 

univariate statistical approaches revealed that the MIPS1 mutation led not only to the 

intended effect of InsP6 reduction in homozygous lpa mutant progenies but also to 

pronounced metabolic changes of other nutritionally important constituents. In 

comparison to the respective WT progenies, lpa mutant progenies exhibited reduced 

contents of raffinose oligosaccharides and galactosyl cyclitols as well as increased 

concentrations of sucrose and various free amino acids. This MIPS1-induced 

metabolite signature was consistently expressed over generations and different 

growing seasons despite the cross-breeding step. This indicated that not only the 

primary MIPS1 soybean mutants but also their homozygous lpa mutant progenies 

might be valuable genetic resources for the commercial breeding of lpa soybean seeds 

which combine the advantages of increased mineral bioavailability, reduced phytate-

related environmental problems as well as enhanced metabolizable energy and 

carbohydrate digestibility.  

The elaborated data demonstrated that cross-breeding of lpa soybean mutants with 

commercial cultivars may be a valuable tool to modulate the contents of both phytic 

acid and lower inositol phosphates in homozygous lpa mutant progenies and thus to 

further improve their nutritional quality. The generation of lpa double mutants offers the 

potential to drastically reduce the InsP6 content in soybean seeds. Cross-breeding was 

shown to neither compromise the intended effect of InsP6 reduction nor the MIPS1 

mutation-specific metabolite signature of homozygous lpa mutant soybean progenies. 

Therefore, cross-breeding was shown to be a useful strategy to generate lpa soybean 

seeds stably exhibiting improved nutritional traits.   
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ZUSAMMENFASSUNG 

In reifen Samen wird der Großteil des anorganischen Phosphors in Form von 

Phytinsäure (myo-Inositol-1,2,3,4,5,6-hexakisphosphat, InsP6) gespeichert, die ein 

starker Chelatbildner von kationischen Metallmikronährstoffen ist und daher als 

antinutritive Substanz in Lebens- und Futtermitteln gilt. Darüber hinaus trägt 

unverdautes Phytat in Gülle zur Phosphorverschmutzung und zur Eutrophierung von 

Gewässern bei. Ein Ansatz zur Lösung dieser mit InsP6 assoziierten Ernährungs- und 

Umweltprobleme ist die Erzeugung von Kulturpflanzen mit erniedrigten 

Phytinsäuregehalten (low phytic acid, lpa). Solche lpa Mutanten weisen jedoch häufig 

schlechtere agronomische Leistungen auf und werden daher mit kommerziellen Sorten 

gekreuzt, um sowohl ihre ernährungsphysiologischen als auch ihre agronomischen 

Eigenschaften zu verbessern. Die Auswirkungen solcher Kreuzungsschritte auf die 

Gehalte an InsP6, niederphosphorylierte Inositolphosphat-Isomere (InsP2-InsP5) und 

die Metabolitenprofile der resultierenden homozygoten Nachkommen wurden bisher 

allerdings nicht untersucht. 

Daher wurden die zuvor entwickelten MIPS1 lpa Sojamutanten Gm-lpa-TW-1 und 

Gm-lpa-TW-1-M sowie die IPK1 lpa Sojamutante Gm-lpa-ZC-2 mit drei kommerziellen 

Wildtyp (WT) Sorten oder untereinander gekreuzt und die InsP6 sowie die InsP2-InsP5 

Gehalte in den resultierenden homozygoten lpa und homozygoten WT Nachkommen 

verschiedener Generationen und Anbauzeiten mittels Hochdruck-Ionenchromato-

graphie (HPIC) untersucht. Das lpa Merkmal der MIPS1 Mutante wurde durch das 

Einkreuzen einer WT Sorte nicht verändert; lpa Nachkommen wiesen InsP6 Abnahmen 

von etwa 44% im Vergleich zu WT Nachkommen auf. Im Gegensatz dazu zeigten IPK1 

Nachkommen deutliche Anreicherungen spezifischer InsP3-InsP5 Isomere (bis zu 

12,4 mg/g) im Vergleich zur ursprünglichen lpa Mutante (4,7 mg/g). Das Ausmaß der 

InsP6 Reduktion in IPK1 Nachkommen schwankte zwischen 43% und 71% und war 

abhängig vom WT Kreuzungspartner. Lpa Doppelmutanten, die gleichzeitig die IPK1 

und MIPS1 Mutationen trugen, zeigten mit bis zu 87% die höchsten InsP6 Abnahmen, 

begleitet von nur mäßigen Anreicherungen an InsP3-InsP5 (2,5 mg/g). Insgesamt 

wiesen die homozygoten lpa Nachkommen unabhängig von den Kreuzungen, den 

Kreuzungspartnern oder Umwelteinflüssen einen deutlich niedrigeren InsP6 Gehalt auf 

als die Wildtypen, die ursprünglich den Mutationen unterzogen worden waren. Dies 
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verdeutlichte, dass Kreuzungs- und Selektionszüchtung eine nützliche Strategie bei 

der Erzeugung von neuartigen lpa Sojasorten darstellt.  

Darüber hinaus wurde die lpa Sojamutante Gm-lpa-TW-1-M, die auf eine 2-bp-Deletion 

im dritten Exon des myo-Inositol 3-Phosphat Synthase Gens (MIPS1) zurückzuführen 

ist, als Beispiel herangezogen, um nach dem Einkreuzen einer WT Sorte die Stabilität 

der mutationsbedingten metabolischen Veränderungen in homozygoten lpa und 

homozygoten WT Nachkommen zu untersuchen. Die Anwendung eines nicht 

zielgerichteten GC-basierten Metabolite Profiling Ansatzes ermöglichte die Analyse 

eines breiten Spektrums an niedermolekularen lipophilen und polaren Verbindungen, 

darunter Fettsäuremethylester, freie Fettsäuren, Fettalkohole, Tocopherole, 

Phytosterole, Zucker, Zuckeralkohole, Säuren, Aminosäuren, Amine und organische 

sowie anorganische Säuren. Multivariate und univariate statistische Auswertungen 

ergaben, dass die MIPS1 Mutation nicht nur zur beabsichtigten InsP6 Reduktion in den 

homozygoten Ipa Nachkommen führte, sondern darüber hinaus zu ausgeprägten 

metabolischen Veränderungen anderer ernährungsphysiologisch relevanter 

Komponenten. So zeigten lpa Nachkommen im Vergleich zu den WT Nachkommen 

reduzierte Gehalte an Raffinose-Oligosacchariden und Galactosylcyclitolen sowie 

erhöhte Konzentrationen an Saccharose und verschiedenen freien Aminosäuren. 

Diese MIPS1-spezifische Metaboliten-Signatur blieb trotz des Kreuzungsschrittes über 

Generationen und zu unterschiedlichen Anbauzeiten erhalten. Die Ergebnisse deuten 

darauf hin, dass nicht nur die primären MIPS1 Sojamutanten, sondern auch ihre 

homozygoten lpa Nachkommen, wertvolle genetische Ressourcen für die 

kommerzielle Züchtung von lpa Sojabohnen darstellen. Sie verbinden die Vorteile 

einer erhöhten Mineralstoffbioverfügbarkeit mit reduzierten Phytat-bedingten 

Umweltproblemen sowie einem erhöhten metabolisierbaren Energieanteil und 

verbesserter Kohlenhydratverdaulichkeit. 

Die erarbeiteten Daten zeigten, dass die Kreuzung von lpa Sojamutanten mit 

kommerziellen Sorten eine wertvolle Methode darstellen kann, um die Gehalte an 

Phytinsäure und niederphosphorylierten Inositolphosphaten in homozygoten lpa 

Nachkommen zu modulieren und dadurch ihre Nährstoffqualität weiter zu verbessern. 

Die Erzeugung von lpa Doppelmutanten bietet darüber hinaus die Möglichkeit, den 

Phytinsäuregehalt in Sojabohnen drastisch zu reduzieren. Es wurde gezeigt, dass 

Kreuzungen weder die beabsichtigte Wirkung der InsP6 Reduktion noch die MIPS1-
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spezifische Metaboliten-Signatur in homozygoten lpa Sojanachkommen beein-

trächtigen. Daher stellt Kreuzungszüchtung eine nützliche Strategie dar, um lpa 

Sojamutanten mit stabilen und ernährungsphysiologisch wertvollen Eigenschaften zu 

erzeugen.   
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1 INTRODUCTION AND OBJECTIVES  

Phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate, InsP6) represents the major 

storage form of inorganic phosphorus (P) in mature seeds such as grains, oilseeds, 

nuts and legumes (Raboy, 1997). Owing to its ability to form indigestible chelates with 

cationic metal micronutrients like zinc and iron, thereby limiting their bioavailability, 

phytic acid is considered as an antinutrient in food and feed (Kumar et al., 2010). In 

addition, excreted phytate in the manure of monogastric animals is degraded by natural 

soil microorganisms and thus contributes to P pollution and eutrophication of 

waterways (Leytem and Maguire, 2007). Various efforts have been made to overcome 

these obstacles by generating low phytic acid (lpa) crops comprising soybean (Yuan 

et al., 2007), common bean (Campion et al., 2009), maize (Shi et al., 2007), rice (Ali 

et al., 2013), wheat (Guttieri et al., 2004), and barley (Rasmussen and Hatzack, 1998) 

using γ-irradiation, chemically induced mutagenesis or genetic engineering. 

Soybean (Glycine max (L.) Merr.), the most important cultivated legume worldwide 

(Stagnari et al., 2017), has a multitude of uses in food, feed and industrial products 

(Liu, 1997a). Phytic acid contents up to 4.6% have been reported in soybeans (Kumar 

et al., 2005). By generating lpa soybean mutants, phytic acid reductions of up to 80% 

compared to their respective wild-type (WT) cultivars were accomplished (Wilcox et 

al., 2000). Lpa mutants often possess inferior agronomic performance (Raboy, 2007), 

and cross- and selection-breeding is being applied to improve both their agronomic 

and nutritional characteristics (Spear and Fehr, 2007; Zhao et al., 2008). The effects 

of crossing an lpa soybean mutant with either a commercial wild-type cultivar or 

another lpa mutant carrying a different mutation target on the contents of phytic acid 

and lower inositol phosphate isomers in the resulting progenies have not been 

investigated so far. Therefore, the previously developed MIPS1 lpa soybean mutants 

Gm-lpa-TW-1 (TW-1-lpa) and Gm-lpa-TW-1-M (TW-1-M-lpa) as well as the IPK1 lpa 

mutant Gm-lpa-ZC-2 (ZC-lpa) were crossed with commercial wild-type cultivars, and 

the phytic acid and lower inositol phosphate contents in the resulting homozygous WT 

and homozygous lpa mutant progenies of various generations grown at different 

locations were determined via high-pressure ion chromatography (HPIC). The 

objectives of the first part of this study were: (i) to assess the impact of cross-breeding 

of the MIPS1 and IPK1 mutants with commercial cultivars on the intended effect of 

phytic acid reduction and the occurrence of lower inositol phosphate isomers in the 

resulting progenies, and (ii) to investigate the extent of phytic acid reduction and the 
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effects on the lower inositol phosphate isomers’ contents in homozygous lpa double 

mutants simultaneously carrying the IPK1 and MIPS1 mutation target.  

Previous investigations have demonstrated that induced mutations lead not only to the 

intended effect of phytic acid reduction in lpa mutants but can also result in changes 

of other nutritionally relevant metabolites (Frank et al., 2007; Frank et al., 2009; Hitz et 

al., 2002). For instance, a GC-based metabolite profiling approach revealed consistent 

changes in the concentrations of myo-inositol, raffinose oligosaccharides (RFOs), 

galactosyl cyclitols and sucrose in the primary MIPS1 soybean mutation TW-lpa 

compared to its wild-type cultivar Taiwan 75 (Frank et al., 2009). The stability of such 

mutation-induced metabolic signatures of lpa mutants upon cross-breeding have so far 

only been investigated in rice (Zhou et al., 2018). Therefore, in the second part of this 

work, the MIPS1 mutant TW-1-M-lpa was used as an example to study the mutation-

induced metabolic changes in progenies resulting from the crossing with a commercial 

cultivar by a GC-based metabolite profiling approach allowing the analysis of a broad 

array of low molecular weight constituents. The objectives of this part of the study were: 

(i) to investigate the impact of cross-breeding of the MIPS1 lpa mutant TW-1-M-lpa 

with a commercial cultivar on the mutation-induced metabolite signature of the 

resulting homozygous lpa mutant progenies and (ii) to evaluate the stability of the lpa 

trait in crossbred progenies depending on generations and growing seasons. 

 

The present thesis is structured as follows: 

- After these introductory remarks describing the objectives of the study 

(Chapter 1), the background and methodologies of the thesis are presented in 

Chapter 2. 

- Materials and methods, results of the studies and their specific discussions in 

the light of existing literature are presented in the two original publications 

included in Chapter 3. 

- An overall discussion section across the presented dissertation topics depicting 

the significance of the elaborated results in the light of existing literature 

knowledge is presented in Chapter 4.  
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2 BACKGROUND 

2.1 Soybean (Glycine max (L.) Merr.) 

Soybean is an annual plant which was domesticated in northeastern China during 

1700-1100 B.C (Singh and Hymowitz, 1999). Taxonomically, it belongs to the legume 

family Leguminosae or Fabaceae, subfamily Papilionoideae, tribe Phaseoleae and the 

genus Glycine, which contains two subgenera, Soja (annuals) and Glycine 

(perennials). The subgenus Glycine consists of 22 recognized species, and the 

subgenus Soja contains the two subspecies Glycine max (L.) Merr. subsp. max, the 

cultivated soybean, and its progenitor Glycine max subsp. soja (Siebold & Zucc.) H. 

Ohashi, the wild soybean (Poehlman and Sleper, 1995; Pratap et al., 2015).  

 

2.1.1 Production, processing and utilization 

Soybean is the dominant oil-seed contributing to about 55% of global oilseed 

production followed by rapeseed, cotton, and peanut with 15%, 10% and 9%, 

respectively (Pratap et al., 2015). In 2017, the worldwide cultivated area of soybean 

reached 124 million ha with a global soybean production amounting to 353 million tons, 

of which 312 million tons were produced in the Americas and 11 million tons in Europe 

(FAO, 2019). The United States of America, Brazil and Argentina are the world’s main 

soybean producers and contribute to more than 80% of the global soybean production 

(Table 1). The best growing conditions for soybean are temperate and subtropical 

climates with a temperature ranging from 25 to 32 °C and moderate moisture with 

400-800 mm rainfall. The average production cycle of soybean from planting to 

harvesting is 90-110 days (Nwokolo, 1996). As a legume crop, soybean is able to fix 

atmospheric nitrogen by establishing a symbiotic relationship with Rhizobium species 

in root nodules (Zahran, 1999). Thereby, soybean can fix up to 450 kg N/ha, covering 

on average 50-60% of its nitrogen demand (Salvagiotti et al., 2008) making this crop 

less dependent on synthetic nitrogen fertilization. 

Due to its high content in nutrients, soybean has a multitude of uses in foods, feed, 

industrial products and consumables and it is a source of biofuel and industrial oils 

(Hartman et al., 2011). In the USA, only about 5% of the produced soybean seeds are 

consumed by humans whereas the bigger part is crushed for the production of soybean 

oil and meal (Nwokolo, 1996). 
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Table 1.  Production, area and yield of soybean in the main producing countries 
worldwide in 2017 (FAO, 2019). 
 

 Production 

(million t) 

Area harvested 

(million ha) 

Yield 

(t/ha) 

Worldwide 

production (%) 

USA 119.5 36.2 3.30 33.9 

Brazil 114.6 33.9 3.38 32.5 

Argentina 55.0 17.3 3.17 15.6 

China 13.2 7.3 1.79 3.7 

India 11.0 10.6 1.04 3.1 

Paraguay 10.5 3.4 3.10 3.0 

 

Solvent extraction, e.g. with hexane, is used to obtain crude oil and defatted meal from 

soy flakes (Proctor, 1997). About 98% of the defatted soybean meal is employed as 

high protein source in animal feed, e.g. for poultry, pork and aquaculture species 

(Goldsmith, 2008; Hartman et al., 2011). Commercial forms of soybean protein include 

defatted soy flours, flakes or grits, soy concentrates and soy isolates with protein 

contents of about 50%, 70% and 90%, respectively (Wolf, 1970). 

To remove impurities from crude soy oil, refining processes including degumming, 

alkali refining, bleaching, and deodorization are used. To further modulate the 

physicochemical properties of the oil for the use in certain food processes, 

hydrogenation, interesterification, winterization and fractionation can be applied 

(Proctor, 1997). About 95% of the soy oil is used as edible oil, e.g. for the 

manufacturing of mayonnaise, salad dressings, margarine and shortening. A small 

share is used in industries related to the production of pharmaceuticals, plastics, 

papers, inks, paints, polishers, pesticides, and cosmetics (Hartman et al., 2011; Pratap 

et al., 2015). Only in the USA, relevant quantities of soybean oil are used at a 

commercial scale to produce biodiesel by transesterification (Pratap et al., 2015). 

Furthermore, soybean oil is the major source for lecithin, phosphatides obtained as by-

product in the soybean oil degumming process. Lecithin is added to foods, feedstuff, 

cosmetics and pharmaceuticals as emulsifier, wetting and dispersing or softening 

agent and as antioxidant (Erickson, 1995). 

Traditional soyfoods produced of whole soybean for human consumption can be 

classified into non-fermented and fermented products. Non-fermented soyfoods 

include tofu, soy sprouts, soymilk, yuba (soymilk film), okara (soy pulp), vegetable 
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soybeans, soynuts and toasted soy flour. Fermented soyfoods comprise soy sauce, 

miso (fermented soy paste), natto (Bacillus natto fermented whole soybeans), tempeh 

(Rhizopus mold fermented, cake-like soybeans), soy yoghurt, sufu (fermented tofu), 

and douchi (fermented and salted black soybeans) (Liu, 2008). 

 

2.1.2 Seed composition 

Soybean seeds stand out from other legume seeds due to their unique chemical 

composition with high protein contents of around 40% and oil contents of about 20% 

(Liu, 1997a). The mean composition of mature and raw soybean seeds is summarized 

in Table 2.  

More than 70% of the global humans’ protein consumption originates from plants, 

whereof about 50% comes from soybean (Bao et al., 1993). The two major soybean 

proteins in seed storage globulins are glycinin and β-conglycinin, accounting for about 

40% and 30% of the total seed protein, respectively (Krishnan and Nelson, 2011). The 

soy protein contains all essential amino acids (Table 2B); however, the concentrations 

of the sulfur-containing amino acids (cysteine and methionine) are rather low. On the 

other hand, soy protein contains remarkable contents of lysine, an essential amino acid 

which is limiting in most cereal proteins. Therefore, soybean might be a good protein 

source to improve the total protein status of populations depending on cereal grains as 

stable foods because soybean and cereals are complementary for lysine and 

methionine (Nwokolo, 1996).  

The most abundant fatty acid esterified in soybean triacylglycerols is linoleic acid 

(C18:2; 54%), followed by oleic acid (C18:1; 23%), palmitic acid (C16:0; 11%), linolenic 

acid (C18:3; 7%), stearic acid (C18:0; 4%) and minor amounts of palmitoleic (C16:1; 

< 1%) and myristic acid (C14:0; < 1%) (Table 2C). On the one hand, the high contents 

of the essential unsaturated fatty acids C18:2 and C18:3 add to soybean’s high 

nutritional value but, on the other hand, make it susceptible to oxidation and off-flavor 

development. The most abundant phytosterols found in soybean seeds are 

campesterol, stigmasterol, and β-sitosterol (Medic et al., 2014). Phospholipids are the 

most important polar lipids in crude soybean oil with contents of 2-3.5% (Nwokolo, 

1996). They mainly consists of phosphatidyl choline, phosphatidyl ethanolamine, 

phosphatidyl inositol and phosphatidic acid (Liu, 1997a). 
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Table 2.  Composition of mature and raw soybean seeds. Contents of A, proximates; 
B, amino acids; C, lipids; D, minerals and E, vitamins (USDA National Nutrient 
Database for Standard Reference, 2019). 
 

(A) Proximates amount in 100 g  (B) Amino acids amount in 100 g 

Water [g] 8.5  Tryptophan* [g] 0.59 

Energy [kcal] 446  Threonine* [g] 1.77 

Protein [g] 36.5  Isoleucine* [g] 1.97 

Lipids [g] 19.9  Leucine* [g] 3.31 

Carbohydrates [g] 30.2  Lysine* [g] 2.71 

Dietary fiber [g] 9.3  Methionine* [g] 0.55 

Sugar [g] 7.3  Cysteine [g] 0.66 

Ash [g] 4.9  Phenylalanine* [g] 2.12 

   Tyrosine [g] 1.54 

   Valine* [g] 2.03 

(C) Lipids amount in 100 g  Arginine [g] 3.15 

Fatty acids   Histidine [g] 1.10 

Saturated [g] 2.89  Alanine [g] 1.92 

C14:0 [g] 0.06  Aspartic acid [g] 5.11 

C16:0 [g] 2.12  Glutamic acid [g] 7.87 

C18:0 [g] 0.71  Glycine [g] 1.88 

Monounsaturated [g] 4.40  Proline [g] 2.38 

C16:1 [g] 0.06  Serine [g] 2.36 

C18:1 [g] 4.34  * essential amino acids 

Polyunsaturated [g] 11.26    

C18:2** [g] 9.93    

C18:3** [g] 1.33    

Phytosterols [mg] 161    

**essential fatty acids     

     

     

(D) Minerals  amount in 100 g  (E) Vitamins amount in 100 g 

Calcium [mg] 277  Vitamin C [mg] 6.0 

Iron [mg] 15.7  Thiamin [µg] 870 

Magnesium [mg] 280  Riboflavin [µg] 870 

Phosphorus [mg] 704  Niacin [mg] 1.62 

Potassium [mg] 1797  Pantothenic acid [µg] 790 

Sodium [mg] 2.0  Vitamin B6 [µg] 380 

Zinc [mg] 4.9  Folate [µg] 375 

Copper [mg] 1.7  Vitamin A [IU] 22 

Manganese [mg] 2.5  Vitamin E [µg] 850 

Selenium [µg] 17.8  Vitamin K [µg] 47 
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The third abundant component in soybean seeds are carbohydrates with contents up 

to 35% dry matter (Medic et al., 2014). They consist of about 50% non-structural and 

structural carbohydrates, respectively. Structural carbohydrates or cell wall 

polysaccharides include cellulose, hemicellulose and pectins, mannans, galactans, 

and xyloglucans (Karr-Lilienthal et al., 2005). Non-structural carbohydrates comprise 

sucrose (1.1-7.4% dry weight), stachyose (1.2-6.9%), and raffinose (0.1-1.4%), starch 

(0.2-1.0%) or fructose (0.03-2.5%), glucose (0.03-2.4%), and maltose (0.3-0.5%) 

(Medic et al., 2014). 

Besides proteins, lipids and carbohydrates, soybean also contains various minor 

compounds such as minerals, vitamins and phenols. Like most other legumes, 

soybean is rich in potassium but low in sodium (Table 2D). In addition, soybean is a 

valuable source of thiamine, riboflavin and niacin (Table 2E) besides phosphorus, 

although a significant amount of phosphorus is stored in the form of phytic acid which 

thereby has only limited bioavailability (Nwokolo, 1996). 

