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Abstract

The performance requirements of structural-dynamic systems are growing and generate the need for ac-
curate testing methods. Real-time hybrid testing is an approach for assessing components of complex
systems under realistic boundary conditions. In order to do so, systems are split into two parts: one part
is challenging to model and serves as an experimental part in the hybrid test. The other part is subject to
frequent changes in the design process or physically not existent and serves as the virtual component of
the test. Virtual and experimental component are coupled using actuator and sensor system. Since the
dynamics of the experimental component are unknown, real-time hybrid testing can pose a challenging
control problem. The main goals of this thesis are to develop methods for the coupling of structures with
high modal density and without prior system knowledge, to explore ways to efficiently implement the vir-
tual component and to study methods for the accurate application of interface forces and displacements.
In the context of simulating the virtual component, time integration schemes and model order reduction
techniques are addressed. Finite impulse response filters are another option for a stable and efficient
computation of the responses of the virtual component. Their use is analyzed in the thesis. Actuator
systems are necessary to apply forces and displacements on the experimental component. They are
shown based on two examples. Transmission simulators are structures which replicate the dynamics of
interfaces. Force sensors cannot be placed directly at the interface if a transmission simulator is applied.
For this reason, interface forces have to be estimated by removing the inertia effects of a transmission
simulator from the measurements. Actuation system and delays in the control system have a significant
influence on the stability and accuracy of the tests. A stability analysis is therefore performed based
on a simplified model and characteristic mass, stiffness and damping ratios are discussed. The thesis
examines the fundamental properties of systems with delays and actuator dynamics. Many mechanical
configurations yield unstable tests without specific control algorithms. Adaptive feedforward filters offer
the possibility to couple systems accurately while maintaining stability. In this work, methods based
on least-mean-squares filters and based on recursive-least-squares filters are addressed. The meth-
ods do not require prior system knowledge and work for systems with interfaces with multiple degrees
of freedom. Simulation results show the superior properties of the adaptation law which is based on
recursive-least squares. Methods based on the power-flows in the actuation system help to simplify the
choices of adaptation parameters. Experiments on a clamped beam test rig and a test rig with a cubic
spring show the successful application of the method on a system with a two degree of freedom interface
and on nonlinear systems. Finally, adaptive feedforward filters are combined with a feedback based con-
trol scheme. In order to stabilize the system, a passivity-based controller is augmented. Experiments
on a non-linear system show that drift effects can be prevented and slow transient dynamics can be
effectively coupled while keeping the accuracy properties of the adaptive feedforward filters.
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Zusammenfassung

Die Anforderungen an strukturdynamische Systeme wachsen und erfordern genaue Testmethoden.
Real-Time Hybrid Testing ist ein Ansatz zur Beurteilung von Komponenten komplexer Systeme unter
realistischen Randbedingungen. Dabei wird das System in zwei Teile geteilt: Ein Teil ist schwierig zu
modellieren und dient als experimenteller Teil im Hybridtest. Der andere Teil unterliegt häufigen Än-
derungen im Designprozess oder ist physisch nicht vorhanden und dient als virtuelle Komponente des
Tests. Virtuelle und experimentelle Komponenten werden über Aktoren und Sensorsysteme gekoppelt.
Da die Dynamik der experimentellen Komponente unbekannt ist, kann Real-Time Hybrid Testing ein
anspruchsvolles Regelungsproblem darstellen. Die Hauptziele der Arbeit sind die Entwicklung von Meth-
oden für die Kopplung von Strukturen mit hoher modaler Dichte und ohne Vorkenntnisse des Systems,
die Erforschung von Möglichkeiten zur effizienten Implementierung der virtuellen Komponente und die
Untersuchung von Methoden für die genaue Anwendung von Schnittstellenkräften und Schnittstellenver-
schiebungen. Im Rahmen der Simulation der virtuellen Komponente werden Zeitintegrationsschemata
und Techniken zur Reduzierung der Modellordnung behandelt. Filter mit endlicher Impulsantwort können
eine weitere Option für eine stabile und effiziente Berechnung der Antworten der virtuellen Komponente
sein. Ihre Verwendung wird in der Arbeit analysiert. Aktorsysteme sind notwendig, um Kräfte und Ver-
schiebungen auf die experimentelle Komponente auszuüben. Sie werden anhand von zwei Beispielen
dargestellt. Transmission Simulators sind Strukturen, welche die Dynamik von Schnittstellen nachbilden.
Kraftsensoren können nicht direkt an der Schnittstelle platziert werden, wenn ein Transmission Simulator
eingesetzt wird. Aus diesem Grund müssen die Interfacekräfte geschätzt werden, indem die Trägheits-
effekte eines Transmission Simulators aus den Messungen eliminiert werden. Die Aktordynamik und
Verzögerungen im Regelsystem haben einen wesentlichen Einfluss auf die Stabilität und Genauigkeit
der Tests. Eine Stabilitätsanalyse wird auf der Grundlage eines vereinfachten Modells durchgeführt
und charakteristische Masse, Steifigkeit und Dämpfungsverhältnisse werden diskutiert. Die Disserta-
tion untersucht die grundlegenden Eigenschaften von Systemen mit Verzögerungen und Aktordynamik.
Ohne spezielle Regelalgorithmen ergeben viele mechanische Konfigurationen instabile Tests. Adaptive
Feedforward-Filter bieten die Möglichkeit, Systeme bei gleichbleibender Stabilität exakt zu koppeln. In
dieser Arbeit werden Methoden auf der Grundlage von Least-Mean-Squares Filtern und auf der Grund-
lage von Recursive-Least-Squares Filtern behandelt. Die Methoden erfordern keine Vorkenntnisse über
das System und funktionieren für Systeme mit Schnittstellen mit mehreren Freiheitsgraden. Simulation-
sergebnisse zeigen die herausragenden Eigenschaften des Anpassungsgesetzes, das auf rekursiven
kleinsten Quadraten basiert. Methoden, die auf den Leistungsflüssen im Aktorsystem basieren, helfen,
die Auswahl der Adaptionsparameter zu vereinfachen. Experimente an einem Balkenprüfstand und
einem Prüfstand mit einer kubischen Feder zeigen die erfolgreiche Anwendung des Verfahrens auf ein
System mit einer Schnittstelle mit zwei Freiheitsgraden und auf nichtlineare Systeme. Abschließend wer-
den adaptive Feedforward-Filter mit einem rückgekoppelten Regelverfahren kombiniert. Um das System
zu stabilisieren, wird eine passivitätsbasierte Regelung ergänzt. Experimente an einem nichtlinearen
System zeigen, dass Drifteffekte verhindert werden können und dass langsame transiente Dynamiken
effektiv gekoppelt werden können, während die Genauigkeitseigenschaften der adaptiven Feedforward-
Filter erhalten bleiben.
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Chapter 1

Introduction

Parts of this chapter have been submitted for publication in [7] and [9].

The role of structural dynamics in engineering is dominated by the demand for product quality, costs,
and efficiency as well as by environmental considerations. Lighter structures require less material and
lower life-cycle energy consumption and costs. This point is especially critical in the aerospace indus-
try, where energy efficiency and costs have always been important innovation drivers. Other exam-
ples of industries where structural dynamics play a fundamental role include wind turbine engineering
and micro-electro-mechanical systems (MEMS). In the wind energy market, costs and harsh offshore
conditions require more and more advanced structural designs. The monolithic design of micro-electro-
mechanical systems represents a classical structural dynamic problem. In the automotive industry, noise
and vibration—which are strongly influenced by structural dynamics—are a primary quality measure.
The key to the design of better structures is the prediction of their behavior and tests. Hence, the high
demands within the development process and for the end product require advanced methods for simu-
lation, experimental parameter identification, and tests. Simulations are often efficient, fast and cheap
and their prediction quality is improving. Significant research effort has been put into the development
of methods which increase the prediction precision and accuracy of simulation models and reduce sim-
ulation time. The V-model in Fig. 1.1 visualizes the mechatronic development process (see [50]). In
the first step, requirements are defined on the system level. Simulation models help to specify the re-
quirements on the component level. After the design process, prototypes are tested on the component
and the system level. Tests are an essential part of the development process of mechatronic systems.
Since physical testing is often costly and time-consuming, it is desirable to replace tests with simulations.
However, a simulation cannot always capture the complexity which is inherent to the physical system:
Structural tests stay an essential part of the development process in many engineering fields as e.g. in
aerospace, biomedical, or automotive engineering.
One way to keep costs and complexity of structural tests down is to test subcomponents of complex
systems separately. The behavior of a single mechanical component, however, depends on the coupled
dynamics of the overall system. This fact seems obvious—as shown in the example in Fig. 1.3—but is
often neglected in practice. To overcome this problem, methods which combine simulations and experi-
ments have been developed. The idea is to split a complex system into a physically tested part—referred
to as the experimental component—and a simulated part—referred to as the virtual component in this
work. An actuation system is controlled such that both components are coupled and the overall system
behavior is imitated. This paradigm is referred to as hybrid testing.
The advantages of such approaches are numerous: Frequent changes in the virtual component during
the development process can be flexibly integrated into tests. Boundary conditions which cannot be
reproduced otherwise—such as aerodynamic or fluid interaction forces—can be replicated by actuators.
Components which do not yet exist physically can be part of the test. This fact makes it possible to
test components early in the design process. Unseen hardware defects which do not originate from the
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Specifications

System Design

Models & Simulation

Component Design

Prototypes

Component Tests

System Integration

System Tests

Field Tests

Requirements Production
Validation

Verification

Figure 1.1: The V-model of the development process in mechatronics (adapted from [50]).

design process but from the manufacturing process can be detected during the test. In contrast to full
system tests, hybrid tests can be executed under controlled conditions; they are repeatable and can be
fully automated. To summarize, reasons to perform a test rather than a computer simulation include:

• detection of unseen hardware defects

• physical effects which are not modeled in a simulation model

• physical effects which are difficult to model

• assessment of haptic behavior and component such as a sound source

The need for a hybrid testing approach can arise from the following applications:

• design optimization of a virtual component with frequent changes

• test of components of a physically non-existent system

• test with complex boundary conditions such as aerodynamic or fluid interaction forces

• test of a component of a large size structure

• controlled boundary conditions and repeatable tests

• operation point dangerous on system level

Example The idea of a hybrid test is illustrated in Fig. 1.2 for a simple lumped-mass system. Both,
the virtual component (drawn in blue in Fig. 1.2) and the experimental component (drawn in green
in Fig. 1.2) are mass-spring-damper systems. The excitation force f ex t and the interface force λV IR

act on the virtual component. The actuator system (drawn in orange in Fig. 1.2) is represented by a
mass-spring-damper system and the actuation force f act . A hybrid test aims to control f act and λV IR

such that the motion of the virtual component and the experimental system simulates the behavior of the
coupled overall system (green and blue component). All properties, which were used for the numerical
experiments below, are listed in Tab. B.1. Bode plots of the dynamics of the coupled reference system,
the virtual component, and the experimental component are shown in Fig. 1.3.
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Figure 1.2: Lumped-mass system used for numerical investigations
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Virtual Component Experimental Component Simulated Overall System

Figure 1.4: Concept scheme of the Hardware-in-the-Loop approach

1.1 Related Methods & Technology

The paradigm of coupling simulations and physical systems is related to several methods: Hardware-
in-the-Loop testing, real-time hybrid testing, pseudo-dynamic testing, interaction control in robotics and
dynamic substructuring are all techniques which allow combining simulation models with physical sys-
tems. An overview of the existing methods is given in Tab. 1.1.

1.1.1 Hardware-in-the-Loop

In the context of the development of mechatronic systems, Hardware-in-The-Loop (HiL) is a well-known
approach, which couples simulation and hardware tests. The HiL approach is used to test controller
hardware and software while the environment and hardware components such as mechanical compo-
nents, hydraulic systems, sensors, and actuators are simulated in real-time. The concept is visualized
in Fig. 1.4. Two methods related to HiL are Software-In-The-Loop (SiL) and Rapid-Control-Prototyping
(RCD). In the Software-In-The-Loop approach, both controller software and environment are simulated
while no hardware is present. This approach can serve to evaluate the system behavior and to allow
changes early in the design process. Rapid-Control-Prototyping allows testing the control algorithms
on the actual mechatronic system using general purpose real-time computers. The method is applied
when the controller hardware is yet not available. An overview of the methods is given e.g. in [51]. HiL
simulations are widely used in the automotive and the aerospace industry. In classical HiL simulations,
actuators—if they are present at all—are part of the component under test. The product’s inherent in-
put and output channels act as the interface between experimental and virtual component. Hence, the
dynamics of the transfer or the actuation system do not deteriorate the test performance.

1.1.2 Pseudo Dynamic Testing

Pseudo-dynamic testing is a method which couples simulations and experiments within an extended
time-scale. All time-dependent effects—as inertia or damping—are neglected or simulated using a
model, while stiffness effects are measured in an experiment. This approach is feasible in applica-
tions where the modeling of the inertia and damping effects is uncomplicated, where the models can be
reduced to a small number of degrees of freedom and where the stiffness effects are hard to model. The
concept of pseudo-dynamic testing is visualized in Fig. 1.5: All displacements are calculated by time
integration of the equations of motion. In contrast to a full simulation, the stiffness effects are retrieved
directly from the experimental component. In order to do so, the calculated displacements are applied to
the experimental component, and the restoring forces are measured. The structure under test has to be
condensed to a lumped-mass system since each degree of freedom in the equations of motion has to
be actuated as described in [31]. The method allows the analysis of effects such as crack propagation or
other damages in structures. Since the test does not run in real-time, it can be stopped at any time step
in order to evaluate the resulting modifications of the structure. The extended time-scale also means
that stability issues caused by actuator delays do not occur. The concept of pseudo-dynamic testing has
been first introduced by [103].
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Virtual Component Experimental Component Simulated Overall System

Figure 1.5: Concept scheme of the pseudo-dynamic testing approach

Virtual Component Experimental Component Simulated Overall System

Figure 1.6: Concept scheme of the pseudo-dynamic substructure testing approach

[21] and [76] describe the use of substructures in pseudo-dynamic testing: Instead of coupling the rate
dependent effects from a simulation to a test of the overall structure, only a subcomponent is tested
while the overall structure and the rate dependent effects are simulated. A scheme of the concept is
given in Fig. 1.6. Applications of the pseudo-dynamic tests can be found in civil engineering where
structures were exposed to earthquake loads. One example are the facilities in the ELSA lab—as de-
scribed by [76]—where test specimens up to the size of 10 m are tested against a reaction wall. More
specifically, [76] reports on the test of piers of a bridge coupled to the simulated overall bridge-structure.
Pseudo-dynamic tests are used where the dynamics of the actuators do not allow real-time tests: [16]
describes an application of pseudo-dynamic testing in the aerospace industry where an air-to-air re-
fueling process is simulated with a hybrid test. In this work, the probe-drogue impacts and contact are
replicated using an industrial robot. One limit of application for the pseudo-dynamic testing approach lies
in the fact that the rate dependent effects still have to be modeled for the simulation. This procedure is
sometimes impossible and conflicts with the objective of hybrid tests, namely that mechanical properties
of the experimental component are unknown.

1.1.3 Real-Time Hybrid Testing

Real-time hybrid testing is a method which allows implementing realistic dynamical tests of components
of complex systems. The system is split into a virtual system—which is simulated in real-time—and an
experimental component which is physically present in the test. The limitations of Pseudo-Dynamic test-
ing are overcome by applying all forces in real-time and, hence, capturing also rate-dependent effects—
such as damping and inertia—in the experimental component. Among the first applications that have
been reported are publications by [68], [45] and [14]. In literature, the method is also referred to as
real-time hybrid simulation, real-time hybrid substructure testing, Model-in-the-Loop testing or real-time
substructuring.
Applications of the method have been reported in various fields such as in aerospace, automotive, civil
and mechanical engineering. To name just a few examples: Satellite tests using hybrid approaches are
proposed in [13], hybrid testing of off-shore structures is described in [24] and [79] proposes the tests
on chassis dynamics of cars in combination with aerodynamic simulations.
The objective of any real-time hybrid testing technology is to test the experimental component under
realistic boundary conditions. In order to do so, the dynamics of the virtual component are coupled
to the test rig by using an actuation system. Actuators apply forces or displacements to the interface
of the experimental component, while sensors measure interface forces and interface displacements.
In contrast to standard HiL tests, most real- time hybrid testing setups make time lags and delays in-
evitable. The dynamics of the actuators cause frequency-dependent time lags and change due to the
coupling to the test specimen. A model of the test specimen’s dynamics is usually not available, and
the dynamics may be subject to changes during the test. Other delay contributions are caused by the
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Figure 1.7: Concept scheme of the real-time hybrid testing approach
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Figure 1.8: Concept scheme of interaction control in robotics

computational and communication processes as well as by signal-processing procedures. Time lags
and delays can cause instability and deterioration in the test accuracy if they occur in a test without
a further compensation technique. In order to tackle these stability problems, several methods have
been proposed in hybrid-testing literature. [45] suggests using a polynomial forward prediction scheme
which compensates for delay and amplitude errors. Based on this work, [109] introduced an additional
adaptation scheme which tunes phase shifts and amplitude corrections according to errors at the zero
crossings. Other methods for delay compensation and interface synchronization include the application
of model reference adaptive control by [108], inverted models of the actuation system by [15] and model
predictive control by [101]. [78] applies a passivity-based control method to real-time hybrid testing.

1.1.4 Interaction Control in Robotics

The interaction control in robotics poses a problem, which is similar to real-time hybrid testing. The
objective of this type of robot control is not to follow defined forces or motions, but rather, to provide a
certain impedance or admittance at the tool center point. This objective makes it necessary to control
the robot such that it imitates a certain dynamic model while in contact with the environment. Impedance
determines a force output as a result of velocity input. An approach to impedance control was intro-
duced by [44]. Admittance determines velocity output as a result of force input. Admittance control
stability issues were investigated by [69]. [110] gives an overview of different interaction control laws.
The application for this type of control can be found in force-feedback haptic displays, in physiotherapy
or in compliant manipulation in contact with an unknown environment. The topic of compliant robots has
lately become important in the context of human-robot collaboration. Usually, the applications in robotics
allow the use of very simple impedance or admittance models as lumped inertias or springs.

1.1.5 Dynamic Substructuring

Dynamic substructuring is the generic term for methods using domain decomposition and substructure
coupling in the domain of structural dynamics (Fig. 1.9). Although dynamic substructuring, in general,
does not include methods which couple tests and simulation in real-time, its philosophy of coupling
simulations and experiments exhibits close links to hybrid testing. Using the dynamic substructuring
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Component 1 Component 2 Overall System

Figure 1.9: General concept scheme of the dynamic substructuring strategy

strategy, complex systems are split into substructures. Those substructures can be modeled, measured
and analyzed separately.
Dynamic substructuring is an essential strategy in structural engineering since it facilitates simulation and
experimental work in many ways: It enables local optimization of substructures, while structural behavior
which does not influence the global dynamics is not accounted for on the global level. The philosophy of
decomposing complex structures into smaller substructures also simplifies collaboration between various
contributors. Dynamic substructuring can accelerate the solution of numerical models by parallelization
and model order reduction. On the experimental side, the complexity of the measurements can be
reduced by applying substructuring methods. The approach allows combining simulation models and
models which were identified from experiments.
A framework for the classification of dynamic substructuring methods is presented e.g. in [30]. Usually,
the complexity of substructure models which originate from numerical simulation models can be reduced
by using model order reduction. A common technique for model order reduction of substructures used
in many commercial codes is the method presented by [25]. It is referred to as the Craig-Bampton
method. Other reduction techniques include the methods of [64], [91] and [90]. Experimental mod-
els can be modal models or can consist of impulse responses or frequency response functions (FRF).
Modal models are retrieved by identifying the modal parameters such as modal damping, masses and
resonance frequencies of a structure from measurements. The frequency response functions represent
the dynamic relationship between force input and sensor output at each frequency. In order to analyze
the global dynamic behavior, the substructures are numerically coupled in the final step. The coupling
can be performed directly in the physical domain, in the modal domain, in the time domain or in the
frequency domain. In experimental substructuring, usually, the responses to interface excitations have
to be measured. The methods which make use of the modal domain are referred to as component mode
synthesis (CMS). Component mode synthesis is preferable if the modes of the structure are clearly sep-
arated. Impulse-based substructuring (IBS) was proposed in [88]. It is suitable if impulses can describe
the substructure responses. A frequency-based substructuring (FBS) method—as proposed by [52]—
can be used if the substructures exhibit high modal densities. Since most experimental substructuring
techniques work with linear models, they cannot represent parameter and state-dependent behavior.
Real-Time Hybrid Testing, in turn, is a substructuring technique which extends the coupling approach
to real-time tests, the main advantage, compared to classical substructuring, being that no model is
required for the experimental part.

1.2 Application Cases

Applications of real-time hybrid testing exist in various fields of engineering such as aerospace, marine,
biomedical, civil, rail or automotive engineering. Many methods are highly dependent on their applica-
tion. As mentioned above, testing in earthquake engineering was one of the first applications of real-time
hybrid testing. [68], [45] and [14] were among the first to report results in this area.
[24] and [92] present an application in testing of off-shore structures. The described procedure allows
tests on scaled structures in water basins. Models of aerodynamic forces are coupled to structures such
as oil-drilling platforms and wind turbines. The wind forces from the model are applied using a system
of wires and winches. The motion of the structures is measured using a visual tracking system.
[13] describes satellite testing scenarios. [62] proposes control strategies for contact simulation of space-
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Dynamics of
experimental
component
simulated

Dynamics of
experimental
component
measured

Actuator dynamics
relevant

Hardware-in-the-Loop - • -

Real Time Hybrid Testing - • •
Pseudo Dynamic Testing • - -

Interaction control in Robotics - • •
Dynamic Substructuring - • -

Table 1.1: Overview on methods related to hybrid testing

craft docking procedures. Automotive applications are proposed in [79]: The aerodynamics of a racing
car are simulated and coupled to a chassis dynamic test rig. A second use case suggests improving
hub-coupled road excitation test rigs by combing them with tire models.
Similar problems as in mechanical systems occur in electrical power systems. In this area, hardware
components like power electronic drives and motors are coupled to simulation models of power grids,
loads or sources. [98] proposes to test inverter hardware with virtual motors and associated mechanical
loads. Megawatt-scale motor drives are tested using virtual gas turbine generator systems in [99]. [80]
couples experimental components such as combustion engines and models of elastic drive-train dynam-
ics. The test allows optimization of the coupled dynamics to reduce unwanted oscillations.
Friction forces, hydraulic valve dynamics, and unmodeled flexibilities make testing railway vehicle pan-
tographs necessary. [33] and [112] propose real-time hybrid testing techniques as a replacement for
expensive test drives: The pantograph is tested in the laboratory while a contact wire, a messenger wire,
droppers, and suspensions are simulated.

1.3 Project Objectives

So far, the real-time hybrid testing technique has rarely been applied to noise, vibration, and harshness
(NVH) engineering. The objective of work in this field is often to reduce unwanted vibration. The need
for a hybrid testing approach emerges from the fact that off-line substructuring techniques do not neces-
sarily account for the correct amplitudes and do not measure at the correct working point.
Fig. 1.10 gives a potential example of an application scenario of a hybrid test with a structural dynamic
system: The objective of the test is to analyze the influence of different designs of drive trains and trans-
mission cross beams on the vibration behavior of a car. The body in white is a complex structure which
is hard to model, while the transmission cross beam and the drive train are only available as models and
their design frequently changes during the design process. A hybrid testing approach allows to couple
the physical body in white to the model of the transmission system. Applications where structural sys-
tems are coupled often exhibit a high model density and low damping.

When coupling lightly damped structures, the poles of the coupled overall system often are close
to instability. Complex and unknown dynamics make the design of hybrid testing controllers a difficult
task. The application of a feedback-based methodology using low-order models remains challenging.
Adaptive feedforward filters offer an alternative in this field. Instead of closing the control loop directly,
feedforward filters generate the actuator input using the external excitation forces as an input signal.
Since the structure of the filter is not known beforehand, information on the interface gap is used in
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Figure 1.10: Application case: The virtual component can be optimized concerning its effect on the body-in-white’s
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Figure 1.11: Overview on the topics considered in the thesis

an update-law in order to adapt the filter coefficient such that virtual and experimental component are
coupled. The test dynamics are inherently more stable because the feedforward filters do not shift the
poles of the system.
The adaptation allows the filters to be used without prior system knowledge. The objective of this the-
sis is to explore and discuss the possibilities of applying real-time hybrid testing to structural dynamic
systems. More specifically, the following aspects are investigated:

• efficient ways to implement the virtual component

• accurate measurement of interface forces and states

• interface synchronization for systems with high modal density without prior system knowledge

1.4 Thesis Outline

In Chap. 2, the real-time hybrid testing problem is formulated mathematically using various model repre-
sentations. Basic time integration schemes and model order reduction techniques used for implementing
the virtual component are discussed. Chap. 3 explores ways to measure forces at the interface between
the subcomponents and to estimate interface states. Kinematic aspects of actuation systems are de-
scribed. Chap. 4 discusses feedback based interface synchronization techniques. It includes the state of
the art methods for interface synchronization in real-time hybrid testing. Furthermore, the chapter anal-
yses the effects of delays on the stability and accuracy of real-time hybrid testing. Chap. 5 investigates
adaptive feedforward filters as a robust way to synchronize the interfaces. Possibilities to combine feed-
back and feedforward-based approaches and methods are analyzed. Additionally, the chapter discusses
methods to improve the performance of adaptive feedforward filters in real-time hybrid testing. Chap. 7
concludes the thesis and discusses recommendations for future research.
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1.5 Original Contributions

The following aspects of the thesis are the original scientific contributions from the author:

• A framework for real-time hybrid testing using adaptive feedforward filters with harmonic basis
functions (published in [4] and[7])

• The application of recursive least-squares adaptation laws enabling coupling of multiple degree-
of-freedom interfaces (published in [8], [7] and [3])

• The application of the method to an experimental clamped beam system with results over a fre-
quency range up to 800Hz (published in [7])

• A technique to adjust the adaptation gain of adaptive feedforward filters based on power flows
between the actuation system and the subcomponents (published in [9])

• The investigation of the comparison between feedback and feedforward techniques

• Discussion of the use of finite impulse response filters to simulate the virtual component

• An approach for applying and measuring forces and displacements at the interface between the
subcomponents (published in [10] and [5] )



Chapter 2

Simulation models and the virtual sub-component

Parts of this chapter have been submitted for publication in [7] and [9].

Three subsystems are part of any hybrid test: The experimental component is the subsystem under
test. The actuation system is necessary in order to apply forces and displacements on the experimental
component and to measure the responses of the experimental component. The virtual component is
the part of the system which is simulated during the test. For the prediction of stability and accuracy of
a test and for the evaluation of different methods, it is important to represent all three subsystems as
mathematical models. In the first part of the chapter, the dynamics of the subcomponents and coupling
constraints are listed in different representations. Since, for the virtual part, an efficient calculation
of the response is important, in the second and third part of the chapter basic time integration and
model reduction techniques are shortly described. The last part of the chapter discusses the use of
time discrete filters for the simulation of the virtual component. The methods for this project were also
analyzed in the student theses [19] and [67].

2.1 Model Representations

This thesis focuses on mechanical systems which can be described in the form of Eq. (2.1). Their equa-
tions of motion can originate from the discretization of the continuous mechanic field equations or from
the mathematical representation of a multi-body system. Continuous mechanical systems are flexible
structures which can be described by partial differential equations. The space-discretization of those
partial differential equations is performed using techniques such as the finite element method (FEM).
For details on the derivation and the mathematical formulation of the finite element method, the reader is
referred to literature as e.g. [47], [11] and [113]. Multi-body systems consist of multiple, mechanically in-
teracting, undeformable or deformable bodies. Their mathematical formulation is described in detail e.g.
in [95], [77] and [12]. All these modeling techniques result in a set of second-order ordinary differential
equations (ODEs).
Additional to the second-order equations of motion, the following section lists other representations of
the subsystems’ dynamics which are made use of in this thesis: The first-order state-space form is useful
in the context of control engineering. The response of a linearized system can be represented as a con-
volution integral. The transfer function representation in the Laplace domain is useful for the analysis of
the control approaches in Chap. 4 and the formulation of the adaptive feedforward approach of Chap. 5.

15
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Figure 2.1: Block diagram of the virtual component.
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Figure 2.2: Block diagram of the interaction between actuation system and experimental component.

2.1.1 Second-Order Ordinary Differential Equations

The second-order form is the direct result of the mathematical description of any mechanical system. The
dynamics of the virtual component (Fig. 2.1) with the system coordinates qV IR are defined by Eqs. (2.1)

MV IR(q)q̈V IR + f V IR
nl

�
qV IR, q̇V IR

�
=

�
∂ Γ V IR

∂ qV IR

�T

λV IR + f V IR
ex t

yV IR = Γ V IR
�
qV IR

� (2.1)

where the mass matrix is denoted by MV IR, the internal non-linear forces by f V IR
nl , the external forces

by f V IR
ex t , and the function Γ V IR

�
qV IR

�
maps the system coordinates to the interface displacements yV IR.

Accordingly, the Jacobian matrix
�
∂ Γ V IR

∂ qV IR

�T
projects the interface forces λV IR on the system coordinates.

The linearized form of Eq. (2.1) is

MV IRq̈V IR + DV IRq̇V IR + K V IRqV IR = GV IRT
λV IR + f V IR

ex t

where the stiffness matrix is denoted by K V IR, the damping matrix is denoted by DV IR, and the mapping
matrix is denoted by GV IR. The equations of motion can be solved for example using a Newmark time
integration scheme as it is described in Sec. 2.3.
Actuation system and experimental component form a coupled system during the test (Fig. 2.2). At
the interface between the two, one can measure interface forces and interface displacements. A set of
dynamic equations and constraints defines their coupled dynamics. Eq. (2.2) defines the dynamics of
the experimental component with the system coordinates q EX P . Eq. (2.3) defines the dynamics of the
actuators with the system coordinates qAC T .

M EX P q̈ EX P + f EX P
nl

�
q EX P , q̇ EX P

�
= f EX P

ex t +GEX PT
λEX P (2.2)

MAC T q̈AC T + f AC T
nl

�
qAC T , q̇AC T

�
= BAC T uAC T +GAC T T

λEX P (2.3)

In these equations, the system matrices are defined correspondingly to the virtual component. uAC T

is the vector of the actuator input signal. λEX P is the vector of the interface forces between actuation
system and experimental component. Accordingly, GEX PT

and GAC T T
project λEX P on the systems’ co-

ordinates. λEX P is measured or–if direct measurement is not possible–estimated during the experiment
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as described in Chap. 3.
Linearization yields Eq. (2.4) and Eq. (2.5):

M EX P q̈ EX P + DEX P q̇ EX P + K EX Pq EX P = f EX P
ex t +GEX PT

λEX P (2.4)

MAC T q̈AC T + DAC T q̇AC T + KAC T qAC T = BAC T uAC T +GAC T T
λEX P (2.5)

The compatibility constraint between actuation system and experimental component is defined by

GAC T qAC T −GEX Pq EX P = 0. (2.6)

The interface displacements y EX P are defined as

y EX P = GEX Pq EX P .

