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Abstract

In recent years, the width of the SIMD instructions provided by high performance architec-
tures has increased remarkably. While a decade ago high-end processors would typically provide
128-bit vector instructions, nowadays the latest generations of Intel Xeon and Intel Xeon Phi
processors provide the AVX-512 instruction set, which operates simultaneously on 8 double-
precision (or 16 single-precision) values. Thus, in order to benefit from the full potential of
those architectures, scientific applications need more than ever to consider ways to achieve effi-
cient vectorization, which encourages the implementation of loop-oriented algorithms operating
on regular data structures.

On the other hand, large-scale applications often require adaptive mesh refinement (AMR)
techniques to efficiently compute accurate solutions, as they allow to selectively apply higher
resolutions in regions of interest, or where higher accuracy is desired. Since managing adaptive
meshes requires complex algorithms and dynamic data structures, it is especially challenging to
efficiently combine adaptivity and vectorization. A compromise between the conflicting desires
for regular data structures and for dynamic adaptivity can often be found by using patch-based
adaptive meshes, which allow to substantially reduce the computational costs both in terms of
time and space while also supporting vectorization. However, achieving efficient vectorization
and minimizing the simulation’s time-to-solution on patch-based adaptive meshes are not trivial
tasks, especially for domain-specific developers who are often not HPC experts and may put
less effort in performance engineering.

This thesis investigates vectorization of finite volume solvers in the context of two different
PDE frameworks that implement AMR, using two variations of the shallow water equations as
example applications. For GeoClaw, a simple rearrangement of the arrays used to store the
simulation data was enough to achieve successful vectorization. On the other hand, for the
sam(oa)2 framework it was necessary to replace its inherent cell-wise AMR strategy with a
patch-based approach in order to have more regular data structures that support vectorization.
In addition, we developed a generalization of the high performance numerical scheme that was
implemented for sam(oa)2, which allows it to be applied to various hyperbolic PDEs with relative
ease. That is accomplished via a highly customizable programming interface that transparently
manages vectorization, AMR and other HPC features, allowing application developers to focus
solely on application-specific decisions and numerical algorithms.
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1
Introduction

Most modern processors currently used for large-scale scientific computing applications rely on
multiple levels of parallelism to deliver high performance. In addition to supporting shared-
memory parallelism over tens to hundreds of processor cores, high-end architectures such as
the latest generations of Intel Xeon and Intel Xeon Phi products also provide sets of SIMD
instructions that can operate simultaneously on 256-bit or 512-bit words (4–8 double-precision or
8–16 single-precision values). Moreover, such processors are often combined in supercomputing
clusters with hundreds or thousands of distributed-memory nodes. Therefore, in order to benefit
from the full potential of those high-performance platforms, scientific applications need to be
designed taking all of those different levels of parallelism into account. In particular, considering
the recent increases in the typical SIMD widths of current processors, such applications should
more than ever look for opportunities to apply vectorization (i.e., SIMD parallelism).

In this thesis we investigate strategies to achieve efficient vectorization of finite volume
solvers for systems of hyperbolic partial differential equations (PDEs) on discretizations with
adaptive mesh refinement. More specifically, we present our work on developing vectorized
versions of the finite volume schemes implemented in two different PDE frameworks: Geo-
Claw [9,28] and sam(oa)2 [49,63]. Each of these frameworks implements a different strategy for
providing adaptive mesh refinement, which is a key feature for large-scale applications that need
to efficiently compute accurate solutions, as it allows high resolutions to be selectively applied
in specific regions of interest or where the numerical scheme requires higher accuracy. Since
adaptive mesh refinement is generally implemented with dynamic data structures and, on the
other hand, vectorization requires regular data structures, coupling both features in an optimal
way is not a trivial task and requires careful choice of algorithms and data structures.

For each framework, achieving successful vectorization of the numerical routines required
different modifications. As GeoClaw uses regular grid patches as building blocks for its adap-
tive mesh refinement implementation, its mesh structure was already appropriate for SIMD
parallelism. Nevertheless, achieving efficient vectorization still required a rearrangement of the
arrays used in the finite volume scheme, as the original layout was not suitable for vector-
ization. On the other hand, sam(oa)2 required much more implementation effort, because it
was originally designed for fine-grained cell-wise adaptivity, which was an obstacle for straight-
forward vectorization. This was addressed by replacing the inherent cell-wise adaptivity in
sam(oa)2 with a patch-based discretization that represents a fair balance between the conflict-
ing needs for regular data structures (to support vectorization) and for dynamic data structures
(to allow adaptivity). After those modifications in both frameworks, vectorization of the main
solver loop was achieved by reorganizing the input data of the so-called Riemann problems into
temporary arrays with vectorization-friendly layouts and by employing directives to assist on
auto-vectorization by the compiler.

In addition to our main goal of improving the performance of the finite volume solvers in
GeoClaw and sam(oa)2, we investigate, as a secondary goal, ways to simplify the process of
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CHAPTER 1. INTRODUCTION

implementing new simulation scenarios in sam(oa)2 – the fact that developing a new scenario
requires too complicated implementations was one of the main shortcomings of the framework,
as stated in the concluding remarks of the previous work that served as a starting point for
this thesis [49]. With that goal in mind, after implementing efficient patch-based adaptive
mesh refinement and vectorization approaches in sam(oa)2 we also developed a generalization
of our high-performance finite volume schemes that allows easy customization for various other
systems of hyperbolic PDEs. That is accomplished via a programming interface that transpar-
ently manages the adaptive meshes and other HPC features in sam(oa)2, requiring application
developers to deal solely with application-specific decisions and numerical algorithms.

We evaluate the performance of all our implementations on two modern Intel processors:
Intel Xeon “Haswell” and Intel Xeon Phi “Knights Landing” (KNL). While the former pro-
vides a set of 256-bit SIMD instructions, the latter supports 512-bit SIMD instructions, which
allows us to assess the speedups achieved by vectorization on two different SIMD widths. Ad-
ditionally, although we focus on vectorization performance, all our experiments also consider
shared-memory parallelism, such that we strive to extract the maximum performance from
each of those many-core architectures.

In our implementations and experiments we consider finite volume solvers for oceanic si-
mulations based on two variations of the shallow water equations, which we use as example
applications both for GeoClaw and for sam(oa)2: the single-layer and the two-layer shallow wa-
ter equations. In addition to being used for evaluating the performance of our implementations,
these two systems of hyperbolic PDEs are also used in many implementation examples through-
out this thesis and serve as example applications to demonstrate the flexibility and usability of
the programming interface that was developed for sam(oa)2.

1.1 Content Overview

In the following four chapters, we discuss various aspects relevant to the work described in this
thesis. In Chapter 2 we explain basic concepts related to vectorization and discuss what is
usually necessary to achieve efficient compiler auto-vectorization. Chapter 3 concerns adaptive
mesh refinement, with a focus on the two different strategies for implementing adaptive meshes
that are used by GeoClaw and sam(oa)2 and the challenges involved in combining adaptive
mesh refinement with vectorization. In Chapter 4 we give an overview of the relevant numerical
background, including basic theory of hyperbolic PDEs, finite volume methods, Riemann solvers
and the two variations of the shallow water equations that are used as example applications in
this work. Then, in Chapter 5 we describe the high-performance platforms that we use for all
performance experiments presented in this thesis.

The main contributions achieved by this work are then presented in the subsequent chapters.
In Chapter 6 we describe our work on adding vectorization to the numerical routines of the
GeoClaw package, with special focus on the Riemann solvers. Chapter 7 presents on our work
on sam(oa)2, in which we first needed to implement a new patch-based discretization in order
to apply the same vectorization approach that was used for GeoClaw. Then, in Chapter 8 we
describe the generic programming interface that was created for sam(oa)2, which allows easy
customization of the patch-based implementation that was developed in the previous chapter.
In each of those three chapters we include a section with an experimental performance analysis
of the developed implementations. Finally, in Chapter 9 we give a summary of our main
contributions and list suggestions for future improvements.
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1.1. CONTENT OVERVIEW

Notes On Source Code Examples

In this thesis, we often illustrate our implementations with source code examples. Since both
frameworks considered in our work have been implemented in Fortran, all source code examples
are given in that programming language. However, we note that the code snippets shown here
are only used for illustration purposes and are not meant to be exact representations of the
actual code used in the frameworks and in our implementations. Therefore, in many cases
the code contained in those examples has been modified with the purposes of facilitating their
understanding and of highlighting the implementation details that are most relevant to the
respective discussion. For instance, we often omit pieces of the code that are not important for
the respective example and that could potentially cause confusion to the reader. When that
happens, it is usually noted by “[...]” passages in the code snippets. In addition, we note
that variables declared as real in those examples always refer to double-precision floating-point
variables, even if that is not explicitly stated in the codes.
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2
SIMD Parallelism

SIMD stands for single instruction multiple data, a paradigm for data-level parallelism that
consists in applying a same operation simultaneously to multiple data elements. The process of
implementing an algorithm such that it can effectively use SIMD instructions in its execution
is often referred to as vectorization.

Modern high-performance architectures provide sets of SIMD instructions that can operate
on relatively wide vector registers. For example, one of the experimental platforms we use in
this work (which we describe more detailedly in Chapter 5) provides 512-bit SIMD instructions,
which can operate on up to eight double-precision or sixteen single-precision floating-point
variables within one processor cycle.

There are multiple options for implementing vectorization on architectures with SIMD in-
structions. In this work we focus on compiler auto-vectorization, which is the most portable
and in many cases the simplest way to achieve vectorization. Other options include for example
assembly-level implementations or intrinsic functions. However, these are not addressed here,
as we found that compiler auto-vectorization was sufficient for our needs.

2.1 Compiler Auto-Vectorization

The simplest option for achieving vectorization is to use the compiler to convert high-level source
code into assembly code that uses SIMD instructions – this process is often referred to as auto-
vectorization. Assuming that the source code has been implemented in a way that is suitable
for vectorization, developers often only need to enable auto-vectorization in the compilation
settings in order to use this approach1. In some cases, however, further work is necessary to
assist the compiler in the vectorization process, as we discuss further later.

When auto-vectorization is enabled, the compiler inspects all loops in the code, checking
whether they can be safely and efficiently executed with SIMD instructions and, if that is the
case, converts them into vectorized assembly code. A very simple example of vectorizable code
consists of a loop performing a single arithmetic operation over a set of arrays, as we show in
Code 2.1. In this example we show a loop that computes c = a + b for all 10 positions of three
arrays a, b and c and can be easily auto-vectorized by the compiler. Assuming double-precision
arithmetic and a processor that performs 256-bit SIMD instructions, each SIMD instruction
is able to operate simultaneously on up to four positions of each array. Thus, while a serial
implementation requires 10 arithmetic instructions to execute this loop, a vectorized loop is able
to do the same job using only three SIMD instructions – this is illustrated in Fig. 2.1.

In addition to being able to vectorize simple loops like the one shown in the example above,
modern compilers can often vectorize considerably more complex loops, like the ones we will
address in this thesis. However, in order to be vectorizable, a loop needs to follow a set of

1For the Intel Fortran Compiler used in this work, auto-vectorization is enabled by default for optimization
levels -O2 or higher.
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CHAPTER 2. SIMD PARALLELISM

Code 2.1: Simple loop that can be easily auto-vectorized by the compiler.

1 real :: a(10), b(10), c(10)

2

3 ! [...] (Initialize arrays ‘a’ and ‘b’)

4

5 ! The compiler can easily auto -vectorize this loop:

6 do i=1,10

7 c(i) = a(i) + b(i)

8 end do

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

=

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

+

1st instruction 2nd instruction 3rd instruction

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Figure 2.1: Vectorization of a simple loop that computes c = a + b on three arrays with 10
values each (Code 2.1). Here we assume that the processor’s SIMD registers can fit up to four
of such values, so that the vectorized loop only needs three SIMD instructions to process those
arrays. In the figure, we highlight the operands of each SIMD instruction with white/gray
background colors.

specific guidelines [33]. In the following, we give a few examples of obstacles that prevent
compiler auto-vectorization:

• early exits from the loop;
• data dependencies across iterations;
• calls to external libraries;
• non-vectorizable instructions (e.g., I/O instructions).

Additionally, there are other factors that may become obstacles for straightforward vector-
ization, but sometimes can still be successfully vectorized by modern compilers. These include:

• if-then-else branches;
• non-contiguous memory accesses;
• unaligned arrays;
• loops with non-unit strides.

Modern compilers can sometimes perform additional code transformations in order to success-
fully vectorize such codes. E.g., compilers often vectorize loops containing if-then-else branches
by applying masked instructions, and may restructure the data in the vector registers to allow
vectorization of operations on non-contiguous and/or unaligned data. However, that comes at
the expense of performance, since those extra operations can introduce considerable overhead
to the vectorized loop and should therefore be avoided.

14



2.2. DATA LAYOUTS SUITABLE FOR VECTORIZATION

Code 2.2: Example of structure of arrays (SoA) layout. Since consecutive iterations of this
loop access contiguous memory positions, this loop can be efficiently vectorized.

1 type t_rectangles

2 real :: widths(N)

3 real :: heights(N)

4 real :: areas(N)

5 end type

6

7 type(t_rectangles) :: rectangles

8

9 ! [...] (Initialize arrays ‘width ’ and ‘height ’ in ‘rectangles ’)

10

11 ! Loop with unit stride accesses to memory

12 do i=1,N

13 rectangles%areas(i) = rectangles%widths(i) * rectangles%heights(i)

14 end do

Code 2.3: Example of array of structures (AoS) layout. Here consecutive loop iterations do
not access contiguous memory positions, so this loop is not suitable for vectorization.

1 type t_rectangle

2 real :: width

3 real :: height

4 real :: area

5 end type

6

7 type(t_rectangle) :: rectangles(N)

8

9 ! [...] (Initialize fields ‘width ’ and ‘height ’ of all elements in ’rectangles ’)

10

11 ! Loop with non -unit stride accesses to memory

12 ! (e.g., rectangles(i)%area is not contiguous to rectangles(i+1)%area)

13 do i=1,N

14 rectangles(i)%area = rectangles(i)%width * rectangles(i)%height

15 end do

2.2 Data Layouts Suitable for Vectorization

When dealing with data structures more complex than simple one-dimensional arrays, devel-
opers must carefully choose their data layout in order to support efficient vectorization. It is
especially important to organize the data such that accesses to the arrays have unit stride across
consecutive loop iterations. This can usually be achieved by using the so-called structure of ar-
rays (SoA) layout, in contrast to the array of structures (AoS) layout that is also used in many
applications. In Code 2.2, we show a vectorizable loop that operates on data organized with
an SoA layout, while in Code 2.3 we show an analogous implementation using an AoS layout.
While the former code operates on data stored contiguously, the latter performs non-unit stride
accesses to the memory, and can therefore not be efficiently vectorized.

Also when using arrays with multiple dimensions it is necessary to carefully choose their
layout with respect to the ordering of the array’s indices. As before, the goal is to support
vectorization by performing only unit stride accesses across consecutive iterations. That can be
achieved by choosing the data layout such that the main (innermost) loop iterates over the index
for which consecutive positions are stored contiguously in memory. For programming languages
that store multi-dimensional arrays using column-major order like Fortran, that means that
vectorized loops should iterate over the leftmost array index.

In Code 2.4 we show a vectorizable loop operating on a two-dimensional array – note that

15



CHAPTER 2. SIMD PARALLELISM

Code 2.4: Vectorizable loop that operates on a two-dimensional array. Vectorization is only
possible because the data layout defined by the order of the array indices resembles the SoA
layout, i.e., the loop iterates over the leftmost index.

1 ! Here we use positions (:,1) for widths , (:,2) for heights and (:,3) for areas

2 real :: rectangles(N,3)

3

4 ! [...] (Initialize positions rectangles (:,1) and rectangles (:,2) )

5

6 ! Loop with unit stride accesses to memory

7 do i=1,N

8 ! areas = widths * heights

9 rectangles(i,3) = rectangles(i,1) * rectangles(i,2)

10 end do

this code is very similar to the two examples discussed above. This code can only be ef-
ficiently vectorized because the loop iterates over the leftmost index of the array declared as
rectangles(N,3), such that consecutive iterations access positions that are stored contiguously
in memory. Conversely, if this array had been declared as rectangles(3,N), two consecutive
loop iterations would access array positions (1,i) and (1,i+1) that are not stored contigu-
ously, preventing efficient vectorization.

2.2.1 Data Alignment

In addition to requiring an appropriate layout for the arrays used in vectorized loops, efficient
vectorization also depends on proper alignment of those arrays in memory. In order to maximize
vectorization efficiency, arrays should be aligned to a multiple of the register SIMD width – e.g.,
for 512-bit instructions, their starting address should lie on a 64-byte boundary. If that is not
the case, the compiler is not able to operate on the data as efficiently as if it was properly
aligned, because it needs to use unaligned load/store instructions and to generate an extra
“peel loop”, which precedes the main loop operating on the array elements that are stored
before the required alignment boundary [32].

While data alignment in Fortran can be configured individually for each array via the com-
piler directive !DIR$ ATTRIBUTES ALIGN, the Intel Fortran Compiler used in this work also
provides the options -align array32byte and -align array64byte, which can be used to
align all arrays (except those in COMMON blocks, which we do not use in this work) to 32-byte
or 64-byte boundaries, respectively. Due to their simplicity, we use these compiler options in
all our implementations.

In the case of arrays with two dimensions, efficient vectorization requires proper alignment
not only of the first element in the arrays, but also of the first element in each of their columns
(for column-major languages like Fortran). Consider again the example in Code 2.4: although
vectorization is possible because the loop operates on data stored contiguously, the alignment of
the array elements on which the loop operates may not be ideal depending on the parameter N.
In this example, proper alignment is necessary for the elements of the array rectangles stored
at positions (1,1), (1,2) and (1,3), which are accessed in the first loop iteration. That will
only be possible if, in addition to the array rectangles being aligned, the array dimensions are
defined such that the memory required to store each column is also a multiple of the register
SIMD width – which can usually be accomplished by padding such arrays, if necessary [34].
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2.3. COMPILER DIRECTIVES TO ASSIST AUTO-VECTORIZATION

2.3 Compiler Directives to Assist Auto-Vectorization

One of the most complex tasks performed by the compiler when considering whether to auto-
vectorize a loop is the search for data dependencies across iterations. While compilers can often
correctly detect existing dependencies, in many cases they are unable to guarantee that there
are no dependencies, especially for loops with very complex codes. When that happens, they
take the conservative approach and do not vectorize such loops, to avoid the risk of generating
executables that compute incorrect results.

Besides checking if a loop can be safely vectorized, compilers usually also consider whether
vectorization would be really beneficial for its performance [31]. For that they estimate the
costs of executing the loop with scalar and with SIMD instructions, and use these estimates to
decide whether to vectorize it. However, these estimates can sometimes be inaccurate, leading
the compiler to not vectorize loops that would perform faster if vectorized (or inversely, to
vectorize loops that would perform faster without vectorization).

In cases where developers are not satisfied with the decisions made by the compiler regarding
vectorization, they can intervene and provide additional instructions, using compiler directives
that aid auto-vectorization. Here are some examples of such directives supported by the Intel
Fortran compiler, which should be placed immediately before the loop constructs:

• !DIR$ NOVECTOR directive: instructs the compiler to never vectorize the loop;

• !DIR$ IVDEP directive: instructs the compiler to ignore unproven dependencies. However,
the compiler will still not vectorize the loop if it is able to find proven dependencies;

• !DIR$ VECTOR ALWAYS directive: instructs the compiler to ignore the efficiency analysis
(but not the dependency analysis);

• !DIR$ VECTOR ALIGNED directive: can be used to assert the compiler that all arrays ref-
erenced in the loop are properly aligned;

• !DIR$ SIMD directive: instructs the compiler to ignore both the dependency analysis and
the efficiency analysis and always vectorize the loop (provided that it is possible to do it).
When using this directive, developers are responsible for guaranteeing that there are no
data dependencies, as the resulting executable may compute incorrect results otherwise.

In addition, the OpenMP standard (4.0 and later versions) provides the !$OMP SIMD direc-
tive, which was designed to behave like the !DIR$ SIMD directive described above [58]. However,
in our work we experienced that the OpenMP directive can achieve better results, as it is some-
times able to vectorize more complex loops than the other. Therefore, in our implementations
we used the !$OMP SIMD variation whenever necessary.

2.3.1 Vectorizing Loops with Calls to Other Subroutines

Vectorizing a loop containing calls to different functions/subroutines can be achieved by declar-
ing them as SIMD-enabled with the !$OMP DECLARE SIMD directive. This instructs the compiler
to generate a vectorized version of the subroutine (in additional to the serial one), which is then
used if the subroutine gets called from inside a vectorized loop.

Alternatively, subroutines can often be inlined into the loop – in that case, their executable
code becomes part of the loop itself, so that it is also considered by the compiler when applying
auto-vectorization to the loop. While in many cases subroutines are automatically inlined by the
compiler (depending on their structure and on the compiler optimization options), developers
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CHAPTER 2. SIMD PARALLELISM

can force the compiler to inline a specific subroutine using the directives !DIR$ FORCEINLINE

or !$OMP FORCEINLINE.
In this work, we experienced much higher vectorization performances with the inlining ap-

proach, in comparison to declaring the subroutines as SIMD-enabled – inlining usually delivers
better performance not only because it eliminates the overhead of subroutine calls, but also
because it allows the compiler to optimize the inlined subroutine specifically for the current
loop [5]. Thus, the implementations and experiments discussed in this thesis do not consider
the SIMD-enabled approach, as we always use the FORCEINLINE directives to get subroutine
calls inlined into vectorized loops (and vectorized as well).

In Section 6.2.2, we give more details about the approach we used to achieve auto-vectorization
of the main solver loop both in GeoClaw and in sam(oa)2. In addition, we also compare our
implementation with other approaches used in related work in Section 6.2.3.
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3
Adaptive Mesh Refinement

Scientific applications often deal with multi-scale domains where high resolutions are desired
for certain regions, while lower resolutions are sufficient for other regions. Oceanic applications
like the ones we consider in this thesis are a typical example: properly modeling small-scale
bathymetry features along a coast may require high resolutions on the scale of meters, while
the simulation domains often refer to oceans that could be as large as thousands of kilometers.
Modeling entire oceans with scales of meters is clearly unnecessary, and may even be impossible
depending on the computational resources available. In fact, on some regions of the ocean it is
often enough to use resolutions on the scale of several kilometers, as waves very far from the
coast may have wavelengths of more than 100 km [39]. However, as the waves approach the
shore, higher resolutions become necessary to more accurately model their behavior.

Such applications usually benefit from implementing adaptive mesh refinement strategies,
which allow to dynamically increase or decrease the resolution applied at specific regions, de-
pending on the current simulation state or on other properties (e.g., geological properties) of
those regions. Although managing adaptive meshes usually introduces considerable overhead
due to the complex algorithms and data structures involved, they are almost always worth-
while for simulations with multi-scale domains, since they are able to substantially lower the
computational costs both in time and space.

For instance, in one of the experiments we describe in Section 7.3 we performed a high-
resolution simulation using an adaptive mesh whose maximum size reached approximately
34 million cells, while applying the same maximal resolution using a static mesh with uni-
form refinement would have required more than 17 billion cells – a reduction in the mesh size
by a factor of roughly five hundred. Such drastic reductions on the number of unknowns and,
as a consequence, on the computational costs are likely to compensate for any overhead (in
the execution time and/or in the memory required per cell) that may have been introduced
due to management of adaptive meshes.

3.1 Strategies for Adaptive Mesh Refinement

Existing PDE frameworks with adaptive mesh refinement use meshes with characteristics that
can differ considerably from each other – they may be composed of cells with different geome-
tries, may be structured or unstructured, may implement various strategies for data storage
and traversal schemes, etc. As such, adaptive mesh refinement implementations may also vary
considerably, depending not only on the mesh structures being considered but also on other
design decisions. Therefore, although many other strategies and implementations can be found
in literature, here we focus on the strategies adopted by GeoClaw and sam(oa)2, the two PDE
frameworks considered in this thesis. Note that in this chapter we do not discuss implementa-
tion details of those two frameworks, because these will be provided later in this thesis – more
specifically, in Section 6.1 for GeoClaw and in Section 7.1 for sam(oa)2.
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(a) Adaptive mesh (b) First level (c) Second level

Figure 3.1: Example of a multi-level hierarchical adaptive mesh with two refinement levels.
The first level covers the entire domain, while patches in the second level overlap some of its
regions. In a larger example, regions of the second level could have been further refined to form
a third level, and so on. The complete adaptive mesh is obtained by combining all refinement
levels.

3.1.1 Multi-Level Hierarchical Adaptive Meshes

Adaptive mesh refinement is often implemented by combining multiple static grids (usually
referred to as blocks or patches) into a dynamic adaptive scheme. That is the case for GeoClaw,
which organizes multiple patches following the Berger-Oliger-Collela [8,10] multi-level approach:
a coarse grid is used for the entire simulation domain, while extra overlapping grid patches with
finer refinements are generated for regions where higher resolution is desired. This process
can be recursively repeated for each grid patch to achieve even higher resolutions, leading to a
multi-level hierarchical structure where each refinement level is composed of grid patches with
finer resolutions than the previous level. As an example, in Fig. 3.1 we show an adaptive mesh
composed of two refinement levels.