In addition, soy protein-containing foods are a good source of isoflavones, a group of 

phytoestrogens with the aglycones genistein, daizein and glycitein as major 

representatives (Liu, 1997a). In soybean, contents up to about 420 mg 

isoflavones/100 g have been described (Wang and Murphy, 1994). Isoflavones have 

been reported to provide antioxidant and antifungal activity, to lower blood cholesterol, 

inhibit bone resorption and act as anticarcinogens and thereby potentially lowering the 

risk for diseases such as cancer, osteoporosis, or heart and kidney disease (Liu, 

1997a; Messina, 1997). 

Despite its high nutritional value, soybean also contains natural antinutrients, among 

them are heat-labile compounds, such as protease inhibitors, lectins, goitrogens and 

phytate, as well as heat-stable compounds, such as flatulence–producing 

oligosaccharides and saponins (Liener, 1981). 

 

2.1.3 Breeding 

The major soybean breeding objectives are improvement of seed yield, maturity for 

area of production, resistance to shattering and lodging, tolerance to environmental 

stresses, disease resistance, insect resistance, and seed quality parameters such as 

protein or oil content (Poehlman and Sleper, 1995). Both the wild and the cultivated 

soybeans are palaeopolyploid with 2n = 40 chromosomes; in total, the soybean 

genome consists of 1.1 giga base pairs (Pathan and Sleper, 2008). 
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About 170,000 Glycine max accessions are maintained in 70 countries, with China and 

the United Stated possessing the largest collections with nearly 26,000 and 19,000 

Glycine max accessions, respectively (Pathan and Sleper, 2008). Up to now, 173 

soybean mutant varieties have been developed by mutation breeding and have been 

officially or commercially released (FAO/IAEA, 2019).  

Breeding methods of crop plants comprise recurrent selection, hybridization, mutation 

breeding, the use of molecular markers, and biotechnological approaches (Liu, 1997b). 

Conventional breeding involves the phenotypic selection of superior individuals from 

segregating populations and crossing among the selected genotypes (Liu, 1997b). 

However, these processes are time-consuming; 8-10 years are necessary until a 

variety can be released (Pathan and Sleper, 2008). Conventional breeding has had a 

remarkable impact on the yield increase of soybean since 1930 (Pathan and Sleper, 

2008). Soybean is usually a self-pollinated crop with low natural cross-pollination rates 

of 0.03-1.14% and 2.4-3.0% in cultivated and wild soybean, respectively (Pratap et al., 

2015). For hybridization or crossing, the anthers are removed from the flowers of a 

male plant possessing desirable traits (emasculation) and pollen from the anther is 

transferred to the stigma of flowers of another female plant with favorable 

characteristics (pollination) (Liu, 1997b). 

Since the 1950s, mutation breeding, also known as mutagenesis, has been applied to 

artificially induce changes in traits of interest within a short period of time. This 

approach can be helpful when the desired natural genetic variation is limited. As 

mutations are a naturally occurring phenomena of life, e.g. induced by cosmic and 

ultraviolet radiation, mutation breeding has been considered as part of conventional 

plant breeding. In mutation breeding, seeds or plants are treated with physical (e.g. 

X-rays, gamma-rays, UV-rays or neutrons) or chemical (e.g. ethyl methanesulphonate, 

ethyleneimine and N-nitro-N-methylurea) mutagens (Liu, 1997b). In a subsequent 

step, the segregating populations are subjected to various screening procedures for 

the trait of interest. Promising homozygous mutants can directly be used for 

multiplication to generate direct mutant varieties or they can be further modulated by 

crossing with other genotypes (Maluszynski et al., 1995).  

Genetically modified crops have been generated since the 1980s (Fraley et al., 1983). 

Such biotechnological tools comprise plant tissue cultures, genetic transformation, 

molecular breeding, and marker-assisted selection (Pratap et al., 2015). Two main 
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transformation methods for the introduction of DNA are used in soybean, i.e. particle 

bombardment of proliferative embryogenic cultures and Agrobacterium-mediated 

transformation of cotyledonary nodes (Finer and Larkin, 2008). In 2014, transgenic 

soybeans were grown on 82% of the global area used for soybean cultivation, making 

soybean one of the world’s biggest commercial successes in transgenic plants (Pratap 

et al., 2015). 

 

2.2 Phytic acid and lower inositol phosphates 

2.2.1 Structure and natural occurrence 

Inositol phosphates refer to metabolites with variable phosphate groups attached to 

the carbocyclic sugar alcohol inositol (Duong et al., 2018). Nine stereoisomeric forms 

of inositol exist, with myo-inositol representing the most abundant form in nature 

(Murthy, 2006) and the only isomer which is synthesized de novo from D-glucose-6-

phosphate (Loewus and Murthy, 2000). In its most favorable and stable chair 

conformation with one axial hydroxyl group at C2 and five equatorial hydroxyl groups, 

myo-inositol can be divided into two non-superimposable mirror image halves between 

C2 and C5, illustrated by the dashed line in Figure 1a. Phosphorylation at positions C2 

or C5 maintains the plane of symmetry and therefore results in achiral meso molecules. 

Phosphorylation at the stereogenic positions C1, C3, C4 or C6 eliminates the plane of 

symmetry leading to chiral inositol phosphates (Parthasarathy and Eisenberg, 1991). 

Agranoff’s turtle (Figure 1b) was introduced as a mnemonic to facilitate the numbering 

and nomenclature of myo-inositol and inositol phosphates. The axial 2-hydroxyl 

represents the turtle’s head and the equatorial hydroxyls the limbs and tail. According 

to the Nomenclature Committee of the International Union of Biochemistry (NC-IUB), 

the D-numbering system should be applied for myo-inositol (IUB Nomenclature 

Committee, 1989). Therefore, the tutle’s right front limb is the 1-D position and 

numbering proceeds in the counterclockwise direction (Irvine and Schell, 2001; Murthy, 

2006). 
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Figure 1.  (a) Myo-inositol (Ins) in the stable chair conformation with one axial (C2) 
and five equatorial hydroxyl groups. (b) Agranoff’s turtle (Agranoff, 1978), (c) phytic 
acid (adapted by permission from Copyright Clearance Center’s RightsLink ®: Springer 
Nature, Nature Reviews Molecular Cell Biology, Back in the Water: The Return of the 
Inositol Phosphates, Irvine and Schell, 2001). 

 

Theoretically, 63 myo-inositol phosphomonoesters are possible comprising myo-

inositol mono-, bis-, tris-, tetrakis-, pentakis- and hexakisphosphate (InsP1-6) (Table 3) 

(Irvine and Schell, 2001). Besides that, inositol pyrophosphates (PP-InsPs) with 

pyrophosphate instead of monophosphate moieties attached to the six carbons of 

inositol, and phosphorylated inositol lipids, so called phosphoinositides, further expand 

the variety of phosphorylated inositol metabolites found in nature (Livermore et al., 

2016). 

Phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate, InsP6, Figure 1c) and its 

mixed cationic salts (phytates) are the major storage form of inorganic phosphorus (P) 

in mature seeds like grains, legumes, oilseeds and nuts, accounting for 65 to 85% of 

total P (Raboy, 1997) and forming one to several per cent of their dry weight (Lott et 

al., 2000). The first discovery of phytate dates back to 1855 when Hartig reported small, 

nonstarch molecules in different plant seeds (Hartig, 1855, 1856; Song et al., 2018). 

Besides phytate, lower inositol phosphates are also present in seeds, but to a much 

lower degree (< 15%) (Schlemmer et al., 2009). While inositol phosphates and their 

salts with monovalent cations are normally water-soluble (Duong et al., 2018), phytate 

salts with divalent and trivalent cations are usually insoluble (Weaver and Kannan, 

2002). 

The conformational preferences of inositol phosphates are dependent on pH. In the 

pH range 0.5-9.0, InsP6 adopts in the sterically stable 1 ax/5 eq (one phosphate in the 

axial position and five phosphates in the equatorial position) conformation and above 

pH 9.5 in the sterically hindered 5 ax/1 eq (five phosphates in the axial position and 

one phosphate in the equatorial position) conformation. Both conformations are in  
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Table 3.  Overview of theoretically possible myo-inositol phosphate isomers (shown in D-configuration).  
 

InsP-compound corresponding 
enantiomer 

 InsP-compound corresponding 
enantiomer 

 InsP-compound corresponding 
enantiomer 

Ins(1)P1 Ins(3)P1  Ins(1,2,3)P3   Ins(1,3,4,5)P4 Ins(1,3,5,6)P4 

Ins(2)P1   Ins(1,2,4)P3 Ins(2,3,6)P3  Ins(1,2,5,6)P4 Ins(2,3,4,5)P4 

Ins(4)P1 Ins(6)P1  Ins(2,3,5)P3 Ins(1,2,5)P3  Ins(2,4,5,6)P4  

Ins(5)P1   Ins(1,2,6)P3 Ins(2,3,4)P3  Ins(1,4,5,6)P4 Ins(3,4,5,6)P4 

Ins(1,2)P2 Ins(2,3)P2  Ins(2,4,6)P3   Ins(1,2,4,5)P4 Ins(2,3,5,6)P4 

Ins(1,3)P2   Ins(2,4,5)P3 Ins(2,5,6)P3  Ins(1,2,4,6)P4 Ins(2,3,4,6)P4 

Ins(1,4)P2 Ins(3,6)P2  Ins(1,3,4)P3 Ins(1,3,6)P3  Ins(1,3,4,6)P4  

Ins(1,5)P2 Ins(3,5)P2  Ins(1,5,6)P3 Ins(3,4,5)P3  Ins(1,2,3,5)P4  

Ins(1,6)P2 Ins(3,4)P2  Ins(4,5,6)P3   Ins(1,2,3,4,5)P5 Ins(1,2,3,5,6)P5 

Ins(4,5)P2 Ins(5,6)P2  Ins(1,3,5)P3   Ins(1,2,4,5,6)P5 Ins(2,3,4,5,6)P5 

Ins(2,5)P2   Ins(1,4,6)P3 Ins(3,4,6)P3  Ins(1,3,4,5,6)P5  

Ins(2,4)P2 Ins(2,6)P2  Ins(1,4,5)P3 Ins(3,5,6)P3  Ins(1,2,3,4,6)P5  

Ins(4,6)P2 
  

 
Ins(1,2,3,4)P4* Ins(1,2,3,6)P4 

 
Ins(1,2,3,4,5,6)P6  
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dynamic equilibrium at pH 9.5. InsP5 adopts the 1 ax/5 eq in the pH range 1.0-9.0; in 

the pH range 9.5-13.0 both conformations are in dynamic equilibrium. In contrast, the 

other lower inositol phosphates (InsP4-InsP1) always adopt the 1 ax/5 eq confirmation 

over the whole pH range (Barrientos and Murthy, 1996). 

Phytic acid/phytate and lower inositol phosphate contents in exemplary cereals, 

legumes, major tree nuts and oilseeds are summarized in Tables 4 and 5. Since 2018, 

the Global Food and Composition Database for Phytate (PhyFood Comp database – 

Version 1.0) is available as the first global depository of analytical data on phytate in 

its different forms determined by different analytical methods with in total 3377 entries 

both from raw and processed foods (FAO/IZiNCG, 2018).  

 

Table 4.  Phytic acid/phytate contents of exemplary cereals, legumes, major tree 
nuts, and oilseeds (Schlemmer et al., 2009). 
 

Common name Taxonomic name Phytic acid/phytate content 

[mg/g dry matter]a 
   

Cereals   

Maize Zea mays 7.2 – 22.2 

Barley Hordeum vulgare 3.8 – 11.6 

Wheat Triticum spp. 3.9 – 13.5 

Rice Oryza sativa 0.6 – 10.8 

Oats Avena sativa 4.2 – 11.6 
   

Legumes   

Lentils Lens culinaris 2.7 – 15.1 

Soybeans Glycine max 10.0 – 22.2 

Kidney beans Phaseolus vulgaris 6.1 – 23.8 

Chickpeas Cicer arietinum 2.8 – 16.0 
   

Major tree nuts   

Almonds Prunus dulcis 3.5 – 94.2 

Cashews Anacardium occidentale 1.9 – 49.8 

Hazelnuts Corylus avellana 2.3 – 9.2 

Macadamias Macadamia integrifolia 1.5 – 26.2 
   

Oilseeds   

Linseed Linum usitatissimum 21.5 – 36.9 

Sesame seed Sesmun indicum 14.4 – 53.6 
   

a Depending on the published data 
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Table 5.  Lower inositol phosphate contents in exemplary cereals, legumes and major tree nuts (Duong et al., 2018; Sun and Jaisi, 
2018). 
 

  InsP5 InsP4 InsP3 InsP2 InsP1 

Common name Taxonomic name mg/g dry mattera 
       

Cereals       

Maizea Zea mays 0.17 – 1.45 n.d. – 0.35 0.04 – 0.21 – – 

Barleya Hordeum vulgare n.d. – 0.46 n.d. n.d. – 1.22 – – 

Wheata Triticum spp. n.d. – 0.29 n.d. n.d. – – 

Oatsa Avena sativa 0.06 – 0.12 n.d. n.d. – – 
       

Legumes       

Lentilsa Lens culinaris 0.12 – 1.86 0.05 – 0.40 0.13 – 0.17 0.10 0.05 

Soybeansb Glycine max 1.70 – 2.10 0.30 – 0.50 – – – 

Kidney beansa Phaseolus vulgaris 0.17 – 1.04 0.10 < 0.002 – – 

Chickpeasa Cicer arietinum 1.22 0.02 – 0.30 < 0.002 – 0.25 0.10 0.03 
 

      

Major tree nuts       

Almondsa Prunus dulcis 0.23 – 5.80 0.20 – 4.25 0.42 – 0.76 0.24 – 1.29 < 0.001 – 0.39 

Cashewsa Anacardium occidentale 0.75 – 3.83 0.15 – 0.60 0.08 – 0.21 0.02 – 0.07 < 0.001 – 0.05 

Hazelnutsa Corylus avellana 0.23 – 0.70 0.10 – 0.55 0.004 – 0.21 0.01 – 0.17 0.001 – 0.08 

Macadamiasa Macadamia integrifolia  0.35 – 0.70 0.10 0.01 < 0.001 0.02 
       

a Values from Duong et al. (2018) and Sun & Jaisi (2018) were converted from µmol/g to mg/g with the following equation (x µmol/g * Minositol phosphate)/ 
1000); M, molar mass; MInsP1 = 260 g/mol; MInsP2 = 340 g/mol; MInsP3 = 420 g/mol; MInsP4 = 500 g/mol; MInsP5 = 580 g/mol; n.d., not detectable and limit 
of detection was not specified. 
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Depending on the growing locations and seasons, irrigation conditions, soil types, and 

application of fertilizers, phytate contents are known to be subject to natural 

fluctuations (Reddy, 2002). The amount and distribution of phytic acid in seeds can 

vary considerably between different plant species (Duong et al., 2018). In rice, wheat 

or barley, phytic acid is mainly accumulated in the aleurone and bran (O'Dell et al., 

1972; Raboy, 2003), in maize the embryo is the major storage (O'Dell et al., 1972), 

and in legume seeds such as common bean, phytic acid is mostly stocked in 

cotyledons (Ariza-Nieto et al., 2007). 

 

2.2.2 Biosynthesis 

The biosynthetic pathway leading to phytic acid in eukaryotic cells is shown in Figure 2, 

and it can be subdivided into three main steps: (i) supply of the substrates myo-inositol 

(Ins) and myo-inositol 3-phosphate (Ins(3)P1), (ii) conversion of Ins and/or Ins(3)P1 into 

phytic acid (InsP6) via the lipid-independent or the lipid-dependent pathway and (iii) 

transport and storage of phytic acid as globoids inside protein storage vacuoles (Cichy 

et al., 2009; Raboy, 2003; Sparvoli and Cominelli, 2015). Electron microscopy analysis 

has suggested that phytic acid is synthesized in the cytosol, transported into the 

endoplasmic reticulum lumen, and moved in endoplasmic reticulum-derived vesicles 

to protein storage vacuoles (Greenwood and Bewley, 1984; Otegui et al., 2002). 

 

Substrate supply 

The Ins backbone originates from the conversion of D-glucose-6-phosphate to 

InsP(3)P1, a highly conserved reaction catalyzed by D-myo-inositol 3-phosphate 

synthase (MIPS). Free Ins can be formed via dephosphorylation of InsP(3)P1 by myo-

inositol phosphate monophosphatase (IMP). The reaction of IMP can be reversed by 

myo-inositol kinase (MIK) (Raboy, 2003; Sparvoli and Cominelli, 2015). 

 

 

Conversion of Ins and/or Ins(3)P1 to phytic acid 

The subsequent steps involved in the biosynthesis of phytic acid can be divided into a 

lipid-independent ( Figure 2, left side) and a lipid-dependent pathway ( Figure 2, right 

side). These two routes differ in their early intermediate steps leading to InsP3 (Raboy, 

2009). 
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 Figure 2.  Biosynthetic pathway of phytic acid in eukaryotic cells. (Full caption and 
abbreviations see next page.)  
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Figure 2.  (continued) The lipid-independent (left side) and the lipid-dependent (right 
side) pathways for Ins(1,2,3,4,5,6)P6 synthesis are indicated. The carbons in the 
inositol ring are numbered according to the D-numbering convention. Enzymes 
catalyzing critical steps are illustrated in blue. MIPS, D-myo-inositol 3-phosphate 
synthase; IMP, myo-inositol phosphate monophosphatase; MIK, myo-inositol kinase; 
PtdIS, phosphatidyl inositol phosphate synthase; PtdI4K, phosphatidyl inositol 
4-kinase; PtdIP5K, phosphatidyl inositol 4-phosphate 5-kinase; PLC, phospholipase C; 
IP3 3-/5-/6-Kinase, Ins(1,4,5)P3 3-/5-/6-kinase; Ins PolyP K/P, inositol polyphosphate 
kinase/ phosphatase; IPK1, inositol 1,3,4,5,6 pentakisphosphate 2-kinase; MRP, 
multidrug-resistance-associated protein ATP-binding cassette (Raboy, 2003, 2009; 
Sparvoli and Cominelli, 2015). 

 

The lipid-dependent pathway starts with the conversion of Ins into phosphatidyl inositol 

(PtdIns) by phosphatidyl inositol phosphate synthase (PtdIS). Subsequently, 

phosphatidyl inositol kinases phosphorylate the headgroup of PtdIns to form 

PtdIns(4,5)P2, the substrate of phospholipase C (PLC) which releases Ins(1,4,5)P3. 

The consecutive phosphorylation steps of Ins(1,4,5)P3 yielding phytic acid involve 

different types of Ins polyphosphate kinases. The lipid-independent pathway 

comprises the consecutive phosphorylation of the Ins ring to form phytic acid, starting 

with Ins(3)P1 and involving the action of a number of specific inositol phosphate 

kinases. The lipid-dependent route is active in all plant tissues (Sparvoli and Cominelli, 

2015). Nevertheless, the lipid-independent route is the dominating pathway in the 

phytic acid biosynthesis of seeds (Raboy, 2009).  

 

Transport and storage of phytic acid  

After synthesis, phytic acid is actively transported from the cytosol to the protein 

storage vacuoles by a multidrug resistance-associated protein (MRP) transporter, 

belonging to the ATP-binding cassette (ABC) family (Sparvoli and Cominelli, 2014). In 

protein storage vacuoles, phytic acid is deposited as discrete inclusions, so-called 

globoids, in the form of mixed phytin salts, primary containing K, Mg and to a lesser 

extent Ca, Fe and Zn (Raboy, 2009). 

2.2.3 Role in plant growth and development 

Phosphorus is an essential element of key molecules such as nucleic acid, 

phospholipids and adenosine triphosphate (ATP), and therefore of fundamental 

importance for all living organisms (Elser and Bennett, 2011; Tong et al., 2017). 
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Seed phytate serves as storage for phosphorus, myo-inositol and minerals such as the 

macronutrients potassium, magnesium and calcium and the micronutrients iron, zinc 

or manganese for germination, early seedling growth, and development (Boehm et al., 

2017; Raboy, 1997). Besides that, several genes, enzymes and metabolites of the 

phytic acid biosynthesis have diverse regulatory roles in physiological and plant 

developmental processes (Sparvoli and Cominelli, 2015) including signal transduction 

(Lemtiri-Chlieh et al., 2003), mRNA export (Lee et al., 2015; York et al., 1999), repair 

of DNA double-strand breaks (Hanakahi et al., 2000), membrane trafficking (Luo et al., 

2011; Thole and Nielsen, 2008), basal resistance to plant pathogens (Murphy et al., 

2008), osmotic stress signaling (Munnik and Vermeer, 2010), phosphorus homeostasis 

(Kuo et al., 2014; Stevenson-Paulik et al., 2005), plant photomorphogenesis (Qin et 

al., 2005) or auxin-regulated embryogenesis (Luo et al., 2011).  

 

2.2.4 Nutritional importance 

2.2.4.1 Estimated dietary intake 

The daily intake of phytate and other inositol phosphates has been estimated to vary 

from 180 mg to about 4500 mg on a worldwide basis (Reddy, 2002) and from 300 mg 

to 2600 mg on the basis of a Western style diet (Schlemmer et al., 2009). In the United 

Kingdom, the median dietary phytate intakes for children, adolescents, adults, and the 

elderly population were estimated to be 496 mg, 615 mg, 809 mg, and 629 mg per day, 

respectively (Amirabdollahian and Ash, 2010). Overall there are considerable 

differences between the dietary intakes of (i) developing and industrialized countries, 

(ii) rural and urban areas, (iii) females and males, (iv) infants, children, and adults, and 

between (v) omnivores and vegetarians (Schlemmer et al., 2009). These huge 

differences are generally determined by the proportion of plant-derived foods in the 

diet, the absolute amount of food consumed and the type and extent of applied food 

processing techniques (Farouk et al., 2017). Several food preparation and processing 

methods such as milling, soaking, cooking, fermentation or germination are known to 

reduce the content of phytic acid and its derivatives in the processed materials (Greiner 

and Konietzny, 2006; Gupta et al., 2013, 2015; Song et al., 2018). For example, 

cooking reduces the phytate content of soybean by 17% while 72 h of fermentation 

leads to a reduction of 61% (Marfo et al., 1990). Besides that, the addition of isolated 



BACKGROUND 

23 

phytases during food processing (e.g. breadmaking) can additionally contribute to 

phytate hydrolysis in plant-derived foods (Greiner and Konietzny, 2006).  

2.2.4.2 Phytate hydrolysis in the gut, absorption and bioavailability 

Subsequent removal of phosphate groups from the inositol ring via hydrolysis 

decreases the stability of myo-inositol phosphate-mineral complexes and increases 

their solubility eventually leading to a higher bioavailability of essential minerals 

(Sandberg et al., 1999). Phytate degradation in the human stomach and small intestine 

can take place by means of phytases of microbial origin produced by the intestinal 

microflora or by phytases of plant origin (Sandberg, 2002). At the physiological 

conditions of the gastrointestinal tract, plant phytases are less stable than microbial 

phytases (Sandberg, 2002). In addition, during food processing steps, plant phytases 

are mainly inactivated. Therefore, the major phytate hydrolysis takes place in the small 

intestine by the activity of microbial phytases resulting in an overall low phytate 

degradation in the gut of humans on a Western-style diet (Schlemmer et al., 2001). In 

addition, a high calcium intake reduces the intestinal phytic acid degradation, probably 

by the formation of insoluble calcium-phytate complexes decreasing the accessibility 

of phytate for enzymatic hydrolysis (Selle et al., 2009; Walker et al., 1948). On the 

contrary, in humans on diets rich in plant-derived phytases dietary phytate 

degradations between 36% and 63% have been observed (McCance and Widdowson, 

1935). Schlemmer et al. (2001) elucidated the pathways of stepwise phytate 

degradation in different parts of the gut of pigs. The degradation products formed by 

6- and 3-phytases from feed or microbial origin comprise among others DL-

Ins(1,2,3,4,5)P5 and DL-Ins(1,2,4,5,6)P5 as well as inositol phosphates with second 

messenger activity such as DL-Ins(1,4,5)P3 and DL-Ins(1,3,4,5)P4 (Schlemmer et al., 

2001).  