The system, consisting of actuation system and experimental component, does not have to be solved in
real-time during the test. For the purpose of simulated tests, the equations for the experimental compo-
nent and the actuators can be solved e.g. with a HHT-α method for time integration with constraints as it
is described in Sec. 2.3.
In order to couple the experimental and the virtual component equilibrium constraints and compatibil-
ity constraints have to be met. It is the task of the control law to synchronize the interface of virtual
and experimental component, and to enforce the compatibility constraint. The compatibility constraint is
defined by (2.7).

y EX P = yV IR (2.7)

If the constraint is not met, an interface gap g (t) remains. It defines the synchronization error in the test:

g = y EX P − yV IR (2.8)

The equilibrium constraint is defined by Eq. (2.9).

λV IR = −λEX P (2.9)

2.1.2 State-Space Form

The state-space form is a widely used representation of dynamical systems in the control engineer-
ing community since it allows for the use of various analysis and design techniques. The state-space
representation is defined by a first order ordinary differential equation (ODE) and an output equation.
Eqs. (2.10) describe the virtual component’s dynamics in state-space form making use of the system
matrices from the second order form of Sec. 2.1.1

ẋ V IR =

�
0 I

−MV IR−1
K V IR −MV IR−1

DV IR

�

︸ ︷︷ ︸
AV IR

x V IR +

�
0

MV IR−1
GV IRT

�

︸ ︷︷ ︸
BV IR
λ

λV IR +

�
0

MV IR−1

�

︸ ︷︷ ︸
BV IR

ex t

f V IR
ex t

yV IR =
�
GV IR 0

�
︸ ︷︷ ︸

C V IR
y

x V IR with x V IR =
�
qV IRT

q̇V IRT
�T

(2.10)

The state-space matrices AV IR, BV IR
u , BV IR

ex t and C V IR
y as well as the state vector x V IR are used in the

equations. Note that MV IR is assumed to be invertible in this notation.
The experimental component’s dynamics are coupled to the dynamics of the actuation system. Since it
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is necessary to account for the coupled dynamics, actuation system and experimental component are
combined in one state-space equation. Note, that the coupled dynamics of actuator system and exper-
imental component are denoted with the superscript TR referring to the test rig. The actuation system
may contain an inner-loop for force or displacement control with actuator-specific features such as fric-
tion compensation. Eqs. (2.11) describe the dynamics of the actuation system and the experimental
component in state-space form

ẋ TR = ATRx TR + BTR
u u + BTR

ex t f TR
ex t

y EX P = C TR
y x TR

λEX P = C TR
λ x TR + DTR

λ,uu + DTR
λ,ex t f TR

ex t

(2.11)

using state-space matrices ATR, BTR
u , BTR

ex t , C TR
y , C TR

λ
, DTR

λ,u and DTR
λ,ex t as well as the state vector x TR.

The inputs to the system are the actuator demand signal u and the external forces acting on the exper-
imental component. The interface displacement of the experimental component y EX P and the interface
forces λEX P are defined as the outputs of the system. This state space form can for example be derived
as follows: The second time derivative of the compatibility constraint is

GAC T q̈AC T −GEX P q̈ EX P = 0. (2.12)

Substituting q̈AC T and q̈ EX P from Eq. (2.2) and Eq. (2.3) yields the expression

λEX P =
�
GAC T GAC T T −GEX PGEX PT

�−1
GAC T MAC T−1 �

DAC T q̇AC T + KAC T qAC T − BAC T uAC T
�

−
�
GAC T GAC T T −GEX PGEX PT

�−1
GEX P M EX P−1 �

DEX P q̇ EX P + K EX Pq EX P − f EX P
ex t

�

(2.13)

Using the state vector x TR =
�
qAC T T

q EX PT �T
and substituting λEX P in Eq. (2.2) and Eq. (2.3) the

state space matrices can be constructed.

2.1.3 Continuous Time Convolution Integrals

For linear time invariant systems, the relation between input and output can be described by a convolu-
tion integral. In other words, instead of time integration of the full system, convolution integrals are used
to compute the system responses. For a general linear, time-invariant state-space system

ẋ = Ax + Bu

y = C x ,
(2.14)

the analytical solution is

y(t) =

∫ t

0

CeA(t−τ)B︸ ︷︷ ︸
H(t)

u(τ)dτ+CeAt x (0). (2.15)

The solution consists of a term which originates from the initial condition x (0) and one term which orig-
inates from the response to the input signal. The H(t) is a matrix of the responses to Dirac impulses—
shortly the impulse response matrix.
For the virtual subcomponent—considering the inputs from external forces and interface forces—the
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convolution integral is

yV IR(t) =

∫ t

0

C V IReAV IR(t−τ)BV IR
λ︸ ︷︷ ︸

HV IR
λ
(t−τ)

λV IR(τ)dτ

+

∫ t

0

C V IReAV IR(t−τ)BV IR
ex t︸ ︷︷ ︸

HV IR
ex t (t−τ)

f V IR
ex t (τ)dτ+C V IReAV IR t x V IR(0).

(2.16)

Neglecting the initial condition x (0)—and only considering the convolution integral—the expression can
be written using the convolution operator ∗:

yV IR(t) = HV IR
λ (t) ∗λV IR(t) +HV IR

ex t (t) ∗ f V IR
ex t (t)

2.1.4 Discrete Time Convolution Integrals

The continuous convolution integral can be discretized in time assuming zero initial conditions (q(0) = 0
and q̇(0) = 0) and using a simple approximation with the time step width ∆t :

y[n] =
n∑

k=0

H[n− k]u[k]∆t (2.17)

The square-brackets notation is used to indicate the index of the time instance. H[n] is the matrix of
the responses at time step n to impulses at the initial time step. The time-discrete impulse responses
can be computed by using a time integration scheme as e.g. the commonly used method of Newmark
(see Sec. 2.3 and Sec. 2.4.1). Using the fact that the impulse response H[0] at time step n= 0 is zero,
the term containing H[0] can be omitted and the discrete convolution reads

y[n] =
n−1∑
k=0

H[n− k]u[k]∆t (2.18)

A more accurate approach is to apply the trapezoidal rule in order to approximate the input forces. The
resulting approximation of the convolution integral is

y[n] =
n−1∑
k=0

H[n− k](u[k] + u[k+ 1])
∆t
2

(2.19)

A proof is given in [88] that the formulation is equivalent to Newmark time integration of the system with
β = 1

4 , γ = 1
2 . For the virtual subcomponent—considering the inputs from external forces and interface

forces—the time-discrete convolution writes

yV IR[n] =
n−1∑
k=0

HV IR
λ [n− k]λV IR[k]∆t +

n−1∑
k=0

HV IR
ex t [n− k] f V IR

ex t [k]∆t. (2.20)

Using the trapezoidal rule, the time–discrete form of the convolution integral for the virtual subcomponent
writes

yV IR[n] =
n−1∑
k=0

HV IR
λ [n− k](λV IR[k] +λV IR[k+ 1])

∆t
2

+
n−1∑
k=0

HV IR
ex t [n− k]( f V IR

ex t [k] + f V IR
ex t [k+ 1])

∆t
2

.

(2.21)
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The trapezoidal approach yields an accurate and unconditionally stable approximation of the convolution
integral. However, in practice, the impulse responses are truncated—as described in Sec. 2.4.2—which
makes the convolution products inherently stable. The simple approximation of Eq. (2.17) has the ad-
vantage that it only requires forces from the preceding time steps as inputs. This fact makes it interesting
in the context of real-time hybrid testing.

2.1.5 Transfer Functions

The transfer function description of the systems can be derived from the state-space form, the impulse
responses, or directly from the second-order form. In the Laplace domain, the general linear system of
Eq. (2.14) can be written as

Y (s) = H(s)U(s) (2.22)

using the Laplace transforms L (H(t)) = H(s), L (u(t)) = U(s) and L (y(t)) = Y (s) of the impulse
responses.
For the virtual subcomponent, the inputs from the external forces and the interface forces have to be
considered:

Y V IR(s) = HV IR
λ (s)ΛV IR(s) +HV IR

ex t (s)F
V IR
ex t (s) (2.23)

The input-output relationships of the coupled system which are composed of experimental subcompo-
nent and the actuation subsystem can be described by Eqs. (2.24). The output includes the interface
forces as well as the interface displacements.

Y EX P(s) = H TR
y,u(s)U(s) +H TR

y,ex t(s)F
EX P
ex t (s)

ΛEX P(s) = H TR
λ,u(s)U(s) +H TR

λ,ex t(s)F
EX P
ex t (s)

(2.24)

Neglecting the initial conditions and using the Fourier transforms F (H(t)) = H(ω), F (u(t)) =
U(ω), F ( f (t)) = F(ω), F (λ(t)) = Λ(ω) and F (y(t)) = Y (ω), one can equivalently write the
input-output relationship in frequency domain:

Y V IR(ω) = HV IR
λ (ω)ΛV IR(ω) +HV IR

ex t (ω)F
V IR
ex t (ω)

Y EX P(s) = H TR
y,u(ω)U(ω) +H TR

y,ex t(ω)F
EX P
ex t (ω)

ΛEX P(ω) = H TR
λ,u(s)U(ω) +H TR

λ,ex t(ω)F
EX P
ex t (ω)

(2.25)

2.2 Substructure Model-Order Reduction

The discretization of mechanical problems using FE methods usually yields large models. The reason is
that a fine meshing is often necessary to account for the geometry of the structures. It is not uncommon
that the resulting models have sizes over a million DOF. The high number of DOF—in many cases—is
not necessary to represent the relevant dynamics of the mechanical system. Making meshes coarser
is, however, often not an option, since careful re-meshing is very labor intensive and fine meshes are
needed to represent the geometry. Especially in real-time hybrid testing, efficient computation of the
responses of the virtual subcomponent is essential to meet the real-time constraints. Model order re-
duction methods are used to systematically and automatically simplify models without sacrificing the
accuracy of the results. The following section gives a short overview of the model order reduction tech-
niques used in this thesis. It is based on the deeper and more complete discussions by [107].
The following considerations are limited to linear models. Model order reduction techniques in control
engineering focus on the optimization of the accuracy of input-output relationships while in structural en-
gineering the full displacement and stress fields are of interest. The methods described in the following
section have their origin in the field of structural dynamics.
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2.2.1 Subspace Projection

The full linear system is given by Eq. (2.26).

Mü + Du̇ + Ku = f +GTλ (2.26)

The general idea of model order reduction is to substitute the full coordinate vector q ∈ Rm with a
reduced set of coordinates q̃ ∈ Rn (m> n) according to Eq. (2.27).

q = Rq̃ (2.27)

The reduction matrix R ∈ Rm×n contains the shapes of the possible displacements performed by the full
coordinates. The reduced coordinate vector q̃ represents the contributions of the shapes contained in
the reduction matrix. Since the space which is spanned by the new coordinates is not sufficiently large
for the equations to be satisfied fully, a residual error r remains in Eq. (2.28).

MR¨̃q + DR ˙̃q + KRq̃ = f +GTλ+ r (2.28)

The residual forces do not perform mechanical work in the modes represented by R. Hence, the resid-
ual r disappears if the equations are projected onto the space spanned by R. In order to do so, Eq. (2.28)
is premultiplied with the transpose RT . The resulting reduced system is given by Eq.(2.29).

M̃ ¨̃q + D̃ ˙̃q + K̃ q̃ = f̃ + G̃
T
λ, (2.29)

RT r cancels to zero. The resulting reduced system matrices are given by Eq. (2.30).

M̃ = RT MR, D̃ = RT DR, K̃ = RT KR, f̃ = RT f , G̃ = RT G (2.30)

Matrix Partitioning In practice, one is interested in the solution of the coupled system. Maintaining
the interface coordinates is necessary. Typically, the reduced substructure matrices can be assembled
similarly to the element matrices in the finite element method. This process is referred to as the primal
assembly. In order to perform the assembly, it is necessary to distinguish internal and interface coordi-
nates. In order to do so, the equations of motion can be rearranged such that the DOFs at the interface
and the internal DOFs are separated according to Eqs. (2.31). Partitioning the equations of motion is
also necessary for defining and computing the reduction matrix R. The coordinates which are part of the
interface (or boundary) are denoted with subscript b and internal DOF are denoted with subscript i. In
the reduction process, the interface DOFs remain unchanged, while the internal DOF are replaced by a
set of reduced, generalized coordinates.

M =

�
M bb M bi
M i b M ii

�
, K =

�
K bb K bi
K i b K ii

�
, G =

�
Gb 0

�
, f =

�
f b
f i

�
, q =

�
q b
q i

�
(2.31)

By definition, interface forces λ act on the boundary. The partitioned equations of motion are:
�

M bb M bi
M i b M ii

��
q̈ b
q̈ i

�
+

�
K bb K bi
K i b K ii

��
q b
q i

�
=

�
f b
f i

�
+

�
Gb
0

�
λ (2.32)

Note that the damping term is omitted for readability reasons.

2.2.2 Reduction Basis: Component Modes

The reduction basis R is used to compute a reduced system representation as it is described in Sec. 2.2.1.
The accuracy and efficiency of the reduction relies on the quality of the employed modes in the reduction
matrix. Different reduction methods are obtained by combining different types of modes. In the context
of substructuring, those modes are referred to as component modes. In the following section, a number
of component mode types which are relevant for real-time hybrid testing are listed.
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Constraint Modes Constraint modes are the static responses of the component interface displace-
ments. They can be derived using the second line in the partitioned equations of motion (2.32):

M i bq̈ b +M iiq̈ i + K i bq b + K iiq i = 0

Neglecting the inertia contributions, one finds the static relationship between q b and q i :

K i bq b + K iiq i = 0

The equation can be solved for the internal DOFs q i :

q i = −K−1
ii K i bq b

The resulting modes Ψ c represent the static deformations due to unit displacements of the interface
DOFs. In fact, the internal DOFs are coupled to the interface DOFs through their static responses.

Ψ c = −K−1
ii K i b

Free Interface Modes The free interface modes are the vibration modes of the component without any
further constraints. They are defined by the system equations

Mq̈ + Kq = 0.

The eigenvalue problem which has to be solved is defined by

(K −Mω2
k)φk = 0 with k ∈ [1 . . . N]

where N is the number of modes considered in the reduction basis. The matrix of the free interface
modes is denoted by Φ f :

Φ f =
�
φ1,φ2 . . .φN

�

The eigenmodes can be computed using so-called subspace iterations. The Lanczos method is another
computationally more efficient technique of computing the eigenmodes. For details on the algorithms for
the computation of eigenmodes, the reader is referred to the textbook of [36].

Fixed Interface Modes Fixed interface modes are vibration modes which occur when the boundary
DOFs are fixed. They are computed by fixing the DOFs and solving the resulting eigenvalue problem. In
order to fix the boundary DOFs the corresponding coordinate vector q b is set to zero. Only the internal
DOFs stay relevant in the equations of motion:

M iiq̈ i + K iiq i = 0.

The associated eigenvalue problem is defined by

(K ii −M iiω
2
k)φk = 0 with k ∈ [1 . . . N]

where N is the number of modes considered in the reduction basis.

Φi =
�
φ1,φ2 . . .φN

�

The same eigensolvers as mentioned for the free interface modes can be used for the computation of
the fixed interface modes.
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Rigid-Body Modes Rigid-body modes are displacement shapes where the component does not un-
dergo any deformations. They occur if the component is not fully constrained. Because in substructuring
many constraints are only applied due to the substructure assembly, substructures often exhibit rigid
body modes. Rigid body modes are mathematically defined by Eq. (2.33).

Kφk = 0 (2.33)

The computation of the rigid-body modes can be performed by computing the nullspace of the stiffness
matrix, by computing the free interface modes with zero eigenfrequency or by geometric considerations.
The rigid-body modes are used in the filter algorithms of Sec. 2.4.

2.2.3 Model Reduction Methods

Modal-Truncation Perhaps the simplest method of model order reduction is the modal truncation
method. The reduction basis R is built up using free interface modes:

R =
�
φ1,φ2 . . .φN

�

According to [36], a rule of thumb can be applied for the selection of eigenmodes in the reduction basis:
The N can be selected such that frequencies up to double the frequency of interest are considered.
Usually, the eigenmodes are mass normalized such that

φT
i Mφ i = 1

holds. Since the eigenmodes are mass and stiffness orthogonal, the reduced mass matrix then becomes
the identity matrix.

M̃ = RT MR = I

The reduced stiffness matrix is a diagonal matrix containing the squared eigenfrequencies.

K̃ = RT KR =



ω2

1
. . .

ω2
N




If Rayleigh damping is applied, the reduced damping matrix is also decoupled according to

D̃ = RT DR =




2ζ1ω1
. . .

2ζNωN




where ζi is the damping ratio which can be experimentally identified. In real-time hybrid testing, the
use of modal truncation has been proposed by [14] to address stability problems and to improve the
computational effort for the time integration. The computational efficiency is essential due to the real-
time requirements. The stability in conditionally stable integration schemes—as the explicit Newmark
time integration method—depends on the highest frequency in the system. By applying the modal
truncation method to the model of the virtual component and by removing high-frequency modes, the
stability properties of a test setup can be improved significantly. Also, the accuracy is affected by the
selection of the modal basis: according to [14], the time step size has to be selected such that the
sampling frequency exceeds the highest mode in the system by factor 10. In order to ensure that
the accuracy requirements are met, the experimental component dynamics have to be included in this
consideration as well. In [97], a similar approach has already been proposed for pseudodynamic testing.
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An advantage is the decoupling of the equations of motion. It further reduces the computational efforts
for the solution of the system e.g. in time integration. The properties of the decoupled system can be
obtained experimentally. Using experimental modal analysis, modal parameters such as the damping
ratio can be identified directly. However, a reduction basis which makes use of pure modal truncation
does not account for the deformations caused by the coupling of the substructure. This problem is
addressed by substructure reduction methods such as the Craig-Bampton method.

Guyan’s Reduction Method Guyan’s reduction method which is also referred to as static condensa-
tion was proposed in [39]. In Guyan’s reduction method, only constraint modes are used. That means
that the inertia effects are neglected in the reduction basis. The reduction then reads

�
q b
q i

�
=

�
I
Ψ c

�
q b =

�
I

−K−1
ii K i b

�
q b.

The resulting reduced system matrices are

M̃ = M bb −M bi K
−1
ii K i b − K bi K

−1
ii M i b + K bi K

−1
ii M ii K

−1
ii K i b and

K̃ = K bb − K bi K
−1
ii K i b.

Since all DOFs are condensed on the boundary DOFs, the set of boundary coordinates corresponds to
the reduced set of coordinates:

q̃ = q b

The reduced external force vector and the reduced interface matrix become

f̃ = f b +Ψ
T
c f i and G̃ = Gb.

Guyan’s reduction method is exact for static problems, because only the inertia forces are neglected in
the derivation. The first eigenfrequency of the structure being clamped at the interface can serve as a
good reference for the quality of the reduction: The approximation is valid, if the excitation frequencies
are lower than the first eigenfrequency of the clamped structure.

Craig-Bampton Reduction Method The popular Craig-Bampton substructure reduction method was
proposed in [25]. In the Craig-Bampton reduction basis, fixed interface vibration modes Φi are used
additionally to the static modes Ψ c from Guyan’s reduction. The reduced coordinate vector reads

q = Rq̃ =

�
I 0
Ψ c Φi

��
q b
q̃ i

�
.

Note that the full set of interface coordinates q b is maintained. As a rule of thumb, N modes with
eigenfrequencies up to double the relevant frequencies are added to the reduction basis Φi . Applying
the reduction to the system matrix, the reduced system matrices are obtained according to Eq. (2.30).
The reduced mass matrix can be written as

M̃ =

�
M̃ bb M̃ bi
M̃ i b I

�

with M̃ bb = M bb −M bi K
−1
ii K i b − K bi K

−1
ii M i b + K bi K

−1
ii M ii K

−1
ii K i b

and M̃ i b = M̃
T
bi = Φ

T
i

�
M i b −M ii K

T
ii K i b

�
.
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The reduced stiffness matrix reads

K̃ =




K̃ bb
ω1

. . .
ωN




with K̃ bb = K bb − K bi K
−1
ii K i b.

The Craig-Bampton method is implemented in many finite element codes where the substructures are
used as superelements. This means in practice that the reduced system matrices for real-time hybrid
testing can be obtained directly from commercial software packages.

2.3 Time Integration

Initial value problems involving the dynamics of mechanical systems can be solved using time integra-
tion. Time integration schemes approximate the derivatives in an ordinary differential equation with finite
differences. Starting from the initial value, the solution can then be obtained by stepping over all time
steps and solving algebraic equations at each time step.
In order to perform a real-time hybrid test, it is an important step to compute the responses of the virtual
system to interface forces and external excitations. Since stability and accuracy issues highly depend
on the stepwise sequence of calculations, it is critical to have insight into the specific time integration
schemes. In this section, the most popular techniques in structural dynamics are described.
For general first-order ODEs, Runge-Kutta or linear multi-step time integration methods can be applied.
As described in Sec. 2.1.2, a second-order ordinary differential equation can always be transformed into
the first-order form. However, since space-discretization of mechanical systems usually directly results
in the form of second-order ordinary differential equations, this section focuses on methods for the solu-
tion of second order differential equations. A family of time integration methods was introduced in [70].
It allows describing several implicit and explicit time integration schemes. This family of methods is re-
ferred to as Newmark time integration methods and is widely used in the domain of structural dynamics.
The choice of the specific method depends on the application.
Many time integration schemes used in real-time hybrid testing are based on the Newmark time inte-
gration schemes (see [18]) or can be derived starting from a Newmark based scheme. In the following
section, Newmark-type time integration schemes and the implications of coupling forces during a hybrid
test are discussed. For simulation purposes, it is crucial to compute the responses of coupled systems.
In this context, the solution of constraint systems using the Newmark method and the so-called HHT-α
method are discussed.

2.3.1 The Newmark Method for Time Integration

The Newmark time integration schemes are popular in the field of structural dynamics since they are
directly applicable to second-order differential equations. The following section serves as a introduction
to the methods specific to real-time hybrid testing and is based on the discussions in [35]. The core idea
of the Newmark time integration is the approximation of system states q̇ and q at time step n+ 1. Note
that the superscript V IR is omitted in the following section for readability reasons. In order to perform
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the approximations, the states q̇[n+1] and q[n+1] are expressed using the Taylor series of Eq. (2.34).

q̇[n+ 1] = q̇[n] +

∫ t[n+1]

t[n]
q̈(τ)dτ

q[n+ 1] = q[n] +∆tq̇[n] +

∫ t[n+1]

t[n]
(t[n+ 1]−τ) q̈(τ)dτ

(2.34)

The next step is to approximate q̈(τ) at times τ ∈ [t[n], t[n+ 1]]. In order to do so, the second time
derivatives q̈[n] and q̈[n+1] at the limits of the interval are approximated using a Taylor series around
the time τ:

q̈[n] = q̈(τ) + q (3)(τ)(t[n]−τ) + q (4)(τ)
(t[n]−τ)

2
+ . . . (2.35)

q̈[n+ 1] = q̈(τ) + q (3)(τ)(t[n+ 1]−τ) + q (4)(τ)
(t[n+ 1]−τ)

2
+ . . . (2.36)

Multiplying Eq. (2.35) with 1− γ and Eq. (2.36) with γ and adding both yields Eq. (2.37), which allows
the interpolation between the contributions of q̈[n] and q̈[n + 1]. Equivalently, multiplying Eq. (2.35)
with 1− 2β and Eq. (2.36) with β and adding both yields Eq. (2.38).

q̈(τ) = (1− γ)q̈[n] + γq̈[n+ 1] + (τ−∆tγ− t[n])q (3)(τ) +O(∆t2q (4)) (2.37)

q̈(τ) = (1− 2β)q̈[n] + 2β q̈[n+ 1] + (τ− 2∆tβ − t[n])q (3)(τ) +O(∆t2q (4)) (2.38)

Substituting Eq. (2.37) and Eq. (2.38) in Eqs. (2.34) yields the Newmark approximation formulas:

q̇[n+ 1] = q̇[n] +∆t(1− γ)q̈[n]︸ ︷︷ ︸
q̇∗[n+1]

+∆tγq̈[n+ 1]

q[n+ 1] = q[n] +∆tq̇[n] +∆t2
�

1
2
− β

�
q̈[n]

︸ ︷︷ ︸
q∗[n+1]

+∆t2β q̈[n+ 1]
(2.39)

The terms in Eq. (2.39) depend on values from time step n. They can be seen as a prediction step and
are denoted as q∗[n+1] and q̇∗[n+1]. The prediction is then updated using the acceleration q̈[n+1]
from the new time step. The equations of motion of the virtual component are

Mq̈ + Dq̇ + Kq = GTλ+ f ex t .

Substituting the state vector and its time derivative with the Newmark approximations of Eq. (2.39) yields
the algebraic equation which can be solved for the acceleration q̈[n+ 1] :

Sq̈[n+ 1] =GT [n+ 1]λ[n+ 1] + f ex t[n+ 1]

− Dq̇∗[n+ 1]− Kq∗[n+ 1]

with S =M + γ∆tD + β∆t2K

(2.40)

β and γ are variables, which define the interpolation between contribution from the last time step n and
the new time step n+ 1. By choosing γ and β , the various Newmark based algorithms are generated.
Some important Newmark algorithms and their stability properties and accuracy are listed in Tab. 2.1.
The stability depends on the product of time step width∆t and the highest frequencyω in the model. A
detailed analysis of the properties of the algorithms can be found in [35].
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Algorithm γ β Stability
limit ω∆t

Amplitude
error ρ − 1

Periodicity
error ∆T/T

Purely explicit 0 0 0 ω2∆t2/4 0

Central difference 1/2 0 2 0 ω2∆t2/24

Average constant
acceleration

1/2 1/4 ∞ 0 ω2∆t2/2

Average constant
acceleration (modified)

1/2+α (1+α)2/4 ∞ 0 ω2∆t2/12

Table 2.1: Stability and accuracy properties of algorithms from the Newmark family (modified from [35])

2.3.2 Non-Linear Systems

Newmarks approach can also be applied to non-linear systems of the form of Eq. (2.41): The prediction
is performed as in the linear case but the algebraic equation has to be solved iteratively.

M(q)q̈ + f nl (q , q̇) = G(q)Tλ+ f ex t (2.41)

The prediction step—which is calculating the predicted states q∗[n+ 1] and q̇∗[n+ 1]—is performed
according to Eq. (2.39). The residual of the nonlinear dynamic equation at time step [n+1] is shown in
Eq. (2.42).

r k =M
�
q k

�
q̈ k + f nl

�
q k, q̇ k

�−G
�
q k

�T
λk + f ex t (2.42)

Note that the time step number [n+ 1] is dropped for readability reasons. In the following sections, the
Newton iteration step is indicated by the subscript k.
q̈ k+1 is expressed using the values from the last iteration step k and the acceleration update∆q̈ k. Using
the Newmark approximation formulas, q k+1 and q̇ k+1 can be formulated as a function of the values from
the last iteration step k and the acceleration update ∆q̈ k:

q̈ k+1 = q̈ k +∆q̈ k

q̇ k+1 = q̇ k + γ∆t∆q̈ k

q k+1 = q k + β∆t2∆q̈ k

(2.43)

The algebraic equation of the Newton-Ralphson method are obtained by setting the Taylor approximation
of the residual of the next iteration step r k+1 to zero:

r k+1 ≈ r k +
∂ r k

∂ q̈ k
∆q̈ k

!
= 0 (2.44)

Eq. (2.44) can be solved for ∆q̈ k using the Jacobian matrix Sk from Eq. (2.45)

∂ r k

∂ q̈ k
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q k
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∂M

�
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�
q̈ k

∂ q k
+
∂ f nl

�
q k, q̇ k

�

∂ q k
− ∂G

�
q k

�T
λk

∂ q k

!

+ γ∆t

 
∂ f nl

�
q k, q̇ k

�

∂ q̇ k
− ∂G

�
q k

�T
λk

∂ q̇ k

!
(2.45)

Using the updated states from Eq. (2.43), the iteration can be continued until the norm of the residual
has converged below the desired value.
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2.3.3 Time Integration and Real-Time Hybrid Testing

In real-time hybrid testing, information on the interface forces and the interface states are exchanged be-
tween virtual and experimental component. That means that the actuator commands rely on the results
from the time integration and the time integration is based on measurements of the interface forces. Due
to this reason, not all time integration schemes which are applied to numerical simulations are applicable
in real-time hybrid testing.
In general, one can distinguish between implicit and explicit time integration schemes. Implicit integra-
tion schemes can be unconditionally stable. This property is especially important if high frequencies are
present in the model (see Tab. 2.1). Explicit time integration schemes, on the other hand, have stability
boundaries. In the application to hybrid testing, however, the explicit time integration schemes have a
crucial advantage: In explicit time integration schemes, the state at time step n+1 depends only on the
state of the last time step n and its time derivatives. In contrast, the state at time step n+ 1 in the inte-
gration step of implicit time integration methods depends on the states from the current time step n+ 1.
The consequence is that non-linear dynamics have to be solved in an iterative process. This makes
q[n+ 1] much cheaper to compute in explicit schemes.
Several implicit and explicit time integration schemes have been adapted or developed for pseudo-
dynamic testing. Iterations are possible in pseudo-dynamic tests. Nevertheless, they are not desirable
since unwanted damages of the test specimen can be caused by overloading during the iterations. In
contrast to pseudo-dynamic testing, the choice of time integration methods in real-time hybrid testing
is restricted: Iterations—which are necessary to solve the non-linear dynamics in an implicit time inte-
gration scheme—are not possible in a real-time hybrid test since they would alter the dynamics of the
experimental component.
The following paragraphs give a short overview of the most common integration schemes in real-time
hybrid testing which are based on the Newmark family. A detailed evaluation of various time integration
methods has been performed in [96], [17] and [18].

Pure explicit The only pure explicit time integration scheme with the Newmark parameters β = 0
and γ= 0 is unstable under all conditions. Therefore, it is not used in practice.

