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Abstract—For autonomous driving, knowledge about the
current environment and especially the driveable lanes is of ut-
most importance. Currently this information is often extracted
from meticulously (hand-)crafted offline high-definition maps,
restricting the operation of autonomous vehicles to few well-
mapped areas and making it vulnerable to temporary or per-
manent environment changes. This paper addresses the issues of
map-based road models by building the road model solely from
online sensor measurements. Based on Dempster-Shafer theory
and a novel frame of discernment, sensor measurements, such
as lane markings, semantic segmentation of drivable and non-
drivable areas and the trajectories of other observed traffic
participants are fused into semantic grids. Geometrical lane
information is extracted from these grids via an iterative path-
planning method. The proposed approach is evaluated on real
measurement data from German highways and urban areas.

I. INTRODUCTION

Developing an accurate, robust and current representation
of an autonomous vehicle’s environment is one of the
major challenges for autonomous driving to become a
reality. Higher-level functions like prediction, trajectory-
and maneuver planning rely on information about other
traffic participants, lane geometry and static obstacles
from the road model. Currently many autonomous driving
projects rely on meticulously (hand-) crafted offline high
definition maps, enriched with sensed traffic participants,
traffic light states and static obstacles. This restricts the
operation of autonomous vehicles to a few well-mapped
areas and makes them vulnerable to temporary or permanent
environment changes not yet reflected in the map (e.g.
construction sites, freshly applied lane markings). Moreover,
the information extracted from the map can only be as
good as the accuracy of the localization on the map, which
in complex dynamic urban environments still proves to be
challenging to guarantee. While the currentness issue could
be addressed by a dense fleet of mapping customer vehicles
frequently updating the map in the back-end, this inevitably
would incur data transmission, data trustworthiness and cost
issues.

In contrast to offline high definition maps an online road
model can be built solely using sensor measurements directly
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from the autonomous vehicle. We propose such an online
road model built on LiDAR point clouds, lane markings,
vehicle trajectories and to the best of our knowledge, for
the first time a semantic stereo point cloud.

The remainder of the paper is structured as follows: In
section II related work about semantic segmentation, fusing
different sensor modalities in grids and building online road
models is discussed. In section III an overview of the
proposed online road model framework is given. In particular
the construction of the grid and the lane extraction are
described. In section IV the online road model is evaluated on
high definition maps. Section V provides concluding remarks
and points out future work.

II. RELATED WORK

Although the task of online road model estimation from
sensor data is not very well studied yet, several lines of
work are of relevance for it: camera and LiDAR based lane-
and road boundary estimation, detection and tracking of
dynamic objects, segmentation of street level images and
semantic 3D reconstruction.

Obviously lane markings can and should be used for
road model estimation e.g. [1] whenever they are available.
However, lane markings are sometimes ambiguous
(especially in construction sites), often worn out or the
center lines are deliberately removed in urban streets to
discourage speeding. In absence of lane markings sometimes
at least road boundaries can be estimated from camera or
radar measurements (e.g. [2], [3]). Unfortunately, most roads
are not clearly delimited by boundaries like guard rails
and the curbs are often so low they are indiscernible from
automotive-grade laser scans. Also road boundaries only
delimit drivable from non-drivable areas without carrying
additional information about the drivable area itself.
Although road model estimation from road boundaries alone
is possible as long as lane parallelism is true (mostly on
highways), extracting individual lanes is not as soon as
non-parallel lanes in the more complex urban environments
must be taken into account. Another valuable source of
lane information exists in the trajectories of the other
observable traffic participants. Drivable areas and likely
lane center lines can be inferred from simply observing
the traffic scene. In [4] the trajectories are only used to
support the lane boundary estimation of the ego lane. The
ego lane itself is estimated based on lane markings detected
by a camera system. To sum up, existing road model
estimation approaches based on lane marking detection or



