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Preface 

This PhD thesis provides a framework for five articles dealing with forest productivity in the context 

of global change. Before the main text starts, I would like to give an overview of the following 

chapters for a better navigation between articles and PhD thesis. Basically, the thesis is separated 

into two sections: First, the ‘Cumulative thesis’ which summarizes the underlying articles (three first 

authorships, two co-authorships). Second, the main section of the thesis that provides both 

theoretical foundation as well as reflections on the results of the articles. In chapter 1 the motivation 

for investigating forest growth and mortality in dependence on site factors is elaborated and 

objective as well as research questions are clarified. Chapter 2 provides background knowledge on 

forest productivity, tree mortality and site factors. Chapter 3 provides concise summaries of the 

methods and main results of the five publications that compose this thesis. Chapter 4 connects the 

results of the different studies and discusses them jointly. In chapter 5 a conclusion is drawn from the 

main findings, referring back to the research questions. 
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Summary 

In many regions changes in forest productivity and increases in tree mortality have been observed 

and have been attributed to changing site conditions due to climate change. In order to maintain the 

sustainability of the important ecosystem services provided by forests, forest management does not 

only have to react to the changes observed, but also has to anticipate the future development of 

productivity and mortality, as due to the longevity of trees and forest stands current regeneration 

decisions have to take these developments into account. Consequently, models are needed that 

predict productivity and mortality in dependence on site factors with the focus on climate factors. 

Therefore, this thesis aims at developing statistical models that describe the relationship between 

productivity or mortality and site factors, particularly climate factors. The focus lies on predictions for 

Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) in Germany. Large-

scale forest inventories provide data covering the wide climatic gradients required for model 

application to future climate scenarios. Thus, at the same time, this thesis explores the potential as 

well as the limitations of large-scale forest inventories to investigate forest growth. 

First, single tree height was modelled as a function of age and site factors using a generalized 

additive model based on data of the 3rd national forest inventory for Bavaria. Subsequently the 

residuals were modelled using boosted regression trees in order to allow for regionally complex 

interactions between the soil variables. Second, based on top height and age estimations site index 

was harmonized for the German and French national forest inventories for six species (Norway 

spruce, Scots pine (Pinus sylvestris L.), Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), European 

beech, sessile oak (Quercus petraea (Mattuschka) Liebl.), and pedunculate oak (Quercus robur L.)). 

For Norway spruce and European beech, the climate dependency of site index was modeled using 

generalized additive models. Third, above-ground wood biomass growth of spruce dominated stands 

estimated based on the 2nd and 3rd national forest inventories in Germany was modeled in 

dependence on site factors while accounting for the effect of stand density, again using a generalized 

additive model. Forth, the relationship between mean or periodic annual volume increment and 

species richness on global scale was fitted by a power function model using a geospatial random 

forest while accounting for climatic, soil and topographic influences. Fifth, mortality of Norway 

spruce and European beech was investigated by applying survival analysis to a pan-European data set 

(German forest damage survey, data on crown condition from Level I and Level II plots). 

Across these five studies some general findings emerged. The relationship between summer 

temperature or temperature during the growing season and productivity was either monotonously 

increasing or followed an optimum curve depending on the climatic gradients of the respective 

underlying dataset. Where growth was not constrained by temperature, precipitation or water 

supply acted as limiting factor. In addition, productivity was modified by the influence of soil texture 

and nutrients as well as topography in the models for Bavaria and Germany. Besides the effects of 

abiotic factors, a positive effect of species richness on productivity was found. Vitality and survival 

were mostly affected by summer temperature and species proportion. In general, mortality risk in 
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mixed stands was lower, whereas rising temperatures led to an increase in mortality risk. Prediction 

accuracy of the models was limited due to uncertainty both on the side of the response variable as 

well as on the side of the explanatory variables. In addition, many factors influencing productivity or 

mortality could not be taken into account based on the underlying data. Still, the studies outlined the 

potential of statistical models that are based on large-scale forest inventory data to obtain general 

ecological relationships and assess trends in productivity and mortality under climate change. 
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Zusammenfassung 

Vielerorts werden Veränderungen der Produktivität der Wälder und erhöhte Mortalitätsraten mit 

dem Klimawandel in Verbindung gebracht. Um die Nachhaltigkeit der Ökosystemdienstleistungen der 

Wälder zu gewährleisten, muss die Forstwirtschaft auf die beobachteten Veränderungen reagieren. 

Darüber hinaus erfordert es die Langlebigkeit von Waldbäumen auch zukünftige Entwicklungen 

bereits heute bei der Baumartenwahl zu berücksichtigen. Dafür werden Modelle benötigt, die 

Produktivität und Mortalität in Abhängigkeit von Standortfaktoren, insbesondere klimatischen 

Faktoren, vorhersagen. 

Ziel der vorliegenden Arbeit ist es daher statistische Modelle zu entwickeln, die den Zusammenhang 

zwischen Produktivität bzw. Mortalität auf der einen Seite und Standortfaktoren auf der anderen 

Seite beschreiben. Der Schwerpunkt liegt auf Vorhersagen für Fichte (Picea abies [L.] Karst.) und 

Buche (Fagus sylvatica L.) in Deutschland. Die Daten von großräumigen Forstinventuren decken 

weite Klimagradienten ab, welche die Voraussetzung für eine Anwendung der Modelle auf zukünftige 

Klimaszenarien bilden. Damit lotet diese Arbeit gleichzeitig sowohl die Möglichkeiten als auch die 

Grenzen der Verwendung großräumiger Forstinventurdaten für die Waldwachstumsforschung aus. 

Die vorliegende Arbeit setzt sich aus fünf Einzelstudien zusammen: (1) Die Einzelbaumhöhe wurde als 

Funktion von Alter und Standortfaktoren unter der Verwendung generalisierter additiver Modelle 

(GAM) basierend auf der dritten Bundeswaldinventur für Bayern modelliert. Auf die Residuen 

wurden Boosted Regression Trees angewendet um regional komplexe Wechselwirkungen zwischen 

Bodenparametern zu berücksichtigen. (2) Für die französische nationale Forstinventur und für die 

deutsche Bundeswaldinventur wurden basierend auf der Oberhöhe und dem Bestandesalter 

harmonisierte Maße für die Bonität für sechs Arten (Fichte, Kiefer (Pinus sylvestris L.), Douglasie 

(Pseudotsuga menziesii (Mirbel) Franco), Buche, Traubeneiche (Quercus petraea (Mattuschka) Liebl.), 

und Stieleiche (Quercus robur L.)) berechnet. Für Fichte und Buche wurde die Bonität in Abhängigkeit 

von Klimavariablen mittels GAM modelliert. (3) Basierend auf der zweiten und dritten 

Bundeswaldinventur in Deutschland wurde der oberirdische Biomassezuwachs von Fichten-

dominierten Beständen berechnet und in Abhängigkeit von Standortfaktoren unter Verwendung von 

GAM modelliert. Ein zentraler Aspekt war dabei die Berücksichtigung von managementbedingten 

Dichteunterschieden. (4) Der Zusammenhang zwischen mittlerem bzw. periodischem jährlichem 

Volumenzuwachs und Artenreichtum wurde mit einer Potenzfunktion beschrieben und mittels 

Geospatial Random Forest angepasst unter Berücksichtigung des Einflusses von Klima, Boden und 

Topographie. (5) Basierend auf einem europaweiten Datensatz (Waldzustandserhebung in 

Deutschland, Level I und Level II in Europa) wurden für Fichte und Buche Überlebenszeitmodelle 

angepasst. 

Aus diesen fünf Studien kristallisierten sich die folgenden allgemeinen Aussagen heraus: Der 

Zusammenhang zwischen Sommertemperatur bzw. Temperatur während der Vegetationsperiode 

und der Produktivität war, abhängig vom zugrundeliegenden Klimagradienten bzw. Datensatz, 

entweder monoton steigend oder folgte einer Optimumskurve. Wo das Wachstum nicht von der 
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Temperatur begrenzt wurde, wirkte der Niederschlag bzw. die Wasserversorgung limitierend. 

Zusätzlich wurde das Wachstum in den Modellen für Bayern und Deutschland durch den Einfluss der 

Bodentextur, der Nährstoffe sowie der Topographie modifiziert. Global wurde ein positiver Effekt des 

Artenreichtums auf die Produktivität gezeigt. Den größten Einfluss auf das Überleben hatten 

Sommertemperatur und Mischung. Im Allgemeinen war das Mortalitätsrisiko im Mischbestand 

geringer. Steigende Sommertemperaturen erhöhten das Mortalitätsrisiko. Die Vorhersagegüte der 

Modelle war durch Unsicherheit sowohl auf Seiten der abhängigen als auch der unabhängigen 

Variablen begrenzt. Zudem konnten viele Faktoren, die Produktivität und Mortalität beeinflussen, 

basierend auf den zugrundeliegenden Daten nicht berücksichtigt werden. Dennoch zeigten die 

Studien das Potential statistischer Modelle, die auf großräumigen Forstinventuren basieren, 

allgemeine ökologische Zusammenhänge anzupassen und Trends der Produktivität und des 

Mortalitätsrisikos im Klimawandel abzuschätzen. 
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Part I - Cumulative Thesis 

 

Publication I: Possibilities and Limitations of Spatially Explicit Site Index Modelling for Spruce Based 

on National Forest Inventory Data and Digital Maps of Soil and Climate in Bavaria (SE Germany) 

Authors: Susanne Brandl, Wolfgang Falk, Hans-Joachim Klemmt, Georg Stricker, Andreas Bender, 

Thomas Rötzer, Hans Pretzsch 

Journal: Forests 

Impact Factor: 1.956 (2017) 

Contribution: The statistical analysis was mainly done by Susanne Brandl. Georg Stricker tested 

different modelling approaches and conducted the automatic variable selection for the GAM 

supervised by Andreas Bender. The manuscript was written by Susanne Brandl supported by 

Wolfgang Falk. Hans Pretzsch, Thomas Rötzer, Wolfgang Falk, and Hans-Joachim Klemmt supervised 

the study and provided support in data analysis and interpretation. 

Summary: 

Combining national forest inventory (NFI) data with digital site maps of high resolution enables 

spatially explicit predictions of site productivity. The aim of this study is to explore the possibilities 

and limitations of this database to analyze the environmental dependency of height-growth of 

Norway spruce and to predict site index (SI) on a scale that is relevant for local forest management. 

The study region is the German federal state of Bavaria. The exploratory methods comprise 

significance tests and hypervolume-analysis. SI is modeled with a Generalized Additive Model (GAM). 

In a second step the residuals are modeled using Boosted Regression Trees (BRT). The interaction 

between temperature regime and water supply strongly determined height growth. At sites with 

very similar temperature regime and water supply, greater heights were reached if the depth 

gradient of base saturation was favorable. Statistical model criteria (Double Penalty Selection, AIC) 

preferred composite variables for water supply and the supply of basic cations. The ability to predict 

SI on a local scale was limited due to the difficulty to integrate soil variables into the model. 
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Publication II: Static site indices from different national forest inventories: harmonization and 

prediction from site conditions 

Authors: Susanne Brandl, Tobias Mette, Wolfgang Falk, Patrick Vallet, Thomas Rötzer, Hans Pretzsch 

Journal: Annals of Forest Science 

Impact Factor: 2.357 (2017) 

Contribution: Susanne Brandl conducted the data preparation and analysis and the literature 

research and was responsible for methods, results and discussion section. Tobias Mette developed 

the concept, supported the literature research and was responsible for introduction and proof 

reading. Wolfgang Falk, Patrick Vallet, Thomas Rötzer and Hans Pretzsch were responsible for 

consulting and proof reading. 

Summary: 

Key message: Static site indices determined from stands’ top height are derived from different forest 

inventory sources with height and age information and thus enable comparisons and modeling of a 

species’ productivity encompassing large environmental gradients. 

Context: Estimating forest site productivity under changing climate requires models that cover a wide 

range of site conditions. To exploit different inventory sources, we need harmonized measures and 

procedures for the productive potential. Static site indices (SI) appear to be a good choice. 

Aims: We propose a method to derive static site indices for different inventory designs and apply it 

to six tree species of the German and French National Forest Inventory (NFI). For Norway spruce and 

European beech, the climate dependency of SI is modeled in order to estimate trends in productivity 

due to climate change. 

Methods: Height and age measures are determined from the top diameters of a species at a given 

site. The SI is determined for a reference age of 100 years. 

Results: The top height proves as a stable height measure that can be derived harmoniously from 

German and French NFI. The boundaries of the age-height frame are well described by the Chapman-

Richards function. For spruce and beech, generalized additive models of the SI against simple climate 

variables lead to stable and plausible model behavior. 

Conclusion: The introduced methodology permits a harmonized quantification of forest site 

productivity by static site indices. Predicting productivity in dependence on climate illustrates the 

benefits of combined datasets. 
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Publication III: Assessing site productivity based on national forest inventory data and its 

dependence on site conditions for spruce dominated forests in Germany (under review) 

Authors: Susanne Brandl, Wolfgang Falk, Thomas Rötzer, Hans Pretzsch 

Journal: Forest Systems 

Impact Factor: 0.96 (2017) 

Contribution: Susanne Brandl was responsible for data preparation and analysis, literature research 

and writing. Wolfgang Falk, Thomas Rötzer and Hans Pretzsch were responsible for consulting and 

proof reading. 

Summary: 

Aim of study: (i) To estimate site productivity based on German national forest inventory (NFI) data 

using above-ground wood biomass growth (ΔB) of the stand and (ii) to develop a model that explains 

site productivity quantified by ΔB in dependence on climate and soil conditions as well as stand 

characteristics for Norway spruce (Picea abies (L.) Karst.). 

Area of study: Germany, which ranges from the North Sea to the Bavarian Alps in the south 

encompassing lowlands in the north, uplands in central Germany and low mountain ranges mainly in 

southern Germany. 

Material and methods: Biomass growth of the stand between the 2nd and 3rd NFI was calculated as 

measure for site productivity. Generalized additive models were fitted to explain biomass growth in 

dependence on stand age, stand density and environmental variables. 

Main results: Great part of the variation in biomass growth was due to differences in stand age and 

stand density. Mean annual temperature and summer precipitation, temperature seasonality, base 

saturation, C/N ratio and soil texture explained further variation. External validation of the model 

using data from experimental plots showed good model performance. 

Research highlights: The study outlines both the potential as well as the restrictions in using biomass 

growth as a measure for site productivity and as response variable in statistical site-productivity 

models: biomass growth of the stand is a comprehensive measure of site potential as it incorporates 

both height and basal area increment as well as stem number. However, it entails the difficulty of 

how to deal with the influence of management on stand density. 
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Contribution: Jingjing Liang developed the concept, conducted the analysis and wrote the 

manuscript. Susanne Brandl contributed by preparing the German NFI data, by advising on the 

evaluation and interpretation of the German NFI data and by proofreading the manuscript. 

Summary: The biodiversity-productivity relationship (BPR) is foundational to our understanding of 

the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for 

the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 

777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally 

consistent positive concave-down BPR, showing that continued biodiversity loss would result in an 

accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining 

commercial forest productivity alone—US$166 billion to 490 billion per year according to our 

estimation—is more than twice what it would cost to implement effective global conservation. This 

highlights the need for a worldwide reassessment of biodiversity values, forest management 

strategies, and conservation priorities. 
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Publication V: Climate change and mixed forests: how do altered survival probabilities impact 

economically desirable species proportions of Norway spruce and European beech? 

Authors: Carola Paul, Susanne Brandl, Stefan Friedrich, Wolfgang Falk, Fabian Härtl, Thomas Knoke 
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supported with preparation of climate and economic data. Carola Paul applied statistical analysis to 

study site and carried out economic analyses. Carola Paul wrote the manuscript. All others jointly 

discussed and revised the text of the manuscript. 

Summary: 

Key message: Economic consequences of altered survival probabilities under climate change should 

be considered for regeneration planning in Southeast Germany. Findings suggest that species 

compositions of mixed stands obtained from continuous optimization may buffer but not completely 

mitigate economic consequences. Mixed stands of Norway spruce (Picea abies L. Karst.) and 

European beech (Fagus sylvatica L.) (considering biophysical interactions between tree species) were 

found to be more robust, against both perturbations in survival probabilities and economic input 

variables, compared to block mixtures (excluding biophysical interactions). 

Context: Climate change is expected to increase natural hazards in European forests. Uncertainty in 

expected tree mortality and resulting potential economic consequences complicate regeneration 

decisions. 

Aims: This study aims to analyze the economic consequences of altered survival probabilities for 

mixing Norway spruce (Picea abies L. Karst.) and European beech (Fagus sylvatica L.) under different 

climate change scenarios. We investigate whether management strategies such as species selection 

and type of mixture (mixed stands vs. block mixture) could mitigate adverse financial effects of 

climate change. 

Methods: The bio-economic modelling approach combines a parametric survival model with modern 

portfolio theory. We estimate the economically optimal species mix under climate change, 

accounting for the biophysical and economic effects of tree mixtures. The approach is demonstrated 

using an example from Southeast Germany. 

Results: The optimal tree species mixtures under simulated climate change effects could buffer but 

not completely mitigate undesirable economic consequences. Even under optimally mixed forest 

stands, the risk-adjusted economic value decreased by 28 %. Mixed stands economically outperform 

block mixtures for all climate scenarios. 
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Part II - Thesis: The Relationship between Forest Productivity and Site Factors Analyzed on the 

Basis of Forest Inventory Data 

1 Introduction 

1.1 Motivation 

Productivity and mortality risk determine tree species suitability at a given site. Both aspects depend 

on environmental conditions: Climate and soil decide whether a tree survives and grows at a site or 

not. In addition, productivity and mortality risk depend on stand characteristics. Therefore, to a 

certain extent, forest management can influence tree species suitability (Fig. 1). Furthermore, biotic 

factors not explicitly considered in this thesis, like the presence of mycorrhiza, insects or fungi in an 

ecosystem, influence tree species suitability as well. 

 
Fig. 1: Schematic representation of the influences on tree species suitability considered in the thesis. 

 

Traditionally, tree species selection has been based on knowledge gained from experience or from 

the evaluation of experimental plots. For instance, knowledge about productivity obtained from 

experimental plots has been summarized in yield tables (e.g. Vannière 1984; Schober 1995). Both 

expert knowledge and yield tables are valid as long as site conditions remain the same (Skovsgaard & 

Vanclay 2013). However, due to global change, site conditions are changing. For Germany, climate 

models predict rising temperatures and changes in the precipitation regime (Brasseur et al. 2017). 

These changes will affect both productivity as well as mortality risk (Fig. 2). 
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Fig. 2: Schematic representation of how productivity (e.g. site index in m) and mortality risk (in %) at a site might develop 
from the present (starting point) to the future (arrowhead). 

 

Because of the longevity of trees and forest stands projected changes in site conditions have to be 

taken into account now when making regeneration decisions. Today’s decisions do not only affect 

the sustainability of timber production but also the sustainable provision of other important 

ecosystem services of forests, e.g. recreation, biodiversity, water supply and protection from 

avalanches. Therefore, it is essential to estimate the effects of climate change on productivity and 

mortality risk of a tree species. 

But how, for instance, can we assess the reaction of Germany’s native tree species to temperatures 

and precipitation patterns that have not been observed so far in Germany? One option is to develop 

statistical models that describe the relationship between productivity or mortality risk and site 

factors and can thus predict trends in productivity or mortality risk under climate change. Ideally, 

these models are based on data that encompass the whole distribution range of the species including 

regions that already today experience the climate that is expected for Germany in the future: so-

called climate analogies (Fig. 3; Kölling et al. 2016). Wide climatic gradients that cover the warm and 

dry margin of a species’ distribution reduce the extrapolation range of the models when making 

predictions for the future. 
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Fig. 3: Regions in Europe are colored that already today experience the climate that is predicted for Germany in the period 
2061-2080: The higher the value of the Kernel Density the higher the probability that Germany will experience climate 
conditions (characterized by summer temperature and precipitation as well as winter temperature) in the future that are 
present already today in the respective region. Dark magenta marks the most likely climate analogies. 

 

In general, these wide climatic gradients are obtained when using data that cover large geographic 

regions, although this is not a necessary requirement. Large-scale forest inventories provide this kind 

of data. Therefore, in the last decades large-scale forest inventories have gained in importance. In 

contrast, traditional forest growth and yield science has mainly been based on experimental plots. 

Generally, there is a trade-off between information content and precision on the one hand and 

spatial representation and generality on the other hand. Experimental plots provide long time series 

with high temporal resolution and extensive measurements. The history of the plots is known and 

boundary conditions are controlled for. However, “[p]ermanent sample plots, while providing a 

decisive and renewed contribution in contrasted forest contexts worldwide […], rely on restricted 

and hardly representative sampling designs” (Bontemps & Bouriaud 2014). In contrast, large-scale 

forest inventories have the advantage of high spatial representation: The sampling design is usually 

based on a systematic grid that covers a wide variety of combinations of site conditions (Bontemps & 

Bouriaud 2014). A major caveat is that the history of sample plots is generally unknown. Thus, total 

yield cannot be calculated. Furthermore, information on tree and stand characteristics is incomplete 

or only approximated. For instance, the assessment of stand structure is sometimes based only on a 

few trees and age is sometimes only an approximation (Sharma et al. 2011). In summary, whereas 

experimental plots enable the deduction of principles that govern growth under varying stand 
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structures and management regimes, the climatic gradients encompassed are mostly not large 

enough to assess the influence of climate change on growth. There lies the advantage of large-scale 

forest inventory data: Wide climatic gradients are covered. Adopting a space-for-time approach 

(Pickett 1989) the effects of changing climate conditions can be analyzed. Thus, findings based on 

large-scale forest inventory data can complement the insights on forest growth and yield gained from 

experimental plots. 

Many large-scale studies are based on national forest inventories (NFI). Since 10–15 years ago, more 

and more countries have made their NFI data publically available. This offers a huge potential 

considering the need for wide climatic gradients explained above. However, when joining NFI data of 

various sources harmonization is needed. A joint effort to harmonize national forest inventories, 

focusing mainly on forest carbon and biodiversity estimation, has been undertaken in Tomppo et al. 

(2010) and McRoberts et al. (2012). Pan-European data of forest damage surveys (Level I) as well as 

data of intensive monitoring sites (Level II) have been collected and provided by the ICP Forests 

network (International Co-operative Programme on Assessment and Monitoring of Air Pollution 

Effects on Forests) (ICP Forests 2018). 

Although, facing climate change, linking forest productivity to site factors has moved into focus, 

“[t]he preoccupation for linking explicit site factors to site productivity is nevertheless ancient and 

has been regularly emphasized” (Bontemps & Bouriaud 2014). One central question is how to define 

and estimate forest site productivity. “Although essential, the estimation of forest site productivity 

has remained a central problem in forestry, inherent to the perennial nature of forest stands, and the 

subsequent needs to document harvests and mortality and capture the effect of ontogenetic trends” 

(Bontemps & Bouriaud 2014). The most common measure of forest site productivity is site index (SI), 

i.e. height at a given age. SI has become so well-established in forest research and practice that it is 

often taken as the true productivity rather than simply an indicator that may or may not reflect the 

site potential (Skovsgaard & Vanclay 2008). For instance, Assmann found that the total volume 

production of stands of the same age and SI can still vary ± 15 % in dependence on site 

characteristics (Pretzsch 2009). Moreover, the trend to structurally diverse mixed stands and thinning 

from above reduces the informative value of SI (Pretzsch 2009). Therefore, the need for alternative 

and more comprehensive measures of site productivity has been emphasized and it has been 

proposed to establish direct productivity-environment relationships based on NFI data (Bontemps & 

Bouriaud 2014). 

This thesis relies on statistical models in order to capture the relationship between productivity and 

site factors. In contrast to process-based models that try to simulate cause-and-effect chains 

statistical models are fundamentally correlative analyses. This has to be kept in mind when 

interpreting the results of statistical models, especially when inferring causal relations (Bontemps & 

Bouriaud 2014). Nevertheless, statistical model techniques present a useful tool to investigate the 

relationship between productivity and site conditions. The more so, as so far process-based models 

in forest growth are afflicted with many shortcomings (Bontemps & Bouriaud 2014). Establishing the 

link between the indicator (a mere descriptive assessment of the site) and site factors, statistical 
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models improve our ecological insight. As site factors themselves can serve as geocentric indicators 

of forest site productivity, the approach presented in this thesis can be viewed as explaining a 

phytocentric measure geocentrically (Bontemps & Bouriaud 2014). There are good reasons to do so: 

“From a forest management and planning perspective, the main advance in replacing direct site 

index measurements by predictions from a biophysical regression model is to allow inference on site 

productivity out of the restraining locations/range of presence of a given species and to allow 

comparisons across several species. From an ecological perspective, site index may also be viewed as 

reflecting an adaptive growth feature of tree species. Focusing on the key biophysical predictors of 

height growth may thus give indications on the fundamental constraints of tree species ecological 

niche and improve our understanding of tree species distribution” (Bontemps & Bouriaud 2014). 

Therefore, over the last decades, it has become very popular to develop statistical models that 

explain site productivity in dependence on environmental variables at varying spatial scales. Many of 

these models are based on national forest inventories. Although mostly SI is the measure of site 

productivity (e.g. Germany: Albert & Schmidt 2010; Nothdurft et al. 2012; France: Seynave et al. 

2005; Seynave et al. 2008), a variety of other measures has been used as well, e.g. stand basal area 

increment (Charru et al. 2010; Charru et al. 2014), mean annual volume increment (Gustafson et al. 

2003; Watt et al. 2010; Condés & García-Robredo 2012) or net primary productivity (NPP) (Wang et 

al. 2005). 

As for Bavaria no productivity model existed so far, the first study of this thesis (Brandl et al. 2014) 

aimed at developing a model at the scale of Bavaria in order to take advantage of the high-resolution 

digital soil maps available for this federal state. However, the ability to predict future productivity is 

limited due to comparably small climatic gradients. This motivated the second study of this thesis 

(Brandl et al. 2018). Like the studies mentioned above, larger studies are still mostly constrained to 

national scale. Very few studies based on NFI data move to the transnational scale (e.g. Vilà et al. 

2013; Avitabile & Camia 2018), as this involves dealing with the question of how to best derive a 

harmonic site productivity measure from different inventory sources. An approach is presented to 

derive a harmonized site index from German and French NFI as response variable in the productivity 

model. As most studies that are based on NFI data, this study relies on SI as indicator for site 

productivity. So far, attempts to derive more comprehensive measures of productivity from NFI data 

are rare. In the third study (Brandl et al. 2019, under review) an attempt is made to derive a more 

direct and comprehensive measure of productivity as response variable. Many studies have detected 

a positive effect of species richness or mixture on productivity (Paquette & Messier 2011; Vilà et al. 

2013). However, the forth study (Liang et al. 2016) presented in this thesis is the first to show such an 

effect on a global scale. 

Facing climate change the second aspect of tree species suitability, risk, becomes more important: In 

some regions climate conditions will change from optimum conditions to conditions closer to the 

warm and possibly dry margin of a tree species’ distribution. Moreover, besides changing average 

climate conditions, extreme events become more likely and pronounced (Brasseur et al. 2017). An 

increase in stress-induced tree mortality has been observed in recent years (van Mantgem et al. 
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2009; Allen et al. 2010). Stress-induced tree death is usually the result of complex interactions 

between environmental influences and the disposition of the tree (Manion 1981). Although, tree 

death can be abrupt, it is more often the result of a complex and gradual process (Franklin et al. 

1987). This makes modelling and predicting mortality challenging. Still, statistical model techniques 

that are commonly used to model mortality have been successfully applied in forest research. 

Leaving process-based models aside (overview in Adams et al. 2013), mortality is usually modeled in 

dependence on explanatory variables using logistic regression (e.g. Rich et al. 2007; Adame et al. 

2010) or survival analysis. Logistic regression is based on a dichotomous (alive/dead) response 

variable modeled over uniform time intervals, e.g. the probability for an object to die within a five-

year interval. Survival analysis was originally developed for medical science, but can be applied to a 

variety of scientific issues when the variable of interest is time to a defined event (Mills 2011). It is 

likely that not all objects under investigation experience the event of interest within the observation 

period, which means that their full survival time is unknown (right-censored observations). Some 

objects might not be observed from the start of the study but enter the study later on (left-truncated 

observations). Survival analysis can handle these two characteristic features of survival data. 

For this reason, survival models have become more and more popular in forest research. Existing 

studies differ in various important aspects that affect the interpretation of the results: Some studies 

are based on regional datasets (e.g. Ahner & Schmidt 2011; Griess et al. 2012) while other studies are 

based on large-scale datasets (e.g. Neumann et al. 2017). Both semi-parametric (e.g. Neumann et al. 

2017) and parametric (e.g. Staupendahl & Zuchini 2011; Neuner et al. 2015) approaches have been 

applied. Age (e.g. Neuner et al. 2015), observation length (e.g. Neumann et al. 2017) or dbh (Woodall 

et al. 2005) have been used as time variable in the model. In some studies explanatory variables are 

independent of time (e.g. Neuner et al. 2015), whereas other studies allow for changes in 

explanatory variables during the observation period (e.g. Nothdurft 2013). Some studies account for 

hierarchical data structures (e.g. Nothdurft 2013). Some studies take the left-truncation of the data 

into account (e.g. Schoneberg 2017), other studies ignore it. And of course, the studies differ in the 

pool of explanatory variables and the implementation of these variables (categorical, linear, non-

linear). Finally, the definition of the mortality event has a huge impact on the results. All in all, there 

are comparably few studies that aim at explaining mortality with site factors. In addition, so far there 

is no study based on pan-European data that applies survival models on the species scale and uses a 

parametric approach with age as time variable, as it is done in publication V (Paul et al. 2019). 

 

1.2 Objective and Research Questions 

The first objective of this thesis is to investigate the relationship between forest productivity and site 

factors based on large-scale forest inventory data. On the one hand, there is the ecological aspect: 

the influence of site factors on forest productivity and the changes in forest productivity that can be 

expected under climate change. On the other hand, there is the methodological aspect: the potential 
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and the limitations of large-scale forest inventory data to investigate forest growth. The second 

objective of this thesis is to investigate the relationship between mortality and site factors. 

Statistical models of forest productivity in dependence on site factors are developed. These models 

permit to predict forest productivity under changing site conditions. One crucial question is how to 

define and estimate forest productivity, i.e. the response variable in the statistical model, from 

inventory data. Four options are presented here: In the first study mere single tree height is used as 

response variable. Thus, in addition to site factors single tree age is included as explanatory variable. 

In the second study the indicator of forest productivity is site index (SI), i.e. top height of the stand at 

age 100. The method developed to estimate site index can easily be applied to any inventory data 

that comprises height and age information of single trees. Thus, the use of site index permits to 

harmonize different inventory data and therefore to expand the environmental gradient of the data 

used for model fitting. In the third study annual above-ground wood biomass growth of the stand 

(ΔB) is tested as a more direct and comprehensive measure of forest productivity. 

The three models have in common that the main interest is on the effects of climate and soil 

variables on productivity, although stand or tree characteristics may be included. However, forest 

productivity also depends on stand characteristics. For instance, it has been shown that species 

mixture affects productivity (Mina et al. 2018). Therefore, a study is presented that investigates the 

relationship between mean (and periodic) annual volume increment (MAVI) of the stand and species 

diversity. 

As under climate change risk becomes more important, it is not enough to look at mere potential 

productivity to assess tree species suitability. Therefore, although the main focus of this thesis is 

clearly on productivity, another study is presented that analyzes the influence of site and stand 

characteristics on mortality risk. In contrast to ΔB and MAVI, the two measures on stand level that 

implicitly take mortality into account, mortality risk is analyzed separately. Subsequently, survival 

probabilities can be integrated into growth simulations or combined with predictions from 

productivity models. This approach enables to differentiate between regular and irregular mortality 

and facilitates a better understanding of the contributions of growth and mortality to overall yield. 

Combining predictions of productivity and risk (Fig. 2) can give a more complete picture of tree 

species suitability in the future and can serve as a tool for adaptive forest management (Benito-

Garzón et al. 2013; Märkel & Dolos 2017). 

All studies have in common that they use large-scale forest inventory data in order to develop 

statistical models that enable to predict forest productivity or mortality under changing site 

conditions. They differ in the scale of the underlying data, and thus in the scope of the respective 

model, going from regional (Bavaria: single tree height model), national (Germany: biomass growth 

model), transnational (Germany + France: site index model), continental (Europe: mortality model) to 

global (productivity-diversity model) (Fig. 4, Table 1). The scale of the model and the choice of the 

productivity indicator are mutually dependent. For instance, in contrast to SI, ΔB could not have been 

calculated for France, as ΔB requires repeated measurements that are currently not available in the 
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French NFI. Generally, a larger scale of the inventory data goes in line with a lower resolution and 

precision of the environmental data available. If the aim is to predict site productivity on a scale that 

is relevant for local forest management, a regional dataset combined with high quality 

environmental data permits to elaborate the regional differentiation of productivity without 

attempting to explain productivity in the entire distribution of the species. In contrast, geographically 

extensive studies have the advantage of larger climatic gradients and predictions for changing 

climate conditions become more reliable. 

 

 

Fig. 4: Overview of the approaches presented in this thesis. The larger the square the larger the geographic range covered 
(not proportional). Height productivity is represented by light green color, whereas biomass or volume (MAVI) productivity 
of the stand is represented by dark green. Red represents mortality. The blue bars show which site factors are included in 
the final models. 
The roman numbers refer to the underlying publications: 
Publication I: Possibilities and Limitations of Spatially Explicit Site Index Modelling for Spruce Based on National Forest 
Inventory Data and Digital Maps of Soil and Climate in Bavaria (SE Germany); Publication II: Static site indices from different 
national forest inventories: harmonization and prediction from site conditions; Publication III: Assessing site productivity 
based on national forest inventory data and its dependence on site conditions for spruce dominated forests in Germany; 
Publication IV: Positive Biodiversity–Productivity Relationship Predominant in Global Forests; Publication V: Climate change 
and mixed forests: How altered survival probabilities impact economically desirable species proportions of Norway spruce 
and European beech. 

 

The following main research questions and hypotheses have been formulated: 

Research questions: 

 How much variance in height can be explained by spatially explicit environmental data? 

 Can we predict height on a scale that is relevant for local forest management, i.e. with high 

local precision? 
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 How can we derive a harmonized measure for site productivity from different national forest 

inventories? 

 Is it possible to derive a more comprehensive measure of site productivity than mere height 

from NFI data and explain it in dependence on site conditions? 

 How is the influence of soil and climate on forest productivity? 

 What are the trends in productivity due to climate change? 

 How does diversity affect productivity and mortality? 

 How is mortality risk affected by climate conditions? 

 What are the advantages and disadvantages, i.e. the potential and the limitations, of NFI 

data to investigate forest growth? 

 

Hypotheses: 

(1) Productivity increases with rising temperatures until a certain threshold value is reached. 

(2) Below a certain threshold value water supply acts as a limiting factor on productivity. 

(3) Where temperature and water supply are not limiting, the influence of soil nutrients on 

height growth becomes apparent. Therefore, high-resolution soil variables improve height 

growth models. 

(4) Biomass growth of the stand derived from NFI data is a better proxy for productivity than 

height growth or site index. 

(5) Productivity of mixed stands is higher. 

(6) Average climate conditions (30 year averages) act as predisposing factors: Mortality risk is 

higher at sites with high summer temperature. Mortality risk is higher at sites with low 

summer precipitation. 

(7) Mortality risk is reduced in mixed stands. 
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Table 1: Overview of the publications, stating the aspect of tree species suitability (P: productivity, M: mortality) that is investigated, the response variable in the model, the model type, the scale 
of the study and the main data sources; 
Publication I: Possibilities and Limitations of Spatially Explicit Site Index Modelling for Spruce Based on National Forest Inventory Data and Digital Maps of Soil and Climate in Bavaria (SE Germany); 
Publication II: Static site indices from different national forest inventories: harmonization and prediction from site conditions; Publication III: Assessing site productivity based on national forest 
inventory data and its dependence on site conditions for spruce dominated forests in Germany; Publication IV: Positive Biodiversity–Productivity Relationship Predominant in Global Forests; 
Publication V: Climate change and mixed forests: How altered survival probabilities impact economically desirable species proportions of Norway spruce and European beech. 

Publ. Aspect Response variable Model type Scale Inventory data Climate data Soil data 

I P 
single tree height 
(spruce) 

GAM Bavaria 
German NFI (BMEL 2014; 
Riedel et al. 2017; BMEL 
2019) 

regionalized data of Germany’s 
National Meteorological 
Service (DWD) (Hera et al. 
2013) 

Bavarian digital site 
information system BaSIS 
(Beck & Kölling 2013) 

II P 
site index 
(spruce & beech) 

GAM 
Germany 
& France 

German NFI (BMEL 2014; 
Riedel et al. 2017; BMEL 
2019) & French NFI (IGN 
2016) 

WorldClim 1.4 (Hijmans et al. 
2005) 

France: NFI 
Germany: Soil Profile Database 
at NFI plots (Benning et al. 
2019) 

III P 
biomass growth 
(spruce) 

GAM Germany 
German NFI (BMEL 2014; 
Riedel et al. 2017; BMEL 
2019) 

regionalized data of Germany’s 
National Meteorological 
Service (DWD) (Dietrich et al. 
2019) 

Regionalized soil data (von 
Wilpert et al. 2016) 

IV P 
PAVI or MAVI 
(all species) 

power function 
model using 
geospatial 
random forest  

global 
various forest inventories 
worldwide 

WorldClim 1.4 (Hijmans et al. 
2005) 
CGIAR-CSI (Trabucco & Zomer 
2009) 

WISE30sec v.1 (Batjes 2015) 

V M 
survival time 
(spruce & beech) 

survival analysis Europe 

German Crown Condition 
Survey (Wellbrock et al. 
2018), Level I and Level II 
(UNECE ICP Forests 2016; 
ICP Forests 2018) 

WorldClim 1.4 (Hijmans et al. 
2005) 

- 

 

GAM: generalized additive model; NFI: national forest inventory; MAVI: mean annual volume increment; PAVI: periodic annual volume increment 
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2 Theoretical Background 

2.1 Forest Site Productivity 

First, definitions for some terms used throughout the thesis are provided. Second, some basic 

concepts of yield science are presented. 

 

2.1.1 Definitions 

A site is a geographic location that is considered homogeneous in terms of its physical and biological 

environment (Skovsgaard & Vanclay 2008). 

Site quality refers to the combination of physical and biological factors characterizing a site regarding 

their potential to sustain tree growth (Skovsgaard & Vanclay 2008). 

Site potential is the capability of the site to produce plant biomass, irrespective of how much of this 

potential is utilized by the vegetation. It is determined by climatic and soil conditions (Skovsgaard & 

Vanclay 2008). 

Forest site productivity is the production that can be realized at a certain site with a given genotype 

and a specified management regime, i.e. it is a quantitative estimate of the site potential realized by 

the concrete stand at the given site. Thus, forest site productivity depends both on climatic and soil 

factors inherent to the site and on management-related factors (Skovsgaard & Vanclay 2008). In 

contrast to this realized forest site productivity, potential (forest site) productivity refers to the 

productivity a “standard” stand would have at the given site. Thus, potential productivity solely 

depends on climatic and soil conditions and allows to compare sites regarding their site potential 

irrespective of the actual stand and management. 

 

2.1.2 Indicators of Site Productivity 

A basic distinction can be drawn between geocentric and phytocentric indicators of site productivity. 

Phytocentric indicators are based on characteristics of the vegetation, whereas geocentric indicators 

are based on physical characteristics of the site (climate, topography, soil). However, it is difficult to 

derive a quantitative measure of site quality from environmental characteristics and “[s]ince 

estimates of the potential productivity based on soil characteristics and climate are afflicted with 

high uncertainty, it is necessary to rely on measures of the growing stand itself” (Assmann 1961: 

154). Therefore, in forestry dendrocentric indicators, a subcategory of phytocentric indicators, 

prevail: one or a combination of several easily measured tree or stand variables are used to indicate 

forest site productivity (Skovsgaard & Vanclay 2008). 
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2.1.2.1 Height 

The classic dendrocentric indicator is height. Already von Baur (1881) postulated that mid height is 

“the most precise and only correct indicator not solely for the assessment of a […] stand but for its 

site class.” The use of height as an indicator for forest site productivity is based on Eichhorn’s rule, 

one of the fundamental tenets of yield science. It states that “independent of the site, a certain mid 

height corresponds to a certain stand mass”. It is based on the following three relationships (Pretzsch 

2009: 432): 

 

The first relationship states that a forest stand at a given site follows a particular height development 

with age. 

ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑓(𝑎𝑔𝑒) 

 

The second relationship states that, independent of the site, a certain total volume yield corresponds 

to a given height. 

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑦𝑖𝑒𝑙𝑑 = 𝑓(ℎ𝑒𝑖𝑔ℎ𝑡) 

 

Based on the first and second relationship the third relationship expresses total volume yield as a 

site-dependent function of age. 