The contribution of dietary inositol phosphates to the levels found in the human body 

is controversially discussed, and no carrier has been identified in the gut so far (Duong 

et al., 2018). The high negative charge density of InsP6 at physiological pH of about 

6-7 was assumed to hamper its transport over cell membranes and therefore gastro-

intestinal absorption (Duong et al., 2018; Schlemmer et al., 2009; Vincent et al., 2002). 

However, results from studies in animals and humans indicate that intracellular inositol 

phosphate levels in various tissues and biological fluids as well as urinary excretions 

are related to oral phytic acid intake (Grases et al., 2001b; Grases et al., 2001a). 
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Experiments in rats showed that soluble radioactive labelled phytic acid applied in 

drinking water is rapidly absorbed through the stomach and upper small intestine and 

distributed to various tissues (Sakamoto et al., 1993). Experiments with HeLa cells 

suggested that cellular uptake of phytate might take place by pinocytosis (Ferry et al., 

2002). Receptor-mediated endocytosis has been proposed as an alternative option for 

the cellular uptake of phytic acid (Vucenik and Shamsuddin, 1994). Wilson et al. (2015) 

did not detect any InsP6 in human plasma or urine by means of a specific titanium 

dioxide (TiO2) purification method and therefore concluded that an intestinal phytic acid 

absorption is unlikely. However, the positive health effects described for phytic acid, 

such as its anticancer activity (see section 2.2.4.4) strongly support the absorption of 

either phytic acid or its degradation products in the gut (Schlemmer et al., 2009). 

Nevertheless, further studies using specific assays are required to reveal possible 

absorption mechanisms and the bioavailability of dietary inositol phosphates. 

 

2.2.4.3 Antinutritive properties 

The presence of phytate in the diet can lead to the formation of complexes between its 

negatively charged phosphate groups and mineral cations in the gut, resulting in 

negative effects on the uptake and bioavailability of these minerals (Lopez et al., 2002). 

Such complexes are soluble under the acidic conditions of the stomach, but they 

precipitate at neutral pH in the intestine (Schlemmer et al., 2001). Besides the pH 

value, numerous other factors influence the effect of phytate on the bioavailability of 

minerals, including valency and size of the minerals, the presence of potential 

enhancers (e.g. ascorbic acid, β-carotene, organic acids) and/or inhibitors (e.g. dietary 

fiber, polyphenols) in the food matrix as well as the mineral and phytate concentrations 

and ratios (Schlemmer et al., 2001; Weaver and Kannan, 2002). Titration experiments 

showed that at pH 7.4, phytic acid and mineral cations can form complexes in the 

following decreasing order of strength: Cu2+ > Zn2+ > Ni2+ >Co2+ > Mn2+ > Fe3+ > Ca2+ 

(Vohra et al., 1965). Under malnutrition or imbalanced diets low in minerals and 

essential trace elements but high in phytate, these effects may lead to serious mineral 

differences from which children, infants and women of childbearing age are primarily 

affected (Schlemmer et al., 2001). Generally, the mineral binding capacity of inositol 

phosphates is lowered with decreasing number of phosphate groups per molecule and 

the formed complexes of such lower inositol phosphates have a higher solubility 

(Persson et al., 1998). In sucking rats, the zinc and calcium uptake was inhibited by 

InsP6 and InsP5, but for InsP4 and InsP3 no effects were observable (Lönnerdal et al., 
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1989). In humans, InsP3 and InsP4 also showed no inhibitory effect on iron absorption, 

if tested separately. But in mixtures containing inositol phosphates with different 

phosphorylation stages, lower inositol phosphates may contribute to the inhibitory 

effect of mineral absorption, possibly by forming mineral complexes between different 

inositol phosphate isomers (Sandberg et al., 1999).  

In addition to minerals, phytate can also form complexes with other positively charged 

food components such as proteins, carbohydrates and lipids. At a pH value below the 

isoelectric point of proteins, the cationic groups of basic amino acids (e.g. arginine, 

histidine or lysine) can form binary insoluble protein-phytate complexes with the 

phosphoric acid groups of phytate leading to reduced enzymatic activity, protein 

solubility and digestibility (Kumar et al., 2010). Phytate can hamper the digestion of 

carbohydrates such as starch by its direct binding, binding with proteins closely 

associated with starch, chelation of calcium required for the activity of amylase or the 

association of phytate with other digestive enzymes (Rickard and Thompson, 1997). 

Furthermore, phytate may form so-called lipophytin complexes with lipids leading to 

the formation of metallic soaps in the gut lumen and reduced lipid bioavailability (Kumar 

et al., 2010).  

 

2.2.4.4 Potential health benefits  

Besides the described antinutritive properties, phyate has also been shown to have 

beneficial effects such as antioxidative and anticancer activities. Due to the formation 

of Fe(III)-phytate complexes, phytate blocks iron-driven hydroxyl radical formation and 

thereby lipid peroxidation processes (Graf and Eaton, 1990). The same inhibitory effect 

on hydroxyl radical formation was also shown for Ins(1,2,3,4,6)P5 and DL-

Ins(1,2,3,4,5)P5, leading to the conclusion that the 1,2,3 (equatorial-axial-equatorial) 

phosphate grouping contains the essential binding site for iron (Hawkins et al., 1993). 

Phytate and lower inositol phosphates might also contribute to the antioxidant defense 

in vivo by preventing the formation of reactive oxygen species (ROS) (Burgess and 

Gao, 2002). Moreover, phytic acid was shown to exhibit anticancer activity against 

various kinds of cancer e.g. colon, liver, mammary, prostate, lung, liver or blood/bone 

marrow (Jenab and Thompson, 2002; Nissar et al., 2017; Shamsuddin, 2002; Vucenik 

and Shamsuddin, 2006). Various mechanisms have been proposed for this anticancer 

activity including chelating ability, pH reduction, antioxidative functions, interruption of 

cellular signal transduction, cell cycle inhibition, enhancement of neutral killer (NK) 

cells activity, and inhibition of angiogenesis (Kumar et al., 2010; Vucenik and 
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Shamsuddin, 2006). Other studies suggest that phytate may be used to treat 

hypercalciuria and kidney stones and possesses hypolipidaemic and 

hypocholesterolemic effects (Shamsuddin, 2002). Its antiplatelet activity has been 

reported to reduce the risk for coronary heart diseases and ischemic stroke (Vucenik 

and Shamsuddin, 2006). Moreover, phytic acid may possess beneficial and protective 

effects against diabetes mellitus by reducing the blood glucose response (Lee et al., 

2006). 

For several lower inositol phosphates second messenger functions have been 

described. For example, Ins(1,4,5)P3 was identified as a second messenger that 

mediates receptor-induced Ca2+ mobilization (Streb et al., 1983). Ins(1,3,4,5)P4 was 

found to have important roles in T cell, B cell and neutrophil cell development and 

function (Sauer and Cooke, 2010), and in NK cell maturation and responsiveness 

(Sauer et al., 2013). Ins(3,4,5,6)P4 inhibits Cl- conductance through the chloride 

channel ClC-3 in vivo (Mitchell et al., 2008). Due to the many roles of ClC-3, Mitchell 

et al. (2008) concluded that Ins(3,4,5,6)P4 has the potential to regulate neuronal 

development, tumor cell migration, bone remodeling, apoptosis and inflammatory 

responses. Furthermore, there are studies indicating that Ins(1,3,4,5,6)P5 is a specific 

PtdIns(3,4,5)P3 competitor and able to block the serine phosphorylation and the kinase 

activity of the Phosphoinositide 3-kinase/ serine/threonine protein kinase B (PI3K/Akt) 

signaling pathway resulting in antiangiogenic, proapoptotic and anticancer activities in 

vitro and in vivo (Maffucci et al., 2005; Piccolo et al., 2004). Besides that, 

Ins(1,3,4,5,6)P5 was shown to sensitize ovarian, lung, and breast cancer cell lines to 

chemotherapeutic drugs (Piccolo et al., 2004). In this context, Ins(1,3,4,5,6)P5 and 

Ins(1,4,5,6)P4 were even reported to have a higher anticancer activity than InsP6 (Ferry 

et al., 2002).  

 

2.2.5 Environmental impact 

The global formation of phytate by commercially produced crop seeds and fruits has 

been estimated to reach 51 million tons per year (Lott et al., 2000). Non-ruminant 

animals such as poultry, swine or fish lack sufficient phytase in their upper digestive 

tract leading to the excretion of undigested phytate in manure (Erdman, 1979; Wilcox 

et al., 2000). The application of excess industrially produced mineral fertilizers or 

manure to farm land increases the phosphorus accumulation in the soil eventually 

leading to phosphorus pollution of water bodies via drainage, surface runoff, and wind 
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erosion (Brinch-Pedersen et al., 2002). Eutrophication stimulates algal bloom leading 

to hypoxic water conditions and eventually the death of aquatic animals and fish (Gupta 

et al., 2013). Especially under concentrated livestock operations, manure often 

exceeds the phosphorus requirements of crops to which the manure is applied 

(Carpenter et al., 1998). Furthermore, the expected increase in livestock production in 

the future is likely to further exacerbate these environmental issues (Gupta et al., 

2013).  

To meet the nutritional requirements of non-ruminant animals, inorganic phosphorus 

is commonly added to animal feed (Wiggins et al., 2018), which additionally contributes 

to environmental phosphorus pollution. Besides that, supplementation of animal diets 

with microbial phytase is considered standard in industrial livestock farming (Reis et 

al., 2018). It was shown to improve the phosphorus bioavailability and to sustainably 

reduce the phosphorus excretion by up to 50% (Haefner et al., 2005). Transgenetic 

pigs expressing salivary phytase do not require inorganic phosphate supplementation 

and excrete up to 75% less phosphorus in manure (Golovan et al., 2001). 

 

2.2.6 Low phytic acid crops 

Another sustainable and publicly accepted approach to reduce the negative 

environmental impacts of phytic acid and its antinutritional properties is the generation 

of low phytic acid (lpa) crops. Mutations that disrupt the normal biosynthesis and 

accumulation of phytic acid have been reported in a variety of crops including maize 

(Raboy et al., 2000; Shi et al., 2007), barley (Larson et al., 1998; Rasmussen and 

Hatzack, 1998), rice (Ali et al., 2013; Larson et al., 2000; Liu et al., 2007), wheat 

(Guttieri et al., 2004), soybean (Hitz et al., 2002; Wilcox et al., 2000; Yuan et al., 2007), 

common bean (Campion et al., 2009), pea (Rehman et al., 2012), and Arabidopsis 

thaliana (Stevenson-Paulik et al., 2005).  

Depending on the gene targets in phytic acid biosynthesis or accumulation, lpa 

mutations can be classified into three types as shown in Table 6 (Sparvoli and 

Cominelli, 2015). In Type 1 lpa mutants, the substrate supply pathway is disrupted, i.e. 

the formation of Ins or Ins(3)P1. Examples of this type of mutation are the soybean 

mutants Gm-lpa-TW-1 (Yuan et al., 2007) and Gm-lpa-TW-1-M (Yuan et al., 2017), 

carrying a mutated MIPS1 gene, and the rice mutant Os-lpa-XS110-1 with a disruption 

in MIK (Liu et al., 2007). In Type 2 lpa mutants, the end of the pathway leading to phytic 

acid is perturbed, including e.g. the IPK1 soybean mutant Gm-lpa-ZC-2 (Yuan et al., 



BACKGROUND 

28 

2012) or the ITPK4 Arabidopsis thaliana mutant atitpk4-1 (Kim and Tai, 2011). Type 3 

lpa mutations affect the tissue compartmentation, transportation or storage of phytic 

acid to the vacuole, like in the in the OsSULTR3;3 rice mutant Os-lpa-MH86-1 (Liu et 

al., 2007; Zhao et al., 2016) or the MRP maize mutant lpa1-7 (Cerino Badone et al., 

2012). 

 

Table 6.  Classification of lpa mutation types depending on the targets in the 
biosynthesis or accumulation of phytic acid, affected genes and respective metabolic 
consequences (Sparvoli and Cominelli, 2015). 
 

Mutation 

type  

Disruption in the 

pathway  

Affected gene Metabolic consequences 

besides InsP6 reduction 

Type 1 

Ins and Ins(3)P1 

synthesis from 

glucose 6-P 

MIPS 

MIK 

IMP 

Molar equivalent increase in 

inorganic P 

Type 2 
Conversion of Ins and 

Ins(3)P1 to InsP6 

2-PGK 

IPK2 

ITPK 

IPK1 

Low increase in inorganic P 

and increased content of 

lower inositol phosphates 

Type 3 

Tissue compart-

mentation of InsP6 

and/or its transport-

ation and storage to 

the vacuole  

MRP 

Putative sulfate 

transporter 

(sultr3;3) 

Molar equivalent increase in 

inorganic P and/or decrease 

in InsP6 in specific seed 

tissues 

 

Lpa mutations were in no case spontaneous, emphasizing the fundamental importance 

of the phytic acid biosynthetic pathway in plants (Sparvoli and Cominelli, 2015). 

Instead, three general approaches to generate lpa mutants can be applied: (i) 

transgenetic strategies to express recombinant microbial phytases in seeds (Bilyeu et 

al., 2008; Denbow et al., 1998; Drakakaki et al., 2005; Li et al., 1997), (ii) transgenic 

lines with disrupted genes involved in phytic acid biosynthesis (Bhati et al., 2016; 

Nunes et al., 2006; Punjabi et al., 2018; Shi et al., 2007), and (iii) mutation breeding 

using chemical (e.g. ethyl methanesulfonate or sodium azide) (Hitz et al., 2002; Wilcox 

et al., 2000) or physical mutagenesis (e.g. X-rays, γ-rays, ion beam) (Liu et al., 2007; 

Yuan et al., 2007). In contrast to genetic engineering, mutation breeding is considered 



BACKGROUND 

29 

a conventional breeding technique, publicly accepted, cost-effective and technically 

easier to implement (Yuan et al., 2007).  

Lpa mutants showed reductions in phytic acid contents compared to their respective 

wild-types ranging from 10% to 90% (Raboy, 2002; Sparvoli and Cominelli, 2015). 

However, despite the efforts of plant breeders that have identified numerous lpa crops, 

these mutants often show negative effects on seed and plant performance, e.g. 

reduced yield, compromised germination rate, emergence, stress tolerance, seed 

filling or grain weight (Raboy, 2007). These negative pleiotropic effects can be 

explained by the complex role of the phytic acid metabolism in numerous regulatory, 

physiological, and developmental processes of plants (Sparvoli and Cominelli, 2015) 

(see Chapter 2.2.3). Indeed, no high-yielding lpa cultivars exist to date (Boehm et al., 

2017) and cross- and selection-breeding are being applied to overcome these 

drawbacks (Zhao et al., 2008).  

 

2.2.7 Determination of phytic acid and lower inositol phosphates 

The following section gives a brief overview of some of the methods which have been 

used for the determination of phytic acid and lower inositol phosphates. It should be 

kept in mind, however, that so far there is no ideal procedure for the separation and 

measurement of all inositol phosphates taking into consideration their stereoisomers 

(Duong et al., 2018).  

2.2.7.1 Non-specific methods 

In the early and mid 1900s, phytic acid was quantified based on the non-specific 

formation of precipitates with iron(III), first described by Heubner and Stadler in 1914. 

After hydrochloric acid (HCl) extraction, phytic acid was titrated with ferric chloride 

(FeCl3) solution against ammonium thiocyanate as indicator and the phytic acid 

content was quantified based on the quantity of Fe3+ (Heubner and Stadler, 1914). 

However, the definite end point of this titration is difficult to detect and the molar ratios 

between Fe3+ and phytic acid in the complexes are not consistent (Duong et al., 2018). 

Therefore, the method was adapted by quantifying phytic acid on the basis of the 

phosphorus content in the precipitates (McCance and Widdowson, 1935). 

Harland and Oberleas (1977) eliminated inorganic phosphorus from biological samples 

by purifying the phytate-containing HCl extract using an AG 1-X8 chloride form anion-

exchange resin. After purification, the eluate was digested, inorganic phosphorus was 
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quantified and the InsP6-equivalent was calculated (Harland and Oberleas, 1977). A 

modified version of this method was introduced as the official AOAC-method 

(No. 986.11) for the determination of phytate in food (AOAC, 1990).  

The main disadvantages of such non-specific methods are the low sensitivity and the 

lack of specificity to distinguish between phytic acid, inorganic phosphate and lower 

inositol phosphates, leading to an overestimation of the phytic acid content in many 

biological samples (Skoglund and Sandberg, 2002). Furthermore, sugar phosphates, 

nucleotides, phospholipids and phosphate derivatives of thiamine also contribute to 

the organic phosphate levels found in foods (Duong et al., 2018). However, similar 

non-specific precipitation methods are still applied today (Burgos-Luján and Tong, 

2015). In general, phytic acid normally represents more than 90% of inositol 

phosphates in unprocessed foods. Therefore, precipitation methods have been 

regarded suitable for the determination of phytic acid in raw grains. However, the 

accurate quantification of phytic acid in processed foods, which typically contain 

considerable amounts of lower inositol phosphates, requires specific methods such as 

HPLC or HPIC (Wu et al., 2009).  

2.2.7.2 Specific methods 

The use of ion-pair octadecyl (C18) reversed-phase high-performance liquid 

chromatography (HPLC) procedures allowed the study of InsP6, InsP5, InsP4, and 

InsP3 in food and intestinal contents. After the purification of inositol phosphates on 

strong anion exchange columns, they were separated using ion-pair HPLC and 

detected with refractive index detection (Sandberg and Ahderinne, 1986). The 

drawback of this method is that it does not allow differentiations between isomeric 

forms of inositol phosphates because gradient elution cannot be used in refractive 

index detection (Skoglund and Sandberg, 2002). Furthermore, the nucleotide ATP 

(adenosine triphosphate) was shown to coeluate with InsP3 (Morris and Hill, 1996). 

Gas chromatographic (GC) methods have also been used for the analysis of inositol 

phosphates in food and biological samples, but such methods require the formation of 

trimethylsilyl derivatives (Hirvonen et al., 1988; March et al., 2001). For example, 

Heathers et al. (1989) dephosphorylated and desalted individual inositol phosphate 

fractions after HPLC separation, derivatized the resulting myo-inositol to 

hexatrimethylsilyl derivatives and quantified them based on GC analysis. 

Nowadays, ion-pair reversed-phase HPLC and anion-exchange HPLC are commonly 

used to separate inositol phosphates (Duong et al., 2018; Liu et al., 2009). However, 
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InsP3-InsP6 are better separated with an acidic mobile phase, while alkaline mobile 

phases were shown to be more powerful for InsP1 and InsP2 (Duong et al., 2018; 

Schlemmer et al., 2001). myo-[3H]inositol or [31P]PO4
3− radiolabeled inositol 

phosphates can be used to analyze inositol phosphates in biological processes such 

as cellular signaling by HPLC (Taylor et al., 1990). 

Due to their negative charge, inositol phosphates can also be analyzed by capillary 

electrophoresis (CE) methods, e.g. by capillary zone electrophoresis (CZE) and 

capillary isotachophoresis (CITP) coupled with mass spectrometry (Buscher et al., 

1995), conductivity detection (Blatný et al., 1994) or indirect UV absorbance detection 

(Buscher et al., 1994). However, these methods only possess limited sensitivity. 

Furthermore, high-performance thin-layer chromatography (HPTLC) followed by 

molybdate staining and UV-detection has been applied to separate inositol phosphates 

(Hatzack and Rasmussen, 1999) as well as inductivity coupled plasma (ICP) methods 

in combination with atomic emission spectroscopy (AES) (Grases and Llobera, 1996), 

mass spectrometry (MS) (Muñoz and Valiente, 2003) or tandem mass spectrometry 

(Zhang et al., 2017). 

High performance ion chromatography (HPIC) methods are promising for the 

discrimination between isomeric forms of inositol phosphates (Skoglund and 

Sandberg, 2002) and offer good sensitivity and reproducibility allowing the 

measurement of low concentrations (Wu et al., 2009). The first HPIC method for the 

in-line determination of InsP6 was developed by Phillippy and Johnston (1985) using a 

strong anion exchange AS3 column in combination with an HNO3 gradient, post-

column derivatization with Fe(NO3)3, and UV-detection at 290 nm. Inositol phosphates 

are not fluorophoric; however, their phosphate groups can be derivatized by Fe3+ to 

form soluble UV-detectable complexes under acidic conditions, allowing their in-line 

quantitation (Chen and Li, 2003; Oates et al.; Phillippy and Johnston, 1985). Other 

detection methods are fluorescence detection, light scattering detection, conductivity 

detection, mass spectrometry, refractive index detection (RI) and 31P-nuclear magnetic 

resonance spectroscopy (NMR) (Schlemmer et al., 2009). NMR allows the 

identification of stereoisomers that often coeluate during chromatographic separation 

(Phillippy, 1989). Furthermore, NMR offers high accuracy and specificity and can be 

applied on intact tissues and cell suspensions, making it especially suitable for 

studying inositol phosphate metabolism, binding activities, and degradation (Duong et 

al., 2018). However, the instrumentation is expensive and due to its low sensitivity, 
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NMR is not suitable for samples with low inositol phosphate concentrations (Skoglund 

and Sandberg, 2002).  

 

2.3 Plant Metabolomics 

2.3.1 Definition 

Metabolites are the end products of gene expression which determine the biochemical 

phenotype of an organism (Sumner et al., 2003). In analogy to the genome, 

transcriptome, and proteome, the term “metabolome” was introduced in 1998 and is 

defined as the complete set of all metabolites synthesized by an organism (Oliver et 

al., 1998). Metabolomics is an unbiased profiling technique belonging to the omics 

disciplines besides genomics, transcriptomics, and proteomics. Metabolomics aims to 

comprehensively identify and quantify all intra- and extracellular metabolites with 

molecular mass lower than 1000 Da (Villas‐Bôas et al., 2005). The ultimate goal is to 

find explanations to biological phenomena under certain conditions. Thus, data 

analysis and interpretation are essential for any metabolomics experiment (Korman et 

al., 2012). The metabolome of the plant kingdom has been estimated to comprise 

200,000 metabolites (Fiehn, 2001) with up to 20,000 metabolites present in a single 

plant (Fernie et al., 2004). Due to this high complexity, there is no single method which 

is able to simultaneously provide a comprehensive snapshot of the metabolome 

(Villas‐Bôas et al., 2005). Instead, the use of pre-fractionation steps and subsequent 

parallel analyses using a combination of different analytical techniques is applied to 

overcome this drawback and to obtain as much information as possible (Goodacre et 

al., 2004; Sumner et al., 2002). 

The three major techniques being applied in metabolomics research are (i) targeted 

analysis, (ii) metabolite fingerprinting, and (iii) metabolite profiling (Putri et al., 2013). 

Targeted analysis includes the quantitative measurements of the concentrations of a 

limited number of pre-defined metabolites in a biological sample (Fiehn, 2002). 