road boundary estimation may work well enough for some
highway scenarios but are unable to cope with the diversity
of rural and urban scenarios. Here the notion of drivable
and non-drivable areas is insufficient. Often areas and their
semantic meaning cannot be derived from (protruding)
geometry alone (e.g. parking spaces, crosswalks, bus- and
bicycle lanes). The color, texture and additional cues such
as traffic signs are necessary to understand the semantic
meaning of these areas and comply with their associated
rules. Here the next generation of visual scene understanding
is required. Prior scene understanding work like [5], [6] was
already concerned with segmenting and 3D reconstructing
urban road scenarios from stereo- and mono camera images.
However, these approaches were still based on Superpixels
and conditional random fields. Then the publication of the
CityScapes dataset [7] for the first time offered sufficient
training data for a wide variety of classes relevant to
autonomous driving, such as road, sidewalk, parking, rail
track, vegetation and buildings. This fueled the field of
image segmentation methods based on convolutional neural
networks (CNNs), e.g. [8]-[14], which outperform the prior
work speed- and accuracy-wise. While the segmentation
results are often nothing short of astonishing, to be truly
useful for autonomous driving, having a spatial context for
the semantic information is essential. Spatial information
about the environment is typically measured explicitly with
ranging sensors such as radar, LiDAR, stereo cameras,
inferred explicitly up to scale by structure from motion or
inferred implicitly in neural network architectures e.g. [9].
In [15] CNNs are used to classify cells in a radar occupancy
grid map into three classes (car, other, unlabeled). [16]
propose to first segment an image, feed a top-down view
of the segmented image and some LiDAR occupancy
maps into a encoder-decoder convolutional neural network
which produces a semantic grid image. The most closely
related work to ours is [17], which also use a state of the
art image segmentation architecture to perform semantic
image segmentation and registration to their stereo camera.
The semantic and disparity information is fused into an
intermediate semantic Stixel representation for improved
compactness. In contrast to Stixel-based representations,
our work builds on grid-based representations widely used
for various tasks in environment perception and situation
interpretation. The original idea of storing occupancy
probabilities in grid maps [18] has been extended in several
directions. In [19] an occupancy grid is built from sensor
measurements to extract the road boundaries. In a later
publication by the same author the occupancy grid is
enhanced by GPS waypoints from an offline map [20].
In a further-reaching approach [21] LiDAR measurements
are fused with a-priori knowledge from an offline map
in a grid. The work moreover attempts to detect moving
objects by analyzing the conflict between the past and the
current cell’s states (the cell’s states change from free to
occupied and vice versa). [22] propose a method to generate
occupancy grids containing only the static parts of dynamic
environments. A particle filter is used to estimate the state

of occupancy (occupied by a static or a dynamic obstacle).

In addition to the state of the art, our contribution is
twofold. We propose to perform multi-class semantic seg-
mentation directly on the camera image, compute an accurate
semantic point cloud and only then fuse the results into a
novel semantic evidential grid. We moreover present a proba-
bilistic and easily extensible frame-work based on Dempster-
Shafer theory to perform semantic and temporal grid fusion.
By using two different beliefs calculated from the fused grid
we find dynamically-feasible and collision-free paths and
then extract the lane boundaries along these paths yielding
the final road model. Fig. 1 shows a schematic overview of
the proposed online road model estimation method.
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Fig. 1. Schematic overview of the proposed online road model estimation
pipeline

III. ONLINE ROAD MODEL FRAMEWORK
Our road model is defined as a set of lanes

R={L1,....Ln} )

where each lane consists of a set of points forming the left
and the right boundary respectively.

L= {Bleft7 Bright} (2)

with
B:{plv"‘vpn}vpi:(mvy)T 3)

It is important to note that this road model formulation makes
no assumptions about the geometrical shapes lanes can have.
Additional information such as the type of lane boundaries
can easily be added later by extending the definition of B
or p. In contrast to [23] this work is based on the theory
of belief functions as brought forward by Dempster and
reformulated by Shafer [24]-[26]. Dempster-Shafer theory
(DST) is a generalization of Bayesian probability theory and
allows to calculate the belief in a specific hypothesis taking
all available evidence from different sources into account. In
the DST the frame of discernment (FOD) is defined as a set
2, which elements represent all possible states/hypotheses 6;
of the system under consideration:

0 ={601,0s,...,0n} “)

Note, that the elements #; must be mutually exclusive and
exhaustive, meaning that at least one hypothesis must be true.