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑦𝑖𝑒𝑙𝑑 = 𝑓(𝑎𝑔𝑒) 

 

Assmann (1961) substituted mid height by top height, a modification that made Eichhorn’s rule more 

stable against thinning, especially from below. 

 

2.1.2.2 Site Index 

The use of height as an indicator of forest site productivity relies on the belief that (in even-aged 

stands) the height growth of the largest trees is roughly independent of the stem number. Top height 

at a certain age, i.e. site index (SI), can then be used to assess and compare site productivity. The 

most common definition of SI is top height at age 100. The SI for a given stand can be derived based 

on either strip methods, indicator methods or yield tables. The construction of yield tables relies on 

longitudinal data. Thus, site index curves represent the true mean height growth over time of the 

underlying stands (Fig. 5). In contrast, strip methods do not require longitudinal observations, but 

only large data sets of age-height measurements (Fig. 6). Lower and upper boundary age-height 

curves are defined and the age-height spectrum is then divided into even spaced age-height curves 

(Pretzsch 2009: 436f). Unlike the yield tables, these static height curves do not represent true 
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trajectories of the stands’ height development, as a space-for-time approach is biased when site 

conditions are changing (Yue et al. 2016; Pickett 1989). However, the static height curves effectively 

lead to a balanced site index distribution over the age spectrum and make site index models stable 

against age trends. The indicator method relies on growth series obtained from stem analysis of 

individual sample trees. Knowing the height growth over time at a certain site it can be assigned to a 

determined growth series. One limitation of this approach is that the overall stand might not develop 

in the same way as the sample trees (Pretzsch 2009: 436f). 

 

 

Fig. 5: Green lines: age-height development for different site classes of spruce yield tables from 1963 (Assmann & Franz). In 
the background age-height measurements of dominant Norway spruce trees in the 3

rd
 German National Forest Inventory 

2012 are plotted in grey: While old stands stay well within the height frame of the yield tables, young stands clearly exceed 
the given height frame. This is not because younger stands have been systematically planted at better sites but because 
they have experienced better growing conditions on the same sites. This example illustrates the difficulty in deriving a site 
index from yield tables under changing site conditions. From Brandl et al. (2018). 
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Fig. 6: Application of the strip method to NFI spruce plots (green points). The solid black curves mark lower and upper 
boundary age-height curves. The top height htop(i) of a species in a stand at age i is translated to the corresponding height 
htop(100) at the reference age of 100 years, i.e. the SI; The black dot marks an example stand at age 60 with a top height of 
28 m. The black cross marks its translation to htop at age 100, resulting in a SI of about 32 m. From Brandl et al. (2018). 

 

2.1.2.3 Beyond Site Index (more direct and comprehensive measures of forest site productivity) 

The use of SI as an indicator of productivity is based on Gehrhardt’s first refinement of Eichhorn’s 

rule stating that the relationship between total volume production of a tree species and stand height 

is identical for all site indices referred to as general yield level. However, later Gehrhardt specified 

different relationships between total volume production and stand height for each site index 

referred to as special yield level. Later, Assmann found that the total volume production of stands of 

the same age and SI can still vary ± 15 % in dependence on site characteristics referred to as 

subdivided special yield level (Pretzsch 2009). This implies that SI does not completely capture site 

productivity and in some cases more direct and comprehensive measure of forest site productivity 

might be preferable (Bontemps & Bouriaud 2014). 

Forestry is focused on timber. Therefore, growth and yield are quantified traditionally in terms of 

stem-wood or merchantable wood volume, in units of m³ (yield) or m³ yr-1 (growth) per tree and 

hectare (Pretzsch 2009: 41). 

Periodic annual increment (PAI, sometimes referred to as periodic annual volume increment PAVI) is 

one growth characteristic often used. It can be calculated based on repeated inventories: 

𝑃𝐴𝐼 =
𝑉2 𝑟𝑒𝑚𝑎𝑖𝑛 − 𝑉1 𝑟𝑒𝑚𝑎𝑖𝑛 + 𝑉𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝑡2 − 𝑡1
 

 

The gross yield in volume is then: 

𝑌𝑉 𝑔𝑟𝑜𝑠𝑠 = ∫ 𝑃𝐴𝐼 𝑑𝑡
𝑡𝑛

𝑡=𝑡0
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The mean annual increment (MAI, sometimes referred to as mean annual volume increment MAVI) is 

defined as the gross yield at time n divided by the stand age: 

𝑀𝐴𝐼 =
𝑌𝑉 𝑔𝑟𝑜𝑠𝑠

𝑡𝑛
 

(Pretzsch 2009: 56ff) 

In contrast to forestry, ecological science is more interested in processes, e.g. the relationships 

between gross and net primary production, allocation patterns and turnover. Growth and yield are 

quantified by biomass (t) and biomass production (t yr-1) or in energy equivalents. They characterize 

the biomass and energy balance of a system and constitute a more accurate estimation of 

production potential (Pretzsch 2009: 41). Gross primary productivity (GPP, t ha-1 yr-1) is defined as the 

total biomass produced in photosynthesis over a given time period for a given area. Net primary 

productivity (NPP, t ha-1 yr-1) is the part remaining after subtracting the loss through respiration and 

is equivalent to gross growth (GG). Subtracting the turnover (ephemeral turnover of plant organs + 

long-term turnover of whole individual plants) results in net growth (NGtotal). In forestry, the 

intermediate variable, net growth + turnover of individuals, is a key measure when looking at growth 

and yield at the stand level (Pretzsch 2009: 42f). 

An exhaustive overview of the terminology and quantities used in ecology and forest growth and 

yield science is provided in Pretzsch (2009, chapter 2). 

As described above, the classic unit of growth and yield used in forestry is volume, whereas ecology 

focuses on biomass. More and more efforts are being made to bridge this gap and to bring forest 

science closer to ecological research (Pretzsch 2009: 64). Based on published scaling factors total tree 

biomass, stand biomass or NPP can be estimated from wood volume (Pretzsch 2009: 64). Another 

approach to obtain biomass estimates is to use functions that directly describe the relationship 

between dbh (and height) on the one hand and biomass on the other hand. These functions are 

often fitted based on dbh and height measurements as well as weights of the tree compartments of 

sample trees (e.g. Wirth et al. 2004; Cienciala et al. 2005; Hochbichler et al. 2006). However, due to 

the high expenses the underlying database is limited. In publication III of this thesis functions 

developed by Zell (2008) are used that permit to estimate single tree biomass from dbh and height 

measurements. These functions are not based on a sample of measured and weighed trees, but are 

derived based on allometric relationships: Based on data of the 2nd national forest inventory in 

Germany a set of representative trees was defined. Compact wood volume of these trees was 

estimated based on dbh, height and d7 (diameter at 7 m). From merchantable wood volume total 

aboveground wood volume was deduced. Volume was then converted into biomass assuming 

different densities for merchantable wood volume and the expanded aboveground wood volume. 

Finally, species-specific biomass functions were developed, explaining single tree biomass in 

dependence of dbh and height. 
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2.2 Mortality 

2.2.1 Stress-induced Mortality 

Investigating tree mortality, a first distinction may be made between regular and irregular mortality. 

Regular mortality refers to self-thinning due to the increasing competition for resources as the stand 

develops, whereas irregular mortality refers to mortality due to extreme events and disturbances. 

However, this distinction may fall short when investigating trends in mortality due to climate change, 

as the self-thinning line is related to the carrying capacity of a site which in turn is affected by 

changes in average climate conditions. Thus, besides mortality due to extreme events, mortality due 

to intensified competition for resources that are affected by climate change, e.g. water supply, has to 

be taken into account. Mortality due to competition for light that is most strong in the juvenile phase 

can be excluded. 

The decline disease concept (Manion 1981) presents a useful tool to structure and interpret stress-

induced tree mortality. It differentiates between predisposing, inciting and contributing factors. 

Predisposing factors comprise climate and soil conditions, nutrient supply, genetic disposition, air 

pollutants and competition. These factors reduce vitality and growth in the long term. Inciting factors 

may be insect defoliation, frost, storms, drought and mechanical injury. They affect the physiological 

functioning of the tree and reduce its vitality and potential for pathogen defense in the short term 

leading to a rapid growth decline. Contributing factors may be bark beetles, fungi or viruses. They act 

in the short or long term. Contributing factors are often crucial and decide, whether the tree actually 

dies or not. All in all, stress-induced tree death is usually the result of an interaction between these 

factors and thus a complex and gradual process (Fig. 7) which means that the timing of tree death is 

highly variable and unpredictable (Franklin et al. 1987). 
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Fig. 7: Illustration of how predisposing (blue), inciting (yellow) and contributing (pink) factors can interact using as an 
example the study of Bigler et al. (2006) on Scots pine decline in the Valais in Switzerland: In the beginning, there is a 
healthy Scots pine tree. Competition and rising temperatures act as long-term predisposing factors and weaken the tree. 
Droughts further reduce its vitality and act as inciting factors. As a consequence of severe water stress, Scots pine lowers 
the resin content and the defense potential is reduced. Thus, it is more susceptible to contributing factors like mistletoe, 
insects, additional drought and phytopathogens. There is also an interaction between predisposing and contributing 
factors: Rising temperatures are likely to have favored insect development rates and increased their populations. Still, at 
each stage a tree might escape this spiral: for instance, suppression might be released or after a drought conditions might 
be more favorable and the tree recovers. 

 

2.2.2 Survival Analysis 

In short, survival analysis is the study of survival times and of the factors that influence them (Moore 

2016). In many medical studies the variable of interest is the time between a treatment and the 

death of the patient. However, a variety of other questions can be investigated as well. For instance, 

in social science the time between marriage of a couple and their first baby might be analyzed 

(Broström 2012). In summary, survival analysis can be applied to a variety of scientific issues when 

the variable of interest is time to a defined event. However, not all objects under investigation might 

experience the event during the observation period, either because they are still alive at the end of 

the observation period or because they have dropped out of the study during the observation period 

for other reasons. This means that their true survival time is unknown. It is only known until what 

time they at least survived. These observations are right-censored. It is also possible that study 

objects are not observed from the beginning of the study but enter the study later on. These 

observations are left-truncated. Survival analysis can handle these two characteristic features of 

survival data (Fig. 8). 
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Fig. 8: Illustration of how the sampling design of a typical survival study can be applied to data of the forest damage survey. 
(a) There is a subplot of six trees. Observation goes from 1994 until 2015. The same trees are assessed annually. Concerning 
survival status there are three options: (1) The tree dies during the observation period. The event of interest (death) occurs 
(tree 2 and tree 6, marked with red crosses). (2) The tree survives, i.e. is still alive at the last survey in 2015 und thus right-
censored (tree 1 and tree 4, marked with blue circles). (3) The tree is harvested during the observation period and is thus 
right-censored, as it cannot be known when it would have died naturally (tree 3 and tree 5, marked with blue circles). (b) 
Instead of observation time the age of the tree can serve as time variable in the survival analysis. Now the age at death 
matters or, if the event does not occur, the age until a tree at least survived (second number; if it is right-censored, this is 
denoted by a plus sign). Using age as time variable, there is no common survey start anymore, as the (hypothetical) study 
begin is now at age zero. The trees are observed for the first time at different ages, i.e. enter the study at different ages 
(first number). Data are left-truncated now. It is important to take this left-truncation of the data into account, as otherwise 
there would be a survivorship-bias. This is illustrated by tree 7. This tree has never been observed, because it died before 
the first survey. If a tree counted as living for ages younger than the youngest age it was observed, this would lead to a bias, 
as all the surviving trees would be considered but not the trees that died before the observation start. 

 

Survival analysis depends on the distribution of survival times. There are two key ways of describing 

and modeling the distribution: the survival probability S(t) and the hazard rate h(t) (Moore 2016). 

The survival probability S(t) is the probability of an individual to survive to a time t. The hazard rate 

h(t) is the probability that an individual that is under observation at a time t has an event at that 

time, i.e. it is the instantaneous event rate for an individual who has already survived to time t (Fig. 

9). S(t) and h(t) determine each other (Clark et al. 2003): 

 

ℎ(𝑡) =  −
𝑑

𝑑𝑡
log[ 𝑆(𝑡)] 
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Fig. 9: Survival function S(t), hazard rate h(t) and density function f(t) for Weibull-distributed survival times. If one of the 
functions is known, the others are automatically determined. 

 

Kaplan-Meier Estimator 

The survival probability can be estimated non-parametrically from observed survival times using the 

Kaplan-Meier method (Clark et al. 2003). This estimator also provides the basis for graphical methods 

that are often used in the validation of parametric models. Under the assumption that events occur 

independently of each other, the cumulative survival probability is obtained by multiplying the 

probabilities of surviving from one time interval to the next (Clark et al. 2003). Table 2 and Fig. 10 

illustrate the calculation of the Kaplan-Meier estimate. 

 

𝑆(𝑡) = ∏
𝑛𝑖 − 𝑑𝑖

𝑛𝑖
𝑡𝑖≤𝑡

= ∏ 1 −
𝑑𝑖

𝑛𝑖
𝑡𝑖≤𝑡

 

 

𝑛𝑖+1 = 𝑛𝑖 − 𝑑𝑖 − 𝑐𝑖  

 

S(t): survival probability 

ti: time 

ni: observed individuals 

di: dead individuals 

ci: censored individuals 
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Table 2: Illustration of how the Kaplan-Meier estimator is derived. 

Age (t) Observed trees 

(n) 

Dead trees (d) Censored trees (c) Survivability (S(t)) 

1 0 0 0 1 

2 6 0 0 1 

… … … … … 

7 85 1 24 0.988 

8 68 0 5 0.988 

… … … … … 

12 141 1 8 0.981 

… … … … … 

15 207 6 28 0.953 

… … … … … 

 

 

Fig. 10: Kaplan-Meier survival probabilities (step function). The blue line shows the fit of a Weibull distribution to the 
underlying survival times. 

 

The Effect of Covariates on Survival 

When modelling the effect of covariates on survival semi-parametric or parametric models are used. 

In parametric models survival time is assumed to follow a particular distribution e.g. a Weibull or log-

normal distribution. They can be divided into proportional hazards models (PH) and accelerated 

failure time models (AFT). PH models assume a constant hazard ratio over time and covariates act 

multiplicatively on the hazard rate. The most commonly used approach in survival analysis is the 
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semi-parametric Cox PH model, where the effect of covariates on the hazard rate is modelled 

parametrically but the baseline hazard remains unspecified (Kleinbaum & Klein 2012). 

 

Accelerated Failure Time Models 

In contrast to proportional hazard models, which estimate the baseline hazard function, AFT-models 

estimate the baseline survival function. Survival times are assumed to follow a distribution. The 

estimated covariates are multiplicative with respect to survival time. 

The natural logarithm of the survival time is expressed as a linear function of the 

covariates (x1, x2, … xp): 

log(𝑇) =  𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + … + 𝑏𝑝𝑥𝑝 + 𝜀 

 

where ε is a measure of residual variability in the survival times (Bradburn et al. 2003). The 

distributional form of this error term determines the regression model. 

 

For Weibull distributed survival times the probability of survival S at a certain time t can be described 

by: 

𝑆(𝑡) = 𝑒𝑥𝑝 [− (
𝑡

𝛽
)

𝛼

]  𝑤𝑖𝑡ℎ 𝑡 ≥ 0 

with α being the shape and β being the scale parameter. The shape parameter α represents the 

development of the hazard over time. A value of one expresses a constant risk over time, whereas 

smaller or larger values express a decreasing or increasing hazard rate over time, respectively. 

Covariates act on the scale parameter β. It is reparametrized for different values of coefficients using 

the following formula: 

𝛽reparametrized =  
𝛽

𝑒𝑥𝑝(𝑏1𝑥1) ∗ 𝑒𝑥𝑝(𝑏2𝑥2) ∗ … ∗ 𝑒𝑥𝑝(𝑏𝑝𝑥𝑝)
 

where b denotes the coefficient and x the value of the corresponding explanatory variable 

(Staupendahl & Zucchini 2011). 

 

The exponentiated estimated coefficients correspond to ratios of survival times for any fixed value of 

S(t) and are also called acceleration factors. When the time ratio is greater (less) than one the 

covariate indicates a decrease (increase) of time to death – in other words it leads to a shrinking 

(stretching) of the baseline survivor function along the x-axis (Kleinbaum & Klein 2012). 
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2.3 Site Factors 

“As a first aspect, biophysical predictors should be selected to covering abiotic factors relevant to 

tree growth, climate or soil related, which include their nutritional, energetic and water 

requirements […]. The perennial nature of tree species also comes along with some specific abiotic 

control to be acknowledged, e.g. related to winter climate in temperate and boreal ecosystems […]. 

This control may generally vary with the biomes considered […], with tree species phenology […], or 

with their other functional characteristics […]” (Bontemps & Bouriaud 2014). 

Another aspect is the form of the relationship between the productivity indicator and the site factor. 

The growth of a tree follows a unimodal dose-effect curve when the site factor increases under 

ceteris paribus conditions (Fig. 11). The position and range of the ecological amplitude, the position 

of the optimum and the curve division into progressive and regressive branches depend on the site 

factor and the species. The path of the curve in the progressive or regressive branches can be 

assumed as linear, as monotone ascending or descending with or without inflection point (Pretzsch 

2009: 381f). 

 

 

Fig. 11: Dose-effect curve. Ranges of optimum, suboptimum (S) and minimum or maximum (M) supply respectively within 
the ecological amplitude are indicated. From Pretzsch (2009: 382). 

 

In practice, sometimes only the progressive or regressive branch of the dose-effect curve is relevant. 

For instance, data might only cover the range from the minimum to the optimum of a resource or the 

dose of a site factor that would be damaging simply does not occur naturally. Thus, a positive linear 

effect or a saturation curve might provide the best fit. For instance, the temperature modifier in the 

process-based stand growth model 3PG has the form of a unimodal dose effect curve, whereas the 
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effect of relative available soil water is described by a saturation curve (Landsberg & Sands 2011). 

This also illustrates why statistical models should not be used for extrapolations beyond the range of 

the training data. 

If in the interpretation of the results of this thesis the ecological plausibility of response curves is 

discussed, it refers to these general relationships between dose and effect. 

A third aspect is the possibility of interactions between site factors. An interaction occurs when the 

effect of one explanatory variable (here: site factor) on the response variable depends on the value 

of a second explanatory variable (Fig. 12). In statistical models an interaction is introduced by 

including the product of the site factors as an additional covariate. Interaction terms can account for 

compensation or enhancement among site factors (Pretzsch 2009: 386). However, the lack of 

uniform coverage of all site factor combinations often leads to factor confounding. Therefore, in 

practice it might be difficult to fit interaction effects. 

 

 

Fig. 12: Interaction effect between water supply (WB) and growing degree days (GDD5) fitted for the single tree height 
model (publication I). Partial effects of the tensor product on height (in m) are greatest, i.e. greatest heights are reached, 
when both WB and GDD5 are high. If one of the two factors is limited, greatest heights cannot be reached irrespective of 
the other factor. From Brandl et al. (2014). 

 

2.3.1 Climate 

Growth is determined by underlying physiological processes. The external conditions that affect the 

rates of these processes include, besides nutrients and water, the weather variables solar radiation, 

air temperature, humidity and wind (Landsberg & Sands 2011). Between these variables there are 

usually strong correlations. For instance, solar radiation is usually lower on cloudy or wet days, 

whereas humidity is usually lower when it is warmer (Landsberg & Sands 2011). In the geographical 

range considered in publications I, II and III solar radiation is strongly correlated with temperature. 
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Therefore, only temperature is used to explain growth. “Temperature is a key determinant of the 

rate of metabolic processes and hence has a major impact on plant growth, especially on carbon 

balance through its influence on photosynthesis and respiration. It also affects plant development, 

for example through effects of temperature on the timing of bud burst and flowering. Temperature 

affects the water balance of the plant, and the dynamics of soil water storage, through its effects on 

evaporation and transpiration. Finally, extreme temperature induces leaf damage that affects plant 

growth, disrupts enzyme systems, or induces extreme water stress and loss of turgor” (Landsberg & 

Sands 2011). 

As forests do not occur in low rainfall regions of the world, water is obviously another essential 

controlling factor. The water balance of stands depends on precipitation, interception, run-off, 

evaporation and drainage. It determines canopy conductance and the ability of the trees to absorb 

CO2 for photosynthesis (Landsberg & Sands 2011). Therefore, precipitation is an essential factor 

determining growth. 

In this thesis climate averages are used. As the productivity indicators summarize growth over time it 

makes sense to explain this overall growth response in dependence on average conditions 

(publication I, II, IV, V: 30 year averages; publication III: averages over the measurement period 

between 2nd and 3rd German NFI). Of course, productivity and even more mortality risk are also 

influenced by extreme weather events like droughts. However, the influence of extreme weather 

events is difficult to capture given the database. Therefore, explanatory variables in the mortality 

models are constrained to predisposing factors, i.e. average climate conditions. For instance, warm 

and dry conditions over a long period can weaken trees and predispose them to inciting and 

contributing factors. Furthermore, a correlation between average climate conditions and extremes 

can be assumed: For instance, regions with higher average temperature possibly experience more 

drought events and thus the probability of a bark beetle outbreak is higher. 

Future climate projections are based on the calculations of general circulation models (GCM). A GCM 

models the general circulation of the planetary atmosphere or the ocean. Recently, GCMs are 

applied more and more often as components of Earth system models (ESM). Besides atmosphere, 

ocean, land surface and sea ice, ESM take the carbon cycle and other interactive components like 

aerosols into account. Regional models are used to downscale their output in order to enable a more 

detailed and realistic prediction at the regional scale (Brasseur et al. 2017). For the 5th IPCC report 

(IPCC 2014) four representative concentration pathways (RCP) have been selected for climate 

modeling, i.e. as input for ESMs. Representative concentration pathways are greenhouse gas 

concentration trajectories that cause a corresponding radiative forcing. The four RCPs selected are 

2.6, 4.5, 6.0 and 8.5 (named after the radiative forcing values (in W m-2) in the year 2100 relative to 

pre-industrial values). Simulations were conducted with 40 different ESMs (Brasseur et al. 2017). 

 

https://en.wikipedia.org/wiki/Greenhouse_gas
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2.3.2 Soil 

Chemical and physical soil properties influence growth and vitality. For instance, the water supply of 

the tree is not only affected by precipitation but also by soil conditions. Available water capacity 

(AWC) characterizes the amount of soil water that can be used by the tree. As it is laborious to 

measure the water retention curve and determine AWC in that way, AWC is more often estimated 

using pedotransfer functions based on soil texture, soil depth, density, skeletal fraction and humus 

(e.g. Wösten et al. 1999; Teepe et al. 2003). Sometimes the more readily available characteristics of 

soil texture percentage of clay, silt and sand in the soil serve as proxies of water availability (Cosby et 

al. 1984). 

Besides water supply, a balanced nutrient supply is important. Shortage of any nutrient limits the 

capacity of the tree to efficiently use solar radiation and to convert photosynthates into biomass. 

Macro-nutrients are nitrogen, phosphorus, sulfur, calcium, magnesium and potassium. Apart from 

nitrogen, all nutrients originally stem from the weathering of parent minerals forming the soil. 

Nitrogen forms part of chlorophyll molecules and enzymes. Phosphorus is needed to build ATP. 

Potassium is needed to regulate the charge balance across plant membranes. Magnesium forms part 

of the chlorophyll molecule and plays a role in enzyme activation. Calcium forms part of cell walls, 

acts as an enzyme co-factor and has a function in membrane permeability (Landsberg & Sands 2011). 

The amount of nutrients required is determined by the growth rate of the tree. However, actual 

nutrient absorption rates depend on soil moisture, temperature, the effectiveness with which the 

soil is exploited by roots and the presence of mycorrhiza as well as the chemical availability of the 

nutrients (Landsberg & Sands 2011).  
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3 Methodology and Results 

3.1 The Relationship between Single Tree Height and Site Factors (Publication I) 

Tree and stand characteristics were derived from data of the 3rd German NFI (2012) for the federal 

state of Bavaria. Dominant Norway spruce trees of the Kraft classes 1 and 2 with height 

measurements and within an age range of 30 to 150 years were selected from the angle count 

sample with basal area factor 4. Basal area (BA) was estimated from the angle count sample with 

basal area factor 1. Terrain data were derived from a digital elevation model (resolution 50 m). 

Monthly means of temperature and precipitation for the period 1971-2000 were calculated from 

climate data that had been regionalized to a 50 m grid based on weather stations of Germany’s 

National Meteorological Service (DWD). Soil data were provided by a digital site information system 

developed at the Bavarian State Institute of Forestry. The study consisted of two parts: (1) an 

exploratory data analysis and (2) a model of single tree height in dependence on age and site factors. 

(1) In order to make the heights of trees of varying ages comparable, the heights were divided by the 

fit of a 95 %-quantile regression of height against age resulting in scaled heights. Environmental 

variables were grouped according to the quartiles of scaled height distribution and tested for 

significant differences between the groups. In order to identify the environmental variables that best 

separate the 10 % of plots with lowest heights from the 10 % of plots with greatest heights a 

hypervolume analysis was conducted. (2) Height was modeled as a function of age, environmental 

variables and basal area of all trees using generalized additive models (GAM). Variable selection was 

done in three steps: double penalty selection on the smooth terms, AIC backwards selection and 

checking the ecological plausibility of the partial effects. Relative root mean squared prediction error 

(RMSPE) was calculated based on 10-fold cross-validation. In order to allow for regionally complex 

interactions between soil variables the residuals of the GAM were modeled using boosted regression 

trees (BRT). 

(1) Highest and lowest growth could be separated best by 6-dimensional hypervolumes defined by 

temperature during growing season (T_5to9), water balance during growing season (WB), soil 

calcium (Ca), potassium (K), magnesium (Mg) and clay content. T_5to9 showed a positive effect on 

height growth, at the cold margin it acted as limiting factor. There was a trend to greater heights 

with better water supply. On Bavarian scale, it was difficult to identify a clear effect of soil nutrients 

on tree height. However, there was a weak positive effect of K on height growth and the medians of 

scaled heights for the five types of the depth gradient of base saturation followed an optimum curve. 

(2) Besides age and BA, the interaction between growing degree days (GDD5, threshold: 5 °C) and 

WB, base saturation as well as the relief parameters mass balance index (MBI) and soil moisture 

index (SMI) were included in the GAM (adjusted R² = 65.2 %, RMSPE = 0.976 m). BA had a positive 

effect on height. Greatest heights were predicted when both GGD5 and WB were high, whereas both 

variables acted as limiting factors at low values. High BS had a negative effect on height. For SMI an 

optimum relationship was fitted. The model predicted greater heights for lower slopes and valleys 

(MBI < 0) and lower heights for upper slopes (MBI > 0). Applying BRT to the residuals resulted in 
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ecologically plausible smoothed response curves for the soil variables nitrogen, silt content, K and 

Mg. The correlation coefficient between calculated and predicted residuals was 0.25. Adding the 

predicted residuals to the heights predicted by the GAM increased the R² to 67.5 %. The final model 

was used to generate a site index map for Bavaria. Highest growth was predicted for the southern 

part especially the west of the tertiary hill country (Swabia) and the Spessart in the northwest. In 

contrast the eco-regions “Fränkische Platte” and “Frankenalb” and the northeastern part of Bavaria 

were not very favorable for spruce growth. The model allows to estimate local trends in productivity 

due to climate change (Fig. 13). 

 

  

Fig. 13: Height growth potential of Norway spruce as predicted by the model in the present, near future (WETTREG B1 
2031-2060) and distant future (WETTREG B1 2071-2100) for a region in the northeast of Deggendorf. This example shows 
how climate change affects height growth potential along elevation gradients. From Brandl et al. (2016). 
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3.2 The Relationship between a Static Site Index and Site Factors (Publication II) 

Site indices (SI) were harmonized for the national forest inventories (NFI) of Germany (3rd NFI 2012) 

and France (2006 until 2013) for six species: Norway spruce, Scots pine, Douglas-fir, European beech, 

sessile oak and pedunculate oak. Inventory plots in regular forests where the investigated species 

accounted for ≥ 70 % of the plot basal area and the coefficient of variation of age was ≤ 0.25 were 

included. The root mean square diameter of the top 100 diameters (dtop) of a tree species on a site 

was calculated. The corresponding top height (htop) was derived from species-specific height-

diameter curves and the corresponding age determined. In order to obtain the SI, the Chapman-

Richards function was fitted to the 5 and the 95 % quantiles of the age-height spectrum creating a 

lower and upper boundary line. The SI was determined by translating the position of htop(i) between 

lower and upper boundary height of a species in a stand at age i to the corresponding height 

htop(100) at the reference age of 100 years (strip method). Virtual stands, which were simulated 

based on yield tables of Norway spruce, were used to assess the uncertainties in deriving the SI. For 

spruce and beech SI was modeled in dependence on climate parameters (WorldClim 1.4) using 

generalized additive models (GAM) with a gamma error distribution and log-link function. Climate 

could be characterized by mean annual temperature or summer temperature, winter temperature, 

precipitation, and continentality. Elevation was used as an additional explanatory variable. The 

influence of soil parameters was taken into account only by removing plots where the climate signal 

was likely to be confounded by extreme soil characteristics. The intercept could differ between 

Germany and France in order to account for possible effects of differences in inventory design not 

yet considered. Adjusted R² and AIC served as selection criteria. 

The top height proved as a stable height measure that could be derived harmoniously from German 

and French NFI. The boundaries of the age-height frame were well described by the Chapman-

Richards function. Tests made on virtual data ensured that there were no big or systematic 

deviations resulting from the two NFI sampling methods and that htop was relatively stable with 

respect to effects of density. The effect of age errors on SI estimation decreased with increasing age. 

SI of spruce was modeled as a function of temperature from May to September (T_5to9), January 

temperature (T1), annual precipitation (P) and the country factor (adjusted R² = 19.1 %). T_5to9 had 

the strongest explanatory power. Until approximately 15 °C, SI increased strongly with rising 

temperatures. A further increase in T_5to9 led only to a very slight increase in SI. Overall SI 

decreased with rising T1. There was a steep increase in SI with increasing P until saturation was 

reached at a threshold value of about 750 mm. The effect of the country factor was rather small. SI of 

beech was modeled as a function of temperature of the warmest quarter (T_wq), precipitation sum 

from May to September (P_5to9), elevation and the country factor (adjusted R² = 40.1 %). For T_wq a 

curve with a wide optimum range between about 14 and 18 °C was fitted. Applying monotonicity 

constraints a saturation curve could be fitted for P_5to9 which flattened at a threshold value of 

about 570 mm. Elevation had a strong effect on SI. It increased from sea level to 200 m and then 

continuously decreased. The effect of the country factor was rather strong. The models were used to 

create maps of SI for current and future climate (climate scenario RCP 4.5 for the period 2061–2080 
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based on WorldClim MPI-ESM) (Fig. 14). As under the chosen climate scenario a clear increase in 

temperature but not much change in precipitation is predicted, changes in SI were mainly 

temperature-driven. Under current conditions high SI for spruce were predicted for Southern 

Germany due to a favorable combination of mean T_5to9, T1, and P, whereas in the Alps SI was 

limited by T_5to9. Under future conditions the model predicted an increase in SI in the mountains 

and for Southern Finland and Norway as T_5to9 increases and no longer limits height growth while 

T1 is still rather low. In Germany, the model predicted slightly lower SI for the future mainly due to 

rising T1. For beech, under current climate low SI were predicted for mountainous regions. In 

Southern Europe, low SI were due to elevation and low precipitation, whereas summer temperature 

mostly does not reach values that seriously limit height growth. In the South of Germany, 

environmental conditions were found very favorable for beech and SI were high. In the predictions 

for the future, rising temperatures caused a clear shift to the north for regions of high SI and a 

decrease in SI for Southern Germany. However, in the future maps the strong effect of elevation in 

the beech model became apparent: Despite rising temperatures, SI remained low in the mountains. 

 

 

 

Fig. 14: Map of predicted SI of Norway spruce and European beech for present and future climatic conditions (limitations 
due to soil conditions are not taken into account). The gray areas mask the extrapolation range of the models. Predictions 
for the future are hatched when current climatic conditions are present in the training data, but future climatic conditions 
fall into the extrapolation range. From Brandl et al. (2018).  
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3.3 The Relationship between Biomass Growth and Site Factors (Publication III) 

Above-ground wood biomass was estimated for the 2nd (2002) and 3rd (2012) NFI in Germany based 

on the angle-count sample (factor 4) using species-specific functions of dbh and height. Biomass 

growth per year was determined for each tree as the difference between NFI 3 and NFI 2 divided by 

the period length. These values were extrapolated to 1 ha and summed up at plot-level in order to 

obtain above-ground wood biomass growth of the stand (ΔB). As a measure for stand density the 

stand density index of Reineke (SDI) was calculated. For the analysis plots with a basal area 

proportion of spruces ≥ 70 % and stand age between 30 and 150 years were used. Plots on gley soils, 

pseudogley soils and moor soils were discarded. The study consisted of two parts: (1) an exploratory 

data analysis and (2) a model of biomass growth (ΔB) in dependence on site factors. 

(1) In order to address the question what stand variables explain the variability in ΔB for a given site 

index, the variation in ΔB not already explained by SI (and stand age) was explored. First, for each 

plot SI was determined by estimating the top height and extrapolating it to age 100 applying the 

Chapman-Richards function (Brandl et al. 2018). Second, a generalized additive model (GAM) was 

fitted explaining ΔB in dependence on SI and stand age. Third, the residuals were divided in quartiles 

and tested if stand (SDI, stem number, standing above-ground wood biomass and quadratic mean 

diameter) and tree (height, dbh and relative dbh increment) parameters differed significantly 

between the quartiles using Kruskal Wallis and post-hoc Nemenyi test. 

(2) In order to separate the effect of environmental conditions from the effect of forest management 

on stand density a relative SDI was calculated: Plots of similar site conditions were identified using k-

means clustering (21 clusters) of climatic and soil variables. Then, for each NFI plot the ratio of its SDI 

and the maximum SDI of the corresponding cluster was calculated resulting in a relative density (RD) 

that reflects the effect of thinning on density. Generalized additive models with a gamma error 

distribution and log-link function were used to explain biomass growth in dependence on stand age, 

RD and climate and soil variables. Variable selection was based on adjusted AIC and the ecological 

plausibility of the partial effects. External validation was based on an independent dataset of 78 long-

term experimental plots on 14 locations in Bavaria using the increment periods which were closest to 

the inventory periods of the NFI. 

 

(1) In the data there was a clear trend to larger quadratic mean diameter, dbh, standing biomass and 

ΔB with increasing SI. However, there was considerable variation in productivity (ΔB) that was not 

explained by SI and stand age. Differences in productivity were largely due to differences in stand 

density. Sites with greater productivity generally had a higher stem number per ha (Fig. 15a), 

whereas there was no clear trend for quadratic mean diameter (Fig. 15b). Standing above-ground 

wood biomass significantly differed between the quartiles of the distribution of the residuals and 

showed an increasing trend. Trees on sites with greater productivity but same SI did not have greater 

single tree diameters on average, but relative dbh increments were higher. There was no clear trend 

in single tree heights. 
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(2) The final model included RD, age, mean annual temperature, summer precipitation, temperature 

seasonality, base saturation, C/N ratio and sand content (Adjusted R² = 0.758). RD had a strong, 

approximately linear positive effect. ΔB decreased with increasing stand age from 30 years onwards. 

ΔB increased with rising mean annual temperatures. The increase was stronger in the low and 

medium temperature range. The effect of precipitation was smaller. Low summer precipitation 

clearly limited ΔB. ΔB was reduced at both extremes of temperature seasonality. Optimum ΔB was 

reached at medium base saturation. There was a tendency to higher ΔB with decreasing sand 

content and a clear negative effect of very high sand content. ΔB decreased nearly linearly with rising 

C/N ratio. External validation resulted in an R² of 0.753 of the linear relationship between measured 

and predicted values. 

 

  

Fig. 15: Comparison of stem number per ha (N) and quadratic mean diameter (dg) between the quartiles of the distribution 
of the residuals of a model explaining ΔB in dependence on site index and stand age (Brandl et al. submitted). Larger 
residuals go in line with greater ΔB at a given site index and stand age. 
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3.4 The Relationship between Productivity and Biodiversity (Publication IV) 

The effect of tree species richness on tree volume production was explored on a global scale based 

on 777,126 forest inventory plots in 44 countries and 13 ecoregions (Fig. 16). For each plot three key 

attributes were derived from measurements of individual trees: tree species richness (S), stand basal 

area (G), and primary site productivity (P). S represented the number of different tree species alive at 

the time of inventory. To facilitate inter-biome comparison, relative species richness (Š) was 

calculated as the ratio of S and local maximal species richness. G corresponded to total cross-

sectional area of live trees per unit sample area and represented stand density. For plots with 

repeated measurements (77 % of plots) P (m3 ha-1 yr-1) was estimated as periodic annual volume 

increment calculated from the sum of individual tree stem volume at the time of the first inventory 

and the second inventory, respectively. Mortality and ingrowth were accounted for. For plots 

without remeasurements (23 % of plots) P was measured in mean annual increment based on total 

stand volume and stand age, or tree radial growth measured from increment cores. Mortality was 

approximated based on region-specific turnover rates. The relationship between productivity and 

biodiversity (BPR) was approximated with a power function model using a geospatial random forest 

model: P = α * f(X) * Sθ, where f(X) is a function of a vector of control variables X (selected from stand 

basal area and 14 climatic, soil, and topographic covariates), and α a constant. The elasticity of 

substitution θ characterizes the shape and strength of the dependency function and measures the 

change in productivity resulting from one unit decline of species richness, and reflects the strength of 

the effect of tree diversity on forest productivity, after accounting for climatic, soil, and plot specific 

covariates. At the global-scale, the magnitude of BPR (as expressed by θ) was mapped using 

geospatial random forest and universal kriging. 

A consistent positive concave-down effect of biodiversity on forest productivity across the world was 

found (Fig. 16). 

 

 

Fig. 16: The effect of tree species richness on forest productivity: Based on worldwide 777,126 permanent forest inventory 

sample plots (blue dots, left) a positive, concave-down relationship between tree species richness and forest productivity 

could be found (right). From Liang et al. (2016). 
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Overall, the global forest productivity increased with a declining rate (θ = 0.26) from 2.7 to 

11.8 m3 ha-1 yr-1 as tree species richness increased from the minimum to the maximum value. Thus, a 

continued biodiversity loss would result in an accelerating decline in forest productivity and thereby 

in a reduction of forest carbon absorption rate worldwide. The BPR showed considerable geospatial 

variation across the world. The same percentage biodiversity loss would lead to greater percentage 

productivity decline in the boreal forests of North America, Northeastern Europe, Central Siberia, 

East Asia, and scattered regions of South-central Africa and South-central Asia. In the Amazon, West 

and Southeastern Africa, Southern China, Myanmar, Nepal, and the Malay Archipelago, however, the 

same percentage biodiversity loss would lead to greater absolute productivity decline. The economic 

value of biodiversity in maintaining forest productivity was estimated at $396–579 billion per year. 
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3.5 The Combined Effect of Productivity and Mortality on Economic Yield (Publication V) 

The study integrates empiric survival functions into a bio-economic simulation and optimization 

model in order to obtain predictions of economic yield that are both sensitive to forest productivity 

and mortality risk. Survival analysis was based on annual assessments of tree status in a pan-

European data set (German Crown Condition Survey, Level I and Level II data). For Norway spruce 

and European beech accelerated failure time models were fitted. Climate variables (Worldclim 1.4) 

and mixture proportion of the respective species could act multiplicatively on survival time. Variable 

selection was based on prediction accuracy (brier score) in a 10-fold cross-validation. Example study 

site and data for the economic analysis were from Freyung, Germany. Growth data were simulated 

with SILVA. Two alternatives of combining the two species were defined: block mixture with no 

biophysical interaction between the species, and mixed stands in which stand resistance was 

affected in accordance with the effect of mixture proportion in the survival model and volume 

growth and wood quality were affected based on assumptions from previous studies. Economically 

optimal species composition was derived based on Modern Portfolio Theory. The allocation of forest 

area for different tree species reduces the standard deviation of the portfolio’s return. The downside 

risk measure Value at Risk (VaR) was calculated as the expected portfolio return at the 5 % quantile 

at the undesirable, left tail of the return distribution. Maximizing VaR for block mixtures and mixed 

stands under current and expected future climate conditions resulted in the respective economically 

optimal tree species composition. For mixed stands, returns and risks were directly simulated for a 

range of mixtures between spruce proportions of 10 to 90 % in 10 percentage point increments. 

Frequency distributions of return were estimated by means of Monte Carlo simulation and 10,000 

iterations. Simulations were conducted with production periods of 10 years, starting at age 0, 

assuming bare land. The expected portfolio return was represented by the Land Expectation Value. A 

constant discount rate of 1.5 % was assumed. A sensitivity analysis was conducted by comparing the 

magnitude of change in optimized species composition to important economic drivers other than 

tree species selection: investment costs, correlation of returns, discount rate and the assumed 

attitude towards risks. 