Metabolite fingerprinting is a high-throughput screening tool to discriminate samples of 

different biological status or origin without the identification or quantification of 

metabolites (Dunn and Ellis, 2005). In contrast, metabolite profiling involves the 

identification and quantification (or semiquantification) of specific metabolites 

belonging to the same class of compounds or to a specific metabolic pathway (Fiehn, 

2001; Nielsen, 2007). 
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2.3.2 Untargeted metabolomics workflow 

Metabolomics is a complex interdisciplinary field of research which requires knowledge 

in life sciences, analytical chemistry, organic chemistry, chemometrics and informatics 

(Fukusaki and Kobayashi, 2005). The general workflow of untargeted metabolomics 

studies includes biological study design, sample collection and preparation, raw data 

acquisition via the analytical platform, data processing and pre-treatment, metabolite 

identification, statistical analysis for potential biomarker identification, and finally the 

biological interpretation of the results using pathway and network analysis approaches 

(Alonso et al., 2015; Hendriks et al., 2011; van den Berg et al., 2006; Wang et al., 

2015). These steps are summarized in Figure 3 and will be discussed in detail in the 

following sections.  

 

 

Figure 3.  Typical workflow of an untargeted metabolomics study (based on Alonso et 
al., 2015, Hendriks et al., 2011, van den Berg et al., 2006, Wang et al., 2015). 
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2.3.3 Analytical techniques 

Taking into consideration the complexity of biological samples in metablomics research 

and the partly low concentrations of individual compounds, extremely high-resolution 

and sensitive analytical techniques are required (Korman et al., 2012). Mass 

spectrometry and nuclear magnetic resonance spectroscopy are the two key analytical 

techniques in metabolomics. MS approaches can be used with prior chromatographic 

or electrophoretic separation such as gas chromatography (GC), liquid 

chromatography (LC) or capillary electrophoresis (CE) or as direct MS without 

chromatographic separation, e.g. for metabolite fingerprinting (Dettmer et al., 2007; 

Halket et al., 2005). An overview of the advantages and disadvantages of the three 

main metabolomics approaches is given in Table 7. 

Mass spectrometers operate by ion formation, separation and subsequent detection of 

ions based on their mass-to-charge (m/z) ratio (Dunn and Ellis, 2005). Molecules can 

be ionized by electron ionization (EI), a hard ionization technique where molecules are 

broken into several fragments. Alternatively, soft ionization, which does not introduce 

significant fragmentation of the molecular ions, can be used, e.g. chemical ionization 

(CI), atmospheric pressure chemical ionization (APCI), electrospray ionization (ESI) or 

matrix-assisted laser desorption/ionization (MALDI) (Korman et al., 2012; 

Smedsgaard, 2007). The most frequently used ionization methods in metabolomics 

are EI (for GC-MS) and ESI (for HPLC-MS) (Gowda and Djukovic, 2014). Depending 

on the applied type of ionization technique, positive, negative or both types of ions can 

be generated.  

The most common single-configuration mass analyzers are linear quadrupole (Q), ion 

trap, time of flight (TOF), and Fourier transform ion cyclotron resonance (FT-ICR); with 

increasing price, resolution, and sensitivity, respectively, in this order. The combination 

of different mass analyzers, e.g. Q-TOF, offers mass determination with a high 

accuracy of 1-5 ppm and sensitivity in the nanomolar or even picomolar concentration 

range (Korman et al., 2012). 

The most commonly used stationary phases of capillary GC columns are dimethyl 

polysiloxane, 5% diphenyl/95% dimethyl polysiloxane, and trifluoropropylmethyl 

polysiloxane (Yang et al., 2013). A requirement for GC-MS analysis is volatility and 

thermal stability of the analytes. Large molecules or smaller molecules with polar 

groups tend to have a lower volatility, leading to extremely long retention times or non-
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Table 7.  Comparison of the three main metabolomics approaches (modified from Wishart (2008)).  
 

Technology Advantages Disadvantages 

GC-MS - robust and mature technology 
- relatively inexpensive  
- good sensitivity 
- detects most organic and some inorganic molecules 
- quantitative (with standard calibration) 
- modest sample size required 
- large body of software and databases for metabolite 

identification 
- excellent separation reproducibility 

- samples not recoverable 
- non-volatiles need derivatization  
- not suitable for heat-labile compounds  
- requires extensive sample preparation  
- longer measurement time 
- identification of unknown compounds is difficult 
 

   

LC-MS - good sensitivity 
- detects most organic and some inorganic molecules 
- minimal sample size required 
- direct injection without separation possible 
- flexible technology  
- has potential for detecting largest proportion of the metabolome 

- samples not recoverable 
- limited quantification 
- relatively expensive instrumentation 
- limited body of software and databases for metabolite 

identification 
- less robust instrumentation than NMR or GC-MS 
- worse separation resolution and reproducibility compared to GC 
- identification of unknown compounds is difficult 
- longer measurement time 

   

NMR - quantitative 
- non-destructive 
- no separation required 
- no derivatization required 
- detection of all organic compound classes 
- short measurement time (2-3 min per sample) 
- robust and mature technology 
- large body of software and databases for metabolite 

identification 
- straightforward structural identification of unknown compounds 
- compatible with liquids and solids 

 

- relatively low sensitivity 
- expensive instrumentation 
- detection limited to protonated compounds 
- no detection of salts and inorganic ions 
- relatively large sample volume (0.5 mL) required 
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elution of the compounds, decomposition or asymmetric chromatographic peaks when 

analyzed by means of gas chromatography (Drozd, 1975). Therefore, polar 

metabolites normally require derivatization steps at their functional groups to increase 

thermal stability and volatility for GC analysis, to improve chromatographic separation 

and peak shape, and to reduce the reactivity of the compounds and the possibility of 

intermolecular associations (Drozd, 1975; Lisec et al., 2006). Alkylation, acylation or 

silylation can be used for active hydrogens in functional groups like –COOH, –OH, -NH, 

or -SH (Dettmer et al., 2007). In plant metabolite profiling, N-Methyl-N-(trimethylsilyl) 

trifluoroacetamide (MSTFA) and methoxyamine hydrochloride are the most frequently 

used derivatization reagents. However, it should be kept in mind that derivatization of 

metabolites can result in more than one peak for a specific compound of interest due 

to partial silylation or isomerization in case of methoxyaminated compounds like sugars 

(Lisec et al., 2006). In addition, some derivatives can decompose by the action of heat, 

moisture or light. Therefore, derivatization should always be carried out shortly before 

GC analysis (Drozd, 1975).  

In contrast to GC, liquid chromatography can also be used to analyze thermolabile and 

high molecular weight molecules including hydrophilic, lipophilic, neutral, acidic, and 

basic compounds (Hopfgartner and Varesio, 2013). An advantage of liquid 

chromatography is that extracted samples can directly be analyzed without the 

requirement for derivatization steps (DeVos et al., 2007). In more than 80% of the 

separations, reversed-phase (RP) chromatography is used, especially octadecyl (C18) 

columns; for nonpolar molecules, normal-phase (NP) chromatography can be 

employed (Glauser et al., 2013). Highly polar metabolites are typically not retainable 

on classical reversed-phase stationary phases (Dettmer et al., 2007). In such cases, 

hydrophilic interaction liquid chromatography (HILIC) can be employed (Tolstikov and 

Fiehn, 2002).  

In NMR spectroscopy, strong magnetic fields and radio frequency (RF) pulses are 

applied to the nuclei of atoms. In atoms with odd atomic (e.g. 1H) or mass numbers 

(e.g. 13C), such magnetic fields will result in a nuclear spin. The absorption of RF 

energy conveys the nuclei from a low-energy to a high-energy spin state. During the 

relaxation process, the subsequent radiation emission is measured (Dunn and Ellis, 

2005). The spin and magnetic moment properties of the nuclei in a molecule are 

dependent on their chemical environment (Smedsgaard, 2007). Thereby, NMR can 

provide comprehensive structural information, including stereochemical properties. 
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Furthermore, NMR can easily be used for quantitation because the signal intensity is 

directly proportional to the molar concentration (Kim et al., 2011). 

The most important nuclei in biological samples are the hydrogen isotope 1H (99.98% 

natural abundance), the phosphor isotope 31P (100% abundance), and the carbon 

isotope 13C (1.11% abundance) (Smedsgaard, 2007). In metabolomics, one-

dimensional (1D) 1H NMR is the most popular NMR approach (Markley et al., 2017), 

allowing the measurement of hundreds or even thousands of samples in a short period 

of time (Bingol and Brüschweiler, 2014). In addition, higher-dimensional NMR such as 

2D NMR experiments can provide more detailed and resolved information on both 

known and unknown metabolites at the expense of longer measurement times. 

Besides liquid samples, semi-solid samples like tissues can also be analyzed by 

means of NMR spectroscopy (Bingol and Brüschweiler, 2014). Even though NMR is 

less sensitive than MS, it allows a rapid and high-throughput analysis for which no or 

at least only minimal sample preparation steps are required (Kim et al., 2011). 

 

2.3.4 Data pre-processing and pre-treatment 

Data pre-processing and pre-treatment are essential to improve the biological 

interpretability of metabolomics data. After data acquisition, pre-processing steps are 

used to transform raw instrumental data to clean data (van den Berg et al., 2006). Such 

pre-processing methods include deconvolution (separation of overlapping signals into 

individual chemical peaks), peak picking, alignment (correcting shifts in retention times 

between different runs), baseline correction, and missing value imputation (Karaman, 

2017). For the latter, different methods have been proposed to maintain the integrity 

of the dataset, e.g. replacing missing values by means or medians of the metabolite 

level across different samples or by means of nearest neighbors (Steuer et al., 2007). 

Prior to multivariate statistical approaches such as PCA or OPLS-DA, additional pre-

treatment steps of the clean data are necessary to focus on the biologically relevant 

information in the data and properly interpret the results (Goodacre et al., 2007; 

Karaman, 2017). Data pre-treatment methods include normalization, centering, 

scaling, and transformation (Karaman, 2017; Liland, 2011). For example, internal or 

external standards can be used for data normalization to remove unwanted systematic 

variation between samples and to make observations more directly comparable 

(Hendriks et al., 2011; Karaman, 2017). By centering, differences in the offset between 

high and low abundant metabolites are adjusted to focus on the relevant variation 
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between samples (van den Berg et al., 2006). By the application of scaling methods 

such as autoscaling, pareto scaling, range scaling, and vast (variable stability) scaling, 

it can be avoided that highly abundant metabolites mask low abundant metabolites, 

which might be even more important from a biological point of view (Karaman, 2017; 

van den Berg et al., 2006). Log transformation, generalized log (glog) transformation 

or power transformation can be applied to approximate the normal distribution and to 

correct heteroscedastic noise (Karaman, 2017). Which data pre-treatment is most 

suitable for a respective dataset depends on several factors, e.g. the biological 

information to be obtained and the chosen data analysis (van den Berg et al., 2006). 

Currently, there is no general agreement on which transformation and scaling methods 

are most suitable for metabolomics datasets. Instead, different types of transformation 

and scaling methods as well as their combinations should be tested to find the most 

suitable approach to approximate the normal distribution for the respective dataset (Xia 

and Wishart, 2016). 

Several software tools for metabolomics data processing are available, including 

commercial software, such as Sieve (Thermo Fisher Scientific, Waltham, MA, USA), 

MassHunter Mass Profiler Software (Agilent Technologies, Santa Clara, CA, USA), or 

metAlign (PlanResearch International, Wageningen, The Netherlands) (Katajamaa 

and Oresic, 2007), and free software, e.g. Chrompare (Frenzel et al., 2003), MZmine 

(Katajamaa et al., 2006), XCMS (Smith et al., 2006), or HiRes (Zhao et al., 2006). 

 

2.3.5 Statistical analysis  

Metabolomics experiments result in complex and huge amounts of raw data. 

Appropriate statistical tools, including multivariate and univariate methods, are 

necessary to extract relevant information and to better understand and interpret the 

underlying structure of the data.  

 

2.3.5.1 Multivariate analysis 

Unsupervised methods 

Principal component analysis (PCA) is one of the oldest (Hotelling, 1933; Pearson, 

1901) and most widely used multivariate processing approaches in Metabolomics to 

identify chemical differences between samples. For PCA, the dimensionality of data is 

reduced by eliminating the higher principle components while maintaining as much as 

possible of the variation in the dataset. This is achieved by a linear transformation to a 
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new coordinate system, the so-called principle components (PCs), so that the greatest 

variance of the data is found on the first axis (PC1) and the second largest variance 

on the second axis (PC2) (Hansen, 2007). PCA data are visualized by means of two 

types of plots, the score plot and the loading plot. The score plot shows the distribution 

trend of data points and the loading plot reflects which metabolites provoke this 

discrimination trend (Wu and Wang, 2015). 

Besides PCA, cluster analyses, comprising hierarchical cluster analysis (HCA), 

K-means clustering, or self-organizing maps (SOMs) serve as unsupervised 

approaches in metabolomics. These methods group and visualize samples depending 

on their intrinsic similarities using distance metrics such as Euclidean distance, 

Manhattan distance, or correlation (Sumner et al., 2003).  

 

Supervised methods 

While the unsupervised PCA algorithm can be used to obtain an unbiased 

dimensionality reduction, it will only reveal a group structure as long as the between-

group variation is sufficiently more pronounced than the within-group variation (Worley 

and Powers, 2016). Alternatively, unsupervised methods including partial least square 

analysis (PLS), partial least square discriminant analysis (PLS-DA), orthogonal partial 

least square discriminant analysis (OPLS-DA), or soft independent modeling of class 

analogy (SIMCA) can be used (Bylesjö et al., 2006). PLS-DA is one of the most 

extensively applied data analysis techniques in metabolomics (Barker and Rayens, 

2003). For this approach, samples are classified into pre-defined groups, e.g. wild-type 

and mutant, which are used to maximize the group separation according to class 

belonging (Goodpaster and Kennedy, 2011; Xia and Wishart, 2016). 

In contrast to PLS-DA, the OPLS-DA model is rotated so that the class variation is 

found on the first predictive component and the within class variation not related to the 

response (noise) on the y-orthogonal component to simplify the interpretation of the 

model (Wiklund et al., 2008). The so-called S-plot (Wiklund et al., 2008) and variable 

importance in projection (VIP) values (Pérez-Enciso and Tenenhaus, 2003) can be 

used to assist in the identification of metabolites contributing to the discrimination 

between groups seen in the OPLS-DA score plot. 

Supervised methods like PLS and PLS-DA force the separation between experimental 

groups in score plots thereby normally resulting in a better class-separation compared 

to PCA. Thereby, such supervised methods tend to easily overfit models and 
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overestimate their predictability, i.e. models can just by accident result in a good 

classification of the groups (Triba et al., 2015; Westerhuis et al., 2008). Therefore, the 

reliability and robustness of such models requires rigorous validation, e.g. by 

permutation tests (random permutation of group membership) or by a K-fold cross-

validation (splitting the dataset K-times into a training and a test set) (Triba et al., 2015).  

 

2.3.5.2 Univariate analysis 

Parametric and nonparametric procedures are available to determine whether a 

metabolite shows statistically significant differences between the investigated groups. 

The decision which univariate test is the most suitable depends on several statistical 

properties of the data which have to be tested in advance, including normality (e.g. 

Shapiro-Wilk or Kolmogorov-Smirnov test), homogeneity of variances (e.g. Levene’s 

or Bartlett’s test), and independence. Two events are statistically independent if the 

occurrence of one event does not affect the probability of occurrence of the other 

(Vinaixa et al., 2012). For normally distributed metabolites with homogeneity of 

variances, parametric tests such as unpaired or paired t-test (two group comparisons) 

as well as analysis of variance (ANOVA) followed by multiple pairwise comparisons 

with post hoc tests such as Tukey’s honestly significant difference (HSD) or Fisher’s 

least significant difference (LSD) test are conducted The respective nonparametric 

alternatives for two unpaired group comparisons are Mann-Whitney U-test (unpaired 

groups), Wilcoxon signed-rank test (paired groups), and Kruskal-Wallis test for multiple 

comparisons (Jones, 2002; Vinaixa et al., 2012). Alternatively, non-normally distributed 

data can be transformed to normal or near to normal data using for example 

logarithmic, square root, or arcsin transformation (Conover and Iman, 1981). 

In metabolomics studies normally hundreds of metabolites are determined which all 

need to be tested for significance (Saccenti et al., 2014). However, the more 

hypotheses are tested on the same set of data, the higher the probability of wrongly 

rejecting the null hypothesis by chance, leading to substantial increases in the number 

of false positives (Type I error). This phenomenon is also known as inflation of the 

α-level (Abdi, 2007). For a single test, an α-level of 0.05 means that the probability of 

making a Type I error is equal to α = 0.05 and the probability of not making a Type I 

error is consequently equal to 1-α = 0.95. For multiple tests, the probability of at least 

one Type I error increases, e.g. for c = 3 independent tests the probability is 0.143. In 

general terms, the probability to find at least one Type I error in c independent tests on 
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the same data set is equal to 1-(1-α)c (Abdi, 2007). Therefore, in case of multiple 

hypothesis-testing, the significant level needs to be protected against an increasing 

probability of getting false positive results by adjusting the significance level to the 

number of tests performed, e.g. by Bonferroni correction or by controlling the false 

discovery rate (ration of the number of false positives to the number of positives) 

(Benjamini and Hochberg, 2000; Vinaixa et al., 2012). Even though Bonferroni is the 

most conservative correction, which strictly controls Type I error at expenses of Type II 

errors (false negative), it is recommended as the best option in metabolomics 

(Broadhurst and Kell, 2006). 

 

2.3.6 Applications 

Over the last decade, numerous metabolomics-based studies have been performed in 

various fields of plant science, e.g. to investigate the responses of plants to external 

stresses, to support functional genomics, to analyze metabolic pathways of primary 

and secondary plant compounds, to follow developmental changes, or to characterize 

and assess the safety of genetically modified (GM) crops (Frank and Engel, 2013; 

Glauser et al., 2013). In the following, several exemplary applications of plant 

metabolomics research are presented.  

 

2.3.6.1 Biotic and abiotic stress responses 

During their development, plants are often exposed to different environmental 

perturbations, including biotic and abiotic stresses. Metabolomics can help to better 

understand the genetic and biochemical mechanisms underlying the plant’s responses 

to such stresses, and to elucidate metabolic biomarker and potential targets for genetic 

engineering of stress tolerant plants (Hong et al., 2016).  

Metabolomics has been used to investigate the metabolic effects of cold and freezing 

stress (Welti et al., 2002), heavy metal stress (Le Lay et al., 2006), salt treatment (Kim 

et al., 2007), light stress (Bino et al., 2005), UV-B radiation (Kaling et al., 2015), 

flooding (Komatsu et al., 2014), sulfur deficiency (Nikiforova et al., 2005), phosphorus 

stress (Hernández et al., 2007), oxidative stress (Baxter et al., 2007), as well as 

drought stress (Lanzinger et al., 2015; Wenzel et al., 2015). Besides that, plants’ 

metabolic responses to the combination of different stresses (Hung and Wang, 2018; 

Rizhsky et al., 2004; Sun et al., 2015) and to plant pathogens (Hung and Wang, 2018; 

Jones et al., 2011; Sana et al., 2010) have been investigated. 
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2.3.6.2 Plant functional genomics 

In functional genomics, large datasets originating from genomics, transcriptomics, 

proteomics, and metabolomics are combined to decode the function of specific genes 

in the plant genome (Saito and Matsuda, 2010). Even though mRNA profiling is still 

the primary tool used in plant functional genomics, metabolite profiling approaches are 

becoming increasingly important (Trethewey and Krotzky, 2007). In the field of 

functional genomics, metabolite profiling can also be used as an additional tool for the 

elucidation and characterization of an unknown mutation event, e.g. induced by 

mutation breeding (Frank, 2009). An important model organism in plants functional 

genomics is Arabidopsis thaliana, for which the whole genome sequence has been 

determined (Arabidopsis Genome Initiative, 2000). Several Arabidopsis knockout 

mutants and their respective wild-types have been compared by means of metabolite 

profiling to elucidate the annotation of genes involved in the glucosinolate, pyridine 

alkaloid, triterpenoid, flavonoid, and sterol metabolism (Lisec et al., 2006). In addition, 

metabolomics has been applied to determine the location of quantitative trait loci (QTL) 

in genome-wide analyses, e.g. for Arabidopsis (Keurentjes et al., 2006), tomato 

(Schauer et al., 2006), and rice (Matsuda et al., 2012). 

 

2.3.6.3 Developmental changes 

It is well known that the metabolites levels in plants vary depending on the growth 

stage. Such developmental changes resulting in synthesis, transport, accumulation, or 

degradation of specific metabolites finally influence the compositional and nutritional 

quality of foods (Harrigan et al., 2007). Metabolomics approaches have been used to 

investigate these dynamic changes during growth and development, e.g. in tobacco 

leaves (Zhang et al., 2018), walnut kernels (Rao et al., 2016), strawberry (Zhang et al., 

2011), and hot pepper (Jang et al., 2015). Besides that, the time-dependent changes 

during germination of rice seeds (Shu et al., 2008), sprouting of mung bean (Na Jom 

et al., 2011), and malting of barley (Frank et al., 2011; Heuberger et al., 2014) as well 

as the biochemical changes during pre-harvest fruit development, ripening, and 

postharvest shelf-life in tomato fruits (Oms-Oliu et al., 2011) have been characterized. 

The ultimate goal of such approaches is to gain a deeper insight into the complexity of 

compositional changes during growth and development of plants and to identify 

metabolite biomarkers which might enable the prediction and monitoring of the 

physiological and developmental status (Trethewey and Krotzky, 2007).  
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2.3.6.4 Phytochemical diversity 

Cultivation and breeding of crops have a long history, resulting in large germplasm 

collections with a wide array of genetic diversity. Metabolomics has the potential to 

explore the phytochemical diversity across different plant varieties (Kusano et al., 

2015). Such variability has been investigated, e.g. in diverse varieties of potato 

(Dobson et al., 2010; Oertel et al., 2017), cassava (Drapal et al., 2019), rice (Kusano 

and Saito, 2012), and cranberry (Brown et al., 2012) as well as in green tea cultivars 

(Fujimura et al., 2011). Information on the chemical characteristics of specific varieties 

may help breeders to select genotypes with desirable nutritional traits for the 

generation of new, healthy and high quality cultivars. Besides that, metabolomics 

experiments have also been used to compare foods grown under different farming 

practices. Differences between conventional versus organic farming have been 

investigated e.g. in maize (Röhlig and Engel, 2010), beetroot (Kazimierczak et al., 

2014), tomato and pepper (Novotná et al., 2012).  

 

2.3.6.5 Characterization and safety assessment of genetically modified crops 

A pragmatic tool in the safety assessment of genetically modified crops is based on 

the so-called concept of substantial equivalence: if a GM food is found to be 

substantially equivalent to its isogenic non-transgenic counterpart, the GM food can be 

regarded as safe as the conventional food (OECD, 1993). Such assessments need to 

take into consideration both intended und unintended effects that may result from the 

genetic modification (FAO/WHO, 2016). Therefore, the unbiased metabolite profiling 

approach can be considered as an additional tool for the safety assessment of GM 

crops. Such comparisons between GM and conventional crops have been performed 

for example in potato (Catchpole et al., 2005; Roessner et al., 2001), wheat (Baker et 

al., 2006), maize (Barros et al., 2010; Frank et al., 2012b), and soybean (García-

Villalba et al., 2008). In most cases, the majority of differences observed between GM 

and non-GM foods were related to natural variability including environmental factors 

such as growing season and growing location rather than the genetic modification itself 

(Barros et al., 2010; Frank et al., 2012b).
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3 RESULTS 

3.1 Publication I 
 

Goßner, S.; Yuan, F.; Zhou, C.; Tan, Y.; Shu, Q.; Engel, K. H.  