A basic belief assignment function (BBA) is used to assign
belief masses not only to a single hypothesis 6; but to any
subset of Q. Thus, 29 is defined as the set of all subsets of
Q) including the empty set &:

2°:={U|UCQ} ©)

The BBA itself is defined as
m: 2% —[0,1] (6)

with the following properties
m(2) =0 7
1 (8)

Ae2v

The belief mass of an element A € 2%, written as m(A), is
the proportion of all available evidence implying exactly A
is true, but no particular subset of A. In contrast to that, the
belief in A, Bel(A), is defined as the sum of the masses of
all subsets of A including A itself:

Bel(A) = ) m(B) ©)

BCA

It is the amount of evidence that either the given hypothesis-
set A or one of its subsets is true. Belief functions with
different BBAs can be combined by combining their re-
spective BBAs. This requires that they are defined over
the same frame of discernment. The combination of BBAs
directly results in a new belief function, which includes the
knowledge/evidences of both belief functions. Let Bel; and
Bels two different belief functions over the same frame of
discernment, and m; and me their corresponding BBAs, then
their BBAs can be combined as follows:

1
m(A) = — > mi(Ai)ma(By), A# @ (10)
A,NB;=A
m(&) =0 (1)
with
k=Y mi(A)ma(B;) (12)

AiﬁB]‘IQ

Eq. 10 is also called Dempster’s Rule of Combination. k is
a measure for the amount of conflict between m; and ms.

In contrast to other authors, e.g. [27], we propose to define
the frame of discernment as

Q={L,M,S,0} (13)
where L stands for Lane, M for Marking, S for Sidewalk
and O for Obstacle. A lane is defined as the drivable surface
between the left and right lane boundary. Markings are
the white/yellow lane markings painted on the ground. The
hypothesis Sidewalk includes the boundary between the lane
and the sidewalk as well as the area of the sidewalk itself (not

only the curbstone). Obstacle comprises any static obstacle
which is not traversable. From the power set

2 = {L,M,S,0,{L,M},{L,S},{L,0},{M,S},
{M,0},{S,0},{L,M,S},{L,S,0},{L, M,0},
{M,S,0}, 2,0} (14)

we only use a “reduced” power set

2 = {L,M, S,0,{M,S},{S,0},{M, S,0},2,Q}
(15)

since in our case the beliefs and masses for all other sets are
not measurable with our current sensor setup. Measurement
data from different sources is fused and accumulated in a
grid-based data representation using the Dempster-Shafer
theory and the above mentioned reduced power set. The
process is explained in detail in the following section.

A. Grid-based Information Fusion

A grid is a multidimensional lattice with equally-sized
cells, each cell storing stochastic information m inferred
from sensor measurements [28]. The belief of a grid m,
containing all the probabilistically correct fused sensor mea-
surements, can be written as

Bel(m) = [ [ Bel(m | z1.4,%1.4) (16)
K2

with sensor measurements z from time 1 up to the current
time step ¢, and the ego-vehicle poses x. m; denotes the cell
with index ¢, which is omitted in the following for the sake of
better readability. For computational tractability, it is more-
over assumed that all cells are conditionally independent of
each other, allowing the parallel computation of all cells on
the GPU. The ego-motion of the vehicle is compensated by
shifting the grids according to the vehicle’s pose change
Xt — Xi;,» which is directly measured by the vehicle’s
odometry system. Measurements from the lane detection
systems, observed object trajectories and semantically seg-
mented point clouds can now be used to infer belief masses
for different hypotheses from the reduced power set 2{2. The
BBAs are the equivalent to an inverse sensor model p(m|z;)
given a new sensor measurement z; in Bayesian probability
theory. The following subsections describe the considerations
necessary for fusing the main sensor modalities.

1) Lane Markings: Lane markings can either be lane
dividers i.e. have the semantic meaning to separate indi-
vidual lanes, be lane edge lines i.e. delimiting the most
outside lane from the emergency lane or road edge lines i.e
separating road-regions from non-road-regions. The physical
appearance of the lane markings, detected by a state-of-the-
art vision system, can at most deliver cues like the type of
marking (solid line, dashed line, double solid/dashed line,
etc.) as well as its color. The color of lane markings is
especially essential for detecting the correct lane markings
to follow in construction sites. In our case the lane markings
are detected with a trifocal camera system delivering for
each marking the type, the color and a set of points (z,y)



describing the marking’s geometry. The BBA used here to
derive the belief masses for different hypotheses from a
lane marking measurement is a convolution of a rectangular
function with a Gaussian distribution reshaped to values
between [0; 1]. The evidence of 0 reflects no knowledge about
a given cell, whereas 1.0 indicates complete knowledge.