For spruce sum of precipitation in the warmest quarter, mean temperature of the warmest quarter 

and share of spruce in the stand were selected as covariates influencing survival times. For beech 

maximum temperature of the warmest month, minimum temperature of the coldest month and 

share of beech were selected (Fig. 17). 
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Fig. 17: Results of the AFT model for spruce (left) and beech (right): For each selected covariate survival probabilities are 
depicted when setting the covariate to the 5%- and 95%-quantile of its range, respectively, while fixing the remaining 
covariates at their means. The grey line shows the survival probabilities when all covariates are set to their mean values. 

 

The effect of admixture on tree survival was positive for both species, whereas high summer 

temperature had a negative effect. The probability of a tree in pure stands to still being alive at age 

100 was 0.49 for spruce and 0.80 for beech, under a constant climate at the study site. Climate 

change affected both species at a similar magnitude. Yet, due to the higher survival of beech under 

current climate, its absolute survival rates still remained at a much higher level compared to spruce. 

The survival probability of spruce trees could still be maintained at today’s level when admixing pure 

spruce stands with 40 % beech. In block mixtures, despite its higher survival probabilities, beech had 

a much lower return and higher coefficient of variation (67 %) compared to spruce (38 %). 

Consequently, pure spruce stands would also give a much higher VaR (43 € ha-1 yr-1) compared to 

pure beech stands (2 € ha-1 yr-1) and the model would choose to dedicate the entire regeneration 

area to pure spruce stands. The consideration of the effect of climate change through altered survival 

probabilities only slightly reduced the economically optimal spruce proportion for a risk-averse forest 

owner. The increased survival probabilities found for both species when grown in mixed stands 

resulted in a considerably higher VaR compared to block-wise mixtures. Under a constant climate, 

the VaR of the economically optimal species proportion in the mixed stand design was 19 % higher 

compared to the highest VaR attainable in block mixture This advantage even increased to up to 57 % 

under the climate change scenarios. Climate change would still affect the forest owner, but 

compared to block mixtures and pure stands, economic consequences could be buffered 

considerably. The economically optimal spruce proportion in mixed tree stands was with 60-70 % 

generally lower compared to the ideal block mixtures. In the model, individual returns of spruce 

increased with an increasing admixture of beech. This was due to the higher stand resistance 

associated with lower hazard-induced losses and the shortening of rotation periods. The same effect 

was found for beech, but was less pronounced, due to the various effects of admixture on tree 

growth and wood quality. Consequently, given the overall higher return of spruce, this species still 
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dominated the species portfolio of mixed stands. Species selection in mixed stands was more stable 

under rather extreme climate change scenarios. 

In the sensitivity analysis, even moderate changes in the establishment costs of spruce, relative to 

beech by ±75 % (i.e. ±1500 €) reduced the share of spruce in optimized block mixtures from 100 % to 

only 50 %. This difference in species selection was much larger compared to the simulated effects of 

climate change. Furthermore, the advantage of mixed stands was reduced when assuming higher 

establishment costs for mixed stands compared to block mixtures. Under a higher correlation of 

events the advantage of having beech in the species portfolio was reduced. Changing the accepted 

level of risk, by decreasing the accepted shortfall probability from a moderate value of 5 % to a very 

risk-averse value of 1 % resulted in a much smaller optimal proportion of spruce in the block-mixture 

of 57 %. A moderate change in discount rate did not alter species selection in the block portfolio. The 

optimal species composition in mixed stands was less sensitive to changes in model assumptions. The 

optimal spruce proportion did not drop below 60 % (under current climate) when increasing 

establishment costs of spruce by 75 %, or decreasing shortfall probability to 1 %. Thus, biophysical 

interactions dominated species selection in mixed stands, while ideal compositions were less 

susceptible to other input variables. 
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4 Discussion 

4.1 Measuring and Modeling Forest Productivity 

The single tree height model is directly based on height measurements. Thus, in contrast to more 

comprehensive measures of productivity, it is free of any assumptions needed for upscaling. In only 

one step height was modeled as a function of age and site factors. The SI approach involved two 

steps: first, estimating top height and scaling it to age 100, the most common definition of SI, and 

second, modeling SI in dependence on site factors. The first step allowed a mere descriptive site 

(index) assessment of a stand without the uncertainty attached to modeled effects of environmental 

variables. Modeling the SI in dependence on site factors in a second step clearly separated the effect 

and explanatory power of environmental variables from the effect of age. As height and age 

information is generally included in inventory data and no remeasurements are required for the 

developed approach, SI could be successfully harmonized for different national forest inventories. 

Thus, subsequent modeling benefitted from large environmental gradients. 

Height and SI only encompass the vertical aspect of productivity. Biomass growth of the stand 

additionally encompasses the horizontal aspect of productivity (i.e. dbh increment), as well as stand 

density and (implicitly) stand mortality. Major caveats were the need for repeated measurements (or 

increment cores), the uncertainty introduced due to the upscaling based on the assumptions about 

allometry and the need to deal with the strong influence of forest management on stand density. All 

the same, biomass growth could be calculated from German NFI. It was possible to separate effects 

of thinning and effects of site quality on stand density. Thus, the influence of site factors on biomass 

growth could be elaborated more clearly. On a global scale it was possible to estimate periodic 

(based on remeasured plots) and mean (based on plots without remeasurements) annual volume 

increment from various inventory sources. Despite the high uncertainty attached to these 

estimations, the method proved suitable to detect large-scale patterns on a global scale. However, in 

order to detect patterns on the national scale and make predictions that are relevant for national 

forest management, more exact estimations of site productivity, like the height, SI or biomass growth 

estimations presented in this thesis, are needed as response variables in the models. 

 

4.2 The Effect of Environmental Conditions on Forest Productivity 

4.2.1 Temperature Regime and Water Supply 

The environmental variable with the highest explanatory power is temperature during the growing 

season. As Germany forms part of the temperate zone, potential productivity is strongly driven by 

length and temperature of the growing season (Nemani et al. 2003). Due to the high collinearity 

between variables characterizing annual temperature, summer temperature or temperature during 

the growing season, this can be stated across all investigated measures of productivity and species 

even if different specifications of temperature have been selected. At low and medium temperatures 
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productivity strongly increases with rising temperatures due to longer growing seasons (Pretzsch et 

al. 2014) and higher enzyme activity (Barnes et al. 1998: 210). At the warm temperature margin 

uncertainty is higher. Depending on the measure of productivity, the investigated species and the 

study area (chapter 4.2.3) a slight further increase, a more or less constant level, or a decrease is 

modeled. Still, again across all investigated measures and species it can be stated that above a 

certain threshold rising temperatures are not beneficial for productivity anymore. This can also be 

interpreted in relation to the effect of water supply: At high temperatures, droughts are more likely 

and lead to growth reductions (Matyssek et al. 2010: 239ff). 

Across all investigated measures and species water supply during the growing season acts as limiting 

factor. For the single tree height model for spruce in Bavaria the interaction between growing degree 

days (GDD5) and water balance was selected. In all other cases one of the highly correlated variables 

annual precipitation, summer precipitation or precipitation during the growing season was selected 

as explanatory variable. The effect of precipitation on productivity can be described by a saturation 

curve. Below a certain threshold there is a steep increase in productivity with precipitation. Above a 

given amount of water, precipitation is no longer the limiting factor. 

For tree growth the interplay between temperature regime and water supply is decisive (Lyr et al. 

1992). Ideally, i.e. based on ecological theory, the highest explanatory power should result from an 

interaction between temperature regime and water supply. Such an interaction is included in the 

single tree height model for spruce in Bavaria with the interaction between GDD5 and water balance, 

expressing that both factors can limit tree growth, whereas highest growth is reached if GDD5 is high 

and water supply is abundant. However, as the combination of both high temperatures and high 

precipitation rarely occurs in the data, the models could not always distinguish between effects of 

temperature and water supply, which led to wiggly surfaces of the interaction effect. For instance, in 

the single tree height model, in order to obtain a smooth, ecologically plausible surface of the 

interaction effect, the Alps had to be excluded. Thus, in the other models single effects were 

preferred. 

Of course, water supply does not only depend on precipitation, but also on soil texture and depth. 

Available water capacity was found to be a limiting factor for height growth of spruce in Bavaria and 

is also integrated in the water balance that was selected as explanatory variable in the single tree 

height model. SI models of spruce and beech had a higher explanatory power, when filtering out 

inventory plots with extreme soil conditions before modeling, which indicates the influence of 

physical soil properties. Soil texture influenced productivity. Silt content had a positive effect on 

productivity, whereas very high sand content had a negative effect. Effects of soil texture can both 

reflect nutrient supply (chapter 4.2.2) and water supply. Soils with high silt content often have more 

favorable physical properties in respect to water and air balance than soils with high sand or clay 

contents (Scheffer & Schachtschabel 2002: 241). 
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4.2.2 Nutrient Supply 

Between basic cation supply and productivity an optimum relationship is assumed: On acidic soils the 

lack of available basic cations reduces growth, whereas on calcareous sites Ca-K-antagonism 

(Rehfuess 1990) and immobilization of phosphor (Mellert & Ewald 2014) can occur. This is reflected 

in the effect of base saturation on ΔB and can also be seen when comparing single tree heights for 

the five types of the depth gradient of base saturation. However, in the single tree height model 

there is no negative effect of low base saturation. In summary, productivity is enhanced by a 

balanced supply of basic cations, it is strongly reduced at high base saturation, and is affected to a 

lesser extent by low base saturation. 

The effects of silt and sand content, discussed in chapter 4.2.1 in their relation to water supply, might 

also be interpreted in the light of nutrient supply: Soils with high sand content are often poor in 

nutrients, whereas high silt contents are usually associated with nutrient-rich soils (Scheffer & 

Schachtschabel 2002). 

In general, the variance explained by variables characterizing nutrient supply was small in 

comparison to the variance explained by climatic effects (chapter 4.2.3). This might be explained by 

Liebig's law of the minimum (von Liebig 1855). A certain nutrient only influences growth, if it is the 

limiting factor. In Bavaria this is generally not the case for the investigated soil nutrients. In addition, 

data on phosphorus which has a strong influence on tree vitality and growth (Lang et al. 2016) was 

not available. 

 

4.2.3 The Importance of Scale 

The geographical, or actually the environmental, range of the data used for model fitting influences 

both the selection as well as the modeled effects of environmental variables. 

Large-scale productivity patterns are mainly shaped by temperature and water supply. That is true at 

the Bavarian scale, the German scale and the transnational scale. However, models based on German 

or Bavarian data alone do not predict a clear decline in productivity at the warm temperature 

margin. In contrast, based on both German and French data, and thus encompassing more plots with 

very high temperatures, a clear decline in productivity for rising temperatures is predicted. 

The effect of precipitation is weaker in the models based on German or Bavarian data alone, as water 

is, except in extreme drought years, not generally the growth limiting factor in spruce or beech 

dominated NFI plots in Germany. In contrast, on a global scale water supply is a crucial variable 

constraining productivity (Stegen et al. 2011). When expanding the database with data of the French 

NFI, the influence of precipitation during the growing season already became more important. In 

addition, for spruce an effect of winter temperature, interpreted as an effect of continentality, was 

included. 
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Due to the small-scale heterogeneity of soil the influence of soil conditions should become apparent 

within regions of similar climate and explain local differences in productivity. That way, boosted 

regression trees allowed for regionally complex interactions of soil variables and led to a greater 

differentiation and a more realistic range in predicted heights for Bavaria. However, even on 

Bavarian scale it was difficult to elaborate a clear and strong influence of soil nutrients. On the one 

hand this might be due to the fact that generally in Bavaria soil nutrient supply seldom limits growth 

of Norway spruce. On the other hand this might be due to the uncertainty in the explanatory 

variables caused by the regionalization of soil properties. This idea is supported by the fact that the 

relief variables MBI and SMI that can be derived with high local precision from a DEM improved the 

model. 

The small-scale heterogeneity of soil conditions makes it difficult to capture the effect of soil on 

transnational or European scale, as harmonized soil data of high precision are not available. An 

exception is the Biosoil dataset (Hiederer et al. 2011). However, this dataset covers only a part of the 

Level I plots. 

 

4.3 The Effect of Diversity on Forest Productivity 

Climate and soil conditions form the foundation of forest productivity. Still, forest productivity is not 

determined by climate and soil conditions alone, but is strongly shaped by stand characteristics. In 

contrast to climate and soil conditions, stand characteristics can be affected by forest management. 

Thus, there is potential for adaptation. In the study about the relationship between productivity and 

biodiversity (Publication IV) the focus is shifted from the influence of climate and soil conditions to 

the influence of one of the key features of a stand: species mixture or diversity. The influence of 

diversity on productivity could be elaborated on a global scale by accounting for environmental 

variables as potential confounders. (Stand characteristics were included in the single tree height 

model or in the biomass growth model as well. But, opposite to the study on the biodiversity-

productivity relationship, they were not in the focus and were integrated to account for the potential 

confounding effect of stand characteristics and make the effect of the environmental variables more 

clear.) A positive concave-down relationship between species richness and forest productivity was 

detected across forest ecosystems worldwide, a pattern that is well in line with recent findings on 

the biodiversity-productivity relationship (Tilman et al. 1997; Cardinale et al. 2011; Reich et al. 2012; 

Liang et al. 2015). With increasing species richness, the rise in productivity becomes less pronounced, 

which is in line with observations from long-term forest experimental plots dating back to 1870 

(Forrester & Pretzsch 2015; Pretzsch et al. 2015). Based on this positive concave-down relationship, a 

continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. 

This would also lead to reduced carbon absorption rates. These findings underline the importance of 

species mixture in maintaining not only stable but also productive forests. 
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4.4 The Effect of Site Factors on Mortality 

Besides productivity, mortality risk is an important factor influencing economic yield. As the focus of 

this thesis is on the influence of site factors and not on economic assessments, only the results of the 

survival analysis are discussed here and the economic analysis that builds up on these results is left 

aside. 

Mortality risk of spruce and beech increased with rising summer temperature. Besides, cold winter 

temperatures (minimum temperature of the coldest month) had a negative effect on the survival of 

beech. On the one hand, hot and dry summers weaken the vitality of spruce and act as predisposing 

factors by making the trees more susceptible to inciting and contributing factors like bark beetles in 

the case of spruce. On the other hand, warm average summer temperatures are correlated with the 

frequency and intensity of drought events. Therefore, the modeled effect of summer temperature 

might also include “hidden” effects of the inciting factor drought. The effect of temperature in the 

model of beech is more difficult to interpret. At both extremes of the temperature range mortality is 

increased. One possible interpretation could be that severe frost causes damages. In the end, the 

two selected temperature variables in the beech model are more or less in balance. Thus, the overall 

effect of rising temperatures in climate change would depend on how much winter- and summer 

temperature will rise respectively. 

One would expect that low precipitation in summer would lead to water shortage and thus increase 

mortality risk. However, summer precipitation only had a weak effect in the spruce model. In Europe 

warm summers are often associated with low precipitation, whereas the combination of high 

summer temperatures and high precipitation is rare. This makes it difficult for the models to 

differentiate between the effects of temperature and precipitation. Thus, the temperature effect 

might already include part of the postulated effect of precipitation. 

Species admixture strongly increases survival probability: Competition is relieved due to 

complementarity in resource allocation (Pretzsch et al. 2015). In addition, mixed stands are more 

stable against calamities (Schäfer et al. 2018). Due to the inclusion of mixture effects and age, the 

models allow to assess the influence of silvicultural decisions on mortality risk under climate change 

(Fig. 18). 

It is important to note that for both species confidence intervals of the effects of site factors are 

wide, i.e. predictions have high uncertainty. This is due to limitations of the database and the 

complexity and highly stochastic nature of tree mortality (chapter 2.2.1). 

Single tree survival probabilities for spruce are considerably lower than for beech. For instance, when 

all predictors are set to their means, survivability at age 100 of spruce is 56 %, whereas survivability 

of beech is 82 %. These values are low in comparison with the study of Neuner et al. (2015), but are 

consistent with the findings of Schoneberg (2017). The differences in the level of survival 

probabilities result from a methodological difference. This thesis, as well as the study of Schoneberg 

(2017), take the left-truncation of the data into account and thus estimate lower survival 
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probabilities especially at young ages. It has to be taken into account when interpreting these values 

that single tree survival probabilities have been modeled that cannot be transferred to the stand 

one-to-one. In many cases the loss of a single tree can be compensated by enhanced growth of the 

surrounding trees that soon fill the gap (Schoneberg 2017). 

 
 

 

Fig. 18: Silvicultural decisions affect the mortality risk in the future. Single tree survivability (S) of Norway spruce at the 
respective rotation period for varying spruce proportions are mapped for one selected climate scenario (MPI-ESM RCP 8.5) 
for the period 2061-2080 (Worldclim 1.4). Both an increase in species admixture (top right) as well as a shortening of the 
rotation period (bottom left) significantly reduce risk in comparison to a stand with a spruce ratio of 90 % that is harvested 
at age 100 (top left). The probability to reach the rotation period decreases due to climate change. It increases with both 
rising mixture proportion as well as shortening of the rotation period (bottom right). The extrapolation range of the models 
is masked in grey (current climate of these regions not present in the training data) or hatched (future climate not present 
in the training data). Adapted from Brandl & Falk (2019). 

 

4.5 Limitations of the Database and the Methodology 

Both the response variable as well as the explanatory variables in the models entail uncertainty. The 

estimation of SI is based only on few height measurements. In addition, these height measurements 

already include some measurement error. Further uncertainty is introduced by upscaling height and 

dbh measurements to volume or biomass and/or to ha basis. In large scale forest inventories age is 

often only an approximation. However in both the productivity models as well as in the mortality 

model age is an essential variable. In the appendix of publication II the implications of potential 

errors in age information on site index estimation are assessed and discussed. 
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In contrast to experimental plots, the history of the plots in forest inventories is often unknown. 

Position, dimension and neighborhood of trees are often only partly assessed. Thus, for both 

productivity and mortality important explanatory variables, like stand structure, competition and 

past management are largely missing. For instance, tree dimension is an important predictor for tree 

mortality (Schoneberg 2017). However, information on tree dimension is missing in the Level I 

dataset that largely underlies the mortality models. Studies based on tree ring data can even go 

further and use growth rates to predict mortality risk (e.g. Bigler et al. 2006; Cailleret et al. 2014). In 

addition, the definition of a mortality event has a huge impact on model results and their 

interpretation. However, it is sometimes impossible to determine why a tree is missing in a 

subsequent inventory and the cause of removal at times can only be guessed. 

Depending on the scale of the study, different climate data were used. However, even high-

resolution data are interpolated from measurements at weather stations. Concerning future climate, 

there is a high variation between the outcomes of global circulation models for different 

concentration pathways. Therefore, predictions should actually be made for an ensemble of climate 

scenarios. Soil information is often not precise. Although soil characteristics are sometimes measured 

at inventory plots, more often information on soil has to be derived from digital site maps. As soil can 

be heterogeneous on a very small spatial scale modeled relationships are generally weak and do not 

contribute much to explaining productivity or mortality. In addition, important explanatory variables 

like nitrogen and phosphorus are not (consistently) available for the inventory plots and could thus 

not be included into the models. 
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5 Conclusion 

This thesis investigates the relationship between forest productivity and site factors based on large-

scale forest inventory data. In order to answer the research questions presented in chapter 1.2 

statistical models describing productivity or mortality in dependence on site factors were developed 

based on data encompassing wide environmental gradients on varying spatial scales: 

How much variance in height can be explained by spatially explicit environmental data? 

The variance in SI explained by site factors varied between 19.1 % for spruce and 40.1 % for beech. In 

the single tree height model the inclusion of site factors increased the explained variance in height 

from 56.9 % (only age as covariate) to 67.5 %. 

Can we predict height on a scale that is relevant for local forest management, i.e. with high local 

precision? 

The ability to predict height growth potential on a local scale was limited due to the difficulty to 

integrate soil variables into the models. For instance, for Bavaria, the predicted large-scale pattern of 

SI is largely based on climate conditions. This pattern is coherent with experience and can thus be 

used to assess trends in productivity due to climate change and take them into account in forest 

planning. Using digital site maps the ability to predict SI on a local scale was improved to a certain 

extent but is still limited due to the difficulty of integrating metric soil variables into the model and 

the small explanatory power of the modeled soil variables. This leads to the conclusion that digitally 

highly resolved soil characteristics are an important step towards spatially explicit predictions of SI. 

However, up to the present they have not yet achieved high enough local accuracy. Therefore, height 

predictions with high local precision are not possible. In addition, detailed information on stand 

structure, competition and past management are largely missing in NFI data, but considerably 

influence local productivity. 

How can we derive a harmonized measure for site productivity from different national forest 

inventories? 

When combining different national forest inventories, the measure for productivity has to be 

relatively simple. The static site index presented in this thesis can be calculated whenever data allow 

for distinguishing a top collective and assigning height and age estimates. 

Is it possible to derive a more comprehensive measure of site productivity than mere height from NFI 

data and explain it in dependence on site conditions? 

Above-ground wood biomass growth of the stand (ΔB) is a comprehensive measure of site potential 

as it incorporates both height and basal area increment as well as stem number. On the one hand, it 

entails the difficulty of how to deal with the influence of stand density and stand age. On the other 

hand, there is the advantage of encompassing at once a stand’s productivity in the response variable 

with no need to consider the question of different yield levels later on. In conclusion, the stand-alone 

use of ΔB as a measure for site potential is not recommendable because many assumptions are 
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needed when dealing with the effect of stand density. Thus, hypothesis 4 has to be rejected. Still, 

combining traditional SI with ΔB might result in a more accurate picture of site potential as there are 

sites that do not differ significantly in SI, but still differ in productivity. Using ΔB as response it was 

possible to fit plausible effects of site conditions, albeit these effects were small in comparison to the 

effects of stand structure. 

How is the influence of soil and climate on forest productivity? 

The results of the studies on productivity show that at first productivity increases with rising 

temperatures. Analyses based on larger climate gradients indicate that the relationship between 

temperature and growth is an optimum relationship and that beyond a certain threshold value there 

is no further increase in productivity with rising temperatures (hypothesis 1). Below a certain 

threshold value water supply acts as a limiting factor on productivity (hypothesis 2). An effect of 

nutrient supply and soil texture on productivity could be detected at a Bavarian scale using high-

resolution digital soil maps. The inclusion of soil variables slightly improved the singe tree height 

model (hypothesis 3). 

What are the trends in productivity due to climate change? 

The chosen climate model (MPI-ESM) predicts a clear increase in temperature but not much change 

in precipitation for Europe. Therefore changes in productivity are mainly temperature-driven. At first, 

productivity increases with rising temperatures as long as water supply is not the limiting factor. 

Models based on larger climatic gradients indicate that at the high temperature margin productivity 

might increase no further but decrease with rising temperatures. 

How does diversity affect productivity and mortality? 

As hypothesized (hypothesis 5) it could be shown that productivity increases with increasing species 

richness. Thus, the positive effect of mixing tree species that had been shown in many studies based 

on experimental plots could also be demonstrated on a global scale. On European scale it could be 

shown that single tree survival probability is higher in mixed stands (hypothesis 7). 

How is mortality risk affected by climate conditions? 

There was a clear and strong effect of average climate conditions (30 year averages) on mortality risk 

of spruce and beech (hypothesis 6). Mortality risk increased at sites with high summer temperature. 

Therefore, high summer temperature can be interpreted as a predisposing factor. However, the 

hypothesized effect of summer precipitation on mortality risk was less clear which might be partly 

due to a confounding with temperature effects. 

What are the advantages and disadvantages, i.e. the potential and the limitations of NFI data to 

investigate forest growth? 

Despite the shortcomings discussed in chapter 4.5 large-scale forest inventory data and digital site 

information exhibited a huge potential for investigating forest productivity and mortality facing 

climate change. Ecologically plausible effects of covariates could be fitted. Moreover, statistical 
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models allow to quantify the relationship between productivity or mortality on the one hand and site 

factors on the other hand. For instance, the survival probabilities predicted for spruce and beech 

could be integrated into economic simulations (Paul et al. 2019). Even some threshold values have 

been indicated. For instance, the effect of precipitation on SI of spruce indicated a threshold value of 

about 750 mm of annual precipitation below which productivity is strongly reduced. 

In conclusion, ecologically plausible relationships between productivity or mortality respectively and 

site factors, with a strong focus on climatic factors, could be fitted based on large-scale inventory 

data using statistical model techniques. Thus, a first assessment of how climate change will affect 

productivity and mortality risk is possible based on the predictions of the developed models. When 

adapting forests to climate change it is important to consider productivity and mortality risk jointly, 

both for the current and future climate conditions. A first visual approach is to draw the trajectory of 

a stand’s development from current to future conditions in a productivity-mortality-graph (Kölling et 

al. 2016). Fig. 19 illustrates this for spruce for a sample of European Level I plots. As the mortality 

model fitted a linear increasing effect of summer temperature, risk becomes higher for all inventory 

points. Still, many inventory points remain in the range of low risk. In contrast, productivity can 

increase or decrease depending on the starting point. If temperature is rather low today, increasing 

temperatures can lead to higher productivity in the future. But if a certain threshold is passed, there 

is a decline in productivity. 

 

Fig. 19: Productivity-risk-trajectories of a random sample of 500 Level I plots based on model predictions of the survival 
model and the SI model for spruce. Productivity is described by site index (SI). The proxy for mortality risk is based on 
survival probability at age 100 (S100). It is calculated as 1-S100. 
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Abstract: Combining national forest inventory (NFI) data with digital site maps of high 
resolution enables spatially explicit predictions of site productivity. The aim of this study is 
to explore the possibilities and limitations of this database to analyze the environmental 
dependency of height-growth of Norway spruce and to predict site index (SI) on a  
scale that is relevant for local forest management. The study region is the German  
federal state of Bavaria. The exploratory methods comprise significance tests and  
hypervolume-analysis. SI is modeled with a Generalized Additive Model (GAM). In a 
second step the residuals are modeled using Boosted Regression Trees (BRT). The 
interaction between temperature regime and water supply strongly determined height 
growth. At sites with very similar temperature regime and water supply, greater heights 
were reached if the depth gradient of base saturation was favorable. Statistical model 
criteria (Double Penalty Selection, AIC) preferred composite variables for water supply 
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and the supply of basic cations. The ability to predict SI on a local scale was limited due to 
the difficulty to integrate soil variables into the model. 

Keywords: climate; forest inventory; height growth; soil; statistical model 
 

1. Introduction 

The increasing availability of spatially explicit data created by modern techniques like remote 
sensing or digital soil mapping enables the development of tools for forest management that promise 
high local precision. Combining digital site maps with traditional forest inventory data gives valuable 
insights into the relationship between site conditions and growth potential, a relationship which has 
often been investigated [1–4]. Many studies ([5], overview in [6]) are based on the data of experimental 
plots which have the advantage of long time series but sometimes only partly represent the environmental 
gradient. NFI data have the advantage of high spatial representation and can thus complement data of 
experimental plots [7]. They can be viewed as an experimental design that covers a wide variety of 
combinations of environmental variables. This makes NFI data suitable for forest growth investigation 
despite its short time series and age errors [8]. Using environmental variables to predict SI permits creating 
maps of current site productivity and predicting site productivity under changing environmental conditions. 
The aim of the study was predicting site productivity of spruce stands by combining NFI data with 
spatially explicit digital site maps on a scale that is relevant for local forest management. Thus, we 
focused on the regional differentiation of SI in Bavaria and not on explaining SI in the distribution of 
Norway spruce in entire Germany. In contrast to geographically extensive studies (e.g., [2,9]), the 
climatic gradient is smaller and the correlation of temperature, precipitation and elevation is higher. This 
minimizes the explanatory power of climatic variables, and soil variables that are difficult to capture 
become more influential. Nevertheless, Bavaria encompasses a distinct climatic gradient and a wide 
range of site characteristics. We investigated if the quality and high resolution of digital soil maps, 
together with the climatic data, allows creating maps of SI that can be integrated in the Bavarian Forest 
Information System (BayWIS) and used in forestry consulting. German NFI data—sometimes 
combined with data of experimental plots—and regionalized environmental variables have already 
been used to estimate SI (e.g., [1,10]), but with less differentiated soil information. 

We elaborated the possibilities and limitations of NFI data and spatially explicit environmental data 
to analyze the dependencies of site productivity. Height at a given age served as indicator for site 
productivity. We focused on height as it is less affected by management than diameter at breast height 
(dbh), and most suitable to elaborate the effect of environmental conditions on growth [11]. 
Exploratory analysis helped improving the understanding of the relationship between SI and 
environmental variables and contributed to checking the plausibility of the statistical model.  
It facilitated interpreting the results of the model and understanding its limitations. 
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2. Methods 

2.1. Study Area 

Study area is the German federal state Bavaria (Figure 1) in the south-east of Germany. In forest 
practice, Bavaria is divided into 15 different eco-regions with varying site conditions. Geology 
comprises crystalline basement rocks, volcanic rocks, different triassic sedimentary rocks, limestones, 
tertiary molasse to quaternary fluvial, glacial, and aeolian deposits. This leads to a rich diversity in soil 
types. The climate varies from subatlantic lowlands at the Main river in north-west Bavaria (mean 
annual temperature 8.5 °C, annual precipitation sum 750 mm) to the alpine in southern Bavaria (mean 
annual temperature <5.5 °C, annual precipitation sum >1500 mm). 

Figure 1. Map of the study area; national forest inventory (NFI) plots used in the SI-model 
are marked with blue dots, the remaining NFI plots containing spruces are marked with 
grey dots; eco-regions mentioned in the text are labeled. 
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2.2. Data 

2.2.1. National Forest Inventory Data 

NFI in Germany is based on a permanent nationwide 4 km × 4 km grid. Each grid point in forest 
area is the center of an angle-count sampling and sample circles with defined radii [12]. 

We concentrated our study on data of the third NFI (2012) for the federal state of Bavaria, because 
for this state harmonized high-quality site information was available. The investigated tree species was 
Norway spruce, as this species is the most common in Bavaria with a coverage percentage of 44.5% 
based on the forest area. Furthermore, the species’ distribution encompasses an environmental gradient 
with growth limits at the cold and warm edge. Table 1 characterizes the NFI 3 dataset used in this 
study. Only dominant trees of the Kraft tree classes 1 and 2 were included in the analysis, as these trees 
are less affected by light competition and their heights at a given age reflect environmental conditions 
better than the heights of intermediate or overtopped trees [13]. The dataset was reduced to spruces 
with an age between 30 and 150 years (5318 spruces with measured heights on 3252 sample plots) 
(Figure 1). 

For model fitting, the Alps were excluded from the dataset, because for this region large errors of 
height measurements occur and the estimation of age is much more insecure. Furthermore, extreme 
environmental conditions in the Alps bias the model, as long as not all variables relevant for growth 
are captured in the model, and lead to implausible predictions for the rest of Bavaria. This way,  
1002 spruce plots remained. 

Table 1. Characteristics of dominant spruces with height measurements in the NFI 3. 

Variable Unit Min Max Mean SD 
dbh cm 7.8 114.6 41.2 13.2 

height m 5.1 48.2 28.5 6.1 
age year 30 150 81 31 

2.1.2. Environmental Data 

We assigned environmental data (Table 2) from three different sources to all NFI plots. Terrain data 
from a digital elevation model (DEM) with a grid width of 50 m were provided by the Bavarian 
Survey and Geoinformation Agency (LVG). Climate data of the weather stations of Germany’s 
National Meteorological Service (DWD) were regionalized with regression methods to  
a 50 m grid covering the whole of Bavaria [14,15]. Monthly means of temperature and precipitation 
were calculated for the period 1971–2000. Soil data were taken from a digital site information system 
developed at the Bavarian State Institute of Forestry [16]. Basic principle is the use of digital soil maps 
of the Bavarian Environmental Agency (LfU) with a scale of 1:25,000. Data gaps were filled with the 
help of digital soil mapping. Complex soil units were split according to relief position [17]. Thus,  
a finer scale of the map was derived. Soil physical and chemical properties came from reference soil 
profiles that were assigned to the soil units according to substrate and soil types. Chemical and 
physical soil properties were calculated for a depth of 1 m. Properties of different profiles within one 
soil unit were averaged. 
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Table 2. Characterization of the environmental variables for Norway spruce plots. 

Type Parameter Abbreviation Unit Min Max Mean SD 

Climate 

Average temperature during 
growing season from May to 
September 

T_5to9 °C 8.7 16.3 14.1 1.4 

Precipitation sum during growing 
season from May to September 

P_5to9 mm 249 1307 524 213 

Growing degree days  
(threshold: 5 °C) 

GDD5 °C 541 1948 1492 260 

Soil 

Available water capacity AWC mm 5 284 135 41 
Depth gradient of base saturation DGBS Categorical variable (Table 3) 
Pool of exchangeable calcium Ca kmol/ha 0.0 4771.0 479.2 565.1 
Pool of exchangeable potassium K kmol/ha 0.1 108.2 15.7 14.4 
Pool of exchangeable magnesium Mg kmol/ha 0.3 2374.0 166.1 221.9 
Base saturation BS % 2 100 49 33 
Base saturation of the first 30 cm BS_30 % 2 100 35 34 
Pool of nitrogen N t/ha 0.2 39.5 6.3 4.4 
Nitrogen deposition 
(average of NOy + NHx from 
2004 until 2007) 

N_dep eq·ha−1·year−1 1225 2748 1927 241 

Clay content clay % 2 77 20 10 
Silt content silt % 4 88 37 14 
Sand content sand % 1 94 43 21 

Relief 
Soil moisture index [18] SMI  0.27 0.61 0.49 0.04 
Mass balance index [19] MBI  −2.87 2.70 0.07 0.82 

Climate 
and soil 

Water balance during growing 
season (Precipitation – 
evapotranspiration + AWC) 

WB mm −108 1169 282 257 

Table 3. Definition of depth gradient of base saturation and number of spruce plots for 
each type. 

DGBS-Type Definition Number of Plots 

11 
BS > 80% in the whole profile with high stocks of Ca, Mg and K, 
no soil acidification 

154 

12 
BS > 80% in the whole profile with high stocks of Ca and Mg and 
low stocks of K (<400 kg ha−1), no soil acidification 

381 

2 
high BS with high stocks of Ca, Mg and K, slight acidification in 
the top soil 

903 

3 
medium BS with medium stocks of Ca, Mg and K, stronger 
acidification in the top soil 

888 

4 
low BS with low stocks of Ca, Mg and K, deep soil acidification, 
increase of BS > 20% not until 1 m depth 

628 

5 low BS (<20%), low stocks of Ca, Mg and K, deep soil acidification 298 
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2.3. Exploratory Data Analysis 

We explored which variables have a decisive influence on height growth and how these variables 
are best integrated into the model. The exploratory analysis was based on biological hypotheses: (i) the 
large-scale pattern of height growth of spruce stands is mainly shaped by temperature and water 
supply, (ii) in addition, height growth is regionally improved if the supply of basic cations is balanced, 
(iii) statistical height models can be improved by considering interactions of environmental variables. 
The exploration of the database served as justification and the variable selection as basis for  
a statistical SI-model. 

2.3.1. Quantile Regression 

In order to be able to compare trees of varying ages their heights have to be scaled. This is 
necessary because usually there were too few trees of similar age at the investigated sites.  
A 95%-quantile regression was applied to a function describing height as a fourth order polynomial of 
age with α = −4.4985, β1 = 1.2841, β2 = −0.0156, β3 = 0.0001 and β4 = 0.0000 (Equation (1)). 

height =  α + β1 ∙ age + β2 ∙ age2 + β3 ∙ age3 + β4 ∙ age4 (1) 

The result is interpreted as the maximum height that can be reached at a certain age if 
environmental conditions are not limiting. Then, each tree’s height was divided by the predicted value 
of the 95%-quantile regression for its age. The resulting value, hereafter called scaled height, can be 
interpreted as the percentage of the maximum height a tree can reach. Under favorable environmental 
conditions, a tree will reach a greater percentage than under unfavorable conditions. In order to have a 
safer basis for the analysis and not to give outliers too much influence a 95%-quantile regression was 
used instead of simply drawing an envelope curve. This means that some trees have a scaled height 
greater than 100%, which, however, does not impair comparisons. Additionally, the scaled height has 
the advantage that we can compare the height of each tree with a reference of the same age. Thus, we 
avoid mixing a time effect with site effects as described e.g., by [20]. The concept of scaled height was 
applied only in exploratory data analysis. 

2.3.2. Significance Tests 

We grouped environmental variables according to the quartiles of scaled height distribution and 
tested for significant differences between the groups using Kruskal Wallis and Pairwise Wilcoxon 
Rank Sum Tests (significance level p = 0.05), as the data were not normally distributed. 

2.3.3. Hypervolumes 

N-dimensional hypervolumes define species niches using n environmental variables. It is possible 
to measure hypervolumes by multidimensional kernel density estimates and thus compare the 
hypervolumes of different species [21]. We applied this concept to growth data by selecting the 10% of 
plots with lowest heights and the 10% of plots with greatest heights and interpreting them as two 
different species. We aimed at separating highest and lowest growth in the best possible way. The pool 
of potential environmental variables consisted of T_5to9, P_5to9, AWC, WB, BS_30, Ca, K, Mg, clay, 
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silt and sand (see Table 2). If two environmental variables were highly correlated only one of them 
was chosen. Criteria for the selection of the environmental variables were (i) to minimize the 
percentage of intersection of the two hypervolumes; (ii) to maximize the percentage of the hypervolume, 
where only highest growth occurs on the hypervolume of highest growth and (iii) to maximize the 
percentage of the hypervolume, where only lowest growth occurs on the hypervolume of lowest growth. 

In order to compare how big the environmental space is where lowest or highest growth can occur 
we calculated the percentage of the hypervolumes of plots with lowest growth and with highest growth 
on the hypervolume of all spruce plots in Bavaria. 

2.4. Statistical SI-Model 

We modelled height in dependence on age, the environmental influences and the basal area of all 
trees which are included in the angle-count sampling with factor 1 (BAACS1) as density measure using a 
generalized additive model (GAM). Variable selection was done in three steps. In the first step, double 
penalty selection was performed on the smooth terms [22]. In the second step, AIC backwards 
selection was done for the parametric terms. AIC (Akaike Information Criterion) is a measure of the 
relative quality of a statistical model for a given data set. It rewards goodness of fit and penalizes 
complexity. The third criterion was the ecological plausibility of the partial effects of the smooth 
terms. Beforehand different modeling approaches had been compared by 10-fold cross validation and 
calculation of the relative root mean square prediction error (RMSPE). To predict SI age was set to 
100 years and the density measure was fixed at an intermediate value. 

Finally, BRT were applied on the scaled residuals of the SI-model to allow for regionally complex 
interactions between the soil variables. BRT are a suitable tool for modeling residuals as they take 
interactions into account and can detect patterns that are otherwise undiscovered [23]. The chosen 
model setting included a gaussian distribution, a learning rate of 0.001, a maximum number of trees of 
20,000 and a tree complexity of four. 

2.5. Software 

All analyses were done in R (version 3.0.1) using the libraries cvTools, gbm, hypervolume, mgcv 
and quantreg and the method for BRT provided by [24]. 

3. Results 

3.1. Exploratory Data Analysis 

3.1.1. Exploring the Environmental Space 

Highest and lowest growth could be separated best by 6-dimensional hypervolumes defined by 
T_5to9, WB, Ca, K, Mg and clay content which differentiated stronger than 2-dimensional water 
supply and temperature only hypervolumes. This is expressed by a smaller intersection and higher 
percentages of only highest and only lowest growth (Table 4). 
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Table 4. Separation of plots with highest and lowest growth using hypervolumes 
constructed by different combinations of environmental variables. 

Criteria for Separation of Highest and Lowest Growth 
Hypervolume Constituted by 

T_5to9, WB 
T_5to9, WB, Ca, K,  

 Mg, clay 

Percentage of 

intersection of the hypervolumes of highest and  
lowest growth 

51 15 

only highest growth on the hypervolume of  
highest growth 

5 19 

only lowest growth on the hypervolume of  
lowest growth 

48 85 

highest growth on the Bavarian hypervolume 48 7 
lowest growth on the Bavarian hypervolume 86 38 

3.1.2. Effect of Temperature and Water Supply on Height Growth 

Temperature during growing season has a positive effect on height growth and can act as a limiting 
factor as greatest heights cannot be reached where temperature during growing season is low (Figure 2). 
Growth of Norway spruce is improved by a better water supply. AWC can be a limiting factor, as greatest 
heights cannot be reached when AWC is below a threshold of approximately 50 mm (Figure 3). There is 
a trend to greater heights with increasing precipitation if the Alps are eliminated from the data. 
Precipitation is strongly negatively correlated with temperature. In the Alps precipitation is higher, but 
temperature regime limits growth at higher elevations. Heights in the fourth quartile are still reached 
when precipitation during growing season is low. However, only 122 of 857 plots in the warm and dry 
(T_5to9 ≥ 3. quartile and WB ≤ 1. quartile) regions of Bavaria contain spruces. Spruce plots there are 
characterized by significantly higher AWC, precipitation and WB and lower temperature during growing 
season than the plots without spruce. The mixture proportion of spruce in plots of warm and dry regions 
with a mean of 55% is significantly lower than in the remaining Bavarian spruce plots with a mean of 70%. 