Impact of Cross-Breeding of Low Phytic Acid MIPS1 and IPK1 Soybean (Glycine max 

L. Merr.) Mutants on their Contents of Inositol Phosphate Isomers. 

J. Agric. Food Chem. 2019, 67(1), 247-257.  

https://pubs.acs.org/doi/full/10.1021/acs.jafc.8b06117;  

Reprinted with permission from American Chemical Society (Copyright 2019). 

 

Phytic acid (InsP6), the major storage form of phosphorus in soybean (Glycine max (L.) 

Merr.) seeds, is considered as an antinutrient. Therefore, various low phytic acid (lpa) 

soybean mutants have been developed via mutation breeding. Cross-breeding is often 

used to generate new cultivars with improved agronomic or nutritional properties. 

However, the knowledge on the consequences of such cross-breeding steps of lpa 

soybean mutants on the contents of InsP6 and lower inositol phosphate isomers (InsP2-

InsP5) in the obtained progenies is limited. Therefore, homozygous lpa mutant, 

homozygous double lpa mutant and homozygous wild-type (WT) progenies were 

generated by crossing the lpa soybean mutants MIPS1 and IPK1 with commercial WT 

cultivars or among themselves. The seeds were subjected to a high pressure ion 

chromatography (HPIC)-based approach for the determination of InsP2-InsP6. The lpa 

trait of the MIPS1 mutant was not changed by crossing with a WT cultivar; lpa 

progenies showed InsP6 reductions of about 44% compared to the respective WT 

progenies. The InsP6 reduction in IPK1 progenies varied between 43% and 71% and 

was dependent on the WT crossing parent. In addition, the IPK1 progenies 

accumulated considerable amounts of the lower inositol phosphate isomers 

Ins(1,5,6)P3/Ins(3,4,5)P3, Ins(4,5,6)P3, Ins(1,4,5,6)P4/Ins(3,4,5,6)P4, and 

Ins(1,3,4,5,6)P5 in comparison to the progenitor lpa mutant. The generation of 

homozygous lpa double mutants, simultaneously carrying the MIPS1 and IPK1 

mutation target, offered the potential to drastically reduce InsP6 up to 87%, with only 

moderate accumulations of InsP3-InsP5 isomers. The study demonstrated that cross-

breeding can be applied to alter the concentrations of both InsP6 and InsP3-InsP5 in 

lpa soybean seeds and thereby increasing their nutritional quality.   

https://pubs.acs.org/doi/full/10.1021/acs.jafc.8b06117
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Candidate’s contribution:  

Implementation of a high pressure ion chromatography (HPIC) method for the analysis 

of phytic acid and lower inositol phosphate isomers in soybean; identification and 

quantitation of phytic acid and lower inositol phosphate isomers in all investigated 

soybean samples; validation of the HPIC method; statistical assessment and 

interpretation of the elaborated data; writing and revision of the complete manuscript 

including all Figures and Tables as well as the Supporting Information. 
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3.2 Publication II 
 

Goßner, S.; Yuan, F.; Zhou, C.; Tan, Y.; Shu, Q.; Engel, K. H.  

Stability of the Metabolite Signature Resulting from the MIPS1 Mutation in Low Phytic 

Acid Soybean (Glycine max L. Merr.) Mutants upon Cross-Breeding. 

J. Agric. Food Chem. 2019, 67(17), 5043-5052.  

https://pubs.acs.org/doi/full/10.1021/acs.jafc.9b00817; 

Reprinted with permission from American Chemical Society (Copyright 2019). 

 

In the lpa soybean mutant Gm-lpa-TW-1-M, γ-irradiation had resulted in a 2 bp deletion 

in the third exon of the myo-inositol 3-phosphate synthase (MIPS1) gene. This lpa 

mutant was crossed with a commercial WT cultivar to investigate the potential impact 

of such cross-breeding steps on the metabolite profiles of the homozygous WT and 

homozygous lpa mutant progenies. The individual F3 and F5 progenies as well as the 

crossing parents were subjected to a non-targeted GC-based metabolite profiling 

approach allowing the analysis of a broad spectrum of polar and lipophilic low 

molecular weight constituents. In homozygous lpa mutant progenies, the MIPS1 

mutation resulted not only in the intended reduction of phytic acid, but also in 

remarkable changes of other nutritionally relevant constituents, i.e. reduced 

concentrations of myo-inositol, raffinose, stachyose, galactopinitol A, galactopinitol B, 

and ciceritol as well as increased concentrations of sucrose and various free amino 

acids compared to the respective wild-type progenies. The mutation-induced 

metabolite signature was neither compromised by the cross-breeding step nor by 

fluctuations of metabolite levels in progenies observed in different generations and 

growing seasons. The elaborated data demonstrate that the MIPS1 lpa soybean 

mutant Gm-lpa-TW-1-M as well as its homozygous lpa mutant progenies might be 

valuable genetic resources for the commercial production of high quality soybean 

seeds consistently possessing desirable phytate- and carbohydrate digestability-

related traits.  

 

Candidate’s contribution:  

Performance of the complete sample work-up sequence required for the analysis of all 

soybean samples; performance of the GC/MS and GC/FID-based metabolite profiling 

for all investigated soybean samples; implementation and evaluation of quality control 
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analyses for the metabolite profiling approach; analysis of phytic acid in all soybean 

seeds by high pressure ion chromatography (HPIC); data processing and multivariate 

and univariate statistical assessment of the elaborated metabolite profiling and HPIC 

data and interpretation of the results; writing and revision of the complete manuscript 

including all Figures and Tables as well as the Supporting Information.  
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4 DISCUSSION 

4.1 Methodology 

The objectives of the studies underlying this dissertation were to investigate the impact 

of cross-breeding of lpa soybean mutants with commercial wild-type cultivars on (i) the 

contents of phytic acid and lower inositol phosphate isomers, and (ii) the mutation-

induced metabolite signature in the resulting homozygous wild-type and homozygous 

lpa mutant progenies. Aspects regarding the respective study design, the applied 

methodologies, the interpretation of the elaborated metabolite profiling and inositol 

phosphate data and their potential nutritional significance will be discussed in the 

following sections.  

 

Determination of phytic acid and lower inositol phosphates 

The first methods for the determination of phytic acid involved the non-specific 

formation of precipitates with Fe3+ and quantifications on the basis of the iron (Heubner 

and Stadler, 1914) or the phosphorus content of the resulting precipitates (McCance 

and Widdowson, 1935). A major drawback of these non-specific methods was their low 

sensitivity (Skoglund and Sandberg, 2002). Ion-pair reversed-phase HPLC enabled 

the simultaneous separation and detection of phytic acid and other lower inositol 

phosphates; however, a differentiation of isomeric forms was not possible (Lehrfeld, 

1994; Sandberg and Ahderinne, 1986). These methods were based on the application 

of tetrabutylammonium hydroxide as ion-pair agent in the mobile phase (Sandberg and 

Ahderinne, 1986), which is able to bind the negatively charged inositol phosphates and 

to interact with the non-polar HPLC stationary phase. Besides such chromatographic 

approaches, spectroscopic methods have also been used to quantify phytic acid and 

lower inositol phosphates (Schlemmer et al., 2009). NMR is able to determine 

stereoisomers which often co-eluate during chromatographic separation (Phillippy, 

1989) and offers high accuracy and specificity (Duong et al., 2018). However, the main 

disadvantages of this technique are the expensive equipment and its low sensitivity 

making NMR unsuitable for the detection of low concentrations of inositol phosphates 

(Skoglund and Sandberg, 2002), as they are often found in biological samples. In 

contrast, high pressure ion chromatography (HPIC) methods offer good reproducibility 

and sensitivity, even allowing the discrimination between isomeric forms of inositol 
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phosphates at low concentrations (Skoglund and Sandberg, 2002). These properties 

make HPIC nowadays one of the most commonly used approaches for the 

simultaneous determination of phytic acid and lower inositol phosphate isomers 

(Blaabjerg et al., 2010). 

Therefore, in the present study an HPIC-based isomer-specific analytical technique, 

which has originally been developed for a corn-based animal feed (dried distillers 

grains with solubles) (Oates et al.), was adapted to the soybean matrix. Inositol 

phosphates were separated with an acidic eluent system and detected via ultraviolet 

absorbance at 290 nm after post-column derivatization with Fe(NO3)3. There is 

currently no procedure available which allows the complete separation and 

simultaneous measurement of all inositol phosphates, taking into consideration their 

stereoisomers (Duong et al., 2018). However, the HPIC approach employed in this 

study allowed the detection of in total 25 peaks representing 32 myo-inositol 

phosphate isomers (6 InsP2, 12 InsP3, 9 InsP4, 4 InsP5 and InsP6), without separation 

of enantiomers (Chen and Li, 2003; Oates et al.). The order of elution of the InsP 

isomers correlated with the increasing number of phosphate groups. Furthermore, only 

compounds which react with Fe(NO3)3 during post-column derivatization and have an 

absorbance near 290 nm are detected with the applied method, resulting in a very 

good selectivity compared with e.g. conductivity detection (Oates et al.). The validation 

of the method proved the good repeatabilities (2.6% RSD for 50 mg; 1.1% RSD for 400 

mg), reproducibilities (4.1% RSD for 50 mg; 3.1% RSD for 400 mg) and recoveries 

(102% for 50 mg; 96% for 400 mg), with LODs and LOQs in the range of 0.5-1.2 µg/mL 

and 1.4-3.6 µg/mL injection volume, respectively. Duo to the low abundance of InsP2 

isomers in soybean seeds, they were detectable but not quantifiable with the applied 

procedure.  

The number and position of the phosphorylations of the myo-inositol ring determine 

the distinct biological properties and physiological functions of the inositol phosphates 

(Schlemmer et al., 2001). However, the properties or functions may differ for opposite 

enantiomers. For example, Ins(1,4,5,6)P4 can completely inhibit the response of IGF-1, 

whereas its enantiomer Ins(3,4,5,6)P4 only shows 25% inhibition (Razzini et al., 2000); 

on the other hand, Ins(3,4,5,6)P4 is an inhibitor of the calcium-mediated chloride 

secretion (Ismailov et al., 1996). Furthermore, Ins(1,4,5,6)P4 originates from the lipid-

dependent pathway, whereas Ins(3,4,5,6)P4 is synthesized lipid-independently 

(Raboy, 2003). Unfortunately, the separation of enantiomers was not possible with the 
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applied HPIC methodology. Due to this drawback, the results obtained in the present 

study at some points did not allow to draw final conclusions and interpretations about 

both the biosynthesis and the biological function of the described inositol phosphate 

isomers in soybean seeds.  

Besides the non-separation of enantiomers, the fact that several of the inositol 

phosphate isomers were not commercially available, hampered their unambiguous 

identification. It has been demonstrated that in such cases, inositol phosphate isomers 

can be obtained by specific hydrolyses (Chen and Li, 2003). In this study, some of the 

identifications were also based on data resulting from this strategy.  

 

Metabolite profiling 

The GC-based metabolite profiling approach applied in this study is based on a method 

originally developed for rice seeds (Frenzel et al., 2002), which has been adapted to 

various other matrices such as soybean (Frank et al., 2009), maize (Röhlig and Engel, 

2010), mung bean (Na Jom et al., 2011), and barley (Lanzinger et al., 2015). All these 

approaches comprise the consecutive extraction of lipophilic and polar constituents 

with solvents of different polarities. Subsequently, fractionation steps including 

transesterification and solid phase extraction for lipophilic extracts as well as silylation 

and selective hydrolysis for polar extracts are used to separate major from minor 

constituents. The obtained four fractions contain a broad spectrum of low molecular 

weight (< 1000 Da) constituents including fatty acid methyl esters (FAMEs) and 

hydrocarbons (fraction I), free fatty acids (FFAs), fatty alcohols, tocopherols, triterpenic 

alcohols, and phytosterols (fraction II), sugars and sugar alcohols (fraction III), and 

amino acids, amines as well as organic and inorganic acids (fraction IV). 

In addition, this method has been successfully used not only to study the differences 

between lpa and conventional crops (Frank et al., 2007; Frank et al., 2009) and the 

metabolic effects of GM maize (Frank et al., 2012b), but also to investigate a broad 

range of topics such as the metabolic differences between maize originating from 

conventional vs. organic farming (Röhlig and Engel, 2010), the metabolic responses 

of barley to drought stress (Lanzinger et al., 2015; Wenzel et al., 2015), and the 

metabolic differences between colored rice samples (Frank et al., 2012a). 

Furthermore, this GC-approach has been used to investigate the time-dependent 
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changes during germination of rice (Shu et al., 2008), sprouting of mung bean (Na Jom 

et al., 2011), and malting of barley (Frank et al., 2011). 

Several minor adaptions of the original methodology applied for rice have been 

introduced to improve its applicability to the soybean matrix, which is characterized by 

high protein and fat contents compared to rice (Liu, 1997a). Frank et al. (2009b) used 

300 mg soybean flour instead of 2 g rice flour to extract low molecular weight 

constituents and added 200 mL methanol for cell digestion. The applied amounts for 

the internal standard solutions were adjusted to 100 µL of internal standards I and II, 

and to 250 µL of internal standards III and IV, respectively. Before the silylation of 

fraction II, 100 µL of retention time mix I were added. Before the fractionation, the 

cloudy polar extract was passed through a 0.45 µm PTFE filter. For fractions III and IV, 

1 mL and 2 mL of the filtrated polar extract were evaporated to dryness under vacuum, 

respectively. After silylation of fraction III, 300 µL of n-hexane and 300 µL of deionized 

water were added for selective hydrolysis. The mixture was shaken and after phase 

separation, 100 µL of the upper phase, containing sugars and sugar alcohols, were 

mixed with 50 µL of retention time standard I. The GC analysis time for fraction III 

needed to be expanded from 65 min to 80 min to allow the detection of the late-eluting 

tetrasaccharide stachyose. In the present study, the following additional modifications 

of the method described by Frank et al. (2009b) were introduced to improve the 

reproducibility of the results: The silylation times of fractions III and IV were increased 

from 15 min to 20 min at 70 °C. Furthermore, the cloudy extract of fraction IV was 

subjected to an additional 0.45 µm PTFE filtration step before GC-based analysis. To 

quantitate highly concentrated constituents of fraction I, such as C18:2 FAME, a 1:10 

dilution (v/v) was applied.  

Even though the applied fractionation approach is time-consuming and thereby not 

suitable for a high-throughput screening, it offers good reproducibility and a broad area 

of possible applications. Due to the high complexity of the metabolome, which has 

been estimated to comprise up to 20,000 metabolites in a single plant (Fernie et al., 

2004), the fractionation steps offer the potential to determine a broader spectrum of 

(minor) metabolites which otherwise might have been overlapped by constituents from 

other compound classes. Such pre-fractionation steps and the use of different 

analytical techniques have been recommended for metabolomics experiments to 

obtain a more comprehensive snapshot of the metabolome (Goodacre et al., 2004; 

Sumner et al., 2002). Complementary analytical techniques like LC-MS or NMR allow 
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the detection of thermo-labile and high-molecular weight metabolites without the 

requirement for derivatization. Thereby, a broad array of secondary metabolites 

including flavonoids, vitamins or phospholipids could be investigated. Secondary 

metabolites might have also been modulated by the lpa mutation event or the cross-

breeding step and play an important role in the final evaluation of the nutritional quality 

of the investigated soybean seeds. 

 

Statistical assessment 

To extract the relevant information from the huge and complex raw data sets of 

metabolomics experiments, suitable statistical methods including multivariate and 

univariate approaches are essential (Korman et al., 2012). In addition, pre-processing 

and pre-treatment steps are of fundamental importance to enhance the biological 

interpretability of the metabolomics data (van den Berg et al., 2006). Therefore, before 

the metabolite profiling data were used for multivariate analysis, different types of data 

transformations (log transformation, cube root transformation) and data scaling (mean 

centering, auto, pareto and range scaling) as well as their combinations were tested 

(Chong et al., 2018). For the elaborated dataset, cube root transformation in 

combination with pareto scaling was shown to be the most suitable approach to 

approximate the normal distribution. 

In the next step, the unsupervised principle component analysis (PCA) was used to 

gain a first overview on the distribution of the data points. PCA loading plots were 

employed to identify metabolites contributing to the discrimination trend observed in 

the score plots. As a next step, partial least square discriminant analysis (PLS-DA) 

was employed to the metabolite profiling data as a supervised multivariate statistical 

approach for the differentiation of wild-type and lpa mutant soybean seeds. However, 

due to the variation between different generations and/or growing locations within 

these groups, the PLS-DA model was shown to be over-fitted. Therefore, the 

orthogonal partial least squares-discriminate analysis (OPLS-DA) was used, an 

alternative supervised method which is suitable for the classification of data with multi-

collinear and noisy variables. For this approach, samples were classified into pre-

defined groups, i.e. wild-types and lpa mutants, the data were filtered using orthogonal 

signal correction (OSC) into group-predictive and group-unrelated (orthogonal) 

components to achieve the best prediction of group membership (Bylesjö et al., 2006). 
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Permutation tests and cross-validations proved that the OPLS-DA model was reliable 

without over-fitting. Together with the S-plot and variable importance in projection (VIP) 

values, the OPLS-DA model allowed the visualization and identification of the 

individual metabolites contributing to the differentiation between wild-type and lpa 

mutant soybean seeds. The discriminatory metabolites were subsequently analyzed 

by means of univariate analyses and provided useful information for creating a deeper 

understanding of the biological network in lpa soybean mutants.  

 

4.2 Selection of crossing partners 

Lpa mutants 

During the past years, several lpa soybean mutants have been developed using 

chemical (Hitz et al., 2002; Wilcox et al., 2000) and physical mutagenesis (Yuan et al., 

2007) as well as genetic engineering via transformation (Bilyeu et al., 2008) or gene 

silencing (Nunes et al., 2006; Punjabi et al., 2018). In general, such mutations can 

impair (i) the function of enzymes involved in the substrate supply pathway for the 

biosynthesis of phytic acid, i.e. the formation of inositol or Ins(3)P1, (ii) the function of 

enzymes involved at the end of the pathway leading to phytic acid, or (iii) the 

compartmentation, transportation, or storage of phytic acid to the vacuole (Sparvoli 

and Cominelli, 2015). In the present investigation, the three lpa soybean mutant lines 

Gm-lpa-TW-1 (TW-lpa), Gm-lpa-TW-1-M (TW-1-M-lpa) and Gm-lpa-ZC-2 (ZC-lpa), 

which had been obtained from the wild-type cultivars Taiwan 75 and Zhechun No. 3 

(ZC-3), respectively, via 150 Gy 60Co γ-irradiation (Yuan et al., 2007), were used for 

cross-breeding experiments with commercial wild-type cultivars. Molecular 

characterization revealed that the phytic acid reductions in TW-lpa and TW-1-M-lpa 

resulted from a 2 bp deletion in the D-myo-inositol 3-phosphate synthase gene 1 

(MIPS1) (Yuan et al., 2007; Yuan et al., 2017). The enzyme D-myo-inositol 3-

phosphate synthase (MIPS, EC 5.5.1.4) catalyzes the NADH-dependent conversion of 

D-glucose 6-phosphate to myo-inositol 3-phosphate and is thereby the first and rate-

limiting step in the biosynthesis of both myo-inositol and phytic acid (Bhati et al., 2016; 

Kumari et al., 2012; Loewus and Murthy, 2000). Four highly conserved MIPS gene 

isoforms (GmMIPS1-4) have been identified in soybean (Hegeman et al., 2001) with 

MIPS1 being the major isoform with high expression levels in developing seed tissues 

(Kumari et al., 2012). Therefore, MIPS1 has been regarded as a suitable target to 
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generate soybean lines with reduced phytic acid contents in the seeds without 

influencing the vital aspects of inositol metabolism in other plant tissues (Kumari et al., 

2012). The phytic acid reduction of about 53% in TW-lpa compared to its WT precursor 

Taiwan 75 was shown to be accompanied by a broad range of changes of other 

nutritionally relevant metabolites including decreased contents of myo-inositol, 

raffinose, stachyose, and the galactosyl cyclitols galactopinitol A and B as well as 

increased concentrations of sucrose and various free amino acids, but without an 

accumulation of lower inositol phosphates in TW-lpa (Frank et al., 2009). In 

comparison to TW-lpa, its natural mutant TW-1-M-lpa possessed higher germination 

speed (96 h vs. 72 h) and germination percentage both during warm (85% vs. 80%) 

and accelerated aging (80% vs. 45%) germination tests, as well as a higher rate of 

seed field emergence (50% vs. less than 10%) after a 2-year storage at room 

temperature (Yuan et al., 2017). Therefore, the MIPS1 mutant TW-1-M-lpa was 

considered to be particularly suitable for studying the impact of cross-breeding with a 

commercial wild-type cultivar on the stability of the MIPS1 mutation-induced metabolite 

signature in homozygous lpa mutant progenies by means of metabolite profiling.  

In contrast, the phytic acid reduction of about 46% in ZC-lpa compared to its wild-type 

progenitor ZC-3 resulted from a G → A mutation in chromosome 14 of the inositol 

1,3,4,5,6-pentakisphosphate 2-kinase (GmIPK1) (Yuan et al., 2012). The enzyme 

inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1, EC 2.7.1.158) catalyzes the last 

step in the biosynthesis of phytic acid by phosphorylating Ins(1,3,4,5,6)P5 in the second 

position to form InsP6. Two additional homologous genes of GmIPK1 (Glyma04g03240 

and Glyma06g03310) have been identified in soybean, but in contrast to IPK1, their 

expression levels are rather low (Yuan et al., 2012). Comparative investigations by 

Frank et al. (2009) showed that the IPK1 mutation resulted in significant accumulations 

of InsP3, InsP4 and InsP5, but without noteworthy additional metabolic changes. 

However, during this stage, no data on the stereoisomers of these accumulated lower 

inositol phosphates were available. Taking these facts into consideration, the IPK1 

mutant ZC-lpa was considered as an attractive candidate to investigate the impact of 

cross-breeding with commercial wild-type cultivars on the intended effect of phytic acid 

reduction and the occurrence of lower inositol phosphate isomers in the resulting 

progenies.  
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Wild-types 

The commercial soybean cultivars Zhexiandou No. 4 (ZXD) and Cu as well as Zhechun 

No. 3 (ZC-3), the progenitor of ZC-lpa (Yuan et al., 2007), were used as wild-type 

crossing parents in this investigation. All applied wild-type cultivars showed good 

germination rates (≥85%) and dry matter yields of 2−2.25 tons/ha, but differed in their 

compositional characteristics and origins. ZXD, which had been developed by Zhejiang 

Academy of Agricultural Sciences, is widely adapted to various Chinese provinces 

(Zhu et al., 2010) and possesses high contents of sucrose and of total water-soluble 

sugars (TWSS) (Yu et al., 2016). ZC-3 is characterized by its high protein content and 

is widely grown as a spring season soybean variety in Zhejiang and other provinces of 

southern China (Yuan et al., 2009). The soybean variety Cu had been introduced from 

Australia and originates from wild soybean; it exhibits characteristic compositional 

features such as high fructose and glucose contents, but low sucrose, TWSS, and 

water-soluble protein (WSP) concentrations (Yu et al., 2016). 

 

In total, progenies from the following four crosses were obtained: (i) TW-1-M-lpa x ZXD; 

(ii) ZC-lpa x ZC-3; (iii) ZC-lpa x Cu; and (iv) ZC-lpa x TW-1-M-lpa.  

In general, only few data on the inositol phosphate isomers present in soybean seeds 

are available (Blaabjerg et al., 2010; Phillippy and Bland, 1988; Sun and Jaisi, 2018). 

