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Abstract

The accurate quantification of cellular and mitochondrial bioenergetic activity is of great

interest in medicine and biology. Mitochondrial stress tests performed with Seahorse Biosci-

ence XF Analyzers allow the estimation of different bioenergetic measures by monitoring

the oxygen consumption rates (OCR) of living cells in multi-well plates. However, studies of

the statistical best practices for determining aggregated OCR measurements and compari-

sons have been lacking. Therefore, to understand how OCR behaves across different bio-

logical samples, wells, and plates, we performed mitochondrial stress tests in 126 96-well

plates involving 203 fibroblast cell lines. We show that the noise of OCR is multiplicative,

that outlier data points can concern individual measurements or all measurements of a well,

and that the inter-plate variation is greater than the intra-plate variation. Based on these

insights, we developed a novel statistical method, OCR-Stats, that: i) robustly estimates

OCR levels modeling multiplicative noise and automatically identifying outlier data points

and outlier wells; and ii) performs statistical testing between samples, taking into account

the different magnitudes of the between- and within-plate variations. This led to a significant

reduction of the coefficient of variation across plates of basal respiration by 45% and of max-

imal respiration by 29%. Moreover, using positive and negative controls, we show that our

statistical test outperforms the existing methods, which suffer from an excess of either false

positives (within-plate methods), or false negatives (between-plate methods). Altogether,

this study provides statistical good practices to support experimentalists in designing, ana-

lyzing, testing, and reporting the results of mitochondrial stress tests using this high through-

put platform.
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Introduction

Mitochondria are double-membrane-enclosed, ubiquitous, maternally inherited organelles

present in most eukaryotic cells [1]. They are known as the powerhouse of the cell [2,3] due to

their pivotal function in the cellular energy supply where adenosine triphosphate (ATP) is gen-

erated by the mitochondrial respiratory chain in a process referred to as oxidative phosphory-

lation. Furthermore, mitochondria are involved in regulating reactive oxygen species [4],

apoptosis [2], amino acid synthesis [5,6], cell proliferation [6], cell signaling [7], and in the reg-

ulation of innate and adaptive immunity [8]. A decline in mitochondrial function, reflected by

a diminished electron transport chain activity, is related to many human diseases ranging

from rare genetic disorders [9] to common ones such as cancer [7,10], diabetes [11], neurode-

generation [12], and aging [3]. One of the most informative tests of mitochondrial function is

the quantification of cellular respiration, since it directly reflects electron transport chain

impairment [9] and depends on many sequential reactions from glycolysis to oxidative phos-

phorylation [13]. One of the last steps of cellular respiration is the oxidation of cytochrome c

in complex IV, which reduces oxygen to form water. Therefore, the estimations of oxygen con-

sumption rates (OCR) expressed in pmol/min enable drawing conclusions about the ability to

synthesize ATP and about mitochondrial function, even more than the measurements of inter-

mediates (such as ATP or nicotinamide adenine dinucleotide NADH) and potentials [14,15].

OCR was classically measured using a Clark-type electrode, which is time-consuming, lim-

ited to whole cells in suspension and high yield, and does not allow the automated injection of

compounds [15]. In addition, experimentation with isolated mitochondria is ineffective

because the cellular regulation of mitochondrial function is removed during isolation [16]. In

the last few years, a new technology that calculates O2 concentrations from fluorescence [17]

in a microplate assay format has been developed by the company Seahorse Bioscience (now

part of Agilent Technologies) [18]. It allows simultaneous real-time measurements of both

OCR and extracellular acidification rate (ECAR) in multiple cell lines and conditions, reducing

the amount of required sample material and increasing the throughput [18,19].

Typically, OCR and ECAR are measured using the Seahorse XF Analyzer in 96-well (or

24-well) plates at multiple time steps under three consecutive treatments (Fig 1), in a proce-

dure known as a mitochondrial stress test [20]. Under basal conditions, complexes I–IV

exploit energy derived from electron transport to pump protons across the inner mitochon-

drial membrane. The proton gradient generated in this manner is subsequently harnessed by

complex V to generate ATP. The blockage of the proton translocation through complex V by

injecting oligomycin represses ATP production and prevents the electron transport through-

out complexes I–IV due to the unexploited gradient, thus, generating ATP-ase independent

OCR only (Fig 1A and 1B). The administration of carbonyl cyanide-4-(trifluoromethoxy)phe-

nylhydrazone (FCCP), an ionophor, subsequently dissipates the gradient uncoupling electron

transport from complex V activity and increasing oxygen consumption to a maximum level

(Fig 1A and 1B). Finally, mitochondrial respiration is completely halted using rotenone, a

complex I inhibitor. There is still some remaining oxygen consumption that is independent

from electron transport chain activity (Fig 1A and 1B). This approach is label-free and non-

destructive, so the cells can be retained and used for further assays [21].