For the belief mass of M (Marking), m (M), the Gaussian
models the uncertainty in the position of the measured
marking. The rectangular function is used to take the area
(on the ground) of the marking itself into account. Therefore,
the mean of the Gaussian is positioned in the middle of the
detected marking and the width of the rectangular function
equals the width of the marking. Depending on the type of
the marking the belief mass can also be distributed across
other hypothesis groups than M (Marking) only. In our case
the lane marking detection system is able to distinguish
between marking, sidewalk and road edge. Thus, the mass is
either given to {M}, {S} or {S, O} in case of a road edge.

Detected markings can also be used to infer belief mass for
Lane, m(L). For example, for dashed lane markings, because
crossing them is allowed, they also indicate the existence
of a lane on either side of the marking. Whereas for solid
lines, the existence of a lane can only safely be assumed on
the vehicle-facing side of the marking. For the lane mass
m(L) the mean of the Gaussian is shifted to the left/right by
half of a typical lane width in Germany depending on the
type of the marking. The width of the rectangular function
corresponds to the lane width used for the Gaussian. Since
the lane marking sensor measurements are from a single time
step ¢ only, we denote the inferred masses as mi™(-) from
now on, where the upper index stands for the source of the
information - “Lane Marking” in this case.

2) Moving Objects: The trajectories of other traffic par-
ticipants can also be a valuable source for lane and lane
boundary information. Traffic participants are detected and
tracked in our system using the evidential grid-based tracking
algorithm proposed in [29]. The object tracking provides a
list of traffic participants with the object’s current position
taking information from LiDAR, radar and camera sensors
into account. Assuming most traffic participants use valid
lanes, belief masses for lane and ”’lane boundaries” can be
inferred by using an appropriate BBA. As in the case of
lane markings, traffic participants lend itself to be modeled
by Gaussian distributions and rectangular functions. For the
belief mass of Lane, m(L), the distribution is centered
around each measured object position. The width of the
rectangular function equals the object’s width.

Besides that, it is also possible to infer belief masses for
lane boundaries on the left/right side of the object. Since
it is not possible to distinguish the type of the boundary,
the belief mass is inferred for {M, S, O} indicating that it
is either Marking, Sidewalk or Obstacle, but there is no
further evidence which one exactly it might be. Thus, the
belief mass is assigned to m({M,S,0}). The mean of the
Gaussian is shifted to the left/right of the object’s midpoint
by half of a typical lane width. As the resulting belief masses
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Fig. 2. Situation with 3 markings measured by the lane marking detection
system. For the ego lane a dashed marking on the left side and a continuous
marking (green line) was detected as well as a continuous marking of the
neighbouring lane (brown line). On top, the BBAs for Marking, m(M)
(orange) and for Lane, m(L) (blue), are shown. Below, the resulting grid
is displayed, where the color denotes the hypothesis (M: red, Lane: green).
The belief mass is encoded in the alpha channel of the grid (transparency).

contain sensor measurements from a single time step - they
Obj
are denoted by m; ().

Fig. 3. Grid with belief masses inferred from traffic participant’s tra-
jectories. Green boxes are currently measured traffic participants. The blue
dots indicate past measurements. The color represents the hypothesis (Lane:
green, {M, S, O}: red). The alpha channel (transparency) reflects the mass
value.