Furthermore, the effects of crossing lpa soybean mutants with wild-type cultivars and 

the impact of lpa double mutants carrying two different mutation targets on the contents 

of inositol phosphate isomers were unknown. Therefore, the progenies of all generated 

crosses were analyzed by HPIC. In addition, the homozygous WT and homozygous 

lpa mutant progenies resulting from the cross TW-1-M-lpa x ZXD were characterized 

by means of metabolite profiling.  

 

 

4.3 Nutritional significance of the elaborated data 

Phytic acid and lower inositol phosphates  

The integration of lpa soybean mutants into commercial cross- and selection-breeding 

programs requires the stability of the lpa trait, i.e. significantly reduced contents of 

phytic acid compared to the respective wild-type, upon cross-breeding. To verify this 

prerequisite, the lpa soybean mutants TW-1-M-lpa and ZC-lpa were crossed with WT 

cultivars or among themselves, and the inositol phosphate contents were investigated 
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via HPIC in homozygous progenies of several generations and from different growing 

seasons.  

For both the MIPS1 and IPK1 mutation targets, the lpa trait in homozygous lpa mutant 

progenies was maintained upon cross-breeding, despite slight variations of absolute 

levels of phytic acid between different growing seasons/years. For the double lpa 

mutants, the reductions in phytic acid contents were particularly high and more 

pronounced than expected from the single mutants. The mean InsP6 contents in 

homozygous lpa double mutant progenies were 3.60 mg/g, whereas mean contents of 

9.63 mg/g were found for single MIPS1 progenies and 8.98 mg/g for single IPK1 

progenies. For the IPK1 mutant, crosses from two different WT crossing parents were 

obtained. Even though the phytic acid contents of ZC-3 and Cu did not significantly 

differ, crossing of ZC-lpa with its original WT precursor ZC-3 was shown to be more 

powerful to generate progenies with particularly low InsP6 contents than crossing with 

the commercial WT Cu. This might be related to the different origins of these two WT 

cultivars; ZC-3 was introduced from China, whereas Cu originated from wild soybean 

of Australia (Yu et al., 2016).  

The consistently low contents of phytic acid in homozygous lpa mutant progenies are 

valuable from a nutritional and environmental point of view both for food and feed 

applications. Improved Ca and Zn utilization have been reported for lpa crops in animal 

studies, e.g. in rats (Poulsen et al., 2001) and swine (Poulsen et al., 2001; Spencer et 

al., 2000). For humans, the lpa maize mutant lpa-1-1 with approximately 60% phytate 

reduction compared to the wild-type strain (Hambidge et al., 2005), was shown to 

improve the Zn, Fe, and Ca absorption by 76% (Adams et al., 2002), 49% (Mendoza 

et al., 1998), and 43% (Hambidge et al., 2005), respectively. In addition, various 

studies showed that lpa crops increase the availability of inorganic P in animals such 

as poultry (Ertl et al., 1998; Li et al., 2000), swine (Spencer et al., 2000), and fish 

(Sugiura et al., 1999). For example, experiments with pigs showed that GM lpa corn 

increases the bioavailability of P approximately five times compared to nearly isogenic 

equivalent normal-phytate corn hybrids, thereby reducing P excretion in manure and 

making the manure of lpa fed swine more environmentally and economically suitable 

for the application as fertilizer (Spencer et al., 2000). Furthermore, lpa crops have been 

reported to improve the bone mineralization and growth performance of pigs (Spencer 

et al., 2000; Veum et al., 2001) and poultry (Li et al., 2000; Li et al., 2001). The 

improved growth performance of animals fed with lpa crops might be explained by the 
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inhibitory effect of InsP6 on several digestive enzymes such as α-amylase, lipase, and 

different proteinases such as pepsin, trypsin and chymotrypsin (Denstadli et al., 2006; 

Duong et al., 2018; Khan and Ghosh, 2013; Liu et al., 2010). Taking into consideration 

these advantages and the fact that about 98% of defatted soybean meal is employed 

as high protein source in animal feed, e.g. for poultry, pork, and aquaculture species 

(Goldsmith, 2008; Hartman et al., 2011), the investigated lpa soybean mutants and 

their homozygous lpa progenies appear to be highly attractive for the animal feed 

industry.  

In the following section, inositol phosphate isomers are numbered according to 

Table S2 from the Supporting Information of Publication I (see Chapter 3.1). The lower 

inositol phosphate isomer contents quantifiable in WT and MIPS1 lpa soybean seeds 

mainly corresponded to the isomers Ins(1,2,3,4,5)P5/Ins(1,2,3,5,6)P5 (22), 

Ins(1,2,4,5,6)P5/Ins(2,3,4,5,6)P5 (23), and Ins(1,3,4,5,6)P5 (24). The MIPS1 mutant 

TW-lpa, where the initial step in the biosynthesis of phytic acid is disrupted, has been 

reported to not accumulate lower inositol phosphate isomers compared to its WT 

progenitor Taiwan 75 (Frank et al., 2009). The same applied for TW-1-M-lpa, another 

MIPS1 mutant. After cross-breeding of TW-1-M-lpa with ZXD, the InsP5 isomers were 

slightly increased in homozygous lpa mutant progenies compared to the respective 

wild-type progenies; however, their profiles and contents remained in a comparable 

order of magnitude. In contrast, the disruption of the last step in the biosynthesis 

leading to phytic acid by the IPK1 mutation, resulted in significant accumulations of the 

lower inositol phosphate precursors of phytic acid, i. a. Ins(1,5,6)P3/Ins(3,4,5)P3 (12), 

Ins(4,5,6)P3 (13), Ins(1,4,5,6)P4/Ins(3,4,5,6)P4 (20), and Ins(1,3,4,5,6)P5 (24) in 

soybean seeds, which could not be utilized to generate higher inositol phosphates. 

After crossing ZC-lpa with wild-type cultivars, the contents of lower inositol phosphate 

isomers were considerably increased. This effect was especially pronounced in the 

homozygous lpa mutant F6 progenies resulting from the crossing of ZC-lpa with its WT 

progenitor ZC-3. Again, the observed differences in the accumulations of lower inositol 

phosphates between the two crosses might be explained by the different genetic 

backgrounds of the employed WT crossing parents ZC-3 and Cu. The double lpa 

mutants only showed moderate accumulations of the lower inositol phosphates 

Ins(1,4,5,6)P4/Ins(3,4,5,6)P4 (20) and Ins(1,3,4,5,6)P5 (24) due to the interruption of 

both the substrate supply pathway and the last step in the biosynthesis yielding phytic 

acid.  
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The mineral binding ability of inositol phosphates is known to be dependent on the 

number of phosphate groups per molecule: The less phosphate groups, the lower the 

binding capacity and stability of the formed phytate-mineral complexes in vitro 

(Persson et al., 1998). Experiments with rats supported these findings and 

demonstrated that the Ca and Zn uptake was inhibited by InsP6 and InsP5, but not by 

InsP4 and InsP3 (Lönnerdal et al., 1989). The Fe absorption of humans was also shown 

to be not perturbed by InsP4 and InsP3, if they were tested separately. However, 

applied as complex mixtures of various inositol phosphates, lower inositol phosphates 

were shown to be able to contribute to the inhibitory effects of mineral bioavailability, 

potentially via the formation of mineral complexes between different inositol phosphate 

isomers (Sandberg et al., 1999). Therefore, it cannot be finally ruled out that the 

accumulations of lower inositol phosphate isomers in the IPK1 lpa mutants might to a 

minor degree counteract the beneficial effects of the reduced InsP6 contents on the 

mineral bioavailability.  

On the other hand, since the first description of Ins(1,4,5)P3 (10) as a Ca2+-mobilizing 

second messenger in 1983 (Streb et al., 1983), several important physiological 

functions have been described for various inositol phosphates in eukaryotic cells 

(Duong et al., 2018). Besides InsP6, Ins(1,2,3,4,6)P5 (21) and DL-Ins(1,2,3,4,5)P5 (22) 

also showed inhibitory effects on the formation of hydroxyl radicals, and the 1,2,3 

(equatorial-axial-equatorial) phosphate grouping was considered to be the 

corresponding iron binding site for this effect (Hawkins et al., 1993). In addition, lower 

inositol phosphates might also contribute to the antioxidant defense in vivo by 

preventing the formation of reactive oxygen species (ROS) (Burgess and Gao, 2002). 

Ins(1,3,4,5)P4 (17) was reported to have important roles in T cell, B cell and neutrophil 

cell development and function (Sauer and Cooke, 2010) as well as in NK cell 

maturation and responsiveness (Sauer et al., 2013). Ins(3,4,5,6)P4 (20) blocks Cl- 

conductance through the chloride channel ClC-3 in vivo (Mitchell et al., 2008). Duo to 

the many functions of ClC-3, Ins(3,4,5,6)P4 (20) has been discussed as a potential 

regulator of neuronal development, tumor cell migration, bone modelling, apoptosis 

and inflammatory responses (Mitchell et al., 2008). In addition, there are studies 

indicating that Ins(1,3,4,5,6)P5 (24) is a specific PtdIns(3,4,5)P3 competitor and able to 

block the serine phosphorylation and the kinase activity of the phosphoinositide 

3-kinase/serine/threonine protein kinase B (PI3K/Akt) signaling pathway leading to 

antiangiogenic, proapoptotic and anticancer activities in vitro and in vivo (Maffucci et 
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al., 2005; Piccolo et al., 2004). Furthermore, Ins(1,3,4,5,6)P5 (24) was reported to 

sensitize breast, ovarian, and lung cancer cell lines to chemotherapeutic drugs (Piccolo 

et al., 2004). In this regard, Ins(1,3,4,5,6)P5 (24) and Ins(1,4,5,6)P4 (20) were reported 

to have an even higher anticancer activity than InsP6 (Ferry et al., 2002).  

Despite the described physiological functions, the contribution of dietary inositol 

phosphates to the pools found in the human body is discussed controversially, and no 

inositol phosphate carrier has been identified in the gut so far (Duong et al., 2018). 

However, pinocytosis (Ferry et al., 2002) and receptor-mediated endocytosis (Vucenik 

and Shamsuddin, 1994) have been discussed as possible mechanisms for the inositol 

phosphate uptake. Wilson et al. (2015) reasoned that an intestinal phytic acid 

absorption is unlikely because they did not detect any phytic acid in human plasma or 

urine via a specific titanium dioxide purification method. In contrast, the positive health 

effects associated with phytic acid, such as its anticancer activity, suggest the intestinal 

absorption of either phytic acid or its degradation products (Schlemmer et al., 2009). 

In addition, the results of both animal and human studies indicate that the inositol 

phosphate levels of various tissues and biological fluids just as the urinary excretion of 

these compounds are related to the oral intake of phytic acid (Grases et al., 2001b; 

Grases et al., 2001a; Sakamoto et al., 1993).  

Taking the potential physiological properties of lower inositol phosphates into 

consideration, the IPK1 lpa soybean mutant ZC-lpa and its homozygous lpa mutant 

progenies with their remarkably high contents of lower inositol phosphates might be a 

valuable source of these bioactive compounds. However, the knowledge gaps 

regarding both the bioavailability and dose-response relationships of inositol 

phosphates emphasize the necessity for further investigations to draw valid 

conclusions regarding the nutritional evaluation of inositol phosphates for both human 

and animal nutrition.  

 

Metabolite Profiles 

Despite their outstanding nutritional value, soybean seeds also contain other natural 

antinutrients besides phytic acid such as heat-stable raffinose oligossacharides 

(RFOs) (Liener, 1981). RFOs are sucrose-based oligosaccharides and consist of linear 

chains of galactosyl residues which are attached to the glucose moiety of sucrose via 

an α-(1→6) glycosidic linkage (Avigad and Dey, 1997). The two RFOs raffinose and 
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stachyose are among the dominating soluble carbohydrates in soybean seeds besides 

sucrose (Hsu et al., 1973) and act as storage carbohydrates, which can be used during 

early stage of germination (Peterbauer and Richter, 2001). Humans and nonruminant 

animals cannot hydrolyze the α-galactosidic linkage of RFOs because they lack 

α-galactosidase (EC 3.2.1.22) in their distal digestive tract (Peterbauer and Richter, 

2001). Thus, RFOs pass into the colon, where they are fermented by intestinal 

bacteria, resulting in the production of gastrointestinal gas. The presence of RFOs in 

soybean seeds therefore causes flatulence, diarrhea and other digestive distress 

(Price et al., 1988).  

The MIPS1 mutation of the primary lpa soybean mutant TW-lpa was shown to result in 

significantly reduced concentrations of the undesirable oligosaccharides raffinose and 

stachyose; an unintended but positive side effect of the reduced InsP6 contents (Frank 

et al., 2009). In this study, TW-1-M-lpa, a natural mutant of TW-lpa possessing the 

same 2 bp deletion in the third exon of MIPS1 (Yuan et al., 2017), was used for 

metabolite profiling. TW-1-M-lpa was shown to possess the same MIPS1-induced 

metabolic phenotype as TW-lpa with reduced contents of RFOs and galactosyl 

cyclitols. Even after cross-breeding with the commercial cultivar ZXD, this mutation-

induced metabolic signature was maintained and consistently expressed over 

generations and different growing seasons in homozygous lpa mutant progenies.  

In addition to the low RFO contents, the MIPS1 mutants and their homozygous lpa 

mutant progenies showed increased concentrations of sucrose compared to their 

respective wild-types. High sucrose contents are a desirable trait in soybean seeds, as 

sucrose is the major source of energy for fermentation and contributes to the taste and 

flavor of soyfoods such as tofu and soymilk (Hou et al., 2009). In addition, the 

combination of high sucrose and low RFO contents increases the metabolizable 

energy, making such mutants especially attractive for the feed industry (Hagely et al., 

2013). 

The obtained results are encouraging for breeders because they demonstrated the 

stability of the desirable MIPS1-specific metabolic phenotype upon cross-breeding, i.e. 

reductions in the contents of InsP6 and RFOs in combination with increased contents 

of sucrose. Taking into consideration the nutritional as well as environmental 

advantages of lpa crops, and the fact that high sucrose and low RFO contents are one 

of the most valuable traits for soybean breeding in food and feed industries (Hou et al., 
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2009), the MIPS1 mutants and their homozygous lpa progenies seem to be valuable 

germplasms for future soybean breeding programs.  

 

4.4 Outlook 

The elaborated HPIC data demonstrated that the homozygous lpa double mutant 

soybean seeds simultaneously carrying the MIPS1 and IPK1 mutation exhibited the 

lowest phytic acid contents and only moderate accumulations of lower inositol 

phosphate isomers. From a nutritional point of view, such an lpa trait is especially 

desirable and promising. The IPK1 mutation has been shown to only cause minor 

changes in the contents of low molecular weight constituents, i.e. increased 

concentrations of myo-inositol, phosphoric acid and syringic acid in the lpa mutant 

compared to its respective wild-type (Frank et al., 2009). In contrast, the MIPS1 

mutation resulted in nutritionally highly attractive reductions of raffinose 

oligosaccharides and galactosyl cyclitols as well as increased concentrations of 

sucrose besides the intended effect of phytic acid reduction (Frank et al., 2009; Goßner 

et al., 2019). Future investigations of the metabolite profiles of lpa double mutants need 

to demonstrate whether these desirable mutation-induced metabolic changes which 

have been observed in single lpa mutants are also consistently expressed in double 

lpa mutants.  

Cross-breeding is not only applied to generate lpa cultivars with improved nutritional 

properties but also to improve their agronomic performance (Spear and Fehr, 2007; 

Zhao et al., 2008). In the present study, only limited amounts of sample material were 

available which did not allow the simultaneous investigation of the agronomic 

performance of the homozygous lpa mutant soybean progenies resulting from the 

cross-breeding experiments. However, such agronomic data comprising germination 

rate, field emergence, yield, and the responses to various biotic and abiotic stresses 

are indispensable in subsequent studies to evaluate the agronomic competitiveness of 

lpa mutant progenies and to draw final conclusions regarding their applicability for 

commercialization. 
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6 APPENDIX 

6.1 Supporting Information Publication I 

Goßner, S.; Yuan, F.; Zhou, C.; Tan, Y.; Shu, Q.; Engel, K. H.  

Impact of Cross-Breeding of Low Phytic Acid MIPS1 and IPK1 Soybean (Glycine max 

L. Merr.) Mutants on their Contents of Inositol Phosphate Isomers.  

J. Agric. Food Chem. 2019, 67(1), 247-257.  

https://pubs.acs.org/doi/full/10.1021/acs.jafc.8b06117;  

Reprinted with permission form American Chemical Society (Copyright 2019). 

 

 

 

Figure S1.  HPIC-chromatograms of the reference standard solution InsP-Mix (5% 

diluted in deionized water) containing 32 inositol phosphate isomers which were 

separated into 25 peaks (A), and of the IPK1 mutant ZC-lpa (B). Peak numbers 

correspond to those given in Table S2.  
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Figure S2.  Myo-inositol (Ins) in the stable chair conformation with one axial (C2 in 

red) and five equatorial (blue) hydroxyl groups. The molecule can be divided into two 

non-superimposable mirror image halves between C2 and C5, illustrated by the 

dashed line. Phosphorylation at positions C2 or C5 maintains the plane of symmetry 

and therefore results in achiral molecules. Phosphorylation at C1, C3, C4 or C6 

eliminates the plane of symmetry leading to chiral inositol phosphates (adapted from 

Murthy, 2006). 

 

 

 

 

 

 

Figure S3.  Exemplary genotyping results for the MIPS1 mutation obtained by 

CADMA-HRM analysis of F5 progenies from the cross TW-1-M-lpa x ZXD and the 

corresponding crossing parents TW-1-M-lpa (MIPS1 mutant) and ZXD (WT).  
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Figure S4.  Exemplary genotyping results for the IPK1 mutation obtained by CADMA-

HRM analysis of F5 progenies of the crosses ZC-lpa x Cu (A) and ZC-lpa x ZC-3 (B).  
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Figure S5.  Exemplary genotyping results for the double mutants obtained by CADMA-

HRM analysis of F5 progenies of the cross ZC-lpa x TW-1-M-lpa: test for MIPS1 (A), 

test for IPK1 (B).
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Table S1.  Soybean sample material. 

A Wild-type soybean lines 

material location season 

Taiwan 75 Hangzhou, China spring 2015 
   

Zhechun No. 3 (ZC-3) Hangzhou, China spring 2014 
   

Zhexiandou No. 4 (ZXD) Hangzhou, China spring 2014 
   

Cu Hangzhou, China spring 2014 
 

 

B Lpa mutant soybean lines 

lpa mutant wild-type progenitor affected gene location season 

Gm-lpa-TW-1 (TW-lpa) Taiwan 75 GmMIPS1 
Hangzhou, China 
Hangzhou, China 

spring 2014 
spring 2015 

   
  

Gm-lpa-TW-1-M (TW-1-M-lpa) Taiwan 75 GmMIPS1 
Hangzhou, China 

Haining, China 
spring 2014 

autumn 2016 
   

  

Gm-lpa-ZC-2 (ZC-lpa) ZC-3 GmIPK1 
Hangzhou, China 

Haining, China 
spring 2014 

autumn 2016 
 

 

C Progenies of soybean crosses (x, available; n.a., not available) 

    progenies 

crosses generation location season 
homozygous 

MIPS1 mutants 
homozygous 
IPK1 mutants 

homozygous 
wild-types 

double mutants 
(MIPS1 & IPK1) 

TW-1-M-lpa x 
ZXD 

F3 Hangzhou, China spring 2014 x n.a x n.a 
F5 Hangzhou, China spring 2015 x n.a. x n.a 

 
       

ZC-lpa x Cu F5 Hangzhou, China spring 2014 n.a. x x n.a 
        

ZC-lpa x 
ZC-3 

F5 Hangzhou, China spring 2014 n.a. x x n.a 
F6 Hangzhou, China autumn 2014 n.a. x x n.a 

        

 F3 Hangzhou, China spring 2014 x n.a x x 
ZC-lpa x 
TW-1-M-lpa 

F5 Hangzhou, China spring 2015 n.a. n.a x x 
F8 Haining, China autumn 2016 n.a. n.a x x 
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Table S2.  Inositol phosphates of an in-house reference standard solution separated by 

HPIC. Both enantiomers are indicated in the D-configuration, if applicable.  

 inositol phosphate isomer (no.) 
corresponding  

enantiomer (no.) 

retention  

time (min) 

InsP2 Ins(1,3)P2 (1) b ‒ 6.9 

 Ins(1,2)P2 (2) b Ins(2,3)P2 (2) 7.2 

 Ins(2,4)P2 (3) b Ins(2,6)P2 (3) 7.5 

 Ins(1,4)P2 (3) b Ins(3,6)P2 (3) 7.5 

 Ins(4,5)P2
 (4) a Ins(5,6)P2 (4) 7.7 

 Ins(2,5)P2 (4) b ‒ 7.7 
    

InsP3 Ins(1,3,5)P3 (5) b ‒ 14.8 

 Ins(2,4,6)P3 (6) b ‒ 15.0 

 Ins(1,3,4)P3 (7) b Ins(1,3,6)P3 (7) 15.4 

 Ins(1,2,4)P3 (8) b Ins(2,3,6)P3 (8) 15.6 

 Ins(2,3,5)P3 (8) b Ins(1,2,5)P3 (8) 15.6 

 Ins(1,2,3)P3 (9) b ‒ 15.9 

 Ins(1,2,6)P3 (9) b, Ins(2,3,4)P3 (9) 15.9 

 Ins(1,4,6)P3 (9) b Ins(3,4,6)P3 (9) 15.9 

 Ins(1,4,5)P3 (10) b Ins(3,5,6)P3 (10) 16.1 

 Ins(2,4,5)P3 (11) a Ins(2,5,6)P3 (11) 16.3 

 Ins(1,5,6)P3 (12) a Ins(3,4,5)P3 (12) 17.6 

 Ins(4,5,6)P3 (13) b ‒ 19.7 
    

InsP4 Ins(1,2,4,6)P4
 (14) b Ins(2,3,4,6)P4 (14) 22.3 

 Ins(1,2,3,5)P4 (14) b ‒ 22.3 

 Ins(1,2,3,4)P4 (15) b Ins(1,2,3,6)P4 (15) 23.0 

 Ins(1,3,4,6)P4 (15) b ‒ 23.0 

 Ins(1,2,4,5)P4 (16) b Ins(2,3,5,6)P4 (16) 23.9 

 Ins(1,3,4,5)P4 (17) b Ins(1,3,5,6)P4 (17) 24.6 

 Ins(1,2,5,6)P4 (18) b Ins(2,3,4,5)P4 (18) 25.8 

 Ins(2,4,5,6)P4 (19) b ‒ 27.3 

 Ins(1,4,5,6)P4 (20) a Ins(3,4,5,6)P4 (20) 29.6 
    

InsP5 Ins(1,2,3,4,6)P5 (21) b ‒ 30.6 

 Ins(1,2,3,4,5)P5 (22) b Ins(1,2,3,5,6)P5 (22) 32.2 

 Ins(1,2,4,5,6)P5 (23) a Ins(2,3,4,5,6)P5 (23) b 35.4 

 Ins(1,3,4,5,6)P5 (24) a ‒ 36.3 
    

InsP6 Ins(1,2,3,4,5,6)P6 (25) a ‒ 41.7 
 

a Identified by comparison of HPIC retention times with those of commercially 
obtained standards. 

b Tentatively identified by assignment of the respective peak from the in-house 
reference standard solution on the basis of available HPIC data (Oates et al. 
2014; Chen & Li, 2003).
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Table S3.  Overview of theoretically possible myo-inositol phosphate isomers (shown in D-configuration). Compounds with asterisks 

indicate substances which were detectable with the applied HPIC method. 
 