Central difference method The central difference method originates from the Newmark family and
uses the parameters β = 0 and γ= 1/2. The method is not fully explicit, but the displacement command
at time step n+1 can be computed from its time derivatives from time step n. The method is conditionally
stable. The method has been used by [68], [45] and [28] in real-time hybrid tests.
The resulting time stepping laws in the linear case are given by Eqs. (2.46):

qV IR[n+ 1] = qV IR[n] +∆tq̇V IR[n] +∆t2 1
2

q̈V IR[n]

q̇V IR[n+ 1] = q̇V IR[n] +∆t(1− γ)q̈V IR[n]︸ ︷︷ ︸
q̇∗[n+1]

+
∆t
2

q̈V IR[n+ 1]

Sq̈V IR[n+ 1] =GV IRT
[n+ 1]λV IR[n+ 1] + f V IR

ex t [n+ 1]

− DV IRq̇∗[n+ 1]− K V IRqV IR,∗[n+ 1]

(2.46)

Iterations are necessary if the equations of motion are non-linear in q̇V IR. See the Jacobian matrix
from (2.53) in the non-linear case.
The task sequence of the explicit integration scheme is shown in Fig. 2.3: The displacement at time
step n+ 1 only depends on the accelerations from the last time step n. Since the accelerations at time
step n depend on the interface forces λ at time step n, only interface forces from the time step n are
employed to generate the actuator command for the time step n+ 1.
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t[n− 1] t[n] t[n+ 1]

yV IR[n− 1] yV IR[n]

λEX P [n]λEX P [n− 1]

y EX P [n− 1] y EX P [n]

qV IR[n]qV IR[n− 1] qV IR[n+ 1]

yV IR[n+ 1]

virtual component

experimental component

Figure 2.3: Task sequence in a real-time test when using an explicit time integration scheme.

In [68], a staggered integration method is used, which allows performing the time integration with the
time step width 2∆t and the control loop with the time step width ∆t (see [96] for a discussion).

Constant-Average-Acceleration Method The Newmark parameters β = 1/4 and γ = 1/2 yield the
unconditionally stable constant-average-acceleration method. The problem of the method in real-time
hybrid testing is that the interface forces λV IR[n + 1] as well as possible non-linear forces in the vir-
tual component depend on the system state qV IR[n+ 1]. This makes iterations necessary. However,
iterations which are performed on the experimental subcomponent oppose the objective of a real-time
hybrid test which is to apply dynamically accurate displacements at the interface to the experimental
component. The iteration laws for time step n+ 1 are given in Eq. (2.47):

q̈ k+1 =q̈ k +∆q̈ k

q̇ k+1 =q̇ k + γ∆t∆q̈ k

q k+1 =q k + β∆t2∆q̈ k
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�

∂ q̇ k
− ∂GV IR

�
qV IR

k

�T
λV IR

k

∂ q̇ k
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(2.47)

The procedure to apply an implicit time integration scheme to real-time hybrid testing is described in [96]
and a similar approach has been described by [13]: In order to circumvent the problems related to
the iterative process in the implicit time integration scheme, a sub-stepping approach is applied. The
approach is visualized in Fig. 2.4. The integration time steps with time step width ∆t are split into sub-
steps which correspond to the controller time step width. The idea is to perform one iteration step at one
sub-step k. The iteration is performed using the measured interface forces for calculating the residual
forces but using an approximation of the overall system dynamics to compute the approximated Jacobian
matrix Sapprox

k . In the approximated iteration step, Sapprox
k is used instead of Sk. The result from the

approximated iteration step is the trial interface displacement yV IR
k . The actuator command yd,V IR

k
is computed by quadratic interpolation using the trial interface displacement yV IR

k and the preceding
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Figure 2.4: Constant-average-acceleration method with sub-stepping

actuator command values.
In contrast, when using the feedforward based control laws of Chap. 5, the constant-average-acceleration
method can be applied without limitations. The time stepping laws in the case of linear equations of
motion are given in eq. (2.48):

qV IR[n+ 1] = qV IR[n] +∆tq̇V IR[n] +
∆t2

4
q̈V IR[n]

︸ ︷︷ ︸
q∗[n+1]

+
∆t2

4
q̈V IR[n+ 1]

q̇V IR[n+ 1] = q̇V IR[n] +
∆t
2

q̈V IR[n]
︸ ︷︷ ︸

q̇∗[n+1]

+
∆t
2

q̈V IR[n+ 1]

Sq̈V IR[n+ 1] =GV IRT
[n+ 1]λV IR[n+ 1] + f V IR

ex t [n+ 1]

− DV IRq̇V IR,∗[n+ 1]− K V IRqV IR,∗[n+ 1]

(2.48)

Fig. 2.5 shows the corresponding task sequence of the implicit time integration scheme. Note that the
case with the control time step width being equal to the integration time step width is considered. At
time step n + 1, the interface forces λV IR[n + 1] and the interface displacements y EX P[n + 1] are
measured. The measurement of the interface forces λV IR[n+ 1] has to be used to compute the state
vector of the virtual component qV IR[n+ 1]. However, λV IR[n+ 1] depends on y EX P[n+ 1], which
is not available when the actuator command is applied. Using adaptive feedforwad control, the interface
displacements yV IR[n] and y EX P[n] are used to compute the interface gap g [n]. The interface gap, in
turn, is used to compute the actuator input at time step n+ 1.
Since the objective of the adaptive feedforward filter is to close the interface gap at all time steps, it
does not deteriorate the performance of the algorithm to use the resulting interface gap g [n] from the
previous time step as an input to the adaptation law at time step n+ 1. The adaptation law adjusts the
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t[n− 1] t[n] t[n+ 1]

yV IR[n− 1] yV IR[n]

λEX P [n+ 1]λEX P [n]λEX P [n− 1]

y EX P [n− 1] y EX P [n] y EX P [n+ 1]

qV IR[n]qV IR[n− 1] qV IR[n+ 1]virtual component

experimental component

Figure 2.5: Task sequence in a real-time test when using an implicit time integration scheme.

actuator inputs such that the synchronization—at all time steps—improves iteratively from time step to
time step. The adaptive algorithm depends only on the interface states from previous time steps.
The interface forces λV IR[n+ 1] are assumed to be independent of the system state qV IR[n+ 1] for
the integrator. This makes the problematic iteration on the interface forces unnecessary. The adaptive
algorithm can be seen as a time-step-wise iteration on the interface forces.

2.3.4 Simulated tests

For the purpose of simulating hybrid tests it is important to compute the responses and the interface
forces of the system assembled from the actuation system and the experimental component. The prob-
lem is described by a differential algebraic equation (DAE). One possibility to solve DAEs is the applica-
tion of implicit Newmark time integration, which is described in the following section. For readability, the
uncoupled system matrices, the interface gap, the state vectors, and the forces are written in the form of
Eqs. (2.49):
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M EX P 0

0 MAC T

�
, G(q) =

�
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�
q EX P

�
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�
qAC T

��
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nl
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�

g (q) = GEX P
�
q EX P

�
q EX P +GAC T

�
qAC T

�
qAC T

(2.49)

The approach corresponds to the implicit time integration for non-linear systems as it is described
in Sec. 2.3.2. Again, the iteration step is indicated by the subscript k, and the step number [n + 1]
is omitted. The residual vector at time step n+ 1 reads

r eq,k = M
�
q k

�
q̈ k − f

�
q k, q̇ k

�−G
�
q k

�T
λk

r const,k = G(q k)q k.
(2.50)

The iteration updates at time step n+ 1 are

q̈ k+1 = q̈ k +∆q̈ k

q k+1 = q k + β∆t2∆q̈ k

q̇ k+1 = q̇ k + γ∆t∆q̈ k

λk+1 = λk +∆λk.

(2.51)
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The first-order Taylor approximations of the residuals at the next time step are

r eq,k+1 ≈ r eq,k + Sk∆q̈ k +G(q k)
T∆λk

r const,k+1 ≈ r const,k +G(q k)∆q k
(2.52)

using the Jacobian matrix
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(2.53)

The equations for the Newton-Raphson iterations are obtained by setting the residuals of the next iter-
ation step to zero: The corrections of the interface forces ∆λk and the corrections of the acceleration
vector ∆q̈ k can be computed by solving Eq. (2.54):

�
Sk G(q k)

T

G(q k) 0

��
∆q̈ k
∆λk

�
=

� −r eq,k
−r const,k/β∆t2

�
(2.54)

The states and interface forces are then corrected according to Eq. (2.51). The iterations can be re-
peated until the norms of the residuals fall below the desired values.

HHT-α Method for Coupled Systems

The constraints introduced by the coupling can cause an unstable behavior even for the unconditionally
stable implicit Newmark time integration schemes. The reason is that constraints are dynamic equations
which can add infinite resonance frequencies to the system. In order to solve the problem, [42] propose
a time integration scheme which is based on the Newmark time integration but introduces numerical
damping for the high frequencies. The Newmark approximation formulas are not changed, but the
residuals are evaluated by interpolation between two time steps using the parameter α:

r eq,k =Mq̈[n+ 1] + (1−α) � f (q[n+ 1], q̇[n+ 1]) +G(x [n+ 1])Tλ[n+ 1]
�

+α
�
f (q[n], q̇[n]) +G(x [n])Tλ[n]

�

r const,k =(1−α)g (x [n+ 1]) +αg (x [n])

(2.55)

The Newmark parameters are

γ=
1
2
+α and β =

1
4
(1+α)2 with α ∈

�
0,

1
3

�
. (2.56)

The method is unconditionally stable and the damping is constrained to higher frequencies.

2.4 Time Discrete Filters

As shown in Sec. 2.1, impulse responses can be used to describe the dynamics of a linear mechanical
system. The system responses can be computed using convolution integrals with impulse responses.
The use of impulse responses in off-line substructure coupling has been described in [37], [86] and [88].
The results of the research show that impulse responses are an especially efficient system represen-
tation when a broad spectral bandwidth is analyzed or the substructures exhibit high modal densities.
Broad spectral bandwidths occur e.g. in shock responses. High modal densities tend to occur in complex
systems. Impulse responses have been used in order to represent flexible bodies in multi-body systems
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as proposed by [36]. In the specific problem of real-time hybrid testing interface displacements of the
virtual component read

yV IR = HV IR
λ (t) ∗λV IR(t) +HV IR

ex t (t) ∗ f V IR
ex p (t) (2.57)

where two types of inputs are distinguished: HV IR
ex t (t) contains the impulse responses at the interface

to the external forces f V IR
ex t (t) ∈ RNex t and HV IR

λ
(t) contains the impulse responses to the interface

forces λV IR(t) ∈ RNλ . In the following section, the computation of impulse responses and their use in
real-time hybrid testing is described.

2.4.1 Computing Impulse Responses

Impulse responses can be computed using Newmark’s method as it is described in Sec. 2.3. The
discretized impulse responses at the interface are defined by

HV IR
ex t [n] = GV IR

�
qV IR

1,ex t[n] qV IR
2,ex t[n] . . . qV IR

Nex t ,ex t[n]
�

and

HV IR
λ [n] = GV IR

�
qV IR

1,λ [n] qV IR
2,λ [n] . . . qV IR

Nλ,λ[n]
� (2.58)

where qV IR
j,ex t[n] is the response of the full coordinate set to a Dirac impulse on the j-th entry of the

external forces vector f V IR
ex t at time step n. qV IR

j,λ [n] is the response of the full coordinate set to a Dirac

impulse on the j-th entry of the interface forces vector λV IR. The question of how to approximate the
Dirac impulses remains: a Dirac impulse in the continuous formulation is an impulse with infinitely short
time duration and an infinitely large amplitude. The integral over the impulse is one:

∫ ∞

−∞
δ(t)dt = 1 (2.59)

In the time discrete form the Dirac impulse has to be formulated in a time sampled form, but the force
integral has to remain one. [88] presents three approaches to approximating the Dirac impulse for the
computation of the impulse responses: an equivalent velocity step, a force impulse at the first time step
and a force impulse at the second time step. If the time step width goes against zero, all approaches
are equivalent. The three approximations will be described in the following paragraphs. After the initial
step—which contains the impulse—the time integration can proceed with Eqs. (2.39) and Eq. (2.40).
In the following equations, 1 j is a vector of zeros with a one at position j. The superscript VIR is omitted
for readability reasons.

Equivalent Velocity Step The idea is to apply a velocity step at the first time step based on the
momentum equation, which compares a point in time directly before t = 0 and a point in time directly
after t = 0. Since the time span is infinitely small, the contributions from stiffness and damping can be
neglected. The momentum equation reads

M
�
q̇(0+)− q̇(0−)

�
=

0+∫

0−

f ex t(t) +GTλ(t)dt. (2.60)

Because the velocity q̇(0−) before time t = 0 is zero, the initial states are

q[0] = 0

q̇[0] = M−11 j for H ex t and q̇[0] = M−1GT 1 j for Hλ

q̈[0] = −M−1Dq̇[0] (from the equations of motion)

f [n] = 0 ∀ n ∈ N

(2.61)
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Force Impulse at First Time Step The idea is to apply a force with unit integral at the first time step.
The discretized force profile is shown in Fig. 2.6. Since the integral of the force has to be equal to one,
the peak of the impulse has the amplitude 2

∆t . Correspondingly, the initial states are:

q[0] = 0

q̇[0] = 0

q̈[0] =
2
∆t

M−11 j for H ex t and q̈[0] =
2
∆t

M−1GT 1 j for Hλ

f [0] =
2
∆t

1 j for H ex t and f [0] =
2
∆t

GT 1 j for Hλ

f [n] = 0 ∀ n ∈ {N \ 0}

(2.62)

f

t
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Figure 2.6: Force impulse at time t = 0 (modified from [67])

Force Impulse at Second Time Step The factorizing of the mass matrix—as it is necessary in the
two above-mentioned methods—can be avoided by applying the force impulse at the second time step.
The corresponding discretized force profile is shown in Fig. 2.7. Since the integral of the force has to be
equal to one, the peak of the impulse has the amplitude 1

∆t . The initial states are:

q[0] = 0

q̇[0] = 0

q̈[0] = 0

f [1] =
1
∆t

1 j for H ex t and f [1] =
1
∆t

GT 1 j for Hλ

f [n] = 0 ∀ n ∈ {N \ 1}

(2.63)

Because the peak of the impulse is shifted to t = ∆t , the impulse response has to be shifted back by
one time step. Note that the impulse responses can also be retrieved directly from measurements as it is

f

t

∆t0 2∆t

1
∆t

Figure 2.7: Force impulse at time t =∆t (modified from [67])

proposed in [87]. In this case, the impulse responses are retrieved by applying a deconvolution process
on the measured impulse responses and the measured force. impulses.
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2.4.2 Finite Impulse Response Filters

Finite impulse response (FIR) filters are time discrete filters which are implemented without feedback
from their output. The filters are referred to as non-recursive. The output of an FIR-filter is the sum of a
finite number of filter coefficients multiplied with the input signal. For this reason, FIR-filters are inherently
stable. It makes them an appealing candidate for the simulation of the virtual component in real-time
hybrid testing: If the impulse responses—which can be used to describe the input/output behavior of
the virtual component—are truncated after a finite number of coefficients, the time-discrete convolution
products can be seen as FIR-filters. Recalling Sec. 2.1, the time-discretization of the convolution product
which describes the virtual component is

y[n] =
n−1∑
k=0

Hλ[n− k]λ[k]∆t +
n−1∑
k=0

H ex t[n− k] f ex t[k]∆t.

Since the convolution operation is commutative, the two sums can be rearranged such that the input and
the impulse response are exchanged. Using the definitions

b[k] :=
�
Hλ[k] H ex t[k]

�
∆t and u[k] :=

�
λ[k]T f ex t[k]

T
�T

, (2.64)

the sum can be split into two parts:

y[n] =
n∑

k=1

b[k]u[n− k] =
M∑

k=1

b[k]u[n− k]

︸ ︷︷ ︸
FIR-filter

+
n∑

k=M+1

b[k]u[n− k]

︸ ︷︷ ︸
approximation error

(2.65)

The first part is used as FIR-filter and the second part is the approximation error due to the truncation of
the impulse response. The M -th order FIR-filter is

y[n] =
M∑

k=1

b[k]u[n− k] (2.66)

The approximation is valid if the impulse response has disappeared at time sample M . This makes
an efficient implementation of the virtual component feasible. This type of filter is especially helpful in
real-time hybrid testing, because the output at time sample n depends only on the inputs from time
sample n− 1 and previous time samples.
Using the trapezoidal rule for approximation of the input signal, the discretization of the convolution
integral reads

y[n] =
n−1∑
k=0

Hλ[n− k](λ[k] +λ[k+ 1])
∆t
2

+
n−1∑
k=0

H ex t[n− k]( f ex t[k] + f ex t[k+ 1])
∆t
2

.

(2.67)

As shown in [94], it can easily be verified that the time discrete convolution integral can be rewritten as

y[n] =
n∑

k=1

b[k]u[n− k] +Hλ[n]λ[0]
∆t
2
+H ex t[n] f ex t[0]

∆t
2

(2.68)

=
M∑

k=1

b[k]u[n− k]

︸ ︷︷ ︸
FIR-filter

+
n∑

k=M+1

b[k]u[n− k] +Hλ[n]λ[0]
∆t
2
+H ex t[n] f ex t[0]

∆t
2

︸ ︷︷ ︸
approximation error

(2.69)
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using the definition

b[k] :=
�
Hλ[k] +Hλ[k+ 1] H ex t[k] +H ex t[k+ 1]

� ∆t
2

. (2.70)

The corresponding M -th order FIR-filter is

y[n] =
M∑

k=1

b[k]u[n− k]. (2.71)

The sum can be split into a predictor and a corrector: The major part of the convolution can be performed
using the input values which are available at time step n− 1. In the corrector step, the response at time
step n is computed with a single additional matrix multiplication. The predictor-corrector form reads

y∗[n] =
M∑

k=2

b[k]u[n− k] (2.72)

y[n] = y∗[n] + b[1]u[n− 1]. (2.73)

The predictor-corrector approach is helpful in time critical applications such as in real-time hybrid testing.
The number of multiplications in the convolution—and as a consequence the computational time— grows
linearly with the simulation time. Correspondingly, the memory usage by the input signals values and
filter coefficients grows linearly with the simulation time. As mentioned above, the convolution product
can be truncated at the point where the impulse response effectively has damped out (H[n]≈ 0 for n>
M ). For floating structures, the impulse response never disappears. In this case, the rigid body modes
have to be projected out, such that only flexible modes remain in the impulse response. This approach
is described in Sec. 2.4.3. According to [89], a sudden cut-off of the impulse response which is caused
by a truncation can generate perturbations of the output signal. The truncated impulse H∗[n] response
can be written as

H∗[n] = H[n] ·w∗[n]

where w∗[n] is a window function. The cut-off corresponds to a rectangular window of Eq. (2.74) as
shown in Fig. 2.8.

wrect[n] =

¨
1 for n≤ M

0 for n> M
(2.74)

[89] propose to use smoothing of the truncation. Two examples of smooth window functions—a cosine
window and a Hann window—are given in Eqs. (2.75) and (2.76).

wcos[n] =

¨
cos( πn

2M ) for n≤ M

0 for n> M
(2.75)

whann[n] =

¨
cos2( πn

2M ) for n≤ M

0 for n> M
(2.76)

Examples of the resulting truncated impulse responses are shown in Fig. 2.8.
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Figure 2.8: Windows for smoothening the impulse response truncation (modified from [19])

2.4.3 Rigid-Body Modes and Modes with Low Damping

Time integration of modal truncated or reduced complex systems with a high modal density can be less
efficient than the computation of impulse-response convolution integrals. However, impulse responses,
which do not decay or decay only slowly, can only be represented by a FIR-filter with infinite length or a
large number of coefficients. Even for simple systems with only few DOFs, the computational effort only
depends on the length of the impulse response. Since the high frequency content often damps out fast,
the length of the impulse responses is dominated by low frequency contributions. [94] proposed to split
the responses into contributions of rigid-body modes and slowly decaying modes, and into contribution
from higher frequency modes which decay faster. Using the definitions of the free interface modes
in Sec. 2.2.2 and their corresponding eigenfrequenciesωi , all modes can split in three groups according
to Eq. (2.77)

Φ f = [ΦR ΦX ΦV ] with





ΦR for ωi = 0

ΦX for 0<ωi <ωX

ΦV for ωi ≥ωX

, (2.77)

where ΦR contains the rigid body modes, ΦX contains the elastic modes with low eigenfrequencies,
ΦV contains modes with high eigenfrequencies and ωX is the frequency which separates the high fre-
quency modes from the low frequency modes. ωX can be chosen freely and a problem specific choice
is necessary. Using the above-mentioned definitions, the response q is split into the contribution l(t)
from the rigid body modes and low frequency modes on the one hand, and the contribution r (t) of the
high frequency modes on the other hand:

q(t) = ΦRα(t) +ΦX β(t)︸ ︷︷ ︸
l(t)

+ΦV γ(t)︸ ︷︷ ︸
r (t)

= l(t) + r (t) (2.78)

The objective of the approach is to filter out the contribution of the low frequency modes and the rigid
body modes l(t) and to compute the contribution of the high frequency modes r using convolutions.
To do so, the matrix Q is needed, which projects the response q on r . Q can be directly obtained
from the normalized version of ΦT

V , since all modes in Φ f are orthogonal. However, assuming a high
modal density, this would be computationally expensive for large systems. A more efficient strategy to
retrieve Q is to compute it indirectly using the orthogonal complement Q⊥ which projects q on l such
that

q = l + r = Q⊥ q + (I −Q⊥)︸ ︷︷ ︸
Q

q = Q⊥ q +Q q . (2.79)
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Using the definitions ζ =
�
αT β T�T

and L = [ΦR ΦX ], the M -orthogonality between ΦV —which
spans the space of r—, and the matrices ΦR and ΦX can be expressed according to Eq. (2.80):

LT Mr = LT M(q − Lζ) = 0 ⇔ LT MLζ= LT Mq ⇔ ζ= LT Mq (2.80)

Substitution of ζ in the definition of l(t) from Eq. (2.78) yields the orthogonal complement Q⊥

l = Lζ= LLT︸︷︷︸
Q⊥M

q

Hence, the projection matrix Q is defined by

Q = I − LLT M . (2.81)

The system response at the interface can be split into the contributions from the low frequency modes
and the high frequency modes in the same way:

y(t) = Gq(t) = Gl(t) +Gr (t) = y↓(t) + y↑(t) (2.82)

The high frequency contribution y↑(t) is obtained from the state vector by premultiplying the projection
matrix Q. y↑(t) can be equivalently computed using convolution integrals of the projected impulse
responses H↑ex t[n] and H↑

λ
[n].

y↑(t) = Gr (t) = GQq(t) = H↑
λ
(t) ∗λ(t) +H↑ex t(t) ∗ f ex p(t)

The projected impulse responses are obtained in the same way as the impulse responses in Eq. (2.58)
by multiplying the projection matrix Q with the state vectors.

H↑ex t[n] = GQ
�
q1,ex t[n] q2,ex t[n] . . . qNex t ,ex t[n]

�
and

H↑
λ
[n] = GQ

�
q1,λ[n] q2,λ[n] . . . qNλ,λ[n]

� (2.83)

The impulse responses H↑ex t[n] and H↑
λ
[n] can be used in the high frequency FIR-filters to com-

pute y↑(t). The low frequency contribution to the interface response is

y↓(t) = Gl(t)

The decoupled ODEs for the low frequency contribution are obtained by using the definition l = Lζ from
Eq. (2.78) and by premultiplying LT :

LT ML ζ̈+ LT CL ζ̇+ LT KLζ= LT
�

f ex t(t) +GT
bλ(t)

�
(2.84)

ζ[n] can then be obtained using a Newmark based time integration scheme as discussed in Sec. 2.3.
The overall interface displacement is finally calculated by superposition of the result of the time integra-
tion and the result of the FIR convolution according to Eq. (2.82).

2.4.4 Infinite Impulse Response Filters

Oscillations of the low frequency and rigid-body modes—which are described in the previous section—
damp out slowly. For this reason, they are not included in the FIR-filters, which represent finite impulse
responses. Impulse responses can be computed using a Newmark time integration scheme. It is possi-
ble to compute the contribution of the lower frequency modes directly from time discrete filters. This type
of filter is referred to as infinite impulse response (IIR) filters. IIR filters can be obtained by diagonalizing
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the system equations and discretizing the single DOF ODEs by using an analytic transformation. The
structure of the system equations (2.84) is given in Eq. (2.85),




ζ̈1

ζ̈2
...
ζ̈NL


+




2δ1
2δ2

. . .
2δNL







ζ̇1

ζ̇2
...
ζ̇NL


+




ω2
1
ω2

2
. . .

ω2
NL







ζ1
ζ2
...
ζNL


=




χ1
χ2
...
χNL




with χ =
�
χ1 χ2 . . . χNL

�
= LT

�
f ex t +GT

bλ
�T

(2.85)

where NL is the number of modes in the matrix L. The equations of motion are uncoupled because of
the diagonal form. The Laplace transform of a single line of the equations yields the transfer function
between input force and modal displacements:

Hi(s) =
1

s2 + 2δis+ω2
i

für i ∈ [1, . . . , NL]. (2.86)

This decoupled equations can now be transformed to th IIR-filters separately. In the signal processing
literature, various techniques for the transformation of the continuous transfer function into a IIR-filter
exist. They are summarized e.g. in the textbook of [81]. In this work, the impulse-invariance technique
is applied, where the transformation is performed in three steps:

1. Transformation of the Laplace-domain transfer function into time-domain impulse response using
analytic expressions

hi(t) = L−1{Hi(s)} (2.87)

2. Discretization of the impulse response with the sampling period ∆t

hi[n] = hi(t = n∆t) (2.88)

3. z-Transform of the time-discrete impulse response

hi(z) = Z {hi[n]} (2.89)

The transformation yields different results for the four different modal parameter configurations: Rigid
body mode with ωi = 0 yield the transfer functions listed in Appendix A.1; underdamped modes with
ωi > 0 and δi

ωi
< 1 yield the transfer functions listed in Appendix A.2; critically damped modes

with ωi > 0 and δi
ωi
= 1 yield the transfer functions listed in Appendix A.3; and overdamped modes

with ωi > 0 and δi
ωi
> 1 yield the transfer functions listed in Appendix A.4. The resulting transfer

functions take the form

hi(z) =
b1z−1

1+ a1z−1 + a2z−2
.

The coefficients a1, a2 and b1 are given in Appendix A.5. The corresponding time stepping formula is

ζi[n+ 1] = b1ζi[n] + fi[n+ 1] + a1 fi[n] + a2 fi[n− 1]. (2.90)

The time step formula allows to compute the responses of the modal coordinates. The response at the
interface is obtained from projection

y[n+ 1] = GLζ[n+ 1]. (2.91)
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multiplications additions divisions

Newmark O(N2) O(N2) O(N)

IIR-Filter O(4NL) O(3NL) -

FIR-Filter O(M) O(M) -

Table 2.2: Orders of computational operations in one time step.

FIR/IIR Newmark HHT-alpha

sampling time ∆t 0, 5ms 0, 5ms 0,5 ms

size of full coordinate set N – 8066 8066

number of low frequency modes NL 11 – –

number of FIR coefficients M 58 – –

Table 2.3: Configuration for the different algorithms in Fig. 2.9(modified from [67])

2.4.5 Real-Time Capability

In the previous section, various algorithms for time-stepping were presented. If the computations—which
are necessary to retrieve the response at the following time step—can be executed within one-time step,
a time stepping algorithm is referred to as real-time capable. A theoretical prediction of the real-time
capability is a complex task since it depends on many factors like the architecture of the target system or
the compiler. However, the choice of the algorithm and its specific number of computational operations
has a large impact on the total computation time. Tab. 2.2 gives an overview on computational effort of
three time stepping algorithms.
The order of the number of operations performed by Newmark algorithms depends on the size N of the

coordinate sets. The number of computational operations performed by IIR filters mainly depends on the
number of modes NL which are included in the filter. In contrast, the order of the number of computational
operations performed by an FIR-filter in one time step depends on the number of filter coefficients M .
The truncation of the convolution product defines the number of filter coefficients. Since the low damping
rates limit the truncation, damping indirectly affects the computational complexity of FIR-filters whereas
Newmark algorithms and IIR filters are unaffected. The modal density, in turn, affects the computational
effort for time integration of reduced order systems, whereas FIR-filters are unaffected by the modal
density. Note that the structure of FIR-filters also allows for parallelization, which can positively influence
the computational effort.
A 8066-DOF finite element model of an aluminum plate with three input channels and three output
channels serves as a demonstration example: The average computation times for one time step are
given in Fig. 2.9. An overview of the configuration for the different algorithms is given in Tab. 2.3.
Five elastic modes and six rigid-body modes were included in the IIR filter. The computations were
performed running in Matlab interpreter mode. The FIR/IIR program was compiled in order to indicate the
performance of the compiled filters. The resulting time domain plot for the displacement of one reference
point is given in Fig. 2.10. All average computation times in Fig. 2.9 are based on 100 simulation runs.
The results show the potential performance gain by the FIR/IIR approach. Note, however, that the
evaluation performance of the different approaches is difficult. It is highly dependent on problem size
and damping properties. Reduced order models can improve the performance of the time integration
approach significantly—if slight errors are acceptable. Hence, the example is not representative of all
problems.



2.4 Time Discrete Filters 41

0 1 2 3 4 5 6 7
·10−2

FIR/IIR - compiled

FIR/IIR

Newmark

HHT-α

6.1 · 10−6

6.6 · 10−4

5.7 · 10−2

6 · 10−2

execution time / s

Figure 2.9: Average computation times for one time step using an example system (data from [67]). The black
bars indicate the 95%-confidence intervals. ( Newmark: β = 0.25 γ= 0.5 HHT-α: α= 0.3 β = 0.42 γ= 0.8)
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Chapter 3

Actuation Systems

Parts of this chapter have been published in [5] and submitted for publication in [7].

It is inherent to any real-time hybrid test to couple virtual and experimental subcomponents. In Chap. 2,
the implementation of the virtual component and simulation models was discussed. This chapter dis-
cusses the link between the physical part of the test and the computer system, which runs the virtual
component. In general, actuators apply forces or displacements on the experimental component and
sensors are used to measure interface displacements and reaction forces. The overall system which
consists of sensors and actuators is referred to as the actuation system in this thesis. The super-
script AC T is used to label variables belonging to actuation systems. In literature, actuation systems are
sometimes referred to as transfer systems.
Actuation systems are an essential part of real-time hybrid tests because their dynamics severely influ-
ence stability and accuracy. Hence, the kinematics and dynamics of the actuation system have to be
understood in order to be able to analyze the coupling of the experimental and the virtual component.
In Sec. 3.1, two examples of actuation systems and their dynamics are studied. Sec. 3.2 discusses the
estimation of interface forces and states for applications where direct measurements are not possible.

3.1 Actuator Dynamics

The design of the actuation system is highly dependent on the application. A wide range of physical
effects can be made use of to apply forces, to measure displacements and to measure forces. Actuator
types include hydraulic actuators, voice coil actuators, piezoelectric actuators, and others. In this section,
two examples of actuator systems are given. The objective is to give an idea on how different actuator
types are integrated into the framework which is presented in this thesis, and to describe the models
which are used in Sec. 3.2, Chap. 4 and Chap. 5. The methods for this section were analyzed in the
student theses by [43] and [105].