An advantage of this approach is the fact that it requires relatively simple data structures
and algorithms to manage adaptive mesh refinement. Also, because static grid patches are used
as building blocks for the adaptive mesh, numerical algorithms can be designed similarly as they
would be for a static mesh with uniform refinement. Nevertheless, managing adaptive meshes
using this approach still requires careful implementation of interpolation techniques to perform
refinement/coarsening of cells and to properly handle the interfaces between patches located in
different refinement levels, in order to avoid introducing numerical errors in the simulation [39].

In addition, regular grid patches are also advantageous for performance reasons, especially
when their data are stored as simple arrays: such data structures usually support the imple-
mentation of efficient loop-based algorithms, which in many cases can be further optimized by
applying vectorization – this will be discussed further in Section 3.2.

On the other hand, this approach can often be less effective on reducing the number of
unknowns in the simulation, when compared to other approaches for adaptive mesh refinement.
First, because of its design with overlapping grids on the refined regions, which causes the simu-
lation to unnecessarily store and handle unknowns in those regions more than once. And second,
because it can often unnecessarily refine cells for which refinement is not required, if they are
located close to other cells for which refinement has been requested. This happens because such
implementations usually identify clusters of cells flagged for refinement and apply refinement
to all cells in each cluster. While many frameworks like GeoClaw use a heuristic like the one
presented in [7] to reduce the number of unnecessary refinements, this is still not as effective on
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(a) Adaptive mesh (b) Refinement tree

Figure 3.2: Example of a tree-structured mesh based on quadtree-like refinements and its
respective refinement tree. The leaves of the refinement tree correspond to the actual cells in
the mesh, while non-leaf nodes correspond to cells that have been further refined. Note that the
adaptive mesh in this example has exactly the same structure as the one shown in Fig. 3.1(a).

minimizing the number of unknowns as other approaches that employ finer-grained schemes.

Several other frameworks use the same or very similar strategies for adaptive mesh refinement
as GeoClaw. Examples include Uintah [42, 66], SAMRAI [30], Chombo [16], AMROC [17] and
FLASH [20]. For a survey on some of these and other similar frameworks, we recommend [19].
While the strategies implemented in these frameworks are based on the strategy employed by
GeoClaw, a few design differences may be found in some of them. For instance, although Uintah
previously used the same heuristic [7] as GeoClaw to define the regions to which refinement is
applied, this has been replaced with a different one that avoids global communication and
presents much better scalability on tens of thousands of cores [41].

3.1.2 Tree-structured Adaptive Meshes

The strategy for adaptive mesh refinement implemented on sam(oa)2 uses an alternative ap-
proach based on tree-structured meshes that are generated via recursive subdivisions of the
simulation domain, similarly to (or often based on) quadtrees/octrees. In Fig. 3.2 we show an
example of a tree-structured adaptive mesh (and its refinement tree) based on quadtree-like
refinements, i.e., rectangular cells can be recursively refined into four finer cells. This strategy
leads to domain discretizations composed of non-overlapping cells with varying refinements,
therefore avoiding redundant work on the refined regions. While this approach may require
more complex algorithms and data structures compared to multi-level approaches, it can often
be more successful at reducing the number of elements in the adaptive mesh, not only because
it does not rely on overlapping cells, but also because it supports more fine-grained refinement
schemes that are usually able to prevent unnecessary refinements.

Tree-structured approaches for adaptive mesh refinement are used by several frameworks,
differing from each other in various implementation details. Some of them offer cell-wise adap-
tivity (i.e., refinement is decided individually for each cell), like e.g. sam(oa)2, Peano [73],
p4est [13], Dendro [64] and amatos [6]. On the other hand, other frameworks implement patch-
based approaches, like Daino [71], WaLBerla [22], ForestClaw [12] and PeanoClaw [67]. In fact,
patch-based implementations for tree-structured adaptive meshes often represent a fair balance
between effectiveness of adaptive mesh refinement and performance of the numerical solvers.
Therefore, replacing cell-wise adaptivity with patch-based adaptivity on tree-structured adap-
tive meshes has become attractive as a means to increase their efficiency. For example, in our
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work with sam(oa)2 we replaced cells with regular patches in the leaves of the refinement tree,
which allowed us to apply vectorization when processing each patch – this motivation is dis-
cussed further in Section 3.2 and our implementation is described in detail in Section 7.2. A
similar strategy has also been developed for Peano [67,74], where clusters of small patches with
same refinement are identified and fused into larger patches on-the-fly.

Linearization via Space-Filling Curves

Many frameworks based on tree-structured adaptive meshes (e.g., sam(oa)2, Peano, p4est) use
linearizations of the mesh elements based on so-called space-filling curves for various purposes.
For instance, parallelization and load balancing implementations based on space-filling curves
are relatively popular, because they can provide a one-dimensional domain decomposition for
multi-dimensional adaptive meshes. Furthermore, space-filling curves can also be used to elim-
inate the need for explicitly storing the complete refinement tree, by storing only its leaves
(which correspond to the actual cells/patches in the mesh) following the order in which the
curves traverse them.

In addition to the purposes described above, some frameworks like Peano and sam(oa)2 also
use space-filling curves to implement memory- and cache-efficient traversal schemes over their
mesh elements. The main difference between the approaches used in these two frameworks is
the geometry of the cells. On the one hand, Peano uses square or cubic cells that can be split
equally in each dimension and organizes them following the Peano space-filling curve. On the
other hand, sam(oa)2 uses triangular cells that can be recursively split in half, producing meshes
that can be inherently organized according to the Sierpinski space-filling curve. The main
advantage of the approach used by sam(oa)2 in comparison to Peano is that in its discretization
scheme it is always possible to completely avoid hanging nodes, i.e., vertices that split cells
only on one side of an edge and usually require special treatment when applying the numerical
scheme. However, this comes at the cost of performing additional refinements, which increases
the number of cells in the mesh. On the other hand, the Sierpinski-based adaptive meshes
in sam(oa)2 are limited to adaptivity in two spatial dimensions, while Peano supports fully
adaptive simulations over three or more dimensions.

3.2 Vectorization on Adaptive Meshes

As discussed in Chapter 2, vectorization requires loop-based algorithms operating on regular
data structures (most commonly, simple arrays). When dealing with applications that pro-
vide adaptive mesh refinement, that is not always the case, as considerably complex algorithms
and data structures are often used. In particular, implementing vectorization on frameworks
that provide cell-wise adaptive mesh refinement can be quite challenging, since in such im-
plementations the mesh elements are rarely stored in regular data structures. For instance,
sam(oa)2 implements an element-oriented design in which cells and edges are processed indi-
vidually, without access to the data of other elements in the mesh. In addition, the memory-
and cache-efficient traversals in sam(oa)2 are based on stack and stream data structures, which
further complicates the implementation of vectorization approaches.

On the other hand, such complications are in general not present for frameworks that use
static patches as building blocks for their adaptive scheme, as the data of each patch is usually
stored in regular data structures that in many cases can be adapted to support vectorization.
Still, we found that achieving efficient vectorization requires careful implementation and choice
of data structures, as will be shown in Section 6.2, where we present our approach for vectorizing
the numerical routines of GeoClaw.
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Considering this, an interesting option for applying vectorization to tree-structured adaptive
meshes with cell-wise adaptivity is to replace this scheme with a patch-based approach. That
can usually be accomplished by using the leaves of the refinement tree to store regular patches
instead of single cells, as done e.g. in ForestClaw and as we did in this work for sam(oa)2 – this
is discussed further in Section 7.2. By switching to a patch-based approach, such frameworks
can usually store the data of each patch using regular data structures and efficiently implement
vectorization on the algorithms used to process each patch.

3.3 Influence of Patch Sizes

Applications that combine adaptive mesh refinement with regular data structures (for vector-
ization and in general more efficient algorithms) need to be designed striving to find a balance
between both strategies, since one can often invalidate the benefits of the other. This de-
sign conflict usually concerns the size of the grid patches being applied. On the one hand,
small patches lead to fine-grained adaptivity that minimizes the overall computational work
required, but hinders efficient algorithms and vectorization and may also increase the over-
head for handling the boundaries between different patches. On the other hand, larger patches
foster vectorized and more efficient loop-based algorithms, but at the same time reduce the
effectiveness of adaptive mesh refinement.

As mentioned before, strategies for adaptive mesh refinement based on multi-level hier-
archical adaptive meshes usually apply coarse-grained refinement schemes – this is useful to
minimize the overhead necessary to handle boundaries between patches in different refinement
levels, which can be considerably more expensive than handling patches in the same refinement
level due to more complicated interpolation schemes required to treat hanging nodes. Never-
theless, frameworks are often able to reduce the size of the patches being used in each level
by subdividing them into smaller ones. For instance, GeoClaw’s current implementation splits
large patches by imposing an upper limit of 60×60 cells in each patch – in practice, we observed
that patches in GeoClaw generally have 900–3600 cells each. While this strategy does not solve
the problem of having unnecessarily refined cells in the patches, it can be useful for improving
cache efficiency and creating opportunities to apply parallelism across the multiple patches.

In contrast, frameworks that use patch-based tree-structured adaptive meshes are usually
able to apply finer-grained schemes and have much smaller patches, reducing the computation
work required for a given solution accuracy. For example, our recently implemented patch-
based discretization in sam(oa)2 supports patches with only four cells each, and two-dimensional
simulations with Peano [67, 74] support patches with nine cells. While very small patches are
probably not the best choice due to the reasons mentioned previously, supporting such a fine-
grained refinement scheme is advantageous because it allows to experiment with varying patch
sizes in order to find a setup that minimizes the execution time for each application.

We address these design conflicts further in the context of sam(oa)2 in Section 7.3, where we
experimentally assess how the choice of patch size influences various factors in the simulations,
like the simulation throughput, the total amount of computational work performed and, as a
consequence of both, the time-to-solution required by the simulations. In those experiments,
we observe that minimizing the time-to-solution for a given accuracy in our simulations with
sam(oa)2 is usually accomplished by applying patches with 64–256 cells each, while using patches
with 1024 cells or more is counter-productive due to considerable increases in the number of
unknowns in the mesh.

As a final remark, we note that small patches in tree-structured meshes can also lead to more
hanging nodes that require more complicated interpolation schemes, similarly to what happens
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with multi-level adaptive meshes like GeoClaw. However, hanging nodes are not an issue for
sam(oa)2 – as discussed previously, while it is not possible to completely avoid hanging nodes
in adaptive meshes based on Cartesian grids, sam(oa)2 is able to guarantee conformity of its
triangular meshes by performing additional refinements in its cell-wise adaptivity scheme. In
addition, the new patch-based discretization that we present in this thesis for sam(oa)2 is also
able to completely avoid hanging nodes – that is accomplished by forcing all patches in the mesh
to have exactly the same structure and the same number of nodes in each of their boundaries.
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4
Hyperbolic Partial Differential Equations and Finite

Volume Methods

This chapter gives an overview of the mathematical concepts relevant to this work. Most of the
theory described here is based upon [38, 39, 45], where the interested reader can obtain much
more complete and detailed discussions. Here we cover the general theory of hyperbolic systems
of partial differential equations and the numerical methods typically used for their solution. We
also introduce and discuss numerical solutions for the two hyperbolic problems we use as example
applications throughout this thesis: the single-layer and two-layer shallow water equations.

4.1 Notation

In this thesis we use mathematical notations similar to what can be found in related literature,
especially on the three references mentioned above. For readers not used to those notations,
the following notes may be useful.

In particular, we use subscripts to denote partial derivatives, e.g., qt ≡ ∂q/∂t. However,
subscripts do not always indicate partial derivatives – for instance, rp is used to denote the p-th
component in a vector r. Nevertheless, in this thesis partial derivatives are always used in the
context of the variables x, y or t, so it should be easy to identify from context whether the
subscript indicates a partial derivative or something else. In cases where we denote a partial
derivative of an unknown whose symbol already contains a subscript, we add parentheses around
that symbol to make the notation clearer, e.g., (h1)x ≡ ∂h1/∂x.

Furthermore, we use superscripts for various purposes, like for example in Q
(n)
i , where n

denotes the current simulation time step. In order to make a clear distinction from cases where
superscripts are used to denote exponential operations (e.g., h2) or domains with multiple
dimensions (like Rm), we always include parentheses in the superscripts when they are used for
a non-standard purpose, as in the example shown above.

4.2 Hyperbolic Partial Differential Equations

The two frameworks considered in this work deal with hyperbolic systems of partial differential
equations (PDEs), which can be used to model a wide range of phenomena involving wave
propagation and transport of substances. In the simplest case, we have a one-dimensional
homogeneous system with the form

qt(x, t) + f(q(x, t))x = 0, (4.1)

where q ∈ Rm is a vector of m unknowns, and the flux function f : Rm → Rm is specific for
each hyperbolic problem. Homogeneous systems like this are often called conservation laws [38].
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Optionally, a source term ψ(q, x, t) 6= 0 can be added to the right hand side of the equations,
transforming them into non-homogeneous balance laws.

If the flux function f is differentiable, (4.1) can be rewritten in a quasilinear form

qt + f ′(q)qx = 0. (4.2)

The system is then said to be hyperbolic if the Jacobian matrix A = f ′(q) is diagonalizable, i.e.,
it has real eigenvalues and a corresponding set of m linearly independent eigenvectors. Solutions
to such hyperbolic systems are often obtained by rewriting (4.2) as a system of m independent
linear equations, each with the same form as the so-called advection equation:

qt + ūqx = 0. (4.3)

The advection equation models the passive movement of a given substance with concentration or
density q(x, t) being carried along with a flow of constant speed ū. Its solution can be shown to be

q(x, t) = q(x− ūt, 0), (4.4)

meaning that the initial concentration profile q(x, 0) is simply advected at a constant speed
ū along with the flow.

It is possible to rewrite the quasilinear form (4.2) as a system of independent advection
equations by computing the eigenvalues λ1, λ2, . . . , λm and eigenvectors R = [r1, r2, . . . , rm] of
A and then writing A = RΛR−1, where Λ is the diagonal matrix containing the eigenvalues,
i.e., Λ = diag{λ1, λ2, . . . , λm}. Then, by introducing w(x, t) ≡ R−1q(x, t) and assuming that
A is constant, we can rewrite (4.2) as

wt + Λwx = 0, (4.5)

which consists of m independent advection equations (wp)t + λp(wp)x = 0 with p = 1 . . .m. By
combining their individual solutions, we obtain the solution to the system expressed as

q(x, t) =
m∑
p=1

rpwp(x, t). (4.6)

This solution corresponds to a set of m “waves” propagating at constant speeds along so-called
characteristic curves, which is a common property of solutions to hyperbolic systems.

As noted above, the method described assumes that the Jacobian matrix A is constant, i.e.
it does not depend on x or t. If that is not the case, the transformations used are not valid
and obtaining a solution usually requires more complex and usually approximate approaches
such as the numerical methods we apply in this work.

4.3 Finite Volume Methods

Finite volume methods are a class of numerical methods that model the domain as a discrete grid,
where each cell stores an approximation to the average value of the solution q within it. In a one-
dimensional problem, the numerical solution in the ith grid cell (defined as Ci = [xi−1/2, xi+1/2])
at a given time tn is approximated as:

Q
(n)
i ≈ 1

Vi

∫
Ci
q(x, tn) dx, (4.7)

where Vi = ∆xi = xi+1/2 − xi−1/2 is the “volume” of the grid cell.
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In this work we concentrate on so-called Godunov-type methods, which update the cell-
averaged solution Q based on the fluxes crossing the cell boundaries (edges). For that, we
compute so-called numerical fluxes, which are approximations of the time-averaged fluxes trans-
ferred between adjacent cells during a time step. The numerical flux across the left edge of
cell Ci is defined as

F
(n)
i−1/2 ≈

1

∆t

∫ tn+1

tn

f(q(xi−1/2, t)) dt, (4.8)

where ∆t is the length of the time step.

The numerical fluxes can be used to update the solution from Q
(n)
i to Q

(n+1)
i following

Q
(n+1)
i = Q

(n)
i − ∆t

∆xi
(F

(n)
i+1/2 − F

(n)
i−1/2). (4.9)

This is often written in the fluctuation form

Q
(n+1)
i = Q

(n)
i − ∆t

∆xi
(A+∆Q

(n)
i−1/2 +A−∆Q

(n)
i+1/2). (4.10)

Here, the fluctuation A+∆Q
(n)
i−1/2 describes the total effect of all waves entering or leaving the

cell through its left edge, while A−∆Q
(n)
i+1/2 corresponds to the waves crossing the right edge.

This is a first-order accurate method that can be extended with second-order correction terms
along with limiters to create a high-resolution method. This is covered in detail in Section
4.1 of [39] and Chapter 6 of [38].

The explicit update scheme reduces the problem to computing the fluctuations A±∆Q,
which is usually accomplished by solving the so-called Riemann problems that happen at the
edges. These consist of the equations being solved subject to initial piecewise data at a time
t = tn containing a discontinuity at one specific point x = x̄:

q(x, tn) =

{
q` if x < x̄

qr if x > x̄,
(4.11)

where q` and qr are constant vectors that effectively define the Riemann problem. In the context
of a finite volume scheme, we generally consider the Riemann problems happening at the edges.

For example, for an edge located at x̄ = xi−1/2, we have q` = Q
(n)
i−1 and qr = Q

(n)
i .

Like the solution given by (4.6), the solution to a Riemann problem describes m waves
propagating at constant speeds along the characteristic curves. The numerical algorithms used
to obtain solutions to Riemann problems are known as Riemann solvers and are generally the
most complex piece of Godunov-type methods. In many cases, computing the exact solution
is too computationally expensive and not worth the effort, such that approximated solvers
are used instead. Even when considering approximate solvers, that is often the most time-
consuming step and for that reason it is the focus of most of the discussions in this thesis
involving computational performance of finite volume applications.

4.4 (Single-Layer) Shallow Water Equations

The shallow water equations are depth-averaged equations that are suitable for modeling incom-
pressible fluids in problems where the horizontal scales (x and y dimensions) are much larger
than the vertical scale (z dimension) and the vertical acceleration is negligible. This includes
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b = 0
b > 0

b < 0

h

~u

Figure 4.1: Components of the single-layer shallow water equations on a one-dimensional
model of an ocean. The bathymetry data b(x) is measured relatively to a reference level b = 0
(usually mean sea level). The water depth h(x) may be equal to zero, indicating a dry state.

various problems involving wave propagation of oceanic flows such as tsunamis, because the
ocean wave lengths are generally very long compared to the ocean depth [39].

This work deals with various finite volume implementations that solve two different vari-
ations of the shallow water equations. In this section we discuss the simplest variation of
those, which is predominantly known simply as shallow water equations in literature. However,
throughout this thesis we refer to it as single-layer shallow water equations, in order to make a
clear distinction from the two-layer variation that is also studied here.

In one dimension, the single-layer shallow water equations can be written as[
h

hu

]
t

+

[
hu

hu2 + 1
2gh

2

]
x

=

[
0

−ghbx

]
, (4.12)

where h(x, t) is the fluid depth; u(x, t) is the vertically averaged fluid velocity in the x direction;
g is the gravitational constant; and b(x) is the bottom surface elevation relative to an arbitrary
reference. For ocean modeling, b(x) is usually relative to mean sea level such that b < 0
corresponds to submarine bathymetry and b > 0 to terrain topography. Here, the source
term S(x, t) = [0,−ghbx]T models the effect of the varying bathymetry. The source term can be
extended to model other effects, such as drag and Coriolis forces, as well [39]. Fig. 4.1 illustrates
all the components of (4.12) in a simplified model of an ocean.

4.4.1 The F-Wave Solver

Note that (4.12) is a balance law that can be expressed as (4.1), with

q(x, t) =

[
q1
q2

]
=

[
h

hu

]
, f(q) =

[
q2

q22/q1 + 1
2gq

2
1

]
, ψ(q, x, t) =

[
0

−gq1bx

]
. (4.13)

The Jacobian matrix of f(q) is

A = f ′(q) =

[
0 1

gh− u2 2u

]
, (4.14)

which is not constant and can therefore not be used to obtain exact solutions using the an-
alytical approach described in Section 4.2. Nevertheless, approximate Riemann solvers often
use very similar approaches, where linearization of the original problem is achieved by using
constant approximations to A.
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In particular, we describe the f-wave solver [4], which splits the flux difference f(qr)− f(q`)
as a linear combination of so-called f-waves Zp that propagate along the characteristic curves:

f(qr)− f(q`)−∆xψ =

m∑
p=1

βprp ≡
m∑
p=1

Zp. (4.15)

The f-wave solver for the single-layer shallow water equations considered in this work uses
constant approximations for the eigenvectors r1 = [1, s1]

T and r2 = [1, s2]
T containing the

so-called Einfeldt speeds [21], which are defined as

s1 = min(ŝ1, u` −
√
gh`), s2 = max(ŝ2, ur +

√
ghr), (4.16)

where ŝ1 and ŝ2 are the Roe speeds [61]

ŝ1 = û−
√
gĥ, ŝ2 = û+

√
gĥ (4.17)

computed using the Roe averages of the left and right states

ĥ =
h` + hr

2
, û =

u`
√
h` + ur

√
hr√

h` +
√
hr

. (4.18)

By solving (4.15) for β1 and β2, we can compute the f-waves Z1 and Z2, which are finally
used to compute the fluctuations

A−∆Q =
∑

p: sp<0

Zp, A+∆Q =
∑

p: sp>0

Zp (4.19)

that are used in the finite volume update scheme (4.10). In Alg. 4.1, we show the general
structure of the f-wave solver implementation considered in this work.

One of the advantages of the f-wave solver is that the source terms can be easily included
in its formulation creating a “well-balanced scheme” that is able to maintain steady states [4].
However, due to its simplicity the f-wave solver has a few shortcomings when compared to more
advanced solvers. Notably, it does not prevent non-negativity of the fluid depth h, such that
it is not able to properly handle wetting and drying of cells. To avoid such situations, solver
implementations often impose “wall boundary” conditions on Riemann problems where one of
the cells is dry and the other is wet – see e.g. lines 5–13 in Alg. 4.1.

4.4.2 The Augmented Riemann Solver

A more sophisticated and accurate Riemann solver that is able to properly handle wetting and
drying of cells is known as augmented Riemann solver. Its derivation is rather complicated
and is beyond the scope of this thesis, so here we will only provide a brief description of its
main ideas along with an illustration of its general code structure (see Alg. 4.2). The interested
reader is referred to [29] for further details.

The augmented Riemann solver decomposes the jumps at the Riemann interface into four
waves: 

hr − h`
hrur − h`u`
φ(qr)− φ(q`)

br − b`

 =

4∑
p=1

αpwp, (4.20)
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where φ(q) = hu2 + 1
2gh

2. This decomposition gives the eigenvalues

λ1 = u−
√
gh, λ2 = u+

√
gh, λ3 = 2u, λ4 = 0 (4.21)

and the respective eigenvectors

r1 =


1

λ1
λ21
0

 , r2 =


1

λ2
λ22
0

 , r3 =


0

0

1

0

 , r4 =


gh/(λ1λ2)

0

−gh
1

 . (4.22)

Note that λ4 and r4 describe a stationary wave that was created by adding the jump in the
bathymetry to the decomposition. By omitting the null values and using the Roe averages and
Einfeldt speeds similarly as done for the f-wave solver, it is possible to convert (4.20) into

Algorithm 4.1: F-wave solver for the single-layer shallow water equations with preprocessing
of dry states. To avoid inundation scenarios (which are not properly handled by the f-wave
solver), we replace dry cells with wall barrier conditions. We also skip problems with dry cells
on both sides, because their solution are always zero (no fluctuations).

Input: h`, (hu)`, b`, hr, (hu)r br // Data in left and right cells

Output: A−∆Q, A+∆Q // Left- and right-going fluctuations

1 if both left/right cells are dry then // Skip completely dry problems

2 A−∆Q← ~0

3 A+∆Q← ~0
4 Return A−∆Q, A+∆Q // Finish execution here

5 else if left cell is dry then // Simulate wall boundary on dry left cells

6 h` ← hr

7 (hu)` ← −(hu)r
8 b` ← br
9 else if right cell is dry then // Simulate wall boundary on dry right cells

10 hr ← h`

11 (hu)r ← −(hu)`
12 br ← b`
13 end

14 ĥ← (h` + hr)/2 // Compute Roe averages (4.18)

15 û← (u`

√
h` + ur

√
hr)/(

√
h` +

√
hr)

16 ŝ1 ← û−
√
gĥ // Compute Roe speeds (4.17)

17 ŝ2 ← û+

√
gĥ

18 s1 ← min(ŝ1, u` −
√
gh`) // Compute Einfeldt speeds (4.16)

19 s2 ← max(ŝ2, ur +
√
ghr)

20 Solve

[
1 1

s1 s2

][
β1

β2

]
= f(hr, (hu)r)− f(h`, (hu)`)−∆xψ // Compute β1 and β2 (4.15)

21 for p← 1 to 2 do // Compute fluctuations (4.19)

22 if s1 < 0 then
23 A−∆Q← A−∆Q+ βp[1, sp]T

24 else
25 A+∆Q← A+∆Q+ βp[1, sp]T

26 end

27 end
28 Return A−∆Q, A+∆Q
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 hr − h`
hrur − h`u`
φ(qr)− φ(q`)

 = β1

 1

s1
s21

 + β2

 1

s2
s22

 + β3

0

0

1

 , (4.23)

which must be solved for the βp unknowns in order to compute the fluctuations A−∆Q and
A+∆Q that will be used in the update scheme.