InsP-compound corresponding 
enantiomer 

 InsP-compound corresponding 
enantiomer 

 InsP-compound corresponding 
enantiomer 

Ins(1)P1 Ins(3)P1  Ins(1,2,3)P3*   Ins(1,3,4,5)P4* Ins(1,3,5,6)P4* 

Ins(2)P1   Ins(1,2,4)P3* Ins(2,3,6)P3*  Ins(1,2,5,6)P4* Ins(2,3,4,5)P4* 

Ins(4)P1 Ins(6)P1  Ins(2,3,5)P3* Ins(1,2,5)P3*  Ins(2,4,5,6)P4*  

Ins(5)P1   Ins(1,2,6)P3* Ins(2,3,4)P3*  Ins(1,4,5,6)P4* Ins(3,4,5,6)P4* 

Ins(1,2)P2* Ins(2,3)P2*  Ins(2,4,6)P3*   Ins(1,2,4,5)P4* Ins(2,3,5,6)P4* 

Ins(1,3)P2*   Ins(2,4,5)P3* Ins(2,5,6)P3*  Ins(1,2,4,6)P4* Ins(2,3,4,6)P4* 

Ins(1,4)P2* Ins(3,6)P2*  Ins(1,3,4)P3* Ins(1,3,6)P3*  Ins(1,3,4,6)P4*  

Ins(1,5)P2 Ins(3,5)P2  Ins(1,5,6)P3* Ins(3,4,5)P3*  Ins(1,2,3,5)P4*  

Ins(1,6)P2 Ins(3,4)P2  Ins(4,5,6)P3*   Ins(1,2,3,4,5)P5* Ins(1,2,3,5,6)P5* 

Ins(4,5)P2* Ins(5,6)P2*  Ins(1,3,5)P3*   Ins(1,2,4,5,6)P5* Ins(2,3,4,5,6)P5* 

Ins(2,5)P2*   Ins(1,4,6)P3* Ins(3,4,6)P3*  Ins(1,3,4,5,6)P5*  

Ins(2,4)P2* Ins(2,6)P2*  Ins(1,4,5)P3* Ins(3,5,6)P3*  Ins(1,2,3,4,6)P5*  

Ins(4,6)P2   Ins(1,2,3,4)P4* Ins(1,2,3,6)P4*  Ins(1,2,3,4,5,6)P6*  
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Table S4.  Limits of detection (LOD), limits of quantification (LOQ) and characteristics of calibration curves of different inositol phosphate 
isomers. 

InsP isomer (no.) LOD [µg/mL]¹ LOQ [µg/mL]¹ 
calibration range 

[µg/mL] 
calibration 

levels  
linearity (R²)² slope intercept 

Ins(4,5)P2 (4) 1.1 3.4 0.7 ‒ 22 6 > 0.9986 0.4152 -0.0471 

Ins(2,4,5)P3 (11) 1.2 3.6 1.4 ‒ 43 6 > 0.9959 0.3963 -0.4314 

Ins(1,4,5,6)P4 (20) 0.5 1.4 0.7 ‒ 170 9 > 0.9981 1.0104 0.9466 

Ins(1,3,4,5,6)P5 (24) 0.8 2.4 1.3 ‒ 168 8 > 0.9963 0.5900 -0.7292 

Ins(1,2,3,4,5,6)P6 (25) 0.7 2.1 1.6 ‒ 500 11 > 0.9998 0.6898 -1.6673 
 

1 LODs and LOQs expressed as µg/mL of injection volume (HPIC); determined on the basis of 100 µL injection volume. LODs and 

LOQs were calculated as 3.3 and 10 times the standard deviation of the response divided through the slope of the calibration curve, 

respectively (ICH, 2005). 
2 Each level injected in duplicate. 
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Table S5.  Repeatabilities, reproducibilities and recovery rates of inositol phosphate isomers. All values were obtained by HPIC 

analyses of 50 mg and 400 mg commercially available soybean flour spiked with 880 µL of undiluted InsP-Mix, respectively.  

    method applied for IPK1 mutants (50 mg) 
 method applied for MIPS1 mutants and WTs 

(400 mg) 

    repeatability¹ reproducibility² recovery rate³  repeatability¹ reproducibility² recovery rate³ 

peak no.  inositol phosphate isomer RSD⁴ [%] RSD⁴ [%] [%]  RSD⁴ [%] RSD⁴ [%] [%] 

1 Ins(1,3)P2 2.3 4.5 102  0.5 1.3 95 

2 Ins(1,2)P2 0.5 0.5 105  0.5 1.4 90 

3 Ins(2,4)P2, Ins(1,4)P2 2.7 1.4 109  1.4 3.5 87 

4 Ins(4,5)P2, Ins(2,5)P2 2.0 2.7 96  3.5 2.9 102 

5 Ins(1,3,5)P3 1.2 8.0 96  2.2 7.2 88 

6 Ins(2,4,6)P3 4.4 8.8 90  1.2 13.3 112 

7 Ins(1,3,4)P3 1.9 0.7 100  2.1 1.7 100 

8 Ins(1,2,4)P3, Ins(2,3,5)P3 3.2 1.0 100  0.7 3.5 97 

9 Ins(1,2,3)P3, Ins(1,2,6)P3, Ins(1,4,6)P3 3.0 1.7 107  1.1 1.7 98 

10 Ins(1,4,5)P3 4.7 4.4 104  0.2 2.8 92 

11 Ins(2,4,5)P3 5.9 7.5 100  0.9 4.4 88 

12 Ins(1,5,6)P3 0.7 5.0 100  0.4 1.1 92 

13 Ins(4,5,6)P3 3.7 10.3 101  0.8 1.8 88 

14 Ins(1,2,4,6)P4, Ins(1,2,3,5)P4  2.5 6.2 102  1.6 2.7 87 

15 Ins(1,2,3,4)P4, Ins(1,3,4,6)P4 1.1 1.8 104  1.5 2.4 95 

16 Ins(1,2,4,5)P4 2.6 4.1 102  1.3 6.4 94 

17 Ins(1,3,4,5)P4 2.9 3.7 99  0.7 1.7 100 

18 Ins(1,2,5,6)P4 1.6 2.4 102  0.6 1.0 100 

19 Ins(2,4,5,6)P4 1.6 2.1 102  1.0 1.3 90 

20 Ins(1,4,5,6)P4 1.2 1.3 101  1.0 3.1 101 

21 Ins(1,2,3,4,6)P5 1.9 3.2 100  0.4 2.4 100 

22 Ins(1,2,3,4,5)P5 0.9 4.3 104  1.1 3.7 102 

23 Ins(1,2,4,5,6)P5 6.9 7.1 103  1.2 2.8 103 

24 Ins(1,3,4,5,6)P5 3.9 7.8 104  1.0 2.6 98 
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Table S5.  (continued) 

25 Ins(1,2,3,4,5,6)P6 1.1 1.8 113  0.6 0.7 92 

  mean ± SD 2.6 ± 1.6 4.1 ± 2.8 102 ± 4  1.1 ± 0.7 3.1 ± 2.6 96 ± 6 

  min 0.5 0.5 90  0.2 0.7 87 

  max 6.9 10.3 113  3.5 13.3 112 
 

1 single sample work-up, n = 3 injections  
2 three repeated sample work-ups obtained by the same operator on three consecutive days 
3 triplicate analysis of recovery rates of inositol phosphates; recovery rate [%] = [peakarea(spiked sample) – peakarea(unspiked 

sample)] / peakarea(amount spiked) 
4 relative standard deviation  

 

 

Table S6.  Sequence of GmIPK1 and GmMIPS1 genes in wild-type (WT) and lpa mutant soybeans and mutation-specific primers used 

for differentiating homozygous WTs and homozygous lpa mutants by CADMA-HRM (Yuan et al., 2007, Yuan et al., 2012; Tan et al., 

2016). 

 sequence of genes (5’-3’)1 primers used for CADMA-HRM genotyping expected product size (bp) 

GmIPK1 
WT 

lpa 

1514 GGAGAGgTACAT… 

1514 GGAGAGaTACAT… 

IPK1-OLP:   5’   GCACCAAACTCTGAAATTGC   3’ 191 

IPK1-F1:   5’   CTCAGCTTCACCCCTTTC   3’ 183 

IPK1-R:   3’   CCGTAATTTAGAGACTCAATC   5’ 183 

GmMIPS1 
WT 

lpa 

459 CAagATTCA… 

459 CA--ATTCA… 

MIPS1-OLP:   5’   CTCAGGGGCATTTCATGGGC   3’ 188 

MIPS1-F1:   5’   TTTTGTTTTCGTTTTGCT   3’ 180 

MIPS1-R:   3’   ACTATGTACGGGTGAAC   5’ 180 

1 Nucleotides in capital letters are shared between wild-type and lpa mutant alleles and those in bold lower case are different between 

wild-type and lpa mutant alleles. 
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6.2 Supporting Information Publication II 

Goßner, S.; Yuan, F.; Zhou, C.; Tan, Y.; Shu, Q.; Engel, K. H.  

Stability of the Metabolite Signature Resulting from the MIPS1 Mutation in Low Phytic 

Acid Soybean (Glycine max L. Merr.) Mutants upon Cross-Breeding. 

J. Agric. Food Chem. 2019, 67(17), 5043-5052. 

https://pubs.acs.org/doi/full/10.1021/acs.jafc.9b00817; 

Reprinted with permission from American Chemical Society (Copyright 2019). 
 

 

Figure S1.  Genotyping results obtained by CADMA-HRM analysis of homozygous 

MIPS1 mutants, homozygous wild-types (WT) and heterozygous F3 and F5 progenies 

of the cross TW-1-M-lpa x ZXD and their corresponding crossing parents. 

 

 
Figure S2.  PCA loading plot of the combined metabolite profiling data of soybean 

seeds from the crossing parents TW-1-M-lpa and ZXD as well as the homozygous 

wild-type and homozygous lpa mutant F3 and F5 progenies. 
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Figure S3.  PCA loading plots from the lipophilic fractions I and II of the metabolite 

profiling data of soybean seeds from the crossing parents TW-1-M-lpa and ZXD as 

well as the homozygous wild-type and homozygous lpa mutant F3 and F5 progenies.  
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Figure S4.  PCA loading plots from the polar fractions III and IV of the metabolite 

profiling data of soybean seeds from the crossing parents TW-1-M-lpa and ZXD as 

well as the homozygous wild-type and homozygous lpa mutant F3 and F5 progenies.   
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Figure S5.  S-plot of the OPLS-DA model from the combined metabolite profiling data 

of homozygous wild-type and homozygous lpa mutant soybean seeds. 

 
 

 
Figure S6.  Average temperature and mean precipitation for the growing periods 

spring (April-July) 2014 and autumn (August-October) 2015 in Hangzhou, China 

(http://www.wunderground.com).  

C20:2 FAME

C26:0 FAME

myo-inositol

galactopinitol A

galactopinitol B

raffinoseciceritol stachyose

alanine
β-alanine

phosphoric acid
GABA

serine

threonine

asparagine

citrulline

citric acid

histidine

-1.4

-0.9

-0.4

0.1

0.6

1.1

-40 -30 -20 -10 0 10 20 30 40

C
o

rr
el

at
io

n

Coefficient

0

10

20

30

40

50

60

70

80

90

0

5

10

15

20

25

30

35

p
re

c
ip

it
a

ti
o

n
 [

m
m

]

te
m

p
e

ra
tu

re
 [
 C

]

2015

precipitation [mm] average temperature [°C]

August September October

0

10

20

30

40

50

60

70

80

90

0

5

10

15

20

25

30

35

p
re

c
ip

it
a

ti
o

n
 [

m
m

]

te
m

p
e

ra
tu

re
 [
 C

]

2014

April May June July



APPENDIX 

118 

 

 

Table S1.  Chromatographic and mass spectral data of compounds identified in fraction I. 
 

 

no. compound ident.a RRTb Mc major fragment ions [(m/z), rel. intensity (%)] 

      saturated FAMEsd 

 1 
 
1 
 

C10:0 A, B 0.268 186 74 (100), 87 (42), 55 (20), 143 (12), 59 (11) 

2 C11:0 A, B 0.340 200 74 (100), 87 (46), 55 (21), 75 (12), 59 (10) 

5 C12:0 A, B 0.428 214 74 (100), 87 (49), 55 (21), 75 (13), 57 (9) 

6 C13:0 B 0.454 228 74 (100), 87 (54), 55 (24), 75 (16), 57 (12) 

8 C14:0 A, B 0.574 242 74 (100), 87 (51), 55 (21), 75 (16), 143 (12) 

11 C15:0 A, B 0.644 256 74 (100), 87 (55), 55 (24), 75 (21), 57 (13) 

14 C16:0 A, B 0.716 270 74 (100), 87 (57), 55 (25), 75 (20), 57 (15) 

17 C17:0 A, B 0.777 284 74 (100), 87 (58), 55 (27), 75 (23), 57 (17) 

21 C18:0 A, B 0.845 298 74 (100), 87 (59), 75 (25), 55 (22), 57 (17) 

24 C19:0 A, B 0.899 312 74 (100), 87 (85), 75 (28), 55 (26), 41 (25) 

27 C20:0 A, B 0.955 326 74 (100), 87 (65), 75 (31), 55 (26), 57 (25) 

28 C21:0 A, B 1.009 340 74 (100), 87 (66), 75 (33), 57 (24), 55 (18) 

30 C22:0 A, B 1.062 354 74 (100), 87 (60), 75 (35), 57 (24), 55 (23) 

32 C23:0 A, B 1.111 368 74 (100), 87 (73), 75 (42), 57 (34), 55 (22) 

34 C24:0 A, B 1.160 382 74 (100), 87 (66), 75 (38), 57 (32), 55 (26) 

36 C26:0 A, B 1.251 410 87 (100), 74 (82), 75 (64), 410 (23), 143 (23) 

38 C28:0 A, B 1.338 438 87 (100), 74 (80), 75 (78), 438 (33), 83 (26) 

39 C30:0 A, B 1.406 466 87 (100), 75 (86), 74 (73), 466 (33), 83 (28) 

      

unsaturated FAMEsd 

7 C14:1 A, B 0.564 240 55 (100), 74 (53), 69 (50), 83 (31), 87 (28) 

9 C15:1 B 0.625 254 55 (100), 74 (50), 69 (46), 83 (34), 87 (31) 

13 C16:1 A, B 0.703 268 55 (100), 69 (66), 74 (61), 83 (48), 97 (39) 

15 C17:1 A, B 0.760 282 55 (100), 69 (64), 74 (51), 83 (46), 96 (38) 

20 C18:1 A, B 0.840 296 55 (100), 69 (66), 74 (56), 83 (53), 97 (44) 

22 C19:1 B 0.884 310 55 (100), 69 (77), 83 (64), 97 (60), 67 (57) 

26 C20:1 A, B 0.939 324 55 (100), 69 (70), 83 (50), 97 (45), 74 (45) 
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Table S1.  (continued) 

 

29 C22:1 A, B 1.047 352 55 (100), 69 (75), 83 (61), 97 (50), 74 (44) 
33 C24:1 A, B 1.145 380 55 (100), 69 (81), 83 (64), 97 (55), 57 (43) 

      

12 C16:2 B 0.688 266 67 (100), 81 (66), 95 (56), 82 (53), 96 (32) 

19 C18:2 A, B 0.834 294 67 (100), 81 (84), 55 (57), 95 (54), 82 (46) 

25 C20:2 A, B 0.935 322 67 (100), 81 (93), 82 (58), 95 (58), 55 (52) 

18 C18:3 A, B 0.805 292 79 (100), 67 (89), 80 (73), 93 (54), 81 (49) 

      

hydrocarbons 

3 C14 A, B 0.348 198 57 (100), 71 (87), 43 (73), 85 (51), 41 (38) 

4 C15 A, B 0.421 212 57 (100), 71 (73), 43 (68), 85 (52), 41 (29) 

10 C18 A, B 0.637 254 57 (100), 71 (87), 43 (62), 85 (56), 41 (31) 

16 C20 A, B 0.768 282 57 (100), 71 (88), 85 (64), 43 (63), 41 (31) 

23 C22 A, B 0.890 310 57 (100), 71 (87), 85 (57), 43 (54), 55 (21) 

31 C26 A, B 1.102 366 71 (100), 57 (93), 85 (64), 43 (60), 55 (24) 

35 C28 A, B 1.196 394 57 (100), 71 (99), 85 (74), 43 (60), 99 (24) 

37 C31 A, B 1.327 436 57 (100), 71 (98), 85 (71), 43 (53), 99 (21) 
 

a Identification according to (A) mass spectral data and retention times of reference compounds or (B) mass  
spectral data of NIST08 mass spectra library. 

b Retention time relative to the internal standard tetracosane 
c Molecular weight 
d Fatty acid methyl esters  
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Table S2.  Chromatographic and mass spectral data of compounds identified as trimethylsilyl derivatives in fraction II. 

no. compound ident.a RRTb Mc major fragment ions [(m/z), rel. intensity (%)] 

      free fatty acids 

1 C8:0 B 0.182 216 75 (100), 117 (49), 201 (22), 129 (14), 74 (13) 

2 C9:0 B 0.230 230 75 (100), 117 (63), 215 (21), 129 (19), 132 (17) 

4 C12:0 A, B 0.386 272 75 (100), 117 (79), 257 (58), 129 (23), 132 (19) 

6 C14:0 A, B 0.487 300 75 (100), 117 (87), 285 (69), 129 (31), 132 (21) 

7 C15:0 A, B 0.535 314 117 (100), 75 (85), 299 (74), 129 (34), 74 (27) 

9 C16:1 (trans 9) B 0.568 326 75 (100), 79 (44), 117 (38), 311 (31), 129 (23) 

10 C16:1 (cis 9) A 0.575 326 75 (100), 117 (56), 311 (35), 129 (34), 81 (24) 

11 C16:0 A, B 0.582 328 75 (100), 117 (93), 313 (69), 129 (36), 132 (27) 

12 C17:0 A, B 0.625 342 75 (100), 117 (97), 327 (73), 129 (31), 132 (28) 

15 C18:3 A 0.652 350 79 (100), 75 (97), 95 (45), 81 (41), 93 (41) 

16 C18:2 A, B 0.654 352 75 (100), 81 (61), 79 (36), 95 (34), 337 (28) 

17 C18:1 (trans 9) B 0.659 354 75 (100), 117 (55), 129 (39), 339 (36), 145 (28) 

18 C18:1 (cis 9) A, B 0.663 354 75 (100), 117 (62), 339 (49), 129 (37), 81 (27) 

19 C18:0 A, B 0.667 356 75 (100), 117 (97), 341 (77), 129 (38), 132 (30) 

21 ricinoleic acid A, B 0.691 442 187 (100), 73 (68), 75 (18), 188 (15), 103 (15) 

22 C20:1 A, B 0.736 382 367 (100), 73 (96), 117 (79), 75 (77), 129 (75) 

23 C20:0 B 0.746 384 117 (100), 75 (93), 369 (72), 129 (40), 34 (32) 

25 C22:0 A, B 0.820 412 117 (100), 75 (88), 397 (62), 132 (35), 129 (32) 

26 C23:0 A, B 0.854 426 117 (100), 75 (88), 411 (82), 129 (37), 132 (36) 

27 C24:0 A, B 0.888 440 117 (100), 75 (80), 425 (59), 129 (39), 132 (38) 

      

fatty alcohols 

3 C12:0 B 0.345 258 75 (100), 243 (66), 103 (30), 97 (25) 83 (24) 

5 C14:0 A, B 0.448 286 75 (100), 271 (94), 103 (28), 89 (22), 97 (21) 

8 C16:0 A, B 0.544 314 299 (100), 75 (69), 300 (24), 83 (22), 97 (17) 

13 C18:0 A, B 0.633 342 327 (100), 75 (35), 328 (31), 103 (18), 97 (18) 

24 C22:0 A, B 0.790 398 383 (100), 75 (55), 384 (31), 83 (18), 97 (16) 
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Table S2.  (continued) 
 

tocopherols 
28 -tocopherol A, B 0.911 474 474 (100), 475 (42), 208 (36), 209 (31), 210 (16) 

29 γ-tocopherol A, B 0.944 488 488 (100), 490 (51), 223 (49), 222 (28), 224 (12) 

30 α-tocopherol A, B 0.988 502 502 (100), 237 (59), 503 (50), 236 (36), 238 (13) 

      

sterols and triterpenic alcohols 

14 phytol A, B 0.642 368 143 (100), 75 (49), 81 (21), 123 (17), 144 (15) 

20 farnesol B 0.673 294 81 (100), 93 (53), 107 (33), 95 (30), 121 (21) 

31 cholesterol A, B 0.996 458 129 (100), 329 (85), 75 (76), 368 (73), 81 (70) 

32 campesterol A, B 1.029 472 129 (100), 343 (75), 382 (69), 75 (63), 81 (57) 

33 campestanol A, B 1.032 474 207 (100), 215 (84), 75 (74), 73 (53), 216 (46) 

34 stigmasterol A, B 1.037 484 83 (100), 73 (69), 55 (67), 69 (57), 129 (45) 

35 ß-sitosterol A, B 1.055 486 129 (100), 95 (44), 81 (43), 357 (36), 396 (35) 

36 5-avenasterol B 1.059 484 386 (100), 296 (96), 281 (70), 387 (34), 257 (33) 

37 fucosterol B 1.066 484 129 (100), 81 (59), 95 (49), 105 (45), 119 (44) 

38 7-stigmastenol B 1.072 486 75 (100), 255 (71), 487 (63), 95 (48), 107 (46) 

39 cycloartenol A, B 1.074 498 95 (100), 81 (94), 109 (71), 408 (71), 107 (71) 

40 7-avenasterol B 1.075 484 343 (100), 75 (84), 386 (37), 253 (33), 81 (33) 

41 24-methylene-cylcoartanol A, B 1.090 512 95 (100), 81 (94), 107 (76), 93 (68), 75 (64) 

42 citrostadienol B 1.101 498 357 (100), 75 (92), 400 (47), 95 (40), 81 (39) 
 

a Identification according to (A) mass spectral data and retention times of reference compounds or (B) mass spectral  
data of NIST08 mass spectra library. 

b Retention time relative to the internal standard 5α-cholestan-3β-ol  
c Molecular weight of trimethylsilyl derivative  
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Table S3.  Chromatographic and mass spectral data of compounds identified as trimethylsilyl derivatives in fraction III. 

no. compound ident.a RRTb Mc major fragment ions [(m/z), rel. intensity (%)] 

      sugar alcohols 

1 glycerol A, B 0.272 308 73 (100), 205 (63), 147 (57), 103 (29), 117 (28) 

2 xylitol A, B 0.608 512 217 (100), 103 (59), 147 (45), 205 (37), 307 (34) 

3 arabitol B 0.613 512 217 (100), 307 (60), 117 (32), 319 (31), 79 (29) 

4 ribitol B 0.629 512 217 (100), 319 (65). 103 (62), 207 (42), 79 (38) 

8 pinitol A, B 0.705 554 147 (100), 260 (86), 133 (63), 318 (60), 217 (56) 

12 mannitol A, B 0.777 614 319 (100), 205 (51), 217 (35), 147 (32), 320 (29) 

13 sorbitol A, B 0.781 614 319 (100), 205 (57), 217 (54), 147 (45), 320 (33) 

14 chiro-inositol A, B 0.794 612 318 (100), 147 (84), 305 (77), 217 (44), 191 (34) 

16 myo-inositol A, B 0.880 612 305 (100), 217 (86), 191 (60), 318 (58), 147 (48) 

24 ciceritol C 1.647 1310 204 (100), 129 (29), 133 (26), 147 (24), 103 (23) 