3.1.1 Example: Voice Coil Actuators

Voice-coil actuators are linear motors which are frequently used for force-excitation in modal testing.
Their working principle is based on the Lorentz forces which act on current-carrying wires in magnetic
fields. When used with the purpose of parameter identification or testing, they are often referred to as
modal shakers or electro-dynamic shakers. Other applications of shakers in testing include durability
tests and life cycle tests. Their properties make voice-coil actuators suitable for the use in vibration
testing applications of real-time hybrid testing: Voice-coil actuators have a linear transfer behavior, they

43
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rubber bearings
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Figure 3.1: Scheme of a voice coil actuator (adapted from [59])
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Figure 3.2: Model structure of a voice coil actuator (adapted from [59])

can be used in a reasonably wide frequency band, and their stroke length is high compared to piezo-
electric actuators. Because they are made use of for experimental studies in this work, a simple shaker
model is described in this chapter.
Voice coil actuators can be used to actuate more than one DOF if they are part of a multi-DOF actuation
system. Actuation systems for real-time hybrid testing consist of the actuators and a kinematic chain,
which enables to act on all required DOFs. Besides the dynamics of an electro-dynamic shaker—which
is described in the first part of the section—a three DOF parallel mechanism for the actuation of a beam
is described in the second part of the section.

Electro-Mechanical Model of Voice Coil Actuators A scheme of an electro-dynamic shaker is given
in Fig. 3.1: The body of the shaker consists of an outer and an inner pole piece. The core of the design
is a magnet. The soft iron body focuses the magnetic field in the gap between the pole pieces. The
coil moves in this gap. It is supported by leaf springs which allow linear motion. The load is mounted
on the table which, in turn, is mounted on the coil and the flexures. Elastic rubber bearings serve as
isolation mounts. Voice-coil actuators are electro-mechanical systems, since the mechanical and the
electro-dynamic domain are relevant when modeling them. Such models have been described in a wide
range of publications, e.g. [63], [59] and [83]. [63] describes modeling approaches with three degrees
of freedom for control applications. [59] discusses the performance of shakers and uses a model with
four degrees of freedom. [83] uses shaker models to simulate vibration tests. In the following section,
the model structure of [59]—with three mechanical DOF and one electrical DOF—is used and further
simplified. A visual representation of this model structure is shown in Fig. 3.2. The ODE, which results
from Kirchhoff’s voltage law and the circuit diagram, is

RC · iC + LC

diC
dt
+ k f ( ẋC − ẋB) = uin, (3.1)
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where the coil resistance is denoted by RC , the coil inductance is denoted by LC , the current is denoted
by i and the input voltage is denoted by uin. The force constant k f = B · l is the product of the magnetic
flux density B and the length l of the coil wire in the magnetic field. The mechanical system can be
modeled using lumped masses as shown in Fig. 3.2. The dynamics of the lumped mass system are
given in Eq. (3.2):




mC 0 0
0 mT 0
0 0 mB






ẍC
ẍT
ẍB
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+




dC −dC 0
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+
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xT
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

k f iC
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−k f iC


+




0
fb
0




(3.2)

Here m∗ are the lumped masses, d∗ the damping constants and k∗ the spring constants. The sub-
scripts C , T , and B denote the coil, the table, and the body. xT is the position of the table, xC is the
position of the coil, and xB is the position of the body. k f · iC is the Lorentz force which is caused by the
current in the coil, and the magnetic field. fb are the boundary forces which act on the load table. Usually,
in a real-time hybrid test, a force sensor is mounted on the table in order to measure the forces which
are applied on the specimen. Electric circuit and mechanical system are coupled over the electromotive
force and the Lorentz force. Note that the electrodynamic equation is obsolete if the system is under
current control because the current is assumed to be imposed in this case. The necessary amplifier
circuit is described by [83].
The term k f ( ẋC − ẋB) is referred to as the electromotive force. It is the voltage which is induced by
the moving coil in the magnetic field. The electric circuit introduces damping through the electromo-
tive forces. The effect can be observed in Fig. 3.3, where the transfer function—between current and
acceleration—of the current controlled system shows an undamped resonance. In contrast, the transfer
function—between voltage and acceleration—of the voltage controlled system exhibits a damped reso-
nance.
As described by [59], the system with three degrees of freedom exhibits three characteristic modes for
typical shaker designs: In the first mode, all masses of the shaker move relative to the environment. The
elasticity of the rubber mounts enables this mode. The mode can be seen as a small dent in the transfer
function. In the second mode, the load table and the coil move against the body of the shaker and in the
third mode, the coil moves against the load table. Note that the third mode is outside the operation range
since its activation can lead to damages in the coil-table assembly. The frequency of the first mode is
below the operational frequency band.
Because the first and third mode are not relevant under operational conditions, the mechanical part of
the model can be reduced to a one DOF system by neglecting the elasticity of the rubber mounts and
the coil. The resulting system is given in Eq. (3.3):

�
mT +mC 0

0 0

��
ẍC
0

�
+

�
dS 0
k f LC

��
ẋC

diC/dt

�
+

�
kS −k f
0 RC

��
xC
iC

�
=

�
fb

uin

�
(3.3)

If current control is applied, the circuit equation can be omitted, and the remaining equation of motion is

(mT +mC) ẍC + dS ẋC + kS xC = k f · iC + fb (3.4)

The differences between the mechanical model with one DOF and the mechanical model with three
DOFs can be observed in Fig. 3.3. It can be seen that the one DOF models are accurate up to the third
resonance frequency which includes the entire operational frequency range.
Fig. 3.4 shows an identified one DOF model and the result of a measurement for a modal shaker (type
Tira S50018).
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Figure 3.3: Transfer functions of an exemplary electro-dynamic shaker model
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force sensor 3

force sensor 2
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transmission simulator

Figure 3.5: Assembly of actuation system and experimental component used in the numerical study.

Actuation System Dynamics In this work, the mechanism which allows the actuation of more than
one DOF is referred to as the actuation system. In order to actuate a system with a three DOF interface,
a system with a parallel kinematic is applied because the size and weight of the shakers make the use
a serial kinematic mechanism unfeasible. A simplified model of an actuation system—which is used as
an example in Sec. 3.2—is introduced. The test rig assembly consists of a flexible beam—which serves
as the experimental component—and the actuation system. A schematic visualization of the system is
shown in Fig. 3.5.
The actuation system is a rigid platform which is controlled with three actuators. Referring to the dy-
namic substructuring literature [2], this component is called transmission simulator in this thesis. The
purpose of the transmission simulator is to replicate the properties of the real interface realistically. One
can easily verify that the stiffness of the test specimen is significantly affected by the size of the inter-
face. Additionally, the replication of interface friction effects can be improved by the use of a suitable
transmission simulator.
In order to couple the electro-dynamic shakers to the rigid platform, so-called stingers can be used.
Stingers are usually assembled by using compliant wires. The objective of their use is to apply pure
translational forces on the structure. Since buckling has to be prevented, a minimum diameter of the
stingers is necessary. As a consequence, rotational stiffness is imposed on the actuation system. The
stingers are modeled as bars with attached rotational spring-damper elements (spring constant kα,
damping constant dα). Note that in this chapter, the focus is on the modeling of the actuation system
and the estimation of the interface states and forces. The objective of the approach presented in Sec. 3.2
is to estimate the interface forces, such that the beam can be coupled in a real-time hybrid test to a virtual
component. The virtual component and the coupling techniques are not further discussed in this section.
The reader is referred to Chap. 4 and Chap. 5 for a discussion of coupling techniques and experimental
results. The linearized dynamics of the actuation system are given by Eq. (3.5).
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where qAC T =
�
xC yC α

�T
are the generalized coordinates of the actuation system, xC is the

horizontal displacement of the center of gravity, yC is the vertical displacement of the center of gravity
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and α is the rotation angle of the body. The geometric parameters as well as a free body diagram of
interface and reaction forces are given in Fig. 3.6. The linearized position vectors of the force application
points (r A1, r A2 and r A3), displacement sensors (r S1, r S2 and r S3), and acceleration sensors (r S4
and r S5) are given in Eqs. (3.6).
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The coupling between experimental component and virtual component is performed using the interface
forces which are not directly measured by the force sensors. The computation of the actual interface
forces by using a system model and the measurements is analyzed in Sec. 3.2.
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Figure 3.6: Actuation System used in the numerical study

Control In order to couple virtual and experimental substructure, it is necessary for the actuation sys-
tem to follow demanded position- or force-trajectories. Those trajectories are prescribed time-step by
time-step by an interface synchronization control algorithm based on the output from the virtual compo-
nent. The interface synchronization algorithms are discussed in Chap. 4 and Chap. 5. The control loop
which directly controls the actuators or the actuation system is usually referred to as inner loop control
in literature. Mostly position control is made use of in the inner loop because this controller type is avail-
able commercially for many actuators. Fewer interface synchronization strategies work by prescribing
the interface forces.
Linear-Quadratic-Regulators combine state feedback control with state observers (see e.g. the text-
book [34]). They are especially suitable to control multiple-input/multiple-output systems. Fig. 3.7 shows
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Figure 3.7: Block diagram of a Linear-Quadratic-Regulator applied to real-time hybrid testing
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Figure 3.8: Example of LQR control of an actuation system for the position demands yC ,d and αd

the structure of a Linear-Quadratic-Regulator with a state observer. The demand signal y EX P
d serves as

an input to a feedforward controller. The states z of the system are estimated using a state observer
(estimated states ẑ). The state observer can be designed as a Kalman filter. Fig. 3.8 shows an exem-
plary simulation of a transfer behavior of the controlled actuation system using the system parameters
from Appendix B and the actuation system design is shown in Fig. 3.6. The controller lets the system
follow the prescribed position demand in the low-frequency range. Moreover, both input/output rela-
tions are decoupled in the low-frequency range, which means that an input channel only acts on the
corresponding output.

3.1.2 Example: Stewart Platforms

The following example is intended to show the integration of a parallel robot into the real-time hybrid
testing framework. The use of parallel robots may be necessary in order to simulate large amplitudes
and multiple DOF interfaces. Hexapods or Stewart platforms are parallel robots which can position a
rigid platform in all six DOF. The principle of a parallel robot with six DOF has been introduced by [38]
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Figure 3.9: A Stewart platform: Test rig and visualization of simulation model with coordinate systems (modified
from [105])

for the application of tire testing. Stewart platforms are named after the author of the publication [100],
where a similar mechanism is presented for the application in flight simulators.
Compared to conventional serial robots, Stewart platforms have the advantage of an increased stiff-
ness [66]. Since the actuators are not arranged in a serial kinematic chain but in a parallel structure,
they undergo smaller accelerations, and the inertia effects of moving actuators are reduced. Those
properties make them a suitable choice for real-time hybrid testing. An application of Stewart platforms
in real-time hybrid testing of prosthetic feet has been presented in [48].
An example of a Stewart platform is shown in Fig. 3.9. The six legs are arranged in a parallel topology.
The legs are mounted on the base platform and on the upper platform using Cardan joints. The object,
which is manipulated by the robot, is mounted at the so-called tool center point. More specifically, in
the case of real-time hybrid testing, a force sensor and the experimental component are mounted at the
tool center point. The length of each of the six legs can be controlled via leadscrews and servo motors.
Instead of servo motors and leadscrews, one can make use of other types of linear actuators such as
hydraulic cylinders.
The basic structure of an actuator based control scheme which can be applied in real-time hybrid test-
ing is shown in Fig. 3.10. Due to friction effects in the transmission system and in the joints, force
control of a Stewart platform on the actuator level is usually not feasible. Using position control, the de-
sired workspace position and orientation y EX P

d —which corresponds to the interface in real-time hybrid
testing—serves as an input to the control system of the Stewart platform. The corresponding actuator
positions—which are the leg lengths—are computed using the inverse kinematics of the system. A con-
ventional control law on the single actuator level helps to follow the demanded actuator position. The
platform is subject to inertia effects and friction in leadscrews and Cardan joints. More sophisticated
control laws consider those effects. Note that the Stewart platform is coupled with the experimental
component which can influence the dynamics of the system. However, due to the high transmission ratio
the influence of inertia and friction on the transfer behavior can be neglected in many cases. Note that
friction has indeed an influence on the actuator forces which is discussed below.
The direct kinematics of a robot describe the relation between a given actuator position and the workspace
coordinates. For serial robots, this can be computed directly from a closed-form equation. For parallel
robots, the direct kinematics have to be solved numerically. The inverse kinematics, in turn, describe
the actuator positions based on a given workspace position and orientation. For the Stewart platform,
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Figure 3.10: Control structure of a Stewart platform in real-time hybrid testing.

a closed-form solution exists. In real-time hybrid testing, workspace position and orientation are given
as a demand signal, since they correspond to the interface coordinates yAC T . There are several ways
to describe the spatial orientation of an object. The orientation of the interface can—for example—be
described using Cardan angles. The vector of the generalized coordinates of the system reads

q = yAC T =
�
x y z α β γ

�T
, (3.7)

In order to compute the actuator positions, a vector chain—as it is described in [85]—is applied. Fig. 3.11
shows the topology of the vector chain which includes the position of the tool center point and the
actuated leg. The vector chain can be expressed with the equation

I bi = I t + IQT · T o i − I ai . (3.8)

where I bi is the vector along leg i ∈ (1 . . . 6) and between the two joints, T o i is the vector from the tool
center point to the upper joint of leg i, I ai is the vector from origin of the inertial coordinate system to the
lower joint of leg i, and the vector I t represents the position of the tool center point with respect to the ori-
gin of the inertial coordinate system. All vectors are represented either in the inertial coordinate system I
or in the coordinate system P which is fixed to the upper platform. The rotation matrix IQP describes
the transformation of vector representations from the P-coordinate-system into the I -coordinate-system.
The rotation matrix IQP(α,β ,γ) = Qz(γ) ·Q y(β) ·Qx(α)—which uses Cardan angles—is composed
of a chain of three elementary rotations. Namely, the elemental rotations are Qx(α) with the angle α
around the x -axis, Q y(β) with the angle β around the y-axis and Qz(γ) with the angle γ around the z-
axis. Equivalently, the rotation matrix IQP can be constructed e.g. from Euler angles or quaternions.
The leg lengths—which serve as actuator inputs—are computed from the leg vector I bi :

bi =
Ç

I b
T
i · I bi . (3.9)

The dynamics of the platform can be described in the form of Eq. (2.3). The dynamics of the specific
Stewart platform, which is shown in Fig. 3.9, have been discussed in [85], [84] and [105]. Fig. 3.12
shows the exemplary responses to steps in different workspace coordinates which are retrieved from a
simulation. Due to the actuator dynamics and the velocity constraints, the responses exhibit significant
time lags which have to be considered in the design of a real-time hybrid test. The velocity constraints are
implemented for safety reasons in order to keep the actuator workspace restrictions. Fig. 3.13 shows the
actuator forces resulting from a sinusoidal input signal. Friction effects cause the jumps in the actuator
forces. The friction parameters are subject to changes due to temperature conditions and wear [85].
Since those effects are hard to predict, it makes sense to measure the interface forces directly at the
interface rather than computing them from a model of the actuation system.



52 3 Actuation Systems

x I

zI

xP

zP

t

o i

ai

bi

tool center point

leg i

base platform

force sensor

experimental component

upper platform
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3.2 Estimation of Interface Force and States

In many applications, forces, moments and displacements or rotations cannot be measured directly at
the interface. The reason can be the use of a transmission simulator. Here, the force sensors are not
directly mounted at the interface but rather between actuators and transmission simulators. This type
of assembly is shown in Fig. 3.5. In such cases, the quantities used by the coupling controller can be
calculated from a model of the actuation system. Parts of the actuation system need a stiff design for
the application of forces and moments at the interface. One cannot avoid the fact that improved stiff-
ness properties go hand in hand with increased mass and inertia. Additionally, there may be stiffness
and damping effects coming from the attachment of the actuators to the experimental component. An
element used for the attachment—such as a stinger—can bring in forces or moments that cannot be
measured by one-DOF force sensors. The bending of the stinger causes unmeasurable moments.
The following section describes procedures to compensate for the dynamic effects of the actuation sys-
tem and to calculate interface quantities which are necessary for the coupling. Fig. 3.14 shows the block
diagram of an actuation system with transmission simulator and force estimation. The Eqs. (3.10) repre-
sent the corresponding dynamics of the experimental component and the actuation system.

M EX P q̈ EX P + DEX P q̇ EX P + K EX Pq EX P = f EX P
ex t +GEX PT

λEX P

M TSq̈ TS + DTSq̇ TS + K TSq TS = BTS
A f TS

A +GTST
λEX P

(3.10)

Here, the actuator forces f TS
A are assumed to be measured during the test. The matrix GTS relates the

state vector of the transmission simulator to the interface displacements.



54 3 Actuation Systems

3.2.1 Interface States: Projected Displacements and Accelerations

The compatibility between the two subsystems is given by Eq. (2.6). In order to obtain the contribu-
tion y EX P of the experimental component, it is necessary to measure the interface displacements di-
rectly or calculate them by time integration of acceleration signals. y EX P is related to the state vector of
the transmission simulator q TS by the equation

y EX P = GTSq TS (3.11)

using the output matrix GTS . The second-order time derivatives q̈ TS of the transmission simulator states
are required for the compensation of the transmission simulator’s inertia effects. They can be calculated
from acceleration measurements. Eqs. (3.12) define the relation between sensor outputs and states:

y TS
Sd =




y TS
Sd,1

y TS
Sd,2
. . .


= CSdq TS y TS

Sa =




y TS
Sa,1

y TS
Sa,2
. . .


= CSaq̈ TS (3.12)

Accordingly, C TS
Sd is the sensor output matrix for displacements, C TS

Sa is the sensor output matrix for accel-
erations, y TS

Sd is the vector of the displacement sensor outputs and y TS
Sa is the vector of the acceleration

sensor outputs. The output matrices C TS
S∗ =

�
C TST

S∗1 C TST

S∗2 . . .
�T

are built up from submatrices rep-
resenting the single sensor channels. Solving the equations using the Moore-Penrose pseudo-inverse
yields the state vector q TS and its second-order time derivative q̈ TS :

q TS = C+Sd y TS
Sd and q̈ TS = C+Sa y TS

Sa

The required contribution to the compatibility equation, which is used for coupling virtual and experimen-
tal component, can be calculated using Eqs. (3.13):

GEX Pq EX P = GTSq TS = GTSC+Sd y TS
Sd

GEX P q̈ EX P = GTSq̈ TS = GTSC+Sa y TS
Sa

(3.13)

For rigid body interfaces, this approach is equivalent to the virtual point method described in [93].

3.2.2 Interface Forces: Projected Forces and Inverse Dynamics

Once the actuation system’s state vectors q TS , q̇ TS and q̈ TS are identified, they can be used to calculate
an estimate of the interface forces λEX P

est from the model. To do so, one can solve the actuator Eqs. (3.10)
for λEX P

est :

λEX P
est = GTST ,+

�
M TSq̈ TS + DTSq̇ TS + K TSq TS − BTS

A f TS
A

�
(3.14)

Here GTST ,+ is the Moore–Penrose inverse of GTST
. This approach is referred to as inverse dynamics

in the following numerical study. Neglecting all dynamics yields the pure kinematics of Eq. (3.15).

λEX P
est = −GTST ,+BTS

A f TS
A (3.15)

This approach is referred to as projected forces approach in the following numerical study. The approach
is equivalent to the calculation of the interface forces with the virtual point method in [93].
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3.2.3 Interface Forces and States: Augmented-State Kalman Filter

The Kalman Filter—proposed by [54]—is an approach taking into account measurement and model
uncertainties. It is based on a probabilistic prediction and update scheme. [22] proposes to apply Kalman
filters to real-time hybrid testing for removing sensor signal noise. Note, that the filter is used in this case
purely to smoothen the sensor signals. In contrast, in this section, the use of the Kalman filter is linked to
the estimation of unmeasured interface forces and states. The predictions in a Kalman filter use a state
space model as a basis, and the updates originate in measurements. Adding the interface force λEX P

as an additional state to a state space model of the transmission simulator yields the augmented-state
model




q̇ TS

q̈ TS

λ̇




︸ ︷︷ ︸
ẋ

=




0 I 0
−M TS−1

K TS −M TS−1
DTS M TS−1

GTST

0 0 0




︸ ︷︷ ︸
A



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λEX P




︸ ︷︷ ︸
x

+




0
BTS

A
0



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B

f TS
A (3.16)


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y TS
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. . .
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�
C d 0 0
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
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+


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0
C aBTS
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

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D

f TS
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(3.17)

The model based prediction step of the Kalman filter at time step k is defined by the well known Kalman-
filter Eqs. (3.18)

x̂k|k−1 = Akx̂k−1|k−1 +BkFA

Pk|k−1 = AkPk−1|k−1AT
k +Qk,

(3.18)

where Ak is the time discretization of the system matrix A, Bk is the time discretization of the input
matrix B, x̂k|k−1 is the predicted state vector, Pk|k−1 the estimated error covariance matrix and Qk is the
process noise covariance matrix. The update step is defined by Eqs. (3.19)

Kk = Pk|k−1CT
k (CkPk|k−1CT

k +Rk)
−1

x̂k|k = x̂k|k−1 +Kk(zk −Ckx̂k|k−1)

Pk|k = (I −KkCk)Pk|k−1,

(3.19)

where zk is the measurements vector, Rk is the measurement noise covariance matrix and Kk is the
Kalman gain.

3.2.4 Interface Modes

The above-mentioned theory allows to couple components with flexible interfaces. Generally, for a given
sensor configuration, only a finite number of states can be observed. To overcome this problem, a
reduced order model can be used. The full model of the actuation system, which can be retrieved e.g.
from Finite Elements, is given by Eq. (3.20).

M TSq̈ TS + DTSq̇ TS + K TSq TS = BTS
A f TS

A +GTST
λ (3.20)
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The reduced system is given by Eq. (3.21), where q̄ is the reduced coordinate vector and the matrices
of the reduced system are indicated by bars:

M̄ TS ¨̄q TS + D̄TS ˙̄q TS + K̄ TSq̄ TS = B̄TS
A f TS

A + ḠTST
λ (3.21)

The reduced matrices are retrieved using the reduction matrix T :

M̄ TS = T T M TS T , D̄TS = T T DTS T , K̄ TS = T T K TS T ,

B̄TS
f = T T BTS

f and ḠTS = T T

�
I
0

�

The reduction matrix T is retrieved e.g. according to Eq. (3.22) using the Craig-Bampton method with
the constraint modes matrix ΨTS and the truncated fixed interface modes matrix ΦTS . Because all states
have to be observable, it may be necessary to reduce the interface coordinates. Φb is the interface re-
duction matrix and projects the coordinates of the interface between virtual and experimental component
on the boundary coordinates q TS

b of the unreduced actuation system. The interface reduction matrix Φb
can be calculated using a model of the virtual component or a rough model of the overall coupled system.
See [26] and [75] for methods of choosing an interface reduction basis.

q TS =




q TS
b

q TS
i


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Φb 0

ΨTS ΦTS



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


q̄ TS
b

q̄ TS
i




︸ ︷︷ ︸
q̄ TS

(3.22)

Numerical Experiment The objective of the case study is to show the effects of measurement noise
on the estimation results. The different techniques were applied to the system consisting of a rigid
actuation system and a flexible beam, which is described in Sec. 3.1. The system parameters are
listed in Appendix B. In a first step, a simulation of the overall system, including beam and actuation
system, is carried out. The sensor signals are used as an input for the estimation techniques. The
resulting estimates are then compared to the reference signal obtained from the simulation. The following
approaches for force estimation described above are investigated:

• projected forces

• inverse dynamics

• augmented-state Kalman filter

In order to analyze the basic effects of sensor noise on the estimation techniques, a sinusoidal exci-
tation FA1 = Asin(2π · f · t) on actuator 1, with a constant excitation frequency f = 50 Hz and an
amplitude of A= 50 N, was applied to the system. The noise term pnoise,∗ was used to imitate experi-
mental sensor signals.

pnoise,∗ = cn∗rnoise

Here rnoise is a uniformly distributed random number between −1 and 1 and cn∗ is a coefficient specific
to the signal. The noise was added to the force (cnf = 0.5 N), displacement (cnd = 8 · 10−5 m),
and acceleration signals (cna = 0.1 m

s2 ). Fig. 3.15 shows the estimates of the vertical interface forces.
Both augmented-state Kalman filter and inverse dynamics follow the signal accurately. The high noise
level in this study affects the signal of the inverse dynamics so that it can be directly seen in the graph.
In contrast, the augmented-state Kalman filter smoothens the signals and ensures a more accurate
estimation. The projected forces cannot estimate the interface forces correctly as they do not include
information on the inertia of the transmission simulator. This fact can also be observed in Fig. 3.16,
which shows the estimation of the interface force FB,y for an excitation with actuator 1 in the frequency
domain. Three approaches for interface state estimation described above are investigated:
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• projected displacements

• projected and integrated accelerations

• augmented-state Kalman filter

For the integration of acceleration signals, the initial conditions ẏ TS
Sa = 0 and ÿ TS

Sa = 0 are used. Fig. 3.17
shows the estimates of the vertical interface displacements. The system is excited by a sinusoidal
force FA1 = Asin(2π · f · t) on actuator 1 with a constant excitation frequency f = 50 Hz and an
amplitude of A = 50 N. Noise was added to the force (cnf = 0.5), displacement (cnd = 8 · 10−5),
and acceleration signals (cna = 0.1). The noise in the acceleration signals and the unknown initial
conditions of the integration cause a drift of the estimations. The projected displacements approach
follows the reference signal, but the noise is fully passed to the estimated signal. The Kalman filter
approach initially causes deviations from the reference, which are decreasing over the simulation period.
The filter smoothens the signal without a significant phase lag. It is noteworthy that the quality of the
results obtained with the augmented-state Kalman filter for both force and displacement estimation is
dependent on the choice of the measurement covariance matrix and of the process covariance matrix. In
comparison to other approaches, this fact can cause an increased implementation effort for an estimation
based on an augmented-state Kalman filter.
In summary, the following observations can be made from numerical investigations:

• the augmented-state Kalman filter can smoothen the results without a significant phase lag

• model-based approaches (as inverse dynamics or Kalman filtering) are necessary as soon as the
transmission simulator’s inertia effects are not negligible

• the Kalman filter approach can be used as a consistent way of sensor data fusion



Chapter 4

Feedback Based Coupling

Parts of this chapter have been published in [6] and submitted for publication in [7].

In Chap. 3, it was shown that the actuation system exhibits phase lags, which are also introduced into
any real-time hybrid test. In the same way, communication processes and the computation of the re-
sponse of virtual components can introduce delays into the real-time hybrid test. The described delays
and time lags cannot be avoided in most cases. As a consequence, the stability and accuracy of the
tests are deteriorated.
In literature, the stability problems are addressed by different interface-synchronization methods. The
term interface synchronization refers to the equilibrium of interface forces and to the compatibility of in-
terface displacements which are necessary to mechanically couple two subcomponents. [45] proposes
an algorithm for compensating constant actuator delay, which uses polynomial forward prediction. [29]
and [109] discuss a delay estimation during the test, which allows the prediction algorithm to adapt to
the system dynamics, or in other words, to adapt to different delays at different frequencies. [108] makes
use of Minimal Control Synthesis, which is a model reference control strategy. The advantage of this ap-
proach is that, even with unknown actuator or test specimen dynamics, a stable synchronization control
can be achieved. [79] introduces a framework for the linear analysis of real-time hybrid testing systems,
referred to as Model-In-The-Loop testing. [102] denotes real-time hybrid testing as Dynamic Substruc-
ture Systems and suggests a framework which allows the use of numerous control strategies. In this
work, linear control, as well as Minimal Control Synthesis are applied. [101], [106] and [61] present work
within this framework. [101] propose a Model-Predictive Control strategy for the synchronization of the
virtual and the experimental component which makes use of models of the experimental component and
the virtual component. The approach allows actuator saturation and limits to be accounted for. Model-
Predictive Control is also applied by [80]. [61] makes use of neural networks as an adaptive feedforward
controller. To do so, the control problem is formulated as disturbance rejection, which extends the ex-
isting framework. [106] uses linear state space control to synchronize the interface. [73] addresses the
problem of testing a structure which consists of many equivalent components by updating a model of
one component during the test and then using this component model in the simulation of the virtual
subsystem.
This chapter gives an overview of coupling a virtual and an experimental component in the presence
of actuator dynamics. In Sec. 4.1, general control structures are described. Instability issues and
their causes are addressed in Sec. 4.2. Two of the methods mentioned above for synchronizing the
interfaces—while keeping the test stable and accurate—are characterized in Sec. 4.3 and Sec. 4.4. The
methods for this section were analyzed in the student theses by [111], [56], and [82].

59
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4.1 Coupling Formulation

The dynamic equations and constraints which define the coupled overall system are given in Sec. 2.1.
It is the objective of any real-time hybrid test to follow the dynamics of a coupled reference system. If
no actuator dynamics were present, a real-time hybrid test would have the structure shown in the block
diagram of Fig. 4.1 and it would exactly follow the emulated reference dynamics. The interface forces
and the interface displacements are exchanged between the two subcomponents. Both subcomponents
can be subject to external excitation forces f V IR

ex t and f EX P
ex t . In order to couple two components of a me-

virtual component

λEX P

experimental
component

f V IR
ex t

f EX P
ex t

yV IR

Figure 4.1: Block diagram of the coupled system

chanical system, two constraints have to be met: Coupling between virtual and experimental component
is achieved if the interface displacements of virtual and experimental component are compatible and if
the interface forces are in equilibrium. Both constraints are formulated in the compatibility constraint of
Eq. (2.7) and the equilibrium constraint of Eq. (2.9). The coupled dynamics of the reference system are
stable by definition. As mentioned above, a test performed with perfect actuators would yield precisely
the reference dynamics of Sec. 2.1 and, hence, would be stable. When analyzing the structure of real-
time hybrid testing control schemes, the use of displacement-controlled actuators and force-controlled
actuators have to be distinguished. Similar to the control schemes described in the paragraphs below,
frameworks for real-time hybrid testing have been proposed by [79] or [102].