Figure 2. Boxplot of temperature during growing season for the quartiles of scaled height 
distribution; mean temperature during growing season for the fourth quartile is 
significantly higher than for the first and second quartile. 
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Figure 3. Boxplot of AWC for the quartiles of scaled height distribution; differences in 
means are significant. 

  

The impact of the interaction between temperature and water supply on spruce growth can be 
visualized by comparing the densities of the 10% of plots with lowest and the 10% of plots with 
greatest heights (Figure 4). A particular combination of high temperatures and good water supply 
favors best growth. Both water supply and temperature can limit height growth. Figure 4 also illustrates 
that a great part of the data is concentrated in a rather small region, which explains why not only the 
kernel density of best growth but also the kernel density of lowest growth is high (≥0.1) at these points. 

Figure 4. Green lines show the kernel densities of the hypervolumes where highest growth 
(best 10%) occurs, red lines show the kernel densities of the hypervolumes where lowest 
growth (worst 10%) occurs in a 2-dimensional projection (WB and T_5to9); in the background 
a smooth scatter of all spruce plots is plotted. 
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3.1.3. Additional Modifying Effect of Nutrients 

On Bavarian scale, it is difficult to identify a clear effect of soil nutrients on tree height. There is 
an—albeit weak—effect of soil K on height growth. Mean stock of soil K is significantly higher for 
the fourth quartile (highest growth) of the height distribution than for the first and second quartile and 
mean content of soil K for the third quartile (second highest growth) is still significantly higher than 
for the first quartile (lowest growth). 

The distributions of scaled heights for the DGBS-types are coherent and the medians follow  
an optimum curve (Figure 5). 

Figure 5. Boxplots of scaled heights for the DGBS-types. 

  

It has to be noted though that in Bavaria DGBS-type 1 often coincides with an unfavorable 
temperature regime or scarce water supply and DGBS-type 5 with low temperatures. Thus, the effects 
are mixed with climatic effects. 

In order to detect a limiting effect of soil nutrients, regions where temperature regime and water 
supply are not likely to limit growth have to be chosen. However, in these climatically favored regions 
(T_5to9 ≥ median and WB ≥ median) nutrient supply is good: K-, Mg- and N-stock is significantly 
higher on spruce plots in these favored regions than in the remaining spruce plots. Furthermore,  
only 33 of 751 plots there have the unfavorable DGBS-type 12 and only two plots the unfavorable  
DGBS-type 5. Therefore, soil nutritional factors do not seem to be limiting and no significant trends 
can be detected by comparing them for the quartiles of height distribution. However, scaled heights for the 
DGBS-type 12 are significantly lower than scaled heights for the DGBS-types 11, 2, 3 and 4, whereas 
temperature does not differ significantly and water supply is even significantly better on the plots with 
the DGBS-type 12. 

A limiting effect of N on tree growth cannot be detected by comparisons of means. Best growth is 
possible over the whole range of N-stocks. 

According to [25], nutrient supply has a crucial influence on tree growth in the Alps. They 
identified N and P as the main limiting nutrients. To support this hypothesis sites with different 
geological and soil properties but no significant differences in elevation, temperature and precipitation 
during growing season were chosen and their scaled heights compared. These are significantly higher 
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at flysch-sites (northern fringe of the Alps predominated by sandstone, mudstone and marl) with an 
average of 0.82 compared to calcareous sites with an average of 0.69. 

3.2. SI-Model 

The selected main model can be described with: 

𝑦𝑦ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡(𝜇𝜇) = 𝛽𝛽0 + 𝑓𝑓(𝑎𝑎𝑎𝑎𝑎𝑎) + 𝛽𝛽1𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴1 + 𝑓𝑓(𝐵𝐵𝐵𝐵) + 𝑓𝑓(𝑀𝑀𝑀𝑀𝑀𝑀) + 𝑓𝑓(𝑆𝑆𝑆𝑆𝑆𝑆)
+ 𝑓𝑓(𝐺𝐺𝐺𝐺𝐺𝐺5,𝑊𝑊𝑊𝑊) + 𝜀𝜀 (2) 

The interaction between temperature regime and water supply has the strongest environmental 
effect on height (Table 5). T_5to9 was replaced by GDD5 as the later yielded slightly better results. 
High BS has a negative effect on height (Figure 5). 

Table 5. Detailed summary of the main model (GAM). 

Variable Estimate Standard Error T-Statistic p-Value 
Intercept 27.092 0.151 178.800 2 × 10−16 
BAACS1 0.04099 0.003 11.750 2 × 10−16 

 edf df residuals F-statistic p-Value 
f(age) 7.655 8.503 839.360 2 × 10−16 
f(BS) 3.379 4.148 20.880 2 × 10−16 

f(MBI) 5.034 6.170 22.340 2 × 10−16 
f(SMI) 3.543 4.446 5.410 1.48 × 10−4 

f(WB,GDD5) 9.687 11.028 33.280 2 × 10−16 
Adjusted R2  0.652   

Relative RMSPE 
(crossvalidation) 

 0.976   

By including BS into the model the effect of temperature and water supply becomes apparent more 
clearly and the surface of the interaction effect becomes smoother (Figure 6). A negative influence of 
very low BS on growth, which would be ecologically plausible, is too weak to be modeled in a GAM 
probably due to the small sample of plots with extremely low BS. The inventory method angle-count 
sampling makes it difficult to calculate indices for stand density or competition. The best proxy 
appeared to be the basal area of trees included in the angle-count sampling with factor 1 as it is the 
most comprehensive sample of the site. Stand density has a positive effect on height. The model can be 
improved by including the relief parameters MBI and SMI resulting in an optimum curve for SMI and 
higher growth for lower slopes and valley areas (MBI < 0) and lower growth for upper slopes and 
crests (MBI > 0) (Figure 7). Variable selection by statistical model criteria prefers composite variables 
to single predictors, like WB to AWC and precipitation and BS to K and Mg. 

The residuals of the main model were modeled in dependence of the soil variables N, silt, K and 
Mg using BRT (Figure 8). Choosing these variables to characterize soil nutrient status resulted in 
ecologically plausible smoothed response curves. Most important predictor is N, but silt, K and Mg are 
important predictors as well and lie in a similar range. The correlation coefficient between calculated 
and predicted residuals is 0.25. 
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Adding the predicted residuals to the site indices predicted by the main model (GAM) increases the 
R2 to 0.675. The final SI-model is used to generate a SI-map for Bavaria (Figure 9). Highest growth 
can be expected in the southern part especially in the west of the tertiary hill country (Swabia) and in 
the Spessart in the northwest. In contrast the eco-regions “Fränkische Platte” and “Frankenalb” and the 
northeastern part of Bavaria are not very favorable for spruce growth. 

Figure 6. Partial effects of the tensor product (in m) of the interaction between WB and 
GDD5 on height of Norway spruce. 

 

Figure 7. Partial effects of age, BS, MBI and SMI on height of Norway spruce.  
Dashed lines comprise 95% pointwise prognosis intervals; a rug plot shows the distribution 
of the covariate. 
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Figure 8. BRT-model of the residuals: effects of N, silt, K and Mg variables on the 
residuals of the main model (response); the red lines are smoothed response curves;  
the percentages correspond to the relative importance of the variable. 

 

Figure 9. Modeled SI for Bavaria (Alps are excluded). 
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4. Discussion 

4.1. Confirmation of the Ecological Hypotheses 

4.1.1. Large-Scale Pattern of Tree Growth in Bavaria 

On a Bavarian scale growth patterns are mainly shaped by temperature and water supply [26]. 
Exploratory data analysis using BRT identifies temperature during growing season and water supply as 
the most important environmental variables explaining height. The densities of plots with highest and 
lowest growth show, that highest growth is more likely in regions with warm temperatures and 
sufficient water supply, whereas in regions with a shortage of one of these factors lower growth rates 
can be expected. In the Alps, but also at high elevations in the Bavarian forest or the Fichtelgebirge, 
growth is limited by both temperature during growing season and the length of growing season. 
Sufficient water supply is essential for the growth of Norway spruce and often acts as limiting factor in 
regions, where temperature is not restricting. As great heights are still possible when precipitation 
during growing season is low, in Bavaria precipitation limits height growth only in combination with 
other factors like high temperatures and low available water capacity. This is also reflected in the SI-model 
where WB which combines these influences is selected as explanatory variable and not precipitation. 

4.1.2. Additional Modifying Effect of Nutrients 

Regarding soil properties Norway spruce is less demanding than other species [27]. Nevertheless, if 
temperature and water supply are not limiting an effect of soil nutrients, growth can be  
expected [28,29]. In this study, the contribution of soil nutrients compared to variables characterizing 
temperature and water supply was small. It was difficult to elaborate their influence on a Bavarian 
scale. This might be due to the fact that generally in Bavaria soil nutrient supply seldom limits growth 
of Norway spruce [30]. 

However, for the DGBS slight growth responses can be observed on a Bavarian scale and thus 
summarized over different temperature- and water-regimes. DGBS seems to be a meaningful 
parameter characterizing the soil nutrient status [31]. This emphasizes that a balanced supply of basic 
cations is important for a tree’s nutrient supply and not the quantity of a specific nutrient alone. It is 
not surprising that no positive effect of Ca could be detected, as in Bavaria there is hardly ever  
a shortage of Ca [30]. Exploratory data analysis by BRT suggests a negative effect of Ca.  
At calcareous sites an imbalance of nutrients is possible leading to Ca-K-antagonism [32] and  
the immobilization of P [25]. Additionally, in Bavaria soils rich in Ca are often shallow  
(e.g., Rendzic Leptosols) and therefore tend to be dry [30]. There are only few sites with shortages in 
Mg-supply, but some of these sites may have been limed. Consequently, it is difficult to find an effect 
of Mg. On a Bavarian scale a weak effect of K only for trees at age 100 could be detected and 
exploratory data analysis by BRT suggested that very low K values limit growth, but the overall 
influence was very small. 

Still regions that do not differ significantly in temperature and water supply differ in growth, which 
sometimes can be traced back to the soil nutrient status. For instance in the Alps spruces at flysch-sites 
are much higher than spruces at calcareous sites, when comparing sites that do not differ significantly 
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in temperature, precipitation and elevation. This can be explained besides by a higher AWC by a more 
balanced supply of basic cations and a higher availability of P at flysch-sites. It supports the findings 
of [25] that in the Alps nutrient supply has a leading influence on growth. 

Sites with highest growth (best 10% of plots) can be differentiated better from sites with  
lowest growth (worst 10% of plots) if variables characterizing the nutrient supply are added 
(hypervolume-analysis). This indicates that specific combinations of temperature regime and water 
supply with nutrient variables are necessary to reach greatest heights. 

4.2. SI-Model 

The predicted pattern of site indices for Bavaria is coherent with experience. The most important 
environmental predictor for height is the interaction between temperature regime and water supply, 
expressing that both factors can limit tree growth, whereas highest growth is reached if GDD5 is high 
and water supply is abundant. The effect of BS is mainly plausible, as high BS can limit growth. 
However, the GAM does not detect any limiting effect for very low BS which would be ecologically 
plausible. The positive effect of stand density on the one hand can be due to the fact that trees invest 
more in height growth if competition is stronger [33], while on the other hand it can be due to the fact 
that at favorable sites higher stand density is possible. 

The variance in height explained by age and the selected environmental variables is 65.2%, whereas 
age alone explains 56.9%. Studies that encompass larger environmental gradients achieve higher explanatory 
power of environmental variables [2,9]. The SI predictions exhibit a regression towards the mean.  
This is natural for a model, but in particular high site indices are not predicted well. Hypervolume-analysis 
showed that very high and very low growth cannot be separated easily. If in the same environmental 
space (hypervolume) both high and low growth occur, the model is going to fit an average value for 
this combination of environmental variables and is not going to predict very high or low values. 
Hypervolume-analysis showed that there are more regions with only low growth than regions with 
only high growth. This explains why predictions for favorable sites exhibit a stronger regression 
towards the mean. 

Exploratory analysis indicated that the overall influence of nutrient supply is small in comparison 
with temperature regime and water supply. Still, nutrient supply might influence height growth at  
a local scale and therefore we applied BRT on the residuals. The GAM has the advantage that the 
overall effect of temperature and water supply can be elaborated clearly, checked for ecological 
plausibility and therefore used for predictions under varying climate scenarios. BRT allow for 
regionally complex interactions of soil variables and lead to a greater differentiation and a more 
realistic range in predicted site indices. This approach assumes that the pattern in the residuals is stable 
with respect to climate change. Modeling the residuals in dependence of soil variables renders 
ecologically plausible trends and helps accentuating the predicted site indices locally. Silt content can 
be interpreted as a proxy for soils which have more favorable physical properties in respect to water 
and air balance than soils with high sand or clay contents. It is ecologically plausible that low N and 
very low K limit height growth, whereas high Mg contents often coincide with shallow gypsum soils 
that limit growth. 
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4.3. Limitations of SI Predictions 

The variables with highest explanatory power are temperature regime and water supply. Nevertheless, 
regions exist which are very similar in this respect but exhibit great variation in height growth. 
Hypervolume-analysis showed that highest and lowest growth can be separated better, if along with 
temperature and water supply soil nutrients and soil texture are taken into account. However, in a GAM 
this effect cannot be represented well as these variables are not significant and are not chosen by 
variable selection or render implausible response curves. Hypervolume-analysis was applied only to 
the 10% of plots with greatest heights and the 10% of plots with lowest heights, whereas for the model 
all data were used. Using all data the noise is bigger and hinders the detection of clear effects. 

Thus a lot of variation in SI remains unexplained. There are two possible explanations for this: 
missing factors influencing height growth and quality of the database. 

4.3.1. Missing Factors Influencing Growth 

The influence of soil on growth might be too complex to be described in correlations between the 
soil variables used in this study and tree height. This complexity might be captured better by 
explanatory variables that summarize the physiological effects of soil like vegetation data and species 
indicator values [9,25], by classifying soils into eco-series [34] or creating complex site factors 
following empirical rules [35]. 

Besides average environmental conditions extreme events like droughts and disturbances and/or 
pathogens can influence tree growth [36–38]. Furthermore, the impact of drought depends on species 
composition and forest structure [39]. Another source of variation in height growth might be the genetic 
diversity within Norway spruce [40], though provenances in Bavaria do not seem to differ greatly [41]. 
Furthermore phosphorus could have a strong influence on growth [42,43]. Phosphorus availability is 
optimal in the slightly acid to neutral pH range. In highly acid soils phosphorus is precipitated as 
highly insoluble Fe- or Al-phosphates or adsorbed to oxide surfaces, whereas in calcareous soils 
phosphorus is immobilized as di- and tri-calcium phosphates [44]. A relationship between base saturation 
or the DGBS-types respectively and growth could be detected in the data. The form of this relationship 
would be in accordance with an influence of phosphorus as well. Greatest heights are reached for 
intermediate DGBS-types (Figure 5), whereas high base saturation has a negative effect on height 
(Figure 7). However, for Bavaria regionalized data for plant available phosphorus are not available to 
model the effect of phosphorus and separate it from the effect of the supply of basic cations. 
Sometimes unexplained differences in height may not be due to site conditions but may be artifacts. 
For instance in some regions of Bavaria like e.g., the “Fichtelgebirge” browsing damage is very 
common, which might explain low tree heights [45]. Furthermore, in some regions snow damage can 
affect height growth. Another possible artifact is the historical use of humus layer in the “Oberpfalz”, 
which led to strongly reduced growth probably due to P-deficits. Older trees still have this signal in 
their growth history [46]. 
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4.3.2. Quality of the Database 

The suitability and accuracy of the data can be questioned both on the side of the response and on 
the side of the explanatory variables. 

NFI data have a high sampling quality and cover a wide range of site conditions. Thus they are  
a valuable data source for validating data created by digital site mapping or remote sensing. Still they 
have some shortcomings. Age sometimes is only estimated. There might be a bias in age estimation by 
estimating greater ages for better growing trees which partly levels out the influence of site conditions. 
For this analysis the environmental variables were treated as if they are stable. However a tree may have 
experienced changes in environmental conditions during its lifetime [47]. Older trees may have grown under 
different environmental conditions in their youth than do young trees today. Management effects [48] 
cannot be considered adequately and it is difficult to account for competition and density effects as 
complete neighborhood information is not available due to angle-count sampling [49]. 

The suitability of SI, i.e., the height at a certain age, as an indicator of site productivity can be 
discussed [47]. On unfavorable sites stand density has a considerable effect on height whereas on 
favorable sites this effect is much less pronounced [6]. As sites with the same SI can still differ in 
biomass production [47], biomass production might be a more adequate site potential indicator than 
mere height. 

For spatially explicit predictions for entire Bavaria, we had to use modeled explanatory variables 
(digital site maps) along with measured ones. Relationships between modeled soil variables like AWC, 
DGBS and nutrient stocks and growth could be detected. However, the relationships are generally 
weak and do not contribute much to explaining SI. Modeled soil data might not be sufficiently accurate 
to picture the relations between soil variables and SI as soil can be heterogeneous on a very small 
spatial scale. The relief variables MBI and SMI that can be derived with high local precision from a 
DEM improve the GAM. This emphasizes the importance of small-scale heterogeneity. 

5. Conclusions and Outlook 

In summary, NFI data are a useful and valuable basis for investigating the relationship between forest 
growth and site characteristics. The dependency of height growth as derived from NFI data on site 
characteristics based on climatic data and modeled soil maps could be demonstrated. Applying a variety 
of exploratory tools for variable selection prior to modeling improves the understanding of the 
relationship between site productivity and site characteristics and contributes to checking the plausibility 
of the model and understanding its limitations. For Bavaria, the predicted large-scale pattern of SI is 
coherent with experience and can be projected into the future by applying climate scenarios.  
The limited environmental gradient leads to a limited explanatory power of the SI-model. Using digital 
site maps the ability to predict SI on a local scale was improved to a certain extent but is limited due to 
the difficulty of integrating metric soil variables into the model and the small explanatory power of the 
modeled soil variables. This leads to the conclusion that digitally highly resolved soil characteristics 
are an important step towards spatially explicit predictions of SI. However, up to the present they have 
not yet achieved high local accuracy. 
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To improve local predictions of site potential, both response and explanatory variables can be 
addressed. Instead of SI as height at age 100, site potential should probably be characterized  
by biomass growth. As in this study, the GAM tends to select aggregated variables,  
while ecophysiological quantities like NPP derived from process-based models can be tested as 
explanatory variables. 
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Abstract
& Key message Static site indices determined from stands’ top height are derived from different forest inventory sources with
height and age information and thus enable comparisons and modeling of a species’ productivity encompassing large envi-
ronmental gradients.
& Context Estimating forest site productivity under changing climate requires models that cover a wide range of site conditions.
To exploit different inventory sources, we need harmonized measures and procedures for the productive potential. Static site
indices (SI) appear to be a good choice.
& Aims We propose a method to derive static site indices for different inventory designs and apply it to six tree species of the
German and French National Forest Inventory (NFI). For Norway spruce and European beech, the climate dependency of SI is
modeled in order to estimate trends in productivity due to climate change.
&Methods Height and age measures are determined from the top diameters of a species at a given site. The SI is determined for a
reference age of 100 years.
& Results The top height proves as a stable height measure that can be derived harmoniously from German and French NFI. The
boundaries of the age-height frame are well described by the Chapman-Richards function. For spruce and beech, generalized
additive models of the SI against simple climate variables lead to stable and plausible model behavior.
& Conclusion The introduced methodology permits a harmonized quantification of forest site productivity by static site indices.
Predicting productivity in dependence on climate illustrates the benefits of combined datasets.
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1 Introduction

Forest site conditions are not static. Changes in site conditions
due to climate change lead to changes in potential productiv-
ity. As potential productivity constitutes key information for
timber-oriented forestry or the estimation of carbon stocks, it
is important to estimate future trends. Prerequisites for this are
databases containing large environmental gradients and a suit-
able measure for potential productivity. In the history of for-
estry, phytocentric approaches have dominated (Bontemps
and Bouriaud 2014) as formulated, e.g., in Assmann (1961:
154): “Since estimates of the potential productivity based on
soil characteristics and climate are afflicted with high uncer-
tainty, it is necessary to rely on measures of the growing stand
itself”. The German forest scientist von Baur postulated al-
ready in 1881 that mid height is “the most precise and only
correct indicator not solely for the assessment of a […] stand
but for its site class [German: Standortbonität].” This postu-
late meant a remarkable change in forest growth and yield
science: the yield development is estimated through height
and age information. What helped to manifest von Baur’s
postulate was that Eichhorn (1902) showed for silver fir ex-
perimental plots in South-West Germany that “independent of
the site, a certain mid height corresponds to a certain stand
mass” [in forestry, at that time, mass was a synonym for vol-
ume yield]. The law of Eichhorn was amended by Gehrhardt
(1909), who recommended substituting yield by total yield
(including thinnings), and by Assmann (1961), who recom-
mended substituting mid height by top height. Both modifica-
tions made Eichhorn’s law more stable against thinning, espe-
cially from below (for summaries see Skovsgaard and Vanclay
2008; Pretzsch 2009; Bontemps and Bouriaud 2014).

Since the late eighteenth century, thousands of yield tables
for hundreds of species have been compiled all over the world
(e.g., Schober 1995; Vannière 1984). Common to all yield
tables is the differentiation of site classes defined by a spec-
trum of age-height trajectories. The site index refers to the
height at a specific reference age. For long-lived temperate
forestry species, the reference age is typically 100 years.
Yield tables were designed to represent regional growth be-
havior of a species and to allow estimating the site index of a
given stand. However, for a long time, it was not considered
that site conditions change, especially climate conditions.

While old stands stay well within the height frame of the
yield tables, young stands clearly exceed the given height
frame (Fig. 1; see also Röhle 1997, resp. Pott 1997 in
Pretzsch 2009, pp. 557 resp. 584). This is not because younger
stands have been systematically planted at better sites but
because they have experienced better growing conditions on

the same sites. Any model that relates a site index based on
yield tables to recent site condition data would be afflicted
with an age trend: on the same site, young stands would be
assigned a higher yield class and thus a better site quality than
old stands. The realization that site conditions are not constant
and that non-table conforming growth is rather the rule than
the exception, questions how reliably a site can be classified
by yield tables (Skovsgaard and Vanclay 2013; emphasis on
enhanced growth due to climate change: Spiecker 1999;
Pretzsch et al. 2014).

Against this background, we derive a static site index. By
<static>, we refer to the idea of generating false or pseudo
age-height trajectories from momentary data of different ages
(as in von Baur’s original strip method; in German:
Streifenbonitierung). This is done by dividing large data sets
of age-height measurements into even spaced age-height
curves. Unlike the yield tables, these static height curves do
not represent true trajectories of the stands’ height develop-
ment since, under changing site conditions, a space-for-time
substitution is biased (Yue et al. 2016; sensu lato Pickett
1989). However, the static height curves effectively lead to a
balanced site index distribution over the age spectrum and
make site index models stable against age trends.

Over the last decades, it has become very popular to devel-
op statistical models that explain site index in dependence on
environmental variables with varying spatial scales
(Bontemps and Bouriaud 2014; e.g., Germany: Albert and
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Fig. 1 Age-height measurements of dominant Norway spruce trees in the
third German National Forest Inventory 2012 along age-height
development for different site indices of spruce yield tables from 1963
(Assmann and Franz)
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Schmidt 2010; Nothdurft et al. 2012; France: Seynave et al.
2005; Seynave et al. 2008).Many large-scale studies are based
on national forest inventories. Since 10–15 years ago, national
inventories have provided an increasingly accessible data
source of high quality and representation. A joint effort to
harmonize national forest inventories has been undertaken in
McRoberts et al. (2012) and Tomppo et al. (2010). The
methods and methodologies developed focused mainly on
forest carbon and biodiversity estimation.

This study relates to these efforts as we harmonize site
indices and the underlying height and age measures of two
publicly accessible NFI data sets: Germany and France. We
harmonized site indices for six species: Norway spruce (Picea
abies (L.) Karst.), Scots pine (Pinus sylvestris L.), Douglas-fir
(Pseudotsuga menziesii (Mirbel) Franco), European beech
(Fagus sylvatica L.), sessile oak (Quercus petraea
(Mattuschka) Liebl.), and pedunculate oak (Quercus robur
L.). Then, we pushed forward the analyses for two species,
spruce and beech, to analyze their SI modulation by environ-
mental variables. The methodology that we introduce is trans-
ferable to other species and inventory designs as well. The
combination of different inventories is extremely promising
as it can cover substantially larger parts of a species’ distribu-
tion and distribution limits than a single inventory alone (Brus
et al. 2012; Nabuurs et al. 2013; Dolos et al. 2016). This is an
important premise to derive stable species-specific models
that predict the site index as a measure of growth potential
from site conditions.

In summary, the aims of the study were (1) to derive a
harmonized static site index based on German and French
NFI data and (2) to estimate trends in productivity due to
climate change.

2 Material and methods

2.1 National forest inventory data

In Germany, the NFI is based on a permanent nationwide
4 km × 4 km grid (regionally densified). Each grid point rep-
resents an inventory cluster of four inventory points laid in a
square of 150 m edge length. Each inventory point in forest
area is the center of an angle-count sampling and sample cir-
cles with defined radii (BMELV 2011). In this study, the data
of the third NFI (2012) are used. In France, since 2010, the
NFI is based on a 1 km × 2 km grid surveyed over a 5-year
rotation. Each grid point is the center of three subplots of 6, 9,
and 15 m, respectively, where trees that reach certain diameter
thresholds are included (IGN 2016). In this study, data from
2006 until 2013 are used. From the NFI data, we selected all
inventory plots where the investigated species accounted for
≥ 70% of the plot basal area. Plots in forests with no defined
structure and coppice plots were discarded as well as plots

with a coefficient of variation of age > 0.25. For Norway
spruce, this resulted in 10,552 plots in Germany and 914 plots
in France. For European beech, 5247 plots in Germany and
1595 plots in France were selected. Trees with top or crown
breakage or other severe damages were not counted among
the dominant trees.

2.2 Top height and age

The top height htop is defined as the height corresponding
to the root mean square diameter dtop of the top 100 diam-
eters of a tree species on a site (Kramer and Akҫa 1995).
The estimate of htop depends in the first place on the rep-
resentativeness of the sampled trees for the entire stand.
Each sample tree stands for a certain number of trees per
hectare, which depends on the tree’s DBH. Arguing that
each sample tree represents a DBH distribution rather than
a single value, a density function was laid over the DBH
distribution, i.e., a bandwidth filter was applied to the DBH
histogram (Fig. 2). The bandwidth scales the width of this
distribution and equals the standard deviation of the nor-
mal function in a Gaussian kernel (Venables and Ripley
2002). The corresponding h t op was derived from
species-specific uniform height-diameter curves (Dahm
2006).

In the German NFI, the age of all sample trees is given, but
the source and quality of the age information differ (records of
planting, increment boring, estimation etc.). In the French
NFI, only the age at breast height of one or two dominant trees
is determined by increment boring. The age corresponding to
dtop and htop was calculated as the mean age of the top 100
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Fig. 2 dtop and htop estimation visualized for an exemplary spruce plot of
the German NFI: The circles mark height and DBH of trees included in
the sample. Trees with measured heights are plotted blue. The red dot
corresponds to a tree with crown breakage. The uniform height-diameter-
curve is overlaid in gray. The histogram shows the number of trees per
hectare represented by the sampled tree of a certain DBH. The red line
shows the density of the DBH distribution
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trees of the investigated species for the German NFI sample.
For the French NFI sample, the age at breast height of the trees
of the investigated species with age measurements was aver-
aged and adjusted for the missed tree rings between 0 and
130 cm height according to previous measurements from the
French NFI.

2.3 Static site index determination

To obtain the site index (SI), the age-height spectrum has to be
divided into infinite sets of adjacent age-height curves. To do
so, we fitted the Chapman-Richards function (Richards 1959)
to the 5 and the 95% quantiles of heights creating a lower and
upper boundary line (Fig. 3).

htop ið Þ ¼ A* 1−e−k*agei
� �p ð1Þ

The SI is determined by scaling the position of htop(i)
between lower and upper boundary height at age i with the
ratio of the span between lower and upper boundary height
at age 100 and the span between lower and upper boundary
height at age i:

ŜI ¼ htop l 100ð Þ þ htop ið Þ−htop l ið Þ
� �

⋅
htop u 100ð Þ−htop l 100ð Þ
htop u ið Þ−htop l ið Þ

ð2Þ

with htopl and htopu as the lower and upper boundary height
at the respective age.

As indicated in the introduction, we did not develop a
height growth model here. Our aim was to determine stable

lower and upper boundary lines of the age-height distribution
in the data in order to determine the SI of each stand by
comparing its top height with a reference of the same age.
We employed the Chapman-Richards function instead of
polynomials because its properties allow a stable fit of lower
and upper boundary lines over the whole age range. However,
these lines represent true trajectories of the stands’ height de-
velopment over time only if growth conditions are assumed to
be stable. If we assume improving growth conditions over the
last century—for which evidence is ample (cf. introduction)—
young stands will grow faster, i.e., with higher site indices,
than old stands which experienced less favorable growing
conditions when young. The static site index thereby avoids
an age trend in the site indices and makes young and old
stands on similar sites comparable.

2.4 Error estimation from virtual data

We used virtual stands, which were simulated based on yield
tables of Norway spruce, to assess the uncertainties in deriving
the static site index. A detailed description of methods and
results as well as a discussion of the uncertainties associated
with the static site index formation are presented in Appendix 1.

2.5 Modeling site index in dependence
on environmental variables

The second aim of the study was to model SI in dependence
on climate parameters and predict the potential productivity of
a tree species under climate change. We used the climate data
of WordClim which cover the study area with a resolution of
30 arcseconds, i.e., approximately 1 km (Hijmans et al. 2005).
Climate variables (Table 1) were grouped into variables char-
acterizing mean annual temperature or summer temperature,
winter temperature, precipitation, and continentality.
Elevation was used as an additional explanatory variable. In
order to prevent high correlations, only one variable could be
selected from each group.

We did not include soil parameters in the models, since
it is difficult to derive comparable soil parameters for the
German and French inventory plots. The influence of soil
parameters was taken into account only by removing plots
where the climate signal was likely to be confounded by
extreme soil characteristics (gley soils, pseudogley soils,
moor soils, extremely shallow soils (depth < 35 cm), and
soils with skeleton content > 90%). For Germany, the soil
data were raised within the project “Forest productivity,
Carbon sequestration, Climate change”. For France, infor-
mation on soil parameters forms part of the NFI data. We
compared the differences in model performance caused by
applying these soil filters.

We fitted generalized additive models with a gamma
error distribution and log-link function (Wood 2006; Pya
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Fig. 3 Illustration of translating the top height htop(i) of a species in a
stand at age i to the corresponding height htop(100) at the reference age of
100 years, i.e., the SI; green points mark heights and ages of NFI spruce
plots; the solid black curves show the fit of the Chapman-Richards
function to the 5 and 95% quantiles; the black dot marks an example
stand at age 60 with a top height of 28 m. The black cross marks its
translation to htop at age 100, resulting in a SI of about 32 m
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and Wood 2015) using R version 3.3.2 and the R pack-
ages mgcv and scam. For model fitting, only plots with
mean ages of the top 100 trees between 30 and 150 years
were used. The intercept could differ between Germany
and France in order to account for possible effects of
differences in inventory design not yet considered. We
selected the best model of all possible combinations using
adjusted R2 and AIC as criteria. We checked for trends in
the residuals by plotting them against the covariates and
the fitted values. Additionally, we checked for spatial
trends in the residuals by mapping them.

3 Results

3.1 Static site index determination

Figure 4 displays age-height scatter plots and the fits of
the Chapman-Richards function for Norway spruce and
European beech from the joint data sets of the German
and French NFI. Results for Scots pine, Douglas-fir,
sessile oak, and pedunculate oak are presented in
Appendix 2. Table 2 summarizes the function parameters
for the joint data set. The asymptotes (A) of the upper
boundary line are lower than the maximum top heights
observed, as they were fitted with 95% quantile regres-
sions. The fitted upper and lower boundary lines de-
scribe well the range of top heights over the whole
age range, which was a prerequisite for deriving the
static site index.

3.2 Error estimation from virtual data

Tests made on virtual data ensured that there are no big or
systematic deviations resulting from the two NFI sampling
methods and that htop is relatively stable with respect to effects
of density. The effect of age errors on SI estimation decreases
with increasing age. Detailed results are presented in
Appendix 1.

3.3 Site index dependency on environmental
variables

We investigated how far environmental variables contribute in
explaining the site index. Tables 3 and 4 summarize the results of
SI models for Norway spruce and European beech respectively.
Filtering the data for extreme soil conditions increases the adjust-
ed R2 (spruce: from 0.164 to 0.191; beech: from 0.335 to 0.401).

3.3.1 Spruce

The generalized additive model for spruce can be described
with:

SIGAM; Spruce ¼ exp f T 5to9ð Þ þ f T1ð Þ þ f Pð Þ þ countryþ εð Þ ð3Þ

Mean temperature of the growing season from May to
September (T_5to9), mean temperature in January (T1), and
annual precipitation sum (P) were selected to explain SI of
Norway spruce. Graphical checks revealed no trends in the
residuals. T_5to9 has the strongest explanatory power
(Fig. 5a). It has a positive effect on SI over the whole range.

Table 1 Characterization of the environmental variables for spruce and beech plots used for model fitting

Spruce Beech

Mean SD Mean SD

Summer/annual temperature Mean annual temperature (°C) T 7.4 1.1 8.4 1.2

Mean temperature warmest quarter (°C) T_wq 15.4 1.2 16.1 1.1

Mean temperature May to Sept. (°C) T_5to9 14.1 1.2 14.7 1.1

Max. temperature warmest month (°C) Tmax_wm 21.3 1.5 22.1 1.4

Mean July temperature (°C) T7 16.2 1.2 16.8 1.1

Winter temperature Mean January temperature (°C) T1 −1.5 1.4 −0.2 1.6

Min. temperature coldest month (°C) Tmin_cm −4.2 1.5 −2.9 1.5

Precipitation Annual precipitation sum (mm) P 882 176 831 147

Precipitation sum warmest quarter (mm) P_wq 270 54 238 42

Precipitation sum May to Sept. (mm) P_5to9 420 80 382 63

Continentality Continentality index (Conrad 1946) ci 36.5 3.8 35.7 3.6

Tmax_wm–Tmin_cm (°C) Txn_range 25.6 1.7 25 1.6

T_wq–T1 (°C) T_range 17 1.2 16.3 1.3

Elevation Elevation (m) Elevation 564 278 472 315
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Until approximately 15 °C, SI increases strongly with rising
temperatures. A further increase in T_5to9 leads only to a very
slight increase in SI. The confidence intervals become wide
for T_5to9>16 °C, i.e., the uncertainty in model predictions is
high at the warm temperature margin. Overall SI decreases
with rising T1 (Fig. 5b). For T1>− 1 °C, a continuous decrease
is fitted. Due to the wide confidence intervals at the cold
margin of T1, one could either assume no effect of T1 on SI
below − 1 °C or a decrease in SI with rising T1 over the whole
range of the variable. There is a steep increase in SI with P
until a threshold value of about 750 mm is reached (Fig. 5c).
Even at the very dry margin, the confidence intervals remain
narrow, i.e., this effect is clearly present in the data. At the
threshold value of 750 mm saturation is reached and the effect
of Psum stays more or less level until a value of about
1100 mm. The effect of the country factor is rather small
(Table 3).

In order to help interpret the effect of temperature on SI, we
fitted the same model except that T_5to9 and T1 entered the
model as an interaction term (Fig. 5d). At the cold edge (lower
left corner), the contour lines are more or less vertical, i.e.,
only T_5to9 influences SI. Towards warmer summers, the SI
increases but the increase is stronger when winters stay colder

(lower right corner; continental climate) than under warm
(oceanic) winter conditions (upper right corner).

3.3.2 Beech

The generalized additive model for beech can be described
with:

SIGAM;Beech ¼ exp f T wqð Þ þ f P 5to9ð Þ þ f elevationð Þ þ countryþ εð Þ ð4Þ

Mean temperature of the warmest quarter (T_wq), precip-
itation sum during the growing season from May to
September (P_5to9), and elevation were selected to explain
SI of European beech. Graphical checks revealed no trends in
the residuals. For T_wq, a curve with a wide optimum range
between about 14 and 18 °C is fitted (Fig. 6a). SI increases
strongly with rising T_wq until about 14 °C. There is a slight
further increase in SI until about 16 °C when it is more or less
level and reaches the optimum at 17.2 °C before it decreases
again for T_wq>17.5 °C. A saturation curve can be fitted to
P_5to9 (Fig. 6b). SI slowly starts increasing at P_5to9 =

0 50 100 150 200

0
10

20
30

40
50

age (yr)

h t
op

 (
m

)

Norway spruce

a)

0 50 100 150 200

0
10

20
30

40
50

age (yr)

h t
op

 (
m

)

European beech

b)

Fig. 4 Age-height scatter plots for Norway spruce and European beech in the German and French NFI data. Lines depict quantile regression for the 5 and
95% percentiles with the Chapman-Richards function

Table 2 Results of fitting the Chapman-Richards function to the lower
5% and the upper 95% percentiles of the age-height distribution for the
joint German and French inventory data

Quantile curve Parameter Spruce Beech

Lower A =
k =
p =

26.16
0.0448
2.35

21.35
0.0232
1.15

Upper A =
k =
p =

42.01
0.0294
1.05

41.79
0.0208
0.86

Table 3 Site index model performance for Norway spruce

Estimate Standard error T statistics p value

Intercept 3.473 0.005 633.864 < 2 × 10−16

country factor
(Germany)

0.029 0.006 4.749 2.12 × 10−6

edf Ref. df F statistics p value

s(T_5to9) 4.943 6.077 87.48 < 2 × 10−16

s(T1) 6.058 7.131 14.28 < 2 × 10−16

s(P) 7.906 8.667 12.94 < 2 × 10−16

Adjusted R2 0.191 Deviance
explained

19.6%

edf estimated degrees of freedom
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300 mm. Between 380 and 520 mm, there is a steep increase,
which flattens at a threshold value of about 570 mm. The
effect of P_5to9 or variables characterizing precipitation in
general is not as clear as the effects of the other variables.

Monotonicity constraints had to be applied to fit ecologically
plausible curves that can be used for predictions. A smooth
term without any constraints would lead to an increase in SI
between 300 and 520 mm, followed by a slight decrease and a
further increase until approximately 630 mm. This is in line
with the constrained fit. However, a model without constraints
would predict a very high SI for very low P_5to9 (≈ 200 mm)
and for high P_5to9 (> 630mm) a steep decrease. Both the dry
and the wet margin are barely supported with data, which is
also reflected in wide confidence intervals. Therefore, it seems
justified to constrain the fit to ecologically plausible behavior
at the data margins. Elevation has a strong effect on SI of
beech (Fig. 6c). SI is highest at an elevation of about 200 m.
It increases from sea level to 200 m and then continuously
decreases. At 400 m, the same SI is reached as that at sea
level. Between 450 and 600 m, the otherwise strong decrease
is less pronounced. In spite of the high explanatory power of
the climate variables and elevation in the model for beech, the

Table 4 Site index model performance for European beech

Estimate Standard error T statistics p value

Intercept 3.228 0.030 106.4 < 2 × 10−16

Country factor
(Germany)

0.131 0.009 15.0 < 2 × 10−16

edf Ref. df F statistics p value

s(T_wq) 6.250 7.197 9.684 4.1 × 10−12

s(P_5to9) 2.743 3.048 24.544 9.07 × 10−16

s(elevation) 7.919 8.593 40.596 < 2 × 10−16

Adjusted R2 0.4013 Deviance
explained

41.6%

edf estimated degrees of freedom
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Fig. 5 Effects of T_5to9 (a), T1 (b), and P (c) on SI of Norway spruce.
The gray area comprises 95% pointwise prognosis intervals; a rug plot
shows the distribution of the covariate. The vertical dashed lines mark the

5 and 95% quantiles of the covariate’s distribution. The contour plot (d)
shows the result of the alternative model fitted with an interaction
between T_5to9 and T1
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effect of the country factor is rather strong (Table 4),
predicting approximately 14% higher SI for Germany under
the same environmental conditions.

3.3.3 Prediction maps

The models were used to create maps of SI (Fig. 7) for current
and future climate (climate scenario RCP 4.5 for the period
2061–2080 based on WorldClim MPI-ESM). After removing
plots with extreme soil conditions, we modeled the effect of
climate and, in the case of beech, elevation on SI. Thus, pre-
diction maps show the climate-driven SI. We masked the ex-
trapolation range of the models. In these areas, the species can
occur but the corresponding climatic conditions were not pres-
ent in the French and German NFI data used for model fitting
(gray areas). Areas in the future maps are hatched when

current climatic conditions are present in the training data,
but future climatic conditions fall into the extrapolation range.

