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Introduction

SeisSol solves the seismic wave
equations in velocity-stress formulation
In elastic [1], viscoelastic [2], and
viscoplastic media (see poster of
Stephanie Wollherr) on unstructured
tetrahedral meshes.

Standard rupture format

SeisSol supports the standard rupture
format version 1.0 and 2.0 (see [3]) for
moment tensor (point) sources.

» Enables large number of subfaults
with distint source time functions

» Supports rake rotation

» Mapping to unstructured mesh via
converter. Supports geocentric
coordinates or any projection available
in the library proj.4.

Dynamic rupture

» Simulation of rupture dynamics
coupled to wave propagation

» Tetrahedral meshes allow complicated
fault geometry

» Flux-based implementation remains
free of spurious oscillations [4]

Figure 1: Absolute slip rate on Landers fault
system.

3D velocity models

» SeisSol can use ASAGI, “a pArallel
Server for Adaptive Geolnformation”,
which allows fast loading of 3D
datasets.

» Example: Lamé parameters on
volume 187x210x103 km3 with 200 m
resolution, i.e. 6.6 GB data, took 6.4s
on 512 nodes.
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Figure 2: 1994 Northridge earthquake with 3D
velocity model [5].
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Code generation

The ADER-DG scheme of SeisSol boils
down to small matrix matrix
multiplications, where the sizes of the
matrices depend on the order of the
scheme.

In order to achieve high performance,
we generate customized code for each
matrix multiplication using libxsmm as a
back-end. This approach leads to a high
hardware utilisation, reaching up to 8.6
PFLOPS on Tianhe-2 [6].
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Figure 3: We generate optimized microkernels
for dense x dense (left) and unroll sparse x
dense or dense x sparse multiplications (right).

Recently, we extended our code

generator in order to incorporate

viscoelastic attenuation and simplify

future model extensions [7]:

» Automatic detection of irrelevant
matrix entries in matrix chain products

Figure 4: Partial kernel before (top) and after
(bottom) removing irrelevant entries in matrix
chain products.

» Automatic determination of
zero-paddings for aligned loads and
stores

» Enabling block decompositions for

structured sparse matrices
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Figure 5: Block decomposition of stiffness
matrix.

Furthermore, we exploit the tensor
product structure of the discretisation in
order to reduce the computational
overhead of many relaxation
mechanisms:
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Validation

Formal convergence test: Plane wave in
homogeneous medium. Depending on
the number of basis functions used we
obtain up to 7th order convergence.
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Figure 6: Double logarithmic plot of mesh
spacing vs. maximum error.
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Figure 7: Layer over halfspace benchmark
(LOH.3) as proposed in [8].

Performance

Evaluated on SuperMUC Phase 2. Each
node has a dual-socket Haswell
processor with 28 cores.
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Figure 8: Single node performance, 6th order.
Overhead of viscoelasticity about 75 %.
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Figure 9: Strong scaling of layer over halfspace
benchmark with 1.1 million elements.
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Figure 10: High order leads to compute bound
code.

Application

We simulated the 1994 Northridge
earthquake using a mesh with 75 million

tetrahedrons and frequency-dependent
Q as in [9]:

| Qo 0<f<fr,
@) = { Qo (F/f) fr <.

with Qy = 0.1vs,v = 0.6, fr = 1Hz, and
Qp = 2Qg. We use 3 relaxation
mechanims and logarithmic frequency
spacing [10] for fitting the Q model.
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Figure 11: Q model using 3 relaxation
mechanisms and Qp = 20.

On 512 nodes (14336 cores) we achieve
a sustained performance of 187
TFLOPS, which corresponds to about
30% of peak performance.
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Figure 12: EW, NS, and vertical velocity
component at Sylmar converter station east
(34.312°N, 118.481°W).
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