      

sugars 

5, 6, 7 fructose A, B 0.684, 0.688, 0.696 900 204 (100), 217 (57), 147 (43), 437 (41), 205 (30) 

9, 11 galactose A, B 0.720, 0.751 540 204 (100), 191 (66), 217 (27), 147 (24), 205 (18) 

10, 15 glucose A, B 0.741, 0.806 540 204 (100), 191 (53), 147 (21), 205 (18), 217 (16) 

17, 18 sucrose A 1.182, 1.188 918 361 (100), 362 (39), 217 (27), 437 (22), 363 (19) 

19 trehalose A 1.244 918 361 (100), 191 (37), 362 (29), 217 (17), 363 (15) 

20 galactopinitol A C 1.251 932 204 (100), 129 (24), 217 (20), 103 (20), 205 (15) 

21 galactopinitol B C 1.288 932 204 (100), 103 (22), 205 (20), 129 (19), 147 (17) 

22 fagopyritol B1 C 1.339 990 204 (100), 217 (25), 129 (24), 205 (20), 103 (15) 

23 raffinose A 1.522 1296 361 (100), 362 (32), 204 (30), 217 (27), 437 (23) 

25 stachyose A 2.038 1674 361 (100), 204 (77), 217 (46), 362 (33), 451 (24) 
 

a Identification according to (A) mass spectral data and retention times of reference compounds, (B) mass spectral data of  
NIST08 mass spectra library or (C) data from a previous study (Frank et al. 2009). 

b Retention time relative to the internal standard phenyl-β-D-glucopyranoside 
c Molecular weight of trimethylsilyl derivative  
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Table S4.  Chromatographic and mass spectral data of compounds identified as trimethylsilyl derivatives in fraction IV. 

no. compound ident.a RRTb Mc major fragment ions [(m/z), rel. intensity (%)] 

      amino acids and amines 

4 alanine A, B 0.261 233 116 (100), 147 (14), 117 (13), 118 (4), 190 (4) 

5, 22 glycine A, B 0.270, 0.451 291 174 (100), 147 (22), 86 (21), 175 (19), 248 (18) 

6 hydroxylamine B 0.281 249 73 (100), 133 (25), 146 (24), 119 (20), 86 (14) 

9 2-aminobutyric acid A, B 0.315 247 130 (100), 131 (12), 147 (11), 132 (4), 204 (3) 

10 ß-alanine A, B 0.326 305 102 (100), 147 (53), 176 (42), 218 (11), 75 (10) 

12 valine A, B 0.356 261 144 (100), 145 (13), 218 (12), 147 (10), 100 (6) 

14 norvaline A, B 0.377 261 144 (100), 145 (14), 147 (10), 146 (5), 75 (5) 

16 leucine A, B 0.410 275 158 (100), 159 (15), 102 (13), 147 (8), 160 (4) 

17 ethanolamine A, B 0.414 277 174 (100), 100 (28), 86 (27), 175 (21), 147 (18) 

19, 35 GABA A, B 0.431, 0.705 319 174 (100), 147 (31), 304 (24), 175 (18), 86 (14) 

20 isoleucine A, B 0.435 275 158 (100), 159 (13), 218 (12), 147 (9), 100 (7) 

26 serine A, B 0.507 321 204 (100), 218 (57), 100 (33), 147 (28), 205 (21) 

28 threonine A, B 0.542 335 219 (100), 117 (94), 218 (89), 101 (50), 291 (41) 
29 ß-aminoisobutyric acid A, B 0.584 319 102 (100), 147 (14), 176 (10), 103 (10), 218 (6) 

30 homoserine A, B 0.612 335 218 (100), 128 (50), 103 (32), 219 (22), 147 (14) 

32 pyroglutamic acid A, B 0.675 273 156 (100), 147 (15), 157 (14), 258 (8), 230 (7) 

33 methionine A, B 0.681 293 176 (100), 128 (97), 147 (19), 177 (18), 219 (12) 

34 aspartic acid A, B 0.689 349 232 (100), 100 (25), 147 (21), 233 (20), 218 (16) 

36 cysteine A, B 0.729 409 220 (100), 218 (82), 100 (31), 147 (21), 221 (19) 

37 glutamic acid A, B 0.804 363 246 (100), 128 (32), 247 (19), 156 (19), 147 (18) 

38 phenylalanine A, B 0.808 309 218 (100), 192 (80), 100 (32), 147 (28), 219 (21) 

39 asparagine A, B 0.857 348 116 (100), 132 (45), 231 (43), 75 (29), 188 (29) 
40 α-aminoadipic acid A, B 0.913 377 260 (100), 217 (61), 128 (35), 261 (26), 147 (22) 
43 citrulline A, B 1.033 391 70 (100), 73 (41), 100 (10), 142 (6), 171 (5) 

47 histidine A, B 1.122 443 154 (100), 254 (27), 155 (21), 255 (6), 156 (5) 

49 lysine A, B 1.150 434 174 (100), 156 (93), 317 (47), 128 (25), 230 (23) 
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Table S4.  (continued) 

50 tyrosine A, B 1.154 397 73 (100), 218 (94), 219 (20), 100 (18), 147 (13) 
52 tryptophan A, B 1.419 420 202 (100), 73 (62), 203 (22), 291 (8), 204 (6) 

      organic and inorganic acids 

1 lactic acid A, B 0.232 234 117 (100), 147 (93), 191 (22), 190 (18), 148 (16) 

2 glycolic acid A, B 0.238 220 147 (100), 177 (20), 148 (17), 149 (11), 205 (10) 

3 threonic acid A, B 0.249 424 73 (100), 147 (65), 292 (56), 220 (26), 205 (26) 

7 pyruvic acid A, B 0.289 248 147 (100), 73 (48), 217 (37), 148 (30), 149 (14) 

8 ß-hydroxybutyric acid A, B 0.301 248 147 (100), 117 (53), 191 (36), 148 (17), 75 (15) 

11 malonic acid B 0.332 248 147 (100), 75 (28), 148 (17), 149 (9), 74 (6) 
13 γ-hydroxybutyric acid A, B 0.365 248 117 (100), 143 (73), 75 (68), 147 (66), 233 (40) 
15 phosphoric acid A, B 0.404 314 299 (100), 300 (23), 314 (18), 301 (14) 133 (8) 

18 maleic acid A, B 0.427 260 147 (100), 73 (52), 148 (23), 245 (13), 75 (13) 

21 succinic acid A, B 0.439 262 147 (100), 73 (57), 148 (35), 247 (32), 75 (25) 

23 glyceric acid A, B 0.471 322 147 (100), 189 (56), 103 (36), 292 (35), 133 (32) 

24 itaconic acid A, B 0.471 274 147 (100), 73 (57), 148 (25), 215 (15), 75 (14) 

25 fumaric acid A, B 0.479 260 245 (100), 147 (46), 73 (39), 246 (28), 143 (18) 
27 2-piperidinecarboxylic acid B 0.511 273 156 (100), 157 (14), 147 (10), 158 (5), 230 (4) 
31 malic acid A, B 0.652 350 147 (100), 148 (21), 75 (13), 245 (12), 149 (11) 

41 aconitic acid A, B 0.942 390 147 (100), 229 (33), 75 (22), 148 (17), 317 (16) 

42 3-glycerophosphoric acid A, B 0.972 474 299 (100), 357 (83), 315 (24).129 (18), 358 (18) 

44 citric acid A, B 1.040 480 273 (100), 147 (87), 247 (29), 347 (26), 375 (24) 

46 syringic acid A, B 1.107 342 327 (100), 73 (73), 312 (70), 297 (68), 342 (63) 

48 p-coumaric acid A, B 1.139 308 219 (100), 293 (96), 249 (74), 308 (73), 75 (46) 

51 mucic acid B 1.290 642 147 (100), 75 (26), 261 (21), 158 (20), 148 (18) 
      
others 

45 adenine A, B 1.061 279 264 (100), 265 (23), 279 (23), 192 (9), 161 (8) 
 

a Identification according to (A) mass spectral data and retention times of reference compounds or (B) mass spectral data of  
NIST08 mass. 
spectra library 

b Retention time relative to the respective internal standard p-chloro-L-phenylalanine 
c Molecular weight of trimethylsilyl derivative 
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Table S5.  Contents of phytic acid and relative peak responses of selected compounds (OPLS-DA VIP > 1.5) found to be statistically 

significantly different between the crossing parents ZXD and TW-1-M-lpa and between homozygous wild-type (HWT) und 

homozygous lpa mutant (HM) F3 and F5 progenies.a,b 

  HWT parent HM parent  F3 progenies  F5 progenies 

  ZXD TW-1-M-lpa  HWT HM  F5-1 HWT F5-1 HM F5-2 HWT F5-2 HM 

phytic acid  16.06 ± 0.07 9.90 ± 0.06  16.96 ± 0.27 8.61 ± 0.03  17.58 ± 0.07 10.64 ± 0.03 13.30 ± 0.09 9.42 ± 0.07 

phosphoric acid  222 ± 7 711 ± 67  224 ± 33 1109 ± 253  133 ± 6 1539 ± 56 253 ± 11 1294 ± 57 
                            

sucrose  3366 ± 73 3058 ± 126  2360 ± 62 3057 ± 67  1802 ± 15 2792 ± 101 2408 ± 130 2904 ± 86 

raffinose  314 ± 14 130 ± 10  398 ± 12 153 ± 4  350 ± 8 129 ± 2 323 ± 9 128 ± 1 

stachyose  367 ± 27 7.9 ± 0.6  286 ± 24 11.0 ± 1.1  251 ± 1 14.0 ± 0.3 219 ± 17 12.6 ± 0.2 

galactopinitol A  76.7 ± 1.4 3.5 ± 0.2  59.9 ± 1.1 6.0 ± 0.2  37.7 ± 1.5 7.2 ± 0.1 27.9 ± 0.5 8.2 ± 0.2 

galactopinitol B  71.8 ± 1.4 4.3 ± 0.3  72.5 ± 1.1 8.9 ± 0.4  43.3 ± 0.8 7.3 ± 0.3 36.1 ± 2.2 7.7 ± 0.3 

myo-inositol  17.4 ± 1.5 11.1 ± 0.9  28.1 ± 2.9 5.5 ± 0.7  32.1 ± 0.8 2.4 ± 0.1 12.3 ± 2.1 2.5 ± 0.1 

ciceritol  5.7 ± 0.2 0.7 ± 0.1  13.1 ± 0.4 0.8 ± 0.1  5.3 ± 0.1 1.8 ± 1.6 4.1 ± 0.7 0.8 ± 0.3 
                            

glycine  14.9 ± 0.8 31.7 ± 4.5  23.5 ± 3.1 60.2 ± 10.6  23.1 ± 0.1 154 ± 1 16.0 ± 0.9 52.1 ± 0.7 

alanine  91.3 ± 1.3 388 ± 55  135 ± 8.5 552 ± 30  147 ± 1 1047 ± 32 141 ± 4 360 ± 6 

valine  17.3 ± 0.4 20.3 ± 3.7  20.9 ± 0.2 38.6 ± 4.3  20.7 ± 0.9 29.9 ± 2.3 20.2 ± 0.4 29.2 ± 2.7 

leucine  12.8 ± 0.1 27.3 ± 2.8  21.9 ± 0.3 40.7 ± 5.7  22.9 ± 1.2 30.7 ± 2.5 26.1 ± 0.3 44.7 ± 3.9 

serine  11.9 ± 0.1 28.3 ± 0.8  14.2 ± 2.8 51.0 ± 8.8  11.9 ± 0.1 132 ± 7 10.5 ± 0.2 34.4 ± 2.3 

homoserine  0.6 ± 0.1 1.9 ± 0.6  2.3 ± 0.2 3.1 ± 0.9  1.7 ± 0.1 6.1 ± 0.3 1.6 ± 0.0 3.3 ± 0.1 

threonine  10.2 ± 0.1 19.2 ± 0.8  9.3 ± 0.6 26.4 ± 4.5  7.9 ± 0.4 41.9 ± 5.9 9.3 ± 0.4 19.9 ± 2.5 

methionine  3.7 ± 0.2 7.4 ± 0.7  6.6 ± 1.2 10.0 ± 1.6  6.2 ± 0.4 19.6 ± 0.4 5.2 ± 0.1 11.0 ± 0.2 

phenylalanine  18.9 ± 0.7 18.6 ± 1.4  21.7 ± 0.5 21.0 ± 0.4  34.7 ± 1.2 13.0 ± 0.9 30.4 ± 3.3 18.4 ± 0.3 

tryptophan  53.9 ± 1.3 89.2 ± 7.7  42.4 ± 3.7 109 ± 12  45.1 ± 0.6 53.6 ± 1.7 38.1 ± 0.5 69.1 ± 0.6 

histidine  13.6 ± 0.5 38.7 ± 2.5  18.9 ± 2.7 72.0 ± 7.8  22.1 ± 0.8 155 ± 10 10.3 ± 1.0 42.0 ± 2.3 

asparagine  2.7 ± 0.3 38.1 ± 4.1  14.9 ± 3.4 56.2 ± 10.4  2.3 ± 0.1 41.4 ± 10.4 1.9 ± 0.6 6.6 ± 0.6 

β-alanine  16.7 ± 0.5 76.5 ± 11.4  15.3 ± 2.1 91.6 ± 12.2  34.6 ± 0.3 250 ± 1 10.7 ± 0.5 99.3 ± 1.9 

citrulline  2.6 ± 0.5 6.3 ± 1.1  3.9 ± 0.7 6.3 ± 0.3  1.9 ± 0.1 6.8 ± 0.8 2.1 ± 0.2 4.1 ± 0.4 

2-aminobutyric acid  0.6 ± 0.2 1.8 ± 0.4  1.4 ± 0.0 3.6 ± 0.4  0.6 ± 0.1 4.3 ± 0.2 0.6 ± 0.1 1.4 ± 0.2 
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Table S5.  (continued) 

GABA  16.7 ± 0.1 165 ± 6  25.2 ± 4.9 117 ± 15  25.3 ± 0.2 116 ± 1 16.0 ± 0.7 62.0 ± 1.5 

                            

citric acid  1118 ± 73 651 ± 22  1084 ± 74 885 ± 138  1013 ± 18 945 ± 66 1352 ± 68 839 ± 94 

syringic acid  13.4 ± 0.5 13.7 ± 0.8  12.1 ± 3.5 17.0 ± 3.8  10.1 ± 0.4 16.6 ± 1.0 10.8 ± 0.3 17.8 ± 0.6 

mucic acid  1.5 ± 0.1 3.6 ± 0.4  2.6 ± 0.2 5.4 ± 1.1  2.5 ± 0.3 7.1 ± 1.6 7.0 ± 1.2 6.5 ± 1.1 

γ-hydroxybutyric acid  0.9 ± 0.2 6.5 ± 0.9  2.0 ± 0.1 4.2 ± 0.3  1.2 ± 0.2 2.2 ± 0.1 1.3 ± 0.0 2.0 ± 0.1 

3-glycerophosphoric acid  3.7 ± 0.4 4.7 ± 0.2  3.2 ± 0.0 7.9 ± 0.5  2.7 ± 0.2 10.5 ± 0.9 3.9 ± 0.3 11.9 ± 0.8 

                            

C20:0 FAME  323 ± 15 521 ± 15  436 ± 8 408 ± 14  427 ± 7 502 ± 8 413 ± 10 491 ± 4 

C24:0 FAME  183 ± 8 380 ± 5  253 ± 6 290 ± 17  292 ± 5 437 ± 12 277 ± 7 410 ± 7 

C26:0 FAME  18.0 ± 0.9 43.2 ± 0.6  23.0 ± 0.6 37.1 ± 2.3  29.0 ± 0.7 52.7 ± 1.3 28.1 ± 0.6 52.7 ± 0.5 

C17:1 FAME  62.7 ± 1.2 100 ± 4  93.7 ± 2.7 107 ± 3  94.3 ± 1.9 134 ± 2 93.2 ± 3.3 133 ± 2 

C20:1 FAME  223 ± 7 609 ± 16  432 ± 11 461 ± 20  475 ± 5 674 ± 18 442 ± 5 643 ± 15 

C22:1 FAME  4.1 ± 0.1 12.1 ± 0.1  7.7 ± 0.0 8.0 ± 0.5  9.3 ± 0.2 16.3 ± 0.3 7.4 ± 0.1 12.5 ± 0.4 

C20:2 FAME  53.1 ± 1.7 29.2 ± 0.8  47.3 ± 0.7 32.8 ± 1.0  45.4 ± 0.6 20.1 ± 1.2 55.6 ± 0.8 33.2 ± 0.4 

                            

C18:2 FFA  2785 ± 231 3828 ± 360  2519 ± 300 2790 ± 352  2316 ± 161 3341 ± 766 2190 ± 63 3396 ± 422 

farnesol  18.1 ± 0.3 124 ± 12  46.9 ± 3.9 61.5 ± 19.0  54.7 ± 3.5 87.6 ± 5.6 50.3 ± 2.6 71.0 ± 4.2 

phytol  27.2 ± 1.1 68.2 ± 2.5  40.2 ± 0.7 56.6 ± 4.4  57.4 ± 3.5 95.3 ± 7.3 49.2 ± 1.6 55.9 ± 1.7 

a The phytic acid contents are expressed in mg/g dry matter. All other metabolites are expressed as relative peak intensities, i.e. metabolite 

peak intensity/(internal standard peak intensity/100). b Values represent means ± standard deviations resulting from the analysis of three 

aliquots of freeze-dried soybean flour.  
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Table S6.  Differences in metabolites in homozygous wild-type (HWT) und 

homozygous lpa mutant (HM) progenies depending on generations (F3 vs. F5) and 

growing seasons (spring 2014 vs. autumn 2015) (p < 0.05).a,b 

  HWT progenies   HM progenies 

  
F3 

spring 2014 
F5-1 

autumn 2015 
F5-2 

autumn 2015  
F3 

spring 2014 
F5-1 

autumn 2015 
F5-2 

autumn 2015 

C11:0 FAME 4.5 ± 0.6 1.0 ± 0.1 0.7 ± 0.1  5.2 ± 0.1 3.0 ± 0.2 2.0 ± 0.8 

C14:0 FAME 185 ± 4 144 ± 2 168 ± 4  168 ± 4 142 ± 0 153 ± 1 

C15:0 FAME 21.8 ± 0.8 15.1 ± 0.3 17.4 ± 1.2  23.7 ± 0.7 16.6 ± 0.3 16.4 ± 0.8 

C26:0 FAME 23.0 ± 0.6 29.0 ± 0.7 28.1 ± 0.6  37.1 ± 2.3 52.7 ± 1.3 52.7 ± 0.5 

C15:1 FAME 16.0 ± 0.4 11.8 ± 0.1 14.4 ± 0.6  23.0 ± 0.8 10.3 ± 0.1 15.2 ± 0.5 

C16:2 FAME 4.1 ± 0.1 2.9 ± 0.0 3.7 ± 0.1  3.9 ± 0.0 2.0 ± 0.1 2.7 ± 0.1 

                    

∆7-stigmastenol 17.0 ± 0.3 37.4 ± 2.8 33.4 ± 1.5  16.7 ± 0.6 34.4 ± 0.6 34.0 ± 2.7 

24-MCA 4.3 ± 0.0 7.6 ± 0.4 7.6 ± 0.2  3.2 ± 0.1 5.5 ± 0.5 5.0 ± 0.2 

campesterol 92.3 ± 2.3 133 ± 4 168 ± 6  88.3 ± 3.0 140 ± 4 130 ± 7 

cholesterol 1.9 ± 0.1 3.7 ± 0.2 4.2 ± 0.3  1.6 ± 0.1 2.8 ± 0.5 3.4 ± 0.3 

stigmasterol 114 ± 2 184 ± 8 197 ± 8  149 ± 3 236 ± 13 248 ± 17 

β-sitosterol 305 ± 1 420 ± 17 489 ± 26  298 ± 7 420 ± 16 427 ± 24 

δ-tocopherol 45.9 ± 1.8 75.4 ± 3.5 71.6 ± 3.6  36.4 ± 1.4 52.1 ± 7.7 54.4 ± 3.1 

                    

arabitol 1.9 ± 0.1 0.8 ± 0.0 0.9 ± 0.0  2.2 ± 0.0 1.0 ± 0.0 1.7 ± 0.0 

glycerol 17.5 ± 1.4 4.0 ± 0.1 4.5 ± 0.1  16.7 ± 0.6 5.5 ± 0.2 6.5 ± 0.0 

mannitol 5.7 ± 0.2 1.3 ± 0.0 2.3 ± 0.1  3.8 ± 0.3 1.8 ± 0.0 2.1 ± 0.1 

pintiol 332 ± 5 138 ± 3 161 ± 10  311 ± 12 249 ± 8 265 ± 8 

ribitol 0.9 ± 0.1 0.4 ± 0.0 0.5 ± 0.0  1.0 ± 0.1 0.5 ± 0.0 0.8 ± 0.0 

sorbitol 16.4 ± 0.5 1.8 ± 0.1 2.1 ± 0.2  19.6 ± 0.4 3.5 ± 0.1 3.5 ± 0.1 

                    

fructose 3.8 ± 0.1 1.5 ± 0.1 2.0 ± 0.6  4.7 ± 0.1 1.6 ± 0.1 2.0 ± 0.0 

raffinose 398 ± 12 350 ± 8 323 ± 9  153 ± 4 129 ± 2 128 ± 1 

                    

cysteine 0.7 ± 0.2 1.8 ± 0.1 1.7 ± 0.1  1.3 ± 0.2 2.5 ± 0.1 2.5 ± 0.2 

glutamic acid 182 ± 23 244 ± 2 263 ± 6  273 ± 19 432 ± 10 382 ± 6 

lysine 8.0 ± 1.9 1.6 ± 0.2 1.9 ± 0.2  4.3 ± 1.0 0.7 ± 0.2 1.3 ± 0.2 

tyrosine 21.1 ± 0.1 15.0 ± 0.3 14.1 ± 0.8  20.7 ± 0.8 9.3 ± 0.2 11.1 ± 1.0 

norvaline 3.4 ± 0.7 1.3 ± 0.1 1.2 ± 0.1  4.1 ± 0.5 1.6 ± 0.0 1.8 ± 0.1 

ethanolamine  25.6 ± 6.5 4.6 ± 0.2 7.7 ± 0.6  18.6 ± 4.1 7.8 ± 1.7 8.1 ± 1.1 

                    

p-coumaric acid 1.0 ± 0.2 1.5 ± 0.1 2.2 ± 0.1  1.0 ± 0.1 1.6 ± 0.1 1.6 ± 0.1 

malonic acid 19.1 ± 2.1 10.0 ± 0.2 8.6 ± 0.9  35.3 ± 4.9 11.0 ± 0.9 6.8 ± 0.6 

pyruvic acid 1.2 ± 0.2 1.7 ± 0.1 1.7 ± 0.1  1.0 ± 0.1 1.9 ± 0.0 1.6 ± 0.2 

β-hydroxybutyric acid 0.8 ± 0.1 1.9 ± 0.0 2.1 ± 0.2  0.8 ± 0.1 2.1 ± 0.1 1.9 ± 0.3 

γ-hydroxybutyric acid 2.0 ± 0.1 1.2 ± 0.2 1.3 ± 0.0  4.2 ± 0.3 2.2 ± 0.1 2.0 ± 0.1 

a All metabolites are expressed as relative peak intensities, i.e. metabolite peak intensity/(internal 

standard peak intensity/100). b Values represent means ± standard deviations resulting from the 

analysis of three aliquots of freeze-dried soybean flour.  
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