3.3.4 Spruce—current climate

High SI are reached in Southern Germany due to a favorable
combination of mean temperature during growing season,
temperature in January, and precipitation sum. In the Alps,
T_5to9 strongly limits height growth. T_5to9 also acts as a
limiting factor in Southeast Finland. The model predicts lower
SI for France than for Germany, which is mainly an effect of
higher T1. In Eastern Germany P limits height growth. In the
Balkans, high SI are predicted in mountain areas because of
low T1 and P greater than the modeled threshold value of
about 750 mm and suitable T_5to9, but at the highest eleva-
tions again, T_5to9 is too low to reach high SI.
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Fig. 6 Effects of T_wq (a), P_5to9 (b) and elevation (c) on SI of European beech. The gray area comprises 95% pointwise prognosis intervals; a rug plot
shows the distribution of the covariate. The vertical dashed lines mark the 5 and 95% quantiles of the covariate’s distribution
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3.3.5 Spruce— future climate

As the chosen climate model (MPI-ESM RCP 4.5) predicts a
clear increase in temperature but not much change in precip-
itation, changes in SI are mainly temperature-driven. SI in-
creases in the mountains as T_5to9 increases and no longer
limits height growth while T1 is still rather low. The same is
true for Southern Finland, Norway, and the mountain areas in
the Balkans. In Germany, the model predicts slightly lower SI
mainly due to rising T1.

3.3.6 Beech— current climate

For beech, low SI are predicted for mountainous regions. In
the non-masked regions of Southern Europe, low SI are

predicted due to elevation and low precipitation. For current
climate conditions, summer temperature mostly does not
reach values that seriously limit height growth. In the South
of Germany, environmental conditions are very favorable for
beech and SI is high. Both at the Southern and Northern edge
of the non-masked area, a decrease in SI is visible due to high
or low T_wq, respectively.

The map of Europe shows the effects caused by the fit
of the environmental variables as the country factor was
set to zero. However, in the model for beech, the country
factor has a strong impact. When taking this factor into
account, predicted SI are approximately 14% higher in
Germany than in France, a difference that could not be
explained by any of the environmental variables available
for selection.

Fig. 7 Map of predicted SI of Norway spruce and European beech for
present and future climatic conditions based on plots without extreme soil
conditions, i.e., limitations due to soil conditions are not taken into
account. The gray areas mask the extrapolation range of the models.

Predictions for the future are hatched when current climatic conditions
are present in the training data, but future climatic conditions fall into the
extrapolation range
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3.3.7 Beech—future climate

In the predictions for the future, the strong effect of eleva-
tion in the model becomes apparent. Despite rising temper-
atures, SI remains low in the mountains. In comparison to
the map for current conditions, there is a clear shift to the
north for regions of high SI. For Southern Germany, a
decrease in SI is predicted. These changes are tempera-
ture-driven.

4 Discussion

4.1 Harmonized site indices as ameasure for potential
productivity

We propose height of the 100 largest trees—recommended by
Assmann (1961)—and corresponding age as stable and sensi-
ble measures that can be derived based on a common defini-
tion from various inventory sources. Data must allow for
distinguishing the top 100 trees and assigning height and
age estimates—requirements met by most single-tree-based
sampling designs. In comparison to the mid height—the yield
table standard for site classes—the top height is relatively
robust also in uneven-aged stands, as it is most likely that
the 100 largest diameters represent dominant upper canopy
trees and it is not affected by thinning from below (Kramer
and Akҫa 1995). Another option would be to choose the
Weise height as top height. It is defined as the height corre-
sponding to the root mean square diameter of the top 20% of
diameters of a tree species on a site, which represent dominant
trees well throughout the stand’s development (Kramer and
Akҫa 1995).

Once harmonized height and age measures have been
derived from the inventory data, each plot can be assigned
a species-specific static site index based on age and height
in relation to lower and upper boundary age-height curves
fitted to the data. We employed the Chapman-Richards
function which is often used to model growth. It has three
directly interpretable growth parameters and shows com-
parably fast height saturation. However, we did not use it
as a growth function. We chose the Chapman-Richards
function because it describes well the upper and lower
boundary lines of the data which are required to derive
static site indices. In this context, the curves fitted might
only be interpreted as height growth development as far as
cross-sectional data can be interpreted as longitudinal data.
But curves fitted to cross-sectional data might be quite
different from curves fitted to longitudinal data. Perin
et al. (2013), for instance, assert non-saturating height
growth for Norway spruce in Belgium from true time series
(longitudinal data), while pseudo time series from invento-
ries (cross-sectional data) support saturating height growth

(Dagnelie et al. 1988). Besides the ecophysiological mean-
ing (Ryan and Yoder 1997; Koch et al. 2004), the question
of whether stand height saturates or not has a significant
effect on the interpretation of data. While non-saturating
functions can interpret continued height growth of older
stands as an age effect, saturating functions must assume
changes in the height asymptote as an effect of changing
site conditions. In the end, the static site index does not
intend to predict the true trajectory of a stand’s top height
through time and thus predict the true top height this stand
will reach at age 100. In this sense, the decision to define
the static site index by the height at a reference age of
100 years should not be misleading. The statement behind
the static site index is NOTwhat height young stands are to
be expected to reach at age 100, BUTwhat height stands at
this site would have reached if they had been planted
100 years ago. As stated in the introduction, the aim of
the static site index is to relate site condition data to a stand
productivity measure free of age trends. However, changes
in silvicultural prescriptions like earlier rotation of fast
growing stands can introduce a bias into cross-sectional
data, but on the other hand, longitudinal data integrate
changing site conditions which surely affect height growth.
Evidence for forests in Central Europe suggests accelerated
growth over the last decades (Pretzsch et al. 2014; Charru
et al. 2014; Spiecker 1999). A promising solution to the
dilemma is the interpretation of longitudinal data with dy-
namic site conditions (Yue et al. 2016). Especially where
large-scale inventories permit establishing time series—
such as the German NFI 1987, 2002, and 2012—the con-
sideration of changing site conditions offers a great poten-
tial for future analyses.

The concept of site index was developed for regular, even-
aged stands, and the trend to structurally diverse mixed stands
and thinning from above reduces the informative value of SI
(Pretzsch 2009). We considered this as far as possible in the
static site index formation by only including plots where the
investigated species accounted for ≥ 70% of the plot basal
area, a threshold that has been used in similar studies based
on NFI data (e.g., Seynave et al. 2008; Charru et al. 2014), and
by removing plots where the coefficient of variation of age
was greater than 0.25. Apart from that, as the developed SI
models predict SI independent of stand age and density, they
allow comparing site productivity based on environmental
conditions and can, for this purpose, be applied to forest sys-
tems differing from pure and even-aged stands (Bontemps and
Bouriaud 2014).

More generally, the suitability of SI, i.e., the height at a
certain age, as an indicator of site productivity can be
discussed, as SI is merely an indicator of site productivity,
but not a physiological measure and does not completely
capture productivity (Skovsgaard and Vanclay 2013;
Bontemps and Bouriaud 2014).
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For now, we see the following advantages in our approach.
In order to derive a static site index, no repeatedmeasurements
are necessary. Top height and static SI are simple measures
traditionally used in forestry. Most large-scale inventories pro-
vide the required information. SI can then be related to envi-
ronmental variables. Another option to capture the relation-
ship between productivity and environmental conditions
would be to model height in dependence on age and environ-
mental variables in one step (Vallet and Perot 2016; Brandl
et al. 2014). In our case, we preferred a two-step approach
for two reasons: First, the approach presented in this study
allows a mere descriptive site (index) assessment of a stand
without the introduction of any modeled effects of envi-
ronmental variables and all the uncertainty going with it.
Thus, the harmonized site index represents the current
height growth potential of NFI plots as closely as possible
and enables comparisons of different stands without an
attempt to explain these differences. In a model that pre-
dicts height in dependence on age and environmental var-
iables, the resulting SI range is less similar to the real
situation, if the available environmental variables only ex-
plain part of the variation in heights, which is often the
case. Second, modeling the SI in dependence on environ-
mental variables in a separate step has the advantage that
the effect and explanatory power of environmental vari-
ables on SI is immediately clear and separated from the
effect of age. Our approach also offers the possibility to
derive changes in SI from model predictions for current
and future conditions and add the modeled trend to the SI
calculated at inventory points.

4.2 Site index dependency on environmental
variables

In a wide temperature range, productivity strongly increases
with rising temperatures. This would be expected due to lon-
ger growing seasons and higher enzyme activity. Beyond the
temperature optimum, a negative effect of further rising tem-
peratures is fitted. For beech, this is obvious in the effect of
T_wq. But the effect of temperature is actually similar for
spruce. The curve for T_5to9 still slightly increases at the high
temperature margin. But as higher temperatures during the
growing season usually go in line with higher temperatures
in January, which have a negative effect in the spruce model,
the overall effect of temperature on SI depends on whether
T_5to9 or T1 increase more strongly in the future and thus the
overall effect might be increasing, decreasing or compensato-
ry. However, the predicted map for spruce productivity in
2061–2080 shows that the joint effect is that of an optimum
relationship. Cold temperatures limit growth due to a shorter
growing season and reduced enzyme activity. The temperature
effect can also be interpreted in relation to the effect of water
supply. At high temperatures, droughts are more likely and

photosynthesis stops due to water shortage. Apart from the
interconnection with the whole temperature regime, the effect
of T1 in the spruce model might be explained with the neces-
sity to put more resources in defense mechanisms (Matyssek
et al. 2012). Different provenances might also play a role
(Tollefsrud et al. 2008). The effect of precipitation is described
by a saturation curve. Above a given amount of water, precip-
itation is no longer the limiting factor. In the sprucemodel, this
effect is very stable and clear. It depends little on the chosen
temperature variables and allows deriving a threshold value of
about 750 mm of annual precipitation below which produc-
tivity is reduced. For beech, productivity strongly decreases
when precipitation sum during growing season falls below
500 mm.

The effect of the country factor in the spruce model is
negligible. In contrast, in the beech model, productivity in
France is distinctly lower than that in Germany.We introduced
this factor in order to take possible differences in inventory
design into account. For instance, it might be an effect of the
difference in age estimation. However, it does not seem likely
that the difference is so strong for beech whereas it is very low
for spruce. In addition, the filtering of the data (e.g., discarding
plots with no defined forest structure or coppice plots) should
prevent this. In the South of France, small, unproductive
beeches can be found, as beech is quite sensitive to drought
and well adapted to climates with high atmospheric humidity,
which are more likely in Germany. However, the climate var-
iables offered in variable selection did not capture these dif-
ferences completely (neither did continentality or aridity indi-
ces). We had to include elevation in the beech model for a
much better explanation of differences in productivity.
Above 200 m, there is a strong negative effect of elevation.
The downside is that such a model is less apt to predict pro-
ductivity for future climate scenarios, as the effect of elevation
partly absorbs the climate effect and is (apart from different
soil conditions and wind speed) in fact a climate effect. This
becomes obvious in the map for beech productivity in 2061–
2080, where productivity remains low in mountain areas even
with rising temperatures. Other possible explanations for the
differences between the two countries could be differences in
provenance, management, soil conditions, and nitrogen depo-
sition. Nitrogen deposition, for instance, is higher in Germany
than in France (Michel and Seidling 2017). As the factor
country is not considered for predictions on the European
scale, actual SI in Germany is higher than in the maps shown
for Europe. Thus, if the focus is on Germany or France instead
of the whole Europe, taking the country factor into account
provides more accurate and realistic predictions. However, the
climate trend, i.e., the magnitude and direction of the changes
in SI, is not affected by the country factor.

Albert and Schmidt (2010) fit an effect similar to the effect of
precipitation in our study for precipitation during the growing
season in their SI model for Norway spruce and water balance in

Annals of Forest Science  (2018) 75:56 Page 11 of 17  56 



their model for European beech. Their results show an increasing
SI with rising temperatures during growing season and a slow-
down at high temperatures. In contrast, in our study not only a
slow-down but even a decline in SI at the warm margin is sug-
gested. Our database extends much further to the warm margin
(T_5to9 for spruce: 97.5%= 16 °C and max. = 17.3 °C; T_5to9
for beech: 97.5%= 16.7 °C and max. = 18.3 °C) whereas the
maximum in the data of Albert and Schmidt lies only at 15.4 °C
for both spruce and beech. Nothdurft et al. (2012) fit an optimum
relationship between temperature during growing season as well
as a limitation of growth at low precipitation during growing
season for both beech and spruce. In the sprucemodel containing
climate variables of Seynave et al. (2005), SI decreaseswith a fall
in spring temperature and with a summer climatic water deficit.
For beech, Seynave et al. (2008) find that both cold temperatures
at the beginning of the growing season as well as high July
temperatures limit SI, which is expressed in the effect of T_wq
in our beech model. On the whole, our findings are well in line
with results from other studies carried out in Germany and
France. Rising temperatures will first lead to an increase in pro-
ductivity as long as water supply is not limiting. Above an opti-
mum range, a further increase in temperature has no positive
effect on productivity anymore and can even lead to a decline
in SI as water shortage becomes more likely and respiration
increases more strongly than assimilation (Schultz 2002).

Nineteen percent of the variation in SI of spruce and 40% of
the variation of SI in beech can be explained by the SI models.
At first glance, this seems small, but it is not surprising, as tree
growth is a complex process and there are many influences that
we could not take into account considering our database and
method. For instance, even after having removed plots with
extreme soil conditions, the influence of physical and chemical
soil conditions on growth might be considerable (Mellert and
Ewald 2014; Prietzel et al. 2008) and thus models including soil
parameters—especially if these are not interpolated but mea-
sured at the plot—achieve higher explanatory power (e.g.,
Seynave et al. 2005). We only used easily available mean cli-
mate parameters, but of course, the influence of climate on
growth is much more complex and growth is not only shaped
by average conditions but also by extreme events like droughts
(Bréda et al. 2006). Further reasons for a reduced goodness of fit
might be found in an insufficient accuracy of climate data and in
spatial genetic differentiations of a tree species (Bontemps and
Bouriaud 2014). Nitrogen deposition, which has been identified
as an important factor behind observed growth trends (Pretzsch
et al. 2014; Yue et al. 2016), might partly account for unex-
plained differences in productivity. In addition, not only on the
side of the explanatory variables, but also on the side of the
response, there is uncertainty involved due to sampling design,
errors in age estimation and height measurements, which we
analyze and discuss in detail in Appendix 1.

Still, the models can explain a remarkable part of variation
in SI (for beech, comparable to the model of Albert and

Schmidt 2010, which includes soil parameters and spatial
effects, and distinctly higher than the model of Nothdurft
et al. 2012; for spruce, those of Albert and Schmidt 2010
achieve an R2 of 0.39 and Nothdurft et al. an R2 of 0.32, but
these models include soil parameters, nitrogen deposition, and
spatial effects or stand characteristics and elevation
respectively). As the climate effects are ecologically plausible,
the models can be used to assess changes in site productivity
due to changes in climatic conditions. Even if SI prediction
might be over- or underestimated due to regression to the
mean, the differences between predicted SI for present condi-
tions and future scenarios are clear and give an indication of
the changes in productivity that might be expected for the
species in the future. In the end, our approach is not intended
to predict exact heights, but to compare stands and assess
trends in productivity. Still, the maps have to be interpreted
carefully, as they include both the uncertainty in the modeled
effects as well as the uncertainty in the climate scenarios.

It also needs to be emphasized that the first step of our
approach, the determination of a static site index as a measure
for productive potential, is independent of the SI models pre-
sented here. The static site index can be used as a stand-alone
method to assess and compare current stands. And of course, it
can function as a response variable inmodels containing better
explanatory variables and thus achieving higher predictive
power.

5 Conclusion

Data from national forest inventories are becoming increas-
ingly accessible for science and the public. They offer tremen-
dous potential to enhance our understanding of tree species’
distribution and growth potential. When combining different
national forest inventories, a relatively simple measure for the
growth potential is needed. A static site index can be calculat-
ed whenever data allow for distinguishing a top collective and
assigning height and age estimates. Based on this, a harmo-
nized site index could be derived from joint French and
German NFI data. Virtual stands constituted a helpful tool in
estimating height and age errors and their propagation in the
site index. Explaining static site index from basic climate data
resulted in simple and robust models that can be applied to
climate change scenarios.

One premise to exploit the potential of NFI data to enhance
our understanding of tree species’ distribution and growth
potential is the existence of reliable site data. Currently, data
sets likeWorldClim (Hijmans et al. 2005) or the European soil
data base (JRC 2001-2016) provide harmonized site data with
comparably high resolution of 1 km—approximately the res-
olution of the inventory coordinates. Still, neither the param-
eter set nor the spatial and temporal resolution, in the case of
climate, appear satisfying, especially in mountainous terrain.
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Efforts like the environmental data base to the German NFI
“staoDB” (this virtual issue) or the “ecologie” files to the
French NFI are necessary and at the same time still require
harmonization.
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Appendix 1: Error estimation from virtual
data

The uncertainties afflicted with height, age, and site indices
are assessed using a dataset of virtual stands based on yield
table characteristics. Comparisons of samples, drawn from the
virtual dataset according to different sampling designs, present
a tool to check that the combination of different NFIs is
justified.

Methods

To obtain an error estimate of the site index in terms of bias
and variance, we simulated DBH-height distributions assum-
ing a given DBH variance and a DBH-dependent height var-
iance.We used the stand biometrics of yield tables for Norway
spruce of Assmann and Franz (1963, medium yield level) to
create virtual stands of 1 ha. These yield tables comprise stand
parameters for six site classes over an age range of 20 to
120 years. To create the virtual stands the stem number N
per hectare, the root mean square diameter dq and the corre-
sponding height hq were needed. DBH distributions were gen-
erated by drawing N samples from dq-dependent Weibull
functions (Nagel and Biging 1995):

f xð Þ ¼ a
b

� �
*

x
b

� � a−1ð Þ
*exp −

x
b

� �a� �
ð1Þ

with x =DBH − 7 and the shape parameter a = 3.4 + 0.35
∗ (dq − 7) − 0.247 ∗ dq and the scale parameter b = − 2.5 +

1.1 ∗ (dq − 7). To fit the tabulated dq, the resulting DBH dis-
tribution was corrected for the small offset. Heights were sim-
ulated based on diameters by using uniform height-diameter
curves (Sloboda et al. 1993):

hi ¼ 1:3þ hq−1:3
� �

* exp − b0þ b1* dq
� �

* 1=DBHi−1=dq
� �� �þ ε 0;σð Þ ð2Þ

where (0,σ) represents a normally distributed error with a
mean of zero and a standard deviation σ = bs0 + bs1 ∗
log(sd(DBH)) with bs0 = 0.14 and bs1 = 0.56.

The effect of stand density on the site index determination
was quantified by randomly setting stem number to 20, 40, 60,
80, or 100% of the original value from the yield table.

From the virtual stand, one sample according to the sam-
pling method of the German NFI and one sample according to
the sampling method of the French NFI were drawn. In the
GermanNFI, the sampling probability pG of each tree depends
on its basal area and the basal area factor zf = 4:

pG ¼ π*
DBH2

40000*zf
ð3Þ

In the French NFI, the sampling probability pF of each tree
depends on the size of the concentric circle corresponding to
its DBH:

pF ¼

π*
62

10000
for 7:5 cm≤DBH < 22:5 cm

π*
92

10000
for 22:5 cm≤DBH < 37:5 cm

π*
152

10000
for 37:5 cm≤DBH

8>>>>><
>>>>>:

ð4Þ

Now, the sampling design of the German and French NFI
can be simply imitated by drawing random numbers from a
uniform distribution between 0 and 1: if the sampling proba-
bility p of the tree is bigger than the number drawn, the tree is
included in the sample. The heights of the sample trees were
calculated from species-specific uniform height-diameter
curves adding a random error term as in Albert (2000). From
these heights, a maximum of three (if available) trees were
chosen to represent the actually “measured height.” The
heights of the sample trees were calculated from species-
specific uniform height-diameter curves based on the “mea-
sured” heights.

To estimate the error of dtop and htop due to the sampling
design, the procedure was repeated 1000 times whereby
site classes and age spectrum of the yield table were sam-
pled at random. This resulted in a dataset of 1000 virtual
stands and 1000 samples according to the German NFI
sampling method and 1000 samples according to the
French NFI sampling method. The error, i.e., the difference
in the dtop and htop estimates from the inventory sampling
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and the true dtop and htop of the entire stand, can be quan-
tified in terms of root mean squared error (RMSE) and
bias. Bias was determined by least squares regression with-
out intercept of true dtop (or htop) against dtop (or htop)
estimates from the inventory sampling.

In order to assess the influence of age errors on SI estimation,
the Chapman-Richards-functions for the upper and the lower
boundary line of Norway spruce were used. True SI between
20 and 40m in 4m-steps were assumed. Based on these true SI,
true heights for each age in 5-year-steps from 20 and 120 years
were derived. Measurements afflicted with age errors were sim-
ulated by subtracting/adding the absolute value of a random
error from N(0, 5) from/to the trues ages, but maintaining the
true heights. The difference between true SI and the SI estima-
tion for the simulated measurement afflicted with age error was
calculated and averaged over 1000 repetitions.

Results

Since height variance between the trees in a stand is typi-
cally lower than the diameter variance, the bias and vari-

ance of the determined top height htop are smaller than for
the dtop. The correlation between the measure calculated
from the stand and the measure calculated from the sample
is very high (NFI Germany: 0.991, NFI France: 0.996) and
the bias is negligible (NFI Germany: 1.014, NFI France:
1.009) (Fig. 8a). This ensures that there are no systematic
deviations resulting from the two sampling methods.
Furthermore, htop is relatively stable with respect to effects
of density. Although SI is slightly underestimated at all
densities, the difference is always lower than 0.8 m
(Fig. 8a) and the standard deviation is less than 1.2 m.
Figure 8b shows that there is no big or systematic deviation
between French and German NFI samples at all.

As the second possible error source in the site index esti-
mation, we investigated the effect made by under- or
overestimating stand age. As Fig. 8c shows, an underestima-
tion of age leads to an overestimation of the site index of about
2 m at age 40 which decreases to about 0.25 m at age 100.
Likewise, an overestimation of age leads to a slightly lower
underestimation of the site index of about 1.6 m at age 40 and
0.2 m at age 100.

Appendix 2: Static site indices for Norway
spruce, European beech, Douglas-fir, Scots
pine, sessile oak, and pedunculate oak

Besides Norway spruce and European beech, static site indi-
ces were derived for four other common species: Scots pine,
Douglas-fir, sessile oak, and pedunculate oak. Thus, we show
that the method is applicable to a wide range of species and are
able to compare the species’ growth potential.

Figure 9 displays age-height scatter plots and the fits of the
Chapman-Richards function for the six investigated species
from the joint data sets of the German and French NFI. For
Douglas-fir, there are only few measurements available for
ages > 70 years, and for the other species, ages up to at least
130 years are well represented. Table 5 summarizes the func-
tion parameters for the joint data set. As can be clearly seen in
Fig. 9, the species with the highest growth potential is
Douglas-fir, followed by Norway spruce. This is also
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Fig. 8 a Difference between the true stand htop and the calculated htop
from the German NFI sample in dependence on the true stand htop for
different relative stand densities. The lines mark the mean differences for
each stand density. b Comparison between htop calculated from the
German NFI sample and htop calculated from the French NFI sample. c

Assuming a true SI the upper lines show the error in SI estimation for an
assumed overestimation of age, the lower dashed lines show the error in
SI estimation for an assumed underestimation of age using the Chapman-
Richards functions for Norway spruce
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represented by the fitted asymptotes (A) of the upper bound-
ary line in Appendix Table 5.
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Abstract 

Aim of study: (i) To estimate site productivity based on German national forest 

inventory (NFI) data using above-ground wood biomass growth (ΔB) of the stand and (ii) to 

develop a model that explains site productivity quantified by ΔB in dependence on climate 

and soil conditions as well as stand characteristics for Norway spruce (Picea abies (L.) 

Karst.). 

Area of study: Germany, which ranges from the North Sea to the Bavarian Alps in the 

south encompassing lowlands in the north, uplands in central Germany and low mountain 

ranges mainly in southern Germany. 

Material and methods: Biomass growth of the stand between the 2
nd

 and 3
rd

 NFI was 

calculated as measure for site productivity. Generalized additive models were fitted to explain 

biomass growth in dependence on stand age, stand density and environmental variables. 

Main results: Great part of the variation in biomass growth was due to differences in 

stand age and stand density. Mean annual temperature and summer precipitation, temperature 

seasonality, base saturation, C/N ratio and soil texture explained further variation. External 

validation of the model using data from experimental plots showed good model performance. 

Research highlights: The study outlines both the potential as well as the restrictions in 

using biomass growth as a measure for site productivity and as response variable in statistical 

site-productivity models: biomass growth of the stand is a comprehensive measure of site 

potential as it incorporates both height and basal area increment as well as stem number. 

However, it entails the difficulty of how to deal with the influence of management on stand 

density. 
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Introduction 

How to best summarize site productivity in one measure has been a crucial question in 

forestry (Skovsgaard & Vanclay, 2008; Bontemps & Bouriaud 2014). The most widely used 

measure is the height-age site index (SI), i.e. an expected or realized stand height at a given 

reference age (Assmann, 1961). Height has the advantages that it can be measured directly 

and that it is generally not much affected by management (Wenk et al., 1990). In fact, SI is so 

well-established in forest research and practice, that it is often taken as the true productivity 

rather than simply an indicator that may or may not reflect the site potential (Skovsgaard & 

Vanclay, 2008). This belief is based on Gehrhardt’s first refinement of Eichhorn’s rule stating 

that the relationship between total volume production of a tree species and stand height is 

identical for all site indices known as general yield level. But later he refined this relationship 

by specifying different relationships between total volume production and stand height for 

each site index referred to as a special yield level. Evaluating experimental plots of Norway 

spruce in Southern Germany, Assmann found that the total volume production of stands of the 

same age and SI can still vary ± 15 % in dependence on site characteristics. This leads to the 

so-called subdivided special yield level (Pretzsch, 2009). These findings of Assmann, that SI 

does not completely capture site productivity, motivated us to use a measure for site 

productivity that comprises more aspects of productivity than mere height and to relate it to 

site conditions. As Assmann established the theory of the subdivided special yield level 

investigating experimental plots of Norway spruce (one of the most common and 

economically important tree species in Germany), we focus on this species as well. Our study 

is based on German national forest inventory (NFI) data. 

Numerous studies model the relationship between site conditions and site productivity 

based on NFI data. Mostly SI is the measure of site productivity (e.g. Seynave et al., 2005; 

Albert & Schmidt, 2010; Nothdurft et al., 2012), but a variety of other measures has been 

used as well, e.g. stand basal area increment (Charru et al., 2010; Charru et al., 2014) or mean 

annual volume increment (Gustafson et al., 2003; Condés & García-Robredo, 2012). Watt et 

al. (2010) compared two models for Pinus radiata productivity in dependence on site 

characteristics. In the first model SI is the response variable, in the second model productivity 

is expressed as the mean annual increment at a standard age for a standard density predicted 

from a stand basal area growth model and auxiliary relations for height and volume. Wang et 
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al. (2005) estimated net primary productivity (NPP) of forest ecosystems in China from 

inventories and modelled it in dependence on site conditions. 

NPP encompasses the entire production of organic substances (i.e. net biomass growth) 

as well as the turnover (of plant organs or entire individuals) in a given time period (Pretzsch, 

2009). However, as root biomass, turnover of plant organs and investments in reproduction 

can only be approximate estimates using NFI data, including these components introduces a 

lot of uncertainty into NPP estimations. Therefore, in order to estimate site productivity we 

chose the physiological measure above-ground wood biomass growth (ΔB) of the stand. 

However, predictions of ΔB can easily be converted into approximate NPP estimates by using 

published scaling factors (e.g. Offenthaler & Hochbichler, 2006; Rötzer et al., 2010). Using 

experimental plots the focus often is on total volume production. But as the history of stand 

development of NFI plots is not known, total volume (or biomass) production cannot be 

estimated. In contrast to total volume (or biomass) production, ΔB is strongly influenced by 

stand density and stand age. On the one hand ΔB can be limited by stand structure and 

density, on the other hand it can be limited by site conditions. Thus, actual ΔB and potential 

ΔB must be distinguished (Kahle, 2015). Actual ΔB is the realized ΔB under the current stand 

structure, density and age. Potential ΔB is the capability of the site to produce biomass, 

irrespective of how much of this potential is utilized under the current stand structure and 

density (Skovsgaard & Vanclay, 2008). It is determined by site conditions and thus reflects 

site potential. As most forests in Germany are managed, ΔB estimated from NFI data will 

generally not correspond to potential ΔB. Thus, a central aspect is how to take stand density 

into account (Bontemps & Bouriaud, 2014). Besides stand density, stand age has a strong 

influence on ΔB and has to be taken into account when assessing site potential. 

Inspired by the idea that based on NFI data direct productivity-environment 

relationships can be established when taking stand density effects into account (Bontemps & 

Bouriaud, 2014), this study investigates whether the use of ΔB is a feasible way to do so and 

whether there is an additional benefit in using ΔB as a complementary measure to SI for site 

productivity. Main aim of the study was to estimate site productivity based on German NFI 

data and develop a model that explains site productivity in dependence on site conditions for 

Norway spruce. We validated the model using an independent dataset from experimental 

plots. Our research questions were: (1) What stand variables explain the variability in ΔB for 

a given site index? (2) How can the strong influence of stand density on ΔB best be dealt 

with? (3) Can actual and potential ΔB be differentiated based on NFI data? (4) How is the 

influence of site conditions on ΔB? 
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Material and Methods 

Study area 

Germany ranges from the North Sea to the Bavarian Alps in the south encompassing 

lowlands in the north, uplands in central Germany and low mountain ranges mainly in 

southern Germany. 30 % of the area is covered by temperate forests. In the northwest and the 

north the climate is oceanic, whereas in the east there is a strong continental influence. In 

central and southern Germany the climate varies from moderately oceanic to continental. The 

Alps and some low mountain ranges have a mountain climate with lower temperatures and 

higher precipitation. 

 

Data 

National Forest Inventory Data 

To estimate biomass growth data of the second (2002) and third (2012) NFI were used. 

NFI in Germany is based on a permanent nationwide 4 km × 4 km grid. Each grid point in 

forest area is the center of an angle-count sampling (BMELV, 2011). There are trees that were 

included in the angle-count sampling (basal area factor 4) in NFI 3 but had not been thick 

enough to be included in NFI 2. Other trees were measured for the NFI 2 but were missing in 

the NFI 3. Diameter at breast height (dbh) and height of these trees were predicted for the 

middle of the period between NFI 2 and NFI 3 (Jenkins et al., 2001; Dahm, 2006) using the 

function of Sloboda (Riedel et al., 2017). Thus, plots where thinning occurred between the 

inventories are included in our dataset. However, plots where all trees that had been surveyed 

in NFI 2 were missing in NFI 3 due to harvest or mortality were excluded. For the study plots 

with a basal area proportion of spruces ≥ 70 % and stand age (calculated as mean of the age 

estimations of the sample trees weighted by the stem numbers per ha that they represent) 

between 30 and 150 years were selected. Plots where the climate signal is likely to be 

confounded by extreme soil characteristics (gley soils, pseudogley soils and moor soils) were 

discarded. Finally, 3830 plots remained for analysis. 

Above-ground wood biomass was estimated using species-specific functions of dbh and 

height. We chose the functions of Zell (2008), as they were developed based on German NFI 

data. The functions estimate total above-ground wood biomass, i.e. comprise both stem wood 

biomass as well as branch biomass. The growth of above-ground wood biomass per year was 

determined for each tree as the difference between NFI 3 and NFI 2 divided by the period 

length. These values were extrapolated to 1 ha and summed up at plot-level resulting in one 

ΔB assigned to each plot (Jenkins et al., 2001; Dahm, 2006). In summary, ΔB represents total 
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above-ground wood biomass net growth of the stand, i.e. turnover of plant organs is not 

considered. A detailed description of how ΔB is derived based on the angle-count sample is 

presented in Appendix 1. 

The stand density index of Reineke (SDI) (Reineke, 1933; Zeide, 2005) with an 

exponent of -1.605 was used as a measure of stand density. As tree species differ in their 

requirements of growing space, SDI values are species specific. In order to allow comparisons 

between different species or to use the SDI for mixed stands, it is necessary to weight the SDI. 

For each species the 95-percentile of the SDI distribution of pure stands was determined. 

Weighting factors were calculated dividing the 95-percentile value of spruce (used as 

reference species) by the 95-percentile value of the respective tree species. For each NFI plot 

species specific SDI values were multiplied by the weighting factors and then summed up to 

the overall SDI of the respective plot. A detailed description of the calculation of the SDI is 

presented in Appendix 2. Statistical values of the NFI data are summarized in Table 1. 

 

Table 1. Characterization (minimum, maximum, mean, standard deviation) of the NFI plots (n = 3830) used for modelling. 

Parameter Min Max Mean SD 

Mean diameter (cm) 9.9 70.5 32.5 9.9 

Dominant height (m) 4.9 48.9 29.9 5.3 

Stand age (yr) 30 150 71 27 

SDI 59 2325 984 350 

Biomass (t ha
-1

) 16 862 292 109 

ΔB (t ha
-1

 yr
-1

) 0.2 24.8 9.0 4.1 

 

 

Environmental Data 

Regionalized daily climate (Böhner et al., 2018) and soil data (von Wilpert et al., 2017) 

are available at the NFI plots. Based on the daily climate data, for each NFI plot annual values 

of the climate variables presented in Table 2 were calculated and then averaged over the 

measurement period between NFI 2 and NFI 3. 
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Table 2. Overview of environmental variables (abbreviation, unit, minimum, maximum, mean, standard deviation) for the 

NFI plots used in the study. 

Parameter Abbreviation Unit Min Max Mean SD 

Mean annual temperature T_yr °C 3.6 11.4 8.2 1.1 

Mean temperature May to Sept.  T_5to9 °C 9.8 18.3 14.8 1.2 

Mean temperature warmest quarter T_wq °C 11.9 20.1 16.5 1.2 

Max. temperature warmest month Tmax_wm °C 17.6 27.7 23.5 1.5 

Mean temperature coldest quarter T_cq °C -5.1 3.3 -0.5 1.2 

Min. temperature coldest month Tmin_cm °C -9.5 -1.1 -5.1 1.4 

Temperature seasonality (standard 

deviation *100) 

T_sd °C*100 598 788 693 39 

Temperature annual range 

(Tmax_wm–Tmin_cm) 

T_range °C 23.6 32.3 28.6 1.6 

Annual precipitation sum P_yr mm 504 2589 1036 301 

Precipitation sum May to Sept. P_5to9 mm 251 1364 490 151 

Precipitation sum warmest quarter P_wq mm 165 886 315 99 

Precipitation seasonality 

(coefficient of variation) 

P_cv  43 65 52 4 

Evapotranspiration (Penman-

Monteith) May to Sept. 

ETpm_5to9 mm 269 504 407 37 

Available water capacity of the 

first 60 cm 

AWC mm 78 202 138 21 

Base saturation of the first 60 cm BS % 1 100 30 26 

Clay content of the first 60 cm clay % 1 53 19 9 

Silt content of the first 60 cm silt % 1 74 40 12 

Sand content of the first 60 cm sand % 1 96 41 19 

C/N-ratio of the first 60 cm CN  7 34 15 3 

 

 

The relationship between the variability in ΔB and stand variables 

In order to address the first research question (What stand variables explain the 

variability in ΔB for a given site index?), we explored the variation in ΔB not already 

explained by SI. We aimed at identifying the stand and tree characteristics that differ between 

plots of greater and lesser ΔB but of the same SI: Is greater productivity mainly due to greater 

stem numbers or do stem numbers not differ that much, but trees are thicker and radial growth 

of single trees is faster? First, for each plot SI was determined by estimating the top height 

and extrapolating it to age 100 applying the Chapman-Richards function (Brandl et al., 2018). 

Second, a generalized additive model (GAM) was fitted explaining ΔB in dependence on SI 

(package mgcv (Wood, 2011) in R 3.3.2 (R Core Team, 2016)). Stand age was included as 

additional covariate in order to account for the influence of age on ΔB. The residuals of this 

model correspond to the variation in ΔB not explained by SI and age. Third, we divided the 

residuals in quartiles and tested if stand and tree parameters differed significantly between the 

quartiles using Kruskal Wallis and post-hoc Nemenyi-Test (significance level p = 0.01), as 

the data were not normally distributed. On plot level we considered SDI, stem number (N), 

standing above-ground wood biomass and quadratic mean diameter (dg), on single tree level 
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we considered height, dbh and relative dbh increment, i.e. dbh increment between NFI 2 and 

NFI 3 divided by the dbh measured at NFI 2. Relative dbh increment was only assessed for 

trees measured at both inventories. In order to be able to compare height and dbh of trees of 

varying ages height and dbh had to be rescaled: A 95%-quantile regression was applied 

describing height or dbh respectively as a fourth order polynomial of age. Then, each tree’s 

height or dbh respectively was divided by the predicted 95%-quantile of height or dbh 

respectively at the tree’s age resulting in a relative measure independent of age. 

Details on the methodology are given in Appendix 3. 

 

Modelling site productivity from site conditions 

We modelled ΔB in dependence on site and stand characteristics using generalized 

additive models with a gamma error distribution and log-link function. A variety of climate 

and soil variables was offered to variable selection (Table 2). Climate variables comprise 

annual precipitation sum (P_yr), summer precipitation (P_wq), precipitation during growing 

season (P_5to9), mean annual temperature (T_yr), summer temperature (T_wq, Tmax_wm), 

temperature during growing season (T_5to9), winter temperature (Tmin_cm, T_cq) as well as 

temperature variability (T_sd, T_range). Soil parameters include base saturation (BS), soil 

texture variables (clay, silt, sand), C/N-ratio (CN) and available water capacity (AWC) of the 

first 60 cm. We selected the best model of all possible combinations of explanatory variables 

using AIC as criterion. Combinations including highly correlated variables (Dormann et al., 

2013) had been discarded beforehand. 

ΔB strongly depends on stand density. Stand density itself depends both on thinning 

regime and environmental conditions, since favorable sites allow a greater stand density than 

unfavorable sites (Pretzsch, 2002). We wanted to find a measure of site productivity that is 

independent of forest management and solely reflects differences in site quality. Stand density 

could be included as covariate into the model and set to a fixed value for predictions. But as 

stand density is not independent of site quality, it weakens the explanatory power of the 

environmental variables. Therefore, we tried to separate the effect of environmental 

conditions from the effect of forest management on stand density. Our approach follows the 

methodology applied to experimental plots when characterizing density on plots of varying 

thinning grades on the same site. Density of a given stand is expressed by the ratio of the 

basal area of the stand and the maximum basal area observed on the same site (Pretzsch, 

2002). Regarding NFI plots as a huge experimental design we identified plots of similar site 

conditions using k-means clustering. The k-means method partitions the observations into a 
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specified number of groups (i.e. clusters) so that the sum of squares from the observations to 

the assigned cluster centers is minimized. Based on a comprehensive set of climatic (P_yr, 

P_wq, P_cv, T_yr, T_wq, Tmin_cm, T_sd, ETpm_5to9) and soil variables (BS, AWC, silt, 

sand, CN) observations were assigned to 21 clusters using the algorithm of Hartigan & Wong 

(1979) and trying 1000 initial random sets of cluster centers. The optimal number of clusters 

had been determined according to the Bayesian information criterion for expectation-

maximization, initialized by hierarchical clustering for parameterized Gaussian mixture 

models using the R package mclust (Scrucca et al., 2016). For each cluster, interpreted as one 

experimental plot with a set of comparable site conditions but different thinning grades, the 

95-percentile of the SDI distribution (SDI95) was determined. Again we chose the 95-

percentile instead of the maximum in order not to give potential outliers too much influence. 

Still, SDI95 is interpreted as the maximum SDI that can be reached under the corresponding 

site conditions. Then, for each NFI plot the ratio of its SDI and the SDI95 of the corresponding 

cluster was calculated resulting in a relative density (RD) that reflects the effect of thinning on 

density. ΔB can then be explained by RD, age and the environmental variables. 

 

Validation 

The model’s predictive performance was evaluated by calculating root mean squared 

error (RMSE) based on a 10-fold cross validation (data splitting train data : test data = 9 : 1) 

(e.g. Mellert et al., 2016). Besides, we checked for systematic errors by determining the slope 

of a least squares regression without intercept of observed ΔB against predicted ΔB both at 

the scale of the linear predictor, i.e. the log scale (e.g. Dolos et al., 2015). 

For external validation independent data of 78 long-term experimental plots on 14 

locations in Bavaria were available. From these data the increment periods which were close 

to the inventory periods of the NFI were used. Table 3 comprises the stand characteristics of 

the experimental plots. 
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Table 3. Characterization of the experimental plots (n = 78) used for validation; stand age, mean height and mean diameter 

are obtained from the last survey. 