In addition to the basic numerical algorithm described above, the augmented Riemann solver
implementation used in this work also performs additional analyses of the wave structures, in-
cluding checks for special cases such as dry states and supercritical problems. For some cases,
the solver even requires one or very few iterations of Newton’s method to find approximate
solutions to a nonlinear system of equations. These features make the solver implementation
considerably complex, with multiple if-then-else branches that can seriously influence vector-
ization performance. This will be further discussed in Section 6.2.

Algorithm 4.2: Augmented Riemann solver for the single-layer shallow water equations. Like
the f-wave solver (Alg. 4.1), this solver also checks for dry states on both sides and skips
completely dry problems. However, additional checks are performed to estimate whether a dry
cell may be inundated and this is handled accordingly. Computation of the middle state is
also required for computing the eigenspace decomposition. These steps (lines 4, 10 and 17)
are usually performed with the same algorithm, which includes several additional if-then-else
branches to check for dry states and wave structures and may require applying Newton’s method.
We note that this only shows the general structure of the algorithm and it is not intended to
be a complete description of the full algorithm. Some steps and details have been omitted for
clarity.

Input: h`, (hu)`, b`, hr, (hu)r br // Data in left and right cells

Output: A−∆Q, A+∆Q // Left- and right-going fluctuations

1 if both left/right cells are dry then // Skip completely dry problems

2 Return A±∆Q← ~0 // Finish execution here

3 else if left cell is dry then
4 if water from right cell can inundate left cell then // This may require Newton’s method

5 Prepare solver for handling inundation

6 else
7 Simulate wall boundary condition on left cell // Like done in Alg. 4.1 (lines 6−8)
8 end

9 else if right cell is dry then
10 if water from left cell can inundate right cell then // This may require Newton’s method

11 Prepare solver for handling inundation

12 else
13 Simulate wall boundary condition on right cell // Like done in Alg. 4.1 (lines 10−12)
14 end

15 end
16 Compute Roe Averages, Roe speeds and Einfeldt speeds // Like done in Alg. 4.1 (lines 14−19)
17 Compute middle state for Riemann interface // This may require Newton’s method

18 Compute eigenspace decomposition for waves // Based on (4.20)

19 Solve

 hr − h`

hrur − h`u`

φ(qr)− φ(q`)

 = β1

 1

s1

s2
1

 + β2

 1

s2

s2
2

 + β3

0

0

1

 // Compute β1, β2 and β3 (4.23)

20 Compute fluctuations A−∆Q and A+∆Q // Similar to (4.19)

21 Return A−∆Q, A+∆Q
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4.5 Two-Layer Shallow Water Equations

Although the single-layer equations are appropriate for modeling various wave propagation phe-
nomena, such as tsunamis and dam breaks, they lack accuracy for problems where significant
vertical variations in the water column can be observed. For instance, in storm surge simula-
tions wind stress plays a crucial role and affects more the top of the water column than the
bottom [48]. The single-layer equations are not able to properly model this effect, because the
water momentum gets averaged vertically.

Vertical profiles can be more accurately modeled using multi-layer shallow water equations,
which model the fluid with multiple vertical layers, possibly with different fluid densities. They
can provide more accurate representations than the single-layer equations, while keeping the
computational costs substantially lower than three-dimensional equations.

The simplest variation of the multi-layer equations consists of the two-layer shallow water
equations. With them it is possible, for example, to model the ocean as composed of a shallow
top layer and a deeper bottom layer, which allows more accurate representations of the wind
effects. Multi-layer shallow water equations may also be useful for problems where it is possible
to identify multiple layers with different characteristics. An interesting example is the Alboran
Sea in the Mediterranean, where two layers of water with different densities can be distinguished:
a top layer coming from the Atlantic Ocean through the Strait of Gilbratar, and a bottom layer
with denser water coming from the Mediterranean into the Atlantic [43].

The system of two-layer shallow water equations in one dimension reads
h1
h1u1
h2
h2u2


t

+


h1u1

h1u
2
1 + 1

2gh
2
1

h2u2
h2u

2
2 + 1

2gh
2
2


x

=


0

−gh1(h2 + b)x
0

−rgh2(h1)x − gh2bx

 , (4.24)

where h1 and h1u1 are the conserved quantities in the top layer; and h2 and h2u2 the ones in
the bottom layer; also, r ≡ ρ1/ρ2 is the ratio of the densities of the fluid contained in each
layer. These components are illustrated in Fig. 4.2. Note that these equations are actually very
similar to two sets of single-layer shallow water equations, except for a few additional terms
that model the hydrostatic pressure between the layers.

These equations can be extended to an arbitrary number of vertical layers [11], where each
layer i = 1 . . . n can be modeled through the equations

[
hi
hiui

]
t

+

[
hiui

hiu
2
i + 1

2gh
2
i

]
x

=


0

−ghi

 n∑
j=i+1

hj +

i−1∑
j=1

ρj
ρi
hj + b


x

 . (4.25)

However, in this work we deal only with the single-layer and two-layer forms described above.

4.5.1 The Two-Layer Solver

In this work we consider the Riemann solver for the two-layer shallow water equations that
was proposed in [45, 46], to which we often refer simply as two-layer solver in this thesis. It
is based on the f-wave formulation described in Section 4.4.1, but it was extended to handle
dry states in each layer. The mathematical theory behind this solver is also rather complicated
and will not be covered in detail here. Instead, we will only describe the general structure of
its implementation, illustrated in Alg. 4.3.
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b = 0
b > 0

b < 0h1

h2

ρ1

ρ2

~u1

~u2

Figure 4.2: Components of the two-layer shallow water equations on a one-dimensional model
of an ocean. The fluid in each layer may have a different density ρ. One or both water depths
h1(x) and h2(x) may be equal to zero, meaning that the respective layer is dry. However, we
usually assume that the bottom layer becomes dry before the top layer, as illustrated in the
region near the shore.

As the augmented Riemann solver described in 4.4.2, this solver contains several if-then-else
branches, which is usually detrimental to vectorization performance. The branches are used
mainly to handle dry states that may appear on both layers and on both sides of the Riemann
interface. For instance, if the two layers are dry on both sides, this is a trivial dry problem that
does not require a solver (there are no fluxes crossing the interface). Also, if one of the layers
is dry on both sides, this can be treated as a single-layer problem and we directly apply the
augmented Riemann solver for the single-layer equations, which is by itself also heavily branched.

On the other hand, if there is water on at least one side of each layer, the full two-layer
equations need to be solved. This includes additional checks for dry states and inundation
of cells/layers, adding several more branches to the algorithm. After all the special cases are
handled, the fluctuations A±∆Q are computed using the f-wave formulation. More specifically,
we first compute approximations to the system’s eigenvalues and eigenvectors, and then solve
a 6 × 6 system of linear equations based on (4.15).

4.6 Extension to Two-Dimensional Domains

So far we have only discussed one-dimensional hyperbolic PDEs and their respective solutions.
However, we are generally interested in applications that handle problems with at least two
spatial dimensions. The general form for two-dimensional hyperbolic PDEs is given by

qt + f(q)x + g(q)y = ψ(q, x, y, t), (4.26)

where g(q) is a flux function in the y direction, analogous to f(q).

The two-dimensional single-layer shallow water equations read h

hu

hv


t

+

 hu

hu2 + 1
2gh

2

huv


x

+

 hv

huv

hv2 + 1
2gh

2


y

=

 0

−ghbx
−ghby

 , (4.27)

where u(x, y, t) and v(x, y, t) are the vertically averaged fluid velocities in the x and y directions,
respectively. Similarly, the two-layer shallow water equations in two dimensions have the form
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Algorithm 4.3: Riemann solver for the two-layer shallow water equations. The solver uses
several if-then-else branches to handle dry states on layers/cells. In some cases, the problem
is equivalent to the single-layer shallow water equations and the augmented Riemann solver
(Alg. 4.2) is used instead. When at least one cell is wet for each layer, the full two-layer solver
is applied, which is able to properly handle inundation of the bottom layer. Again, here we only
show the general structure of the algorithm and omit some steps and details.

Input: Q`, b`, Qr, br // Data in left and right cells

Output: A−∆Q, A+∆Q // Left- and right-going fluctuations

1 if both layers are dry in both cells then // Skip completely dry problems

2 A±∆Q← ~0 // There are no fluctuations

3 else if top layer is dry in both cells then
4 A±∆Q← solution of single-layer equations on bottom layer // Use augmented Riemann solver

5 else if bottom layer is dry in both cells then
6 A±∆Q← solution of single-layer equations on top layer // Use augmented Riemann solver

7 else
// At least one cell is wet for each layer ⇒ solve the full two-layer problem

8 if both layers are dry in left cell then
9 Simulate wall boundary on left cell // Similar to lines 6−8 in Alg. 4.1

10 else if both layers are dry in right cell then
11 Simulate wall boundary on right cell // Similar to lines 6−8 in Alg. 4.1

12 else if bottom layer is dry in left cell then
13 if water from right cell can inundate bottom layer in left cell then
14 Prepare solver for handling inundation
15 else
16 Simulate wall boundary on left cell // Similar to lines 6−8 in Alg. 4.1

17 end

18 else if bottom layer is dry in right cell then
19 if water from left cell can inundate bottom layer in right cell then
20 Prepare solver for handling inundation
21 else
22 Simulate wall boundary on right cell // Similar to lines 6−8 in Alg. 4.1

23 end

24 end
25 Compute eigenspace decomposition // Considering inundation if necessary

26 Solve 6× 6 system of linear equations // To compute β1...6, similarly to (4.23)

27 Compute fluctuations A−∆Q and A+∆Q // Similar to (4.19)

28 end
29 Return A−∆Q, A+∆Q
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−gh1(h2)y − gh1by

0

rgh1(h2)x − gh2bx
rgh1(h2)y − gh2by
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.

(4.28)
Both variations of the shallow water equations in two dimensions are rotationally invariant,

which means that the solutions to the Riemann problems have the same structure regardless of
the direction in which they are defined. This allows two-dimensional methods to use Riemann
solvers designed for the one-dimensional equations with only a few modifications, which include
applying a change of basis to the momentum vector [hu, hv]T according to the direction of
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the edge being considered.
A common approach used in two-dimensional Godunov-type methods on Cartesian meshes

is sometimes called donor-cell upwind method [38]. The basic idea is to solve the Riemann
problems at all four edges of a cell Ci, j and then to update its solution following

Q
(n+1)
i, j = Q

(n)
i, j −

∆t

∆x
(A+∆Qi−1/2, j + A−∆Qi+1/2, j)

− ∆t

∆y
(B+∆Qi, j−1/2 + B−∆Qi, j+1/2),

(4.29)

where A±∆Q are the fluctuations in the x direction (left and right edges) and B±∆Q are the
fluctuations in the y direction (bottom and top edges).

The accuracy of the method described above can be improved by including flux corrections
terms to become what is known as the corner-transport upwind method [38]:

Q
(n+1)
i, j = Q

(n)
i, j −

∆t

∆x
(A+∆Qi−1/2, j + A−∆Qi+1/2, j)

− ∆t

∆y
(B+∆Qi, j−1/2 + B−∆Qi, j+1/2)

− ∆t

∆x
(F̃i+1/2, j − F̃i−1/2, j)

− ∆t

∆y
(G̃i, j+1/2 − G̃i, j−1/2).

(4.30)

The flux corrections F̃i±1/2, j and G̃i, j±1/2 are computed by solving so-called transverse Riemann
problems over the edges (in contrast to the normal Riemann problems discussed previously).
They concern waves with a “transverse” component (i.e., waves that do not propagate per-
pendicularly to the edge), and their solutions can be obtained from the waves computed by
the normal Riemann solver. By including these flux corrections, the finite volume scheme is
able to properly model the effect that such waves can have on cells other than the two cells
adjacent to the edge (e.g., Ci+1,j+1 may be directly affected by waves coming from Ci,j , even
though they are not edge-adjacent).

Like in the one-dimensional case, this method is first-order accurate and can be improved
into a high-resolution method by incorporating second-order correction terms and limiters. For
more details on that and more complete discussions of the concepts introduced in this section,
see Chapters 20–21 of [38].
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5
Experimental Platforms

All performance experiments described in this work were conducted on the CoolMUC-2 [36,75]
and CoolMUC-3 [37] cluster systems maintained by the Leibniz Supercomputing Center (LRZ).
The former cluster is composed of 384 nodes with dual-socket Intel Xeon “Haswell” systems,
while the latter consists of 148 nodes with Intel Xeon Phi “Knights Landing” (KNL) processors.
An overview of the configuration of the two cluster systems is presented in Table 5.1. As we
focus on vectorization performance, we point out the difference in the SIMD width of these
machines: the Haswells provide AVX2 instructions (256-bit), while the KNLs provide AVX-512
instructions (512-bit). As such, the benefits from vectorization are obviously expected to be
more noticeable on the KNL nodes.

In Table 5.1 we list not only the theoretical single-node peak performance of those systems,
but also an estimate for the maximum performance that can be achieved in practice on them,
measured in (double-precision) floating-point operations per second (Flops/s). While the theo-
retical peak was calculated based on the specifications of each system, the estimated peak was
obtained using a benchmark proposed in [34], which we describe in Section 5.1. In our perfor-
mance experiments, we often use the values obtained with this benchmark to assess how well
our implementations are able to exploit the computational resources provided by each system.

In all reported experiments we used the Intel Fortran compiler 17.0.6 and double precision
arithmetic. On both systems we use only one node at a time (i.e., no distributed parallelism),

Table 5.1: Specifications of the nodes in the experimental platforms.

System overview Dual-socket Haswells KNL

Architecture Intel R© Xeon R© Intel R© Xeon Phi
TM

Model E5-2697v3 7210F

Cores 2×14 64 (max. 256 threads)

Clock rate 2.60 GHz 1.30 GHz

SIMD vector width 256-bit 512-bit

L1 Instruction Cache 32 KB/core 32 KB/core

L1 Data Cache 32 KB/core 32 KB/core

L2 Cache 256 KB/core 1 MB/core

L3 Cache 35 MB –

Memory 64 GB 96 GB + 16 GB MCDRAM

Peak bandwidth 136 GB/s 102 GB/s

Peak throughput (double) 582 GFlop/s 2 662 GFlops/s

Measured throughput (double) 156 GFlop/s 720 GFlops/s
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Code 5.1: Main loops in the “helloflops3” benchmark. Adapted from [34].

1 ! Parameters used for arrays ’ dimensions and loop count

2 integer , parameter :: FLOPS_ARRAY_SIZE = 1024*512

3 integer , parameter :: MAXFLOPS_ITERS = 100000000

4 integer , parameter :: LOOP_COUNT = 128

5 ! Define arrays that are 64-byte -aligned for best cache access

6 real :: a(FLOPS_ARRAY_SIZE)

7 real :: b(FLOPS_ARRAY_SIZE)

8 ! Other variables

9 integer :: i, j, k, numthreads , offset

10

11 ![...] (Initialize arrays , timers , counters and variable ‘numthreads ’)

12

13 !$OMP PARALLEL DO PRIVATE(j,k,offset)

14 do i=1, numthreads

15 ! Each thread will work on its own array section

16 offset = i * LOOP_COUNT

17

18 ! Loop many times to get lots of calculations

19 do j=1, MAXFLOPS_ITERS

20

21 !DIR$ VECTOR ALIGNED

22 do k=1, LOOP_COUNT

23 a(k+offset) = 1.1 * a(k+offset) + b(k+offset)

24 end do

25 end do

26 end do

but we use shared-memory parallelism with OpenMP on all available cores, i.e., 28 on the dual-
socket Haswells and 64 on KNLs. On KNLs we also experiment with different number of threads
per core (from 1 to 4 with hyperthreading). However, in the presented results we only list the
experiments with 2 threads per core (i.e., 128 in total), because this configuration achieved the
best performance in most experiments (in general, slightly faster than with 3 and 4 threads per
core, and considerably faster than with only 1 thread per core). Also, we always use the KNLs
in cache mode, i.e., the MCDRAM memory is used as an L3 cache.

5.1 Peak Throughput Benchmark

The estimates for maximum attainable performance on each system listed in Table 5.1 have
been obtained with the Fortran implementation of the “helloflops3” benchmark proposed in
Chapter 2 of [34]. This benchmark measures the Flops/s rate in a nested loop that repeatedly
computes a(i)← 1.1 * a(i) + b(i) on all elements of small (cache-fitting) arrays a and b

using OpenMP threading and vectorization. For illustration, we show the main loops in the
benchmark in Code 5.1.

This benchmark was designed with the goal of obtaining the highest attainable performance
in architectures exactly like our experimental platforms, which support multi-threading, vec-
torization, fused multiply-add operations, etc. In addition, it works repeatedly on small arrays
that fit easily in the processor caches, so that performance is always compute-bound. There-
fore, its results serve as a good estimate for the maximum performance that can be achieved
in practice, which is why we use them as baseline performance for our implementations when
we present our performance results in this thesis.
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6
GeoClaw: Multi-Level Hierarchical Adaptive Meshes

We used the GeoClaw package [9, 28] to implement and evaluate vectorized versions of finite
volume methods for the single-layer and two-layer shallow water equations, with special focus on
their Riemann solvers. The finite volume implementation in GeoClaw is based on decomposing
two-dimensional rectangular grids into one-dimensional slices that are processed separately.
This translates naturally into lists of Riemann problems to be solved, providing an advantageous
scenario for experimenting with vectorization, as we will show in this chapter.

This chapter is an extended version of one of our previous publications [25]. In addition to
providing more detailed discussions and examples when describing the GeoClaw framework and
our work on adding vectorization to it, here we also evaluate the performance of the vectorized
f-wave solver (which was not considered in the paper) and present updated experimental results.

We start by giving an overview on the algorithms used in GeoClaw for its finite volume
scheme with parallel adaptive mesh refinement in Section 6.1. We describe in detail our work
and the changes in the code structure that were necessary to achieve efficient vectorization of
the numerical algorithms in Section 6.2. Then, we present an experimental evaluation of the
vectorized implementations in Section 6.3 and summarize our main findings in Section 6.4

6.1 GeoClaw and Clawpack

GeoClaw [9,28] is a software package that supports the implementation of finite volume methods
for modeling geophysical flow problems over real topography or bathymetry data, either on
Cartesian grids or on longitude-latitude grids. It is an extension of the software Clawpack [15,
47], which provides a framework for solving systems of hyperbolic PDEs in one, two or three
dimensions. Geoclaw was designed to tackle various difficulties that happen on simulations
involving realistic data, such as handling of dry states with the shallow water equations. It also
provides performance features such as adaptive mesh refinement and shared-memory parallelism.
In this section we describe the algorithms used specifically in GeoClaw, but we point out that
many of the discussed details are generally valid for Clawpack as well.

Application developers can create finite volume implementations with GeoClaw by providing
Riemann solvers to the specific system of equations they want to solve. The Clawpack and
GeoClaw open-source repositories [14] contain several examples of applications based on various
hyperbolic problems. In this work we focus on the single-layer and two-layer shallow water
equations described in Sections 4.4 and 4.5.

6.1.1 Adaptive Mesh Refinement

As discussed in Chapter 3, adaptive mesh refinement is essential for large-scale simulations where
high resolution is required at specific regions but not over the entire domain, with oceanic
applications being a typical example. GeoClaw provides adaptivity by organizing multiple
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patches of logically rectangular grids using the multi-level hierarchical strategy described in
Section 3.1.1. The entire simulation domain is covered by a coarse level 1 grid, whose cells
may be individually flagged for refinement depending on various user-defined criteria. Regions
of the level 1 grid are then refined, leading to the creation of a set of level 2 grids, with finer
cells covering (and overlapping) those regions. This process can be repeated recursively up to
an arbitrary number of levels until all areas of interest are covered by appropriate resolutions.

For each refinement from level ` to `+ 1, refinement ratios r
(`)
x and r

(`)
y for the horizontal and

vertical directions can be defined independently, meaning that one cell in level ` is refined into

r
(`)
x ×r(`)y cells in level `+1. We often use r

(`)
x = r

(`)
y , but that is not mandatory. As an example,

consider the mesh with three refinement levels shown in Fig. 6.2 in Section 6.3.

GeoClaw performs a regridding procedure every few time steps, with a frequency that can
also be defined by the user. It first identifies clusters of spatially-close cells that have been flagged
for refinement. For that, it uses a pattern recognition heuristic [7] that tries to minimize the
number of cells unnecessarily refined, but also avoids having too many small patches. Then, it
updates the mesh structure accordingly, applying interpolation techniques where necessary.

Depending on the application, some issues need to be addressed during the regridding pro-
cedure, especially for maintaining steady states while interpolating the cell-averaged solutions
between different grid levels. For example, in oceanic simulations, care must be taken to avoid
generating spurious waves in regions where the water has not yet been perturbed. This is
usually done by maintaining the same water elevation h+ b across multiple levels, despite pos-
sible variations in the cell-averaged bathymetry b for different refinements. However, that can
be particularly problematic in cases where dry cells become wet (or vice-versa) due to those
variations in the bathymetry. This is discussed in more details in Section 9 of [39]. We also
show an implementation example in the context of the framework sam(oa)2 in Section 7.1.4 of
this thesis. For further discussions on the topic of implementing well-balanced adaptive mesh
refinement for the shallow water equations, refer e.g. to [18].

6.1.2 Shared-Memory Parallelism

The patch-based mesh structure in GeoClaw is exploited for implementing shared-memory par-
allelization with OpenMP – each patch can be processed almost independently, needing only to
exchange boundary data with other patches via an additional ghost layer. The data used for the
ghost layer is either obtained directly from neighbor patches in the same refinement level or in-
terpolated from the coarser grid that contains the patch, on the previous level. After exchanging
boundary data, patches in the same refinement level can be trivially processed in parallel.

As mentioned in Section 3.3, an important detail in GeoClaw’s implementation is that a
limit is imposed to the dimensions of each patch, such that multiple smaller patches may be
applied where a single large patch might otherwise be enough. In the current implementation,
this limit is set to 60 × 60. This does not only lead to more parallel work (due to the larger
number of patches), but also improves spatial locality by producing smaller patches that are
more likely to fit in the cache.

6.1.3 Finite Volume Implementation

As discussed previously, each patch in the mesh is processed individually, and the data from
all patches is then combined to obtain the solution over the entire simulation domain. In
this section we describe the actual implementation of the finite volume scheme discussed in
Chapter 4, which is applied individually to each rectangular grid. In the following, we assume
that the grid being processed has mx columns and my rows (including ghost layers). We also
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use the notation mx and my when these are referenced in the context of Fortran code.

Data structures

Given the rectangular shape of the grids, it would be natural to use two-dimensional arrays to
store the cell-averaged solutions Qi,j . An obvious approach would be to create one floating-
point array with dimensions mx×my for each component in q. E.g., for the single-layer shallow
water equations in two dimensions there are three components in q = [h, hu, hv]T , so three
arrays H, HU, and HV would be enough to store the cell-averaged solutions over the entire grid.
On the other hand, the two-layer equations would require six arrays for storing the quantities
in q = [h1, h1u1, h1v1, h2, h2u2, h2v2]

T .

However, to allow an easier generalization of the numerical scheme implementation to mul-
tiple applications based on different systems of hyperbolic PDEs, GeoClaw actually stores the
solution data using a single three-dimensional array Q(meqn,mx,my), where meqn is a constant
that stores the number of components1 in q. For example, for the single-layer shallow water
equations, meqn= 3, and the user might define that the position Q(1,i,j) stores the averaged
h in cell Ci,j , while Q(2,i,j) refers to hu and Q(3,i,j) to hv. We note that the core rou-
tines in GeoClaw are oblivious to the meaning of each component stored in Q, and that it is
left to the application developer to decide their order and to maintain consistency throughout
the application-specific code.

In addition to Q, a similar array Aux(maux,mx,my) can be defined to store a given number
(maux) of other cell-specific “auxiliary” variables that are necessary for the simulation but should
not be updated following the standard finite volume update scheme that is applied to Q. For
instance, this can be used to store the bathymetry data b(x, y) necessary for both variations
of the shallow water equations.

Because this strategy for organizing the simulation data allows easy customization of the
finite volume implementation to various problems with different storage requirements, we used
a very similar approach for the generic programming interface that we developed for sam(oa)2,
as we discuss later in Chapter 8.

Update scheme for two-dimensional grids

When setting up a two-dimensional simulation in GeoClaw, users can select which method
should be used to handle transverse waves (see Section 4.6). Namely, it is possible to choose
between these three methods:

1. donor-cell upwind method;
2. corner-transport upwind method;
3. corner-transport upwind method with addition of second-order corrections.

In the following discussions, we assume that the third method is being used, requiring the
solution of transverse Riemann problems and computation of second-order corrections. The
other two methods can be trivially obtained by skipping steps in the algorithms.

To update a two-dimensional grid in time, GeoClaw extracts one-dimensional “slices” from
it and solves all the Riemann problems in each of them. A slice corresponds to either one row
or one column of the grid – see Fig. 6.1.

The algorithm used to compute the numerical fluxes leaving/entering each cell in the
grid is shown in Alg. 6.1. Notice that each row slice Q(row) contains mx contiguous cells

1The constant meqn actually refers to the number of equations in the system. However, for the class of
equations considered in this work it is often assumed to be equal to the number of components in q.
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Figure 6.1: A two-dimensional grid in GeoClaw is processed column by column and then
row by row. Two separate loops (one for rows and other for columns) iterate through the
grid extracting one-dimensional “slices” from it. Each slice is then processed separately by a
subroutine that computes the numerical fluxes crossing its edges. In this example, we show a
slice composed of the third column (green/dashed contour) and another slice obtained from the
second row from the bottom (blue/dotted contour).