OCR differences in the natural scale between the various stages of this procedure lead to the

estimation of six different bioenergetic measures: basal respiration, proton leak, non-mito-

chondrial respiration, ATP-linked respiration, spare respiratory capacity, and maximal respi-

ration [15,19] (Table 1). An increase in proton leak and a decrease in basal or maximal

respiration are indicators of mitochondrial dysfunction [15]. In addition, ATP-linked respira-

tion, basal respiration, and spare capacity change in response to ATP demand, which is not

Estimation and statistical testing of respiration activities

PLOS ONE | https://doi.org/10.1371/journal.pone.0199938 July 11, 2018 2 / 18

Research, LSK), the German Research Foundation

(DFG) and the Technical University of Munich

(TUM) in the framework of the Open Access

Publishing Program. A Fellowship through the

Graduate School of Quantitative Biosciences

Munich (QBM) supports VAY. HP is supported by

EU FP7 Mitochondrial European Educational

Training Project (317433). JG, VAY, LSK and RK

and HP are supported by EU Horizon2020

Collaborative Research Project SOUND (633974).

We thank the Cell lines and DNA Bank of Pediatric

Movement Disorders and Mitochondrial Diseases

of the Telethon Genetic Biobank Network

(GTB09003).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0199938


necessarily mitochondrion-related as it may be the consequence of the dysregulation of any

cellular process altering general cellular energy demand. Then, these bioenergetic measures

are typically used to test two samples or conditions against each other.

The existing literature describing the Seahorse technology addresses experimental aspects

regarding sample preparation [22,23], the number of cells to seed [23,24], and compound con-

centration in different organisms [13,22,25]. However, studies regarding statistical best prac-

tices for determining OCR levels and testing them against others are lacking. The sole

definition of bioenergetic measures varies between authors, as well as the number of time

points in each interval (usually three time points, but in some cases one [26], two [27], or four

or more [11]), and whether differences [6,13,28], ratios [12,29], or both [24,25] should be

Fig 1. Principle of the mitochondrial stress test assay. (A) Cartoon illustration of OCR levels (y-axis) versus time (x-axis). Injection of the three compounds

oligomycin, FCCP, and rotenone delimits four time intervals within each of which OCR is roughly constant. (B) Targets of each compound in the electron transport

chain. (C) Typical layout of a mitochondrial stress test 96-well plate.

https://doi.org/10.1371/journal.pone.0199938.g001

Table 1. OCR ratios, abbreviations, definitions, metrics, and analogous definitions.

OCR ratios Abbr. Definition Metrics Analogous in literature

ETC-dependent OCR

proportion

E/I-

proportion

Proportion of OCR in the ETC with respect to the initial

OCR

OCR1 � OCR4

OCR1
¼ 1 � exp yEi � yIð Þ Basal respiration: OCR1–

OCR4

ATPase-dependent OCR

proportion

A/I-

proportion

Proportion of OCR driven from ATPase proton pumping

with respect to the initial OCR

OCR1 � OCR2

OCR1
¼ 1 � exp yAi � yIð Þ ATP-linked respiration:

OCR1–OCR2

ETC-dependent proportion of

ATPase-independent OCR

E/Ai-

proportion

Proportion of OCR in the ETC, but not driven from

ATPase proton pumping, with respect to all non ATPase

driven OCR

OCR2 � OCR4

OCR2
¼ 1 � exp yEi � yAið Þ Proton leak: OCR2–OCR4

Maximal over initial OCR fold

change

M/I-fold

change

Ratio between maximal OCR and initial OCR OCR3

OCR1
¼ exp yM � yIð Þ Spare respiratory

capacity: OCR3–OCR1

Maximal over ETC-

independent OCR fold change

M/Ei-fold

change

Ratio between maximal OCR and non-ETC driven OCR OCR3

OCR4
¼ exp yM � yEið Þ Maximal respiration:

OCR3–OCR4

Not defined as a ratio NA NA NA Non-mitochondrial

respiration: OCR4

Proposed definitions for cellular bioenergetics based on ratios, their abbreviations, equations to compute them and analogous measures used in the literature. OCRi and

θi correspond to the expected OCR value on time interval i in the natural and logarithmic scale, respectively (Fig 1A).

https://doi.org/10.1371/journal.pone.0199938.t001
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computed. Consequently, the comparison of results across studies is difficult. Moreover, often,

statistical power analyses for experimental design are not provided. The differences in OCR

between biological samples (e.g. patient vs. control, or gene knockout vs. WT) can be as low as

12%–30% [30–32]. Therefore, to design experiments with appropriate power to significantly

detect such differences, it is important to know the source and amplitude of the variation

within each sample, and to reduce it as much as possible.

We performed and analyzed a large dataset of 126 experiments in 96-well plate format

involving 203 different fibroblast cell lines, out of which 26 were seeded in more than one plate

(S1 Table). The large number of between-plate and within-plate replicates allowed us to statis-

tically characterize the nature and magnitude of systematic and random variations in these

data. We developed a statistical procedure called OCR-Stats, to extract robust and accurate

oxygen consumption rates for each well, which translates into robust summarized values of the

multiple replicates within and between plates. The OCR-Stats algorithm includes automatic

outlier identification and controls for well and plate-interval effects, which led to a significant

increase in accuracy over state-of-the-art methods.