Parameter Min Max Mean SD 

Stand age (yr) 20 118 44 22 

Mean height (m) 9.1 39.1 21.8 6.2 

Mean diameter (cm) 11.5 52.7 26.8 9.0 

Mean annual temperature (°C) 7.0 9.0 8.2 0.7 

Temperature seasonality (°C*100) 706 754 726 15 

Precipitation sum warmest quarter (mm) 245 427 338 66 

Base saturation of the first 60 cm (%) 5 100 41 26 

Sand content of the first 60 cm (%) 9 64 28 18 

C/N-ratio of the first 60 cm 7 25 17 6 

 

 

Results 

The relationship between the variability in ΔB and stand variables 

In the data there was a clear trend to larger quadratic mean diameter (dg), dbh, standing 

biomass and ΔB with increasing SI. Thus, in general greater ΔB coincided with higher SI. 

However, there was considerable variation in ΔB that was not explained by SI and stand age. 

This residual variation could be related to stand variables (Table 4): Differences in ΔB were 

largely due to differences in stand density (Figure 1a). Sites with greater ΔB generally had a 

higher stem number per ha, whereas there was no clear trend for quadratic mean diameter. 

Standing above-ground wood biomass significantly differed between the quartiles of the 

distribution of the residuals and showed an increasing trend. Trees on sites with greater ΔB 

but same SI did not have greater single tree diameters on average, but relative dbh increments 

were higher (Figure 1b). There was no clear trend in single tree heights. Thus, in general, at a 

given SI greater ΔB was mainly due to greater stand density: Production was higher, because 

stem number and standing biomass was higher. In addition, faster dbh-growth contributed to 

the greater ΔB. 

 

Table 4. Detailed results of the comparison between the 4 quartiles of the distribution of the residuals; Larger residuals go in 

line with greater ΔB at a given site index and stand age; significance levels are p = 0.05 (*), p = 0.01 (**) and p = 0.001 

(***); trend denotes whether there is an increasing (+) or decreasing (-) trend with greater ΔB or whether the data exhibit no 

clear trend (+-); same letters denote groups that do not differ significantly.  

parameter significance trend 1. quartile 2. quartile 3. quartile 4. quartile 

dbh *** +- a a b b 

height *** +- a b c a 

rel. dbh inc. *** + a b c d 

SDI *** + a b c d 

N *** + a b c d 

dg *** - a ab bc c 

biomass *** + a b c d 
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Figure 1. Comparison of SDI (a) and relative dbh increment (b) between the quartiles of the distribution of the residuals. 

Larger residuals go in line with greater ΔB at a given site index and stand age. 

 

ΔB in dependence on site conditions 

The final model can be described with: 

[1] ∆𝐵𝑎𝑐𝑡 = exp⁡(𝑓(𝑅𝐷) + 𝑓(𝑎𝑔𝑒) + 𝑓(𝑇𝑦𝑟) + 𝑓(𝑃𝑤𝑞) + 𝑓(𝑇𝑠𝑑) + 𝑓(𝐵𝑆) + 𝑓(𝑠𝑎𝑛𝑑) + 𝑓(𝐶𝑁) + 𝜀) 

where f denotes a regression spline (Table 5). 

ΔB strongly depends on stand density and stand age, but plausible effects of site 

conditions can be fitted as well (Figure 2). Relative density (RD) has a strong, approximately 

linear positive effect. ΔB decreases with increasing stand age from 30 years onwards (for 

model fitting plots with stand ages between 30 and 150 years were used). ΔB increases with 

rising mean annual temperatures (T_yr). The increase is stronger in the low and medium 

temperature range, whereas the slope flattens at higher temperatures. The effect of 

precipitation is smaller. Low summer precipitation (P_wq) clearly limits ΔB. As above a 

value of about 800 mm confidence intervals become very wide, no conclusions should be 

drawn from the subsequent curve progression. ΔB is reduced at both extremes of temperature 

seasonality (T_sd). Optimum ΔB is reached at medium base saturation (BS), whereas high 

base saturation has a negative effect on ΔB. To a lesser extent low base saturation reduces ΔB 

as well. Low sand content (sand) has a positive effect on ΔB, whereas the effect of very high 

sand content is negative. ΔB decreases nearly linearly with rising C/N ratio. 
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Table 5. Detailed summary of the site productivity model (edf: estimated degrees of freedom). 

 Estimate Standard error T statistics p value 

intercept 2.119 0.004 571.335 < 2 × 10
−16

 

     

 edf Ref. df F statistics p value 

f(RD) 8.124 8.799 755.645 < 2 × 10
−16

 

f(age) 3.188 3.993 684.052 < 2 × 10
−16

 

f(T_yr) 4.533 5.651 15.338 2.69 × 10
-16

 

f(P_wq) 4.896 6.033 12.314 8.22 × 10
-14

 

f(T_sd) 3.139 3.944 11.509 4.03 × 10
-9

 

f(BS) 2.669 3.335 8.364 8.12 × 10
-6

 

f(sand) 7.302 8.314 5.328 6.79 × 10
-7

 

f(CN) 1.256 1.474 15.427 6.65 × 10
-6

 

     

Adjusted R²  0.758   

RMSE  1.996 (t ha
-1

 yr
-1

)   

slope (observed against predicted ΔB) 0.988   
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Figure 2. Effects of explanatory variables (RD, age, mean annual temperature, precipitation sum warmest quarter, 

temperature seasonality, base saturation, sand content and C/N ratio) on ΔB when the other variables are set to their means 

(table 1 and table 2). Grey areas comprise 95% pointwise prognosis intervals; a rug plot shows the distribution of the 

covariate; the vertical dashed lines mark the 2.5 and 97.5% quantiles of the covariate’s distribution. 
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Validation 

Cross-validation resulted in a RMSE of 1.996 t ha
-1

 yr
-1

. The slope of the regression of 

observed against predicted ΔB was nearly 1 (0.988). External validation of the model with an 

independent data set revealed that differences in ΔB can be predicted quite reliably (Figure 3). 

The R² of the linear relationship is 0.753. RMSE was 1.652 t ha
-1

 yr
-1

. 

 

 

 

Figure 3. Predicted ΔB values plotted against calculated ΔB values for the experimental plots. The solid black dot represents 

the mean values of the validation dataset. The dashed line marks the 1:1 relation. 

 

 

Discussion 

ΔB as a measure for site productivity 

As the trend to structurally diverse mixed stands and thinning from above reduces the 

informative value of SI (Pretzsch, 2009), it makes sense to look for complementary measures 

of site productivity (Bontemps & Bouriaud, 2014). We chose above-ground wood biomass 

growth (ΔB): On the one hand, ΔB encompasses height and dbh increment as well as stand 

density, and on the other hand it is feasible to estimate ΔB based on NFI data. We preferred 

ΔB to volume increment for two reasons: First, it constitutes a physiological measure closer to 

net primary productivity than volume increment. Second, wood density is taken into account 

which facilitates the comparison between different species. 

ΔB serves as an indicator or proxy of site productivity. Therefore, when interpreting our 

results, we relate them to productivity. However, it has to be kept in mind that there are more 
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aspects to productivity like below-ground biomass growth and turnover of plant organs that 

are not taken into account. 

Sites with similar SI and stand age showed noticeable variation in biomass growth: 

Greater ΔB was mainly due to higher stem numbers, reinforced by larger relative dbh 

increments. If more productive sites at similar SI and age differ more in stem number and 

only to a lesser degree in diameters from less productive ones, site productivity is better 

captured looking at ΔB of the stand than at the increment of single trees alone or mere stand 

height. It has to be kept in mind that this effect was found for sites of similar SI and is not a 

general principle. When looking at the entire data set i.e. the whole range of site indices and 

ages there is a clear trend to larger dg with increasing SI. The differences in productivity at 

same SI cannot immediately be traced back to differences in site conditions and thus be 

interpreted as subdivided specific yield levels, as most forests in Germany are managed and 

therefore differences in stand density leading to differences in productivity are mainly due to 

thinning. Still, maximum stand density i.e. carrying capacity on a given site depends on site 

conditions (Pretzsch, 2002). Favorable sites would show greater dbh increment than 

unfavorable sites given the same stand density. But as forest owners might tend to keep higher 

stem numbers at favorable sites, better site conditions are sometimes not expressed as much in 

greater dbh increment but in higher stand density. Thus, exploring the relationship between 

the variability in ΔB and stand variables at a given SI and stand age emphasized the 

importance of adequately dealing with stand density when modelling ΔB. Therefore, we 

differentiated between management effects and environmental effects on stand density by 

calculating a relative density in the modelling approach. This allowed us to develop a model 

that separates the effects of thinning from the effects of site conditions on productivity. Of 

course, this is an idealization as the effects of thinning regime and site quality can never be 

separated completely and there are many influences on stand density not encompassed by the 

explanatory variables used in this study. We modelled ΔB in dependence on age, relative 

stand density and environmental variables in one step and can predict potential ΔB by setting 

the relative density and age to reference values, just as height can be modelled in dependence 

on age and environmental variables in one step and SI can be predicted by setting age to a 

reference age (e.g. Brandl et al., 2014; Vallet & Perot, 2016). Actual ΔB can be predicted by 

setting the relative density and age to the current values of the given plot. An alternative 

approach would be to first estimate a productivity measure detrended from age and density 

effects and in a second step model this detrended productivity index in dependence on 

environmental variables (e.g. Watt et al., 2010; Charru et al., 2014), which is in analogy with 
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the approach of first deriving the SI of a stand, i.e. detrending height of the age effect, and 

then modelling SI in dependence on environmental variables (e.g. Albert & Schmidt, 2010). 

 

ΔB in dependence on site conditions 

Overall the model shows a high goodness of fit and validation on an independent data 

set showed that it reliably predicts differences in ΔB. The effects of age and relative density 

on ΔB in the model are clear and ecologically plausible: Since stand density is directly 

connected to leaf biomass (Pretzsch et al., 2014b), dense stands reach maximum leaf area and 

thus maximum light interception (Zeide, 2001). Therefore, it makes sense that productivity 

increases with increasing stand density. This result is in contrast to Pretzsch (2006) who found 

a unimodal optimum relationship between stand density and growth. This contradiction might 

be due to our use of NFI data instead of data of experimental plots. As most German forests 

are managed the proportion of unthinned NFI plots with such high stand densities as to cause 

reductions in growth is too small to influence the model effect.   

One would expect net primary productivity for a given stand to increase until an age of 

about 50 years and then decline again due to the changing balance between gross primary 

productivity and respiration during stand development (Barnes et al., 1998). But in this study 

ΔB declines monotonously with stand age within the age range considered (30 until 150 

years). On the one hand, this might indicate that the age dependence of above-ground wood 

biomass growth differs from the age dependence of NPP. On the other hand, it can be 

explained by our use of cross-sectional data instead of time series, i.e. we did not follow the 

trajectory of one stand through time. Plots of the same age can differ in their developmental 

stage (Mehtätalo, 2004). Replacing age by dominant height as an indicator for developmental 

stage reveals the expected pattern with an increase in ΔB at low dominant heights followed by 

a slow decline at greater heights (not shown). Still, in order to compare and predict site 

productivity it is preferable to use stand age in the model (Mehtätalo, 2004). 

Adding climate and soil parameters as explanatory variables renders plausible effects on 

ΔB. On a global scale aboveground NPP is relatively low in cold and dry climates and rapidly 

rises as both temperatures and water availability increase (Barnes et al., 1998). This global-

scale pattern can also be observed on a German scale, although we are looking at ΔB here. 

Temperature regime and water supply clearly are limiting factors, and as both increase, 

productivity rises. The most influential environmental factor in our study is mean annual 

temperature. This is consistent with other current studies. For instance, Pretzsch et al. (2014a) 

concluded that mainly rising temperatures and extended growing seasons increase growth. 
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Kauppi et al. (2014) identified the spatial and temporal variation of growing degree days as 

the main causal factor affecting variations in forest growth. At the high end of the temperature 

range the increase of ΔB with rising temperatures slows down and approximates a more or 

less constant level. One might expect a decline at very high temperatures due to drought stress 

(Dolos et al., 2015). However, due to high risks and adapted forest management spruce 

dominated stands in Germany simply do not occur in sufficient numbers at very high 

temperatures in order to clearly detect such an effect. On a global scale water supply is a 

crucial variable constraining biomass (Stegen et al., 2011). The effect of precipitation in our 

study is rather weak, as water is, except in extreme drought years, not generally the growth 

limiting factor in our data set (spruce dominated NFI plots in Germany): Annual precipitation 

of 92 % of the plots exceeds the threshold value of 800 mm given by Mayer (1992) for the 

optimum growth range. Still, ΔB decreases when summer precipitation is low. Within the 

same climate ΔB differs, since it is influenced by soil properties, species composition and the 

stage of ecosystem development (Barnes et al., 1998). The effect of base saturation on ΔB 

follows an optimum relationship. On acidic soils the supply of basic cations reduces growth, 

whereas on calcareous sites Ca-K-antagonism (Rehfuess, 1990) and immobilization of 

phosphor (Mellert & Ewald, 2014) can occur. Low sand content has a positive effect on ΔB, 

whereas high sand contents affect ΔB negatively. The effect of sand content might both 

reflect effects of nutrient and water supply. Soils with high sand content often have a low 

available water capacity and are poor in nutrients. 

The proportion of explained variance by environmental variables is small, but therein 

comparable with other studies (e.g. Condés & García-Robredo, 2012; Charru et al., 2014). If 

we could look at total volume production the effect of site conditions on productivity would 

be accumulated over the whole life of the stand. The same applies to stand height. Differences 

in site conditions cannot be reflected as distinctly in ΔB between a time span of 10 years. For 

instance, when looking at a rather short time span, it is more likely that weather variability 

between the years does not reflect average climate conditions and thus blurs the effect of 

climate on growth. However, this time span in combination with corresponding climate data 

allows to assess short-term growth response, which can also be perceived as an advantage of 

this approach. Environmental data are regionalized and thus introduce uncertainty into the 

analysis. Environmental influences on forest growth must be summarized into a few 

quantifiable factors. It is no wonder that their effect is small considering the complexity of 

tree growth. Complex interactions between site conditions and forest management, extreme 

events as well as genetic variability may greatly affect productivity. 
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Comparisons with studies about site factors influencing biomass (e.g. Chave et al., 

2003; Keith et al., 2009; Stegen et al., 2011) are only possible to a certain degree, as biomass 

and biomass growth may react differently to environmental influences. For instance, an 

extension of the growing season will increase biomass growth as long as water supply is not 

limiting. Forest biomass may stay the same, since trees only move faster along their life’s 

trajectory and die at a younger age, but self-thinning lines remain constant (Pretzsch et al., 

2014a). 

 

Benefit of using ΔB  

Productivity is often estimated based on height information alone (e.g. Seynave et al., 

2005; Albert & Schmidt, 2010; Nothdurft et al., 2012), thus taking only the vertical aspect of 

productivity, i.e. height growth, into account. The results of this study illustrate the 

importance of the horizontal aspect of productivity, i.e. density and radial growth, as sites that 

do not differ significantly in SI and age can still differ in productivity. Recent analyses of 

Norway spruce stands in Bavaria (Southern Germany) based on NFI data could be interpreted 

in the light of these findings: Based on NFI data similar site indices are estimated for the two 

Bavarian forest eco-regions Swabia and Spessart. A SI-model based on Bavarian NFI data 

also predicts similar site indices for these two regions (Brandl et al., 2014). However, in 

forestry practice Swabia is generally considered the better site for spruce. Looking at our data 

we found that sites of similar stand age (Spessart 80 years, Swabia 76 years) and SI (Spessart 

36.7 m, Swabia 36.4 m) in Swabia indeed have greater above-ground wood biomass (Spessart 

296 t ha
-1

, Swabia 403 t ha
-1

) and show greater above-ground wood biomass growth (ΔB) 

(Spessart 7.8 t ha
-1

 yr
-1

, Swabia 9.9 t ha
-1

 yr
-1

). In contrast to the mentioned SI-model our 

model predicts significant differences in productivity. Actual ΔB can be predicted using 

actual stand density and age (Spessart 8.4 t ha
-1

 yr
-1

, Swabia 10.4 t ha
-1

 yr
-1

). Setting a fixed 

age (e.g. 80 years) and a fixed relative stand density (e.g. 0.7) potential ΔB can be predicted 

(Spessart 8.7 t ha
-1

 yr
-1

, Swabia 9.5 t ha
-1

 yr
-1

) resulting in a difference of 9.2 % due to climate 

and soil. Potential ΔB cannot be compared to the measured values, but reveals differences in 

site potential. This example illustrates the benefit of not only looking at SI but also at ΔB 

when assessing site productivity. Differences like these are important when estimating C-

balances or assessing economic values.  
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Conclusion 

As the use of SI as an indicator for site productivity is not unquestioned, we looked for a 

more direct measure of productivity that can be estimated based on NFI data. ΔB of the stand 

is a comprehensive measure of site potential as it incorporates both height and basal area 

increment as well as stem number. ΔB entails the difficulty of how to deal with the influence 

of stand density and stand age which we explored in the study. However, there is the 

advantage of encompassing at once a stand’s productivity in the response variable with no 

need to consider the question of different yield levels later on. We conclude that the stand-

alone use of ΔB as a measure for site potential is not recommendable, because many 

assumptions are needed when dealing with the effect of stand density. Still, considering both 

traditional SI and ΔB might result in a more accurate picture of site potential as there are sites 

that do not differ significantly in SI, but still differ in productivity. Using ΔB as response it 

was possible to fit plausible effects of site conditions. These effects are small in comparison 

to the effects of stand structure. Still, connecting ΔB with climatic variables allows 

predictions of productivity for future climatic scenarios.  
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Appendix 1: Calculation of ΔB of the stand based on single tree 

measurements of the 2
nd

 and the 3
rd

 NFI in Germany 

 

1) Obtaining diameter at breast height (dbh) and height for all sample trees on a NFI 

plot 

In German NFI sampling, dbh of all trees in the angle-count sampling with basal area factor 4 

(ACS4) is measured, whereas height is only measured for a subsample of trees (main storey: 

two trees of the dominant species group and one tree of each remaining species group, under 

storey and top storey: one tree of each species group) (BMELV, 2011). Heights that are not 

measured are derived from species-specific uniform height-diameter curves (Riedel et al., 

2017). 

There are trees that were included in ACS4 in NFI 3 but had not been thick enough to be 

included in NFI 2. Other trees were measured for the NFI 2 but were missing in the NFI 3 due 

to harvest, thinning or mortality. Diameter at breast height and height of these trees were 

predicted for the middle of the period between NFI 2 and NFI 3 (e.g. Jenkins et al., 2001; 

Dahm, 2006) using the function of Sloboda (Riedel et al., 2017). 

 

2) Estimation of single tree above-ground wood biomass 

Species-specific functions by Zell (2008) were used for the calculation of total single tree 

above-ground wood biomass (kg) based on dbh (cm) and height (m) measurements or 

estimations respectively: 

 

𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 𝑎 ∗ 𝑑𝑏ℎ𝑏 ∗ ℎ𝑒𝑖𝑔ℎ𝑡𝑐  

 

Coefficients a, b and c for each species present in the NFI data are detailed in Table S1. 
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Table S3. Coefficients (a, b and c) for each species group in the biomass functions developed by Zell (2008). Species were 

assigned to the species groups according to Klein & Schulz (2012). 

species 

group 

a b c species 

spruce 0.0673 1.9378 0.6382 Picea abies, Picea spec., all other 

conifers not specified in NFI data 

pine 0.058 2.034 0.637 Pinus sylvestris, Pinus mugo, Pinus nigra, 

Pinus strobus, Pinus spec. 

fir 0.04 2.06631 0.67061 Abies alba, Abies grandis, Abies spec., 

Pseudotsuga menziesii, Taxus baccata 

larch 0.079 1.857 0.736 Larix decidua, Larix kaempferi 

beech 0.0365 2.1082 0.7696 Fagus sylvatica, Acer platanoides, Acer 

campestre, Acer pseudoplatanus, 

Aesculus hippocastanum, Carpinus 

betulus, Castanea sativa, Juglans spec., 

Prunus avium, Prunus padus, Prunus 

serotina, Sorbus spec., Tilia spec., other 

deciduous trees with high life expectancy 

oak 0.04428151 2.096 0.712 Quercus petraea , Quercus robur, 

Quercus rubra, Fraxinus excelsior, 

Robinia pseudoacacia, Ulmus spec. 

alder 0.018 2.069 0.9 Alnus glutinosa, Alnus incana, Alnus 

spec. 

birch 0.060 1.971 0.7 Betula pendula, Betula pubescens, Malus 

sylvestris, Populus alba, Populus nigra, 

Populus tremula, Populus x canescens, 

Populus trichocarpa x maximoviczii, 

Pyrus communis, Salix spec., Sorbus aria, 

Sorbus aucuparia, Sorbus torminalis, 

other deciduous trees with low life 

expectancy 
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3) Calculation of the biomass increment of single trees 

The biomass increment in kg yr
-1

 of each tree was calculated: 

 

𝑏𝑖𝑜𝑚𝑎𝑠𝑠⁡𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡⁡𝑝𝑒𝑟⁡𝑦𝑒𝑎𝑟 = ⁡
𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑁𝐹𝐼3 − 𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑁𝐹𝐼2

𝑦𝑒𝑎𝑟𝑁𝐹𝐼3 −⁡𝑦𝑒𝑎𝑟𝑁𝐹𝐼2
 

 

In general: 

yearNFI3 = 2012 

yearNFI2 = 2002 

 

Special case: ingrowth (trees that were included in the ACS4 in NFI 3 but had not been thick 

enough to be included in NFI 2) 

yearNFI3 = 2012 

yearNFI2 = 2007 

 

Special case: missing trees due to harvest, thinning or mortality (trees that were measured for 

the NFI 2 but were missing in the NFI 3) 

yearNFI3 = 2007 

yearNFI2 = 2002 

 

4) Estimation of the biomass increment of the stand in kg ha
-1

 yr
-1

 

One NFI plot represents a stand of one ha. Each sample tree in ACS4 represents a certain 

number of trees per ha (Nha) according to its basal area (BA): 

𝑁ℎ𝑎 =⁡
4

𝐵𝐴
 

 

In order to obtain growth per ha the growth of the individual tree is multiplied by its Nha. Nha 

depends on the basal area of the tree, i.e. Nha is higher at the first measurement than at the 

second measurement as the basal area of the trees increases. Therefore, for scaling up to one 

ha we used the mean of the stem number per ha of the 2
nd

 and 3
rd

 NFI. (Standard evaluation of 

the German NFI uses Nha of the second measurement to estimate growth values on ha basis 

(Dahm, 2006). For consistency with the general NFI evaluation we had used Nha of the 3
rd

 

NFI (i.e. the second measurement) at first. However, our validation on an independent dataset 

of experimental plots showed that this would result in a systematic underestimation of ΔB 
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(see also Eastaugh & Hasenauer, 2013). Therefore, we decided to use the mean of the stem 

number per ha of the 2
nd

 and 3
rd

 NFI.) 

 

𝑏𝑖𝑜𝑚𝑎𝑠𝑠⁡𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡⁡𝑝𝑒𝑟⁡𝑦𝑒𝑎𝑟⁡𝑎𝑛𝑑⁡ℎ𝑎 = ⁡𝑏𝑖𝑜𝑚𝑎𝑠𝑠⁡𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡⁡𝑝𝑒𝑟⁡𝑦𝑒𝑎𝑟 ∗ ⁡𝑁ℎ𝑎 

 

Biomass growth of the stand in kg ha
-1

 yr
-1

 is then derived by summing up biomass increment 

per year and ha of all trees on the NFI plot: 

 

∆𝐵 =⁡∑ 𝑏𝑖𝑜𝑚𝑎𝑠𝑠⁡𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡⁡𝑝𝑒𝑟⁡𝑦𝑒𝑎𝑟⁡𝑎𝑛𝑑⁡ℎ𝑎
𝑛

1
 

with n being the number of sample trees on the plot. 
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Appendix 2: Estimation of the stand density index (SDI) for each NFI plot 

 

The estimation of stand density is based on the stand density index of Reineke (Reineke, 

1933; Zeide, 2005): 

𝑆𝐷𝐼 = 𝑁 ∗ (
25

𝑑𝑔
)
−1.605

 

N: stem number per ha 

dg: quadratic mean diameter (cm) 

 

(1) The 95
th

 percentile of the SDI distribution (SDI_95) of pure stands for each species was 

determined. 

 

(2) Weighting factors were calculated by dividing the 95-percentile value of spruce (used as 

reference species) by the 95-percentile value of the respective tree species (Table S2): 

𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔⁡𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑆𝐷𝐼_95𝑠𝑝𝑟𝑢𝑐𝑒

𝑆𝐷𝐼_95𝑠𝑝𝑒𝑐𝑖𝑒𝑠
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Table S2. 95th percentile of SDI distribution and weighting factor for each species. 

species 95
th
 percentile of SDI 

distribution (SDI_95) 

Weighting factor 

spruce 1674.457 1.000 

pine 1483.888 1.128 

fir 1330.258 1.259 

larch 1314.548 1.274 

Japanese larch 1260.751 1.328 

Douglas fir 1536.864 1.090 

beech 1188.593 1.409 

oak 1171.272 1.430 

alder 1514.525 1.106 

birch 1030.464 1.625 

ash 1413.660 1.184 

poplar 1180.323 1.419 

red oak 1207.188 1.387 

 

 

(3) For each NFI plot SDI was calculated separately for each species:  

𝑆𝐷𝐼𝑠𝑝𝑒𝑐𝑖𝑒𝑠 =⁡𝑁𝑠𝑝𝑒𝑐𝑖𝑒𝑠 ∗ (
25

𝑑𝑔𝑠𝑝𝑒𝑐𝑖𝑒𝑠
)

−1.605

 

 

(4) The species-specific SDIspecies was corrected by multiplying with the weighting factor: 

𝑆𝐷𝐼𝑠𝑝𝑒𝑐𝑖𝑒𝑠_𝑐𝑜𝑟𝑟 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔⁡𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑆𝐷𝐼𝑠𝑝𝑒𝑐𝑖𝑒𝑠 

 

(5) Species-specific SDIspecies_corr for all species at a plot were summarized resulting in one 

SDI for each NFI plot: 

𝑆𝐷𝐼 = ⁡∑ 𝑆𝐷𝐼𝑠𝑝𝑒𝑐𝑖𝑒𝑠_𝑐𝑜𝑟𝑟
𝑛𝑠𝑝𝑒𝑐𝑖𝑒𝑠

1
 

nspecies: number of different species at the plot 
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Appendix 3: Detailed information on the methods used for investigating the 

relationship between the variability in ΔB and stand variables 

(1) Site index (SI) estimation for each NFI plot 

For each plot SI was determined based on the method presented in Brandl et al. (2018): First, 

top height htop (defined as the height corresponding to the root mean square diameter dtop of 

the top 100 diameters of a tree species on a site) was determined. Second, SI was determined 

by scaling the position of htop(i) between a lower and upper boundary height at age i with the 

ratio of the span between lower and upper boundary height at age 100 and the span between 

lower and upper boundary height at age i (Figure S1): 

𝑆𝐼̂ = ℎ𝑡𝑜𝑝⁡𝑙(100) +⁡(ℎ𝑡𝑜𝑝⁡(𝑖) − ℎ𝑡𝑜𝑝⁡𝑙(𝑖)) ∙
ℎ𝑡𝑜𝑝⁡𝑢(100) − ℎ𝑡𝑜𝑝⁡𝑙(100)

ℎ𝑡𝑜𝑝⁡𝑢(𝑖) − ℎ𝑡𝑜𝑝⁡𝑙(𝑖)
 

with htop l and htop u as the lower and upper boundary height at the respective age. 

Lower and upper boundary lines had been adopted from Brandl et al. (2018) and are 

described by the Chapman-Richards functions (Richards, 1959): 

ℎ𝑡𝑜𝑝⁡(𝑖) = 𝐴 ∗ (1 − 𝑒−𝑘∗𝑎𝑔𝑒𝑖)𝑝 

with A = 42.014, k = 0.029 and p = 1.048 for the upper boundary line and with A = 26.159, k 

= 0.045 and p = 2.346 for the lower boundary line. 

 

Figure S1. Illustration of translating the top height htop(i) of a NFI plot of age i to the corresponding height htop(100) at the 

reference age of 100 years i.e. the SI; green points mark heights and ages of NFI plots used in the study; grey points 

correspond to the data used for the determination of the boundary lines (solid black curves); the black dot marks an example 

stand at age 60 with a top height of 28 m. The black cross marks its translation to htop at age 100, resulting in a SI of about 32 

m. 
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(2) Generalized additive model (GAM): ΔB in dependence on SI and stand age 

A GAM was fitted explaining ΔB in dependence on SI and stand age using the package mgcv 

(Wood, 2011) in R 3.3.2 (R Core Team, 2016) (Table S3, Figure S2): 

𝛥𝐵 = exp⁡(𝑓(𝑆𝐼) + 𝑓(𝑎𝑔𝑒) + 𝜀) 

The residuals of this model can be interpreted as the variation in ΔB not explained by SI and 

age. 

 

Table S3. Detailed model summary for the GAM.  

 Estimate Standard error T statistics p value 

Intercept 9.0736 0.0054 1680 < 2 × 10
−16

 

     

 edf df residuals F statistics p value 

f(SI) 4.150 5.171 131.5 < 2 × 10
−16

 

f(stand age) 6.533 7.671 332.9 < 2 × 10
−16

 

     

Adjusted R²  0.474   

 

 

 

Figure S2. Effects of SI and stand age respectively on ΔB when the other variable is set to its mean. Grey areas comprise 

95% pointwise prognosis intervals; a rug plot shows the distribution of the covariate; the vertical dashed lines mark the 2.5 

and 97.5% quantiles of the covariate’s distribution. 
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(2) Quantile regression for rescaling single tree height and dbh 

In order to be able to compare trees of varying ages height and dbh had to be rescaled: A 

95%-quantile regression was fitted to the respective variable (height or dbh) as a fourth order 

polynomial of age (Table S4, Figure S3). 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = ⁡𝛼 + 𝛽1𝑎𝑔𝑒 + 𝛽2𝑎𝑔𝑒
2 + 𝛽3𝑎𝑔𝑒

3 + 𝛽4𝑎𝑔𝑒
4 

The result can be interpreted as the maximum height or dbh that can be reached at a certain 

age. In order not to give outliers too much influence a 95%-quantile regression was used 

instead of simply drawing an envelope curve. 

In the next step, each tree’s height or dbh respectively was divided by the predicted 95%-

quantile of height or dbh respectively at the tree’s age. The resulting value is independent of 

age and can be interpreted as the percentage of the maximum height or dbh a tree can reach. 

 

Table S4. Estimates of coefficients and statistical characteristics of the quantile regressions on height and dbh. 

 coefficient Estimate Standard error T Statistics p value 

height α 7.50790 1.83909 4.08240 0.00004 

 β1 0.83118 0.10557 7.87308 0.00000 

 β2 -0.00939 0.00213 -4.41139 0.00001 

 β3 0.00005 0.00002 3.04934 0.00230 

 β4 0.00000 0.00000 -2.32715 0.01996 

dbh α -17.64376 7.33892 -2.40414 0.01622 

 β1 2.55928 0.42098 6.07933 0.00000 

 β2 -0.03399 0.00852 -3.98666 0.00007 

 β3 0.00022 0.00007 3.01045 0.00261 

 β4 0.00000 0.00000 -2.33020 0.01980 
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Figure S3. Height or dbh respectively plotted against age of single trees on NFI plots used in the study. The blue line marks 

the fit of the quantile regression.   
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INTRODUCTION: Thebiodiversity-productivity
relationship (BPR; the effect of biodiversity on
ecosystem productivity) is foundational to our
understanding of the global extinction crisis
and its impacts on the functioning of natural
ecosystems. The BPR has been a prominent
research topicwithin ecology in recent decades,
but it is only recently that we have begun to
develop a global perspective.

RATIONALE: Forests are the most important
global repositories of terrestrial biodiversity,
but deforestation, forest degradation, climate
change, and other factors are threatening

approximately one half of tree species world-
wide. Although there have been substantial
efforts to strengthen the preservation and
sustainable use of forest biodiversity through-
out the globe, the consequences of this di-
versity loss pose amajor uncertainty for ongoing
international forest management and conser-
vation efforts. The forest BPR represents a
critical missing link for accurate valuation of
global biodiversity and successful integration
of biological conservation and socioeconomic
development. Until now, there have been limited
tree-based diversity experiments, and the forest
BPR has only been explored within regional-

scale observational studies. Thus, the strength
and spatial variability of this relationship re-
mains unexplored at a global scale.

RESULTS: We explored the effect of tree
species richness on tree volume productivity at
the global scale using repeated forest invento-

ries from 777,126 perma-
nent sample plots in 44
countries containingmore
than 30million trees from
8737 species spanningmost
of the global terrestrial bi-
omes. Our findings reveal a

consistent positive concave-down effect of bio-
diversity on forest productivity across the world,
showing that a continued biodiversity losswould
result in an accelerating decline in forest
productivity worldwide.
The BPR shows considerable geospatial var-

iation across theworld. The same percentage of
biodiversity loss would lead to a greater relative
(that is, percentage) productivity decline in the
boreal forests of North America, Northeastern
Europe, Central Siberia, East Asia, and scattered
regions of South-central Africa and South-central
Asia. In the Amazon, West and Southeastern
Africa, Southern China, Myanmar, Nepal, and
the Malay Archipelago, however, the same per-
centage of biodiversity losswould lead to greater
absolute productivity decline.

CONCLUSION: Our findings highlight the
negative effect of biodiversity loss on forest
productivity and the potential benefits from
the transition of monocultures to mixed-species
stands in forestry practices. The BPR we dis-
cover across forest ecosystems worldwide
corresponds well with recent theoretical ad-
vances, as well as with experimental and ob-
servational studies on forest and nonforest
ecosystems. On the basis of this relationship,
the ongoing species loss in forest ecosystems
worldwide could substantially reduce forest pro-
ductivity and thereby forest carbon absorption
rate to compromise the global forest carbon
sink. We further estimate that the economic
value of biodiversity in maintaining commer-
cial forest productivity alone is $166 billion to
$490 billion per year. Although representing
only a small percentage of the total value of
biodiversity, this value is two to six times as
much as it would cost to effectively implement
conservation globally. These results highlight
the necessity to reassess biodiversity valuation
and the potential benefits of integrating and
promoting biological conservation in forest
resource management and forestry practices
worldwide.▪
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Global effect of tree species diversity on forest productivity. Ground-sourced data from 777,126
global forest biodiversity permanent sample plots (dark blue dots, left),which cover a substantial portion
of the global forest extent (white), reveal a consistent positive and concave-down biodiversity-
productivity relationship across forests worldwide (red line with pink bands representing 95% con-
fidence interval, right).
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Positive biodiversity-productivity
relationship predominant
in global forests
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The biodiversity-productivity relationship (BPR) is foundational to our understanding of the
global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical
for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data
from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal
a globally consistent positive concave-down BPR, showing that continued biodiversity loss
would result in an accelerating decline in forest productivity worldwide.The value of biodiversity
in maintaining commercial forest productivity alone—US$166 billion to 490 billion per year
according to our estimation—is more than twice what it would cost to implement effective
global conservation.This highlights the need for a worldwide reassessment of biodiversity
values, forest management strategies, and conservation priorities.

T
he biodiversity-productivity relationship
(BPR) has been a major ecological research
focus over recent decades. The need to
understand this relationship is becoming
increasingly urgent in light of the global

extinction crisis because species loss affects the
functioning and services of natural ecosystems
(1, 2). In response to an emerging body of evidence
that suggests that the functioning of natural eco-
systemsmaybe substantially impairedby reductions
in species richness (3–10), global environment-
al authorities, including the Intergovernmental
Platform on Biodiversity and Ecosystem Services
(IPBES) and United Nations Environment Pro-
gramme (UNEP), have made substantial efforts
to strengthen the preservation and sustainable use
of biodiversity (2, 11). Successful international

collaboration, however, requires a systematic asses-
sment of the value of biodiversity (11). Quantifi-
cation of the global BPR is thus urgently needed
to facilitate the accurate valuation of biodiversity
(12), the forecast of future changes in ecosystem
services worldwide (11), and the integration of
biological conservation into international socio-
economic development strategies (13).
The evidence of a positive BPR stems primarily

from studies of herbaceous plant communities
(14). In contrast, the forest BPR has only been
explored at the regional scale [(3, 4, 7, 15) and
references therein] or within a limited number
of tree-based experiments [(16, 17) and references
therein], and it remains unclear whether these
relationships hold across forest types. Forests
are the most important global repositories of

terrestrial biodiversity (18), but deforestation,
climate change, and other factors are threat-
ening a considerable proportion (up to 50%) of
tree species worldwide (19–21). The consequences
of this diversity loss pose a critical uncertainty for
ongoing international forest management and
conservation efforts. Conversely, forest manage-
ment that convertsmonocultures tomixed-species
stands has often seen a substantial positive effect
on productivity with other benefits (22–24). Al-
though forest plantations are predicted tomeet 50
to 75%of the demand for lumber by 2050 (25, 26),
nearly all are still planted as monocultures, high-
lighting the potential of forest management in
strengthening the conservation and sustainable
use of biodiversity worldwide.
Here, we compiled in situ remeasurement data,

most of which were taken at two consecutive
inventories from the same localities, from 777,126
permanent sample plots [hereafter, global forest
biodiversity (GFB) plots] across 44 countries and
territories and 13 ecoregions to explore the forest
BPR at a global scale (Fig. 1). GFBplots encompass
forests of various origins (from naturally re-
generated to planted) and successional stages
(from stand initiation to old-growth). A total of
more than 30 million trees across 8737 species
were tallied and measured on two or more con-
secutive inventories from theGFB plots. Sampling
intensity was greater in developed countries,
where nationwide forest inventories have been
fully or partially funded by governments. Inmost
other countries, national forest inventories were
lacking, andmost ground-sourced data were col-
lected by individuals and organizations (table S1).
On the basis of ground-sourced GFB data, we

quantified BPR at the global scale using a data-
driven ensemble learning approach (Materials
and methods, Geospatial random forest). Our
quantification of BPR involved characterizing
the shape and strength of the dependency func-
tion through the elasticity of substitution (q),
which represents the degree to which species
can substitute for each other in contributing to
forest productivity; q measures the marginal
productivity—the change in productivity resulting
from one unit decline of species richness—and
reflects the strength of the effect of tree diversity
on forest productivity, after accounting for cli-
matic, soil, and plot-specific covariates. A higher
q corresponds to a greater decline in productivity
due to one unit loss in biodiversity. The niche-
efficiency (N-E) model (3) and several preceding
studies (27–30) provide a framework for inter-
preting the elasticity of substitution and approx-
imating BPR with a power function model:

P = a · f(X) · Sq (1)

where P and S signify primary site productivity
and tree species richness (observed on a 900-m2

area basis on average) (Materials and methods),
respectively; f(X) is a function of a vector of con-
trol variables X (selected from stand basal area
and 14 climatic, soil, and topographic covariates);
and a is a constant. This model is capable of
representing a variety of potential patterns of
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BPR. 0 < q < 1 represents a positive and concave
down pattern (a degressively increasing curve),
which is consistent with the N-E model and pre-
ceding studies (3, 27–30), whereas other q values
can represent alternative BPR patterns, including
decreasing (q < 0), linear (q = 1), convex (q > 1), or
no effect (q = 0) (Fig. 2) (14, 31). The model (Eq. 1)
was estimated by using the geospatial random
forest technique based onGFBdata and covariates
acquired from ground-measured and remote-
sensing data (Materials and methods).
We found that a positive BPR predominated

in forests worldwide. Out of 10,000 randomly se-
lected subsamples (each consisting of 500 GFB
plots), 99.87% had a positive concave-down rela-
tionship with relative species richness (0 < q < 1),
whereas only 0.13% show negative trends, and
none was equal to zero or greater than or equal
to 1 (Fig. 2). Overall, the global forest productiv-
ity increased with a declining rate from 2.7 to
11.8 m3 ha−1 year−1 as relative tree species richness
increased from the minimum to the maximum

value, which corresponds to a q value of 0.26
(Fig. 3A).
At the global scale, we mapped the magnitude

of BPR (as expressed by q) using geospatial
random forest and universal kriging. By plotting
values of q onto a global map, we revealed con-
siderable geospatial variation across the world
(Fig. 3B). The highest q (0.29 to 0.30) occurred
in the boreal forests of North America, North-
eastern Europe, Central Siberia, and East Asia
and the sporadic tropical and subtropical forests
of South-central Africa, South-central Asia, and
the Malay Archipelago. In these areas of the
highest elasticity of substitution (32), the same
percentage of biodiversity loss would lead to a
greater percentage of reduction in forest produc-
tivity (Fig. 4A). In terms of absolute productivity,
the same percentage of biodiversity loss would
lead to the greatest productivity decline in the
Amazon; West Africa’s Gulf of Guinea; South-
eastern Africa, including Madagascar; Southern
China; Myanmar; Nepal; and the Malay Archi-

pelago (Fig. 4B). Because of a relatively narrow
range of the elasticity of substitution (32) esti-
mated from the global-level analysis (0.2 to 0.3),
the regions of the greatest productivity decline
under the same percentage of biodiversity loss
largely matched the regions of the greatest pro-
ductivity (fig. S1). Globally, a 10% decrease in tree
species richness (from 100 to 90%)would cause a
2 to 3% decline in productivity, and with a de-
crease in tree species richness to one (Materials
and methods, Economic analysis), this decline in
forest productivity would be 26 to 66% even if
other things, such as the total number of trees
and forest stocking, remained the same (fig. S4).