Algorithm 6.1: Algorithm used in GeoClaw to compute the fluxes used in the finite volume
update scheme (4.30). First the grid is processed column by column, with the data of each
column being stored in temporary arrays Q(col) and Aux(col) that are used to compute the
fluxes in the slice. For that, we use a function computeFluxes that returns the fluxes crossing
all edges in the slice. Later, the same process is applied to all rows.

Input: Q, Aux // 2D arrays containing cell-averaged data

Output: Fluxes ≡ (A±, B±, F̃ , G̃) // 2D arrays containing numerical fluxes

1 Fluxes← 0 // Initialize flux arrays

2 for i← 1 to mx do // Process grid column by column

3 Q(col) ← ith column of Q // Store data of column slice in temporary 1D arrays

4 Aux(col) ← ith column of Aux

5 Fluxes← Fluxes + computeFluxes(Q(col), Aux(col)) // Compute and accumulate fluxes

6 end
7 for j ← 1 to my do // Process grid row by row

8 Q(row) ← jth row of Q // Store data of row slice in temporary 1D arrays

9 Aux(row) ← jth row of Aux

10 Fluxes← Fluxes + computeFluxes(Q(row), Aux(row)) // Compute and accumulate fluxes

11 end

Q
(row)
1 , . . . , Q

(row)
mx and mx−1 internal edges e1, . . . , emx−1. Also, each edge ek has an associated

Riemann problem with piecewise constant initial data q` = Q
(row)
k , qr = Q

(row)
k+1 . The same

idea is also applied to the grid columns. After extracting a slice from the grid, GeoClaw passes
it to the subroutine computeFluxes, which iterates through the edges solving the respective
Riemann problems and computing the output fluxes for the slice. This includes calls to the
subroutines for the normal and transverse Riemann solvers and computation of second-order
corrections. The computed fluxes are then accumulated into two-dimensional arrays that will
be used to update the entire grid following the numerical update scheme (4.30).
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Riemann solvers in GeoClaw

GeoClaw was designed in a customizable way that allows application developers to easily embed
new Riemann solvers into its finite volume implementation. The subroutine computeFluxes

calls other subroutines rpn2 and rpt2, which are expected to solve the normal and transverse
Riemann problems in a given one dimensional slice, respectively. To provide a new Riemann
solver, developers only need to create implementations of those two subroutines that match
their signatures and that return appropriate solutions to the Riemann problems. Then, it is
relatively easy to switch between different solvers by managing which implementation of rpn2

and rpt2 is actually considered by the compiler. This is usually set up in the Makefile used
to build the application.

Various Riemann solvers for a wide range of applications are available in the Riemann sub-
module of Clawpack’s open source repository [14]. In this work we focus on vectorization of
the three solvers that have been briefly described in Sections 4.4.1, 4.4.2 and 4.5.1. More
specifically, for the single-layer shallow water equations we use the f-wave solver [4] and the
augmented Riemann solver [29], while for the two-layer equations we use the two-layer solver
proposed in [45, 46]. In addition to those three normal Riemann solvers, in this chapter we
also experiment with vectorization of so-called transverse Riemann solvers for those equations
(see Section 4.6), which compute flux corrections for two-dimensional simulations, based on the
solutions of the normal Riemann problems.

6.2 Vectorization of the Numerical Routines

In this section we describe the changes that were necessary to achieve efficient vectorization of
the numerical routines in GeoClaw, with particular emphasis on the Riemann solvers. These
include a reorganization of the data arrays used in the finite volume scheme, the addition of
compiler auto-vectorization directives to the computational loops and a few adjustments in the
implementation of each solver.

6.2.1 Rearranging the Data layout

As discussed in Chapter 2, vectorization operates on sets of data stored contiguously, which
is usually achieved by using the “structs of arrays” data layout (SoA). However, GeoClaw
actually stores the grid data in three-dimensional arrays Q(meqn,mx,my) and Aux(maux,mx,my)

(see Section 6.1.3). Since Fortran stores arrays in memory using column-major order, all cell-
averaged components of q for a given cell (e.g., h, hu and hv for the single-layer shallow water
equations) are stored contiguously in memory, while the averages of the same component in
neighbor cells are not. Thus, these arrays actually resemble an “arrays of structs” layout
(AoS), which is not suitable for vectorization.

Because efficient vectorization would require unit stride access to the same component of
different cells, we made an effort to modify the data layout of those arrays. But unfortunately,
modifying the array layout of the entire Clawpack software would not be practical, not only
because of the software complexity, but also because such changes would affect several other
simultaneous projects and applications. Clawpack and its submodules have been continuously
developed as an open source project for over 20 years [47] with contributions of dozens of
researchers working on separate branches, and such a huge modification would not be possible
without extensive discussion within the Clawpack community and major refactoring of the code.

Instead, we decided to use the appropriate data layout only in the subroutines that compute
the numerical fluxes (where we wish to apply vectorization), leaving other parts of the code
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unchanged. In practice, we still store the data of the two-dimensional grid in an AoS-like array
Q(meqn,mx,my) as before, but we modified the temporary arrays used to store one-dimensional
slices of the grid (Q(col) and Q(row) in Algorithm 6.1) – these slices are now stored in arrays
structured as Qcol(my,meqn) and Qrow(mx,meqn), which are suitable for vectorization over the
cells/edges in each slice, since they are now stored in SoA-like order. The same approach is
also applied to Aux and its one-dimensional slices.

This means that we now rearrange the data layout from SoA to AoS on-the-fly at every
time step when extracting slices of the grid (steps 3–4 and 8–9 in Algorithm 6.1). These data
movements certainly introduce an overhead in the execution time due to strided accesses to the
memory. However, it should be noted that strided accesses were already performed previously
when extracting column slices from the grid data. Also, the results obtained by our performance
experiments presented in Section 6.3.3 show that the speedups achieved by vectorization of the
numerical routines easily outweigh this overhead.

6.2.2 Effective and Efficient Compiler Auto-Vectorization

After we modified the layout of the arrays used to store the one-dimensional slices, the Intel
Compiler was able to successfully auto-vectorize several loops in the subroutines that compute
the numerical fluxes on the grid edges. Most of them are small loops that perform straight-
forward code, like accumulating the numerical fluxes for each cell or computing second-order
corrections for the fluxes. For some of those loops, no further work was required to achieve
compiler auto-vectorization. For others, simply annotating them with SIMD directives like
!$OMP SIMD was enough. However, the main loops in the subroutines rpn2 and rpt2 (that
repeatedly apply the normal and transverse Riemann solvers and are actually the most complex
and time-consuming loops in the code) required slightly more complex annotations and some
modifications in their code structure. In Code 6.1 we show the general structure that we used
for those loops, to make them suitable for compiler auto-vectorization.

Recalling the discussion about data layout (see Section 6.2.1), notice that the arrays con-
taining the input data for the Riemann problems are organized as SoA (see lines 22–25), which
results in unit stride accesses between the same component for consecutive Riemann problems.
The same can be said about the output arrays (lines 33–34), whose dimensions have also been
reordered such that now the leftmost index is used to identify the Riemann problems. Thus,
all the input and output arrays use data layouts that are suitable for vectorization.

Note that in addition to annotating the loop with the !$OMP SIMD directive, it was also
necessary to declare the iteration-local variables (i.e., variables other than the arrays into which
vectorization is applied) as PRIVATE, which effectively tells the compiler to replace these scalar
variables with temporary arrays that match the SIMD width. Without this, the compiler would
have been unable to vectorize the loop because of scalar assignments and data dependencies that
are not allowed for vectorization. This was the main motivation for encapsulating most of the
loop code into a separate subroutine solver, as this minimizes the number of variables that need
to be declared here – local variables in external subroutines are treated as PRIVATE by default.
Another advantage is that this provides a generic interface for achieving loop vectorization,
regardless of which Riemann solver is actually implemented inside of solver.

We also use the compiler directive !DIR$ FORCEINLINE on the subroutine solver to make
sure that it gets inlined into the loop and also vectorized. As discussed in Section 2.3.1, an
alternative option to inlining would be to declare the subroutine as “SIMD-enabled” by adding
the directive !$OMP DECLARE SIMD in its code. However, in our early experiments this approach
resulted in considerably slower performance and it was discarded in favor of inlining.

Of course, whether the compiler will be able to actually vectorize this loop depends on the
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Code 6.1: Example of how the main loop in the subroutine rpn2 has been organized to allow
auto-vectorization assisted by compiler directives. This example is based on the code used for
the normal Riemann solvers for the single-layer shallow water equations, but very similar code
structures are also used for the two-layer solver and for the transverse solvers (rpt2). Here,
Q and Aux correspond to one-dimensional slices that have been extracted from the grid using
Alg. 6.1. Note that there are no data dependencies across different loop iterations, which makes
it safe to use the !$OMP SIMD directive.

1 subroutine rpn2(Q, Aux , mx, meqn , maux , mwaves , [...], waves , speeds)

2 ! Input:

3 real :: Q(mx, meqn) ! Q data for cells in this 1D slice

4 real :: Aux(mx, maux) ! Aux data for cells in this 1D slice

5 integer :: mx ! Number of cells in this 1D slice

6 integer :: meqn , maux ! Number of components in Q and Aux , respectively

7 integer :: mwaves ! Number of waves generated by discontinuities for this PDE

8 ! Output:

9 real :: waves(mx -1, mwaves , meqn) ! A set of waves for each edge

10 real :: speeds(mx -1, mwaves) ! Speed of each wave

11 ! Local variables:

12 real :: hL,huL ,hvL ,bL, hR,huR ,hvR ,bR ! Data on Left/Right sides of the edges

13 real :: w(mwaves ,meqn), s(mwaves) ! Temporary storage for the Riemann solutions

14

15 ! Loop through the edges in the slice (main loop):

16

17 !$OMP SIMD PRIVATE(hL,huL ,hvL ,bL , hR ,huR ,hvR ,bR, w,s)

18 do i = 1, mx -1

19

20 ! Copy data for this Riemann problem from Q and Aux.

21 ! The left cell has index (i) and the right cell has index (i+1).

22 hL = Q(i,1) ; hR = Q(i+1,1)

23 huL = Q(i,2) ; huR = Q(i+1,2)

24 hvL = Q(i,3) ; hvR = Q(i+1,3)

25 bL = Aux(i,1) ; bR = Aux(i+1,1)

26

27 ! Call Riemann solver for this problem (output is returned in ‘w’ and ‘s’)

28

29 !DIR$ FORCEINLINE

30 call RiemannSolver(hL,huL ,hvL ,bL, hR,huR ,hvR ,bR , w, s)

31

32 ! Copy solution (‘w’ and ‘s’) to output arrays (‘waves ’ and ‘speeds ’)

33 waves(i,:,:) = w(:,:)

34 speeds(i,:) = s(:)

35 end do

36 end subroutine

implementation of the subroutine solver, as its code must adhere to a specific set of rules in or-
der to be vectorizable (see Section 2.1). To achieve vectorization of our solver implementations
and also to improve the vectorization performance, we made a few changes in their code. In
particular, we removed “early exits” from all of them. In the original solver implementations,
Riemann problems identified as “trivial” (both cells completely dry) were simply skipped, as
their solution is always zero (zero-valued waves that do not affect the solution) – see the ex-
ample in Code 6.2. However, skipping iterations is not possible with vectorization, because
the SIMD model requires that the computation for sets of contiguous array positions advance
simultaneously. In our vectorized implementations, these problems are now solved as usual and
afterwards the correct solution for these problems (zero) is attributed to the output variables.
An example is shown in Code 6.3. Note that this final step is necessary because the Riemann
solvers may compute incorrect solutions for completely dry states, as their computations usu-
ally assume that h` > 0 and hr > 0. Because this approach uses simple post-processing of the
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Code 6.2: Example implementation of solver for the single-layer shallow water equations with
possibility of early exits, which should be avoided for vectorization. The solver implementation
skips completely dry problems (problems with dry cells on both sides), immediately returning
the correct solution (zero).

1 subroutine solver(hL,huL ,hvL ,bL, hR ,huR ,hvR ,bR, w, s)

2 ! Input:

3 real , intent(in) :: hL,huL ,hvL ,bL, hR,huR ,hvR ,bR ! Riemann problem data

4 ! Output:

5 real , intent(out) :: w(mwaves ,meqn), s(mwaves) ! Waves and wave speeds

6 ! Local:

7 ! [...] (Other variables)

8

9 ! Skip completely dry problems -> solution is zero

10 if (hL < dryTolerance .and. hR < dryTolerance) then

11 w(:,:) = 0.0

12 s(:) = 0.0

13 return

14 end if

15

16 ! Compute solution of the Riemann problem (‘w’ and ‘s’)

17 ! [...] (Main code for the solver)

18

19 end subroutine

Code 6.3: Example implementation of solver for the single-layer shallow water equations
without early exits, suitable for efficient vectorization. Note that at the end it is necessary to
overwrite the content of the output arrays with the correct solution (zero), because the solver
implementations usually assume that hL and hR are greater than zero and include divisions and
square root computations involving those variables, which may lead to invalid solutions (NaN).

1 subroutine solver(hL,huL ,hvL ,bL, hR ,huR ,hvR ,bR, w, s)

2 ! Input:

3 real , intent(in) :: hL,huL ,hvL ,bL, hR,huR ,hvR ,bR ! Riemann problem data

4 ! Output:

5 real , intent(out) :: w(mwaves ,meqn), s(mwaves) ! Waves and wave speeds

6 ! Local:

7 ! [...] (Other variables)

8

9 ! Compute solution of the Riemann problem (‘w’ and ‘s’)

10 ! [...] (Main code for the solver)

11

12 ! Set the correct solution for completely dry problems (zero)

13 if (hL < dryTolerance .and. hR < dryTolerance) then

14 w(:,:) = 0.0

15 s(:) = 0.0

16 end if

17 end subroutine

output variables, it delivers better performance than introducing an extra if-then-else branch
around a large chunk of code, which would force the compiler to use several additional masked
operations and assignments.

Specifically for the augmented Riemann solver for the single-layer equations, we also removed
the possibility of early exits from internal loops in the algorithm (such as the one used for
implementing Newton’s method) to avoid creating additional branches in the execution. Instead,
the internal loops are now always executed for a given number of iterations, which is known
beforehand by the compiler (usually only one iteration is applied).

Also the two-layer solver required additional modifications: to solve a 6× 6 system of linear
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Report 6.1: Excerpt from the optimization report provided by the Intel Fortran Compiler
when compiling GeoClaw with the augmented Riemann solver for a KNL processor (with the
compilation flag -xMIC-AVX512).

1 LOOP BEGIN at ../src/vec/rpn2_geoclaw.f90 (118 ,7)

2 remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

3 remark #15448: unmasked aligned unit stride loads: 8

4 remark #15449: unmasked aligned unit stride stores: 12

5 remark #15475: --- begin vector cost summary ---

6 remark #15476: scalar cost: 2355

7 remark #15477: vector cost: 988.870

8 remark #15478: estimated potential speedup: 2.280

9 remark #15486: divides: 61

10 remark #15488: --- end vector cost summary ---

11 LOOP END

equations, it previously used the subroutine dgesv from the linear algebra library LAPACK [1].
However, the Intel Compiler was not able to inline and auto-vectorize this call to an external
library, resulting in loss of vectorization performance. For that reason, we replaced this with
a local implementation of the LU decomposition algorithm [69], which could then be inlined
into the loop and efficiently auto-vectorized. In addition, in order to reduce the total number of
execution branches, we now require the choice of method used for eigenspace decomposition to be
defined in compilation time (four different methods are provided by the solver implementation,
as discussed in Section 3.3 of [46]).

By checking the optimization reports provided by the Intel Fortran compiler, we confirmed
that the loops annotated with SIMD directives have indeed been auto-vectorized, for all variations
of Riemann solvers considered in this work. In Report 6.1 we show part of the report obtained
when compiling GeoClaw with the augmented Riemann solver for the KNL processors – this
excerpt refers to the loop shown in Code 6.1. The compiler reports that all memory accesses
are unmasked, aligned and unit-strided, which is optimal for vectorization. In addition, it also
estimates a potential speedup of 2.28× for this loop – however, in our performance results
presented in Section 6.3 we experienced considerably higher speedups. For the other Riemann
solvers and also for the Haswell architecture we obtained similar reports, all of them confirming
efficient auto-vectorization of those loops.

6.2.3 Comparison with Related Work

Previous related work has also reported successful compiler auto-vectorization of the f-wave
solver for the single-layer shallow water equations (e.g. [3, 44, 74]). In addition to the f-wave
solver, Bader et. al. [3] were also able to vectorize the augmented Riemann solver, but intrinsic
functions were necessary because the compiler was not able to auto-vectorize the loop, even
after they annotated it with the C/C++ compiler directive #pragma simd (equivalent to the
!DIR$ SIMD directive discussed in Section 2.3).

Before implementing the vectorization approach used in this work, we had previously pub-
lished results involving auto-vectorization of those two Riemann solvers using a different ap-
proach [23], based on redesigning the solver subroutines to operate on multiple Riemann prob-
lems simultaneously, and getting the compiler to vectorize multiple loops inside them inde-
pendently from each other. In addition to requiring major code modifications in the imple-
mentations, this approach was disadvantageous compared to our current one because it in-
hibits several kinds of compiler optimizations, and each additional vectorized loop introduces
some overhead for its execution, limiting the performance improvement. In comparison to the
previous approach, our current one is easier to implement, uses a single vectorized loop and
achieves higher performance.
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In contrast to the approaches used by those previous work that achieved vectorization of the
augmented Riemann solver, the approach described here uses simple compiler auto-vectorization
of the main solver loop, annotated with the !$OMP SIMD directive (available in the OpenMP
4.0 standard and later versions). As noted in Section 2.3, in our experience the non-OpenMP
directive !DIR$ SIMD was not as successful as the OpenMP directive !$OMP SIMD, and there-
fore we decided to adopt the latter in our implementations. With this compiler directive,
which is a relatively recent addition to the OpenMP standard, the Intel Fortran Compiler is
able to successfully auto-vectorize loops that repeatedly apply the augmented Riemann solver,
despite its high complexity.

Our current approach is based on the work described in [44], which reports vectorization
of the f-wave and transverse Riemann solvers for the single-layer shallow water equations in
GeoClaw. We extended that research by including support for vectorization of the augmented
Riemann solver, as well as for the normal and transverse Riemann solvers for the two-layer
shallow water equations. Although other authors [35] have worked on a GPGPU implementa-
tion of solvers for the multi-layer shallow water equations, our research is, to the best of our
knowledge, the first one to report successful vectorization of Riemann solvers for multi-layer
shallow water equations.

6.3 Performance Results

In this section we evaluate the performance of our vectorized implementations on the high-
performance experimental platforms that we described in Chapter 5. First, we describe the
simulation scenarios we used for each variation of the shallow water equations. Then, we eval-
uate the performance of the solver subroutines individually, comparing the vectorized and non-
vectorized versions and also evaluating how efficiently they exploit the available computational
resources. Afterwards, we assess the benefits of vectorization to the finite volume applications
in general, particularly with respect to reducing their time-to-solution.

6.3.1 Simulation scenarios

Chile 2010 Tsunami

To test our solvers for the single-layer shallow water equations, we simulate a real tsunami
event that took place in the Pacific Ocean in February 2010 and reached the coast of Chile
and Peru. We show two snapshots of these simulations in Fig 6.2. In these simulations we use
topography data with a resolution of 1

6 degree both in latitude and longitude (roughly 18.5 km),
obtained from the ETOPO2 data set made available by the National Geophysical Data Center
(NGDC) [55, 56]. As initial conditions for the tsunami wave, we apply a static displacement
to the water and to the bathymetry, obtained following the Okada model [57] and using data
for the respective earthquake, made available by the United States Geological Survey [68]. The
interested reader is referred to [39] for more details and numerical considerations regarding the
simulation of the Chile 2010 Tsunami.

For the performance results presented in the following, we used three refinement levels: a
level 1 grid composed of 100×100 cells and refinement factors of 6×6 and 8×8 for levels 2
and 3, respectively. This setup produces cell resolutions of roughly 67 km on the coarsest
level and 1.4 km on the finest level. Our results consider a simulation of the first six hours
after the earthquake that generated the tsunami. In each simulation, roughly 14.1 billion cell
updates were computed.
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Figure 6.2: Simulation of the Chile 2010 tsunami with GeoClaw. Note that the simulation
illustrated in the snapshots does not use the same resolutions as the ones used in our actual
experiments. In this simulation we use a level 1 grid with 15×15 cells and refinement factors of
2×2 and 8×8 for the second and third levels, respectively. For clarity, the internal edges of the
third level grids are omitted from the illustrations.

Parabolic Bowl-Shaped Lake

For the experiments with the two-layer shallow water equations, we use one of the artificial sce-
narios available in the GeoClaw repository [14]: the parabolic bowl-shaped lake. In this scenario,
waves generated by a circular hump of water propagate over a bowl-shaped bathymetry, with the
water being initially split into two layers 20 meters below the baseline level b = 0. More specif-
ically, this scenario is composed of a square domain [−100, 100] × [−100, 100] (coordinates are
given in meters), where the bathymetry and the depths of the two layers of water are defined as:

b(x, y) = 10−2 · (x2 + y2)− 80, (6.1)

h2(x, y) = max(0,−20− b(x, y)), (6.2)

h1(x, y) =

{
4e−10

−2·(x2+y2) − b(x, y)− h2(x, y) if x2 + y2 < 10

max(0,−b(x, y)− h2(x, y)) if x2 + y2 ≥ 10.
(6.3)

This kind of bathymetry is often used in analytical scenarios that serve as benchmarks to
evaluate the quality of numerical schemes for shallow water models, especially with respect to
inundation [65]. In this case, this scenario is especially useful to assess wetting and drying of
individual layers, as it contains regions in which the top layer is wet and the bottom layer is dry.
For illustration, in Fig. 6.3 we show a vertical section of the initial conditions for this scenario.

Like in the experiments with the Chile 2010 Tsunami, in the two-layer simulations we also
used three refinement levels, but with different refinement ratios. More specifically, we use
40×40 cells in the level 1 grid and refinement ratios of 6×6 for both layers 2 and 3. During
each simulation, approximately 4.2 billion cell updates were computed.

6.3.2 Vectorization Performance

Since our goal is to evaluate the effectiveness of vectorization, initially we consider only the
performance of each solver individually; the overall simulation performance will be addressed
later. Thus, for the following results we considered only the times spent by the solver subrou-
tines, and used them to compute the performance of each solver. These are given as Riemann
problems solved per second.
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Figure 6.3: Vertical-section visualization of the “parabolic bowl-shaped lake” scenario at
t = 0. The green line depicts the bowl-shaped bathymetry and the cross (cyan) and plus (blue)
signs show the elevation of the first and second layers of water, respectively. Note that the
cell concentration is much higher in the region close to the hump of water at the center due to
adaptive mesh refinement.
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Figure 6.4: Performance of the Riemann solvers for the single-layer shallow water equations,
before and after applying vectorization.

In Fig. 6.4 we present the performance measurements of the three Riemann solvers for the
single-layer shallow water equations (f-wave, augmented Riemann and the transverse Riemann
solvers). These results confirm the effectiveness of our vectorization approach on both machines.
As expected, the benefits of vectorization are much more noticeable on the KNLs than on the
Haswells (4.2–5.6× vs. 1.7–2.1×). It is also interesting that the augmented Riemann solver
obtained slightly higher speedups than the f-wave solver, despite its higher complexity. That
happens because it is much more compute-intensive than the f-wave solver, which generally
leads to greater vectorization speedups.

The performance measurements for the solvers for the two-layer equations are presented
in Fig. 6.5. In this case we only have one version for the normal Riemann solver, so we only
distinguish between normal and transverse solvers. Again the improvements are much greater on
the KNLs (2.3–2.7× vs. 1.3–1.4×). It is clear that vectorization with 256-bit SIMD instructions
achieves only minor performance gains with such complex solvers. On the other hand, 512-bit
instructions are able to deliver reasonable speedups, although still considerably smaller than
those obtained with the single-layer solvers.
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Figure 6.5: Performance of the Riemann solvers for the two-layer shallow water equations,
before and after applying vectorization.

Table 6.1: Performance of the vectorized solvers in GeoClaw. For each solver, we list the
speedup achieved by introducing vectorization and the floating-point operations throughput of
the vectorized versions (in GFlops/s). The percentages in parentheses show how the achieved
performances compare to the maximum attainable performance of each machine (measured with
the Flop/s benchmark described in Section 5.1).

Equations Machine Solver Speedup GFlop/s

Single-layer

Haswells

f-wave 1.8× 49.7 (32%)

Aug. Riemann 2.1× 63.7 (41%)

Transverse 1.7× 53.8 (34%)

KNL

f-wave 4.2× 82.2 (11%)

Aug. Riemann 5.0× 96.5 (13%)

Transverse 5.6× 105.1 (15%)

Two-layer

Haswells
Normal 1.4× 33.7 (22%)

Transverse 1.3× 36.6 (23%)

KNL
Normal 2.4× 30.0 (4%)

Transverse 2.7× 42.1 (6%)

We summarize the speedups obtained on these experiments in Table 6.1. There we also list
estimates of the floating-point operations per second rate (GFlop/s) for the vectorized solvers
on each machine, obtained with the help of the PAPI interface [54]. We used PAPI to mea-
sure the average number of floating-point operations performed by each solver, considering
the non-vectorized versions. We then estimated the throughput of the vectorized versions by
assuming that they perform the same number of operations as the original implementations.
Note that this is a conservative assumption, since the vectorized codes actually perform many
additional operations, e.g. because of masked operations used to handle branches. Thus, in
practice, we only consider “useful” floating-point operations, ignoring those additional opera-
tions introduced by vectorization.