Displacement-controlled actuators As mentioned in Chap. 3, commercial displacement controllers
are available for many actuators. In many cases, the application of force-controlled actuators is not fea-
sible due to friction effects. Fig. 4.2 shows a block diagram of a real-time hybrid test: The output yV IR

of the virtual component—which is the interface displacement of the virtual component—serves as de-
mand signal for the feedback controlled actuation system. The input u of the actuation system —which
can include an inner loop control—is generated by an arbitrary interface synchronization control law. The
control objective is that the interface displacements of the experimental component y EX P follows the vir-
tual component as exactly as possible in a wide frequency range. If the feedback controller is designed
with this control objective, the dynamics of the virtual component and the feedback loop—resulting from
the interconnection with the virtual component—are not considered. The equilibrium constraint is inher-
ently met during the test by applying the measured interface forces λEX P with opposite sign to the virtual
system:

λV IR = −λEX P

The framework also includes the possibility of using the external force signals as control inputs. This
is visualized in the block diagram of Fig. 4.2 by the connection of the external forces and the controller
block.
Another view on the control problem involved with a real-time hybrid test is given in Fig. 4.3: The parallel
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Figure 4.2: Control structure of a real-time hybrid test with displacement-controlled actuator

structure allows to consider the contribution of the virtual component in the controller design. The sys-
tem structure is equivalent to the structure shown in Fig. 4.2.
Since sensors are usually selected such that they exhibit a bandwidth which is an order of magnitude
wider than the actuators’ bandwidth (see [79]), the sensor dynamics are omitted in the following con-
siderations. However, as it can be seen in the block diagram of Fig. 4.2, the missing sensor dynamics
do not alter the structure of the overall control system, and all approaches are equivalently valid if the
sensor dynamics are considered. Because the external forces f EX P

ex t on the experimental component are
usually not known, they are omitted as an input to the controller in the restructured model without loss of
generality.
The open-loop state-space dynamics (see also Sec. 2.1) are given in Eq. (4.1),

ẋ =


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(4.1)

where x is the state vector of the overall system, and the state space models of the subcomponents are
used according to Sec. 2.1. The interface force vector λV IR in Eq. (2.10) is eliminated by applying the
actuation forces λV IR—an output of the actuation system—to the virtual component. In practice, apply-
ing the interface forces λEX P on the virtual component involves measuring the interface forces between
the actuator system and the experimental component. In the same way, the interface displacements
of the experimental component have to be measured. Actuator demand and external forces on both
subcomponents are defined as system inputs, and the interface gap g is defined as system output. The
interface gap g is the difference between the interface displacements of the virtual and the experimental
component.
The control objective is to close the interface gap g . The external forces can be seen as an external dis-
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Figure 4.3: General control structure: Interface equilibrium is enforced by imposing the measured interface forces
on the virtual component. A feedback controller reduces the interface gap g such that the system meets the
compatibility constraints.

turbance to the open-loop system. The problem of rejecting the responses due to the disturbances can
be addressed by applying a feedforward control law. In this way, the control structure of Fig. 4.3 is used
in Chap. 5 where an adaptive feedforward control law replaces or complement the feedback controller.

Force-controlled actuators The control structure of a real-time hybrid test which is based on force-
controlled actuators is given in Fig. 4.4. In this case, the measured displacements at the interface
of the experimental component y EX P are the input to the virtual component. The resulting interface
forces λV IR acting on the virtual component serve as a demand signal for the actuation system. In other
words, the controller shapes the actuator input such that the interface equilibrium constraint is met. The
corresponding open loop state-space system is

ẋ =


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Differences between the approach based on force-controlled actuators and the approach based on
displacement-controlled actuators are discussed in the following section (Sec. 4.2).

4.2 Stability and Accuracy Issues

Stability issues which occur when coupling two numerical structures can be handled by choosing an
appropriate time integration scheme. In contrast, real-time hybrid tests include inherent and unavoid-
able actuator dynamics and delays. Since during the tests forces and displacements are exchanged
between the subcomponents, a closed-loop is established, and the delays can deteriorate the stability
and accuracy of the tests. This relation between delay and stability is discussed in many control theory
textbooks as e.g [72]. In the following section, the causes of the instabilities in real-time hybrid tests
are analyzed. Approaches to assess the stability of real-time hybrid tests are discussed in the literature:
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Figure 4.4: Control structure of a real-time hybrid test with force-controlled actuator

In [58], the stability analysis is performed on a system with a one-DOF oscillator and a pendulum sys-
tem. [104] investigates the influence of the interface location on the stability properties of the coupled
system. In Chap. 1 of this thesis, the relationship between interaction control in robotics and real-time
hybrid testing has been mentioned. Stability analyses of simple lumped mass systems with the purpose
of estimating the properties of robotic interaction controllers are presented in [44] and [60].

4.2.1 Sources of delay and time lags

The following processes can cause time delays and time lags in real-time hybrid tests:

Actuator Dynamics The dynamics of the actuators cause frequency-dependent time lags. Those time
lags are discussed in detail in Chap. 3. Significant actuator dynamics occur in most real-time hybrid tests.
They are the dominant source of delays in many test setups.

Time Integration The computation of the virtual component is discussed in Chap. 2. The computation
process can introduce a constant time delay. Implicit time integration schemes inherently exhibit a time
delay of one integration time step.

Communication Communication processes between different components of the test can introduce
delays into the system. In [23], a test setup is described which makes use of network communication in
order to exchange information between the simulation model, the control system, the actuators, and the
sensors. Among others, the User Datagram Protocol (UDP) is applied. Such communication processes
are not deterministic by nature and can go hand in hand with time-varying delays.

Signal Processing Signal processing and data acquisition can add significant delays. An example is
given in [23], where computer vision is used to measure the system state of a floating wind turbine. The
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Figure 4.5: Investigated coupled system with special cases of mass ratios φ = mV IR/mEX P and stiffness ratios κ =
kV IR/kEX P

system allows measuring position and orientation of the wind turbine structure. It consists of several
cameras and markers which are attached to the structure. A computer system processes the camera
data and sends the information about the system state to the control system. Obviously, the result of this
process is a delay.

4.2.2 Effects of Delays

In the following section the influence of delay and other system parameters—as mass, damping and
stiffness—on the behavior of real-time hybrid tests is investigated. For this purpose, two linear, single-
DOF subcomponents are used. Fig. 4.5 shows the coupled system and some special cases of parameter
combinations. Those systems serve as a model which helps to understand the basic relations between
system parameters and stability properties. For most applications, those lumped-mass systems are
rough simplifications: The actuators, in general, exhibit more complex dynamics which means that they
have a frequency dependent transfer function. The same is true for the subcomponents which can be
systems with a high number of DOFs or which can be continuous flexible systems. All components may
exhibit a nonlinear behavior. The control system also may be more sophisticated in an application case.
Nevertheless, the analysis is helpful to get a rough estimate of the stability properties of a system in the
design phase of the test.

Non-Dimensional Form In order to be able to make general statements, the objective is to express
the system dynamics in a non-dimensional form. The equations of motion of the two lumped-mass
subcomponents from Fig. 4.5 read

mV IR ẍV IR + dV IR ẋV IR + kV IR xV IR =−λEX P + fex t (4.3)

mEX P ẍ EX P + dEX P ẋ EX P + kEX P x EX P =λEX P , (4.4)

where x∗ are the system coordinates, m∗ are masses, d∗ are the viscous damping constants, and
k∗ are the stiffness constants.The superscripts EX P and V IR denote the experimental and the virtual
component. λEX P is the interface force and fex t is the external force.



4.2 Stability and Accuracy Issues 65

-
+HV IR(s)

λEX P

experimental
component

fex tyV IR

HEX P−1
(s)

HAC T (s)

-
+HEX P (s)

λEX P

experimental
component

fex tyV IR

HV IR−1
(s)

HAC T (s)

displacement control force control

Figure 4.6: System with delay used for stability analysis

The corresponding Laplace domain transfer functions between forces and displacements are

HV IR(s) =
1

mV IR

s2 + 2ζV IRωV IR
0 s+ωV IR2

0

and HEX P(s) =
1

mEX P

s2 + 2ζEX PωEX P
0 s+ωEX P2

0

with ζV IR =
dEX P

2
p

mV IRkV IR
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dEX P

2
p

mEX P kEX P
,

ωV IR
0 =

√√ kV IR

mV IR
and ωEX P

0 =

√√ kEX P

mEX P

(4.5)

The actuator dynamics are assumed to be pure delays Td for the purpose of the analysis:

HAC T (s) = e−Td s (4.6)

The transfer function of the coupled reference system is

HREF (s) =
1

(mV IR +mEX P) s2 + (dV IR + dEX P) s+ kV IR + kEX P
. (4.7)

This simplified structure of a real-time hybrid test is shown in Fig. 4.6. The analysis is first performed
based on a displacement controlled experimental component. Because of the simple system structure,
it is straightforward to apply the results from the displacement-control tests on tests with force-controlled
actuators. This is discussed in Sec. 4.2.4. The open-loop transfer function HOL(s) reads

HOL(s) = HEX P−1
(s)HV IR(s)HAC T (s) =

mEX P

mV IR
· s

2 + 2ζEX PωEX P
0 s+ωEX P2

0

s2 + 2ζV IRωV IR
0 s+ωV IR2

0

· e−Td s. (4.8)

The inverse of the transfer function of the experimental component is applied here since the displace-
ment output of the virtual component serves as an input to the experimental component and the interface
forces are an output of the experimental component. The eigenfrequency of the experimental component
appears as a zero in the nominator and as an anti-resonance peak in the open-loop transfer function.
The objective of the analysis is to be able to make statements on the properties of a coupled test inde-
pendent of the absolute values of masses, damping constants and stiffness constants. The properties
of a single DOF linear dynamic system can be described by its damping ratio and its eigenfrequency
which are dimensionless quantities. Since in a coupled test it is necessary to account for the different
contributions of the two subcomponents, the stiffness ratio κ and the mass ratioφ are used as additional
dimensionless system parameters:

κ=
kV IR

kEX P
and φ =

mV IR

mEX P
(4.9)

The squared eigenfrequency of the coupled system ω2
0 can be expressed as a function of the stiffness

ratio κ, the mass ratio φ, and the squared eigenfrequency of the experimental component ωEX P2

0 .
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Equivalently, it can be expressed as a function of κ, φ, and the squared eigenfrequency of the virtual
component ωV IR2

0 .
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Solving the expressions for ωEX P2

0 and ωV IR2

0 yields functions of the stiffness ratio κ, the mass ratio φ
and the eigenfrequency of the coupled system ω2

0:
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Substituting ωEX P2

0 and ωV IR2

0 from Eqs. (4.11) in Eq. (4.8) yields
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The complex frequency s can be substituted using the dimensionless complex frequency ŝ = s
ω0

. The

actuator time delay Td = τ ·T0 = τ · 2π
ω0

is expressed using the resonance period T0 of the coupled sys-
tem and the dimensionless delay variable τ. In other words, τ is the ratio between delay and resonance
period. The fully dimensionless transfer function reads

HOL(ŝ) =
1
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· ŝ2 + 2ζEX P
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· e−τ2πŝ. (4.13)

This transfer function can be used to analyze the stability properties of coupled systems solely depend-
ing on the dimensionless system parameters κ, φ, ζV IR, ζEX P and τ.
Some special cases are shown in Fig. 4.5 and their open-loop transfer functions are given in Eqs. (4.15)-
(4.17): For κ =∞, the stiffness and the damping contributions of the experimental component disap-
pear and the experimental component becomes a pure mass. For κ= 0 the virtual component becomes
a pure mass. For φ =∞, the mass of the damping contributions of the experimental component dis-
appear and the experimental component becomes a pure spring. And for φ = 0, the virtual component
becomes a pure spring.
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Figure 4.7: Bode plot of stable closed-loop transfer function HC L(ω)with different delays τ (using κ= 1,φ = 1.5,
ζEX P = 0.1 and ζV IR = 0.1)

Closed-Loop Dynamics The closed-loop transfer function—which is used for assessing the stability
of the system—reads

HC L(ŝ) =
HV IR(ŝ)

1+HOL(ŝ)
=

HV IR(ŝ)
1+HEX P−1(ŝ)HV IR(ŝ)HAC T (ŝ)

. (4.18)

Fig. 4.7 shows the closed-loop transfer functions with different delays τ. All closed-loop transfer functions
represent stable systems. In order to achieve this, the damping ratios are chosen as ζEX P = 0.1
and ζV IR = 0.1. The reference system dynamics are equivalent to a closed-loop system with delay τ=
0:

lim
τ→0

HC L(s) =
HV IR(s) ·HEX P(s)
HV IR(s) +HEX P(s)

= HREF (s) (4.19)

Even for stable closed-loop systems the performance and accuracy of the test is deteriorated: a clear de-
viation of the phase and gain can be observed especially above the eigenfrequency. For the assessment
of the closed-loop stability, the Pade approximation

e−τ2πŝ ≈ H̃AC T (ŝ) =
1−πτŝ
1+πτŝ

(4.20)

is used. The system is assumed to be stable if all poles of HC L(ŝ) have a negative real part. Fig. 4.8
shows the stability boundaries as a function of the mass ratio φ and the stiffness ratio κ. The contour
lines indicate the maximum delay τ which allows stable coupling. The plot is given for four different
damping values, which are applied to virtual and experimental component. This type of plot can be used
for the rough classification of many real-time hybrid testing problems. The stable region has the smallest
size for zero damping. With an increasing damping ratio, the size of the stable region increases. For
values of φ < 1—which means that the mass of the experimental component is greater than the mass
of the virtual component—the test is always unstable. The physical behavior due to low values of φ is
as follows: The high mass of the experimental component results in high forces which are applied on
the virtual component. In turn, due to the lower mass of the virtual component, high forces cause larger
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displacements which are fed back to the experimental component.
In the diagram for an undamped system with ζEX P = 0 and ζV IR = 0, a second condition for stability
is κ > φ. The physical behavior due to low values of κ is as follows: The high stiffness of the experi-
mental component results in high forces which are applied on the virtual component. In turn, due to the
lower stiffness of the virtual component, high forces cause larger displacements which are fed back to
the experimental component. Higher damping ratios improve the stability properties of the tests.

Open-Loop Transfer Functions The reason of the unstable behavior of systems with φ < 1 can be
observed in the Bode plots of the open-loop transfer functions: The stability of a closed-loop system can
be analyzed using its open-loop Nyquist curve in the complex plane according to the Nyquist criterion
(see e.g the control theory textbook [34]). The simplified Nyquist criterion can be applied if

• the closed-loop system is HC L =
1

1+kHOL(ŝ)
,

• the closed-loop system becomes unstable for an increased loop-gain k and

• the magnitude |HC L(ŝ)| crosses 1 only once.

The simplified Nyquist criterion is defined by the following rule: The gain margin is defined as the sep-
aration of the gain |HOL(ω̂)| from 1 at the frequency at which the phase angle ∠HOL(ω̂) crosses the
value −180◦. If the gain is above 1 (|HOL(ω̂)|> 0) at this point, the system is unstable.
Even though the delay makes the Nyquist curves more complex and less straightforward to interpret, the
phase decay caused by the delay can be observed in the bode plot: Fig. 4.9 shows the effect of different
delays τ on the open-loop transfer function. It can be seen that the gain is not affected by the delay τ.
However, the phase decays linearly with the frequency. The slope of the decay depends on the delay τ.
For a zero delay τ= 0, the phase remains at ∠HOL = 0 asω approaches infinity. For any delay τ > 0,
the phase falls below −180◦ at one point. Since the limit of the gain of the open-loop transfer function is

lim
ω→∞ |HOL(ω)|=

1
φ

, (4.21)

systems with φ < 1 are never stable. A stable case (φ = 1.5) as well as an unstable case φ = 0.5 are
shown in Fig. 4.9.
Fig. 4.10 shows the open-loop transfer functions for different locations in the stability diagram in Fig. 4.8.
The reason for stability condition κ > φ for undamped systems can be gathered from the right diagram
of Fig. 4.10. For values κ < φ, the resonance appears at a lower frequency than the anti-resonance.
The resonance introduces a negative phase shift of −180◦ and the delay introduces an additional phase
decay. Because the gain is above one in that frequency range, the closed-loop system is unstable. For
values κ > φ, the anti-resonance appears at a lower frequency than the resonance. The anti-resonance
introduces a positive phase shift of 180◦ into the open-loop system and the closed-loop system is stable.

Damping Fig. 4.11 shows the effects of different damping ratios for both the experimental and the
virtual component. Higher damping ratios smoothen the resonance peaks and the anti-resonances.
The resulting stability boundaries are shown in Fig. 4.12 and Fig. 4.13. The diagrams represent two
slices—κ= 1 and φ = 1.5—of a stability diagram as it is shown in Fig. 4.8. Fig. 4.12 shows the effects
of variations in the damping ratio of the virtual component while the experimental component is kept
undamped (ζEX P = 0). The areas below the curves indicate delays τ which lead to a stable system.
Because the increased damping pulls down the open-loop gain around the resonance, it improves the
stability properties of the system. A jump can be observed at φ = 1 for the diagram which shows curves
with κ = 1 and at κ = 1.5 for the diagram which shows curves with φ = 1.5. The reason is that the
open-loop resonance and the open-loop anti-resonance overlap and change position in this point.
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Figure 4.9: Bode plots open-loop transfer functions for different delays τ (using κ= 1, ζEX P = 0 and ζV IR = 0)
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Figure 4.10: Bode plots of the open-loop transfer function HOL(ω) for different combinations of stiffness ratio κ
and mass ratio φ (using τ= 0.1, ζEX P = 0 and ζV IR = 0)
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Figure 4.13: Stability boundaries for different damping ratios ζEX P of the experimental component (using ζV IR =
0)

Fig. 4.13 shows the effects of variations in the damping ratio of the experimental component while the
virtual component is kept undamped (ζV IR = 0).
In general, additional damping has a positive effect on stability. The growth in size of the stable region is
larger for variations of the damping ratio ζV IR of the virtual component than for variations of the damping
ratio ζEX P of the experimental component. Increasing the damping ratio ζEX P has mainly a smoothening
effect on the stability boundaries. Smooth stability boundaries can be helpful in practical applications to
prevent unstable behavior when the system properties change during the test. This can be the case e.g.
for systems with contacts.

4.2.3 Effect of Actuator Dynamics

The previous section describes the behavior of a simplified real-time hybrid test with pure delay. In
reality, besides pure delay, the frequency-dependent actuator dynamics have a significant influence on
the behavior of real-time hybrid tests. In this section, a system with an actuator as depicted in Fig. 1.2
is discussed. As in the previous section, the coupled reference system is a single-DOF oscillator and its
transfer function reads

HREF (s) =
Y V IR(s)
Fex t(s)

=
Y EX P(s)
Fex t(s)

=
1

(mV IR +mEX P) s2 + (dV IR + dEX P) s+ kV IR + kEX P
(4.22)

with masses m∗, the viscous damping constants d∗ and the stiffness constants k∗. The superscripts EX P
and V IR denote the experimental and the virtual component and the superscript REF denotes the cou-
pled reference system. Y V IR(s) and Y EX P(s) are the Laplace domain interface displacements and Fex t(s)
is the Laplace domain external force. A real-time hybrid test can be performed using the control struc-
ture which is described in Sec. 4.1. Fig. 4.14 shows a block diagram of this type of test with its specific
transfer functions. The actuation system—a single-DOF oscillator—corresponds to the model of the
voice-coil actuator in Chap. 3. The transfer function of the combined assembly of actuation system and
experimental component reads

HTR(s) =
ΛEX P(s)

U(s)
=

mEX Ps2 + dEX Ps+ kEX P

(mAC T +mEX P)s2 + (dAC T + dEX P)s+ kAC T + kEX P
, (4.23)



4.2 Stability and Accuracy Issues 73

λEX PC(s)

HV IR(s)

HEX P (s)

u

fex t

HTR(s)

yEX P

yV IR

+

g-

HV IR(s)

+
+

-

-

Figure 4.14: Block diagram of a system with actuator dynamics used for stability analysis.

where the superscript AC T denotes the actuation system and the superscript TR denotes the assembly
of actuation system and experimental component. ΛEX P(s) is interface force and U(s) is actuator input
in Laplace domain.
The transfer function of the virtual component is

HV IR(s) =
Y V IR(s)
ΛEX P(s)

=
Y V IR

Fex t
=

1
mV IRs2 + dV IRs+ kV IR

, (4.24)

and the transfer function of the experimental component is

HEX P(s) =
Y EX P(s)
ΛEX P(s)

=
1

mEX Ps2 + dEX Ps+ kEX P
. (4.25)

The controller C(s) is a simple proportional gain and can be seen as a spring which connects the two
subcomponents:

C(s) = kP (4.26)

Non-Dimensional Form According to the block diagram in Fig. 4.14, the open-loop transfer function
is

HOL(s) =C ·HTR(s) · �HV IR(s) +HEX P(s)
�

. (4.27)

The single transfer functions as they are listed in Eq. (4.23)- Eq. (4.26) depend on variables with units.
However, the overall system properties can be described with the mass ratios φAC T and φEX P , the
stiffness ratios κP , κEX P and κAC T , and the damping ratios ζV IR, ζEX P and ζAC T .

ζV IR =
dV IR

2
p

mV IRkV IR
, ζAC T =

dAC T

2
p

mAC T kAC T
, ζEX P =

dEX P

2
p

mEX P kEX P
,

κEX P =
kEX P

kV IR
, κAC T =

kAC T

kV IR
, κP =

kP

kV IR
,

φEX P =
mEX P

mV IR
, φAC T =

mAC T

mV IR

(4.28)

Furthermore, the non-dimensional complex frequency ŝ = s
ω0

is used.

ŝ =
s
ω0

with ω0 =

√√ kEX P + kV IR

mEX P +mV IR
(4.29)
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Figure 4.15: Investigated coupled system with actuator dynamics.

Recasting and substitution—which is described in Appendix C.1—results in the non-dimensional open-
loop transfer function of Eq (4.30):

HOL(ŝ) =


φEX P ·

ŝ2 + 2ζEX P
r
κEX P

φEX P · φEX P+1
κEX P+1 · ŝ+ κEX P

φEX P · φ
EX P+1
κEX P+1

ŝ2 + 2ζV IR
Ç
φEX P+1
κEX P+1 ŝ+ φEX P+1

κEX P+1

+ 1


 ·

·
κP

φAC T+φEX P · φ
EX P+1
κEX P+1

ŝ2 + 2
�
ζAC T
p
κAC TφAC T

φAC T+φEX P + ζEX P
p
κEX PφEX P

φAC T+φEX P

�
·
Ç
φEX P+1
κEX P+1 · ŝ+ κAC T+κEX P

φAC T+φEX P · φEX P+1
κEX P+1

(4.30)

The following analysis is performed on a system with φEX P = 0. This corresponds to the coupling of
a virtual single-DOF oscillator with an experimental massless spring. A visualization of the system is
shown in Fig. 4.15. Its open-loop transfer function reads

HOL(ŝ) =

 
κEX P

κEX P+1

ŝ2 + 2ζV IR
q

1
κEX P+1 · ŝ+ 1

κEX P+1

+ 1

!
·

·
κP

φAC T · 1
κEX P+1

ŝ2 + 2 · ζAC T
r
κAC T

φAC T · 1
κEX P+1 · ŝ+ κAC T+κEX P

φAC T · 1
κEX P+1

(4.31)

Closed-Loop Dynamics The closed-loop transfer function, which results from the structure given
in Fig. 4.14, reads

HC L(s) =
Y V IR(s)
Fex t(s)

=
HV IR(s) · �C(s) ·HTR(s) ·HEX P(s) + 1

�

C(s) ·HTR(s) · (HEX P(s) +HV IR(s)) + 1
. (4.32)

Its derivation is explained in Appendix C.2. Fig. 4.16 shows closed-loop bode plots of transfer functions
for a range of values of κP . Starting from Eq. (4.32) and using C(s) = κP kV IR, it is straightforward to
show that as the loop-gain ratio κP approaches infinity, the closed-loop transfer behavior approaches
the dynamics of the reference system:

lim
κP→∞

HC L(s) =
HV IR(s) ·HEX P(s)
HV IR(s) +HEX P(s)

= HREF (s) (4.33)

The insight from Eq. (4.33) means that the closed-loop system is stable for κP →∞. A high control-
gain in combination with a slight delay, however, will cause an unstable system behavior. This can be
observed in Fig. 4.17 with the Nyquist criterion in mind: It shows the effects of a change in the control
gain on an exemplary open-loop transfer function. The phase angle ∠HOL(ω) for high frequencies and
delay would fall below −180◦ at one point. If the gain |HOL(ω)| was above 1 at this point—due to the
loop-gain κP—the system would be unstable.
Lower control gains, in turn, can cause an unstable behavior even without any delay. The root-locus
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Figure 4.16: Bode plots of the closed-loop transfer function HC L(ω) for different control gain ra-
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Figure 4.17: Bode plots of the open-loop transfer function HOL(ω) for different control gain ratios κP (using ζV IR =
2 · 10−3, ζAC T = 0.1, κEX P = 2, κAC T = 0.1 and φAC T = 0.1)
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Figure 4.18: Root-locus plot for the closed-loop transfer function HC L(ω) (using ζV IR = 2 · 10−3, ζAC T =
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The two subplots show different details of the same data.

plot of Fig. 4.18 shows the curves of the closed-loop poles describing a variation of the loop gain κP

from 0 to∞. The case shown in Fig. 4.18 illustrates that κP can take on values which make the system
unstable i.e. when the real parts of the poles become positive and the poles move into the right half
plane.
The stability of the closed-loop system can be assessed without explicitly calculating the poles of the
system by applying the Routh–Hurwitz criterion. The denominator of the closed-loop system HOL(s)+1
is a 4th-order polynomial of the form

P(s) = s4 + a1s3 + a2s2 + a3s+ a4. (4.34)

According to the Routh–Hurwitz criterion, all roots of P(s) have only negative real parts if all coeffi-
cients a1, a2, a3 and a4 are positive and if

−a2
1a4 − a2

3a0 + a1a2a3 > 0 (4.35)

holds. Hence, the limit case

−a2
1a4 − a2

3a0 + a1a2a3 = 0 (4.36)

gives a non-linear equation for the stability boundary, which can be solved e.g. for the damping ratio of
the virtual component ζV IR or for the actuator damping ratio ζAC T .
The effects of the loop gain ratio κP on the stability boundaries are shown in Fig. 4.19. The figure shows
contour lines of the minimum damping ratio ζV IR, which leads to a stable system. As discussed above,
the size of the stable region does not increase monotonically with the loop gain ratio κP . On the contrary,
the minimum necessary damping ratio falls with increasing κP—after a rise for small values of κP .
Fig. 4.20 shows the stability boundaries as a function of the stiffness ratio κAC T and the stiffness ra-
tio κEX P as well as the stability boundaries as a function of the damping ratio ζAC T and the stiffness
ratio κEX P . Again, the contour lines indicate the minimum damping ratio ζV IR, which leads to a stable
closed-loop system. The diagram shows the negative influence of actuator stiffness and damping on the
stability properties of the system.
Fig. 4.21 shows a stability diagram which relates to the actuator dynamics. The stability boundaries are
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shown as a function of the stiffness ratio κAC T and the mass ratio φAC T . Both, high actuator damping
ratios ζAC T and high actuator mass ratios φAC T lead to an unstable system behavior. The reason is that
additional actuator damping and masses make the dynamic responses of the test system slower. For all
cases shown in Fig. 4.19 - Fig. 4.21, the stability properties improve with increasing stiffness ratio κEX P ,
which is a measure of the stiffness of the experimental component.

4.2.4 Types of inner-loop reference signals

In this section, the influence of different reference signal types for the inner-loop control on stability and
accuracy of the tests is discussed. The discussion is based on the model with pure delay of Sec. 4.2.2.

Force and Displacement Control In Sec. 4.2.2, the effects of delays on tests with displacement con-
trol are analyzed. Fig. 4.6 shows the control structure for displacement control and force control of the
experimental component. If force control is used instead of displacement control, nominator and de-
nominator of the open-loop transfer function are exchanged, and the new open-loop transfer function
reads

HOL(s) = HEX P(s)HV IR−1
(s)HAC T (s) = φ ·

ŝ2 + 2ζV IR

√√1+ 1
φ

1+ 1
κ

ŝ+
1+ 1

φ

1+ 1
κ

ŝ2 + 2ζEX P
Ç
φ+1
κ+1 ŝ+ φ+1

κ+1

· e−τ2πŝ (4.37)

The stability diagram of the force-controlled experimental component is given in Fig. 4.22. Compared to
the stability diagram for displacement controlled experimental components in Fig. 4.22, the position of the
stable regions are mirrored: Systems with φ > 1—which means that the mass of the virtual component
is higher than the mass of the experimental component—are always unstable. Systems with φ < 1, in
turn, can exhibit stable behavior. This is contrary to the findings relating to the displacement controlled
systems. The reason for this condition is that the magnitude of the open-loop transfer function at high
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Figure 4.22: Force control: Stability boundaries as a function of the mass ratio φ and the stiffness ratio κ: the
contour lines indicate the maximum delay τ which allows stable coupling.

frequencies isφ. Any delay will lead to a violation of the Nyquist criterion if φ > 1. The physical behavior
due to high values of φ is as follows: The high mass of the virtual component results in high forces
which are applied to the experimental component. In turn, due to the lower mass of the experimental
component, high forces cause larger displacements which are fed back to the virtual component.
An additional stability condition for systems without any damping is φ > κ since it leads to another
violation of the Nyquist criterion. The order of pole and zero, which lead to the condition φ < κ for
the displacement control in Sec. 4.2.2, is inverted. The physical behavior due to high values of κ is
as follows: The high stiffness of the virtual component results in high forces which are applied to the
experimental component. In turn, due to the lower stiffness of the experimental component, high forces
cause larger displacements which are fed back to the virtual component.
A consequence of this observation is, that for systems where the mass of the experimental component
is higher than the mass of the virtual component, it may be useful to apply force control.
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Acceleration and Displacement Control In modal analysis, the common approach to measure the
transfer behavior of structures is the use of acceleration sensors. The idea of applying those sensors
in real-time hybrid tests leads to the need for an analysis of the effects of enforcing the compatibility
constraint on acceleration level. The second-order time derivative is equivalent to multiplying the term s2

with the transfer functions of the components. The resulting transfer function of the virtual component is

HV IR(s) =
Y V IR(s)
ΛEX P(s)

=
Y V IR

Fex t
=

s2

mV IRs2 + dV IRs+ kV IR
, (4.38)

and the resulting transfer function of the experimental component is

HEX P(s) =
Y EX P(s)
ΛEX P(s)

=
s2

mEX Ps2 + dEX Ps+ kEX P
. (4.39)

Obviously in the pure delay model of Sec. 4.2.2, a change between displacement and acceleration con-
trol would make no difference, since the term s2 simply cancels out. However, if actuator dynamics are
present as described in Sec. 4.2.3, the use of acceleration signals for coupling the components changes
the open loop transfer function. The new open-loop transfer function of a system with acceleration control
reads

HOL(ŝ) =

 
κEX P

κEX P+1

ŝ2 + 2ζV IR
q

1
κEX P+1 ·ω0 · ŝ+ 1

κEX P+1

+ 1

!
· (4.40)

·
κP

φAC T · 1
κEX P+1 · ŝ2

ŝ2 + 2 · ζAC T
r
κAC T

φAC T · 1
κEX P+1 · ŝ+ κAC T+κEX P

φAC T · 1
κEX P+1

(4.41)

Note that the loop-gain is kP = ω0κP kV IR as consequence. Fig. 4.23 shows the Bode plot of HOL(ŝ).
The squared differentiator s2 causes a positive 180◦ phase shift. As a result, the phase margin is higher
at all frequencies. However, the magnitude of the open-loop transfer function stays constant as the
frequency approaches infinity. This can lead to problems if a delay is involved in the test. On the other
hand, due to the high magnitude of the open-loop transfer function, the accuracy of the closed-loop
transfer function is improved at high frequencies. This can be observed in Fig. 4.24.
The magnitude of the open-loop transfer function goes to zero as the frequency approaches zero. This
results in an uncompensated residual steady-state error. In other words, the use of acceleration signals
for coupling can cause drift between the components. The closed-loop transfer function in Fig. 4.24
shows high deviations from the reference transfer function at low frequencies.