Systematic and random variations were found to be multiplicative. This motivated us to

establish bioenergetic measures based on differences in the logarithmic scale that translate into

ratios and proportions in the natural scale: ETC-dependent OC proportion, ATPase-depen-

dent OC proportion, ETC-dependent proportion of ATPase-independent OC, and maximal

over initial OC fold change (Table 1).

Using an automatic outlier detection approach, we provide estimators for each instance

and show empirically that they are normally distributed. This permitted the use of linear

regression models for assessing the statistical significance of bioenergetic measure compari-

sons between two biological samples. Using positive and negative controls from individuals

known to have mitochondrial respiratory defects, we show that OCR-Stats outperforms the

currently used statistical tests, which suffer from an excess of either false positives (within-

plate methods) or false negatives (between-plate methods).

Furthermore, our study provides experimental design guidance by i) showing that

between-plate variation largely dominates within-plate variation, implying that it is important

to seed the same cell lines in multiple plates, and ii) providing estimates of variances within

and between plates for each bioenergetic measure allowing for statistical power computations.

A free and pose source implementation of OCR-Stats in the statistical language R is provided

at github.com/gagneurlab/OCR-Stats.

Results

Experimental design and raw data

We measured the OCR, the ECAR, and the cell number of 203 dermal fibroblast cultures

derived from patients suspected to suffer from rare mitochondrial diseases and control cells

from healthy donors (normal human dermal fibroblasts: NHDF, Materials and methods, S1

Table). These were assayed in 126 plates, all using the same protocol (Materials and methods).

Twenty-six cell lines were grown independently and were measured in multiple plates. We will

refer to these growth replicates as different biological samples. The NHDF cell line was seeded

in all the plates for the assessment of potential systematic plate effects. The corners of each

plate were left as blank, that is, filled with media but not with cells, to control for changes in

temperature [22]. One common layout of a plate is depicted in Fig 1C, showing how each bio-

logical sample is present in many well replicates. We seeded between 3 and 7 biological sam-

ples per plate (median = 4). This variation reflects typical set-ups of experiments in a lab

performed over multiple years. Then, we used the standard mitochondrial stress test assay [20]
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leading to four time intervals, with three time points each, denoted by Int1 (before adding any

treatment), Int2 (after oligomycin), Int3 (after FCCP), and Int4 (after rotenone) (Fig 1A). In

addition, we flagged wells that did not react as expected to the treatments and discarded them

from the statistical analysis (Materials and methods).

Variations between replicates within plates

Fig 2A shows representative replicate time series, with data from 12 wells for one biological

sample in a single plate depicting commonly observed variations.

First, outlier data points occurred frequently. We distinguished two different types of outli-

ers: entire series for a well (e.g., well G5 in Fig 2A) and individual data points (e.g., well B6 at

time point 6 in Fig 2A). In the latter case, eliminating the entire series for well B6 would be too

restrictive and would result in the loss of valuable data from the other 11 valid time points.

Therefore, methods for detecting outliers taking these two possibilities into consideration

must be devised.

Second, we noticed a proportional dependence of OCR value and standard deviation

between replicates (Fig 2B), suggesting that the error is multiplicative. Unequal variance, or

Fig 2. OCR behavior over time. (A) Typical time series replicates inside a plate. Behavior of OCR expressed in pmol/min (y-axis) of Fibro_VY_017 over time (x-axis).

Colors indicate the row and shape the column of 12-well replicates. Variation increases for larger OCR values, OCR has a systematic well effect, and there are two types

of outliers: well-level and single-point. (B) Scatterplot of standard deviation (y-axis) vs. mean (x-axis) of all three time replicates of each interval, well, and plate of OCR

of NHDF only shows a positive correlation (n = 409). (C) The same as (B) but for the logarithm of OCR, where the correlation disappears.

https://doi.org/10.1371/journal.pone.0199938.g002
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heteroscedasticity, can strongly affect the validity of statistical tests and the robustness of esti-

mations. Therefore, we propose modeling OCR on a logarithmic scale, where the dependence

between the variance and the mean disappears (Fig 2B and 2C). The activities of respiratory

chain enzymes such as NADH-ubiquinone reductase also obey log-normal distributions [33].

Third, we observed systematic effects in OCR between wells (e.g., OCR values of well C6

are among the highest, while OCR values of well B5 are among the lowest at all the time points;

Fig 2A). Variations in cell number, initial conditions, treatment concentrations, or fluoro-

phore sleeve calibration can lead to systematic differences between wells, which we refer to

as well effects. To investigate whether well effects could be corrected using cell number to a

large extent as in [26], we counted the number of cells after the experiments using Cyquant

(Materials and methods). As expected, the median OCR for each interval grows linearly with

cell number measured at the end of the experiment (Spearman’s rho between 0.32 and 0.47,

P< 2.2×10−16, S1A Fig). However, the relationship is not perfect, reflecting important addi-

tional sources of variations and also possible noise in measuring the cell number. Strikingly,

dividing OCR by cell count led to a higher coefficient of variation (standard deviation divided

by the mean) between the replicate wells than without that correction (S1B Fig). This analysis

showed that normalization by the division of raw cell counts is insufficient and motivated us

to derive another method to capture well effects. Finally, we found that sex does not signifi-

cantly associate with OCR levels (S2 Fig), in agreement with [34].