Discussion

Our global analysis provides strong and consistent
evidence that productivity of forests would de-
crease at an accelerating rate with the loss of
biodiversity. The positive concave-down pattern
we discovered across forest ecosystemsworldwide
correspondswell with recent theoretical advances
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in BPR (3, 28–30), as well as with experimental
(27) and observational (14) studies on forest and
nonforest ecosystems. The elasticity of substitu-
tion (32) estimated in this study (ranged between
0.2 and 0.3) largely overlaps the range of values
of the same exponent term (0.1 to 0.5) from
previous theoretical and experimental studies
[(10) and references therein]. Furthermore, our
findings are consistent with the global estimates
of the biodiversity-dependent ecosystem service
debt under distinct assumptions (10) and with
recent reports of the diminishing marginal ben-
efits of adding a species as species richness in-
creases, based on long-term forest experiments
dating back to 1870 [(15, 33) and references therein].
Our analysis relied on stands ranging from

unmanaged to extensively managed forests—
managed forests with low operating and invest-

ment costs per unit area. Conditions of natural
forests would not be comparablewith intensively
managed forests, because timber production in
the latter systems often focuses on a single or
limited number of highly productive tree species.
Intensively managed forests, where saturated re-
sources canweaken the effects of niche efficiency
(3), are shown in some studies (34, 35) to have
higher productivity than that of natural diverse
forests of the same climate and site conditions
(fig. S3). In contrast, other studies (6, 22–24) com-
pared diverse stands with monocultures at the
same level of management intensity and found
that the positive effects of species diversity on
tree productivity and other ecosystem services
are applicable to intensively managed forests.
As such, there is still an unresolved debate on the
BPR of intensively managed forests. Nevertheless,

because intensively managed forests only account
for a minor (<7%) portion of global forests (18),
our estimated BPR would be minimally affected
by such manipulations and thus should reflect
the inherent processes governing the vastmajority
of global forest ecosystems.
We focused on the effect of biodiversity on

ecosystem productivity. Recent studies on the op-
posite causal direction [productivity-biodiversity
relationship (14, 36, 37)] suggest that theremay be
a potential two-way causality between biodiversity
and productivity. It is admittedly difficult to use
correlative data to detect and attribute causal ef-
fects. Fortunately, substantial progress has been
made to tease the BPR causal relationship from
other potentially confounding environmental
variables (14, 38, 39), and this study made con-
siderable efforts to account for these otherwise

SCIENCE sciencemag.org 14 OCTOBER 2016 • VOL 354 ISSUE 6309 aaf8957-3

Fig. 1. GFB ground-sourced data were collected from in situ remeasure-
mentof 777,126permanent sampleplots consistingofmore than30million
trees across 8737 species. GFB plots extend across 13 ecoregions [vertical
axis, delineated by theWorldWildlife Fundwhere extensive forests occur within
all the ecoregions (72)], and 44 countries and territories. Ecoregions are named
for theirdominant vegetation types, but all contain some forestedareas.GFBplots
covera substantial portionof theglobal forest extent (white), includingsomeof the
mostdistinct forest conditions: (a) thenorthernmost (73°N,Central Siberia,Russia),

(b) southernmost (52°S, Patagonia, Argentina), (c) coldest (–17°C annual mean
temperature, Oimyakon, Russia), (d) warmest (28°C annual mean temperature,
Palau, United States), and (e) most diverse (405 tree species on the 1-ha plot,
Bahia, Brazil). Plots in war-torn regions [such as (f)] were assigned fuzzed co-
ordinates to protect the identity of the plots and collaborators.The box plots show
the mean and interquartile range of tree species richness and primary site pro-
ductivity (bothonacommon logarithmicscale)derived fromground-measured tree-
and plot-level records.The complete list of species is presented in table S2.
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potentially confounding environmental covariates
in assessing likely causal effects of biodiversity
on productivity.
Because taxonomic diversity indirectly incor-

porates functional, phylogenetic, and genomic
diversity, our results that focus on tree species
richness are likely applicable to these other ele-
ments of biodiversity, all of which have been
found to influence plant productivity (1). Our
straightforward analysis makes clear the taxo-
nomic contribution to forest ecosystem produc-
tivity and functioning, and the importance of
preserving species diversity to biological conser-
vation and forest management.
Our findings highlight the necessity to reassess

biodiversity valuation and reevaluate forestman-
agement strategies and conservation priorities in
forests worldwide. In terms of global carbon cycle
and climate change, the value of biodiversity may
be considerable. On the basis of our global-scale
analyses (Fig. 4), the ongoing species loss in forest
ecosystemsworldwide (1, 21) could substantially
reduce forest productivity and thereby forest car-
bon absorption rate, which would in turn com-
promise the global forest carbon sink (40). We
further estimate that the economic value of bio-
diversity in maintaining commercial forest pro-

ductivity is $166 billion to $490 billion per year
(1.66 × 1011 to 4.90 × 1011 year−1 in 2015 US$) (Ma-
terials and methods, Economics analysis). By it-
self, this estimate does not account for other values
of forest biodiversity (including potential values
for climate regulation, habitat, water flow regula-
tion, and genetic resources), and represents only a
small percentage of the total value of biodiversity
(41, 42). However, this value is already between
two to six times the total estimated cost that would
be necessary if we were to effectively conserve all
terrestrial ecosystems at a global scale [$76.1 billion
per year (43)]. The high benefit-to-cost ratio under-
lines the importance of conserving biodiversity
for forestry and forest resource management.
Amid the struggle to combat biodiversity loss,

the relationship between biological conservation
and poverty is gaining increasing global atten-
tion (13, 44), especially with respect to rural areas
where livelihoods depend most directly on eco-
systemproducts. Given the substantial geographic
overlaps between severe, multifaceted poverty
and key areas of global biodiversity (45), the
loss of species in these areas has the potential
to exacerbate local poverty by diminishing forest
productivity and related ecosystem services (44).
For example, in tropical and subtropical regions,

many areas of high elasticity of substitution (32)
overlapped with biodiversity hotspots (46), in-
cluding EasternHimalaya andNepal, Mountains
of Southwest China, EasternAfromontane,Madrean
pine-oakwoodlands, Tropical Andes, andCerrado.
For these areas, only a few species of commercial
value are targeted by logging. As such, the risk of
losing species through deforestation would far
exceed the risk through harvesting (47). De-
forestation and other anthropogenic drivers of
biodiversity loss in these biodiversity hotspots
are likely to have considerable impacts on the
productivity of forest ecosystems, with the po-
tential to exacerbate local poverty. Furthermore,
the greater uncertainty in our results for the
developing countries (Fig. 5) reflects the well-
documented geographic bias in forest sampling,
including repeated measurements, and reiterates
theneed for strongcommitments toward improving
sampling in the poorest regions of the world.
Our findings reflect the combined strength

of large-scale integration and synthesis of eco-
logical data andmodernmachine learningmethods
to increase our understanding of the global forest
system. Such approaches are essential for gen-
erating global insights into the consequences of
biodiversity loss and the potential benefits of
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Fig. 2. Theoretical positive and concave-down biodiversity–productivity
relationship supported byempirical evidence drawn from theGFBdata. (Left)
The diagram demonstrates that under the theoretical positive and concave-down
(monotonically and degressively increasing) BPR (3, 27, 28), loss in tree species
richness may reduce forest productivity (73). (Middle) Functional curves rep-
resent different BPR under different values of elasticity of substitution (q). q values

between 0 and 1 correspond to the positive and concave-down BPR (blue curve).
(Right) The three-dimensional scatter plot shows q values we estimated from ob-
served productivity (P), species richness (S), and other covariates. Out of 5,000,000
estimatesofq (mean=0.26,SD=0.09),4,993,500fellbetween0and1(blue),whereas
only 6500were negative (red), and nonewas equal to zero orgreater than or equal to
1; the positive and concave-down BPRwas supported by 99.9% of our estimates.
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integrating and promoting biological conserva-
tion in forest resource management and forestry
practices—a common goal already shared by in-
tergovernmental organizations such as the Mon-
tréal andHelsinki ProcessWorking Groups. These
findings should facilitate efforts to accurately
forecast future changes in ecosystem services
worldwide, which is a primary goal of IPBES
(11), and provide baseline information necessary
to establish international conservation objectives,
including the United Nations Convention on Bio-
logical Diversity Aichi targets, the United Nations
FrameworkConventiononClimateChangeREDD+
goal, and theUnitedNationsConvention toCombat
Desertification land degradation neutrality goal.
The success of these goals relies on the under-

standing of the intrinsic link between biodiversity
and forest productivity.

Materials and methods
Data collection and standardization

Our current study used ground-sourced forest
measurement data from 45 forest inventories
collected from 44 countries and territories (Fig.
1 and table S1). Themeasurementswere collected
in the field from predesignated sample area units,
i.e., Global Forest Biodiversity permanent sample
plots (hereafter, GFB plots). For the calculation of
primary site productivity, GFB plots can be cat-
egorized into two tiers. Plots designated as “Tier
1” have been measured at two or more points in
time with aminimum time interval betweenmea-

surements of two years ormore (globalmean time
interval is 9 years, see Table 1). “Tier 2” plots were
onlymeasured once, and primary site productivity
can be estimated from known stand age or den-
drochronological records. Overall, our study was
based on 777,126 GFB plots, of which 597,179 (77%)
were Tier 1, and 179,798 (23%) were Tier 2. GFB
plots primarily measured natural forests ranging
from unmanaged to extensively managed forests,
i.e., managed forests with low operating and in-
vestment costs per unit area. Intensively man-
aged forests with harvests exceeding 50 percent
of the stocking volume were excluded from this
study.GFBplots represent forests of variousorigins
(fromnaturally regenerated toplanted) and succes-
sional stages (from stand initiation to old-growth).

SCIENCE sciencemag.org 14 OCTOBER 2016 • VOL 354 ISSUE 6309 aaf8957-5

Fig. 3. The estimated global effect of biodiversity on forest productivity
was positive and concave-down, and revealed considerable geospatial var-
iation across forest ecosystems worldwide. (A) Global effect of biodiversity on
forest productivity (red linewith pink bands representing95%confidence interval)
correspondstoaglobalaverageelasticityofsubstitution(q)valueof0.26,withclimatic,
soil, andother plot covariatesbeingaccounted forandkept constant at samplemean.

Relativespecies richness (Š) is in thehorizontal axis, andproductivity (P,m3ha−1 year−1)
is in theverticalaxis(histogramsof thetwovariables on topand right in the logarithm
scale). (B) q represents the strength of the effect of tree diversity on forest produc-
tivity.Spatiallyexplicit valuesofqwereestimatedbyusinguniversal kriging (Materials
andmethods) across the current global forest extent (effect sizes of the estimates
are shown in Fig. 5), whereas blank terrestrial areas were nonforested.
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Table 1. Definition, unit, and summary statistics of key variables.

Variable Definition Unit Mean Standard

deviation

Source Nominal

resolution

Response variables
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

P Primary forest

productivity measured in

periodic annual increment in stem

volume (PAI)

m3 ha−1 year−1 7.57 14.52 Author-generated

from ground-measured

data

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Plot attributes
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

S Tree species

richness, the number of live tree

species observed on

the plot

unitless 5.79 8.64 ground-measured

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

A Plot size,

area of the

sample plot

ha 0.04 0.12 ground-measured

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Y Elapsed time

between two

consecutive

inventories

year 8.63 11.62 ground-measured

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

G Basal area,

total cross-sectional

area of live trees

measured at 1.3

to 1.4 m above ground

m2 ha−1 19.00 18.94 Author-generated

from ground-measured

data

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

E Plot elevation m 469.30 565.92 G/SRTM (74)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

I1 Indicator of plot tier

I1 = 1 if a plot was

Tier-2,

I1 = 0 if otherwise

unitless 0.23 0.42 Author-generated

from ground-measured

data

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

I2 Indicator of plot size

I2 = 1 when 0.01 ≤ ps < 0.05,

I2 = 2 when 0.05 ≤ ps <0.15,

I2 = 3 when 0.15 ≤ ps < 0.50,

I2 = 4 when 0.50 ≤ ps < 1.00,

where ps was plot

size (hectares)

unitless 1.43 0.80 Author-generated

from ground-measured

data

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Climatic covariates
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

T1 Annual mean temperature 0.1°C 108.4 55.92 WorldClim v.1 (75) 1 km2
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

T2 Isothermality unitless

index*100

35.43 7.05 WorldClim v.1 1 km2

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

T3 Temperature seasonality Std.(0.001°C) 7786.00 2092.39 WorldClim v.1 1 km2
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

C1 Annual precipitation mm 1020.00 388.35 WorldClim v.1 1 km2
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

C2 Precipitation seasonality

(coefficient of variation)

unitless% 27.54 16.38 WorldClim v.1 1 km2

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

C3 Precipitation of warmest

quarter

mm 282.00 120.88 WorldClim v.1 1 km2

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

PET Global Potential Evapotranspiration mm year−1 1063.43 271.80 CGIAR-CSI (76) 1 km2
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IAA Indexed Annual Aridity unitless index*10−4 9915.09 4512.99 CGIAR-CSI 1 km2
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Soil covariates
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

O1 Bulk density g cm−3 0.70 0.57 WISE30sec v.1 (77) 1 km2
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

O2 pH measured in water unitless 3.72 2.80 WISE30sec v.1 1 km2
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

O3 Electrical conductivity dS m−1 0.44 0.76 WISE30sec v.1 1 km2
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

O4 C/N ratio unitless 9.64 7.78 WISE30sec v.1 1 km2
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

O5 Total nitrogen g kg−1 2.71 4.62 WISE30sec v.1 1 km2
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Geographic coordinates and classification
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

x Longitude in WGS84 datum degree
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

y Latitude in WGS84 datum degree
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Ecoregion Ecoregion defined by World Wildlife Fund (78)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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For each GFB plot, we derived three key at-
tributes from measurements of individual trees—
tree species richness (S), stand basal area (G), and
primary site productivity (P). Because for each of
all the GFB plot samples, S and P were derived
from the measurements of the same trees, the
sampling issues commonly associated with bio-
diversity estimation (48) had little influence on
the S–P relationship (i.e., BPR) in this study.
Species richness, S, represents the number of

different tree species alive at the time of inventory
within the perimeter of a GFB plot with an aver-
age size of approximately 900 m2. Ninety-five
percent of all plots fall between 100 and 1,100 m2

in size. To minimize the species-area effect (49),
we studied theBPRhere using a geospatial random
forest model in which observations from nearby
GFB plots would be more influential than plots
that are farther apart (see §Geospatial random
forest). Because nearby plots aremost likely from
the same forest inventory data set, and there was
no or little variation of plot area within each data
set, the BPR derived from this model largely re-
flected patterns under the same plot area basis.

To investigate the potential effects of plot size on
our results, we plotted the estimated elasticity of
substitution (q) against plot size, and found that
the scatter plot was normally distributed with no
discernible pattern (fig. S2). In addition, the fact
that the plot size indicator I2 had the second
lowest (0.8%) importance score (50) among all
the covariates (Fig. 6) further supports that the
influence of plot size variation in this study
was negligible.
Across all theGFBplots, therewere 8,737 species

in 1,862 genera and 231 families, and S values
ranged from 1 to 405 per plot. We verified all
the species names against 60 taxonomic data-
bases, includingNCBI, GRINTaxonomy for Plants,
Tropicos–Missouri Botanical Garden, and the
International Plant Names Index, using the
‘taxize’ package in R (51). Out of 8737 species
recorded in the GFB database, 7425 had verified
taxonomic information with a matching score
(51) of 0.988 or higher, whereas 1312 species names
partially matched existing taxonomic databases
with a matching score between 0.50 and 0.75,
indicating that these species may have not been

documented in the 60 taxonomic databases. To
facilitate inter-biome comparison, we further
developed relative species richness (Š), a con-
tinuous percentage score converted from species
richness (S) and the maximal species richness of
a set of sample plots (S*) using

S
⌣ ¼ S

S*
ð2Þ

Stand basal area (G, in m2 ha−1) represents the
total cross-sectional area of live trees per unit
sample area. G was calculated from individual
tree diameter-at-breast-height (dbh, in cm):

G ¼ 0:000079 ⋅
X

i

dbh2i ⋅ki ð3Þ

where ki denotes the conversion factor (ha−1) of
the ith tree, viz. the number of trees per ha
represented by that individual. G is a key biotic
factor of forest productivity as it represents
stand density—often used as a surrogate for re-
source acquisition (through leaf area) and stand
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Fig. 4. Estimated percentage and absolute decline in forest productivity under 10 and 99% decline in current tree species richness (values in par-
entheses correspond to 99%), holding all the other terms constant. (A) Percent decline in productivity was calculated according to the general BPRmodel (Eq.
1) andestimatedworldwidespatiallyexplicit valuesof theelasticityof substitution (Fig. 3B). (B)Absolutedecline inproductivitywasderived fromtheestimatedelasticityof
substitution (Fig. 3B) and estimates of global forest productivity (fig. S1).The first 10% reduction in tree species richness would lead to a 0.001 to 0.597 m3 ha−1 year−1

decline in periodic annual increment, which accounts for 2 to 3% of current forest productivity.The raster data are displayed in 50-km resolution with a 3 SD stretch.
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competition (52). Accounting for basal area as a
covariate mitigated the artifact of different min-
imumdbh across inventories, and the artifact of
different plot sizes.
Primary site productivity (P, in m3 ha−1 yr−1)

was measured as tree volume productivity in
terms of periodic annual increment (PAI) cal-
culated from the sum of individual tree stem
volume (V, in m3)

P ¼

X

i;2

Vi;2 ⋅ki−
X

i;1

Vi;1 ⋅ki þM

Y
ð4Þ

where Vi,1 and Vi,2 (in m3) represent total stem
volume of the ith tree at the time of the first
inventory and the second inventory, respectively.
M denotes total removal of trees (including mor-
tality, harvest, and thinning) in stem volume
(in m3 ha−1). Y represents the time interval (in
years) between two consecutive inventories. P
accounted for mortality, ingrowth (i.e., recruit-
ment between two inventories), and volume
growth. Stem volume valueswere predominantly
calculated using region- and species-specific al-
lometric equations based on dbh and other tree-
and plot-level attributes (Table 1). For the regions
lacking an allometric equation, we approximated

stem volume at the stand level from basal area,
total tree height, and stand form factors (53). In
case of missing tree height values from the
ground measurement, we acquired alternative
measures from a global 1-km forest canopy height
database (54). For Tier 2 plots that lacked re-
measurement, Pwasmeasured inmean annual
increment (MAI) based on total stand volume
and stand age (52), or tree radial growth mea-
sured from increment cores. Since the traditional
MAI metric does not account for mortality, we
calculated P by adding to MAI the annual mor-
tality based on regional-specific forest turnover
rates (55). The small and insignificant correla-
tion coefficient between P and the indicator of
plot tier (I1), together with the negligible variable
importance of I1 (1.8%, Fig. 6), indicate that PAI
andMAIwere generally consistent, such thatMAI
could be a good proxy of PAI in our study. Al-
though MAI and PAI have considerable uncer-
tainty in any given stand, it is difficult to see
how systematic bias across diversity gradients
could occur on a scale sufficient to influence the
results shown here.
P, although only representing a fraction of total

forest net primary production, has been an im-
portant and widely used measure of forest pro-

ductivity, because it reflects the dominant
aboveground biomass component and the long-
lived biomass pool in most forest ecosystems
(56). Additionally, although other measures of
productivity (e.g., net ecosystem exchange pro-
cessed to derive gross and net primary produc-
tion; direct measures of aboveground net primary
production including all components; and remotely
sensed estimates of LAI and greenness coupled
with models) all have their advantages and dis-
advantages, none would be feasible at a similar
scale and resolution as in this study.
To account for abiotic factors that may in-

fluence primary site productivity, we compiled
14 geospatial covariates based on biological rel-
evance and spatial resolution (Fig. 6). These co-
variates, derived fromsatellite-based remote sensing
andground-based survey data, can be grouped into
three categories: climatic, soil, and topographic
(Table 1). We preprocessed all geospatial covar-
iates using ArcMap 10.3 (57) and R 2.15.3 (58). All
covariates were extracted to point locations of
GFB plots, with a nominal resolution of 1 km2.

Geospatial random forest

We developed geospatial random forest—a data-
drivenensemble learningapproach—to characterize
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Fig. 5. Standard error and generalized R2 of the spatially explicit estimates of elasticity of substitution (q) across the current global forest extent
in relation to Š. (A) Standard error increased as a location was farther from those sampled. (B) The generalized R2 values were derived with a geostatistical
nonlinear mixed-effects model for GFB sample locations, and thus (B) only covers a subset of the current global forest extent.
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the biodiversity–productivity relationship (BPR),
and to map BPR in terms of elasticity of sub-
stitution (31) on all sample sites across the world.
This approach was developed to overcome two
major challenges that arose from the size and
complexity of GFB data without assuming any
underlying BPR patterns or data distribution.
First, we need to account for broad-scale dif-
ferences in vegetation types, but global classi-
fication andmapping of homogeneous vegetation
types is lacking (59); and secondly, correlations
and trends that naturally occur through space
(60) can be significant and influential in forest
ecosystems (61). Geostatistical models (62) have
been developed to address the spatial auto-
correlation, but the size of the GFB data set far
exceeds the computational constraints of most
geostatistical software.
Geospatial random forest integrated conven-

tional random forest (50) and a geostatistical
nonlinear mixed-effects model (63) to estimate
BPR across the world based on GFB plot data
and their spatial dependence. The underlying
model had the following form

logPijðuÞ ¼ qi ⋅logS
⌣
ijðuÞ þ ai ⋅XijðuÞ

þ eijðuÞ;u∈D⊂ℜ2; ð5Þ
where logPij(u) and logŠij (u) represent natural
logarithm of productivity and relative species
richness (calculated from actual species rich-
ness and the maximal species richness of the
training set) of plot i in the jth training set at
point locations u, respectively. The model was
derived from the niche–efficiency model, and q
corresponds to the elasticity of substitution
(31). ai·Xij(u)=ai0 + ai1·xij1+…+ ain·xijn repre-
sents n covariates and their coefficients (Fig. 6
and Table 1).
To account for potential spatial autocorrelation,

which can bias tests of significance due to the
violation of independence assumption and is
especially problematic in large-scale forest eco-
system studies (60, 61), we incorporated a
spherical variogram model (62) into the residual
term eij(u). The underlying geostatistical assump-
tion was that across the world BPR is a second-
order stationary process—a common geographical
phenomenon in which neighboring points are
more similar to each other than they are to points
that are more distant (64). In our study, we found
strong evidence for this gradient (Fig. 7), indi-
cating that observations from nearby GFB plots
would be more influential than plots that are
farther away. The positive spherical semivariance
curves estimated from a large number of boot-
strapping iterations indicated that spatial de-
pendence increasedasplots becamecloser together.
The aforementioned geostatistical nonlinear

mixed-effects model was integrated into random
forest analysis (50) bymeans ofmodel selectionand
estimation. In themodel selection process, random
forest was employed to assess the contribution of
each of the candidate variables to the dependent
variable logPij(u), in terms of the amount of in-
crease in prediction error as one variable is per-
muted while all the others are kept constant. We

used the randomForest package (65) in R to ob-
tain importance measures for all the covariates
to guide our selection of the final variables in the
geostatistical nonlinearmixed-effectsmodel,Xij(u).
We selected stand basal area (G), temperature
seasonality (T3), annual precipitation (C1), pre-
cipitation of the warmest quarter (C3), potential
evapotranspiration (PET), indexed annual aridity
(IAA), and plot elevation (E) as control variables
since their importancemeasureswere greater than
the 9 percent threshold (Fig. 6) preset to ensure

that the final variables accounted for over 60 per-
cent of the total variable importance measures.
For geospatial random forest analysis of BPR,

we first selected control variables based on the
variable importance measures derived from ran-
dom forests (50). We then evaluated the values of
elasticity of substitution (32), which are expected
to be real numbers greater than 0 and less than 1,
against the alternatives, i.e., negative BPR (H01:
q < 0), no effect (H02: q = 0), linear (H03: q = 1),
and convex positive BPR (H04: q > 1). We
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Fig. 6. Correlation matrix and importance values of potential variables for the geospatial random
forest analysis. (A)There were a total of 15 candidate variables from three categories, namely plot at-
tributes, climatic variables, and soil factors (a detailed description is provided in Table 1). Correlation
coefficients between these variables were represented by sizes and colors of circles, and “×” marks co-
efficients not significant at a = 0.05 level. (B) Variable importance (%) values were determined by the
geospatial random forest (Materials and methods). Variables with importance values exceeding the 9%
threshold line (blue)were selected as control variables in the final geospatial random forestmodels. Elasticityof
substitution (coefficient), productivity (dependent variable), and species richness (key explanatory variable)
were not ranked in the variable importance chart because they were not potential covariates.

Fig. 7. Semivariance and esti-
mated spherical variogram
models (blue curves) obtained
from geospatial random forest
in relation to Š.Gray circles,
semivariance; blue curves, esti-
mated spherical variogram
models.There was a general trend
that semivariance increased with
distance; spatial dependence of q
weakened as the distance between
any two GFB plots increased.The
final sphericalmodels had nugget =
0.8, range = 50 degrees, and sill =
1.3.To avoid identical distances, all
plot coordinates were jittered by
adding normally distributed
random noises.
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examined all the coefficients by their statistical
significance and effect sizes, using Akaike in-
formation criterion (AIC), Bayesian information
criterion (BIC), and the generalized coefficient of
determination (66).

Global analysis

For the global-scale analysis, we calibrated the
nonlinear mixed-effects model parameters (q and
a’s) using training sets of 500 plots randomly
selected (with replacement) from the GFB global
dataset according to the bootstrap aggregating
(bagging) algorithm. We calibrated a total of
10,000 models based on the bagging samples,
using our own bootstrapping program and the
nonlinear package nlme (63) of R, to calculate
the means and standard errors of final model
estimates (Table 2). This approach overcame
computational limits by partitioning the GFB
sample into smaller subsamples to enable the
nonlinear estimation. The size of training sets
was selected based on the convergence and effect
size of the geospatial random forest models. In
pilot simulations with increasing sizes of training
sets (Fig. 8), the value of elasticity of substitution
(32) fluctuated at the start until the convergence
point at 500 plots. GeneralizedR2 values declined
as the size of training sets increased from 0 to
350 plots, and stabilized at around 0.35 as train-
ing set size increased further. Accordingly, we
selected 500 as the size of the training sets for
the final geospatial random forest analysis. Based
on the estimated parameters of the globalmodel
(Table 2), we analyzed the effect of relative species

richness on global forest productivity with a sen-
sitivity analysis by keeping all the other variables
constant at their samplemeans for each ecoregion.

Mapping BPR across global
forest ecosystems

For mapping purposes, we first estimated the
current extent of global forests in several steps.
We aggregated the “treecover2000” and “loss”
data (67) from 30mpixels to 30 arc-second pixels
(~1 km) by calculating the respective means. The
result was ~1 km pixels showing the percentage
forest cover for the year 2000 and the percentage
of this forest cover lost between 2000 and 2013,
respectively. The aggregated forest cover loss was
multiplied by the aggregated forest cover to pro-
duce a single raster value for each ~1 km pixel
representing a percentage forest lost between
2000 and 2013. This multiplication was neces-
sary since the initial loss values were relative to
initial forest cover. Similarly, we estimated the
percentage forest cover gain by aggregating the
forest “gain” data (67) from 30 m to 30 arc-
seconds while taking a mean. Then, this gain
layer was multiplied by 1 minus the aggregated
forest cover from the first step to produce a
single value for each ~1 km pixel that signifies
percentage forest gain from 2000–2013. This
multiplication ensured that the gain could only
occur in areas that were not already forested.
Finally, the percentage forest cover for 2013 was
computed by taking the aggregated data from
the first step (year 2000) and subtracting the
computed loss and adding the computed gain.

We mapped productivity P and elasticity of
substitution (32) across the estimated current
extent of global forests, here defined as areas
with 50 percent or more forest cover. Because
GFB ground plots represent approximately 40
percent of the forested areas, we used universal
kriging (62) to estimate P and q for the areas
with no GFB sample coverage. The universal
kriging models consisted of covariates speci-
fied in Fig. 6B and a spherical variogrammodel
with parameters (i.e., nugget, range, and sill)
specified in Fig. 7. We obtained the best linear
unbiased estimators of P and q and their stan-
dard error in relation to Š across the current
global forest extent with the gstat package of R
(68). By combining q estimated from geospatial
random forest anduniversal kriging,we produced
the spatially continuous maps of the elasticity of
substitution (Fig. 3B) and forest productivity
(fig. S1) at a global scale. The effect sizes of the
best linear unbiased estimator of q (in terms of
standard error and generalized R2) are shown
in Fig. 5. We further estimated percentage and
absolute decline in worldwide forest produc-
tivity under two scenarios of loss in tree species
richness— low (10% loss) and high (99% loss).
These levels represent the productivity decline
(in both percentage and absolute terms) if local
species richness across the global forest extent
would decrease to 90 and 1 percent of the cur-
rent values, respectively. The percentage decline
was calculated based on the general BPR model
(Eq. 1) and estimated worldwide spatially explicit
values of the elasticity of substitution (Fig. 3B).
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Table 2. Parameters of the global geospatial random forest model in 10,000 iterations of 500 randomly selected (with replacement) GFB plots.
Mean and SE of all the parameters were estimated by using bootstrapping. Effect sizes were represented by the Akaike information criterion (AIC), Bayesian

information criterion (BIC), and generalized R2 (G-R2). Const, constant.

Coefficients

Loglik AIC BIC G-R2 const q G T3 C1 C3 PET IAA E
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Mean –761.41 1546.71 1597.08 0.354 3.816 0.2625243 0.014607 –0.000106 0.001604 0.001739 –0.002566 –0.000134 –0.000809
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

SE 0.54 1.10 1.13 0.001 0.011 0.0009512 0.000039 0.000001 0.000008 0.000008 0.000009 0.000001 0.000002
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Iteration
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

1 –756.89 1537.78 1588.35 0.259 4.299 0.067965 0.014971 –0.000100 0.002335 0.001528 –0.003019 –0.000185 –0.000639
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

2 –801.46 1626.91 1677.49 0.281 3.043 0.167478 0.018232 –0.000061 0.000982 0.002491 –0.001916 –0.000103 –0.000904
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

3 –768.71 1561.41 1611.99 0.357 5.266 0.299411 0.008571 –0.000145 0.002786 0.002798 –0.003775 –0.000258 –0.000728
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

4 –775.19 1574.37 1624.95 0.354 4.273 0.236135 0.016808 –0.000126 0.001837 0.003755 –0.003075 –0.000182 –0.000768
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

5 –767.66 1559.32 1609.89 0.248 2.258 0.166024 0.018491 –0.000051 0.000822 0.002707 –0.001575 –0.000078 –0.000553
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

6 –773.76 1571.52 1622.10 0.342 3.983 0.266962 0.018675 –0.000113 0.001372 0.001855 –0.002824 –0.000101 –0.000953
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

7 –770.26 1564.53 1615.10 0.421 4.691 0.353071 0.009602 –0.000127 0.002390 –0.001151 –0.003337 –0.000172 –0.000441
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

2911 –778.21 1580.43 1631.00 0.393 3.476 0.187229 0.020798 –0.000069 0.001826 0.001828 –0.002695 –0.000135 –0.000943
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

2912 –755.35 1534.71 1585.28 0.370 2.463 0.333485 0.013165 –0.000005 0.001749 0.000303 –0.002447 –0.000119 –0.000223
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

2913 –800.52 1625.03 1675.61 0.360 4.526 0.302214 0.021163 –0.000105 0.001860 0.001382 –0.003207 –0.000166 –0.000974
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

2914 –725.89 1475.78 1526.36 0.327 2.639 0.324987 0.013195 –0.000057 0.001322 0.000778 –0.001902 –0.000080 –0.000582
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

2915 –753.64 1531.28 1581.85 0.324 4.362 0.202992 0.014003 –0.000146 0.001746 0.002229 –0.002844 –0.000143 –0.000750
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

2916 –796.75 1617.50 1668.08 0.307 3.544 0.244332 0.010373 –0.000118 0.002086 0.002510 –0.002667 –0.000152 –0.000650
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

2917 –746.88 1517.77 1568.34 0.348 4.427 0.290416 0.008630 –0.000107 0.002203 –0.000314 –0.002770 –0.000155 –0.000945
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

9997 –775.08 1574.17 1624.74 0.313 1.589 0.193865 0.012525 –0.000056 –0.000589 0.000550 –0.000066 –0.000155 –0.000839
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

9998 –781.20 1586.40 1636.98 0.438 5.453 0.412750 0.014459 –0.000169 0.002346 0.002175 –0.003973 –0.000117 –0.000705
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

9999 –734.72 1493.43 1544.01 0.387 4.238 0.211103 0.013415 –0.000118 0.001896 0.002450 –0.002927 –0.000076 –0.000648
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

10000 –776.14 1576.28 1626.86 0.355 2.622 0.468073 0.015632 –0.000150 –0.000093 0.001151 –0.000756 –0.000019 –0.000842
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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The absolute declinewas the product of theworld-
wide estimates of primary forest productivity
(fig. S1) and the standardized percentage decline
at the two levels of biodiversity loss (Fig. 4A).

Economic analysis

Estimates of the economic value-added from
forests employ a range of methods. One promi-
nent recent global valuation of ecosystem services
(69) valued global forest production [in terms of
‘raw materials’ (including timber, fiber, biomass
fuels, and fuelwood and charcoal] provided by
forests (table S1) (69) in 2011 at US$ 649 billion
(6.49 × 1011, in constant 2007 dollars). Using an
alternative method, the UN FAO (25, 26) esti-
mates gross value-added in the formal forestry
sector, a measure of the contribution of forestry,
wood industry, and pulp and paper industry to
the world’s economy, at US$606 billion (6.06 ×
1011, in constant 2011 dollars). Because these two
reasonably comparable values are directly im-
pacted by and proportional to forest productivity,
we used them as bounds on our coarse estimate
of the global economic value of commercial forest
productivity, converted to constant 2015 US$
based on the US consumer price indices (70, 71).
As indicated by our global-scale analyses (Fig. 4A),
a 10 percent decrease of tree species richness
distributed evenly across the world (from 100%
to 90%) would cause a 2.1 to 3.1 percent decline
in productivity, which would equate to US$13–
23 billion per year (constant 2015 US$). For the
assessment of the value of biodiversity in main-

taining forest productivity, a drop in species
richness from the current level to one species
would lead to 26–66% reduction in commercial
forest productivity in the biomes that contribute
substantially to global commercial forestry (fig.
S4), equivalent to 166–490 billion US$ per year
(1.66 × 1011 to 4.90 × 1011, constant 2015 US$, cal-
culated by multiplying the foregoing economic
value-added from FAO and the other study by 26
and 66%, respectively.) Therefore, we estimated
that the economic value of biodiversity in main-
taining commercial forest productivity worldwide
would be 166 billion to 490 billion US$ per year.
We held the total number of trees, global forest

area and stocking, and other factors constant to
estimate the value of productivity loss solely due
to a decline in tree species richness. As such, these
estimates did not include the value of land con-
verted from forest and losses due to associated
fauna and flora decline or forest habitat reduction.
This estimate only reflects the value of biodiver-
sity in maintaining commercial forest productiv-
ity that contributes directly to forestry, wood
industry, and pulp and paper industry, and does
not account for other values of biodiversity, in-
cluding potential values for climate regulation,
habitat, water flow regulation, genetic resources,
etc. The total global value of biodiversity could ex-
ceed this estimate by orders ofmagnitudes (41, 42).
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Abstract
& Key message Economic consequences of altered survival probabilities under climate change should be considered for
regeneration planning in Southeast Germany. Findings suggest that species compositions of mixed stands obtained from
continuous optimizationmay buffer but not completely mitigate economic consequences. Mixed stands of Norway spruce
(Picea abies L. Karst.) and European beech (Fagus sylvatica L.) (considering biophysical interactions between tree
species) were found to be more robust, against both perturbations in survival probabilities and economic input variables,
compared to block mixtures (excluding biophysical interactions).
& Context Climate change is expected to increase natural hazards in European forests. Uncertainty in expected tree mortality and
resulting potential economic consequences complicate regeneration decisions.
& Aims This study aims to analyze the economic consequences of altered survival probabilities for mixing Norway spruce (Picea
abies L. Karst.) and European beech (Fagus sylvatica L.) under different climate change scenarios. We investigate whether
management strategies such as species selection and type of mixture (mixed stands vs. block mixture) could mitigate adverse
financial effects of climate change.
& Methods The bio-economic modelling approach combines a parametric survival model with modern portfolio theory. We
estimate the economically optimal species mix under climate change, accounting for the biophysical and economic effects of tree
mixtures. The approach is demonstrated using an example from Southeast Germany.
& Results The optimal tree species mixtures under simulated climate change effects could buffer but not completely mitigate
undesirable economic consequences. Even under optimally mixed forest stands, the risk-adjusted economic value decreased by
28%. Mixed stands economically outperform block mixtures for all climate scenarios.
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& Conclusion Our results underline the importance of mixed stands to mitigate the economic consequences of climate change.
Mechanistic bio-economic models help to understand consequences of uncertain input variables and to design purposeful
adaptation strategies.

Keywords Survival analysis . Value at risk . Climate change . Speciesmixture . Forest restoration . Portfolio theory

1 Introduction

Tree species selection is a key strategic decision in forest man-
agement planning (Cubbage et al. 2007). Regeneration deci-
sions generally depend on silvicultural considerations but will
ultimately also be driven by economic considerations. Climate
change is expected to change both, silvicultural suitability and
expected returns, thus affecting regeneration decisions (Albert
et al. 2017; Pukkala 2018; Schou et al. 2015; Yousefpour and
Hanewinkel 2016). For Central Europe, models anticipate an
increase in the frequency and severity of extreme weather
events and resulting forest disturbances, such as wind throws,
forest fires, or drought and related pathogen outbreaks
(Gardiner et al. 2011; Jandl et al. 2015; Seidl et al. 2017).
These developments may particularly affect the economically
important Norway spruce (Picea abies (L.) Karst., further re-
ferred to as spruce), due to its higher susceptibility to hazards,
such as drought (Albert et al. 2017), storm, and bark beetle
outbreaks (Thiele et al. 2017) compared to broad-leaved spe-
cies such as the European beech (Fagus sylvatica L., further
referred to as beech) (Hanewinkel et al. 2011; Neuner et al.
2015). The planting of spruce into mixed stands has been
suggested to increase stand resistance (Griess et al. 2012;
Pretzsch et al. 2013). Therefore, the need for converting
spruce-dominated forests towards less susceptible broad-
leaved species is often accentuated (e.g., Teuffel et al.
(2005)), while the reduction of spruce stands to extend the
area of beech may lead to severe economic losses
(Hanewinkel et al. 2010).

In order to quantify and compare the susceptibility of dif-
ferent species or forest types to natural hazards, empiric sur-
vival functions have increasingly been used (Griess et al.
2012; Neumann et al. 2017; Neuner et al. 2015; Nothdurft
2013; Staupendahl 2011; Thiele et al. 2017). In Southwest
Germany, Neuner et al. (2015) demonstrated that tree survival
of spruce under climate change may be increased through
species admixture. Using a European-wide data set, and
semiparametric survival functions, Neumann et al. (2017)
showed the effects of climate variables and variability on dis-
turbance patterns at the European level. While this study is
valid for a large range of environmental conditions, it aggre-
gates species to groups. Other, more species-specific studies
have been limited to datasets in Southwest Germany (Griess
et al. 2012; Neuner et al. 2015; Staupendahl and Zucchini
2011). The derived survival probabilities therefore only cover
a limited range of climate conditions which restrict the

application of future climate scenarios and potential effects
on survival time of different species. The majority of climate
change-related studies in forestry focus on silvicultural or
yield science aspects, while economic consequences are
assessed much less frequently (Thiele et al. 2017;
Zubizarreta-Gerendiain et al. 2016). Neuner and Knoke
(2017) are among the rare examples assessing the economic
consequences of climate change for predefined mixed forest
stand types. However, the survival functions used for this
study only cover a limited environmental gradient.