4.2.5 Summary

To summarize, the discussion on the simple lumped-mass systems leads to the following findings:

• Low mass ratios and stiffness ratios between virtual and experimental component can be problem-
atic when using displacement control. Force control makes sense if the mass of the experimental
component is higher than the mass of the virtual component.

• High mass ratios and stiffness ratios between virtual and experimental component can be prob-
lematic when using force control. Displacement control makes sense if the mass of the virtual
component is higher than the mass of the experimental component.

• Damping in the experimental and in the virtual component improves the stability properties of a
test.
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Figure 4.23: Acceleration control: Bode plots of the open-loop transfer function HOL(ω) for different control gain
ratios κP (using ζV IR = 2 · 10−3, ζAC T = 0.1, κEX P = 2, κAC T = 0.1 and φAC T = 0.1)
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Figure 4.24: Acceleration control: Bode plots of the closed-loop transfer function HC L(ω) for different control gain
ratios κP (using ζV IR = 2 · 10−3, ζAC T = 0.1, κEX P = 2, κAC T = 0.1 and φAC T = 0.1)
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• Damping, stiffness and mass in the actuator deteriorate the stability properties of a test.

• Acceleration control causes drift effects and makes sense if coupling at high frequencies is de-
sired.

A generalization to more complex systems is not straightforward. Nevertheless, the results can be used
for a rough categorization of a test in the early design phase. Complex systems have to be evaluated
based on their specific dynamics.
The analysis in this section was constrained to systems with solely a proportional gain. The performance
can be improved by adding integral and derivative terms to the controller. Based on additional system
knowledge, even more sophisticated control laws are possible. However, the design of the control using
accurate system knowledge contradicts the objective of hybrid tests that is being able to test structures
with unknown dynamics. Moreover, the performance of a specifically designed controller with a high
bandwidth may be deteriorated by modeling inaccuracies.
A solution to the problem is the use of adaptive control strategies as they are discussed in Sec. 4.3,
Sec. 4.4 and Chap. 5. The use of feedforward controllers—as proposed in Chap. 5—can help to empha-
size robustness and stability in the design of the feedback controller.

4.3 Polynomial forward prediction

A method that is frequently used for compensating the actuator delay in real-time hybrid testing is poly-
nomial forward prediction. The following section gives a short overview of the method. [45] has first
proposed a polynomial forward prediction procedure for real-time hybrid testing. [109] describes the
general form: The basic idea is to compensate for the delay of the actuator system by generating an
actuator input u based on the current and previous values of the demand signal from the virtual com-
ponent yV IR. A block diagram of this approach is given in Fig. 4.25. For predicting future values of the

yEX P

virtual component

λEX P

+-

actuation system +
inner-loop control

experimental
component

u
g

f V IR
ex t

f EX P
ex t

yV IR

delay compensator

Figure 4.25: Block diagram of coupled system

demand signal yV IR, an N th-order polynomial

yV IR(n∆t +τ) = a0 + a1τ+ . . .+ aNτ
N (4.42)

is used, where τ is the deviation from the time at the current time step n and∆t is the time step width.
The coefficients ai with i ∈ [0,1, . . . , N] can be obtained using yV IR from M previous time steps. The
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Figure 4.26: Exemplary Bode diagram of a pure delay and its compensation using polynomial forward prediction.
A polynomial of grade N = 5 and a delay of Td = 0.1 s used for the plot.

corresponding polynomials in matrix-vector notation read




yV IR[n]
yV IR[n− 1]

...
yV IR[n−M]




︸ ︷︷ ︸
b

=




1 0 . . . 0
1 −∆t . . . (∆t)N
...

...
. . .

...
1 −M∆t . . . (−M∆t)N




︸ ︷︷ ︸
X




a1
a2
...

aM




︸ ︷︷ ︸
a

. (4.43)

Consequently, the coefficient vector a can be estimated using a least-squares fit:

a = (X T X)−1X T b (4.44)

At time τ= PAF P∆t , the extrapolated value of yV IR is

yV IR(n∆t + PAF P∆t) =
�
1 PAF P∆t . . . (PAF P∆t)N

�
︸ ︷︷ ︸

X P

a (4.45)

PAF P defines the length of the prediction horizon. The extrapolation can be used to generate an actu-
ator input u[n] which compensates for the actuator delay. Using the Moore–Penrose pseudo-inverse
from (4.44), the actuator input reads

u[n] = cAF P yV IR(n∆t + PAF P∆t) = cAF P X P(X
T X)−1X T b, (4.46)

where the factor cAF P is used to compensate for errors in the magnitude of the oscillation. The expres-
sion X P(X T X)−1X T is a vector of length N + 1, which depends only on the prediction horizon PAF P
and the polynomial of order N . E.g., for the polynomial order N = 2, M = 2 and the prediction hori-
zon PAF P = 1 the actuator input reads

u[n] = cAF P(3yV IR[n]− 3yV IR[n− 1] + yV IR[n− 2]), (4.47)

where cAF P is a parameter which can be used for compensating error in the signal magnitude. The
characteristics of polynomial forward prediction correspond to a lead compensator. This fact can be
observed in the Bode diagram of Fig. 4.26.
The delay in a test can vary because it depends on test conditions and test dynamics. This fact makes
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trigger condition slope condition update

yV IR = 0 ẏV IR > 0 ρAF P = ρAF P +αAF P gγAF P

yV IR = 0 ẏV IR > 0 ρAF P = ρAF P −αAF P gγAF P

ẏV IR = 0 ÿV IR > 0 σAF P = σAF P + βAF P gγAF P

ẏV IR = 0 ÿV IR < 0 σAF P = σAF P − βAF P gγAF P

Table 4.1: Triggers and update laws for adaptive polynomial forward prediction.
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Figure 4.27: Exemplary adaptation process shown with the help of σAF P , ρAF P and the envelope of the interface
gap g: The open loop system corresponds to the system from Sec. 4.2.3 using the parameters κEX P = 2, κAC T =
0.1, κP = 10, φAC T = 0.1, ζV IR = 0.2 and ζV IR = 0.1 with an additional delay of 0.01 s

an on-line delay estimation algorithm necessary. [29] proposes a technique, which uses a proportional
feedback system for delay estimation. [109] introduces an on-line delay estimation technique based
on zero crossings of the signal: The length of the prediction horizon PAF P as well as the magnitude
compensation parameter cAF P consist of a constant part (P0,AF P and c0,AF P ) and a variable part (ρAF P
and σAF P ):

PAF P = P0,AF P +ρAF P (4.48)

cAF P = c0,AF P +σAF P (4.49)

Updates of the variable parts are triggered by sign changes of yV IR and ẏV IR according to Tab. 4.1. An
exemplary adaptation process is shown in Fig. 4.27.

4.4 Passivity Based Control

Another method which enables robust and stable coupling of subcomponents in real-time hybrid tests is
proposed in [78]. The authors apply a passivity-based control scheme in order to improve the stability
and accuracy of real-time hybrid tests.
In control theory, a system is called passive if it does not generate energy. The use of the passivity
property is appealing in the context of complex control systems due to two reasons according to [40]:
Firstly, all passive systems are stable. Hence, the prove of passivity is a sufficient condition for the
proof of stability. Secondly, the passivity of a system which is built up from various components can
be assessed based on the passivity of the single components. If each component of the system is
passive, the overall system behaves passively. This also applies to non-linear systems. In the case
of real-time hybrid testing, it is necessary that the actuator system behaves passively, i.e. it does not
generate energy. The unstable behavior of a real-time hybrid test can be seen as an energy injection to
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Figure 4.28: Block diagram of a real-time hybrid test with a passivity based controller (according to [78]).

the system, which is caused by the actuator and control system.
Passivity-based control approaches have been successfully used in teleoperation, robotic impedance
control and for haptic interfaces (see e.g. [71], [1] and [40]). As mentioned above, one way to apply a
passivity-based control scheme to real-time hybrid testing is suggested by [78]. A dissipative element
with a variable viscous damping rate, which depends on the net power-outflow from the actuation system,
is introduced. In this way, additional damping is injected at the interface in order to restore passivity of
an initially non-passive actuator system. A block diagram of the control scheme is shown in Fig. 4.28. In
the depicted structure an actuation system with inner-loop control serves as the basis for the real-time-
hybrid test. The passivity-based control scheme is augmented to this structure.
The passivity based control scheme works as follows: The net power-outflow from the actuation system
is a measure for the passivity violation caused by the actuation system. For a real-time hybrid test with
interface forces λEX P and λV IR, and interface velocities ẏ EX P and ẏV IR it reads

PAC T
out = λ

EX P ẏ EX P −λV IR ẏV IR (4.50)

Normalization of the power-outflow makes tuning of the passivity based control independent of the mag-
nitude of the excitation forces on the system. The normalization is performed using the total power
flow Ptot as a reference. It is defined as

Ptot = λ
EX P ẏ EX P +λV IR ẏV IR. (4.51)

The damping coefficient CPCB is a function of the power-outflow from the actuation system. In order to
prevent nonlinear distortions, it is desirable to reduce fast changes in CPCB . This is achieved using first-
order low pass filters. Low pass filtering of PAC T

out and Ptot yields the filtered power signals P̃AC T
out and P̃tot .

Design rules for the choice of the cut-off frequencies of the low pass filters are given in [78]. The variable
damping coefficient is proportional to the normalized net power-outflow according to Eq. (4.52). Negative
power-outflows do not require additional damping and the damping constant is set to zero:

CPCB =

(
0 if P̃AC T

out /|P̃tot |≤ 0

GPCB
P̃AC T

out

|P̃tot | if P̃AC T
out /|P̃tot |> 0

(4.52)

GPCB is a gain which is used to tune the performance of the passivity based controller. The additional
damping force fPCB at the interface is calculated according to Eq. (4.53):

fPCB = CPCB ẏV IR (4.53)



86 4 Feedback Based Coupling

Finally, the interface force with augmented damping forces reads

λV IR = λEX P + fPCB. (4.54)

The augmentation of a damping force to the interface forces can lead to a deteriorated test performance
since the equilibrium constraint is not met exactly. However, the control law is not active in the case of a
passive actuation system and prevents potentially damaging behavior in the case of a passivity violation
while continuing to run the test.



Chapter 5

Feedforward Based Coupling

Parts of this chapter have been published in [3], and submitted for publication in [7] and in [9].

As discussed in Chap. 4, feedback loops in combination with actuator dynamics and delays can cause
an inaccurate and unstable behavior of real-time hybrid tests. If the exact model of the full system
is known, it is possible to use feedforward filters to couple the subcomponents. The corresponding
control structure is given in Fig. 5.1. It shows a block diagram of a hybrid test with pure feedforward
control. It is a simplified version of the general control scheme from Fig. 4.3. According to the scheme,
the external excitations serve as inputs to the feedforward filter. The feedforward filter generates an
actuator input which enforces compatibility between the interfaces. In other words, it closes the interface
gap. Equilibrium is enforced by applying the interface forces directly on the virtual component. The
feedforward filter can be directly calculated using the compatibility constraint g = 0. In Laplace domain,
after substituting the transfer functions defined in Chap. 2, the constraint reads:

G(s) =Y EX P(s)− Y V IR(s)

=
�
H TR

y,u(s) +HV IR
y,λ (s)H

TR
λ,u(s)

�
︸ ︷︷ ︸

H g,u(s)

U(s) +HV IR
ex t (s)F

V IR
g,ex t(s) +H EX P

ex t (s)F
EX P
g,ex t(s)

!
= 0 (5.1)

Remember that the superscript TR denotes the assembly of actuator system and experimental com-
ponent. H g,u(ω) is the transfer function between actuator input and interface gap. H∗g,ex t(ω) is the
transfer function between external excitation and interface gap. Solving Eq. (5.1) for the actuator input
yields

U(s) =−H g,u(s)
−1HV IR

g,ex t(s)︸ ︷︷ ︸
HV IR

F F (s)

FV IR
ex t (s)−H g,u(s)

−1H EX P
g,ex t(s)︸ ︷︷ ︸

H EX P
F F (s)

F EX P
ex t (s), (5.2)

virtual component

f ex t

λ

y EX P

yV IR

+

-

actuation system +
inner-loop controlfeedforward filter

experimental
component

u

gf ex t

Figure 5.1: Block diagram of a purely feedforward controlled hybrid test. For readability reasons and without loss
of generality the excitation on the experimental component is omitted in the diagram.
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Figure 5.2: Bode diagrams of various transfer functions related to a real-time hybrid test using a pure feedforward
filter.

where HV IR
F F (s) and H EX P

F F (s) are the transfer functions of the feedforward filters which enforce compati-
bility of the interface displacements with the given system.
The fact that this system correctly emulates the reference dynamics can be observed using the transfer
functions from Sec. 4.2:

H TR
y,u(s) = HTR(s)HEX P(s) (5.3)

HV IR
y,λ (s) = HTR(s) (5.4)

HV IR
y,λ (s) = HV IR

ex t (s) = HV IR(s) (5.5)

F EX P
ex t (s) = 0 (5.6)

The displacement output at the interface of the virtual component in Laplace domain reads

Y V IR(s) = HV IR
λ (s)H TR

λ,u(s)U(s) +HV IR
ex t (s)F

V IR
ex t (s). (5.7)

Substitution yields the transfer function from external excitations to interface displacements:

Y V IR(s)
Fex t(s)

= − HV IR(s)HV IR(s)HTR(s)
HTR(s)HV IR(s) +HTR(s)HEX P(s)

+HV IR(s) (5.8)

=
HV IR(s)HEX P(s)

HV IR(s) +HEX P(s)
= HREF (s) (5.9)

This type of hybrid test with a pure feedforward filter exactly emulates the reference system. The corre-
sponding transfer functions are shown in the plot of Fig. 5.2. The control structure shown above includes
no feedback loop. Hence the system is inherently stable. It is noteworthy that the pole of the feedforward
filter is placed at the frequency of its counterpart from the coupled system. Hence, knowledge of the
full system is necessary in order to design the filter. The knowledge of the experimental component,
however, is not exact—if it is present at all—according to the paradigm of hybrid testing. Furthermore, if
the feedforward filter is not exactly appropriate for the given system, the test results will be highly deteri-
orated.
Adaptive feedforward filters can overcome these shortcomings. They are computed during the test and
continuously adapting to new situations or slight changes in the system dynamics. The corresponding
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Figure 5.3: Block diagram of hybrid test with adaptive feedforward filter. For readability reasons and without loss
of generality the excitation on the experimental component is omitted in the diagram.

structure of the control system is shown in Fig. 5.3. Adaptive feedforward filters have been used for
testing applications in the well-established Time Waveform Replication (TWR) method. As described
in [27] and [32], the technique allows replication of reference signals in vibration tests, e.g. road simula-
tions. In the TWR method, the actuators usually work under real-time control while the feedforward filters
generate the input signal. In an outer loop, the feedforward filters are adapted using off-line iterations.
This process is a type of Iterative Learning Control (ILC). The technique is commercialized and widely
used in industrial applications. [20] proposes the use of adaptive feedforward for the coupling of simu-
lation models and experiments. A Least-Mean-Squares (LMS) filter is used to test piezo actuators with
realistic boundary conditions. The use of LMS filters in durability tests is described in [53]. The interface
synchronization problem can be formulated as a disturbance rejection problem. This structure is used
by [61] with Neural Networks as feedforward filters. A similar approach was investigated in the student
thesis of [46].
In this chapter, methods are discussed which allow applying adaptive feedforward filters to real-time hy-
brid testing. Different types of adaptive feedforward filters are analyzed. Sec. 5.1 describes harmonic
basis functions which are helpful to build efficient adaptive filters. Two types of adaptation laws are
shown in Sec. 5.2 and Sec. 5.4 while Sec. 5.3 addresses the automated choice of adaptation param-
eters. Sec. 5.5 considers adaptive algorithms based on finite impulse response filters. Finally, the
combination of adaptive feedforward filters with feedback based coupling is introduced in Sec. 5.6.

5.1 Harmonic Basis Functions

The objective of this section is to reformulate the compatibility constraint such that a feedforward filter,
which couples the virtual and the experimental component, can be found. Basic assumptions are steady-
state and harmonic excitation. Those assumptions are valid for many applications in NVH engineering,
such as e.g. tests regarding effects of drive-train vibrations. The harmonic approach allows for efficient
filters and adaptation laws with low computational costs and memory consumption to be built. With both
assumptions, the actuator input signal is a sum of harmonic basis functions, which can be characterized
by a single vector θ . The vector has to be chosen such that both subcomponents are coupled. To do so,
the interface gap g (t) is written in the frequency domain—depending on the Fourier transforms U(ω)
and F ex t(ω) of the actuator inputs and the excitation forces—and the expression is set to 0.

G(ω) = H g,u(ω)U(ω) +H g,ex t(ω)F ex t(ω)
!
= 0 (5.10)
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An example of an excitation force vector with nΩ harmonics and nint interface DOFs is given in
Eq. (5.11).

f ex t(t) = 1
nΩ∑
i=1

cos(Ωi t) (5.11)

This expression uses the excitation frequencies Ωi with i ∈ [1 . . . nΩ] and the vector of ones 1 ∈ Rnint .
In the frequency domain using the Dirac δ-function, it writes

F
�

f ex t

�
= F ex t(ω) = 1

p
2π

nΩ∑
i=1

�
δ(ω−Ωi)

2
+
δ(ω+Ωi)

2

�
.

For an excitation force with nΩ harmonics, the actuator input signal u(t) has to be a sum of nΩ harmonics
in order to be able to couple the system. Rearranging Eq. (5.10) yields the actuator input in frequency
domain which is given in Eq. (5.12).

U(ω) = −H g,u(ω)
−1H g,ex t(ω)F ex t(ω) =

p
2π

nΩ∑
i=1

ψ(Ωi)
�
δ(ω−Ωi)

2
+
δ(ω+Ωi)

2

�
(5.12)

All phase shifts and amplitudes caused by F ex t(ω), H g,u(ω) and H g,ex t(ω) are defined by the com-
plex vectors ψ(Ωi). Note that H g,u(ω) is assumed to be invertible, implying that the number of inter-
face DOFs is equal to the number of actuator DOFs. Transforming U(ω) back into the time domain
and performing some elementary complex number operations—using the complex conjugate ψ̄(Ωi)
ofψ(Ωi)—yields the matrix-vector form of Eq. (5.13).

u(t) = F−1(U(ω)) =
1p
2π

∫ ∞

−∞
U(ω)e jωtdω=

1
2

nΩ∑
i=1

�
ψ̄(Ωi)e

− jΩi t +ψ(Ωi)e
jΩi t
�

=
nΩ∑
i=1

Re
�
ψ(Ωi)e

jΩi t
�
=

nΩ∑
i=1

Re
�
e jΩi t

�
Re (ψ(Ωi))− Im

�
e jΩi t

�
Im (ψ(Ωi))

=




I cos (Ω1 t)
−I sin (Ω1 t)

...
I cos

�
ΩnΩ t

�
−I sin

�
ΩnΩ t

�




T

︸ ︷︷ ︸
W(t)




Re (ψ(Ω1))
Im (ψ(Ω1))

...
Re
�
ψ(ΩnΩ)

�
Im
�
ψ(ΩnΩ)

�




︸ ︷︷ ︸
θ

= W(t)θ

(5.13)

The time-dependent harmonic basis functions can be written in a compact way by using a matrix W(t) ∈
Rnint×2nint nΩ . The characteristics of the input signal are defined by the parameter vector θ ∈ R2nint nΩ .
This form can be used to generate the actuator input u(t) from θ . Using the complex number operations
from (5.13), the interface gap g (t) is rearranged in matrix-vector form as can be seen in Eq. (5.14).

g (t) =
1

2π

∫ ∞

−∞
H g,u(ω)U(ω)e

jωtdω+
1

2π
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−∞
H g,ex t(ω)F ex t(ω)e

jωtdω

=W(t)
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Im
�
H g,u(ΩnΩ)ψ(ΩnΩ)
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
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+ g ex t

=W(t)P g,uθ + g ex t
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with

P g,u =


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Re
�
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� −Im
�
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(5.14)

The interface gap g (t) can be built from W(t), θ and the interface transfer matrix P g,u. The interface
transfer matrix P g,u ∈ R2nint nΩ×2nint nΩ contains the transfer behavior between the actuator inputs and
the interface gap in the form of real numbers. The symbol g ex t(t) represents the contribution of the
excitation forces to the interface gap. This form can be used to derive the adaptation law for θ . A per-
fect θ would yield an interface gap g that is zero. The matrix-vector formulation of Sec. 5.1 serves as
a framework and allows various adaptation laws to be applied. Two adaptation laws which proved to
work in the context of coupling structures are applied in Sec. 5.2 and Sec. 5.4: a Least-Mean-Squares
adaptation law, which is based on stochastic gradient descent and a Recursive-Least-Squares adapta-
tion law, which is based on a deterministic recursive formulation.
Substituting time step size∆t and time step number k into Eq. (5.14) yields the time discrete form given
in Eq. (5.15).

g [k] = W[k]P g,uθ + g ex t[k] (5.15)

In this expression, brackets are used to indicate a specific time instance. For clarity, the current param-
eter vector θ and the optimal parameter vector θ o, which couples virtual and experimental component,
have to be distinguished. In the coupled state (g [k] = 0), the parameter vector takes on the optimal
value θ = θ o. Accordingly, the true interface transfer matrix P g,u and the estimated matrix P est

g,u have
to be distinguished. Note that during the adaptation and the identification process, θ and P est

g,u change
depending on time step k. Hence, they write θ [k] and P est

g,u[k] in the following section.

5.2 Least-Mean-Squares Based Adaptation Law

Least-Mean-Squares-type algorithms have been successfully applied to active noise cancellation and
disturbance rejection (see e.g. [57]). The properties of these algorithms include simple implementation
and low computational costs. The coupling problem can be formulated in the form of a disturbance rejec-
tion problem (Fig. 5.4). Hence, it is possible to apply LMS algorithms to hybrid testing. The adaptation
law proposed in the following section can be seen as a narrow-band version of the fx-LMS algorithm
(see e.g. [49]).

5.2.1 Adaption

The objective of the adaptation process is to find the optimal parameter vector θ o. The parameter
vector θ o defines the actuator input, which is necessary to couple the subcomponents. The LMS-type
adaptation law makes use of the cost function of Eq. (5.16), which is the expected value of the squared
interface gap g .

J[k] = E
�
g T [k]g [k] + γLMSθ [k]

Tθ [k]
	

= E
¦�

W[k]P g,u[k]θ [k] + g ex t[k]
�T �

W[k]P g,u[k]θ [k] + g ex t[k]
�
+ γLMSθ [k]

Tθ [k]
©

(5.16)
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Figure 5.4: Block diagram for adapting θ : The system dynamics seen in Fig. 5.1 can be rearranged as a super-
position of interface force contribution and external force contribution. Interface synchronization is realized via an
LMS-type adaptive feedforward filter.

γLMS is the regularization factor. The basic idea of the LMS algorithm is a steepest descent on the cost
function. The direction of the descent is defined by the negative gradient of the cost function. Eq. (5.17)
contains the gradient of the given cost function with respect to parameter vector θ .

∇J[k] =
∂ J[k]
∂ θ [k]

= 2E
�
P g,u[k]

T W[k]T g [k] + γLMSθ [k]
	

(5.17)

This expression for the gradient still depends on the expectation function, which cannot be calculated
directly. For the on-line adaptation, the expectation function is approximated using the last sample:

E
�
P g,u[k]

T W[k]T g [k] + γLMSθ [k]
	' P est

g,u[k]
T W[k]T g [k] + γLMSθ [k]

The adaptation law (5.19) ultimately results from the gradient of the cost function.

θ [k+ 1] = θ [k]− µ̄LMS∇J[k] = νLMSθ [k]− µ̄LMSP est
g,u[k]

T W[k]T g [k] (5.18)

with νLMS = 1− µ̄LMSγLMS (5.19)

The adaptation gain µ̄LMS defines the step size of the gradient descent. The leakage factor νLMS origi-
nates from the regularization term in the objective function. Note that instead of the true interface transfer
matrix P g,u, the estimated matrix P est

g,u has to be used. Sec. 5.2.2 shows an identification procedure to
build P est

g,u. In order to make the choice of the adaptation gain more practicable, a normalized adaptation
gain µLMS according to Eq. (5.20) is used.

µ̄LMS = µLMS
1

λmax + γLMS
(5.20)

The normalization makes use of the maximum eigenvalue λmax of the matrix PT
g,uP g,u. See [57] for a

derivation of the expressions. In theory, a normalized adaptation gain of µLMS = 1 results in the fastest
possible convergence. Changes in the system dynamics and inaccuracy in the identification process
of P est

g,u may bring the maximum adaptation gain down to a lower value. Fig. 5.4 shows the resulting block
diagram for the adaptation process: The filter uses information from the external excitation signal as an
input, namely the excitation frequencies of the external forces f ex t . They define the basis functions that
are contained in W[k]. The filter coefficients θ are adapted solely based on the interface gap signal g .

5.2.2 Identification

As shown in the previous section, it is necessary to estimate the interface transfer matrix P g,u before
performing the adaptation of θ . An LMS-based approach—similar to the one used for the adaptation
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W(t)θ

H g,u

H est
g,u

u

+

− e

H est
g,u

Figure 5.5: Block diagram for identifying P g,u: During the identification process, excitation forces f ex t seen
in Fig. 5.4 are set to zero. The dynamics are exposed through excitations with a random vector θ id at the actuator
inputs.

of θ—is used to identify P g,u. The basis for deriving an identification algorithm is the system identification
error e[k].

e[k] = W[k]P est
g,u[k]θ [k] + g ex t[k]− g [k] (5.21)

Since g ex t[k] may be unknown, it is removed during the identification process by setting f V IR
ex t (t) = 0

and f EX P
ex t (t) = 0. To make the same derivations as in the previous section, the values in the matrix P est

g,u
have to be rearranged in a vector according to the example given in Appendix D.1. This vector is referred
to as P̃

est
g,u. The resulting rearranged form in Eq. (5.22) contains the matrix θ̃ [k], which is a result of

rearranging the expressions from Eq. (5.14).

e[k] = W[k]θ̃ [k]P̃ est
g,u[k]− g [k] with θ̃ ∈ R2n2

int nΩ×2n2
int nΩ and P̃ g,u ∈ R2n2

int nΩ (5.22)

The cost function and the resulting adaptation law are given in Eqs. (5.23) and (5.24). The identification
process can be initialized with P̃

est
g,u = 0.

J[k] = E
�
eT [k]e[k]

	
(5.23)

P̃
est
g,u[k+ 1] = P̃

est
g,u[k] +µid,LMSθ̃ [k]

T W[k]T g [k] (5.24)

Similar to Sec. 5.2.1, µid,LMS is the adaptation gain.It is noteworthy that in order to be able to iden-
tify P g,u, it is necessary to use an input signal u(t) = W(t)θ , which excites the dynamics sufficiently.
To get this input signal, the parameter vector θ is filled with periodically changing random values. Those
random values are changed in time intervals of length trand . The block diagram for the identification
system is shown in Fig. 5.5.

5.2.3 Testing Procedure

Alg. 1 shows a pseudocode for the testing procedure using the LMS-type algorithm. The procedure
starts with an identification phase. The time length of the identification phase is defined by t id . The
identification period t id is split into smaller periods trand in which θ changes. The value of trand has
to be chosen sufficiently large to allow the transients to disappear. In general, transients can be present
for rapid changes of θ . For identifying P est

g,u, the vector θ is rearranged into the matrix θ̃ according
to Appendix D.1 after each change in θ . The other way round, the matrix P est

g,u, which is used during the

adaptation process, is retrieved by rearrangement of the vector P̃
est
g,u. After the identification process is

finished the adaptation process starts. The parameter vector can be initialized with θ = 0. It can also be
initialized with an estimate from a numerical model using the transfer functions H g,u(ω) and H g,ex t(ω)
in order to accelerate the adaptation process. The time length of the adaptation phase is defined by tad .
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Algorithm 1 Hybrid testing with LMS-based interface synchronization

Initialize P̃
est
g,u[0] := 0 and k := 0

while t < t id do
if mod (t, trand) = 0 then
θ [k] :=vector of random numbers

Rearrange θ [k] in θ̃ [k]
end if
Set actuator input to u[k] = W[k]θ [k]
Measure λ[k] and y EX P[k]
Calculate yV IR[k] through time integration (external forces f ex t[k] = 0 and λ[k])
P̃

est
g,u[k+ 1] = P̃

est
g,u[k] +µLMSθ̃ [k]T W[k]T (y EX P[k]− yV IR[k])

k := k+ 1
end while
Initialize θ [0] := 0, k := 0
Rearrange P̃

est
g,u in P est

g,u
while t < t id + tad do

Set actuator input to u[k] = W[k]θ [k]
Measure λ[k] and y EX P[k]
Calculate yV IR[k] through time integration (external forces f ex t[k] and λ[k])
θ [k+ 1] = θ [k] +µid,LMSP est

g,u[k]
T W[k]T (y EX P[k]− yV IR[k])

k := k+ 1
end while

5.2.4 Numerical experiment: Dynamics of the coupled system

In the following section, the algorithm described above is applied to the lumped mass system of Chap. 1.
The system is harmonically excited with the frequencies ωk ∈ [0.25ω0, 0.5ω0, . . . , 2.5ω0]. Fig. 5.6
shows the transfer functions of the open-loop and closed-loop system between excitation forces and
displacements. For the closed-loop system, the transfer function between excitation forces and the
interface displacements of the virtual subcomponent are shown. The fact that the dynamics of the
proposed LMS controller can be expressed as a linear system is used here. See [4] for the proof and
details. The plots show that the closed-loop dynamics match with the reference dynamics in phases
and amplitudes exactly at the excitation frequencies. At all other points, the closed-loop transfer function
stays on the curve of the virtual component. Fig. 5.7 shows a comparison of the closed-loop transfer
functions for the described algorithm with automatically generated controllers. The controllers were
created using the Matlab Control System Toolbox, but similar results can be obtained using any other
tuning algorithm. The PID tuning resulted in a pure integral gain. The result is that a correct coupling
is achieved only for frequencies below 0.1ω0. The system which is coupled with the Linear Quadratic
Regulator (LQR) is far closer to the reference transfer function in a broad frequency range. However, the
LQR is complex and highly dependent on the coupled system. As the following section shows, changes
in the system dynamics can deteriorate the test performance or cause instabilities.