A statistical model for OCR within plates

Building on these insights, we introduced a statistical model for OCR within plates. For a

given plate, we modeled the logarithm of OCR yw,t of well w at time point t = 1,. . .,12 as a sum

of time interval effects, well effects, and noise, that is:

yw;t ¼ ybiosampleðwÞ;intervðtÞ þ bw þ εw;t; ð1Þ

where θbiosample(w),interv(t) is the time interval effect of the biological sample in well w for inter-

val interv(t) = 1,. . .,4 of time point t (Fig 1A), βw is the relative effect of well w compared to the

reference well, and εw,t is the error.

We now present the OCR-Stats algorithm. For a given plate:

1. Fit the log linear model from Eq (1) using the least squares method, which consists of mini-

mizing ∑w∑t(yw,t − θbiosample(w),interv(t) – βw)2, thus, obtaining the estimates ŷbiosampleðwÞ;intervðtÞ

(which correspond to: θI, θAi, θM, θEi; Fig 1A) and b̂w.

2. For each well w and time point t in interval i, compute the log OCR well deviations:

dw;t ¼ yw;t � ŷbiosampleðwÞ;intervðtÞ �
1

n

P
w b̂w, which is used to identify both the well and the sin-

gle point outliers (Materials and methods, S3 Fig).

3. Identify and remove well level outliers (Materials and methods). Fit again, iteratively, until

no more are found (S3A and S3B Fig).

4. Identify and remove single point outliers (Materials and methods). Fit again, iteratively,

until no more are found (S3C and S3D Fig).

5. Compute the ratio-based metrics (Table 1), or scale back to natural scale in order to com-

pute the bioenergetic measures [e.g.: Basal respiration ¼ expðŷ1Þ � expðŷ4Þ].

Note that the well effect is modeled independently for each plate, that is, it corresponds to

the effect of a well of a given plate and not to the effect of a well position shared across plates.
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We investigated whether there were positional effects and found that OCR measurements are

lower in the edges by a median of up to 13.1% (S4A and S4B Fig). However, these positional

effects were consistent across intervals (S4A and S4B Fig). Consequently, these positional

effects are to a large extent canceled (S4C and S4D Fig) when using the metrics that we suggest

(Table 1) because they involve differences of log OCRs. One exception was row A, where

median differences of up to 2.2% were observed for the ETC-dependent OCR proportion and

for the maximal over initial OCR fold change (S4C and S4D Fig). Practitioners could avoid all

four edges and not only the four corners as typically done. However, these systematic devia-

tions are small compared to the amplitude of biological effects typically investigated (not less

than 12%–30% [30–32]). Altogether, this approach led to coefficients of variation between

wells of the same plate of 11%, 14%, 13%, and 17% for intervals 1, 2, 3 and 4 respectively

(Materials and methods).

Variations between plates

After analyzing the OCR variation among the wells inside plates, we aimed to study the varia-

tion across multiple plates. Using data from the controls NHDF, we found that the variability

between plates in all the intervals is much larger than that between wells (S2 Table and S5 Fig).

Variations between plates can arise, for example, due to differences in temperature, seeding

time, growth time, growth medium, or sensor cartridge [13]. Moreover, treatment efficiencies

can also vary between plates, but independently from each other. For example, the concentra-

tion of rotenone may differ in one plate. That would affect the OCR measurements of all the

wells in that plate, but only in time interval 4.

Next, we investigated whether our assumption of systematic plate-interval effects held. We

indeed observed a similar increase in OCR in interval 1 on both biological samples on plate

#20140430 with respect to plate #20140428 (Fig 3A). To test whether this tendency held across

the repeated biological samples, we compared all the replicate pairings with their respective

NHDF controls and found a positive correlation in all the time intervals (Fig 3B), suggesting a

plate-interval effect. These observations show the importance of basing conclusions from

observations across multiple plates and for seeding a control cell line on every plate.

Statistical testing for the comparison of biological samples across plates

We then set up to devise a model to statistically assess difference in OCR ratios between two

biological samples across multiple plates. Since there is a remaining systematic effect across

intervals at the plate level (Fig 3C) and because of the plate-interval effects, we recommend

using ratios of OCR levels (i.e. differences in the logarithmic scale) (Table 2).

Subsequently, for any given OCR ratio (e.g., M/Ei-fold change, Tables 1 and 2), we test the

differences of the OCR log-ratios ΔΔθ of a biological sample b versus a control c using the fol-

lowing linear model:

DDyb;p ¼ mb þ �b;p; ð2Þ

where ΔΔθb,p is one OCR log-ratio difference of interest (Table 2) inside a plate p. We fit this

model over our complete dataset using linear regression, thus obtaining one value m̂b per OCR

ratio and biological sample b. Then, we tested these against the null hypothesis μb = 0 to com-

pute p-values and confidence intervals (Materials and methods). Fitting the linear model of

Equation (Eq 2) over the complete dataset gives a robust estimate of the standard deviation of

the error term. Applying this approach, we found no evidence against the normality and

homoscedasticity assumption of OCR-Stats as the quantile-quantile plots of the residuals

aligned well along the diagonal (Fig 4A and S6 Fig).
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Benchmark