Empiric survival functions of tree species have a particular
appeal for integration into bio-economic decision models, to
account for probability of stand failure (Burkhardt et al. 2014;
Deegen and Matolepszy 2015; Staupendahl and Möhring
2011) and to estimate risk costs (Möllmann and Möhring
2017). These studies have mostly focused on adaptation strat-
egies related to optimal rotation periods of single species.
However, analyzing regeneration decisions in face of climate
change requires the comparison of different species, as well as
potential diversification strategies between them.

Portfolio theory following Markowitz (1952, 2010) has
been used in forest economics to reflect consequences of tree
species diversification, which may reduce risks (usually quan-
tified as the standard deviation of returns) and aid species
selection (Brunette et al. 2017; Dragicevic et al. 2016;
Knoke et al. 2017). Empiric survival functions have so far
occasionally been integrated in such bio-economic models
(Griess and Knoke 2013; Neuner and Knoke 2017;
Roessiger et al. 2013). Neuner and Knoke (2017) showed that
climate change effects were economically less important in
changing risks and returns compared to diversification and
management strategies such as planting and pruning. This
study could, however, only use a small set of predefined tree
species mixtures. Investigating desirable species portfolios for
different climate scenarios would need to go beyond
predefined species mixtures, requiring information on survival
probabilities for continuously changing tree species propor-
tions under different climate conditions.

The use of empirical survival probabilities in bio-economic
models has great relevance for risk-averse forest owners
(Griess and Knoke 2013; Roessiger et al. 2013). Although
forest owners consider risks in their decisions (Blennow and
Sallnäs 2002; Seidl et al. 2016), the adaptation threshold for
changing forest management strategies is still high (Eriksson
2014). This may be attributed to the uncertainty in expected
consequences of climate change, which may delay adaptation
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strategies in regeneration decisions (Schou et al. 2015). A
better understanding of the economic effects of altered surviv-
al probabilities has the potential of aiding regeneration deci-
sions under climate change, thus avoiding adverse economic
consequences for forest owners. Our objective was therefore
to analyze the impact of altered survival probabilities on eco-
nomically driven regeneration decisions, while accounting for
economic and biophysical effects of tree species
diversification.

In contrast to approaches used in the real options’ theory
(Schou et al. 2015; Yemshanov et al. 2015) and Bayesian
updating (Yousefpour et al. 2014), which build on adaptation
through updating information, here, we refer to adaptation in
terms of changing tree species composition at the beginning of
a forest’s production. Once established, species mixtures may
not immediately be changed for long periods without the need
of carrying out harvesting operations in premature stands.
Thus, the regeneration decision, investigated in this study, is
a static decision at a defined point in time and based on infor-
mation currently available. To illustrate the bio-economic ap-
proach, we used an example study site from Southeast
Germany, focusing on spruce and beech. With this example,
we refer to the challenge of supporting regeneration decisions
following large-scale wind throw. This question is of high
relevance for forest owners and political decision-makers in
order to reduce the economic consequences of climate change
and to design supportive policies.

For our study site, we investigate the overarching research
hypothesis: Under the adverse effects of climate change on
tree survival, mixed forests dominated by beech are econom-
ically superior to spruce-dominated forests. In this context,
we also hypothesize that the type of mixture in which these
forests are established, in terms of mixed stands (allowing for
interactions between tree species) or block mixture (mixed at
forest level, excluding interactions between tree species), does
not influence the optimal species composition.

In order to contribute to this research hypothesis, we com-
bined two key model components, which can be broadly ap-
plied to other sites, with a focus on Central Europe: First, we
developed a model for analyzing climate effects on tree surviv-
al probabilities in Germany. The tree species-specific empiric
survival model uses a European dataset and allows for model
parametrization with a wide set of climate conditions, thus
mimicking potential future climate conditions. This approach
goes beyond existing survival modelling so far used in bio-
economic models (e.g., Möllmann and Möhring 2017;
Neuner and Knoke 2017). This is not only in terms of the
extended data base. We also incorporated substantial method-
ological improvements in variable selection and model fitting
using left-truncated and right-censored data—a situation often
found in forest inventory. Second, we integrated this novel
empiric model into a bio-economic simulation and optimiza-
tion model, which builds on Monte Carlo Simulation and

Portfolio Theory (Griess and Knoke 2013; Neuner and
Knoke 2017). Our new and extended bio-economic modelling
approach allows us to compare a principally unlimited set of
different species proportions (as continuous decision variables)
between two different diversification approaches: one exclud-
ing and one including biophysical interactions between tree
species. The effects of mixture refer to tree survival based on
our empiric model. We also account for potential effects on
growth and timber quality of stands, while these are not the
focus of our study. In summary, we can therefore investigate
the influence of future climate scenarios to (1) the economically
ideal species proportions and (2) the optimal type of mixture.
This simulation-optimization approach also allowed us to (3)
investigate the sensitivity of tree species selection on altered
survival probabilities compared to other model assumptions,
such as planting costs, discount rate, risk attitude, and coeffi-
cient of correlation between returns of the two species.

2 Materials and methods

2.1 Deriving survival probabilities under current
and future climate

2.1.1 Modelling tree survival

In this study, we build on the parametric survival model for
assessing tree survival developed and applied by Staupendahl
(2011), Staupendahl and Zucchini (2011), Griess et al. (2012),
and Neuner et al. (2015) for Germany. Survival time is as-
sumed to follow the Weibull distribution. The parameters of
the distribution and the impact of covariates on survival time
are estimated by an Accelerated Failure Time (AFT) model.
The probability of survival S at a certain time t, reflecting tree
age, can be described by:

S tð Þ ¼ exp −
t
β

� �α� �
with t≥0 ð1Þ

with α being the shape and β being the scale parameter. The
shape parameter α represents the development of the hazards
over time. According to Staupendahl (2011), values of one
express a constant risk over time. Smaller or larger values
express a decreasing or increasing hazard rate over time, re-
spectively. Covariates are assumed to increase or decrease
survival time and act on the scale parameter β. A detailed
description accompanies the results in Table 1 (Appendix).
Staupendahl and Möhring (2011) have outlined the advan-
tages of this approach for supporting decision-making in for-
est management. First, age-dependent survival probability can
be directly transferred into the conditional dropout probability
of a stand, which has survived until a certain age class. This
information is needed for appropriate discounting in discrete
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time. Second, the function is described by only two parame-
ters compared to, for example, polynomial equations as used
by Knoke and Wurm (2006) and Knoke and Seifert (2008).

2.1.2 Data used for parametrization and variable selection

Compared to earlier studies (Griess et al. 2012; Neuner et al.
2015), we use a further extended pan-European dataset on
crown condition from Level I (systematic 16 × 16 km grid)
and Level II (intensive monitoring sites) plots provided by
ICP Forests1 (International Co-operative Programme on
Assessment and Monitoring of Air Pollution Effects on
Forests) (ICP Forests 2018). In general, the crown condition
of sample trees is recorded annually. In order to identify mor-
tality events, the cause of removal of a tree is an essential
information (Eichhorn et al. 2016). Level I data provide this
information since 2011. Details on the survey design and
methods can be found in UNECE ICP Forests (2016). The
dataset was complemented by data from the German Crown
Condition Survey provided by the Thünen Institute of Forest
Ecosystems (see footnote1 for data availability and Wellbrock
et al. 2018 for description of the dataset), which is available at
a denser grid and provides a longer time series as well as more
exact information on tree age (see Electronic Supplementary
Material (ESM) Tables S1 and S2 and Fig. S1). The dataset is
available from the Thünen Institute upon request. Using the
pan-European dataset, the model can be fitted based on a
wider range of temperature and precipitation factors, which
improves the prediction of potential effects of future climate
change on tree species survival and its applicability as a
Bspace for time^ approach (see also Neumann et al. (2017)).
While earlier studies have mostly focused on spruce, here, we
also incorporate the effect of climate variables and tree mix-
ture on the survival time of beech.

The set of potential explanatory variables consisted of mix-
ture proportions of the respective species as well as different
climate variables taken from the BioClim variables available
from the WorldClim database. The freely available dataset
(see WorldClim 2018b) provides interpolations of observed
climate data, which is representative for the time period
1960–1990 (see Hijmans et al. 2005 for details). We used
the highest available resolution of 30 arc-seconds. The avail-
able bioclimatic (BioClim) variables were grouped into vari-
ables characterizing mean annual temperature or summer tem-
perature, winter temperature, and precipitation (ESM
Table S3). In order to prevent high collinearity between ex-
planatory variables (Dormann et al. 2013), only one variable
could be selected from each group. The variables could enter
the model either as linear effect or as spline, thus accounting

for potentially non-linear effects. The models’ predictive per-
formance was evaluated with 10-fold cross-validation (rela-
tion of data splitting train data: test data = 9: 1). The Brier
score (Gerds and Schumacher 2006) was used as a determi-
nant of prediction accuracy and model improvement. Left
truncation of data was accounted for, as observation of a tree
does not start at germination. In addition, we used a start age
of 20 years, since very young trees are underrepresented in the
data; this could lead to unrealistic survival probabilities at
these ages (Moore 2016). We thus exclude risks in young
stands and assume that through appropriate establishment
and management techniques, stand establishment is
successful.

To the best of our knowledge, this is the first study inves-
tigating the effects of tree mixture on both tree species and for
a continuous set of mixtures. All analyses were carried out
using the R programming language and environment (R
Core Team 2017) using the packages Bsurvival^ (Therneau
and Grambsch 2001) and Beha^ (Broström 2015).

2.2 Economic analysis

2.2.1 Definition of alternatives

The aim of our study was not only to compare two mutually
exclusive alternatives, made up by either planting tree spe-
cies A or B (in our case spruce or beech), but also to allow
for a mix of species. Consequently, the percentages forming
the actual tree species mixture have not been predefined.We
contrasted the following two types of mixtures: (1) block
mixture: Following Knoke and Seifert (2008), we assumed
that tree species were planted in large blocks, which may be
mixed at the enterprise level. Biophysical interactions be-
tween tree species were excluded. Growth and survival thus
correspond to that of monospecies stands. (2)Mixed stands:
Here, we assumed a mixture of small species cohorts
(groups of ~ 1000 m2) to be within the stand, following
Knoke and Seifert (2008). Biophysical interactions between
tree species in mixed stands were assumed to affect stand
resistance in accordance with results of our survival model
(results will be described in BPlausible ranges of survival
probabilities^). Mixing the two species within a stand was
furthermore assumed to affect volume growth and wood
quality. Here, we used the assumptions derived from
Knoke and Seifert (2008) as applied in Griess and Knoke
(2013) and Neuner and Knoke (2017). While spruce bene-
fits from admixture with beech, beech suffers from a slight
decrease in quality (ESM Table S8). Taken together, the
effects on volume growth and wood quality lead to an in-
crease in (nominal) returns fromwood harvesting by up to +
15% for spruce and a decrease for beech of up to − 10%
(ESM Table S8).

1 Data is provided upon request via the Programme Co-ordinating Centre at
the Thünen Institute of Forest Ecosystems in Eberswalde, Germany (see icp-
forests.net/data-requests).
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2.2.2 Modern portfolio theory for deriving economically
optimal species compositions

Here, we built on the general mean-variance analysis,
which compares not only expected returns but also risks
of different investments, based on statistical consider-
ations (Markowitz 1952; Markowitz and Blay 2014).
Given that expected returns of assets (e.g., investment in
different tree species) are not perfectly correlated, diver-
sification will reduce the standard deviation of the portfo-
lio’s return. Diversification can be achieved by assigning
different weights to individual asset returns. In the context
of silvicultural and land-use decisions, this translates into
an allocation of forest area (or shares of area of the forest
enterprise) for different tree species (Brunette et al. 2017;
Dragicevic et al. 2016; Macmillan 1992). Following port-
folio theory, the decision-maker would exclusively select
Befficient^ tree species portfolios. These are defined as
combinations of assets which give the highest return for
a given level of risk. The accepted level of risk, in terms
of standard deviation of return, has to be estimated and
depends on the individual risk attitude. Among a range of
options in portfolio selection (Elton et al. 2014), the Value
at Risk (VaR) (Jorion 2009) has frequently been used in
forest management decisions, to illustrate risk aversion of
forest (Couture et al. 2016; Hahn et al. 2014; Härtl et al.
2016) and land owners (Estrada et al. 2011; Wan et al.
2015) and to se lec t a spec i f ic Bopt imal fores t
composition.^ Following the original ideas of Kataoka
(1963), the VaR is a downside risk measure, which calcu-
lates the expected portfolio return at a specified quantile
(we used 5%) at the undesirable (here left) tail of the
return distribution. It can be interpreted as the return,
which is exceeded with a probability of 95%. We used
the maximization of this criterion to identify economically
optimal tree species compositions for block mixtures and
mixed stands under current and expected future climate
conditions.

Following the notation by Elton et al. (2014), the VaRp is
estimated as

VaRp ¼ E Rp

� �
−zφ � sp ð2Þ

subject to E(Rp) ~N(μ; σ
2)

With E(Rp) being the expected portfolio return, zφ is a
constant derived from the Gaussian normal distribution
(N(μ; σ2)), depending on the quantile of the distribution
to be considered. We used zφ of 1.65 for a 5% shortfall
probability φ (corresponding to the 95% quantile). For
block mixtures, E(Rp) can be calculated as the weighted
mean of individual returns of the assets i and j (in our
example returns of tree species A and B) and their stan-
dard deviation sp is estimated by:

sP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i
∑
j
wiw jcovij

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
A s2A þ w2

B s2B þ 2 wAwBcovA;B

q
ð3Þ

subject to

wA þ wB ¼ 1;wA;wB≥0
covA;B ¼ kA;BsAsB

with wA and wB being the weight (i.e., area) assigned to
tree species and kA,B being the coefficients of correlation
between returns of the two tree species. For mixed
stands, returns and risks were directly simulated (see be-
low) for a range of mixtures between spruce proportions
(in terms of stand area) of 10 to 90% in 10 percentage
point increments.

2.2.3 Deriving return distributions

Frequency distributions of return (E(R)) were estimated by
means of Monte Carlo simulation (MCS) and 10,000 itera-
tions, incorporating tree and mixture specific survival prob-
abilities and timber price fluctuations. This approach fol-
lows the study by Neuner and Knoke (2017). Production
period was divided into age classes with a width of 10 years.
Simulation began at age 0, assuming bare land, reflecting
the assumed situation at the example site and following the
basic assumptions of Faustmann for the Land Expectation
Value (LEV) (Faustmann 1849). The respective survival
probability derived from the statistical model was translated
into conditional dropout probability (according to
Staupendahl and Möhring (2011)), which was then imple-
mented into the simulation through a binomial distribution
of failure or no failure at the end of each age class (Griess
and Knoke 2013). In the case of undamaged stands, returns
from regular thinning and regular harvest (at end of rotation
period T) were simulated for each point in time t. In case of a
simulated hazard, return from timber sales was reduced by
50% according to Dieter et al. (2001). Immediate replanting
of stands was simulated and age was set to 0, which meant
that the simulation run stopped and a new simulation run
(i.e., rotation) started. Wood price fluctuations were inte-
grated via bootstrapping using historical timber prices (de-
scribed in more detail below).

In our analysis, expected portfolio return E(Rp) is rep-
resented by the LEV, which corresponds to a net present
value (NPV) accumulated over an infinite time horizon.
Following Griess and Knoke (2013) and Clasen et al.
(2011), the LEV of the simulation run i (LEVi) was cal-
culated as the sum of the NPV of the simulated individual
rotation (NPVi) and the appropriately discounted mean

LEV of the future rotations (LEV ) (Eq. 4).
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LEVi ¼ NPVi þLEV∙q−Ti ð4Þ
with

LEV ¼ NPV⋅
qT

qT−1
q ¼ 1þ rð Þ; rÊ0

NPVi is calculated as the sum of the discounted net cash
flows in each year over the simulated rotation length Ti. Ti
corresponds to the planned rotation time T or the time
when the simulation is stopped, due to failure. To account
for the fact that replanting of the subsequent forest gener-
ation is carried out earlier in case of failure, an average

expected LEV of future generations (i.e., LEV ) was cal-

culated. For deriving LEV, the average NPV for 10,000
simulated rotations and the corresponding average rota-

tion lengths T until hazard occurred was estimated. LEV
was added to NPVi and discounted according to the
elapsed time period when simulation stopped, using dis-
count rate r. In accordance with Deegen and Matolepszy
(2015), we used a constant discount rate of 1.5% for the
baseline assumption. To allow for a simpler interpretation,
results are presented as yearly land rent (annuity) estimat-
ed through multiplying LEVi by the discount rate r.

2.3 Example study site and data

We selected the district of Freyung in the Bavarian forest,
located in the Southeast of Germany as an example site for
our analysis. OnAugust 18 of 2017, the region experienced an
extreme storm event (BKolle^). Local authorities estimated an
amount of 2.3 Mio m3 of storm-damaged timber and offered
60 Mio € of financial help to affected forest owners
(BayStMELF 2017). The crucial question arising in such sit-
uations pertains to which tree species to incentivize and rec-
ommend to affected forest owners. The application example
represents a typical situation of forest restoration in Central
Europe, whereas developed methods are transferable to other
regions.

2.3.1 Climate data

We used our statistical survival model to simulate economic
consequences and silvicultural adaptation strategies for a
range of climate scenarios. We used climate data from the
freely accessible WorldClim database (version 1.4). Today’s
climate is characterized as average of the time period 1960–
1990 (Hijmans et al. 2005; WorldClim 2018b). Future climate
scenarios are based on the Max-Planck-Institute Earth System
Model at base resolution (MPI-ESM-LR). For this climate
model, the Representative Concentration Pathway (RCP)

scenarios 2.6, 4.5, and 8.5 are available for the period 2061–
2080 (ESMTable S4) (WorldClim 2018a).The climate projec-
tions are downscaled and bias corrected using WorldClim 1.4
as baseline Bcurrent^ climate and also provided in the
WorldClim database. We used the highest available spatial
resolution of 30 s (~ 1 km).

2.3.2 Forest data

We used growth simulation and cost estimates for spruce
and beech available from Clasen et al. (2011) in the
Bavarian Forest region (ESM Tables S5 and S6). Tree
growth was originally simulated by Clasen et al. (2011)
using the single-tree-based stand simulator SILVA (ver-
sion 2.2) (Pretzsch et al. 2002) (see ESM Table S5).
Thinning was carried out at a fixed amount in each decade
according to results from the growth simulator (Table S5).
Hence, in accordance with the survival model, when re-
ferring to Bmortality,^ we only refer to those trees, which
would not have regularly been harvested during thinning
or at the end of the planned rotation period. We used
updated planting costs by data from Roessiger et al.
(2013) and Messerer et al. (2017) reporting moderate
values of 2000 € ha−1 for spruce and 3000 € ha−1 for
beech. The use of potential natural regeneration in future
generations, when rotation period reaches adequate tree
age, was taken into account by using decreasing planting
costs for the following rotation cycle (ESM Table S7).
Planned rotation length was set at 120 years for beech
and 90 for spruce according to the optimal rotation age
of a risk-free consideration of annualized LEV at a con-
stant discount rate of 1.5% (ESM Fig. S2). Resulting
nominal net returns (excluding price fluctuations) for the
planned rotation and in case of stand failure are
summarized in the ESM Table S6. Timber price
fluctuations were updated using the price quotients
published by Messerer et al. (2017) for the period of
1975 to 2014.

2.4 Sensitivity analysis

While climate change is hypothesized to affect economic
tree species selection, we also aimed to compare the magni-
tude of change in the optimized species composition to oth-
er important economic drivers. These include investment
costs, Pearson correlation between returns, discount rate,
and the assumed attitude towards risks. We carried out a
sensitivity analysis by varying the input variables by up to
± 75% compared to the Bbaseline assumption,^which refers
to current (constant) climate conditions and assumptions
described above. Please note that for alterations in the cor-
relation coefficient, we tested absolute values of kA,B be-
tween ± 0.75 rather than relative changes.
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3 Results

3.1 Plausible ranges of survival probabilities

Based on the European dataset, survival probabilities of
spruce were best described by the climate variables Bsum of
precipitation in the warmest quarter^ and Bmean temperature
of warmest quarter,^ as well as the share of spruce in the stand
(see Table 1 for coefficients). For beech, the explanatory var-
iables Bmaximum temperature of the warmest month^ and the
Bminimum temperature of the coldest month^ were chosen
according to the selection procedure. Since the effect of tree
mixtures on tree survival is one of the key questions of our
research, we also included the share of beech in the stand as an
explanatory variable. The inclusion of this variable only mar-
ginally increased the Brier score by a value of 0.001.

Both species showed a positive effect of admixture on tree
survival (Table 1). The shape parameter α of the Weibull
distribution was similar for both tree species with 1.27 for
beech and 1.30 for spruce (ESM Table S9), both indicating
an increase in hazard rate with age. Being rather close to 1.0,
the shape parameter reflects that hazard increases on a
diminishing scale. Given the climate variables of our study
site, we found that the survival probability of beech remained
considerably higher than that of spruce. The probability of a
tree in pure stands to still being alive at age 100 (S(100)) was
0.49 for spruce and 0.80 for beech, under a current climate at
the study site (see lowest lines in Fig. 1 and ESM Table S9).

Climate change affected both species at a similar magni-
tude. Yet, due to the higher survival of beech under current
climate, its absolute survival rates still remained at a much
higher level compared to spruce. For example, under the most
pessimistic climate change scenario (RCP 8.5), S(100)
dropped down to 0.37 and 0.69 for pure spruce and beech
stands, respectively (Fig. 1 and ESM Table S9). Given the
stabilizing effect of species mixtures, our model suggests that
the survival probability of spruce trees could still be main-
tained at today’s level when admixing pure spruce stands with
40% beech. The level of uncertainty in predicting the effect of
climate variables on tree survival was much higher for beech
than for spruce, particularly for temperature-related variables
(Table 1). This might be because events (i.e., occurrence of
death) in the data set of beech are not so closely related to
temperature (e.g., storm), whereas most dominant disturbance
agents of spruce such as bark beetle show a stronger relation
with temperature (Seidl et al. 2014).

3.2 Effect of climate change on economically optimal
block mixtures

For our example site and applying the average expected sur-
vival rates under today’s conditions, we obtained expected
annuities of 117 (± 44) € ha−1 year−1 for pure spruce and

39 (± 22) € ha−1 year−1 for pure beech stands, respectively.
Despite its higher survival probabilities, beech had a much
lower return and higher coefficient of variation (67%) com-
pared to spruce (38%). This may be attributed to the much
higher growth volume of spruce (ESM Table S8), its shorter
rotation cycle, and lower planting costs compared to beech.
Consequently, pure spruce stands would also give a much
higher VaR (43 € ha−1 year−1) compared to pure beech stands
(2 € ha−1 year−1) (see gray solid line in Fig. 2). Even when
allowing the model to mix pure spruce and beech stands, it
would still choose to dedicate the entire regeneration area to
pure spruce stands. Hence, economic benefits of diversifica-
tion from selling to various timber markets could not compen-
sate for the high VaR of pure spruce stands (see gray circle in
Fig. 2 and ESM Table S10).

The consideration of the effect of climate change through
altered survival probabilities only slightly reduced the eco-
nomically optimal spruce proportion for a risk-averse forest
owner (see black solid line and black circle in Fig. 2 for RCP
8.5 scenario). For the moderate RCP 2.5 scenario, the highest
VaR was achieved by planting pure spruce stands, while ex-
cluding biophysical interactions. Only under the RCP 4.5 sce-
nario, would the economically optimal spruce proportion in a
block mixture be reduced to 95% and further down to 81%
under the RCP 8.5 scenario (Figs. 2 and 3a). The respective
maximum VaR, represented here by the assumed objective
function of the forest owner, was reduced by 18, 27, and
46% for the RCP scenarios 2.5, 4.5, and 8.5, respectively
(circles in Fig. 3b). Expected portfolio return of the optimized
species portfolios would decrease by up to 26% (circles in
Fig. 3c).

This result reveals that even if the forest owner followed
economically optimal adaptation measures to climate change
by adjusting species composition, he would most likely still
experience financial losses. We also found that for a block
mixture design, the economically optimized regeneration
planning would still be clearly dominated by spruce. This
finding holds even under the most extreme climate scenario.

3.3 Stabilizing effect of mixed tree stands

The increased survival probabilities found for both species
when grown in mixed stands (cf. Fig. 1) resulted in a consid-
erably higher VaR compared to block-wise mixtures (dashed
lines in Fig. 2 and triangles in Fig. 3b). Under a constant
climate, the VaR of the economically optimal species propor-
tion in the mixed stand design was 19% higher compared to
the highest VaR attainable in block mixture (compare dashed
gray lines to solid gray lines in Fig. 2). This advantage even
increased to up to 57% under the climate change scenarios
(Figs. 2 and 3b).

However, despite the stabilizing effect of horizontal hetero-
geneity, climate change would still affect the forest owner. For
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example, here the assumed objective function of the risk-
averse forest owner (VaR) would still be reduced by up to
28% (for RCP 8.5) (Fig. 3b). Yet, compared to block mixtures
and pure stands, economic consequences could be buffered
considerably. The difference in absolute portfolio return

between the optimized block mixture and mixed stands also
declined with increasing severity of the climate scenario
(Fig. 3c and ESM Table S11 for data on all mixtures).

The economically optimal spruce proportion in mixed
tree stands was with 60–70% generally lower compared to
the ideal block mixtures (Fig. 2). The effect was consis-
tent for all climate scenarios studied (Fig. 3a). In our
model, individual returns of spruce increase with an in-
creasing admixture of beech. This is due to the higher
stand resistance associated with lower hazard-induced
losses and the shortening of rotation periods. The same
effect was found for beech but was less pronounced, due
to the various effects of admixture on tree growth and
wood qual i ty (see Knoke and Sei fe r t (2008) ) .
Consequently, given the overall higher return of spruce,
this species still dominates the species portfolio of mixed
stands. Even those mixed stands with spruce proportions
larger than that of the optimal portfolio still outcompeted
block mixtures. For instance, the VaR of a mixed stand
with a share of 90% spruce, under the RCP 8.5 scenario,
still gave a 26% higher VaR compared to the optimal
block mixture with a lower spruce proportion of 81%
(Fig. 2). Thus, if the forest owner seeks to maintain high
spruce proportions, establishing mixed stands may be fa-
vorable to increase returns, while buffering economic
risks. It should also be noted that pure spruce stands still

Fig. 1 Survival probabilities of
beech (orange) and spruce (green)
for the study site under current (a)
and potential future climate,
reflected by RCP 2.6 (b), RPC 4.5
(c), and RCP 8.5 (d) climate
scenarios. Lines and shaded areas
represent different species
compositions in mixed stands,
ranging from pure stands (lowest
lines) to 10% of the respective
species (upper lines) (see also
ESM Table S9). Dashed vertical
lines display the starting age of
our model of 20 years (left line)
and the reference age of
100 years, to which we refer as
s(100) (see also ESM Table S9)
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gave the highest expected returns but not the highest VaR,
compared to all types of mixtures. This is despite the
positive effect of mixture on stand stability and tree

growth of spruce. Hence, a risk-neutral profit-oriented
person would still chose to plant pure spruce stands even
when considering the expected losses, due to stand failure
(see ESM Tables S10 and S11).

Figure 3a also shows that species selection in mixed
stands was more stable under rather extreme climate
change scenarios. The optimal share of spruce decreased
by 10 percentage points under the most extreme (RCP
8.5) climate scenario compared to the current climate. In
the block mixture, species selection was already affected
under the moderate RCP 4.5 scenario. Here, the ideal
spruce proportion decreased by 20 percentage points for
the RCP 8.5 scenario. Yet, the absolute spruce proportion
remained for all scenarios still lower for the mixed stand
compared to the block mixture.

Being aware of the high prediction error of climate
variables on survival time of beech, we also calculated
species portfolios that excluded climate change effects
for beech. Under this assumption and applying the most
severe climate change scenario to spruce, we found that
portfolio composition did not change for mixed stands
(60% spruce), while the spruce proportion of block mix-
ture dropped to similar levels of 57%. The ideal share of
spruce would only fall below 50% if survival of beech,
in terms of S(100) (at constant α), was by 45 percentage
points higher than that of spruce. For our model, there
was no combination within the different climates that
could describe such a difference. Thus, even when con-
sidering increasing hazard rates in regeneration decisions,
a risk-averse forest owner at our study site would opt for
establishing stands that are dominated by the more sus-
ceptible tree species.

3.4 Sensitivity analyses

Differences in upfront investment costs are a classic driv-
er of investment decisions. In our sensitivity analysis,
changes in the establishment costs of spruce, relative to
beech by ± 75% (i.e., ± 1500 €), reduced the share of
spruce in optimized block mixtures from 100% to only
50% (Fig. 4). This difference in species selection is
much larger compared to the simulated effects of climate
change. It should be noted that in our baseline assump-
tion, planting costs of beech are assumed to be by 50%
higher compared to that of spruce. A relative increase in
costs of spruce establishment compared to beech could
result from subsidies for forest conversion towards
broad-leaved species.

Establishment costs were also found to be a key deci-
sion criterion for selecting the optimal type of mixture.
While, for our baseline assumption, mixed stands were
shown to give a higher VaR compared to block mixtures,
this advantage was reduced when assuming higher
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establishment costs for mixed stands compared to block
mixtures. Higher establishment costs could occur, due to
the higher complexity, which may result in higher labour
costs for stand establishment. In our data example, as-
suming the planting costs for beech (3000 € ha−1) for all
mixed stands clearly reduced their economic advantage
(ESM Fig. S3). Under this assumption, pure spruce
stands would outcompete mixed stands in terms of
VaR. This finding supports the importance of establish-
ment costs in forest investment decisions.

In terms of biophysical interactions, we assume that
stand failure, i.e., hazard events for beech and spruce
occur independently of each other. Given the anticipated
increase in extreme weather events stand failure may
become more intensively correlated (e.g., through
drought or storm events). When testing a perfect corre-
lation of events (reflected by the equal random number
in the simulation process), we found a coefficient of
correlation of return of 0.45 compared to 0.006 estimated
under the baseline assumption. Thus, the high coefficient
of correlation displayed in Fig. 4 might be rather unre-
alistic and not directly comparable to the relative change
of other input variables. Yet, the results demonstrate that
under a higher correlation of events, the advantage of
having beech in the species portfolio will, by trend, be
reduced.

Changing the accepted level of risk by decreasing the
accepted shortfall probability from a moderate value of
5% to a very risk-averse value of 1% resulted in a 57%
smaller optimal proportion of spruce in the block mix-
ture. A moderate change in discount rate did not alter
species selection in the block portfolio, when keeping

other assumptions constant. Even under very low dis-
count rates beech still could not compete with spruce in
our data example.

We found that the optimal species composition in
mixed stands was less sensitive to changes in model
assumptions. The optimal spruce proportion did not drop
below 60% (under current climate) when increasing es-
tablishment costs of spruce by 75% or decreasing short-
fall probability to 1% (therefore not shown in Fig. 4).
Only for an increase in discount rate to 2.6% did the
spruce proportion increase to 80%. This reveals that bio-
physical interactions dominated species selection in
mixed stands, while ideal compositions were less suscep-
tible to other input variables.

4 Discussion

In our study, we follow the suggestion of Littell et al.
(2011) for the use of climate change modelling in re-
source planning, which states that Bthe role of models
[…] is not to predict the future exactly, but rather to
narrow its possible range to a subset of plausible out-
comes that identify the vulnerability of specific resources
and suggest appropriate management^ (Littell et al. 2011,
p. 2). While we do not aim to make exact predictions or
give precise recommendations for species proportions,
we aim to use statistically backed plausible ranges of
survival probabilities to investigate their economic ef-
fects on regeneration decisions.

Referring back to the first part of our central hypoth-
esis, our results revealed a rather moderate effect of al-
tered survival probabilities on economically optimal spe-
cies selection. At our example study site, the more sus-
ceptible spruce remained the dominant species, even for
the most severe climate change scenario. Given the lim-
ited time series available for the pan-European mortality
data (ICP Level I and Level II data, ESM Tables S1 and
S2) and the inherent assessment errors in the dataset (see
also Neuner et al. (2015)), prediction errors on climate
change responses are still large. Further uncertainty is
due to the prediction of future climate variables by the
selected circulation model (Littell et al. 2011), which we
did not directly address. The estimated survival rates,
particularly those for spruce, are, however, rather pessi-
mistic compared to earlier studies. Examples of reported
S(100) values for pure stands (current climate) range
from 0.69 (based on a literature review in Germany
(Beinhofer 2009)) to modelled values of 0.8 for
Southwest Germany (Griess et al. 2012) and 0.9, when
applying the model by Neuner et al. (2015) to the study
site. We corrected our analysis for left truncation, which
may explain the lower level of survival compared to
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earlier studies. Our estimated values for beech fit well to
data compiled by Beinhofer (2009) (S(100) = 0.889) and
Staupendahl (2011) (S(100) = 0.82). The estimated rela-
tive effects of climate change are, for both species, also
in the range of those found by Nothdurft (2013) (refer-
ring to mountainous areas in Southwest Germany) and
Neuner et al. (2015). Thus, given the survival probabil-
ities used here, it is rather unlikely that the survival
probability of spruce is overestimated in relation to that
of beech. By reporting the threshold for which spruce
would lose its dominant position, our finding appears
robust in face of climate change-related uncertainties.

Expected returns for spruce under climate change are
probably rather conservative, as we also excluded further
adaptation strategies, such as selection of plant material
(Gray and Hamann 2011), thinning concepts, and optimal
rotation age, which may not only increase economic per-
formance (Bright and Price 2000; Möllmann and
Möhring 2017) but also stand resistance of spruce
(Bolte et al. 2009; Jandl et al. 2015). Our dataset sug-
gested a rotation period of 90 years for spruce. Applying
shorter rotation periods under the climate change scenar-
ios might increase the economically optimal share of
spruce in future tree species portfolios. Hence, the opti-
mal spruce shares for our study site might be slightly
underestimated. Future studies could combine both the
economic consequences of species diversification and
changes in rotation age (see for example Messerer et al.
(2017) for a methodological example). Recent studies
also suggest an increase in growth performance of spruce
under climate change (Gutsch et al. 2016; Thiele et al.
2017), while larger scale species distribution models
have anticipated a long-term shift from coniferous to
broad-leaved species (Dyderski et al. 2017). We
disregarded growth responses to climate variables.
However, given the assumptions in our model (based
on Clasen (2015)), the cumulative harvested wood vol-
ume over a period of 90 years (excluding hazards) was
875 m3 ha−1 for spruce and 453 m3 ha−1 for beech. Thus,
in order to compete with spruce, growth volume of beech
would have to at least double, given the lower quality
and wood price. Yet, the inclusion of growth effects
should be considered in further studies, to allow for a
trade-off analysis between growth and hazard effects
(e.g., Thiele et al. (2017)).

Concerning the second part of our research hypothe-
sis, we found that the type of mixture affected the eco-
nomically ideal species compositions. Horizontal hetero-
geneity could also buffer but not completely mitigate the
economic consequences of climate change for a risk-
averse forest owner. Using the VaR as criterion for eco-
nomically optimal species composition, mixed stands
were more effective in buffering the effects of climate

change compared to block mixtures. Yet, in terms of
expected returns, pure spruce stands would still outcom-
pete any form of mixture in terms of return for all cli-
mate scenarios. Ideal (and thus recommendable) species
composition in mixed stands was also more robust in the
direction of perturbations in expected survival probabili-
ties compared to that of block mixtures. Thus, mixed
stands offer a hedge against uncertainties in future pre-
dictions. This finding depends, however, on the biophys-
ical interactions assumed. In our statistical model, the
effect of mixture was selected as a linear effect on sur-
vival time by the statistical selection procedure, which
should be interpreted with caution. Alternatively,
Roessiger et al. (2013) assumed that lowering the spruce
proportion below 49% would not achieve a more intense
stabilization compared to a proportion above this thresh-
old. Our estimated effect of mixture on species resistance
appears, however, plausible. For example, Knoke and
Seifert (2008) assumed a similar increase in S(100) of
spruce from 0.53 in pure stands to 0.81 in mixed stands.
Evidence on mixture effects on beech are rare, while
available studies point towards positive impacts on stand
resistance (Metz et al. 2016; Pretzsch et al. 2010) and no
adverse effects on timber quality (Benneter et al. 2018).
In our data example, mixed stands would still outcom-
pete block mixtures by 17% in terms of VaR (under
constant climate) when excluding the stabilizing effect
of species mixture on beech. The assumed effects of
mixed stands on timber quality and wood volume hardly
influenced the objective function of our analysis.
Excluding the factors given in ESM Table S8 led to a
slight increase in the VaR of the optimal species portfolio
by 2% (53 € ha−1 year−1), as the assumed negative ef-
fects of mixture on timber quality and volume growth of
beech are disregarded. This small change did also not
affect the optimal species proportions in the mixed stand
portfolio. Yet, we found that decisions on the type of
mixture will also strongly depend on the differences in
establishment costs between them, which have seldom
been systematically studied.

Diversification in mixed stands is not restricted to
horizontal heterogeneity alone. Vertical heterogeneity
was not considered in our study, given our focus on
regeneration planning subsequent to a regional storm
event. However, fostering uneven-aged forests will also
offer advantages in terms of time diversification (Couture
et al. 2016; Messerer et al. 2017; Roessiger et al. 2013)
and aspects of flexibility—as considered in real option
approaches (Schou et al. 2012; Schou et al. 2015), while
further increasing stand resistance (Díaz-Yáñez et al.
2017). In our study, we refer to adaptation to climate
change by adjusting species selection of future forest
generations. This decision is mainly driven by economic
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considerations and the risk attitude of the decision-mak-
er. This perspective uses a static approach of infinity,
meaning that if the forest owner suffers from stand fail-
ure, the initially chosen tree composition will still be
used for regeneration. This assumption appears plausible
as future tree generations partly stem from natural regen-
eration (see ESM Table S7). However, changing informa-
tion on climate change may update knowledge and be-
liefs and change decisions in the future. Using our sim-
ulation results for informing a Bayesian simulation ap-
proach (Yousefpour et al. 2014, 2017) could be a fruitful
field for future research.

We found that economic input parameters, such as
establishment costs, discount rates, or correlations, af-
fected species composition at a similar magnitude com-
pared to climate change, thus supporting and extending
the findings by Neuner and Knoke (2017). This result
should, by no means, undermine the importance of ad-
aptation strategies towards climate change. But, it dem-
onstrates that regeneration strategies for climate-smart
forestry should still carefully consider classic drivers of
investment decisions, particularly establishment costs.
We found that optimal species proportions in mixed
stands were more robust towards perturbations in these
drivers. Hence, mixed stands might offer an important
hedge against both climate and market uncertainty.

In our study, we identified optimal species mixtures accord-
ing to the VaR criterion. This criterion corresponds to the ob-
jective of avoiding situations with very low return expectations.
This is a rather conservative measure of portfolio selection,
which may be applicable for the management of natural re-
sources (Härtl et al. 2013). In line with classic portfolio theory,
the approach is based on the assumption of normally distributed
returns, which may not always be met, particularly under the
occurrence of rather extreme events (Fasen et al. 2014). It is
furthermore a very data-intensive approach, as expected
returns, risks, and correlations between alternatives are derived
from the Monte Carlo simulation. In situations with scarce data
and non-normally distributed returns, robust portfolio optimi-
zation techniques may offer an alternative approach (Knoke
et al. 2017; Messerer et al. 2017).

Our approach could be further extended and improved
by a larger number of species (Brunette et al. 2017), for
which survival functions are currently under develop-
ment. This could substantially change the proportion of
spruce for our example site, particularly when including
more economically competitive species, such as Douglas
fir (Beinhofer and Knoke 2010; Knoke et al. 2017).
Furthermore, economic considerations may not be the
only drivers of regeneration decisions, while provision
of multiple ecosystem services might further support
the establishment of mixed stands rather than pure stands
or block mixtures (Knoke et al. 2017).

5 Conclusions

The bio-economic modelling approach reveals that sur-
vival probabilities are a crucial aspect to consider in re-
generation planning. This finding also underlines the
economic relevance of empiric tree survival modelling
and the importance of continuous tree mortality observa-
tions, such as those available from the ICP Forest or the
German crown condition databases. Continuing and
expanding this monitoring network will improve future
bio-economic modelling approaches. Particularly, the ef-
fects of stand mixtures on stand resistance are of high
economic importance.

Our findings also support current policies towards incen-
tivizing mixed stands. Mixing species may be an important
measure to increase forest stability, while also maintaining
high shares of economically desirable species. This applies,
for example, to spruce in Central Europe with its high im-
portance for the wood-processing industry. Our results also
demonstrate that incentives related to establishment costs
may impact the forest owner’s regeneration decisions more
intensively than expectations on increasing natural hazards.

Our approach combines an empiric and mechanistic model
and builds on sensitivity analysis. Understanding and commu-
nicating the economic consequences of uncertain input factors
can help to design purposeful adaptation strategies and regen-
eration planning.
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