3) Semantic Segmentation: With the recent advent of
convolutional neural networks in general and the inception of
fully convolutional networks for semantic image segmenta-
tion [8] in particular, every pixel in an image can be classified
accurately and efficiently by means of an encoder-decoder
architecture. The encoder gently reduces the spatial input
image resolution with alternating sequences of convolutional
and pooling layers, distilling class information - just like
in all major image classification architectures. In contrast
to these, semantic segmentation networks moreover have a
subsequent decoder part with transposed convolution layers.
With these they are able to perform learned non-linear
upsampling while weaving in spatial cues from skip connec-
tions helping to reconstruct the detailed segmentation masks.
See Fig. 4 for an urban traffic scene segmented with our
re-implementation of PSPNet [11]. While simple monocular



Fig. 4. The input image with a segmentation overlay by our re-
implementation of PSPNet. The color of each pixel encodes its class
affiliation.

camera images are cheap and abundant, adding a second
camera is still affordable and yields a more powerful stereo
setup. By determining the disparities between the stereo
images e.g. via Semi-Global Matching [30] and computing
the depth map, distances to objects in the scene can be
measured densely and efficiently. By correctly registering
depth and semantically segmented images, a semantic point
cloud can be projected into the world coordinate system and
is evaluated against our ground truth high definition map.
See Fig. 5 for the semantic point cloud overlaid on top of
our HD map. To coerce the 3D semantic point cloud into

Fig. 5. The semantic point cloud overlaid over our HD map. The color of
each pixel encodes its class affiliation.

our common 2D grid representation, all measurements are
mapped to their corresponding hypotheses group of the frame
of discernment and projected to 2D grids. The derived belief
mass for a hypothesis group A at each grid cell is simply the
multiplication of the class confidence and the pixel location
probability:

m(A) = Dclass (A) * Plocation (A) a7

The class confidence is outputted by the semantic segmen-
tation, whereas the location probability is a result of the
stereo disparity calculation. As the semantic segmentation
is done for every image frame independently, the resulting
grid reflects a single time step only. The resulting grids are

therefore denoted as m$S(-).

(@ (b)

Fig. 6. Grid created from the semantic point cloud. (a) Camera image
showing the situation. (b) Grid containing the belief masses mf S(-). Each
pixel represents a grid cell. The color encoding represents the hypothesis
(Lane: purple, Sidewalk: magenta), the alpha channel (transparency) reflects
the mass value.

B. Grid Fusion

In order to obtain belief masses containing all the data
the belief masses described in the previous section have
to be fused first across all input sources (lane marking,
moving objects, semantic segmentation) and later temporally
to include all information from the past up to the present time
t:

1l LM S . Obj S ..SS
mi () =mg () @ m () @ mp () (18)

This way, m2'!(-) contains the information available from
all sensors at a single time step t.

For the temporal fusion, the accumulated grid from the
previous time step is fused with the current Grid mé!(-):

miy(-) = mily () &' mi'() (19)
Currently, we are experimenting with different implemen-
tations of the sensor fusion operator @ and the temporal
fusion operator &', In this paper, Eq. 10 is used for &5 and
the cumulative fusion rule from [31] for @T.

C. Road Model Extraction

Higher-level functions like prediction and maneuver plan-
ning require a continuous and consistent description of
the lane geometry and topology graph to work. Different
methods to extract these representations from grids were
already proposed in [19], [23]. In this paper, lane geometries
are extracted by first searching for drivable paths using the
belief Bel(L) of mil, with the path planning method with
unknown goal pose described in [32]. It is based on A* [33]
and Rapidly-exploring Random Trees (RRTs) [34]. The path
extraction is performed as follows:



Fig. 7. Example of iterative path planning, showing paths (blue) and
clustered paths (green) of two consecutive iterations, with a branching in
the first iteration. The underlying lane grid is from a crossing scenario.

1) Sample reasonable starting points around the ego ve-
hicle on the grid

2) For every starting point, find goal paths, using A*/RRT
with unknown goal pose

3) Cluster the goal paths

4) Repeat (2) and (3) for n iterations using the end points
of the clustered paths as starting point

5) Extract the lane boundaries along the clustered paths
from the lane boundary grid