We applied OCR-Stats statistical testing, Extreme Differences plus Wilcoxon test within each

plate (within-plate ED), and Extreme Differences plus Wilcoxon test across plates (across-

plate ED) to obtain the M/Ei-fold change and maximal respiration (MR) of all of the 26 cell

lines that were seeded in more than one plate (Materials and methods). For every approach,

we computed p-values for significant fold changes against the controls. Six of these cell lines

are derived from patients with rare variants in genes associated with an established cellular

respiratory defect, allowing the assessment of the sensitivity (or statistical power) of each

approach (S3 Table, [35–39]). Additionally, two cell lines (#73901 and #91410) repeatedly

showed no significant respiratory defects in earlier studies and served as negative controls

[40,41].

Fig 3. Plate-interval effect. (A) Log of OCR in interval 3 (y-axis) for the cell lines #65126 and NHDF (x-axis), which were seeded in two different plates (color-coded).

The similar increase in OCR from plate #20140128 to #20140430 in both biological samples suggests that there is a systematic plate-interval effect. (B) Scatterplots of

the differences of the logarithm of OCR levels Δθ of all possible 2 by 2 combinations of repeated biological samples across experiments (y-axis) against their respective

controls (NHDF) (x-axis) showing that there is a positive correlation (I1: ρ = 0.64, P< 2.3×10−8, I2: ρ = 0.65, P< 1.2×10−8, I3: ρ = 0.52, P< 1.2×10−5, I4: ρ = 0.64,

P< 1.4×10−8), confirming a systematic plate-interval effect (n = 63). (C) Scatterplot of the difference of log OCR levels Δθ of all the biological samples vs. their

respective control (both axes) of every interval with respect to another. All the differences Δθ correlate with each other even after removing the plate-interval effect (by

subtracting control values).

https://doi.org/10.1371/journal.pone.0199938.g003

Table 2. OCR ratio-based differences for statistical testing.

OCR ratios Tested differences ΔΔθ
E/I-proportion (θI,b – θEi,b) – (θI,c – θEi,c)

A/I-proportion (θI,b – θAi,b) – (θI,c – θAi,c)

E/Ai-proportion (θAi,b – θEi,b) – (θAi,c – θEi,c)

M/I-fold change (θM,b – θI,b) – (θM,c – θI,c)

M/Ei-fold change (θM,b – θEi,b) – (θM,c – θEi,c)

For each OCR ratio from Table 1, we present the differences ΔΔθ to be used when testing a biological sample b
against a control c on each plate.

https://doi.org/10.1371/journal.pone.0199938.t002
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The within-plate ED method reported significantly higher or lower MR for 56 out of 69

(81.2%) biological samples with respect to the control (Fig 4B and S3 Table). Moreover, the

within-plate ED method reported one or more significant differences for all the 26 cell lines,

and one or more non-significant differences for 11 cell lines (Fig 4B). For two cell lines, the

within-plate ED method returned significant differences with opposite signs (cell lines #78661,

#83109, Fig 4B). These ambiguous results show the importance of testing using multiple plates

and suggest the need for a more robust approach than the within-plate ED. One approach to

evaluate samples measured in multiple plates is to perform a Wilcoxon test on the ED values

averaged per plate (across-plate ED, Materials and methods). However, this requires at least

five plate replicates in order to obtain significant results. Here, one cell line only, #78661, was

found to have significantly impaired OCR in this way. For these data, OCR-Stats was much

more conservative than within-plate ED and found only 7 out of 26 (26.9%) cell lines to have

aggregated significantly lower M/Ei-fold change than the control, including all six positive

control cell lines (Fig 4B and 4C, and S3 Table). Moreover, OCR-Stats did not report signifi-

cant M/Ei-fold changes for the two negative controls.

Furthermore, we computed the coefficient of variation (standard deviation divided by

mean) of the six bioenergetic measures in the natural scale (Table 1) of all the repeated biologi-

cal samples across plates for the following methods: i) the default Extreme Differences (ED)

method (Materials and methods) provided by the vendor, ii) the log linear (LL) corresponding

to steps 1 and 2 of the OCR-Stats algorithm, iii) complete OCR-Stats (LL + outlier removal),

and iv) OCR-Stats after correcting for plate effect (OCR-PE) using Eq (4) (Materials and

Fig 4. Statistical testing of M/Ei-fold change patient vs. control on multiple plates. (A) Ratio of M/Ei-fold change (y-axis) of all the cell lines repeated across plates

(x-axis) and their respective controls, sorted by the p-value obtained using the OCR-Stats method. Left of the red dashed line are cell lines with significantly lower M/

Ei-fold change using OCR-Stats. Dots in orange represent biological samples with significantly lower or higher M/Ei-fold change using the ED method. Highlighted

positive (+) and negative (–) controls. (B) Similar to (A), but depicting the p-value in logarithmic scale (y-axis) using OCR-Stats. Red dashed line at P = 0.05. Dots in

red represent cell lines with significantly lower M/Ei-fold change using the OCR-Stats method. (C) Quantile-quantile theoretical (x-axis) vs. observed (y-axis) plot of

the residuals �b,p of the linear model (2) applied to M/Ei-fold change. Points are lying on the diagonal as expected from normally distributed residuals.

https://doi.org/10.1371/journal.pone.0199938.g004
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methods). Each step contributed to a decrease in the coefficient of variation, obtaining a final

significant reductions of 45% and 29% in basal and maximal respiration, respectively, from

plate-corrected OCR-Stats (OCR-PE) with respect to ED (P< 0.012, one-sided Wilcoxon test)

(Fig 5). Taken together, these results show that OCR-Stats successfully identifies and decreases

the variation within and between plates, providing more stable testing results, which translates

into fewer false positives.