Comparing the achieved throughputs with the maximum performance measured in each
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Figure 6.6: Wall time split into components for the entire simulations, before and after vec-
torization of the Riemann solvers.

machine (see Table 5.1), we observe that the single-layer solvers achieve roughly 32–41% of the
attainable performance on the Haswells and 11–15% on KNLs. Since the solvers are much more
complex than the benchmark used (including if-then-else branches, division and square-root
operations, etc.), these numbers indicate high utilization of the computational resources.

A similar analysis can be made for the two-layer solvers, which achieve 22–23% and 4–6% of
the attainable performance on the Haswells and the KNL, respectively. It is evident that these
solvers benefit less from vectorization than the single-layer ones and perform considerably slower.
This can be attributed to the even higher complexity of the two-layer solvers (in comparison
with the single-layer ones), where large if-then-else branches are necessary to deal with the
four times higher number of dry/wet combinations (see Section 4.5.1). Because such branches
can diminish the benefits from vectorization substantially, the smaller speedups and worse
performance obtained are not surprising. Also, these results indicate that the vectorized two-
layer solvers might be improved by minimizing the number and size of the branches in their
code and investigating this is left as a suggestion for future work.

6.3.3 Simulation Performance and Time-To-Solution

Now we consider the influence of vectorization to the entire execution time of the simulations.
In Fig. 6.6 we plot the execution (wall) times spent by the simulations using the original and
the vectorized solver implementations. We divide the execution time into four components:
“Normal solver”, “Transverse solver”, “Other numerical routines” and “Mesh management”.
The first two correspond to the Riemann solvers discussed previously. “Other numerical rou-
tines” includes all execution time necessary to update the solution values, except for the two
Riemann solvers. These routines are basically composed of the steps that precede and succeed
the Riemann solvers. Initially, they are responsible for fetching the cell data and reorganizing
them as one-dimensional slices to be used as input for the solvers (Alg. 6.1). Afterwards, they
apply second-order corrections and limiters to the Riemann solutions and use them to update
the cell quantities, following (4.30). Lastly, “Mesh management” comprises the operations nec-
essary for managing adaptivity, such as refining/coarsening cells, merging contiguous patches,
etc. Note that, for the single-layer equations, here we consider only the augmented Riemann
solver and omit the results obtained with the f-wave solver, since the measurements obtained
in those experiments are basically the same (except for the “Normal” component).
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Like the speedups computed individually for each solver, the overall speedups are signifi-
cantly higher on the KNLs (2.4× and 1.8× for the single-layer and two-layer equations, respec-
tively) than on the Haswells (1.6× and 1.2×). However, the execution times for the vectorized
codes are roughly the same on both architectures, especially for the single-layer equations, even
though the vectorized single-layer solvers perform much faster on KNLs. This is due to the other
two components, which are clearly executed much faster on the Haswells than on the KNLs.

Particularly, the “Other numerical routines” component now consumes most of the execution
time on the KNLs. As described above, this component is the one responsible for fetching the
grid data from the main memory. Compared to the Riemann solvers, the number of floating-
point operations performed in this step is much smaller, such that it is limited by the memory
bandwidth and by synchronization of threads. It should be noted, however, that the execution
times for this component did not increase on the vectorized versions, despite the overhead
introduced by rearranging the array layout from AoS to SoA during every time step (as described
in Section 6.2.1). In fact, there is even a small time reduction due to the auto-vectorization
of some loops in this component (made possible by the new data layout). This clearly shows
that the benefits of vectorization easily outweigh this overhead, especially when also considering
the performance improvements of the Riemann solvers. Nevertheless, it is still expected that
modifying the data layout for the entire application, although not an easy task, might be
beneficial for its overall performance.

Clearly, also the “Mesh management” component is responsible for a considerable fraction
of the execution time on the KNL. This happens mainly because this component does not
exploit vectorization and does not scale well on hundreds of threads, as would be necessary
for high performance with KNLs. As such, future efforts on optimizing these applications for
the KNLs (or many-core architectures in general) should consider ways to improve scalability
and parallel efficiency for this component.

6.4 Conclusions

In this chapter, we proposed and evaluated vectorized implementations of various Riemann
solvers for the single-layer and two-layer shallow water equations. Compared to previous re-
lated work, the approach we use is much simpler and more portable, as it is based on auto-
vectorization guided by an OpenMP compiler directive that proved itself able to successfully
vectorize highly complex loops.

We experienced substantial speedups on the solver routines, especially on the modern KNL
processors with 512-bit SIMD instructions. As expected, smaller but still considerable improve-
ments were also reported for the Haswell architecture, able to perform 256-bit instructions.
However, although the solvers perform considerably faster on the KNL, the overall execution
time is still comparable on both machines, because other parts of the simulation code do not
scale to hundreds of threads and/or do not exploit vectorization.

A component analysis of the execution times showed that the benefits of vectorization clearly
compensate for the overhead introduced to make the simulation data structures suitable for
SIMD instructions. It also reveals that, while the compute-intensive Riemann solvers used to
be the most time-consuming routines, now most of the time is spent on other more memory-
intensive components of the simulation code. These results suggest that future optimizations
efforts on GeoClaw should focus mainly on those components, instead of the Riemann solvers
that have already been addressed in our work.
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7
Sam(oa)2: Tree-Structured Adaptive Triangular

Meshes

After achieving successful vectorization of the numerical methods in GeoClaw, we applied the
same vectorization approach to our PDE framework sam(oa)2 [49, 63]. However, sam(oa)2 was
designed for fine-grained cell-wise adaptivity, which poses an obstacle for vectorization over grid
cells or edges, due to the irregular data structures used. For that reason, it was first necessary to
modify the adaptive meshes in sam(oa)2 to use a coarser-grained structure, by replacing single
cells with patches of uniformly refined cells in the leaves of the refinement tree. This not only
allowed effective vectorization of the numerical routines in sam(oa)2, but also brought further
increases in performance due to the more regular data structures and memory accesses and to
the reductions in the size and complexity of the implicit refinement trees.

Our initial achievements in this work with sam(oa)2 have been described in one of our
publications [23]. However, since then we have completely reformulated our implementations.
Most importantly, we replaced the previous vectorization approach with the much more efficient
approach that we developed in GeoClaw (which was described in Section 6.2). Also, we recently
modified the design of the patch-based implementation, which now matches the grid generation
algorithm used in sam(oa)2 and considerably simplifies the implementation of refinement and
coarsening schemes. Therefore, most of the content in this chapter actually refers to new and
so far unpublished work.

We start this chapter by introducing the basic ideas behind the framework sam(oa)2 in
Section 7.1, where we discuss its algorithms for managing adaptive meshes, numerical simula-
tions and various HPC features. Then we describe our work on modifying the structure of its
adaptive meshes and on applying vectorization to its numerical routines in Section 7.2. Later
we present the results of our performance experiments in Section 7.3 and give a summary of
our most important findings in Section 7.4.

7.1 Adaptive Triangular Meshes Based on Sierpinski Space-Filling
Curves

Sam(oa)2 [49,63] is a simulation framework that supports creation and management of adaptive
triangular meshes for implementing high-performance finite element, finite volume and discon-
tinuous Galerkin methods. In addition to adaptive mesh refinement, it provides various HPC
features, like memory- and cache-efficient traversals over the mesh elements, multi-level paral-
lelism and dynamic load balancing. All those features are based on organizing the mesh elements
and performing domain decompositions following the Sierpinski space-filling curve that can be
implicitly found in the mesh structure. Before describing our work on adding vectorization to
sam(oa)2 in Section 7.2, in this section we introduce the main ideas and algorithms used for
managing the adaptive meshes and HPC features in sam(oa)2. In particular, we discuss only
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(a) Adaptive mesh (b) Refinement tree

Figure 7.1: Example of a small mesh generated following the newest-vertex-bisection method
and its corresponding refinement tree. The blue dashed lines show the Sierpinski space-filling
curve induced on the finest cells in the mesh (leaves of the refinement tree). The order given by
the curve is used in sam(oa)2 for various purposes, such as efficient mesh storage and traversals.

implementation details that are relevant for finite volume methods, as other kinds of numerical
methods are beyond the scope of this thesis. For further details on sam(oa)2 and discussions
regarding implementation of other kinds of numerical methods, refer to [49, 70].

In the following, we often use the single-layer shallow water equations as an example ap-
plication when discussing implementation of a finite volume scheme in sam(oa)2. In general,
extending those examples for the two-layer equations can be accomplished by performing simi-
lar operations individually for each layer and by applying the Riemann solver for the two-layer
equations instead of the single-layer solver.

7.1.1 Adaptive Meshes and Memory-Efficient Traversals

Adaptive mesh refinement in sam(oa)2 is based on the tree-structured approach that was dis-
cussed previously in Section 3.1.2. Its adaptive meshes are generated by recursive subdivision
of triangular cells, following the newest-vertex-bisection method [53]. Starting with a square
domain split into two isosceles right triangles, triangular cells may be individually refined by
splitting them in half, with the addition of a new edge connecting the right angle vertex to the
midpoint of the hypotenuse. Note that this splitting method always produces isosceles right
triangles. Refinement of cells can then be recursively performed until the desired resolutions are
achieved in all areas of interest. As an example, consider the small mesh shown in Fig. 7.1(a).
Also, cells can be dynamically refined or coarsened following the same method after every nu-
merical time step, depending on the requirements for resolution in each domain region. An
advantage of using this method is that the resulting meshes do not require special treatment
of hanging nodes, as it is always possible to obtain conforming meshes (i.e., without hanging
nodes) by performing additional refinements.

Another advantage of using the newest-vertex-method for mesh generation is the fact that it
always produces meshes whose elements (cells, edges and vertices) can be inherently organized
following the order induced by the Sierpinski space-filling curve – illustrated by the blue dashed
lines in Fig 7.1. The so-called Sierpinski order represents the order in which the leaves of the
binary refinement tree (shown in Fig. 7.1(b)) are traversed by a depth-first search algorithm.
This order provides a domain decomposition that is used in sam(oa)2 for various purposes.
In particular, it is used to organize the mesh elements linearly, such that the full refinement
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tree does not need to be stored explicitly, leading to low computation costs for storage and
management of the adaptive mesh. Instead, it is only necessary to store the tree leaves, which
effectively contain the simulation data. In the case of finite volume methods, the leaves are used
to store the cell-averaged solution Q for each cell, as well as other cell-specific data required for
the simulation (e.g., bathymetry for the shallow water equations).

Organizing the adaptive mesh following the Sierpinski space-filling curve also allows to iter-
ate through all elements in the mesh in a memory- and cache-efficient way [2]. The framework
implements a cache-oblivious traversal scheme based on stack and stream data structures that
explores the data locality of the mesh elements, improving the rates of cache hits [70]. The
complex algorithm that handles grid traversals is effectively hidden from application devel-
opers via a system of element-oriented kernels [52] that allow customization of the numerical
and mesh management algorithms for various applications with different requirements [51]. In
Section 7.1.4, we show some example implementations for such kernels in the context of the
single-layer shallow water equations.

As a disadvantage of the strategy for adaptive mesh refinement implemented in sam(oa)2,
we mention that the Sierpinski space-filling curve is in essence a two-dimensional curve, so there
is no straightforward extension of the method for more dimensions. Therefore, this adaptivity
strategy is limited to refinements in two dimensions. Nevertheless, three-dimensional simula-
tions can still be implemented by introducing a vertical domain with static refinement, as done
in the work described in [50].

7.1.2 Parallelism and Dynamic Load Balancing

Sam(oa)2 supports multiple levels of parallelism. MPI is used for parallelism in distributed
memory, while OpenMP is used for shared memory. Vectorization is a recent addition by this
work, and its implementation is discussed in Section 7.2. The hybrid MPI+OpenMP paralleliza-
tion scheme in sam(oa)2 is also based on the order of the mesh elements given by the Sierpinski
space-filling curve, as the linear storage scheme provides a linear domain decomposition of the
two-dimensional mesh. The linear list of cells in the mesh is divided into multiple sections
with similar loads1, which can be assigned to different processes/threads and processed in par-
allel with low communication requirements. Previous work has shown that this parallelization
strategy scales well on up to 8 000 cores [52].

Because the mesh is dynamically adaptive, the number of cells in each section can increase or
decrease after performing refinement and coarsening operations, leading to load imbalances that
can considerably decrease the parallelization efficiency. Therefore, sam(oa)2 performs dynamic
load balancing after every remeshing procedure, attempting to properly distribute the compu-
tational load among all processes and threads. In the case of shared-memory parallelism, load
redistribution can be performed by trivially repartitioning the sections such that they again have
similar loads. For distributed memory, redistributing the load requires more complex schemes,
as transferring cell data between different MPI processes is necessary.

To determine an optimal load distribution, sam(oa)2 uses heuristics [59] to approximately
solve the NP-complete optimization problem that strives to minimize the maximum load per
section, known in literature as chains-on-chains partitioning. Originally developed for homo-
geneous systems (i.e., processors/cores with similar processing rates), the approach used in
sam(oa)2 has been recently extended to also allow proper load distribution on heterogeneous
systems [23]. Furthermore, recent work [62] has developed a strategy for reactive work steal-

1When setting up a simulation, users can decide which definition for “load” they want to use: the load of a
section can either directly reflect the number of cells in it, or be an estimate of the execution time required for
its processing.
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Code 7.1: Definition of the data stored for each cell in sam(oa)2. This example is based on
the single-layer shallow water equations.

1 type num_cell_data_pers

2 real :: h, hu, hv ! Components of the solution q

3 real :: b ! Bathymetry

4 end type

ing in distributed memory that achieves better load distributions than the heuristics for the
chains-on-chains partitioning problem.

7.1.3 Simulation Data Structures

Sam(oa)2 requires application developers to declare the data structures that will be used
to store the cell-averaged quantities for each cell, which is done by declaring the data type
num cell data pers (consider the example in Code 7.1). Similar declarations are also required
for the edges, which are used during the numerical time steps to store representations of the
data from their adjacent cells, as well as the solutions of their respective Riemann problems.
Each element in the mesh is represented by a complex data structure that stores not only the
simulation data as defined by the application developer, but also many important geometrical
data that is required for the meshing algorithms in sam(oa)2 (e.g., coordinates of each vertex,
connectivity information, etc.). The simulation data for the entire mesh is then stored as a lin-
ear list containing such data structures, following the Sierpinski order. This results in a storage
scheme with an AoS layout that is not suitable for vectorization (see the related discussion in
Section 2.2). Thus, in order to successfully apply vectorization, it was first necessary to modify
this data layout, as we will describe later in Section 7.2.

7.1.4 Grid Traversals for Finite Volume Methods

New simulation codes can be developed within sam(oa)2 by defining so-called grid traversals,
during which kernels implemented by the application developer are applied to the mesh elements.
In general, numerical simulations on adaptive meshes can be developed following the structure
shown in Alg. 7.1, which uses three kinds of traversals, each with a different purpose:

1. initialization traversal: defines the initial state of the mesh;
2. numerical traversal: effectively applies a time step of the numerical method;
3. adaptive traversal: restructures the mesh performing refinement/coarsening of cells;

However, this is not strictly enforced and application developers have freedom to omit one or
more of those traversals or to create additional ones. For instance, some applications may
benefit from splitting the numerical traversal into two or more separate traversals.

The initialization and numerical traversals are considered static grid traversals, since
they only operate on the data stored in the mesh elements, without altering the mesh structure.
On the other hand, the adaptive traversal is a dynamic traversal that refines and coarsens
cells, guarantees mesh conformity and applies dynamic load balancing.

Defining a grid traversal requires providing implementations of element-oriented kernels,
which may vary depending on the purpose of the traversal. Each kernel is efficiently applied
to the entire mesh in a cell-by-cell, edge-by-edge or vertex-by-vertex basis, depending on its
purpose. In the following we describe the implementations of traversals and kernels that we use
to develop finite volume simulations, with examples in the context of the single-layer shallow
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Algorithm 7.1: General structure that can be used to implement numerical simulations in
sam(oa)2, based on three different kinds of traversals. This was the structure used for all
implementations considered in this thesis. However, using exactly this structure is not required,
as developers have flexibility to implement different logical sequences.

// Mesh generation: starting with two cells, iteratively initialize and refine cells

1 Initialization traversal // Initialize data in the two cells and flag them for refinement

2 while desired refinement was still not achieved somewhere in the mesh do
3 Adaptive traversal // Refine/coarsen cells that have been flagged during initialization

4 Initialization traversal // Repeat the data initialization process for the updated mesh

5 end
// Numerical time-stepping phase

6 while simulation is not over do
7 Numerical traversal // Apply a numerical time step, advancing the solution in time

8 Adaptive traversal // Refine/coarsen cells flagged by the previous numerical traversal

9 end

Algorithm 7.2: Logical structure of the numerical traversal for finite volume schemes, which
applies three different kernels to the mesh elements.

Input: grid
Output: grid

1 foreach cell in grid do
2 foreach edge in cell do
3 call CellToEdgeKernel(cell,edge) // Stores copies of each cell’s data in its edges

4 end

5 end
6 foreach edge in grid do
7 call SkeletonKernel(edge) // Solves the Riemann problem at each edge

8 end
9 foreach cell in grid do

10 call CellUpdateKernel(cell) // Updates the solution in each cell

11 end

water equations. We note that sam(oa)2 actually defines further types of kernels that can be
used to create other types of numerical algorithms, such as finite element methods. However,
they are not mentioned here, since this work is only concerned with finite volume methods.

Static Grid Traversals

Static grid traversals can use various kernels that operate on the mesh elements in different ways.
However, it is not necessary for a traversal to implement all existing kernels. For instance, the
initialization traversal consists only of an element kernel, which is applied to all cells in the
mesh. It is used to define the initial data in each cell and to flag cells for further refinement,
where required. As shown in Alg. 7.1, this is usually followed by an adaptive traversal, and
the process is repeated until all regions in the domain have been sufficiently refined.

The numerical traversal has a more complex structure, requiring three kernels to properly
apply a time step of the finite volume scheme, as shown in Alg 7.2. In the first step, the
cell-to-edge kernel is called for every combination of adjacent cells and edges, storing repre-
sentations of the cell data in its edges. For the applications studied in this work, those represen-
tations consist of simple copies of the cell data. After this step, every edge in the mesh will have
copies of the data from its two adjacent cells, which define its respective Riemann problem.

Afterwards, the skeleton kernel is called for each edge and typically applies a Riemann

59



CHAPTER 7. SAM(OA)2: TREE-STRUCTURED ADAPTIVE TRIANGULAR MESHES

Code 7.2: Implementation of a skeleton kernel that is applied to all internal edges, using a
Riemann solver to solve the problem defined by the data stored in each adjacent cell (rep1
and rep2) and stores the computed solutions in the form of cell updates to be applied to each
adjacent cell (update1 and update2).

1 subroutine skeleton_kernel(edge , rep1 , rep2 , update1 , update2 , maxWaveSpeeed , [...])

2 ! Input variables

3 type(t_edge_data), intent(in) :: edge ! Includes data for this edge ’s geometry

4 type(num_cell_rep), intent(in) :: rep1 , rep2 ! Representations of the cells ’ data

5

6 ! Output variables: numerical fluxes for each adjacent cell and max. wave speed

7 type(num_cell_update), intent(out) :: update1 , update2

8 real , intent(out) :: maxWaveSpeed

9

10 ! Local variables

11 real :: normal (2) ! Vector that is normal to the edge

12 real :: hL,huL ,hvL ,bL, hR,huR ,hvR ,bR ! Data in cells at each side of the edges

13 real :: waves (3,3), speeds (3) ! Data of waves computed by the Riemann solver

14 real :: flux_hL , flux_huL , flux_hvL ! Numerical fluxes for the ‘left ’ cell

15 real :: flux_hR , flux_huR , flux_hvR ! Numerical fluxes for the ‘right ’ cell

16

17 ! Extract Riemann problem data from input data structures

18 normal = edge%transform_data%normal

19 hL = rep1%h; huL = rep1%hu ; hvL = rep1%hv ; bL = rep1%b

20 hR = rep2%h; huR = rep2%hu ; hvR = rep2%hv ; bR = rep2%b

21

22 ! Call Riemann solver

23 call RiemannSolver(normal , hL,huL ,hvL ,bL, hR ,huR ,hvR ,bR,

↪→ flux_hL ,flux_huL ,flux_hvL , flux_hR ,flux_huR ,flux_hvR , maxWaveSpeed)

24

25 ! Copy numerical fluxes to output data structures

26 update1%h = flux_hL ; update1%hu = flux_huL ; update1%hv = flux_hvL

27 update2%h = flux_hR ; update2%hu = flux_huR ; update2%hv = flux_hvR

28 end subroutine

solver to its problem, computing the numerical fluxes over the edge and storing them in
the edge data. We show an example implementation of the skeleton kernel for the inter-
nal edges in Code 7.2. Additionally, the numerical traversal also requires implementing a
boundary-skeleton kernel. This kernel is applied to the edges at the domain boundary, which
are only adjacent to one cell, typically simulating some kind of boundary condition, usually
either reflecting or absorbing the waves that reach the domain boundary.

In the final step, the cell-update kernel loops through all cells and updates them using
the numerical fluxes that have been computed and stored in the edges by the skeleton kernel.
This kernel is also responsible for flagging cells for refinement or coarsening depending on the
resolution required for each region. To update the cell, it typically applies an update scheme like
the ones discussed in Section 4.6. However, since those assume the use of rectangular grids, it was
necessary to slightly modify the update scheme to match the triangular cells used in sam(oa)2.
More specifically, we use a modified version of the donor-cell upwind method (4.29)2 that reads

Q
(n+1)
i = Q

(n)
i +

∆t

Vi

∑
j∈N (Ci)

F(Q
(n)
i , Q

(n)
j ), (7.1)

where Ci is the cell being updated, Vi is the area of Ci, N (Ci) is the set of neighbors of Ci and

F(Q
(n)
i , Q

(n)
j ) is the numerical flux between cells Ci and Cj .

2Currently, sam(oa)2 does not support the corner-transport upwind method (4.30), as the element-oriented
design and the use of triangular cells further complicate the computation of transverse corrections.
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Figure 7.2: Patches with refinement depths ranging from d = 0 to d = 3. A patch with
refinement depth d > 0 is obtained by splitting all cells in a patch with depth d − 1 in half.
Each cell is identified with a unique number, which we use in our implementation to store the
data of all cells sequentially.

Dynamic Grid Traversals

Dynamic grid traversals are used to apply adaptive mesh refinement to the simulation mesh.
Most importantly, the adaptive traversal requires implementation of a refine kernel and
a coarsen kernel, which define how cells should be refined and coarsened when necessary.
The former is responsible for splitting one cell into two finer cells, and usually consists of
directly copying the data from the original cell to the two new finer cells. The latter performs
the inverse operation, merging two adjacent cells by interpolating their data (often, a simple
averaging scheme is used).

On such kernels, some applications may require handling special cases for avoiding creating
spurious waves due to the adaptive operations. In the case of shallow water equations, it is
especially important to maintain the steady state h+ b = 0 on regions where the water has not
yet been perturbed. To accomplish that, it is necessary to take into account the differences in
the cell-averaged bathymetry data that may occur when refining or coarsening cells. Consider
Code 7.3, where we show an example of a refine kernel implementation that properly handles
bathymetry variations and dry cells. For further details on implementing well-balanced adaptive
mesh refinement for the shallow water equations, refer e.g. to [18].

7.2 Patch-Based Adaptive Mesh Refinement with Vectorization

As mentioned previously, the fine-grained cell-wise adaptivity and the element-oriented design
used in sam(oa)2 pose obstacles to vectorization over the mesh elements. Thus, to implement
vectorization, it was necessary to modify the mesh structure to increase regularity of the data
structures used. That was accomplished by using the leaves of the refinement tree to store
uniformly refined patches instead of single cells as before, leading to a more coarse-grained
patch-based adaptivity approach. In this section we provide details of our work performed in
sam(oa)2 in order to implement this patch-based approach and to achieve efficient vectorization
of the numerical routines.

7.2.1 Uniformly Refined Patches

For the context of sam(oa)2, we define a patch as a set of non-overlapping cells obtained by
partitioning a right isosceles triangular cell. For that, we use the same partitioning method used
for generating adaptive meshes in sam(oa)2, i.e., the newest-vertex-bisection method [53]. The
method is recursively applied to all cells in the patch up to a uniform refinement depth d (defined
by the user at compilation time), resulting in a patch containing 2d cells of identical size.

In Fig. 7.2 we show patches generated with refinement depths ranging from d = 0 to d = 3.
A patch with d = 0 contains only one cell and is equivalent to the cell-wise adaptivity imple-
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Code 7.3: Implementation of the refine kernel, which defines how new fine cells should be
initialized. Note that the kernel is called twice for every cell being refined, i.e., once for each
resulting cell. In the case of the shallow water equations, special care is necessary to maintain
the water elevation despite the changes in bathymetry, avoiding creation of spurious waves. In
particular, if a fine wet cell is derived from a coarse dry cell, it is necessary to modify its water
height such that the resulting water elevation h + b preserves the “water-at-rest” steady state
on unperturbed regions.