5.2.5 Numerical experiment: Effects of identification errors

The stability of the closed-loop system can deteriorate due to modifications in the system dynamics
during the test or with respect to the assumed system dynamics. Those modifications can be caused
e.g. by temperature-dependent effects, wear, poor system identification, or poor controller tuning. To
simulate the effect of system modifications to the control performance, the mass mEX P was modified
in the numerical example. The LQR in Fig. 5.8 is tuned to the original value of mEX P , while the value
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Figure 5.6: Coupling of two mass-spring-damper systems with an adaptive feedforward filter. The transfer func-
tions shows that the steady-state closed-loop dynamics match with reference dynamics at the excitation frequen-
cies fk ∈ [5 Hz, 10 Hz, . . . , 50 Hz].
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Figure 5.7: Comparing the closed-loop transfer functions for LMS filter-based algorithms with automatically gen-
erated controllers.
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of mEX P in the system under control is varied. More specifically, the mass of the system under test is
set to values of m∗EX P ∈ [0.001 kg,0.002 kg, . . . , 0.03 kg]. The poles in the right half plane show that
the performance and the stability of the closed-loop system is highly sensitive to changes in the system
dynamics.
In Fig. 5.9, the same procedure is repeated and applied to the adaptive feedforward filter. Again, the
controller is tuned to the original value of mEX P , while the system under control is varied. In other words,
in the case of the adaptive feedforward filter, identifying P est

g,u is performed on the system with the original
mass.

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
120

130
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Re (G(s))
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(G
(s
))

reference, m∗EX P ∈ [0.001 kg, 0.002 kg, . . . , 0.03 kg] reference, mEX P

LQR, m∗EX P ∈ [0.001 kg, 0.002 kg, . . . , 0.03 kg] LQR, mEX P

Figure 5.8: Detail from pole plot for closed-loop transfer functions G(s): The LQR is tuned to the original value
of mEX P , whereas the value of m∗EX P ∈ [0.001 kg,0.002 kg, . . . , 0.03 kg] in the system under test is varied.
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adaptive feedforward, m∗EX P ∈ [0.001 kg,0.002 kg, . . . , 0.03 kg] adaptive feedforward, mEX P

Figure 5.9: Detail from pole plot for closed-loop transfer functions G(s): The interface transfer matrix P g,u is
identified with the original value of mEX P , whereas the value of m∗EX P ∈ [0.001 kg, 0.002 kg, . . . , 0.03 kg] in the
system under test is varied.

Another perspective on the robustness of the approach of using the adaptive feedforward filter is given
in Fig. 5.10. The stability of the closed-loop system is mapped over the estimated values of H est

g,u which
are usually obtained from the identification process. Remember that H est

g,u = H est
g,u is a complex scalar

for nΩ = 1 and nint = 1. The real and imaginary part of H est
g,u are contained in the matrix P est

g,u.
All maps were created using the adaptation gain µLMS = 1. The maps are shown for the excitation
frequencies Ω0 = 0.4ω0, Ω0 = 0.8ω0, which are close to the resonance of the virtual component
and for Ω0 = ω0 which is at the resonance of the coupled system. According to Fig. 5.10, the phase
error of the estimated H est

g,u(Ω0) with respect to the true H g,u(Ω0) can amount up to 90◦ for sufficiently
small adaptation gain. Even though this seems robust, for complex interfaces with multiple DOF and
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Figure 5.10: Stability map for a range of identified values H est
g,u(Ω0): The three plots show stable regions for

excitation frequencies of Ω0 = 0.4ω0, Ω0 = 0.8ω0 and Ω0 =ω0. The true value Hg,u(Ω0) lies within the stable
region.

excitations with multiple harmonics, the performance of LMS-type filters may decline. This is the reason
for the application of RLS-type algorithms to the coupling problem as explained in Sec. 5.4.

5.3 Passivity Preserving Adaptive Feedforward Filters

High adaptation gains, insufficient plant identification or changes in the system dynamics during the
test can lead to unstable filter dynamics. In the following section, a method is presented which helps
to overcome the stability issues: A supervisor is introduced which reduces the adaptation gain µLMS
whenever necessary. To do so, the power-flows between the subcomponents are analyzed. Those
power-flows are closely linked to passivity properties of the hybrid test. Passive systems are defined
as systems which consume energy but do not produce energy. Coupling two arbitrary passive systems
results in a passive overall system. One can think of the control system and actuation system of a hybrid
test as an interconnection device between the virtual and the experimental component. This combination
of the control system and the actuation system is referred to as the "transfer system" in this section. If
the transfer system and the subcomponents are passive, the test setup is guaranteed to be passive. This
implies that energy is only injected through external forcing on the virtual or the experimental component
but not through the transfer system. Fig. 5.11 shows the power-flows in a hybrid test using adaptive
feedforward filters. The transfer system is referred to as "passive" if the power-inflow into the system is
always larger than the power-outflow. The power-inflow PAC T

in to the transfer system is the sum of the
power-inflow from the experimental component and the power-inflow from the virtual component. Both
are the product of collocated interface forces and interface velocities. As a result, the power-inflow to
the transfer system in Eq. (5.25) is the product of interface forces and the time derivative of the interface
gap.

PAC T
in = −λV IR ẏV IR +λ

V IR ẏ EX P = λ
V IRġ (5.25)

A negative power-inflow into the transfer system—or in other words a power-outflow from the transfer
system—implies undesirable energy injection into the hybrid test. In order to constrain the power-outflow
of the transfer system which deteriorates its passive nature, the power-outflow is limited to Pl im. The
limit Pl im < 0 is a negative value specific to the required power-outflow limit of the test. The objective of
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Figure 5.11: Power-flow diagram and power-flow supervisor

the power-flow supervision is to constrain the power-flow according to Eq. (5.26).

lim
t→∞ PAC T

in ≥ Pl im (5.26)

Note that the energy-inflow is defined as the time integral of the power-inflow:

EAC T
in =

∫ t

0

PAC T
in (τ)dτ

If the passivity constraint is violated, the two parameters µLMS and γLMS of the adaptation algorithm are
adjusted following a simple heuristic approach. The objective is to reduce the actuator amplitudes, to
restore passivity and to enable fast adaptation. Approaches where the leakage factor νLMS is adjusted
according to the algorithm’s performance have been proposed in literature such as [55]. The stability
and the convergence of the LMS algorithm is controlled by the adaptation gain µLMS : A high adaptation
gain µLMS leads to a fast convergence of the filter coefficients, but high values can lead to the unstable
behavior of the algorithm. In contrast, lower values of µLMS cause a slower convergence, but stability is
ensured if the value falls below the stability threshold. As a consequence, the adaptation gain µLMS is
reduced using the exponential function in Eq. (5.27) with the initial adaptation gain µini t , the variable aµ
and the user-defined exponent bµ ≥ 1. The reasons for using an exponential function are to enable
a faster drop of the adaptation gain µLMS in the initial phase, to ensure a fast restoration of passivity
and a slower change in µLMS if it is closer to its optimal value. Fig. 5.12 shows the functions for some
exemplary values bµ.

µLMS = µini t · abµ
µ with µLMS ∈ [0, µini t] ∀ aµ ∈ [0, 1] (5.27)

The initial value is aµ = 1. If the power-inflow to the actuation system falls below the threshold Pl im—
meaning that the system is not passive—the variable aµ is reduced by the user-defined step-size param-
eter∆↓aµ. The lower bound for the variable aµ is zero. As a result, the adaptation gain is bound by zero
and the initial adaptation gain µini t . The leakage factor νLMS results from the regularization factor γLMS
according to Eq. (5.19). A low leakage factor—or equivalently, a high regularization factor—enforces
lower filter coefficients. It is desirable to reduce the filter coefficients after a violation of the passivity
constraint is detected. After the passive state is restored by the drop in the adaptation gain µLMS , the
regularization should be reduced to ensure that the filter coefficients are adapted accurately to their opti-
mal values. The regularization parameter γLMS is calculated using the exponential function in Eq. (5.28)
with the user-defined maximum regularization factor γmax , the variable aγ and the user-defined expo-
nent bγ ≥ 1. Fig. 5.12 shows the functions for some exemplary values bγ. The nature of the exponential
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Figure 5.12: Parameter adjustment functions

function leads to a progressive behavior of the leakage: In cases of severe power-outflow, the filter
coefficients fall faster.

γLMS = γmax · abγ
γ and

νLMS = 1− µ̄LMSγLMS with νLMS ∈ [1− µ̄LMSγmax , 1] ∀ aγ ∈ [0, 1]
(5.28)

The initial value is aγ = 0. If the power-inflow to the actuation system PAC T
in falls below the thresh-

old Pl im—meaning that the system is not passive—the variable aγ is increased by the user-defined
step-size parameter ∆↑aγ. If the power-inflow to the actuation system PAC T

in rises above the thresh-
old Pl im—meaning that the system is assumed to be passive—the variable aγ is reduced by the user-
defined step-size parameter ∆↓aγ. The lower bound for the variable aγ is zero and the upper bound
is 1. As a result, the adaptation gain is bound by one and 1 − µ̄LMSγmax . The complete procedure
including the adaptation of µLMS and νLMS is summarized in the pseudo-code of Alg. 2. The simple

Algorithm 2 Power supervision for adaptive feedforward filters in hybrid testing
Initialize aγ := 0 and aµ := 1
while adaptation is running do

if PAC T
in < Pl im then
Set aγ :=min(aγ +∆↑aγ, 1)
Set aµ :=max(aµ −∆↓aµ, 0)

end if
if PAC T

in > Pl im then
aγ :=max(aγ −∆↓aγ, 0)

end if
Set γLMS := γmax · abγ

γ

Set µLMS := µini t · abµ
µ

end while

numerical test case of Chap. 1 helps to demonstrate the effects of changes in the adaptation parame-
ters aµ and bµ as well as the power-inflow limit Pl im. The overall system emulated in the test is a lumped
mass-spring-damper system as shown in Fig. 1.2. The system is split into a virtual component and an
experimental component. In Fig. 1.2, the virtual component is depicted in blue, and the experimental
component is depicted in green. The experimental component is controlled via an actuation system,
which is depicted in orange in Fig. 1.2. Since the adaptive feedforward filter acts only at the excitation
frequencies, measurement noise can cause a drift of the interface gap. A peak filter using the excitation
frequency was applied at the actuator input in order to prevent those drift effects. The properties of the
subsystems are listed in Tab. B.1 in Appendix B.
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5.3.1 Adaptation gain step-size

The objective of the first numerical experiment is to investigate the influence of the changes in∆↓aµ. To
do so, the parameter ∆↓aµ was varied while keeping the step-sizes ∆↑aγ and ∆↓aγ, the exponents bγ
and bµ, the initial adaptation gain µini t , the power-outflow Pl im, the excitation amplitude Aex t as well
as the excitation frequency fex t constant. Tab. B.3 gives an overview of the parameters. Note that the
initial adaptation gain µini t = 10 is a high value which causes an unstable system behavior without the
passivity-preserving mechanism. As mentioned earlier, such instabilities can be caused in the same
way by an insufficient system identification process as well as by changes in the system parameters.
The values of the power-inflow PAC T

in , the energy-inflow EAC T
in , the leakage factor νLMS , the adaptation

gain µLMS , and the interface gap g are recorded during the simulation. The simulation includes a 50 s
identification phase. The identification was performed according to the procedure which is described
in Sec. 5.2. The long duration of the identification phase is chosen to rule out all possible influences
of identification errors on the simulation. Fig. 5.13 shows the development of the adaptation gain µLMS
and the leakage factor νLMS during the simulation. As expected, the decay rate of the adaptation gain
is higher for higher step-sizes ∆↓aµ. The adaptation gain reduction is activated when the passivity con-
straint is violated. Depending on the reduction step-size ∆↓aµ, the adaptation gain µLMS may overstep
the optimal adaptation gain or reach it gradually. The resulting adaptation gains for the passive state
vary: Higher step-sizes∆↓aµ result in a lower end value. Lower step-sizes ∆↓aµ exhibit a slower decay
of the adaptation gain but result in µLMS being closer to the optimal value. The behavior of the leakage
factor νLMS with respect to the step-size∆↓aµ follows the development of the adaptation gain µLMS : For
a fast decaying adaptation gain µLMS , the drop in the leakage factor is lower since passivity is restored
faster. On the other hand, a slow decay in µLMS makes a larger drop in νLMS necessary.
Fig. 5.14 shows the power-inflow PAC T

in to the actuator system, the energy-inflow EAC T
in to the actuator

system and the envelope of the interface gap g . Note that the power-inflow is normalized with the peak
values of the power-inflow into the reference system PREF

in,max , the energy-inflow is normalized with the

peak values of the energy in the reference system EREF
max and the interface gap is normalized with the

amplitude of displacement of the reference system yREF
amp . The duration of the power-outflow of the ac-

tuator system is longer for lower step-size values ∆↓aµ. For higher step-size values ∆↓aµ, the duration
gradually decreases. Accordingly, further energy injection is stopped after the settling of the algorithm.
This fact can be seen in the diagram as the curves flatten after the settling time of the algorithm. It is
noteworthy that the total energy-outflow is highest for the lowest step-size values ∆↓aµ. The interface
gap is a measure for the synchronization of the interface between the virtual component and the ex-
perimental component. The step-size ∆↓aµ = 0.0001 shows a high peak value of the interface gap,
while with increasing values of the step-size ∆↓aµ, the peak gradually decrease. The duration which
is needed to reach synchronization improves in the same way for higher step-size values. The reason
is that lower choices for the step-size ∆↓aµ result in higher amplitudes at the start of the adaptation
phase. The higher resulting adaptation gain µLMS , however, may result in a faster convergence later in
the test. To conclude, there is a trade-off between the higher adaptation gain and a longer duration of
the passivity violation on the one hand, and lower adaptation gains and shorter durations of the passivity
violation, on the other hand. Choosing∆↓aµ determines the quality of the resulting adaptation gain and
the duration of passivity violations.

5.3.2 Leakage factor step-size

The objective of the second numerical experiment is to investigate the influence of the changes to∆↑aγ.
The parameter ∆↑aγ was varied while the step-sizes ∆↓aµ and ∆↓aγ, the exponents bγ and bµ, the
initial adaptation gain µini t , power-outflow limit Pl im, the excitation amplitude Aex t as well as the exci-
tation frequency fex t remained constant. Tab. B.4 gives an overview of the parameters. The values of
the power-inflow PAC T

in , the energy-inflow EAC T
in , the leakage factor νLMS , the adaptation gain µLMS , and
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Figure 5.13: Adaptation gain and leakage factor for different adaptation gain step-sizes ∆↓aµ
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Figure 5.14: Power/energy-inflow to actuator system and learning curve for varying adaptation gain step-
sizes ∆↓aµ

the interface gap g are recorded during the simulation. Just like in the simulation described earlier in the
text, a 50 s identification phase was applied.
Fig. 5.15 shows the effects of changes in the leakage factor step-size ∆↑aγ, on the leakage factor and
the adaptation gain. As expected, higher step-sizes result in a larger drop in the leakage factor. Since
the lower leakage factors reduce further power-outflow, the drop in the adaptation gain µLMS is steeper,
and it settles faster for lower step-sizes ∆↑aγ. As a consequence, the duration of the reduction in the
leakage factor is higher for high values of ∆↑aγ.
Fig. 5.16 shows the power and energy-inflow PAC T

in and EAC T
in as well as the envelope of the inter-

face gap. The maximum power-outflows are close to the trigger value Pl im for higher step-size val-
ues ∆↑aγ. The reason is that lower leakage factors allow the filter coefficient—and as a consequence,
the amplitudes—to drop faster. However, the increasing settling time prolongs the duration of the power-
outflow. Equivalently, the curves for the energy-inflow flatten later when using higher values of ∆↑aγ.
The total energy-outflow is lowest for low values of ∆↑aγ. Similar effects can be observed for the in-
terface gap: High values of ∆↑aγ help to reduce the peak values of the interface gap but prolong the
settling time to full synchronization.
To conclude, high values of∆↑aγ reduce the peak values of the power-outflow and the interface gap but
increase the settling time. Consequently, a trade-off between settling time and peak values has to be
made.

5.3.3 Power-outflow limit

The objective of the third numerical experiment is to investigate the influence of the changes in the
power-inflow limit Pl im which triggers the algorithm. As the trigger value Pl im is applied to the power-
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Figure 5.15: Adaptation gain and leakage factor for varying leakage factor step-sizes ∆↑aγ
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Figure 5.18: Power/energy-inflow to actuator system and learning curve for varying power-outflow limits Pl im

inflow values, it takes on negative values. During the numerical experiment, the step-sizes ∆↓aµ, ∆↑aγ
and ∆↓aγ, the exponents bγ and bµ, the initial adaptation gain µini t , the excitation amplitude Aex t as
well as the excitation frequency fex t remained constant. Tab. B.5 gives an overview of the parameters.
The values of the power-inflow PAC T

in , the energy-inflow EAC T
in , the leakage factor νLMS , the adapta-

tion gain µLMS , and the interface gap g are recorded during the simulation. Just as in the simulation
described in Sec. 5.3.1 and Sec. 5.3.2, a 50 s identification phase was applied. Fig. 5.17 shows the
development of the adaptation gain µLMS and the leakage factors νLMS for a range of values of Pl im.
The curves for µLMS are shifted in time since the different values of Pl im trigger the reduction of the
adaptation gain at different points in time. Slopes and final values of µLMS are not affected significantly
by the choice of Pl im. The duration of the drops in the leakage factor νLMS are similar for all tested
values of Pl im. However, the initial drop of νLMS is largest for the lowest trigger level Pl im = 0.1 W.
The reason is that transient dynamics trigger the initial drop with amplitudes in the ranges of the trigger
level Pl im = 0.1 W. Fig. 5.18 shows the power-inflow, energy-inflow and interface gap over time. As
expected, different trigger values of Pl im result in different maximum power-outflow values. The duration
of the outflow is similar for all values. As a consequence, the peak values of the interface gap gradually
decrease for tighter power-outflow limits. Independently of the power-outflow limit the interface synchro-
nization can get perfect. In summary, the power-outflow limit—even though it has only a minor influence
on the final value of the adaptation gain—influences the expected peak amplitudes of the test.

5.3.4 Conclusion

The study leads to the following conclusions:

• Step size ∆↓aµ defines the convergence speed of the adaptation gain µLMS . High values can



104 5 Feedforward Based Coupling

lead to lower values of µLMS .

• Step size ∆↑aγ defines the convergence speed of the leakage factor νLMS . Higher values can
reduce the peak values of power-outflow but increase the settling time.

• The power-outflow limit Pl im has only a slight influence on the final value of the adaptation gain,
but higher values reduce the peak interface gap.

5.4 Recursive-Least-Squares Based Adaptation Law

The LMS-based algorithm from Sec. 5.2 may face problems where systems with multiple DOFs inter-
faces are coupled. The reason is that the performance of the algorithm is determined by the eigenvalue
spread of the matrix PT

g,uP g,u. The presence of additional interface DoFs has a negative effect on this
eigenvalue spread. The algorithm proposed in this section makes use of a Recursive-Least-Squares
(RLS) adaptation law. RLS-based adaptation laws have been successfully applied to Active-Noise-
Cancellation as shown e.g. in [41] or [49]. The cost function for this type of algorithm contains the actual
sum of squared interface gaps, while the LMS-based algorithm is based on the expected value of the
squared interface gap. This fact makes the convergence of the RLS-based algorithm faster since in
each time step the exact solution to the sum of squares problem is obtained. Furthermore, the error of
the RLS algorithm approaches zero while—due to its stochastic nature—the LMS algorithm exhibits a
remaining small error.

5.4.1 Adaption

The cost function (5.29) consists of the sum over the squared gap and a regularization term. Since the
excitations or the system properties may be subject to changes during the test, the resulting solution
for the parameter vector θ should depend mainly on new data. A so-called forgetting factor µRLS (0 <
µRLS ≤ 1) with an exponent increasing with the age of the data ensures this property. The exponentially
decreasing weight of the squared interface gap causes the contribution of old data to the solution to
decrease as new data is available. The weight for the newest sample is 1. Choosing a low value of µRLS
produces a fast adaptation while choosing a high value yields a slow adaptation. Ξ is a positive-definite
matrix, which is a measure of confidence at the starting value θ [0] = 0. It can be set to Ξ = γRLS I ,
with scalar γRLS and unity matrix I . High values of γRLS will help to prevent jumps in θ at the start of the
adaptation phase, while low values will allow a faster adaptation to the optimal θ o.

J[k] =
k∑

i=0

µk−i
RLSg T [i]g [i] +µk+1

RLSθ
T [k]Ξθ [k]

=
k∑

i=0

µk−i
RLS(W[i]P g,u[i]θ [k] + g ex t[i])

T ·

· (W[i]P g,u[i]θ [k] + g ex t[i]) +µ
k+1
RLSθ

T [k]Ξθ [k]

(5.29)

Setting the gradient of the cost function (Eq. (5.31)) to ∇J[k] = 0 yields an equation which can be
solved for θ [k]. The computational cost and memory consumption of solving the problem in each time
step, however, would be high and would increase with every additional data sample. This fact is the
reason for introducing an update scheme, which adds new data samples to the solution as they become
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Figure 5.19: Block diagram for the RLS-based adaptation process.

available.

∇J[k] =
∂ J[k]
∂ θ [k]

(5.30)

=
k∑

i=0

2µk−i
RLS

�
PT

g,u[i]W
T [i]W[i]P g,u[i]θ [k] + PT

g,u[i]W
T [i]g ex t[i]

�
+ 2µk+1

RLSΞθ [k]

(5.31)

Eq. (5.32) is a rearranged form of the above-mentioned condition ∇J[k] = 0. For convenience, the
symbol Φ is introduced for the terms related θ and the symbol s is introduced for the terms depending
on g ex t :

Φ[k]θ [k] = s[k]

with Φ[k] =
k∑

i=0

µk−i
RLSPT

g,u[i]W
T [i]W[i]P g,u[i] +µ

k+1
RLSΞ

and s[k] =
k∑

i=0

−µk−i
RLSPT

g,u[i]W
T [i]g ex t[i]

(5.32)

The update scheme is obtained by reformulating Φ[k+1] and s[k+1] in a recursive form. To do so, the
sums from the definition in Eq. (5.32) are split into the summands containing the previous values (Φ[k]
and s[k]) and the summands containing the newly added values. Accordingly, the initialization needs to
be Φ[0] = Ξ to agree with the definitions in Eq. (5.32).

Φ[k+ 1] = µRLSΦ[k] + PT
g,u[k+ 1]W T [k+ 1]W[k+ 1]P g,u[k+ 1]

s[k+ 1] = µRLS s[k]− PT
g,u[k+ 1]W T [k+ 1]g ex t[k+ 1]

(5.33)

A numerically stable and efficient way to perform the update of θ [k] is the so-called QR-RLS al-
gorithm. Alg. 3 describes the full update cycle. The derivation of the algorithm is described in Ap-
pendix D.2. Φ

1
2 [0] is initialized as

p
γRLS I . The parameter vector is initialized with θ [0] = 0. For the

correct adaptation of θ , an estimate of the interface transfer matrix P est
g,u is necessary. The identification

procedure for this estimate is described in the following section. Note that in contrast to the LMS-based
algorithm, the contribution g ex t of the external forces to the interface gap g is used. The interface gap
itself is not explicitly calculated during the adaptation process. A block diagram of the described system
is shown in Fig. 5.19.

5.4.2 Identification

The matrix Pu,g , which represents the system dynamics at the interface, was used to obtain θ in the
previous section. An RLS-based approach can be applied to identify Pu,g . The squared identification
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Algorithm 3 Hybrid testing with RLS-based interface synchronization: adaptation

Initialize Φ
1
2 [0] := Ξ

1
2 , θ [0] := 0 and k := 0

while t < tad do
Set actuator input to u[k] = W[k]θ [k]
Calculate g ex t[k+ 1] through time integration (external forces f ex t[k+ 1])

Build up matrix A=

� p
µRLSΦ

1
2 [k] W[k+ 1]P est

g,up
µRLSθ

T [k]Φ
1
2 [k] −g T

ex t[k+ 1]

�

QR-factorization A= BC

Extract values

�
B1,1 B1,2
B2,1 B2,2

�
=

�
Φ

1
2 [k+ 1] 0

θ T [k+ 1]Φ
1
2 [k+ 1] B2,2

�

Solve B2,1 = θ
T [k+ 1]B1,1 for θ [k+ 1]

k := k+ 1
end while

error e[i] serves as a cost function. For the purpose of identification, the values of Pu,g have to be
rearranged in the vector P̃u,g according to the example given in Appendix D.1. Correspondingly, vector θ

is rearranged in the matrix θ̃ according to Appendix D.1.

J[k] =
k∑

i=0

µk−i
id,RLS

�
eT [i]e[i]

�
+µk+1

id,RLS P̃
est,T
u,g [k]ΞP̃

est
u,g[k]

=
k∑

i=0

µk−i
id,RLS

�
W[i]θ̃ [i]P̃ est

u,g[k]− g [i] + g ex t[i]
�T �

W[i]θ̃ [i]P̃ est
u,g[k]− g [i] + g ex t[i]

�

+µk+1
id,RLS P̃

est,T
u,g [k]ΞP̃

est
u,g[k]

(5.34)

Alg. 4 results from the recursive formulation based on the cost function in Eq. (5.34). The derivation is
analogous to the one in the previous section: P est

g,u is replaced by θ̃ and θ is replaced by P̃
est
g,u. The input

signal u is produced by setting θ to random values in time intervals of length trand .

5.4.3 Simultaneous Identification and Adaption

In the sequential adaptation and identification procedures described in the previous sections, a new
identification step is necessary every time the dynamics of the system change. The solution is a si-
multaneous adaptation and identification procedure. The outline of the algorithm is given in Alg. 5. An
identification phase precedes the simultaneous identification and adaptation process. This procedure
makes it possible to initialize the interface transfer vector P̃

est
g,u[0] with the identified value and prevents

unwanted jumps in θ . Note that in this simultaneous approach, knowledge of g ex t[k] is necessary.
Thus, applying the algorithm is possible where the external excitations is known or an additional identifi-
cation of g ex t is performed.

5.4.4 Numerical experiment: Performance of adaptive feedforward filters

In order to evaluate the performance of the different algorithms, the learning curves of the LMS-based
algorithm and the RLS-based algorithms are compared. The system from Chap. 1 is excited using a
sinusoidal force f ex t = cos (Ω0 t) with the excitation frequency Ω0 = 2π · 8 1/s. The simulations were
performed using four different values of µLMS and µRLS , since the performance of the algorithms is highly
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Algorithm 4 Hybrid testing with RLS-based interface synchronization: identification

Initialize Φid, 1
2 [0] := Ξid, 1

2 , P̃
est
g,u[0] := 0 and k := 0

while t < t id do
if mod (t, trand) = 0 then
θ [k+ 1] :=vector of random numbers

Rearrange θ [k+ 1] in θ̃ [k+ 1]
end if
Set actuator input to u[k] = W[k]θ [k]
Measure λ[k+ 1] and y EX P[k+ 1]
Calculate yV IR[k + 1] through time integration (external forces f EX P

ex t [k + 1] and interface
forces λ[k+ 1])

Build up matrix Aid =

� p
µid,RLSΦ

id, 1
2 [k] W[k+ 1]θ̃ [k+ 1]p

µid,RLS P̃
est
g,u[k]Φ

id, 1
2 [k] (y EX P[k+ 1]yV IR[k+ 1]− g ex t[k+ 1])T

�

QR-factorization Aid = BidC id

Extract values

�
Bid

1,1 Bid
1,2

Bid
2,1 Bid

2,2

�
=


 Φid, 1

2 [k+ 1] 0

P̃
est,T
g,u [k+ 1]Φ̃id, 1

2 [k+ 1] Bid
2,2




Solve Bid
2,1 = P̃

est,T
g,u [k+ 1]Bid

1,1 for P̃
est
g,u[k+ 1]

k := k+ 1
end while

Algorithm 5 Hybrid testing with RLS-based interface synchronization: simultaneous identification and
adaptation

Initialize Φid, 1
2 [0] = Ξid, 1

2 , P̃
est
g,u[0] = P̃

est
g,u, Φ

1
2 [0] = Ξ

1
2 , θ [0] = 0 and k := 0

while t < tad do
Set actuator input to u[k] = W[k]θ [k]
Measure λ[k+ 1] and y EX P[k+ 1]
Calculate yV IR[k+ 1] through time integration (external forces f ex t[k+ 1] and λ[k+ 1])
Calculate g V IR

ex t [k+ 1] through time integration (external forces f ex t[k+ 1] and λ[k+ 1])
Rearrange P̃

est
g,u[k] in P est

g,u[k]

Build up matrix A=

� p
µRLSΦ

1
2 [k] W[k+ 1]P est

g,u[k]p
µRLSθ

T [k]Φ
1
2 [k] −g T

ex t[k+ 1]

�

QR-factorization A= BC

Extract values

�
B1,1 B1,2
B2,1 B2,2

�
=

�
Φ

1
2 [k+ 1] 0

θ T [k+ 1]Φ
1
2 [k+ 1] B2,2

�

Solve B2,1 = θ
T [k+ 1]B1,1 for θ [k+ 1]

Rearrange θ [k+ 1] in θ̃ [k+ 1]

Build up matrixAid =

� p
µid,RLSΦ

id, 1
2 [k] W[k+ 1]θ̃ [k+ 1]p

µid,RLS P̃
est
g,u[k]Φ

id, 1
2 [k] ((y EX P[k+ 1]yV IR[k+ 1]− g ex t[k+ 1])T

�

QR-factorization Aid = BidC id

Extract values

�
Bid

1,1 Bid
1,2

Bid
2,1 Bid

2,2

�
=


 Φid, 1

2 [k+ 1] 0

P̃
est,T
g,u [k+ 1]Φ̃id, 1

2 [k+ 1] Bid
2,2




Solve Bid
2,1 = P̃

est,T
g,u [k+ 1]Bid

1,1 for P̃
est
g,u[k+ 1]

k := k+ 1
end while
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Figure 5.20: Learning curves for three adaptation strategies. The curves show the peak envelope of the interface
gap g after an identification period with a duration of t id = 100 s.

dependent on the choice of the adaptation gains or forgetting factors. All algorithms were tested with
a preceding identification phase (duration t id = 100 s) using the identification gains µid,LMS = 0.01
and µid,RLS = 0.99. The duration of intervals in which the identification signal parameters are updated
was chosen as trand = 2 s. Fig. 5.20 shows the envelopes of the interface gap g [k]. The interface
gap is normalized with the root mean square value yRLS of the reference interface displacements. Note
that the envelope of the oscillations is shown in order to improve the readability of the graphs. The
LMS-based adaptation law exhibits an unstable behavior for one value of the adaptation gain µLMS . The
less aggressive choices of µLMS result in a stable adaptation. In contrast, the RLS-based algorithm with
sequential identification and adaptation shows fast convergence for all forgetting factors. However, the
gap only approaches zero if the dynamics are identified properly during the identification phase. The
RLS-based algorithm with simultaneous identification and adaptation converges within less than 20 s.
In this case, the most aggressive choice for the forgetting factor µRLS deteriorates convergence. The
reason is the excitation of transient dynamics due to the quick changes in the interface force amplitudes,
which is a violation of the steady-state assumptions. Note that the system remains stable.
Fig. 5.21 shows the envelopes of the interface gap g [k] when using an identification with a duration
of t id = 0.01 s. The short identification period has the effect that the transfer behavior is not identified
correctly. The LMS-based adaptation law exhibits an unstable behavior for µLMS = 10−1, µLMS = 10−2

and µLMS = 10−3. The RLS-based algorithm with sequential identification and adaptation converges,
but an error due to the wrong identification remains. For the RLS-based algorithm with simultaneous
identification and adaptation, the dynamics remain stable. The filter convergences and interface syn-
chronization are achieved for choices of the forgetting factor µRLS ≤ 1− 10−2.