Power analysis

Finally, we investigated the statistical power of OCR-Stats in this dataset. Specifically, we are

interested in determining the minimum relative differences our method is able to significantly

detect, and the minimal number of well replicates needed. We subsetted the number of wells

of the repeated biological samples to 4, 6, 8, 10, 12, 14, and 16 wells on each plate, and used the

OCR-Stats algorithm (including outlier removal) and statistical testing to obtain the residuals

�b,p and their standard deviation (Fig 6). Assuming three plates per comparison and 16 wells

per plate, these standard deviations allow detecting relative differences of 10% to 15% depend-

ing on the considered log OCR ratios differences for significance level of 5% (Fig 6, right y-

axis, Materials and methods). Relative differences of 10% to 15% are in line with reported

detected variations in the literature which we found to be as low as 12%-30% [30–32]. This

analysis also suggests to seed at least 12 wells per biological sample per plate, since we observed

increased standard deviations of the residuals for numbers of wells smaller than 12. Note that

this power calculation is based on measurements performed in our laboratory only. Other lab-

oratories might have larger or smaller measurement variations. Nonetheless, our procedure

could be used as a guideline for power calculation.

Discussion and conclusion

Mitochondrial studies using extracellular fluxes, specifically the XF Analyzer from Seahorse,

are gaining popularity and are finding their way into diagnostics; therefore, it is of paramount

importance to have an appropriate statistical method to estimate the OCR levels from the raw

Fig 5. Benchmark using coefficient of variation. Coefficient of variation (CV = standard deviation/mean, y-axis) of

replicates across experiments (n = 26) using different methods (x-axis) to estimate the six bioenergetic measures. In all,

except for Spare Capacity, OCR-Stats with plate-interval effect showed significantly lower variation with respect to the

Extreme Differences method. P-values obtained from one-sided paired Wilcoxon test.

https://doi.org/10.1371/journal.pone.0199938.g005
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data. Here, we have developed such a model, the OCR-Stats algorithm, which includes

approaches to control for well and plate-interval effects, and automatic outlier identification.

We found that dividing cellular OCR by cell number involved the introduction of more

noise than was seen for uncorrected data. Here, we always seeded the same number of cells.

Hence, the variations across wells that we observed in the cell number at the end of the experi-

ments are largely overestimated by noise in the measurements. In other experimental settings

in which different numbers of cells are seeded, we suggest the inclusion of an offset term to the

model in Eq (1) equal to the logarithm of the seeded cell number to control for this variation

by design. In addition, the Seahorse XF Analyzer can be used on isolated mitochondria and on

isolated enzymes, where a normalization approach is to divide OCR by mitochondrial proteins

or enzyme concentration [42]. However, as described here for cellular assays, robust normali-

zation procedures require careful analysis.

We demonstrated that OCR comparisons should be performed using ratios rather than

using differences, and that the cell lines must be seeded on the same plate, as this eliminates

sources of variation like cell number, and well positional and plate-interval effects. We intro-

duced a linear model, the OCR-Stats statistical testing, and showed that the results agree with

previous results of patients diagnosed with mitochondrial disorders. We showed that the varia-

tion in differences of OCR log-ratios ΔΔθb,p for the same biological sample across plates is

large, and that, consequently, samples should be seeded in multiple plates. Note that a contam-

inated sample can increase the variability, affecting the significance of all the other samples.

Therefore, it is important to detect such samples and to exclude them from further analysis. By

doing power analysis, we showed that our method is able to detect relative differences of 10% -

15%, and that the minimum number of well replicates per biological sample in a 96-well plate

should be 12.

We encourage users to consider all five metrics (Table 1). Severely affected cell lines with

strongly reduced E/I-proportion might not necessarily show a clear effect on M/Ei-fold

change. For example, cell line #73387 was found to have a lower, but not significantly

(P< 0.10), M/Ei-fold change (the most common metric used throughout the literature, Fig 4C

and S3 Table), but when analyzing its E/I proportion, we found that it was significantly lower

Fig 6. Power analysis. Standard deviation of the residuals from the model in Eq (2) (left y-axis) against number of

wells per biological sample and per plate (x-axis) for each OCR log-ratio difference (Table 1). The right y-axis

corresponds to the minimal detectable relative differences using three plates at 5% significance level (Materials and

methods). For every number of wells, the 10 data points correspond to each of the 10 random samplings without

replacement of the wells per biological sample and per plate.

https://doi.org/10.1371/journal.pone.0199938.g006
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than the control (P< 1.2×10−7). This result is consistent with its genetic diagnosis, a homozy-

gous loss of function variant in the PET100 gene, which is involved in biogenesis of mitochon-

drial complex IV (S1 Table, [43]).