1 subroutine refine_kernel(src_element , dest_element , [...])

2 ! Input variables

3 type(t_traversal_element), intent(inout) :: src_element

4 ! Output variables

5 type(t_traversal_element), intent(inout) :: dest_element

6 ! Local variables

7 real :: src_h , src_hu , src_hv , src_bL ! Data in the original coarse cell

8 real :: dest_h , dest_hu , dest_hv , dest_bL ! Data in the new fine cell

9 logical :: src_was_dry , dest_is_dry ! Whether the coarse/fine cells were/are dry

10

11 ! Extract data from original coarse cell

12 src_h = src_element%cell%data_pers%h

13 src_hu = src_element%cell%data_pers%hu

14 src_hv = src_element%cell%data_pers%hv

15 src_b = src_element%cell%data_pers%b

16

17 ! Bathymetry data does not come directly from the original cell.

18 ! Instead , the cell -averaged bathymetry is recomputed for the new cell.

19 dest_b = getBathymetryAtCell(dest_element%transform_data)

20

21 ! Maintain original water elevation h+b despite possible changes in bathymetry

22 dest_h = src_h + src_b - dest_b

23

24 ! Keep the water momentum from the original coarse cell

25 dest_hu = src_hu ; dest_hv = src_hv

26

27 ! Handle special cases regarding dry cells

28 src_was_dry = ( src_h < dry_tolerance )

29 dest_is_dry = ( dest_h < dry_tolerance )

30 if (dest_is_dry) then ! If cell is dry , its quantities should be zero

31 dest_h = 0.0 ; dest_hu = 0.0 ; dest_hv = 0.0

32 else if (src_was_dry) then

33 ! If the original cell was dry and the new cell is wet , we need to force

34 ! h + b = 0 in the new cell to avoid creating spurious waves.

35 dest_h = -dest_b

36 end if

37

38 ! Store data for fine cell in the output variable

39 dest_element%cell%data_pers%h = dest_h

40 dest_element%cell%data_pers%hu = dest_hu

41 dest_element%cell%data_pers%hv = dest_hv

42 dest_element%cell%data_pers%b = dest_b

43 end subroutine

mentation described previously, where patches are not used. Any patch with depth d > 0 can
be recursively generated by splitting all cells in a patch with depth d− 1 in half. In general, we
identify each cell in a patch with a unique number from 1 to 2d, where the number of each cell
is obtained according to the definition that splitting a cell Ci in a patch with depth d produces
two cells identified as C2i−1 and C2i in the resulting patch with depth d + 1.

In our new implementation, each leaf of the mesh refinement tree is used to store one of
such patches, instead of a single cell as before. In order to reduce execution overhead, we only
execute the algorithm used for patch generation once before the simulation starts, to compute
and store geometry data that will be repeatedly used throughout the simulation. In this step we
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(a) d = 1 (b) d = 2

Figure 7.3: Examples of adaptive meshes composed of patches with refinement depths d = 1
and d = 2. To make it easier to distinguish between patches and the cells inside of them, we
color entire patches with either gray or white background. Note that while (a) may contain
hanging nodes (indicated by small blue circles), that is not possible in (b).
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(b) Two finer patches

Figure 7.4: Refinement of a coarse patch into two finer patches. Each finer patch is indicated
by a different background color. Every cell in the coarse patch (a) is split into two cells to
obtain two finer patches (b). When performing coarsening of patches, the reverse operation is
performed, i.e., starting with the two fine patches shown in (b), a coarsening operation produces
the patch shown in (a).

compute important information regarding the patches, such as the coordinates of each vertex,
the direction of each edge and the neighbors of each cell. In the case of cells that share one
or more edges with the patch external boundary, we also store whether they are adjacent to
the left side, right side or hypotenuse of the patch, as this information will be necessary when
exchanging data between neighbor patches.

7.2.2 Patch-Based Adaptive Meshes

In the new implementation of the adaptive meshes, patches are treated as the finest element
in the refinement tree, corresponding to its leaves. To always guarantee conforming meshes
(i.e., without hanging nodes), all patches in the mesh are generated with identical refinement
depth d. For the same reason, we only allow even values for d. Consider the examples in
Fig. 7.3, where we show meshes composed of patches with depths d = 1 and d = 2. Note
that if the refinement depth d is odd, the patch boundary composed of its hypotenuse contains
more nodes than the other two boundaries, which may lead to hanging nodes. On the other
hand, if d is even, all three patch boundaries contain exactly the same number of nodes and
hanging nodes are therefore not possible.

Treating patches as the finest element in the refinement tree means that it is not possible
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Code 7.4: Definition of the data stored for each patch. Here, PATCH NUM CELLS is a macro
that gives the number of cells in each patch, computed as 2d according to the patch refinement
depth d chosen by the user. This example is based on the single-layer shallow water equations.

1 type num_cell_data_pers

2 real , dimension(_PATCH_NUM_CELLS) :: h, hu, hv ! Components of the solution q

3 real , dimension(_PATCH_NUM_CELLS) :: b ! Bathymetry

4 end type

to individually refine cells inside a patch. Instead, refinement is applied to the entire patch
and produces two patches with the same format and number of cells as the original one, but
each with half of its size. In the process, every cell in the original patch is split into two cells
to obtain the finer patches. Consider Fig. 7.4, where we show the process of refining a patch
with depth d = 2. Note that this process is very similar to the one described in the previous
section, which is recursively performed to generate the patches. The difference is that in this
case the result are two patches with the same refinement depth d as the original patch, instead
of a single one with depth d + 1. On the other hand, when performing coarsening of patches,
the reverse process is applied, i.e., two neighbor patches are merged to produce a coarse patch
with the same refinement depth as the two original fine patches.

7.2.3 Data Storage for each Patch

The new patches in sam(oa)2 are effectively implemented as an additional layer of regular re-
finement that is managed independently from the adaptive mesh refinement strategy and from
the parallelization and traversal schemes described in Section 7.1. As such, the general algo-
rithms described previously have not been modified. Instead, the newly introduced patches
are completely managed in the part of the code that can be customized by application de-
velopers to implement numerical methods for various applications, i.e., they are managed in
the definition of the simulation data and in the implementation of the element-oriented kernels
used in the grid traversals.

When defining the simulation data stored in each leaf of the refinement tree, it is now
necessary to store data for an entire patch, instead of a single cell as before. That can be
trivially performed by using arrays with the appropriate sizes, as shown in Code 7.4 (compare
with Code 7.1, where this data type is defined to only store the data of a single cell). Note that
the new storage scheme uses an SoA layout, in contrast to the AoS layout that was used before.

7.2.4 Patch-Based Traversals

When implementing the element-oriented kernels for the grid traversals, similar modifications
are necessary. Kernels that were previously applied to a cell at a time, should now operate
on all cells in the patch, and kernels that were applied to an edge are now applied to one
of its three patch boundaries (i.e., to all the edges in that boundary). For example, in the
initialization traversal, the element kernel now needs to initialize all cells in a given patch.
Similarly, the refine and coarsen kernels of the adaptive traversal need to split or merge all
cells in the patch taking into account their respective positions in the patch (consider again
the example shown in Fig 7.4).

For the initialization and adaptive traversals, such modifications in the implementa-
tions of their element-oriented kernels can be considered trivial, as all that is required is to
repeatedly apply the same operation to all cells in the patch. On the other hand, much more
complex modifications were required for the numerical traversal, particularly because it also
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Figure 7.5: Two-step process to exchange boundary data between neighbor patches. First,
the patch-to-boundary kernel (blue single-pointed arrows) stores data from the cells located at
the patch boundary as its boundary representation. Later, the skeleton kernel (green double-
pointed arrows) exchanges the data in the boundary representations of the two neighbor patches.
When the process is complete, each patch has access to copies of the boundary data of its
neighbor patches, so that applying the finite volume schemes to all of its cells is now possible.

performs operations on the mesh edges, which can now be adjacent to two cells that belong
to different patches. In the following subsections, we describe the modifications we made to
the kernels of the numerical traversal, in order to apply the finite volume scheme to the new
patch-based adaptive mesh and to implement vectorization of the Riemann solvers.

Data Exchanges Between Neighbor Patches

Applying the finite volume scheme to a single patch requires not only data from its cells, but also
from cells in the boundary of its adjacent patches. Consider the two neighbor patches shown in
Fig. 7.4(b) – updating cells 1 and 2 in the left patch requires data respectively from cells 3 and
4 in the right patch, and vice-versa. Therefore, before we can solve all Riemann problems in a
patch, we need to get access to the data of the cells at the boundary of those neighbor patches.

Exchanging of boundary data is performed in two steps, using kernels that are analogous
to the cell-to-edge and skeleton kernels described previously in Section 7.1.4. First, we re-
place the cell-to-edge kernel with a patch-to-boundary kernel that is applied to all patches,
extracting data from the cells at the three patch boundaries and storing them as boundary
representations, which are basically arrays containing data from all cells in each boundary. Af-
terwards, a modified implementation of the skeleton kernel acts on all boundaries between
adjacent patches, effectively exchanging the boundary data between neighbor patches. The
whole process is illustrated in Fig. 7.5. In this process, application developers only need to
specify which data should be exchanged between neighbor patches, since sam(oa)2 internally
takes care of actually performing the data exchanges, managing communication between dif-
ferent processes whenever necessary.

Reorganizing the Patch Data into Temporary Arrays

After the data exchanges are complete, every patch has access to all data necessary to update all
cells within it, which is then performed by the patch-update kernel. This kernel is analogous
to the cell-update kernel that was applied previously, before we switched to the patch-based
approach. However, the patch-update kernel is now also responsible for computing solutions
to all Riemann problems in the patch, in addition to applying the finite volume update scheme
that uses those solutions. Thus, this is the kernel where we now handle vectorization of the
loop that applies the Riemann solver to all edges in the patch.
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(a) Patch with its boundary representations
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(b) Temporary arrays

Figure 7.6: Reorganization of the patch data into temporary arrays, such that each array posi-
tion represents one of the edges in the patch and is used to store the input data of its respective
Riemann problem. For edges at the patch boundary, one of the adjacent cells belongs to a
neighbor patch. In those cases, their data is obtained from the patch boundary representations,
which are used as a ghost layer. Note that Qi and Qj actually correspond to multiple arrays
organized in an SoA data layout, although they are illustrated in (b) as a single array each.

At this point, all required data is available in contiguous arrays for the patch-update kernel:
the data of all cells in the patch are stored in the format shown in Code 7.4 (following the cell
numbering we use to identify those cells, shown in Fig 7.2); additionally, copies of the required
data from cells in neighbor patches are available in the form of boundary representations, which
are also stored as arrays. However, it is still not possible to directly apply vectorization to those
arrays, because the order in which they are organized does not reflect the adjacency relationships
between cells, which is required for identifying the Riemann problems that we need to solve.

In order to switch to a vectorization-friendly data layout, during every numerical time step
our implementation reorganizes the patch data into temporary arrays such that each array
position corresponds to one of the edges in the patch, storing the input data for its respective
Riemann problem. More specifically, for every edge in the patch, the cell-averaged quantities Qi

and Qj from its adjacent cells Ci and Cj are copied into these arrays. This process is illustrated
in Fig. 7.6. For internal edges, the data for both sides of the edge comes directly from the cells
inside the patch. For edges at the patch boundary, one of the sides actually corresponds to a
cell in a neighbor patch. In these cases, the data is copied from the boundary representations,
which as described previously are used to store the boundary data of the neighbor patches,
effectively acting as a ghost layer.

Note that these temporary arrays are also organized as SoA, in order to allow vectorization.
For example, in the case of the single-layer shallow water equations, eight arrays are used to
store the cell-averaged values of h, hu, hv and b at both sides of the edges. Note also that this
reorganization process involves strided accesses to memory and introduces some overhead to
the algorithms, similar to the rearranging of the data layout that we implemented for GeoClaw
(see Section 6.2.1). But also in this case, our performance experiments show that this overhead
is negligible compared to the speedups achieved due to vectorization.
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Code 7.5: Main loop that repeatedly calls the Riemann solver for the single-layer shallow
water equations, annotated with an !$OMP SIMD directive for compiler auto-vectorization.

1 ! Note: N is the number of Riemann problems stored in the temporary arrays

2 ! Input variables: temporary arrays containing data of Riemann problems

3 real , dimension(N) :: hL, huL , hvL , bL ! Data from ‘left ’ cells

4 real , dimension(N) :: hR, huR , hvR , bR ! Data from ‘right ’ cells

5 real , dimension(N,2) :: normals ! Vectors that are normal to each edge

6 ! Output variables: numerical fluxes for each Riemann problem and max. wave speed

7 real , dimension(N) :: flux_hL , flux_huL , flux_hvL

8 real , dimension(N) :: flux_hR , flux_huR , flux_hvR

9 real :: maxWaveSpeed

10 ! Local variables

11 real :: waveSpeed ! Temporary storage for wave speeds

12

13 [...]

14

15 !$OMP SIMD PRIVATE(waveSpeed) REDUCTION(max: maxWaveSpeed)

16 do i=1,N ! Loop for all N Riemann problems

17 !DIR$ FORCEINLINE

18 call computeFluxes(normals(i,:), hL(i),huL(i),hvL(i),bL(i),

↪→ hR(i),huR(i),hvR(i),bR(i), flux_hL(i),flux_huL(i),flux_hvL(i),

↪→ flux_hR(i),flux_huR(i),flux_hvR(i), waveSpeed)

19 maxWaveSpeed = max(maxWaveSpeed , waveSpeed)

20 end do

Solving the Riemann Problems with Vectorization

With the data organized in those temporary arrays, it is now possible to use vectorization to
solve the Riemann problems stored in them. Since these arrays represent a list of Riemann
problems to be solved (similarly to the one-dimensional grid slices in GeoClaw), we can apply
exactly the same vectorization approach that was developed in Section 6.2.2 for GeoClaw. In
fact, the Riemann solver implementations that we use in sam(oa)2 have been directly extracted
from GeoClaw – the only difference is that in sam(oa)2 they have been extended to directly
compute the numerical fluxes used to update the cells, instead of returning the set of waves
generated by the discontinuities in the solutions.

In Code 7.5 we show an excerpt of the code with the vectorized loop used to solve the
Riemann problems in a patch – note that the loop structure and the compiler directives are
very similar to the ones used for GeoClaw (Code 6.1). This excerpt uses a Riemann solver to
compute the numerical fluxes crossing each edge, and stores them in temporary output arrays
similar to the ones that are used for the input data.

After executing this loop, our patch-update kernel implementation finally completes the
process of updating all cells in the patch. This is performed by a trivial (also vectorized)
loop that repeatedly applies the update scheme given by (7.1) to update the cell-averaged
solution stored in each cell.

Cache-Efficient Implementation of the Patch-Update Kernel

In Alg. 7.3 we show a general and straightforward implementation of the patch-update kernel
that was described above. First, all the Riemann problems in the patch are identified and
their input data are organized in temporary input arrays list Qi and list Qj . Then, a
vectorized loop (the one shown in Code 7.5) applies a Riemann solver to all problems stored
in those arrays, and stores the computed numerical fluxes are in temporary output arrays
list Fi and list Fj . Lastly, these lists containing the computed numerical fluxes are used
to update all cells in the patch.

67



CHAPTER 7. SAM(OA)2: TREE-STRUCTURED ADAPTIVE TRIANGULAR MESHES

Algorithm 7.3: “Naive” implementation of the patch-update kernel that directly applies the
steps described in this section. This implementation requires large temporary arrays to store
the input and output data of all Riemann problems in the patch. Depending on the patch
refinement depth, these arrays can grow considerably and decrease cache efficiency.

Input: Q // Data for all cells in the patch and in the boundaries of patch neighbors

Output: Q // Updated solutions for all cells in the patch

Local: list Qi, list Qj // Temporary arrays for Riemann problems data

Local: list Fi, list Fj // Temporary arrays for Riemann solutions (numerical fluxes)

1 foreach edge (Ci, Cj) in patch do // Copy Riemann problem data to temporary arrays

2 Insert Qi into list Qi

3 Insert Qj into list Qj

4 end
5 foreach Riemann problem (Qi, Qj) in temporary arrays do // Auto-vectorized loop

6 Solve the Riemann problem with initial data (Qi, Qj)
7 Store computed numerical fluxes (Fi,Fj) in list Fi and list Fj

8 end
9 foreach pair of fluxes (Fi,Fj) in temporary arrays do // Update cells in patch using (7.1)

10 Qi ← Qi + ∆t
Vi
Fi // Note that this update operation will be performed

11 Qj ← Qj + ∆t
Vj
Fj // three times for each cell (once for each edge)

12 end

Note that this implementation requires multiple arrays that need to be large enough to store
input and output data for all edges in the patch, which can become considerably large depending
on the application and on the patch refinement depth used. For instance, for the single-layer
shallow water equations with a patch refinement depth d = 8, fourteen arrays (eight for input
and six for output data) with 408 positions each are required, which with double-precision
variables translates into roughly 45 KB per thread3. Although not prohibitively large, we
found that this memory requirement can be enough to reduce the efficiency of cache utilization,
especially when considering many-core applications and shared levels of cache.

In our actual implementation, we improve cache efficiency by applying a strategy similar
to cache-blocking, which iteratively operates on small pieces or “chunks” of the lists that store
the input data of the Riemann problems in the patch. In Alg. 7.4 we show the algorithm we
use for the patch-update kernel, which only requires temporary arrays to be large enough to
store the data for one chunk of problems at a time. The size of the chunks can be arbitrarily
defined by users, so that appropriate values can be chosen for a specific computational platform.
Experimentally, we observed that using chunks with 32 Riemann problems each for the single-
layer and with 16 problems each for the two-layer shallow water equations delivers reasonable
performance for the two experimental platforms we used for this work. Thus, these values were
used for the experiments described in the following section.

7.3 Performance Results

Now we evaluate the performance of the vectorized finite volume schemes for the single-layer
and two-layer shallow water equations we developed with the new patch-based implementations
in sam(oa)2. As we did for GeoClaw, we also use the experimental platforms that have been
described in Chapter 5. In the following section, we describe the simulation scenarios used for

3Note that these calculations only consider storage of the temporary arrays used as input and output for the
vectorized loop – we did not consider many other data that should ideally also fit in the cache, like the arrays
that store the actual patch data and other temporary variables that are used internally by the Riemann solvers.
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Algorithm 7.4: Implementation of the patch-update kernel that iteratively works on small
pieces or “chunks” of the lists that store the input data of the Riemann problems in the patch.
This implementation uses smaller temporary arrays that are likely to always fit in cache, re-
gardless of the patch refinement depth. This is the algorithm that is actually used in the finite
volume applications we developed for sam(oa)2.

Input: ChunkSize // Integer: number of edges processed in each iteration

Input: Q // Data for all cells in the patch and in the boundaries of patch neighbors

Output: Q // Updated solutions for all cells in the patch

Local: list Qi, list Qj // Temporary arrays for problems (size: ChunkSize)
Local: list Fi, list Fj // Temporary arrays for solutions (size: ChunkSize)

1 while there are still edges to process do
2 list Qi ← ∅, list Qj ← ∅, list Fi ← ∅, list Fj ← ∅ // Clear temporary arrays

3 foreach edge (Ci, Cj) in next ChunkSize edges do // Copy data of next ChunkSize problems

4 Insert Qi into list Qi

5 Insert Qj into list Qj

6 end
7 foreach Riemann problem (Qi, Qj) in temporary arrays do // Auto-vectorized loop

8 Solve the Riemann problem with initial data (Qi, Qj)
9 Store computed numerical fluxes (Fi,Fj) in list Fi and list Fj

10 end
11 foreach pair of fluxes (Fi,Fj) in temporary arrays do // Update cells in patch using (7.1)

12 Qi ← Qi + ∆t
Vi
Fi

13 Qj ← Qj + ∆t
Vj
Fj

14 end

15 end

Figure 7.7: Simulation of the tsunami in Tohoku, Japan, 2011. The pictures show the tsunami
wave 10, 20 and 30 minutes after the earthquake, respectively.

each variation of those equations. In our experimental analysis, we first evaluate the performance
of vectorization by focusing only on the performance of each solver. Later, we perform a more
general analysis, assessing how the new patch-based approach affects the simulation performance
as a whole, and attempting to find a setup that minimizes its time-to-solution.

7.3.1 Simulation scenarios

Tohoku 2011 Tsunami

For the single-layer shallow water equations in sam(oa)2, we simulate the tsunami event that
happened near the coast of Tohoku, Japan, in March 2011. Some snapshots of the simulations
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(a) 3D visualization (b) Vertical-section visualization

Figure 7.8: Parabolic bowl-shaped lake at t = 0 with 3D and vertical-section visualizations.
In (b), the thick black line depicts the bathymetry, while the dashed blue and solid cyan lines
represent the two layers of water.

are shown in Fig. 7.7. For these simulations we use bathymetry data from the Northern Pa-
cific and the Sea of Japan with resolutions of approximately 0.5 km in each direction, made
available by the General Bathymetric Chart of the Oceans project (GEBCO 14 Grid, version
20150318) [27, 72]. Similarly as done for the simulations of the Chile 2010 Tsunami (discussed
in Section 6.3), we use a static displacement for the water and bathymetry, this time based on
a simulation of the Tohoku earthquake [26]. All geographical input data is handled in sam(oa)2

using the parallel I/O library ASAGI [60].
Although the entire simulation domain covers an area of 7 000 km × 4 000 km, our adaptive

mesh was able to discretize it with a maximum resolution of roughly 107 m in the area around the
tsunami, while regions farther away can have cell resolutions with up to 155 km4. Considering
all simulations, the minimum and maximum observed mesh sizes were of approx. 6.8 million
to 34.2 million cells. The simulations were run for 1000 time steps and the measurements
only include the regular time-stepping phase, i.e., they do not consider the time necessary for
reading the input data and generating the initial mesh.

Parabolic Bowl-Shaped Lake

For the two-layer shallow water equations, we use the same artificial scenario that we used pre-
viously for GeoClaw, i.e., we simulate waves generated by a circular hump of water propagating
over a parabolic bowl-shaped bathymetry (see Section 6.3.1). In Fig. 7.8, we show visualizations
of this scenario at t = 0, now in the context of sam(oa)2. In these simulations we used cells
with sizes ranging from 2−27 to 2−11 of the computational domain, resulting in meshes with cell
counts varying from approx. 0.8 million to approx. 7.2 million cells. Like in the simulations of
the Tohoku tsunami, the performance measurements for this scenario also consider 1000 time
steps of the regular time-stepping phase.

7.3.2 Vectorization Performance

Like we did for GeoClaw, we start our analysis by evaluating the performance of the Riemann
solvers, with emphasis on the effectiveness of vectorization, and by assessing their efficiency
on exploiting the computational resources. Thus, in these experiments only the subroutines
that perform computations for the numerical scheme are considered (of which the Riemann
solver is responsible for the majority of the execution time). For the single-layer shallow water
equations, we measure the performance of the f-wave solver (Fig. 7.9) and of the augmented

4These resolution values are based on the length of the longest edge of each triangular cell, i.e., its hypotenuse.
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Figure 7.9: Performance of the f-wave solver for varying patch refinement depths, before and
after applying vectorization.
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Figure 7.10: Performance of the augmented Riemann solver for varying patch refinement
depths, before and after applying vectorization.

Riemann solver (Fig. 7.10). We also show the results obtained with the Riemann solver for the
two-layer equations in Fig. 7.11. In these plots we use the same metric as before to measure the
performance of each solver, i.e. the performances are expressed as Riemann problems solved per
second. Note that, as discussed previously, our finite volume implementations in sam(oa)2 use a
modified version of the donor-cell upwind method, which does not apply transverse corrections
in the update scheme. Thus, here we only consider normal Riemann solvers.

In these plots we show the performance obtained for each solver with (“Vect.”) and with-
out vectorization (“Scalar”), on adaptive meshes generated with uniform patches of varying
refinement depths (d). For experiments without vectorization, vectorization was turned off by
simply omitting the !$OMP SIMD compiler directives from the vectorized loops. We configured
these simulations to always apply the same finest resolution at the wave fronts regardless of
the patch refinement depth used, such that all simulations achieve the same accuracy. Thus,
we note that although each increment by two in the patch refinement depth d means a fourfold
increase in the number of cells in each patch (because each patch is composed of 2d cells), the
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Figure 7.11: Performance of the two-layer solver for varying patch refinement depths, before
and after applying vectorization.

total number of cells in the mesh is not directly proportional to the number of cells in each
patch. There is, however, a tendency of greater values for d leading to more cells overall in
the mesh, due to the coarser-grained adaptivity scheme. This effect is discussed further in
Section 7.3.3, where we compare the mesh sizes and the resulting execution times obtained on
simulations with different patch refinement depths.

In addition, we also point out that in all plots the results indicated by d = 0 actually refer
to executions of the original applications that do not use the new patch-based approach (in
contrast to executing the new patch-based implementations using d = 0 for the patches, which
we do not consider here). In other words, these plots allow easy performance comparisons
between the original implementations that perform cell-wise adaptivity (d = 0) and the new
patch-based simulations (d > 0).