On the grid m3", containing the belief Bel(L) a dilation

with the vehicle’s shape as structuring element is performed
before using it as cost map. The combination of A* and RRT
in the planning with unknown goal pose algorithm ensures
that the grid space is explored efficiently. For more details
the reader is referred to [35]. The total cost of the path is
calculated as a function of the cumulative sum of its cells in
the grid along the path. Paths that incur high costs are hence
less likely on a lane. The result of the path planner from
a single starting point is a set of drivable paths. Paths that
are believed to be on the same lane are clustered with the
method described in [36]. To further improve the efficiency
of the planner, it can be run with limited depth and iteratively
restarted from the last end points of the clustered paths. Fig. 7
shows iteratively planned paths in a crossing scenario. Due
to the random nature of RRT and the noisy costmap, the
resulting clustered paths are not smooth enough to be used
as lane center lines directly. Instead, for each cell of the
clustered path we search orthogonally for left and right lane
boundary points using the belief Bel{M, S, O} and extract
them if they exceed a threshold 7,,4. Using least squares
estimations with smoothness penalties, splines are fitted to
the boundary points. Smooth estimations of the lane center
line and the lane width are then determined. Additional logic
is used to correctly section lanes at branching and merging
points and to connect neighboring lanes by association of
shared boundaries in the topology graph. Fig. 8 shows an
example of the extracted road model using lane markings,
semantic segmentation and object trajectories.

Fig. 8. Two path planners are set up to iteratively plan (starting points on
the left side), successfully planned paths are shown in blue, the clustered
paths in green, the final lane boundaries are shown as red lines.

IV. EVALUATION

The fused grids and the estimated road model are evaluated
on challenging urban scenarios in Munich’s inner city and
in a commercial area. The test vehicle is equipped with five
automotive LiDARs, an automotive lane marking recognition
system and a stereo camera. All measurements are processed
with our ROS-based autonomous driving framework. To
evaluate the presented methods against our globally accurate
ground truth HD map, the vehicle localizes itself with high-
precision using a Kalman filtered proprietary laser scan
matcher and a motion model. Typically, the system achieves
an accuracy higher than 4+ 0.1 m. Our ground truth HD map
was collected exactly the tedious and error-prone way we aim
to avoid. The area to be mapped was scanned with high-
resolution LiDARs and cameras several times, geometric
lane segments were semi-automatically extracted, logically
connected and tagged with semantic attributes. To evaluate
the accuracy of the semantic point cloud, each semantic
point is projected to the HD map and its class is compared
with the ground truth. A performance measure is derived
by dividing the number of correctly estimated points by the
total number of points of a certain class. To evaluate the
semantic grids, the appropriate section of the HD map is
projected to the grid at the same position and size. The two
grids can then be compared on a per cell-basis. For the fused
grid, a threshold was used to make a binary comparison per
cell. A performance measure is made by dividing the correct
grid cells with the total number of grid cells at which the
probability exceeds the threshold. Fig. 9 and Fig. 10, show
the accuracy of the semantic point cloud and semantic grid
for two typical urban scenarios. One can see that especially
the road is estimated quite well by the semantic segmentation
point cloud and the fused grid.

V. CONCLUSION

We presented an evidential framework to generate a
consistent online road model for autonomous driving. Our
approach is solely based on online sensor data and thus
completely map and localization independent. Our DST
based information fusion framework uses a novel frame of
discernment containing all relevant road model elements. Our
framework is easily extensible towards new sensor types and
can elegantly fuse evidence for subsets of hypotheses in a
coherent manner. This allows for the complex multi-class
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hypotheses from a semantic point cloud to be fused in a
controllable and seamless manner. The resulting semantic
grids can also be used for creation or validation of HD
maps. The resulting point clouds and grids were also eval-
uated on real measurement data recorded with one of our
autonomous driving prototypes. The evaluation shows that
the semantic point cloud is accurate and the resulting fused
semantic grid represents the ground truth grid very well. Our
implementation of the grid fusion, path planning and road
model extraction runs in real-time on GPU hardware.

In future the semantic segmentation part will be optimized
in order to let the complete system run in real-time. Enhanc-
ing the semantic segmentation by incorporating spatial and
temporal cues is currently being investigated. Also, the lane
marking polylines accuracy leaves to be desired and with the
recent ApolloScape dataset [37], there is now enough data
to train for lane marking segmentation and directly integrate
it into our segmentation network. Moreover, filtering the
resulting road model over time is expected to improve
the robustness of the road model estimation considerably.
Although first closed-loop tests with our online road model
framework have been conducted successfully, it is merely a
first step towards mapless road models. Especially semantic
relations between extracted lanes and traffic signs and lights
remain open field of research.
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