In principle, OCR-Stats should be able to estimate ECAR levels. To guarantee that the

method is indeed applicable, similar analyses as performed here should be done beforehand.

Preliminary investigations suggest that the nature of noise (outliers, multiplicative) is similar

to that for OCR.

Materials and methods

Biological material

All the biological samples were derived from primary fibroblast cell lines of humans suffering

from rare mitochondrial diseases, established in the framework of the German and European

networks for mitochondrial disorders mitoNet and GENOMIT. All the individuals or their

guardians provided written informed consent for their cell lines to be used for evaluation and

testing, in agreement with the Declaration of Helsinki and approved by the ethical committees

of the centers participating in this study. All the assays were performed in accordance with the

local approval of the ethical committee of the Technical University of Munich. The controls

are primary patient fibroblast cell lines, normal human dermal fibroblasts (NHDF) from neo-

natal tissue, commercially available from Lonza, Basel, Switzerland.

Measure of extracellular fluxes using Seahorse XF96

We seeded 20,000 fibroblast cells in each well of a XF 96-well cell culture microplate in 80 ml

of culture medium, and incubated them overnight at 37˚C in 5% CO2. The four corners were

left only with medium for background correction. The culture medium was replaced with 180

ml of bicarbonate-free DMEM and cells were incubated at 37˚C for 30 min before measure-

ment. Oxygen consumption rates (OCR) were measured using an XF96 Extracellular Flux

Analyzer [20]. OCR was determined at four levels: with no additions, and after adding oligo-

mycin (1 μM), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP, 0.4 μM), and

rotenone (2 μM) (additives purchased from Sigma at highest available quality). After each

assay, manual inspection was performed on all wells using a conventional light microscope.

The wells for which the median OCR level did not follow the expected order, namely, median

[OCR(Int3)] > median[OCR(Int1)] > median[OCR(Int2)] > median[OCR(Int4)] (Fig 1A),

were discarded (977 wells, 10.47%). It is important to note that other cell lines, or cell lines

under certain conditions, may not react as expected to the standard treatments; therefore, they

should not be discarded. In addition, we excluded contaminated wells and wells in which the

cells got detached (461 wells, 4.94%) from the analysis. All the raw OCR data are available in

S4 Table.

Cell number quantification

The cell number was quantified using the CyQuant Cell Proliferation Kit (Thermo Fisher Sci-

entific, Waltham, MA, USA), according to the manufacturer’s protocol. In brief, the cells were

washed with 200 μL PBS per well and frozen in the microplate at -80˚C to ensure subsequent

cell lysis. The cells were thawed and resuspended vigorously in 200 μL of 1x cell-lysis buffer

supplemented with 1x CyQUANT GR dye per well. The resuspended cells were incubated in

the dark for 5 min at RT, whereupon fluorescence was measured (excitation: 480 nm, emis-

sion: 520 nm).
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Extreme differences (default) method to compute bioenergetic measures

On every plate independently, for each well, in interval 1 take the OCR corresponding to the

last measurement, in intervals 2 and 4 take the minimum, and in interval 3 the maximum

OCR value [19]. Then, use the corresponding differences to estimate the bioenergetic mea-

sures. Report the results per patient as the mean across wells plus standard deviation or stan-

dard error, separately for each plate.

Outlier removal

For each sample s and well w, compute the mean across time points of its squared deviations:

sw≔meantðd2
w;tÞ, thus, obtaining a vector s. Identify as outliers the wells whose sw > median(s)

+ 5 mad(s), where mad, median absolute deviation, is a robust estimation of the standard devi-

ation (S3A Fig). We found that deviations by 5 mad from the median were sufficiently selective

in practice. Compute the vector of estimates θ̂using the remaining wells and iterate this proce-

dure until no more wells are identified as outliers. It required eight iterations until conver-

gence and around 16.5% of all the wells were found to be outliers (S3B Fig).

Single point outliers are identified in a similar way. After discarding the wells that were

found to be outliers in the previous step, categorize as outliers single data points whose d2
w;t >

mediantðd2
w;tÞ þ 7 madtðd2

w;tÞ (S3C Fig). Iterate until no more outliers are found. It required 19

iterations until convergence and approximately 6.1% of single points were found to be outliers

(S3D Fig).

Coefficient of variation between wells of the same plate

Using only the controls NHDF, we computed the standard deviation σp,i of the logarithm

of OCR across all the wells for each plate p and interval i. Then, we computed the median

across plates, thus, obtaining one value �si per interval (�s1 ¼ 0:10; �s2 ¼ 0:13; �s3 ¼

0:12; �s4 ¼ 0:16). Coefficients of variation in the natural scale were approximated by taking

the exponential of these standard deviations.

OCR-Stats statistical testing

We fitted Eq (2) using linear regression as implemented in the base R function lm(). P-values

for each ratio against the null hypothesis μb = 0 are obtained with the default test (Student’s t-

test) returned by the summary function on the lm fit object.