Even with vectorization turned off, it is possible to notice a significant increase in perfor-
mance for the solvers on patch-based meshes, compared to the original implementations (up
to 1.6× for Haswells and 1.9× for KNLs). That can be attributed to two factors: first, to the
regular and more concise data structures that we now use, which result in improvements in
the memory throughput; second, to the patch-based discretization itself, which considerably
reduces the size and complexity of the implicit refinement tree, reducing the effort required to
manage the adaptive mesh and leading to faster grid traversals.

When vectorization is used, we observe much more substantial speedups, with a clear pattern
of larger patches (i.e., patches with greater refinement depth) delivering higher performance
in almost all experiments. Compared to the experiments with vectorization turned off, the
vectorized Riemann solvers for the single-layer shallow water equations achieve speedups of up
to 2.2× on the Haswells and up to 3.6× on the KNLs. For the two-layer solver, vectorization
gives only small speedups on the Haswells (up to 1.1×), and decent speedups on the KNLs
(up to 2.5×). These results are similar to what we experienced with GeoClaw, confirming
that 256-bit instructions are not enough to bring substantial performance improvements for
such a complex solver.

Table 7.1 presents a summary of the speedups and performance in Flop/s achieved by the
vectorized solvers in sam(oa)2. Here we only consider the experiments with the patch refinement
depths that achieve the highest performance for each solver and for each machine (either d = 8
or d = 10 in all experiments). Like we did on the experiments with GeoClaw, the Flops/s
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Table 7.1: Performance of the vectorized solvers in sam(oa)2. For each row in the table, we
consider only the patch refinement depth that delivered highest performance. The speedups
listed represent performance comparisons for executions with and without vectorization using
that same refinement depth. The percentages in parentheses show how the achieved perfor-
mances compare to the maximum attainable performance of each machine (measured with the
Flop/s benchmark described in Section 5.1).

Equations Machine Solver Speedup GFlop/s

Single-layer

Haswells
f-wave 2.2× 63.3 (41%)

Aug. Riemann 1.8× 68.7 (44%)

KNL
f-wave 3.6× 98.9 (14%)

Aug. Riemann 3.5× 126.8 (18%)

Two-layer
Haswells Two-layer solver 1.1× 38.0 (24%)

KNL Two-layer solver 2.3× 53.6 (7%)

throughputs were estimated with the PAPI interface [54] and we used the conservative approach
of considering the total number of floating-point operations performed by the non-vectorized
solver as baseline for the calculations.

Comparing these performance results with the ones obtained for the same solvers with Geo-
Claw (see Table 6.1), we observe similar tendencies for the speedups achieved, but significantly
higher throughputs for the solvers when used in sam(oa)2, especially for the KNL architecture.
The higher performance obtained by sam(oa)2 is a consequence of it achieving more balanced
load distributions for shared-memory parallelization, compared to GeoClaw. While both frame-
works perform parallelization over the patches in the mesh, this delivers higher performance for
sam(oa)2 because in general its meshes are formed by much more (relatively small) patches
than the meshes in GeoClaw, which are usually composed of fewer larger patches. The greater
number of patches in sam(oa)2 makes it easier to achieve balanced load distributions on tens
or hundreds of threads, as is required for efficient utilization of the two many-core platforms
considered in this work. On the other hand, because the meshes in GeoClaw are usually formed
by much fewer patches, GeoClaw is often unable to keep all threads busy. In addition, patches
in GeoClaw do not necessarily have the same size, which contributes to further load imbalances
in its parallel algorithms.

7.3.3 Simulation Performance and Time-To-Solution

Now we examine how the new patch-based discretizations and the vectorization of the numerical
routines affect the performance of the entire simulation, also considering the execution time
necessary for handling adaptivity. In general, our goal is to minimize the time-to-solution, which
does not depend solely on the performance of the Riemann solver, as we show in the following.

Compared to meshes with cell-wise adaptivity, the patch-based adaptive meshes typically
require more cells and more computational work to achieve the same solution accuracy. In
general, this effect is considerably more noticeable for larger patches than for smaller ones.
This tendency can be easily observed in Fig. 7.12, where we plot the total number of cell
updates performed in the experiments described previously.

Since the Riemann solvers are the most time-consuming step of our finite volume applica-
tions, it also makes sense to analyze which effect the value used as patch refinement depth has on
the number of times they are executed. Thus, in Fig. 7.13 we plot the total number of Riemann
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Figure 7.12: Total number of cell updates performed during the entire simulations, for different
patch refinement depths.
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Figure 7.13: Total number of Riemann problems solved during the entire simulations, for
different patch refinement depths.

problems solved during our experiments. In this case, the plots do not have a strictly increasing
behavior as before, but it is still possible to notice that very large patches require solving much
more Riemann problems for the same accuracy – e.g., patches with refinement depth d = 10
required approximately 1.7–2.3 times more Riemann solves than cell-wise adaptivity.

Note that the irregular behavior observed in these plots is due to the high proportion of
external edges in small patches. As described in Section 7.2.4, these edges lie between cells
located in different patches, and they are processed with the help of patch boundary repre-
sentations that act as a ghost layer. Therefore, the Riemann problems on external edges are
actually solved twice, once for each patch, which considerably increases the number of times
the solvers are used for very small patches. E.g., consider patches generated with refinement
depth d = 2: six of their nine edges are external edges, meaning that two thirds of all Riemann
problems in the mesh are solved twice. For d = 4, this ratio drops to 40% and for d = 6 to
16.6% of the edges in the mesh. With larger patches the percentage of problems solved twice
continues to drop, but at the same time the total number of edges in the mesh increases, which

74



7.3. PERFORMANCE RESULTS

0 2 4 6 8 10
0

50

100

150

200
W

a
ll

ti
m

e
(s

ec
o
n
d
s)

f-wave – Haswells

0 2 4 6 8 10

f-wave – KNL

Numerical

Adaptive

Patch refinement depth

Figure 7.14: Wall time split into components for the entire simulations with the the vectorized
f-wave solver.
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Figure 7.15: Wall time split into components for the entire simulations with the vectorized
Augmented Riemann solver.

explains the curves observed in these plots.

Considering the effects that the choice of refinement depth has on the mesh size, it is
clear that defining an ideal value for d with the goal of minimizing the simulation time-to-
solution is not a trivial task and involves finding a trade-off between the solver throughput
and the total computational work performed – two factors that usually increase with larger
patches. Experimentally, we have found that using d = 6 or d = 8 as patch refinement depth
minimized the time-to-solution in all our simulations – see the plots in Figs. 7.14 to 7.16,
where we plot the execution wall time taken by our simulations. In those plots, we can observe
improvements in the time-to-solution by factors of 1.3–3.4 for Haswells and of 2.2–6.0 for KNLs,
when comparing the fastest patch-based simulations with the original implementations (which
use cell-wise adaptivity and do not support vectorization, indicated in the plots as d = 0).
Thus, using patches with refinement depths d = 6 or d = 8 (i.e., patches with 64–256 cells each)
seems to be a good rule of thumb for reducing the time-to-solution of shallow water simulations
in sam(oa)2, although this may become suboptimal for other simulations in different contexts
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Figure 7.16: Wall time split into components for the entire simulations with the vectorized
two-layer solver.

and/or different computational platforms.

Note that in Figs. 7.14 to 7.16, we split the execution time of each simulation into the time
taken by the numerical traversals and the adaptive traversals. Similarly to what we experi-
enced for the numerical routines, it is clear that the adaptive traversals also benefit from the
patch-based discretization, even though we have not implemented vectorization in their sub-
routines – speedups of up to 3.8× on Haswells and 6.7× on KNLs have been observed for this
component alone. Again, this is because patch-based adaptive meshes require smaller and sim-
pler refinement trees to achieve the same resolutions as meshes with cell-wise adaptivity, which
reduces the execution time for various simulations components. In addition to reducing the
complexity and execution time of the Sierpinski-based grid traversals, patch-based meshes with
smaller refinement trees also contribute to significantly more efficient refinement and coarsening
operations, since they now work on multiple cells at once. In particular, we also observed that
the component of the adaptive traversals that is responsible for guaranteeing mesh conformity
benefits considerably from the coarser-grained adaptivity, because it needs to perform much less
additional refinements in order to avoid hanging nodes in the mesh.

7.4 Conclusions

In this chapter, we described our work on modifying the adaptive meshes in sam(oa)2 in order to
support vectorization for finite volume schemes. More specifically, we replaced the fine-grained
cell-wise adaptivity strategy with a coarser-grained patch-based strategy, which we used to
create new implementations of finite volume schemes for the single-layer and two-layer shallow
water equations. In these, we have been able to use the same implementations of the vectorized
Riemann solvers that we developed for GeoClaw in Section 6.2.

In our performance experiments, we observed substantial improvements in the performance
of the Riemann solvers, similar to what was observed in GeoClaw. However, we also noticed
that in sam(oa)2 the Riemann solvers achieve even higher performance, as a consequence of its
more efficient shared-memory parallelization and load balancing schemes. These results also
show a tendency of patches generated with greater values for the patch refinement depth d
resulting in higher performances of the vectorized Riemann solvers.

However, when considering the performance of the entire simulations, we found that the re-
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lationship between patch refinement depth and time-to-solution is considerably more complex.
Although larger patches (i.e., with more cells) foster vectorization and higher performance in
general, they also increase the total of number of cells and edges in the adaptive meshes, consid-
erably increasing the computational work performed during the simulations. Thus, minimizing
the time-to-solution requires choosing patch sizes that find a compromise between those fac-
tors. Experimentally, we found that relatively small patches with 64–256 cells are usually a
good choice, achieving reductions in the execution time of up to 83% for our simulations.

In addition to allowing vectorization, the new patch-based discretization also resulted in fur-
ther speedups in various simulations components due to improved memory throughput and to re-
ductions in the size and complexity of the implicit refinement trees. Thus, we point out that the
strategy of switching from cell-wise adaptivity to patch-based meshes should be considered even
for applications or computational platforms for which vectorization is not possible or efficient,
since even in those cases such modifications can lead to substantial performance improvements.
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8
FVM: a Generic Interface for Vectorized Finite

Volume Solvers in Sam(oa)2

As shown in the previous chapters, developing high performance applications that efficiently
combine parallelization, adaptive mesh refinement and vectorization is not a trivial task, as
it requires careful choice of data structures, of meshing and parallelization algorithms and of
many other implementation details that may inhibit high performances. In addition, devel-
opers of scientific applications are often not HPC experts and may put less effort in perfor-
mance engineering, especially in early stages of the development process, when development
and improvement of the numerical models may still be the focus. As a consequence, scientific
applications are often not able to fully exploit the potential of the high-performance platforms
in which they are executed.

Although the kernel-based design implemented in sam(oa)2 provides a decent abstraction
layer for the complicated algorithms employed to manage adaptive mesh refinement, cache-
efficient grid traversals and many other features, working with it still requires knowledge of
many implementation details, especially of the data structures used in its object-oriented imple-
mentation (consider e.g. the kernel implementations shown in Codes 7.2 and 7.3). In addition,
the new patch-based design introduces further complexity to the kernel implementations, since
familiarity with the patch structure is now necessary.

With the goal of simplifying as much as possible the process of developing high-performance
finite volume schemes with sam(oa)2, we designed a generalization of the vectorized patch-based
implementations presented in the previous chapter that can be easily customized for various
systems of hyperbolic PDEs, allowing developers with no HPC expertise to benefit from the
techniques developed in this thesis. That is accomplished via a programming interface that,
similarly to the kernel-based design in sam(oa)2, requires application developers to provide a
set of operators that are applied to the mesh elements individually. However, in contrast to the
previous approach, we designed the new interface such that developers do not need any knowl-
edge of the data structures used internally by the framework. Instead, the operators that must
be provided work directly with the simulation data and use only simple data structures (arrays),
allowing developers to focus on implementing application-specific algorithms and decisions.

This chapter presents an extended version of our work published in [24], where we described
and evaluated the new generic interface for developing high-performance finite volume meth-
ods in sam(oa)2, which we named FVM interface. To demonstrate its usability we used it
to create alternative implementations of the vectorized patch-based finite volume schemes for
the single-layer and two-layer shallow water equations that have been developed with sam(oa)2

and discussed in Chapter 7. In the following section we introduce the FVM interface by de-
scribing its abstraction layer and by showing a few example implementations of the so-called
FVM operators, which are required to create new applications with it. Later, in Section 8.2,
we provide an experimental performance analysis of the new applications developed with the
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SOLVERS IN SAM(OA)2

Code 8.1: Definition of the data stored by the FVM interface for each patch. Here,
PATCH NUM CELLS is a macro that gives the number of cells in each patch, and FVM Q SIZE

and FVM AUX SIZE are macros that should be defined by application developers depending on
their requirements for data storage.

1 type num_cell_data_pers

2 real :: Q(_PATCH_NUM_CELLS ,_FVM_Q_SIZE) ! Solution variables

3 real :: Aux(_PATCH_NUM_CELLS ,_FVM_AUX_SIZE) ! Auxiliary variables

4 end type

FVM interface, focusing especially on comparisons with their analogous applications, to assess
how the additional abstraction layer provided by the interface affects the performance of the
developed finite volume schemes.

8.1 FVM Interface

In this section we provide details regarding the implementation and the use of the new generic
interface. In its design, we combined the concept of element-oriented kernels present in sam(oa)2

with the GeoClaw’s approach for organizing the simulation data (i.e., storing the cell quantities
in arrays whose dimensions depend on the system of PDEs being considered). Those two
strategies were chosen because they allow easy customization of application-specific parameters
and algorithms, as will be presented in the following.

8.1.1 GeoClaw-Like Data Structures

Following the approach used in GeoClaw (see Section 6.1.3), we store the simulation data for
each patch in an array with an extra dimension that is used for fitting the multiple components in
the solution q. More specifically, we define an array Q( PATCH NUM CELLS, FVM Q SIZE), where
PATCH NUM CELLS is a macro constant that stores the number of cells in each patch (computed

from the patch refinement depth d as 2d) and FVM Q SIZE is another macro constant that
refers to the number of components in q. Like in GeoClaw, we also define an additional array
Aux( PATCH NUM CELLS, FVM AUX SIZE) that can be used to store a given number (defined by
the macro FVM AUX SIZE) of other cell-specific “auxiliary” variables, like the bathymetry data
in the case of the shallow water equations.

In Code 8.1 we show the definition of the data stored for each patch. The advantage of this
approach for data storage is that, differently from the previous one (shown in Code 7.4), this
code can be reused for various system of PDEs with no modifications, as all that is required
from developers to adapt it for their needs is the definition of the compiler preprocessor macros
FVM Q SIZE and FVM AUX SIZE with appropriate values. Note also that, differently from Geo-

Claw’s original implementation, those arrays are already organized following the SoA layout
(i.e., the cell averages of any given quantity are stored contiguously for each patch), which is
very important for efficient vectorization.

In the implementations of the finite volume schemes developed in this chapter with the FVM
interface (to which we often refer as FVM applications), we define these arrays following the
same order for the cell quantities as done for GeoClaw, i.e., q = [h, hu, hv]T for the single-layer
equations, and q = [h1, h1u1, h1v1, h2, h2u2, h2v2]

T for the two-layer equations. Additionally, we
also use Aux = [b] to store bathymetry data for both variations of the shallow water equations.

80



8.1. FVM INTERFACE

Code 8.2: Implementation of the get-computational-domain operator, which is called once
at the execution start to get the parameters that define the simulation domain. In this example,
the computational domain is being defined as [−100, 100]× [−100, 100].

1 subroutine FVM_get_computational_domain(scaling , offset)

2 real , intent(out) :: scaling

3 real , dimension (2), intent(out) :: offset

4

5 scaling = 200.0 ! Total size of both dimensions

6 offset = [-100.0, -100.0] ! Coordinates of the domain origin

7 end subroutine

8.1.2 FVM Operators

We designed the FVM interface to transparently manage the data in the patches, such that
developers do not need any familiarity with their geometry or with their data layout (shown
in Code 8.1). Instead, developers only need to implement simple FVM operators that are
applied to the mesh on a cell-by-cell or edge-by-edge basis, completely hiding the patch and
mesh structures from developers and substantially simplifying the implementation process. In
the FVM operators, developers define how cells should be initialized, refined, coarsened and
updated, which includes providing an appropriate Riemann solver for the particular problem.
In the following we describe the required FVM operators, showing examples based on the FVM
application we developed for the single-layer shallow water equations.

Get-Computational-Domain Operator

This simple FVM operator is used to define the simulation’s computational domain. The pa-
rameters set in this subroutine define the system of coordinates that is used to compute the
coordinates of the cells’ vertices that are given as input to various FVM operators. In the
operator implementation, developers need to provide values for two parameters:

• scaling: the size of both dimensions of the computational domain;
• offset: coordinates of the domain origin.

After getting those values, sam(oa)2 then defines the computational domain accordingly. For
instance, to specify a computational domain as [−100, 100] × [−100, 100], developers should
define scaling=200 and offset=[-100,-100], as shown in the example in Code 8.2.

Initialize-Cell Operator

With this operator, developers define the initial conditions and the initial mesh refinement
for the simulation in a cell-by-cell basis. We show an example implementation for this FVM
operator in Code 8.3. Given the coordinates of a cell’s vertices, the operator must return the
initial value of all cell quantities (Q and Aux), as well as an estimate for the initial wave speed
(used for computing the size of the first time step), and a refinement flag: 1 if this cell should
be further refined in the following initialization step, or 0 otherwise.

Note that although we use a patch-based discretization, the operator works with individual
cells, which significantly simplifies its implementation. Internally, the FVM interface creates an
abstraction layer for the patches, by calling the initialize-cell operator multiple times, once
for each cell in the patch. This is performed inside the generic implementation of the element

kernel for the initialization traversal, which handles an entire patch at a time, as shown
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Code 8.3: Implementation of the initialize-cell operator, used to define the initial simula-
tion conditions. This example produces a simple “radial dam-break” scenario for the single-layer
shallow water equations – the initial water elevation is constant at zero (h+ b = 0) for the en-
tire domain except for a five-meter-radius circle at the center of the domain, where the water
elevation is set to 5 meters (h+ b = 5).

1 subroutine FVM_initialize_cell(vertices ,Q,Aux ,wave_speed ,refinement)

2 ! Input variables

3 real , intent(in) :: vertices (2,3)

4 ! Output variables

5 real , intent(out) :: Q(_FVM_Q_SIZE) ! Vector of Q quantities in cell

6 real , intent(out) :: Aux(_FVM_AUX_SIZE) ! Vector of Aux quantities in cell

7 real , intent(out) :: wave_speed ! Estimate for initial wave speed

8 integer , intent(out) :: refinement ! Refinement flag (1 or 0)

9 ! Local variables

10 real :: h, hu, hv, b, center (2)

11

12 ! Compute cell barycenter

13 center = (vertices (:,1) + vertices (:,2) + vertices (:,3)) / 3.0

14

15 ! Define initial values for cell -averaged quantities

16 h = 100.0 ; hu = 0.0 ; hv = 0.0 ; b = -100.0

17 if (center (1)**2 + center (2) **2 < 25.0) h = 105.0 ! Water elevation at center

18

19 Q = [h, hu, hv] ; Aux = [b] ! Fill output arrays

20 wave_speed = sqrt (9.81*h) ! Estimate for initial wave speed

21

22 refinement = 0 ! Set refinement flag:

23 if (h > 0.0) refinement = 1 ! Only refine over the water elevation

24 end subroutine

in Code 8.4. In general, the FVM interface creates abstraction layers like this for all element-
oriented kernels in sam(oa)2, such that the FVM operators implemented by developers only
need to handle one cell or one edge at a time, while the abstraction layer internally organizes
their input and output data appropriately, according to the patch and mesh structures.

Compute-Fluxes Operator

This operator is responsible for solving the PDE-specific Riemann problems at the mesh edges
and for returning the computed numerical fluxes, as well as the speed of the fastest wave created
by the discontinuities between the cells. This is usually performed by applying an appropriate
Riemann solver for the PDE being considered and is in general the most compute-intensive
and time-consuming step in the simulations. Therefore, at this step we give developers the
option of having finer control of the code used to update an entire patch. For that, we give
them two options for providing this operator. In the simplest case, they can implement a
single-edge version, which only handles one edge at a time while the FVM interface handles
auto-vectorization of the main solver loop, using the !$OMP SIMD directive on it. On the other
hand, more advanced developers may choose to provide a multi-edge version, in which they
have complete control over the loop that iterates through the list of Riemann problems, such that
they may use other techniques to achieve vectorization or attempt other kinds of optimization
on it. In the following, we give more details about each of those versions.

Single-edge operator: this is the simplest version of the operator, which is applied to one
edge at a time, solving a single Riemann problem. In this case, the operator code provided by
the developer does not need to implement vectorization, because it is completely handled by the
framework. We show an example implementation for this operator in Code 8.5, and the part of
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Code 8.4: Generic implementation of the element kernel for the initialization traversal,
which is responsible for initializing an entire patch. Here, the FVM interface creates an ab-
straction layer for the data in the patches, such that developers only need to implement code
for individual cells, in the initialize-cell operator (like in the example shown in Code 8.3).

1 ! Note: this is framework code that should not be modified by the developer.

2 ! Application -specific code should be provided in FVM_initialize_cell ().

3 subroutine element_kernel(element , [...])

4 type(t_element), intent(inout) :: element ! Contains all data for the patch

5 ! Local variables

6 real :: Q(_FVM_Q_SIZE), Aux(_FVM_AUX_SIZE)

7 real :: vertices (2,3), wave_speed(_PATCH_NUM_CELLS)

8 integer :: refinement_flag(_PATCH_NUM_CELLS), i

9

10 do i=1, _PATCH_NUM_CELLS ! Loop through all cells in the patch initializing them

11 vertices = element%patch%geometry%get_vertices(i) ! Get vertices ’ coordinates

12

13 ! Call initialize -cell operator provided by developer

14 call FVM_initialize_cell(vertices , Q, Aux , wave_speed(i), refinement_flag(i))

15

16 ! Copy values to cell data inside patch

17 element%patch%data_pers%Q(i,:) = Q ;

18 element%patch%data_pers%Aux(i,:) = Aux

19 end do

20

21 ! Compute max_wave_speed in patch

22 element%patch%max_wave_speed = maxval(wave_speed (:))

23

24 ! Refine this patch if any cell was flagged as "refine"

25 if (any(refinement_flag (:) == 1)) then

26 element%patch%geometry%refinement = 1

27 else

28 element%patch%geometry%refinement = 0

29 end if

30 end subroutine

Code 8.5: Implementation of the single-edge version of the compute-fluxes operator, which
is responsible for computing the solution of a single Riemann problem.

1 subroutine FVM_compute_fluxes_single(normal ,qL ,qR,auxL ,auxR ,fluxL ,fluxR ,waveSpeed)

2 real , dimension (2), intent(in) :: normal !Normal vector

3 real , dimension(_FVM_Q_SIZE), intent(in) :: qL,qR

4 real , dimension(_FVM_AUX_SIZE), intent(in) :: auxL ,auxR

5 real , dimension(_FVM_Q_SIZE), intent(out) :: fluxL ,fluxR

6 real , intent(out) :: waveSpeed

7 ! Local variables

8 real :: hL,huL ,hvL ,bL, hR,huR ,hvR ,bR ! Input for Riemann solver

9 real :: flux_hL ,flux_huL ,flux_hvL ! Output left -going fluxes

10 real :: flux_hR ,flux_huR ,flux_hvR ! Output right -going fluxes

11

12 !Extract data from input arrays to local variables

13 hL = qL(1); huL = qL(2); hvL = qL(3); bL = auxL (1)

14 hR = qR(1); huR = qR(2); hvR = qR(3); bR = auxR (1)

15

16 ! Call Riemann solver

17 !DIR$ FORCEINLINE

18 call RiemannSolver(normal , hL,huL ,hvL ,bL, hR,huR ,hvR ,bR, flux_hL ,flux_huL ,flux_hvL ,

↪→ flux_hR ,flux_huR ,flux_hvR , waveSpeed)

19

20 ! Copy computed fluxes to output arrays

21 fluxL = [flux_hL , flux_huL , flux_hvL]

22 fluxR = [flux_hR , flux_huR , flux_hvR]

23 end subroutine
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Code 8.6: Piece of the patch-update kernel that repeatedly calls the single-edge version of
the compute-fluxes operator. Similarly to what is done in Code 8.4, here the FVM interface
creates an abstraction layer that hides the patch structure from the developers, such that they
only need to handle one edge at a time.

1 ! Note: this is framework code that should not be modified by the developer.

2 ! Application -specific code should be provided in FVM_compute_fluxes_single ().

3 real , dimension(N,_FVM_Q_SIZE) :: qL, qR ! Data from cells to

4 real , dimension(N,_FVM_AUX_SIZE) :: auxL , auxR ! left/right of each edge

5 real , dimension(N,2) :: normals ! Vectors that are normal to each edge

6

7 ! [...]

8

9 !$OMP SIMD PRIVATE(waveSpeed) REDUCTION(max: maxWaveSpeed)

10 do i=1,N ! Loop for all N Riemann problems

11 !DIR$ FORCEINLINE

12 call FVM_compute_fluxes_single(normals(i,:),qL(i,:),qR(i,:),auxL(i,:),auxR(i,:),

↪→ fluxL(i,:),fluxR(i,:),waveSpeed)

13 maxWaveSpeed = max(maxWaveSpeed , waveSpeed)

14 end do

Report 8.1: Excerpt from the optimization report provided by the Intel Fortran Compiler
when compiling sam(oa)2 and the FVM interface for a KNL processor. This excerpt refers
to a compilation of an application in which the augmented Riemann solver is applied via the
single-edge version of the compute-fluxes operator.