Power calculation of multi-plate experiments

Minimal detectable effects for OCR-ratio based metrics (Table 2) at 95% confidence level were

estimated using the following equation:

exp 1:96
sdð�b;pÞ

ffiffiffi
n
p

� �

� 1; ð3Þ

where �b,p are the residuals from Eq 3 and 1.96 corresponds to the approximate value of the

97.5 percentile of the standard normal distribution. We obtain the metrics on Table 2 by set-

ting n = 3.
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Plate-interval effect benchmark

For benchmarking, we correct for the plate-interval effect using only the data from the controls

NHDF c of each plate using the following model:

ycontrol;t;p ¼ ycontrol;intervðtÞ þ bintervðtÞ;p þ εt;p: ð4Þ

We solved it using the least squares method and used the effects b̂i;p as offsets in Eq (1). We

recomputed ŷb;i values accordingly and scaled back to the natural scale to calculate the bioe-

nergetic measures and the coefficient of variation of all repeated the biological samples, except

the control (Fig 5).

Multi-plate averaging method

In the case of inter-plate comparisons, the multi-plate averaging method takes the mean and

standard error of the bioenergetic measures obtained using the Extreme Differences (ED)

method of all the repeated biological samples across plates [44].

Supporting information

S1 Table. Sample metadata. Each row corresponds to a different fibroblast cell line (Fibro-

blast id) from a patient with a mitochondrial disorder. In cases in which the causal pathogenic

gene was found and validated, it appears in the Gene column with its respective OMIM num-

ber. N indicates the number of experiments of each sample.

(TXT)

S2 Table. Coefficient of variation within and between plates. Coefficient of variation com-

puted as mean/standard deviation of OCR within and between plates using the controls

NHDF only, in each time interval.

(TXT)

S3 Table. M/Ei-fold change and maximal respiration (MR) differences of samples repeated

across experiments with respective p-values. Each row corresponds to a different biological

sample (cell_culture), with the difference in M/Ei-fold change and MR with respect to the con-

trol NHDF, in single and multiple plates. P-values computed using OCR-Stats and ED method

within and between plates.

(TXT)

S4 Table. OCR raw data from all experiments. OCR and cell number raw data for each of the

126 plates and 203 samples across all the 12 time points and 4 treatments.

(TXT)

S1 Fig. Normalizing by cell number does not reduce variation. (A) OCR per well median (y-

axis) vs. cell number (in thousands, x-axis) of the controls NHDF in all experiments (n = 2,192

for each panel) showing that there is a positive correlation in all the time intervals (I1: ρ = 0.47,

I2: ρ = 0.45, I3: ρ = 0.40, I4: ρ = 0.33; P< 2.2×10−16 for all the intervals). (B) Coefficient of varia-

tion (y-axis) of well replicates within plates for raw OCR and OCR normalized dividing by cell

count (x-axis), split for each time interval. Each point represents a different sample. In all the

four intervals, not only did normalization not reduce the coefficient of variation, but it actually

increased it. P-values obtained from two-tailed Wilcoxon tests.

(PNG)
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S2 Fig. OCR does not depend on sex. OCR levels θ (y-axis) split by sex (x-axis). We see no sig-

nificant difference in any time interval (n = 45 male, 30 female).

(PNG)

S3 Fig. Outlier detection. (A) Number of wells (y-axis) identified as outliers on each iteration

(x-axis). Around 16.5% of all valid wells detected as outliers. (B) Mean (per well) squared

errors distribution for cell line Fibro_VY_014. Wells beyond the red line (median + 5×mad)

are recognized as well-level outliers. (C) Number of single-point outliers (y-axis) identified on

each iteration (x-axis). Around 6.1% of remaining data (after removing well outliers) detected

as single point outliers. (D) Squared error distribution for cell line Fibro_VY_076. Points

beyond the red dashed line (median + 7×mad) are recognized as single-point outliers.

(PNG)

S4 Fig. Investigation of location effect. (A) Deviations of the log OCR measurements with

respect to the interval effect (y � ŷ, y-axis) behavior across rows (x-axis). In general, a tendency

for higher OCR is observed on the center of the plate across all time intervals. (B) The same as

(A) but for columns (x-axis). Lower values observed in the edges. (C, D) Well-level OCR ratio

subtracted interval level OCR ratio (Table 1) across rows (x-axis, C) and columns (x-axis, D).

All the location effects get canceled, except for row A where it remains relatively low.

(PNG)

S5 Fig. Variation between plates is larger than variation within plates. Boxplot showing

OCR in time interval 3 (x-axis) of NHDF seeded in 10 randomly selected plates (y-axis) reflect-

ing that the variation between is larger than the variation within plates. Red line: mean of OCR

across all plates. This trend was observed across all the plates and for all the intervals (S2

Table).

(PNG)

S6 Fig. Residuals from the linear regression are consistent with a normal distribution.

Quantile-quantile theoretical (x-axis) vs. observed (y-axis) plots of the residuals �b,p of the lin-

ear model from Eq (2). Points lie on the diagonal as expected from normally distributed resid-

uals.

(PNG)
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