1 LOOP BEGIN at src/FVM/FVM_euler_timestep.f90 (383 ,25)

2 remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

3 remark #15448: unmasked aligned unit stride loads: 16

4 remark #15449: unmasked aligned unit stride stores: 14

5 remark #15475: --- begin vector cost summary ---

6 remark #15476: scalar cost: 2864

7 remark #15477: vector cost: 1065.370

8 remark #15478: estimated potential speedup: 1.750

9 remark #15486: divides: 61

10 remark #15488: --- end vector cost summary ---

11 LOOP END

the patch-update kernel that repeatedly calls it in Code 8.6. While in the patch-update kernel
the framework loops through a list with N Riemann problems extracting the input data of each
problem and calling the operator with the respective data, the single-edge compute-fluxes

operator only needs to extract the quantities from its input arrays and call the Riemann solver
with the appropriate parameters. Note that the framework code already includes an !$OMP SIMD

directive for its main loop, so that developers do not need to explicitly implement vectorization.
However, successful vectorization of this loop will only be possible if the code provided for
the operator does not contain obstacles for vectorization, as discussed previously in Chapter 2.
Note also that in the framework code we use Fortran subarrays, which provide a useful way
to reorganize the data used as input and output for the operator call, while still supporting
vectorization by the Intel Fortran Compiler – as confirmed by the optimization reports provided
by the compiler (see the example in Report 8.1).

Multi-edge operator: in this more advanced version of the operator, developers can provide
their own optimized code for the main loop that iterates through the Riemann problems. Instead
of dealing with a single Riemann problem, the multi-edge operator takes a list of problems as
input, such that developers can have complete control of the loop that iterates through the
list, as well as of the compiler directives for vectorization. For illustration, see Code 8.7,
where we show our simple implementation of this operator for the single-layer shallow water
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Code 8.7: Implementation of the multi-edge version of the compute-fluxes operator. Note
that in this case, the main loop needs to be implemented inside the operator, as well as its
vectorization.

1 subroutine FVM_compute_fluxes_multi(normals ,qL ,qR,auxL ,auxR ,fluxL ,fluxR ,maxWaveSpeed)

2 real , dimension(N,2), intent(in) :: normals !Normal vectors

3 real , dimension(N,_FVM_Q_SIZE), intent(in) :: qL,qR

4 real , dimension(N,_FVM_AUX_SIZE), intent(in) :: auxL ,auxR

5 real , dimension(N,_FVM_Q_SIZE), intent(out) :: fluxL ,fluxR

6 real , intent(out) :: maxWaveSpeed

7 ! Local variables: These should all be declared PRIVATE in the OMP SIMD directive

8 real :: hL,huL ,hvL ,bL, hR,huR ,hvR ,bR ! Input for Riemann solver

9 real :: flux_hL ,flux_huL ,flux_hvL ! Output left -going fluxes

10 real :: flux_hR ,flux_huR ,flux_hvR ! Output right -going fluxes

11 real :: waveSpeed ! Output wave speed

12

13 !$OMP SIMD PRIVATE(normal ,hL ,huL ,[...] , waveSpeed) REDUCTION(max: maxWaveSpeed)

14 do i=1,N ! Loop for all N Riemann problems

15 !Extract data from input arrays to iteration -private variables

16 hL = qL(i,1); huL = qL(i,2); hvL = qL(i,3); bL = auxL(i,1)

17 hR = qR(i,1); huR = qR(i,2); hvR = qR(i,3); bR = auxR(i,1)

18 normal = normals(i,:)

19

20 !DIR$ FORCEINLINE

21 call RiemannSolver(normal , hL,huL ,hvL ,bL, hR,huR ,hvR ,bR , flux_hL ,flux_huL ,

↪→ flux_hvL , flux_hR ,flux_huR ,flux_hvR , waveSpeed)

22

23 ! Copy computed fluxes to output arrays

24 fluxL(i,:) = [flux_hL , flux_huL , flux_hvL]

25 fluxR(i,:) = [flux_hR , flux_huR , flux_hvR]

26

27 ! Compute max. wave speed

28 maxWaveSpeed = max(maxWaveSpeed , waveSpeed)

29 end do

30 end subroutine

equations, in which we also use the !$OMP SIMD directive to achieve auto-vectorization of the
loop. Note that the implementation of this operator can actually become considerably more
complex, allowing more advanced developers to exploit other techniques to achieve vectorization
(intrinsic functions, etc.) or attempt other optimizations.

While the single-edge version certainly requires simpler implementations, the multi-edge
version is expected to deliver higher performance, even for very similar implementations like
the ones shown, because of the overhead introduced by the Fortran subarrays in the framework
code that uses the single-edge version. This will be discussed further in in Section 8.2, where
we compare the performance obtained by FVM applications developed using the single-edge

and multi-edge versions of this operator, implemented as shown in the examples above.

Update-Cell Operator

This FVM operator defines how the Q quantities of each cell should be updated with the Rie-
mann solutions computed by the compute-fluxes operator. After obtaining the numerical
fluxes at each edge in the mesh, sam(oa)2 computes the sum of the fluxes leaving/entering each
cell through each of its three edges. The total flux for each cell is then used to update the
cell-averaged quantities, typically applying the update scheme defined by (7.1). However, in the
operator implementation developers have flexibility to modify this and may also take care of spe-
cial cases that arise for the particular problem (e.g., drying or wetting of cells in simulations with
the shallow water equations). In addition to updating the cell quantities, the operator should
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Code 8.8: Implementation of the update-cell operator, which typically applies the update
scheme given by (7.1), but also allows customizations, like the handling of dry cells shown here.

1 subroutine FVM_update_cell(vertices ,Q,Aux ,total_flux ,dt ,cell_volume ,refinement_flag)

2 real , intent(in) :: vertices (2,3)

3 real , intent(inout) :: Q(_FVM_Q_SIZE)

4 real , intent(inout) :: Aux(_FVM_AUX_SIZE)

5 real , intent(in) :: total_flux(_FVM_Q_SIZE)

6 real , intent(in) :: dt

7 real , intent(in) :: cell_volume

8 integer , intent(out) :: refinement_flag

9

10 ! Update cell quantities

11 Q(:) = Q(:) - (dt * total_flux (:) / cell_volume)

12

13 ! Handle cell drying: if cell becomes dry , set water level to 0 and momentum to 0

14 if (Q(1) < dry_tolerance) then ! if (h < dry_tolerance)

15 Q(1) = 0.0 ! h = 0

16 Q(2) = 0.0 ! hu = 0

17 Q(3) = 0.0 ! hv = 0

18 end if

19

20 ! Set refinement flag according to some application -specific criteria.

21 ! In this example , we decide whether to refine/keep/coarsen the cell

22 ! simply based on the variation in its water height:

23 refinement_flag = 0

24 if (abs(total_flux (1)) > refine_threshold) then

25 refinement_flag = 1 ! Refine this cell

26 else if (abs(total_flux (1)) < coarsen_threshold) then

27 refinement_flag = -1 ! Coarsen this cell

28 else

29 refinement_flag = 0 ! Keep this cell

30 end if

31 end subroutine

also return a refinement flag for the cell, to inform whether it should be refined (1), kept (0) or
coarsened (-1) for the next time step. For illustration, consider the example shown in Code 8.8.

Split-Cell and Merge-Cells Operators

These two FVM operators control how adaptivity is performed on the cells. The split-cell

operator, which is repeatedly called by the refine kernel, receives the data from a cell C(in) as

input, and returns as output the data of two finer cells C(out)1 and C(out)2 , obtained by splitting
C(in) in half. On the other hand, the merge-cells operator is used by the coarsen kernel and

performs the inverse operation. More specifically, it takes data from two neighbor cells C(in)1 and

C(in)2 as input, and returns data for a coarse cell C(out) that results from merging both input cells.
Both these operations are often performed by simply copying or interpolating cell quantities,

but as usual we allow developers to implement further customizations. That may be useful
to handle special cases depending on the PDE being solved, like the check for dry states. For
instance, consider the example implementation for the split operator shown in Code 8.9, where,
as done previously in Code 7.3, we avoid generating spurious waves by properly handling dry
states when refining the cell.

8.2 Performance Results

As mentioned before, we used the FVM interface to create two FVM applications for simulations
with the the single-layer and two-layer shallow water equations. In the following, we refer to
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Code 8.9: Implementation of the split-cell operator, which defines how a cell should be split
into two when performing its refinement. This operator is repeatedly applied by the refine

kernel of the adaptive traversal, which is responsible for refining an entire patch.

1 subroutine FVM_split_cell(Q,Aux ,vertices1 ,vertices2 ,Q_out1 ,Q_out2 ,Aux_out1 ,Aux_out2)

2 real , intent(in) :: Q(_FVM_Q_SIZE), Aux(_FVM_AUX_SIZE) ! Data in coarsen cell

3 real , intent(in) :: vertices1 (2,3), vertices2 (2,3) ! Vertices of fine cells

4 real , intent(out) :: Q_out1(_FVM_Q_SIZE), Q_out2(_FVM_Q_SIZE) ! Output data for

5 real , intent(out) :: Aux_out1(_FVM_AUX_SIZE),Aux_out2(_FVM_AUX_SIZE) ! fine cells

6 ! Local:

7 real :: h, hu, hv, b ! Data in original coarse cell (comes from Q and Aux)

8 real :: h1, hu1 , hv1 , b1 ! Data in first fine cell (goes to Q_out1 and Aux_out1)

9 real :: h2, hu2 , hv2 , b2 ! Data in second fine cell (goes to Q_out2 and Aux_out2)

10

11 ! Extract data from original coarse cell:

12 h = Q(1) ; hu = Q(2)

13 hv = Q(3) ; b = Aux (1)

14

15 ! Bathymetry data does not come directly from the original cell.

16 ! Instead , the cell -averaged bathymetry is recomputed for the new cell:

17 b1 = getBathymetryAtCell(vertices1)

18 b2 = getBathymetryAtCell(vertices2)

19

20 ! Maintain original water elevation h+b despite possible changes in bathymetry:

21 h1 = h + b - b1

22 h2 = h + b - b2

23

24 ! Keep the water momentum from the original coarse cell:

25 hu1 = hu ; hv1 = hv

26 hu2 = hu ; hv2 = hv

27

28 ! Handle drying of first fine cell:

29 if (h1 < dry_tolerance) then ! If cell is dry , its quantities should be zero

30 h1 = 0.0 ; hu1 = 0.0 ; hv1 = 0.0

31 else if (h < dry_tolerance) then ! Otherwise , if the original cell was dry ,

32 h1 = -b1 ! we need to force h+b=0 to avoid creating spurious waves.

33 end if

34

35 if (h2 < dry_tolerance) then ! Now do the same for second fine cell:

36 h2 = 0.0 ; hu2 = 0.0 ; hv2 = 0.0

37 else if (h < dry_tolerance) then

38 h2 = -b2

39 end if

40

41 ! Store data for fine cells in the output arrays

42 Q_split1 = [h1,hu1 ,hv1] ; Aux_split1 = [b1]

43 Q_split2 = [h2,hu2 ,hv2] ; Aux_split2 = [b2]

44 end subroutine

87



CHAPTER 8. FVM: A GENERIC INTERFACE FOR VECTORIZED FINITE VOLUME
SOLVERS IN SAM(OA)2

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

P
er

fo
rm

a
n
ce

(C
el

l
u
p

d
a
te

s/
se

c)

×108 f-wave – Haswells

FVM-SWE/Single-edge

FVM-SWE/Multi-edge

SWE

0 2 4 6 8 10

f-wave – KNL

Patch refinement depth

Figure 8.1: Performance of FVM-SWE and SWE using the f-wave solver.
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Figure 8.2: Performance of FVM-SWE and SWE using the augmented Riemann solver.

those FVM applications as FVM-SWE and FVM-SWE2L, in contrast to the original applications
implemented without the FVM interface (and described in Chapter 7), to which we refer as SWE
and SWE2L. While the implementations of SWE and SWE2L are considerably more complex because
their codes deal directly with the data structures and algorithms used in sam(oa)2, that may be
advantageous in terms of performance, because they do not have the overhead due to additional
memory management performed by the FVM interface’s abstraction layer. Therefore, we will
use their performance as baseline for evaluating the new applications FVM-SWE and FVM-SWE2L.

As usual, the experiments described in this section have been conducted on the experimental
platforms described in Chapter 5. We also use the same simulation scenarios as in the previous
chapter: the Tohoku 2011 tsunami for the single-layer and the parabolic bowl-shaped lake for
the two-layer shallow water equations. For more details on these scenarios, see Section 7.3.1.

8.2.1 Simulation Performance

We start by evaluating the performance of the FVM applications FVM-SWE and FVM-SWE2L

with different implementations for the compute-fluxes operator and comparing them with
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Figure 8.3: Performance of FVM-SWE2L and SWE2L.

the performance achieved by the original applications SWE and SWE2L. Note that all experi-
ments reported here have been executed using the same configurations as the ones described
in Section 7.3. We plot the performance (measured as cell updates per second) of the entire
simulations using the vectorized f-wave (Fig. 8.1), augmented Riemann (Fig. 8.2) and two-layer
(Fig. 8.3) solvers, where we compare the performance achieved by simulations implemented
using the single-edge and multi-edge versions of the compute-fluxes operator. In addition,
we also plot the performance of the original (vectorized) applications SWE and SWE2L, which we
consider as the target performance for the FVM applications.

Noticeably, the codes developed using single-edge version for the operator perform only
slightly slower than the ones that use the multi-edge versions (up to 3% and 4% slower on
Haswells and KNLs, respectively), despite the overhead introduced due to the use of Fortran
subarrays in the operator calls (as shown in Code 8.6). This not only reveals that this overhead
is not so high, but also confirms that the Intel Fortran Compiler is able to efficiently handle the
subarrays when vectorizing the loop. As such, this shows that the single-edge version of the
compute-fluxes is able to produce applications with reasonable vectorization efficiency, while
not requiring application developers to explicitly implement any vectorization approach.

Furthermore, the vectorized FVM-SWE and FVM-SWE2L implementations also achieve perfor-
mances similar to their analogous applications (SWE and SWE2L) on Haswells (1–9% slower).
On the other hand, on the KNLs there are more noticeable differences in performance (8–18%
slower). Nevertheless, these experiments show that despite the additional memory operations
performed to create the interface’s layer of abstraction, the FVM applications can achieve per-
formance comparable to applications developed directly within the complex framework code.

The only exceptions for this are the experiments performed with refinement depth d = 0,
for which it is clear that SWE and SWE2L perform much faster than FVM-SWE and FVM-SWE2L.
However, that can be easily explained by the fact that the applications SWE and SWE2L provide
implementations that were specifically designed and optimized for cases where cell-wise adap-
tivity is used, while FVM-SWE and FVM-SWE2L always use a patch-based implementation that
was designed to support any arbitrary value for d. As such, if d = 0, these implementations
unnecessarily solve all Riemann problems in the mesh twice (because all three edges in patches
with d = 0 are processed with the help of ghost layers, as they are all located at the patch
boundary). Since we are generally only interested in simulations with d > 0, which deliver
much higher performance and shorter time-to-solution, we did not care about optimizing the
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Figure 8.4: Time-to-solution of FVM-SWE and SWE using the f-wave solver.
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Figure 8.5: Time-to-solution of FVM-SWE and SWE using the augmented Riemann solver.

FVM interface for cell-wise adaptivity.

8.2.2 Time-to-Solution

As discussed in Chapter 7, although larger patches usually deliver higher throughputs, they
may not always produce the fastest simulations, because they usually also increase the total
number of cells and edges in the adaptive mesh. Thus, now we also consider the wall time
taken by our experiments – see the plots in Figs. 8.4 to 8.6. As before, we can see that FVM-SWE
and FVM-SWE2L behave very similarly to SWE and SWE2L , achieving only slightly longer time-to-
solution in all simulations. Also, comparisons between the time taken by the FVM applications
implemented with the single-edge and multi-edge versions of the compute-fluxes operator
show again that they achieve very similar performance.

In addition, these results reinforce our previous experience that patches with 64–256 each are
usually able to minimize the time-to-solution on the patch-based adaptive meshes in sam(oa)2,
since also for the applications developed with the FVM interface they achieved the fastest results.
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Figure 8.6: Time-to-solution of FVM-SWE2L and SWE2L.

8.3 Conclusions

In this chapter we described and evaluated the FVM interface, a programming interface that
supports the creation of Godunov-type finite volume methods in sam(oa)2. Thanks to its simple
abstraction layer, application developers with no HPC expertise can create high-performance
applications with adaptive mesh refinement and various HPC features (including cache-efficient
traversals, multi-level parallelism and vectorization), while only needing to implement problem-
specific algorithms. More experienced developers also have the option of assuming complete
control over the main solver loop, such that they can manage its vectorization or attempt
further optimizations on it.

The FVM interface provides a generalization of the vectorized patch-based finite volume
scheme we developed for sam(oa)2 in Chapter 7, allowing its customization for different systems
of PDEs with relative ease. Assuming that a Riemann solver for the specific problem is available,
the developer’s work is reduced mainly to handling the solver calls and providing application-
specific operators for initialization, refinement and coarsening of cells, which in many cases
consist of trivial implementations. In particular, the FVM applications we implemented directly
apply the same Riemann solver implementations that were used for GeoClaw in Chapter 6 and
for sam(oa)2 in Chapter 7.

Our performance experiments revealed successful vectorization of the calls to the Riemann
solvers, both when vectorization was implicitly managed by the framework or explicitly managed
by the developer (achieving similar performances for both cases). They also showed that the
FVM applications achieve performance comparable to that of their analogous applications,
which were developed directly into the complex source code of sam(oa)2. Compared to those,
the FVM applications exhibit only low to moderate overhead (1–18% slower), mainly due to
the extra memory operations that are performed to create the interface’s abstraction layer,
which effectively hides from developers the complex algorithms and data structures managed
by the underlying framework.
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9
Summary

In this work we developed vectorized implementations of the finite volume schemes provided
by two different PDE frameworks with support for adaptive mesh refinement: GeoClaw and
sam(oa)2. Our modifications in both frameworks led to substantial performance improvements,
which were experimentally evaluated on two modern high-performance architectures and in
the context of two variations of the shallow water equations. Additionally, we also developed
a generalization of the vectorized patch-based finite volume scheme that was developed for
sam(oa)2, which allows easy customization of our approach to other systems of hyperbolic
PDEs. In the following, we give an overview of the main specific contributions of this thesis.

9.1 Main Contributions

First, we have been able to achieve efficient compiler auto-vectorization of the numerical routines
in the GeoClaw package. Most importantly, we achieved vectorization of five different Riemann
solvers for two variations of the shallow water equations (three normal solvers and two transverse
solvers), reporting speedups in the solver throughputs of up to 2.1× with double-precision arith-
metic on machines with AVX2 SIMD instructions (Haswells) and of up to 5.6× on machines with
AVX-512 SIMD instructions (KNLs). In particular, we highlight the successful vectorization
of the augmented Riemann solver and of the solver for the two-layer shallow water equations,
despite the high complexity of their implementations. To the best of our knowledge, no previous
work has reported success with compiler auto-vectorization approaches for those two solvers.

Second, with the intention of applying vectorization to the finite volume schemes in sam(oa)2,
we replaced its cell-wise adaptive mesh refinement strategy with a patch-based discretization.
This modification not only allowed vectorization, but also brought various other performance
benefits. These include improvements in the memory throughput due to the regular and more
concise data structures, as well as an overall reduction in the size and complexity of the im-
plicit refinement tree, which consequently reduces the overhead for managing adaptive mesh
refinement. Our performance experiments show that, even without vectorization, switching to
a patch-based discretization resulted in significant speedups of up to 1.6× on Haswells and
up to 1.9× on KNLs.

Third, the patch-based vectorization in sam(oa)2 allowed us to use the same solver imple-
mentations and the same vectorization approach as used previously in GeoClaw. Vectorization
of the normal Riemann solvers in sam(oa)2 achieved speedups similar to what we experienced
in GeoClaw, resulting in overall speedups in the solver throughputs of up to 3.6× on Haswells
and up to 6.7× on KNLs, compared to the original implementations with cell-wise adaptiv-
ity and no vectorization.

Fourth, we performed time-to-solution analyses of the resulting finite volume schemes in
sam(oa)2, with respect to the size of the patches being applied. Since using larger patches tends
to increase the total number of cells in the adaptive mesh, and as a consequence in the compu-
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tational work required to achieve a given solution accuracy, it was clear since the beginning that
the patch sizes should be carefully chosen in order to minimize the execution time. Thus, we
experimentally evaluated the influence of different patch sizes to the solver throughputs, to the
total number of cells in the mesh, to the total number of Riemann solves performed and, finally,
to the resulting time-to-solution. Our analyses show that for our applications and experimental
platforms, best results are achieved by relatively small patches with 64–256 cells each, for which
we report up to 83% reductions in the execution times.

Fifth, we created a highly customizable generalization of the patch-based adaptive mesh re-
finement and vectorization approaches developed for sam(oa)2. Customization is accomplished
via a programming interface that effectively hides from application developers the complicated
data structures and algorithms managed by the underlying framework, allowing developers to
easily apply the high-performance finite volume schemes developed in this work to various other
systems of PDEs. Our performance experiments with that interface revealed that, although the
extra abstraction layer does introduce some overhead to the resulting applications, their perfor-
mance is still reasonably similar (1–18% slower in the best and worst cases) to that achieved by
applications developed directly into sam(oa)2 without the new interface, thus requiring much
more implementation effort. In addition, our implementations and experiments using the new
interface show that it is able to achieve efficient vectorization of the numerical routines provided
by application developers, even when vectorization is not explicitly handled by them.

As a final remark, we reinforce the importance of our achievements both in performance and
usability in sam(oa)2. Here we quote a piece of the concluding remarks of the previous work
by Meister [49], which served as a starting point for this thesis:

When sam(oa)2 is compared to other software in the field, its performance is a clear
selling point. However, to become truly competitive there are still some issues left
that need to be resolved. First, the implementation of scenarios in the interface is
too complicated. A kernel layer that couples sam(oa)2 with an abstract description
or to a library with a fully opaque interface would be beneficial. [...]

Taking these words into consideration, we conclude that our work brings meaningful contribu-
tions to sam(oa)2, as we did not only substantially improve the performance of a framework
that was already recognized as being highly efficient, but also considerably simplified the pro-
cess of implementing new numerical solvers within it, effectively addressing one of the main
shortcomings of the framework according to that previous work.

9.2 Suggestions for Future Work

Below we list a few directions that future research could follow with the intention of improving
or giving continuity to the work described in this thesis:

• Reformulation of the two-layer solvers: our performance experiments both with GeoClaw
and with sam(oa)2 show that the Riemann solvers for the two-layer shallow water equa-
tions do not profit from vectorization as much as the solvers for the single-layer equations.
While in this work we chose to not deviate too much from the original solver implemen-
tations, it can be expected that restructuring the code of the two-layer solvers could be
highly beneficial for their vectorization performance, especially if such a reformulation is
able to reduce the size and amount of execution branches.

• Improvement of parallelization efficiency in GeoClaw: our experimental results indicate
that, although the parallelization strategy in GeoClaw achieves reasonable parallelization
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efficiency for platforms with relatively few cores, it does not scale accordingly to many-core
processors like KNLs. Thus, we suggest that future research should focus on attempting
to adapt GeoClaw for the next generations of high-performance architectures, which are
also likely to require efficient scaling to hundreds of threads.

• Development and evaluation of other FVM applications: while the applications developed
for the single-layer and two-layer shallow water equations require different Riemann solvers
and differ from each other in a few other implementation details, they are still relatively
similar in several aspects. Therefore, it would be interesting to have other applications
developed in sam(oa)2 with the FVM interface, preferably by developers that never had
contact with the sam(oa)2 framework – this would be useful to further demonstrate the
flexibility and usability of the FVM interface.

• Extension of the FVM interface using code generation approaches: with the FVM interface
we facilitated the process of implementing a new simulation in sam(oa)2 considerably.
However, this could be taken one step further by applying concepts of automatic code
generation to allow application developers to deal only with higher-lever constructs when
implementing the FVM operators. As an example of what can be accomplished, we
mention the FEniCS project [40], which provides automatic code generation for PDE
solvers in the context of finite element methods.

• Development of higher order methods in sam(oa)2: while GeoClaw provides an implemen-
tation of the corner-transport upwind method with addition of second-order corrections,
sam(oa)2 implements only the much simpler donor-cell upwind method with no second-
order corrections. A future research more focused on the numerical models could strive
to implement more accurate models in sam(oa)2, which could also include higher-order
methods. Considering the modifications performed by this work, this may possibly be
a less complex task by now, as the grid traversals in sam(oa)2 are not restricted only
to element-oriented stencils anymore (because of the new patch-based discretization that
now allows mesh elements to have access to the data of other elements located farther
away in the mesh).

• Extension to other numerical methods: although this work has focused only on finite
volume methods, sam(oa)2 actually supports other types of numerical methods, such as
finite element and discontinuous Galerkin methods. Thus, future work could attempt to
implement the strategies described here in the context of other methods. This may include
not only applying the patch-based and vectorization approaches to those other methods,
but also developing generic interfaces for them, using concepts similar to the ones used
for the FVM interface.
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