5.5 Adaptive Filter Based on Finite Impulse Responses

Another approach to design adaptive feedforward filters is applying finite impulse response (FIR) filters
instead of harmonic basis functions. The approach is closely linked to the techniques shown in Sec. 5.1
and is based on Least-Mean-Squares filters. The general form is described in textbooks as e.g. [41]
or [57]. Fig. 5.22 shows a block diagram of the control scheme.
Applied to real-time hybrid tests, the actuator input is the convolution product of the external excita-
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Figure 5.21: Learning curves for three adaptation strategies. The curves show the peak envelope of the interface
gap g after an identification period with a duration of t id = 0.01 s.
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Figure 5.22: Block diagram of a real-time hybrid test with an adaptive feedforward filter based on a FIR filter: For
readability reasons and without loss of generality, the excitation on the experimental component are omitted in the
diagram.

tions fex t[k] with the feedforward filter coefficients θ :

u[k] = f̄ ex t[k]θ [k]
T with

f̄ ex t[k] =
�

fex t[k] fex t[k− 1] . . . fex t[k− Nθ ]
�

,
(5.35)

where the previous values of the excitation signal are arranged in the vector f̄ ex t[k] such that the scalar
product corresponds to the time discrete convolution product. Correspondingly, the coefficients of the
feedforward filter HF F [n] are arranged in the vector θ in reverse order.

5.5.1 Filtered-x Least Mean Squares Algorithm

The objective of the adaptive filter is to drive the interface gap g to zero. In order to derive an adaptation
law, it is important to write the interface gap as function of the filter coefficients θ . In Eq. (5.36), the
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Figure 5.23: The block diagram from Fig. 5.22 is rearranged for the derivation of the fx-LMS algorithm. For
readability reasons and without loss of generality, the excitation on the experimental component are omitted in the
diagram.

interface gap contains the convolution product of filtered external forces and the feedforward filter:

g[k] = f̄ f il t
ex t [k]θ [k]

T + gex t[k] (5.36)

The convolution product is written as a vector product and f̄ f il t
ex t [k] is a vector which contains values

of the filtered excitation forces. The filtered1 excitation forces are derived by rearranging Fig. 5.22. The
rearranged block diagram is shown in Fig. 5.23. In the diagram, the impulse response Hg,u[k] between
actuator input and the interface gap moves into the direction of the external excitation. As a result, the
filtered excitation forces f f il t

ex t [k] are obtained by convolution of the excitation forces with the impulse
response Hg,u[k]. This is always possible since the dimension of all signals is one in this consideration.
The convolution product which yields the filtered signal reads

f f il t
ex t [k] =

k∑
i=0

Hg,u[k− i] fex t[i]∆t. (5.37)

Note that similar to Sec. 5.1, only an estimate of the impulse response Hg,u[k] is necessary in order to
perform the adaptation process. In practice, H est

g,u[k] is identified in a process which precedes the actual
adaptation process. The corresponding vector which is used in the convolution product of Eq. (5.36) is

f̄ f il t
ex t [k] =

�
f f il t
ex t [k] f f il t

ex t [k− 1] . . . f f il t
ex t [k− Nθ ]

�
. (5.38)

The squared interface gap and a regularization term serve as cost function

J[k] =
1
2

g[k]2 + γLMSθ [k]θ [k]
T , (5.39)

where γLMS is the regularization parameter. The update law for θ [k + 1] is formulated as a gradient
descent:

θ [k+ 1] = θ [k]− µ̄LMS∇J[k], (5.40)

where µ̄LMS is the adaptation gain and can be used for tuning the filter. Substituting the gradient of the
cost function ∇J[k] yields the update law of Eq. (5.41)

θ [k+ 1] = νLMSθ [k]− µ̄LMS f̄ f il t
ex t [k]g[k], (5.41)

1The term "filtered x" refers to the input signal x of the filter. In the case of real-time hybrid testing the variable x corresponds
to the excitation force fex t .
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Figure 5.24: Interface displacements (on the left) after convergence using a filter with length Nθ = 100 and
learning curves (on the right) of tests with varying filter length.

where νLMS = 1 − µ̄LMSγLMS is the leakage factor which prevents the filter coefficients from drifting.
The adaptation gain can be normalized using the filtered external forces f f il t

ex t according to [57] by
substituting

µ̄LMS =
µLMS

f f il t
ex t f f il tT

ex t

(5.42)

The normalization term serves as an adaptive step width. The ideal system is stable if the normalized
adaptation gain obeys µLMS < 1 . In practice, the value has to be chosen below this boundary due to
inaccuracies in the identified filter Hg,u.
The prerequisite for accurate compensation is that the filter length Nθ is sufficient to represent the
impulse response H−1

g,uHex t . As shown in [74] for periodic excitations, the condition of Eq. (5.43) is
sufficient.

Nθ ≥
2π
Ω0

fS =
T0,ex t

TS
(5.43)

Here, Ω0 is the excitation frequency, T0,ex t is the period of the excitation , fS is the sampling frequency
and TS is the sampling step width. Correspondingly, T0,ex t/TS is the number of time steps during one
oscillation. In words, the filter is sufficiently long, if the number of time steps during one oscillation is
smaller than the number of filter coefficients.

5.5.2 Numerical experiment: Transient dynamics

The method is demonstrated in a numerical experiment using the system from Sec. 4.2.3 with the pa-
rameters κAC T = 0.1, κEX P = 0.2, κP = 0.1, φAC T = 0.1, ζV IR = 0.2, and ζAC T = 0.1. In order to
show that the approach works with arbitrary transient excitations, a random noise signal was applied as
an external force. Fig. 5.24 gives the interface displacements and the learning curves of the experiment.
The displacements are normalized with the root mean square interface displacement yRMS of the refer-
ence system. The time is normalized with the period time T0 which corresponds to the eigenfrequency of
the reference system. The subspace plots of Fig. 5.25 show the interface synchronization for different
filter lengths Nθ . An undistorted, linear curve with slope 1 indicates a perfect synchronization. Time
lags between the interface displacements cause an ellipsoid form of the curve. Amplitude errors cause
deviations from the slope. The synchronization plot related to a filter of length Nθ = 10 shows strong
deviations from a perfect synchronization. Increasing the filter lengths to Nθ = 100 and Nθ = 1000
improves the results.
In contrast to the approach based on harmonics (Sec. 5.1), the FIR-based FxLMS filter is capable of
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Figure 5.25: Synchronization subspace plot of the interface displacements using adaptive filters with varying filter
length.

coupling systems with arbitrary excitations. Transient responses can be simulated if the system dynam-
ics only change slowly. Nevertheless, if harmonic excitations can be assumed, the harmonic approach
is preferable. The damping rate has a strong influence on the number of coefficients in the FIR filter
(see Sec. 2.1), while their number in the harmonic approach only depends on the number of harmonics
in the excitation signal. This can cause computationally demanding filters for lightly damped systems
which is relevant especially for test setups with more than one interface DOF.

5.6 Combined Feedback and Feedforward Control

Adaptive feedforward filters with harmonic basis functions, which are discussed in Sec. 5.2 and Sec. 5.4,
are well suited to couple systems with harmonic excitations that operate in steady state. If neglecting the
transient dynamics is not possible, the method has to be extended. One approach is to combine adap-
tive feedforward filters and passivity-based control as proposed in [78]. The method allows controlling
the slow transients and the low-frequency content by feeding back the virtual interface displacement as
a demand signal to the actuation system. The feedback structure of the real-time hybrid testing scheme
can lead to unstable behavior. A passivity-based controller—as it is described in Sec. 4.4—stabilizes the
system. The signal of the adaptive feedforward controller is augmented to the system and improves the
accuracy of the steady-state responses.
A block diagram of the control structure is given in Fig. 5.26: Just as in Sec. 4.4, a displacement con-
trolled actuation system is the prerequisite for implementing the technique. A virtual dissipative element
with adaptive damping rate enforces the passivity of the system. The correction signal from the adaptive
feedforward filter is augmented to the interface displacement of the virtual component yV IR. Hence, the
new actuator input reads

u = yV IR +Wθ , (5.44)

where the basis function matrix W and the parameter vector θ are defined according to Sec. 5.1. The
characteristics of the augmented actuator input are defined by θ , and θ is updated based on the LMS-
based adaptation law from Sec. 5.2. Accordingly, the adaptation law is driven by the residual interface
gap g .



5.6 Combined Feedback and Feedforward Control 113

virtual component

λEX P

actuation system +
inner-loop control

experimental
component

f V IR
ex t

f V IR
ex t

yV IR

artificial damper

λV IR

ẏEX P ẏV IR λEX P λV IR

+
passivity controller

yEX P

+

fPCB
CPCB

adaptive
feed-forward filter

-g

+

+

+

Figure 5.26: Block diagram of a real-time hybrid test with a passivity based controller and an adaptive feedforward
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Chapter 6

Experiments with Feedforward Based Approaches

Parts of this chapter have been submitted for publication in [7] and [9].

In this chapter, experimental results related to the techniques from Chap. 5 are presented, and the
practical implementation of the techniques is discussed.

6.1 Coupling Two Cantilever Beams

The first section experimentally demonstrates real-time hybrid testing with adaptive feedforward filters
as it is presented in Sec. 5.2 and Sec. 5.4. The experiments are performed using two cantilever beams
which are coupled during the test. The excitation is chosen such that the coupling of virtual and experi-
mental component is possible with only two actuators.

6.1.1 Test setup

The objective of the experiment is to replicate the dynamics of a reference system as shown in Fig. 6.1.
The two beams represent the two components of the system, which are referred to as the virtual compo-
nent and the experimental component. Both subcomponents are cantilever beams connected with bolts.
Each bolt is fixed with a torque of 20Nm and washers were placed between the base and the beam.
The reason for using the washers is that the modeling of the joints is simplified. Foam layers serve as
dampers which are mounted on both subcomponents. The damping elements are necessary to keep the
actuator displacements within the workspace at the resonances. The workspace is constrained because
standard voice coil actuators use compliant elements for axial guidance. The subcomponents are bolted

point B

acceleration/force sensor

point P
reference system

voice coil actuator

exp. component

voice coil act.

virtual component

acceleration/force sensors
actuation system

point P

point B

Figure 6.1: Reference system with actuator and sensors used for the admittance measurement. The test setup
allows to couple the virtual component and the experimental component such that the dynamic behavior of the
reference system is emulated.
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Figure 6.2: Measurement and model: Bode plots of driving point receptance of the coupled system (reference
system) at point B and the test rig at mounting points of shaker 1 and 2.

together with a screw applying a torque of 20 Nm at point B. A washer was placed in between the two
subcomponents. Dimensions are given in Fig. 6.3 and Tab. 6.1. The system is excited with force f ex t
at point P, which is part of the virtual component. Force and acceleration reference measurements
are performed using a combined acceleration and force sensor (impedance head Dytran 5860B). The
input force for the validation measurements is provided by a voice coil actuator (Tira S50018). In order
to prevent the transmission of moments through the actuator, force sensor and voice coil actuator are
connected through a thin stinger (length 100mm, diameter 1 mm, spring-steel wire). Fig. 6.4 shows
the first modes of the reference system obtained from a finite element model. Modes 1, 2, 3 and 6 are
excited through the shaker in the experiment. Modes 4 and 5 are torsional modes. They are not excited
due to the position of the excitation point P. The dynamics of the reference system result in the transfer
functions shown in Fig. 6.2. They are retrieved from measurement and a calibrated model. The model
consists of finite element models of the beams and rotational spring-damper-mass elements, which rep-
resent the joints at the washers. The spring and mass coefficients were updated to match the first four
resonance frequencies. The resulting models were used for the virtual subcomponent.

Virtual component

An implicit Newmark time integration scheme (parameters β = 0.25 and γ= 0.5) is used to retrieve the
response for the virtual component. A calibrated finite element model represents the virtual component.
The model is reduced using the Craig-Bampton method (see [26]) with 20 fixed interface modes and
the constraint modes. The interfaces used in the reduction are the excitation point and the interface
between the substructures. The nodes which define the interfaces were rigidified, and rotations and
displacements describe the interfaces. The time step size for simulating the virtual component was∆t =
0.2ms, as it was for the adaptation law.

Test rig

The test rig which is used for the hybrid coupling test consists of the experimental component, an ac-
tuation system, and a real-time computer. The setup is shown in Fig. 6.5. The position and direction
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Figure 6.3: Dimensions of the structure used in the experiment: The values can be gathered from Tab. 6.1.

Mode 1: 95 Hz Mode 2: 211 Hz Mode 3: 319 Hz

Mode 4: 368 Hz Mode 5: 508 Hz Mode 6: 520 Hz

Figure 6.4: First normal modes of the reference system

Test Specimen (EXP)

dEX P 100mm

hEX P
z1 4mm

hEX P
z2 2mm

hEX P
y 40mm

lEX P 400mm

lEX P
f 30mm

lEX P
d 250mm

Virtual Component (VIR)

dV IR
P 200 mm

hV IR
z 4 mm

hV IR
y 40 mm

hV IR
f 30 mm

lV IR 400 mm

lV IR
f 30 mm

Actuation System (ACT)

dAC T 80 mm

hAC T
z 6 mm

hAC T
y 40 mm

lAC T 100 mm

Material Parameters (All Components)

Young’s Modulus E 210 · 109 N
m2

Density ρ 7850 kg
m3

Table 6.1: Dimensions of the structure used in the experiment
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overall assembly sensors and stingers damping element

Figure 6.5: Test rig. The laser sensors which can be seen in the overall assembly are not used in the test. The
damping element is the black foam structure in the right picture.

of the excitation are chosen such that only those deflections are excited that rotate the interface around
the y-axis and cause displacements along the z-axis. As a result, the actuation system which imitates
the coupling between the two beams can be realized with only two actuators. The actuation system
contains voice coil actuators (Tira S50018), combined acceleration and force sensors (impedance head
Dytran 5860B), thin stingers (length 100 mm, diameter 1 mm, spring-steel wire), and a steel plate. An
ICP device supplies the impedance heads. The voice coil actuators are supplied by two amplifiers
(Tira BAA120) driven in current control mode. A desktop PC running Simulink Real Time R© serves as
real-time computation platform. The model running on this machine includes adaptation algorithm and
simulation model of the virtual component and runs with a time step size of ∆t = 0.2ms. The steel
plate is necessary to apply forces and moments to the interface of the experimental component and to
measure rotational and translational quantities. Additionally, it imitates interface friction and stiffness of
the reference system. In the following, the steel plate is assumed to be rigid.

Interface states and forces

The general procedure to retrieve interface states and forces is described in Sec. 3.2. For the exper-
iment, the translational acceleration sensors (z̈EX P

act,1 and z̈EX P
act,2) and force sensors (actuator forces FA1

and FA2) are used. The coupling node of the virtual component, however, contains translational quan-
tities (displacement zV IR

B and force F V IR
B,z ) and rotational quantities (rotation αV IR and moment M V IR

B,y ).

Since the zV IR
B and αV IR have different units, the cost function resulting from their use in the interface

gap g would be inconsistent in its units. For this reason, the actuator displacements zact,1 and zact,2
are used as coupling quantities. The displacements zV IR

act1 and zV IR
act2 used for the coupling on the virtual

component’s side are calculated according to Eq. (6.1).

yV IR =


zV IR

act1

zV IR
act2


=


1 −dAC T/2

1 dAC T/2




zV IR

B

αV IR


 y EX P =




zEX P
act,1

zEX P
act,2


 (6.1)

On the experimental component’s side, time integration is applied to the acceleration signals in order
to retrieve zEX P

act1 and zEX P
act2 . Possible drift effects are removed with a peak filter of the interface forces

at the excitation frequencies. Moment MB,y and the force FB,z define the interface force vector λV IR.
According to the sign conventions from Sec. 2.1, the interface forces from the experimental component
are applied to the virtual component with opposite sign.

λV IR =
�
F V IR

B,z M V IR
B,y

�T
= −λEX P = − �F EX P

B,z M EX P
B,y

�T
(6.2)

Fig. 6.6 illustrates the free-body diagram of the transfer system used in the experiment. The inertia
properties are defined by the mass of the steel plate mAC T and moment of inertia θAC T

y . The interface
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forces are calculated by the solution of the dynamic equation of the actuation system (6.3).




mAC T 0

0 θAC T
y




 z̈AC T

B

α̈AC T


= −


1 0

0 1






F EX P
B,z

M EX P
B,y


+


 −1 1

dAC T/2 dAC T/2




FA1

FA2


 (6.3)

6.1.2 Interface Synchronization

The synchronization plots in Fig. 6.7 show the displacement of one side of the interface as a function
of the displacement of the other side. They are a measure for the quality of the synchronization. The
experiments were performed with sinusoidal excitation with the frequencies 60 Hz, 320 Hz and 800Hz.
A QR-RLS adaptation law with simultaneous adaptation and identification was used for synchronization
control. Here, a forgetting factor µad = 0.999 for the adaptation and a forgetting factor µid = 0.9999 for
the identification were applied. The duration of the identification was t id = 5 s. In the synchronization
plots, ideal synchronization is indicated by a straight diagonal line with a slope of 1. Phase shifts cause
an ellipsoidal shape of the synchronization curve while amplitude errors change the slope.
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Figure 6.8: Driving point receptance HPz(ω), HB y(ω) and HBα(ω) of the reference system and the coupled test

6.1.3 System Transfer Functions

To verify the adaptive feedforward approach, the test setup should imitate the steady-state dynamics of
the reference system. The resulting transfer functions of the virtually coupled test rig are recorded. In
the following section, HPz(ω) is the driving point receptance for the assembled system, while HBz(ω)
and HBα(ω) represent the transfer functions between the excitation forces at driving point P and the
displacements/rotations of the interface B for the assembled system. An RLS-based adaptation law
with simultaneous adaptation and identification was used as coupling algorithm. For the adaptation, the
forgetting factor µad = 0.999 and for identification, the forgetting factor µid = 0.9999 were applied. The
test was conducted with step sine excitation. The reason for this approach is that phase shifts—which
cannot be instantly followed by the adaptation algorithm when using a sine sweep excitation—occur
at the resonances. The potentially incomplete interface synchronization would distort the results. The
results in Fig. 6.8 show the agreement of the hybrid test with the simulated reference dynamics. The
deviations are caused by the modeling errors, which can be seen in Fig. 6.2, and the fact that only two
actuators are used to represent the interface. The high damping in the frequency range above 400Hz
is caused by friction of the sensor cables. This can be concluded from reference measurements without
cables and a Laser-Doppler vibrometer. Moments are not accounted for by the sensors and affect the
damping of rotational interface modes.

6.1.4 Learning Curves

Important properties that need to be considered for choosing one strategy in a practical application are
the convergence speed and the difficulty of the adaptation gain choice. For evaluating the two properties,
sinusoidal excitation with a frequency of Ω= 2π ·60 1/s and with Ωex t = 2π ·320 1/s is used. In order to
make the two strategies comparable, four different adaptation gains were applied for each strategy. For
the analysis, a learning curve—which is the envelope of the normalized mean-square error (NMSE) of
Eq. (6.4)—is used:

N MSE[i] =
g T [i]g [i]
y T

maxymax
(6.4)
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ized mean square error between virtual and experimental interface over time. The duration of the prior system
identification phase is 5s. The QR-RLS algorithm is used with simultaneous system identification.

The normalization is performed using the vector of the maximum amplitude ymax of the coupled system.
Fig. 6.9 shows the resulting learning curves. Even though the choice for an aggressive forgetting fac-
tor µRLS—corresponding to a small value of µRLS—may deteriorate the performance of the adaptation
law, the results suggest that the stability of the RLS-based adaptation is not affected. In contrast, the
choice of a high adaptation gain µLMS for the LMS adaptation law may cause an unstable behavior as
seen at Ω= 2π · 320Hz for µLMS = 0.1.

6.1.5 Non-Sinusoidal Periodic Excitations

Up to this point, the experiments make use of one harmonic basis function, which is sufficient for coupling
linear systems with a single excitation frequency. Additional harmonics in the basis function space
allow—according to the theory—coupling of systems with arbitrary periodic excitations (period T = 1/Ω0).
In order to do so, the frequencies Ωk of the harmonics in the basis function matrix W(t) are set to
multiples of the periodic excitation basis frequency Ω0:

nΩ harmonics in W(t): Ωk = k ·Ω0 with k ∈ [1 . . . nΩ]

Fig. 6.10 shows the interface synchronization results for a square wave excitation as shown in plot (g).
The basis function matrix W(t) contained one harmonic with frequency Ω0 (plot (a) and (b)), five har-
monics (plot (c) and (d)) and nine harmonics (plot (e) and (f)). An RLS-based adaptation law with
simultaneous adaptation, and identification was used as coupling algorithm. For the adaptation the for-
getting factor µad = 0.999 and for identification the forgetting factor µid = 0.9999 were applied. The
duration of the identification period was t id = 20 s. The results show that the increasing number of
harmonics enriches the function space for the control signal and improves interface synchronization.
The methods are in general applicable to any periodic excitation: Since the mechanical system acts as
a filter on the high-frequency content, a finite number of harmonics is generally sufficient to couple two
subcomponents.
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Figure 6.10: Interface synchronization for a square wave external excitation: The interface synchronization im-
proves with additional harmonics in the basis function matrix W .
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6.2 System with a Cubic Spring

Sec. 5.3 presents a method which modifies the adaptation gains of adaptive feed-forward filters in order
to preserve the stability of the tests. Sec. 5.6 describes a method which combines adaptive feed-forward
filters with feedback based control. For the experimental validation of both approaches, a cubic spring
is used as a physical subcomponent and a linear lumped-mass system as a virtual subcomponent. The
test rig is shown in Fig. 6.11 and a scheme of the test setup is depicted in Fig. 6.12. The cubic spring is
realized using two linear springs with all forces acting perpendicular to the spring axis. The mathematical
expression for the spring force is given by Eq. (6.5).

f EX P = kEX P
3 x3 + kEX P x (6.5)

The spring constants kEX P
3 and kEX P were identified using a least-mean-squares fit. They are given

in Tab. 6.2. The virtual component is a mass-spring-damper system and receives the external forces.
A linear actuator—a Copley ST2508S electromagnetic linear actuator—applies the coupling forces to
the experimental component. The position is measured using the internal sensor of the linear actuator.
The actuator is controlled using a cascaded control scheme acting with a proportional term on the
position demand, and with a proportional and integral term on the velocity demand. Friction has a
significant effect on the actuator dynamics and, due to its non-linear nature, the performance of hybrid-
testing control schemes deteriorates. For that reason, a friction compensation scheme is implemented
which acts on the input to the current control loop. The actuator operates with a position saturation
at 2.5 · 10−2 m around the initial position for safety reasons. The interface forces are measured using a
custom-made force sensor. The coupled system exhibits nonlinear dynamics due to the nature of the
spring assembly. If this setup is excited with one harmonic component, the response will contain higher
harmonics. The presence of these higher harmonics, in general, requires the enrichment of the basis
function space with higher harmonics. This means that the frequencies Ωk of the harmonics in the basis
function matrix W(t) are defined as multiples of the periodic excitation basis frequency Ω0:

Ωk = kΩ0 with k ∈ [1,2, ..., nΩ]
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Virtual Component (VIR)

mV IR 1 kg

dV IR 10 N·s
m

kV IR 1000 N
m

Experimental Component (EXP)

kEX P 1.95 N
m

kEX P
3 0.0014 N

m3

Table 6.2: System parameters of the experimental setup
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Figure 6.13: Simulation results for a varying number of harmonics in the basis functionspace of W(t). The
excitation frequency 0.5 Hz was chosen such that the nonlinear behavior can be observed. In the first plot,
the higher harmonics in the virtual components are excited through the interface forces, but the higher harmonic
interface displacements are not synchronized.

Fig. 6.13 shows the effect of the additional harmonics in the basis function matrix of the simulated
system. In the first plot (with nΩ = 1), the higher harmonics in the virtual component are excited through
the interface forces, but the higher harmonic interface displacements are not synchronized. The adaptive
feed-forward approach applies to any number of harmonics in the basis function matrix. While the system
with only one harmonic synchronizes the interfaces only insufficiently, the systems with higher harmonics
show improved results. The plots with nΩ = 9 and with nΩ = 15 harmonic basis functions demonstrate
that the adaptive feedforward can be used to couple non-linear systems. However, for the excitation
frequencies and amplitudes described in the following sections, one harmonic basis function is sufficient
to couple the virtual and the experimental component satisfactorily.

6.2.1 Passivity Preserving Adaptive Feed-Forward Filters

The following section refers to the validation of the passivity preserving adaptive feed-forward filters
which were introduced in Sec. 5.3. The objective of the method is to ensure stable testing independent
of the choice of the adaptation gain µLMS .
The test is performed using the constant parameters ∆↓aµ, ∆↓aγ, ∆↑aγ, bµ, bγ, γmax and Pl im from
Tab. 6.3. As mentioned above, one harmonic was used in the basis function matrix W(t). The excita-
tion frequency Ω0 is varied. The excitation amplitude was adjusted to the excitation frequency because
the resulting response amplitudes had to remain within the actuator workspace. The initial adaptation
gain µini t was selected such that the resulting adaptation process is unstable without the proposed al-
gorithm. Since the adaptive feed-forward filter is exact only at the excitation frequencies, measurement
noise can cause a drift of the interface gap. A peak filter using the excitation frequency was applied at the
actuator input in order to prevent those drift effects. Because the objective is to validate the performance
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Variable Values

step size ∆↓aµ 0.001

initial adaptation gain µini t 0.1

exponent bµ 2

step size ∆↓aγ 0.001

step size ∆↑aγ 0.01

initial regularization factor γmax 1

exponent bγ 2

power-generation limit Pl im −0.3W

excitation amplitude Aex t 10 N 40 N 40 N

excitation frequency fex t 10Hz 20 Hz 30 Hz

Table 6.3: Parameters used in the experiment
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Figure 6.14: Unstable power and energy-inflow to actuator system without power-flow supervision.

of the power-flow supervision, the test for each frequency was performed in two modes: one using
power-flow supervision and one using the pure adaptive feed-forward control law without power-flow su-
pervision. In the first experiment, the LMS-based adaptive feed-forward filter approach is applied without
power-flow-based stabilization. As a result, the adaptation gain µLMS and the leakage factor νLMS stay
constant throughout the test. The adaptation gain µLMS was selected such that the dynamics of the
filter are expected to be unstable. Fig. 6.14 shows the interface gap as well as the time-domain synchro-
nization plots. In all cases, unstable filter dynamics can be observed. The actuator operates in a state
of saturation and the responses show undefined peaks. Fig. 6.15 exhibits the high power- and energy-
outflow from the actuator system caused by the instability.
The power-flow-based stabilization algorithm is activated in the second experiment. The adaptation
gains µLMS in Fig. 6.16 correspondingly drop to a value which allows the stable operation of the filter.
The leakage factor νLMS also drops to values of 0 in the phases where the power-flow constraint is vio-
lated. Fig. 6.17 shows the power and energy-outflow due to the initially unstable behavior. The maximum
power-outflow is constrained to approximately 3 W. In the energy-outflow plot, a slight energy-outflow
can be observed after the stabilization of the test. The reasons for this effect are stick-slip friction ef-
fects which are not compensated for by the actuator control. The remaining interface gap may cause
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Figure 6.15: Unstable learning curve and interface synchronization without power-flow supervision.

10 11 12 13 14

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

t / s

µ

fex t = 10 Hz fex t = 20 Hz fex t = 30 Hz

10 11 12 13 14

0

0.5

1

t / s

ν

Figure 6.16: Adaptation gain and leakage factor with activated power-flow supervision

the energy-outflow which does not result in unstable behavior. Finally, learning curve and time-domain
synchronization plots in Fig. 6.18 show the stabilization effect of the proposed algorithm: Even though
displacement peaks initially occur, the system is stabilized after a timespan of less than 0.5 s. After the
stabilization, the adaptation continues and results in synchronization between the virtual and the experi-
mental component. Note that the displacement peaks can be prevented in a practical application by the
application of a peak or comb filter to the actuator input.
To summarize, the proposed approach enables the stabilization of an initially unstable test with a non-
linear spring. After stabilization, the adaptation gain settles, and the system finally reaches interface
synchronization. The method has been applied to an experimental test case which coupled a physical
cubic spring with a virtual mass-spring-damper system. The results showed that the proposed method
helped to stabilize the filter with initially unstable filter behavior. The high adaptation gain causes insta-
bility. The adaptation gain is updated as a reaction to the power-outflow from the actuator system and
settles to a positive value. This allows the filter coefficient to converge such that the interface is synchro-
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Figure 6.17: Power and energy-inflow to actuator system with activated power-flow supervision.
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Figure 6.18: Learning curve and interface synchronization with activated power-flow supervision.

nized. In other cases where adaptation with the chosen filter parameters is impossible such as for a high
phase error of Pgu, the passivity constraint is maintained and the adaptation gain µLMS is taken down to
zero. This means that the adaptation has failed, but possibly damaging behavior is prevented.

6.2.2 Combined Feed-Back and Feed-Forward Control

A method which combines adaptive feed-forward filters with passivity-based control is given in Sec. 5.6.
In order to evaluate the method, it was applied to the hybrid test with a cubic spring which was described
in Sec. 6.2. The virtual component was excited with three different sinusoidal excitation signals of the
form fex t = A0 cos(Ω0 t):

• A0 = 10 N and Ω0 = 10 Hz

• A0 = 40 N and Ω0 = 20 Hz

• A0 = 40 N and Ω0 = 30 Hz

Different amplitudes for different excitation signals were chosen due to workspace restrictions and signal-
to-noise ratio of the sensor signals.
Fig. 6.19 shows the subspace synchronization plots for three different control strategies:

• a pure passivity-based control as it is described in Sec. 5.2

• an adaptive feed-forward filter as it is described in Sec. 4.4 and

• a combination of both control strategies as it is described in Sec. 5.6

In general, synchronization plots show the relation of the interface displacements of two components
in one diagram. An undeformed line with slope 1, which crosses the point y EX P = 0 / yV IR = 0
indicates perfect synchronization. An ellipsoid structure of the synchronization curve signals a phase
shift between the interface displacements. If the slope differs from 1, an amplitude error exists. If the
curve does not cross the point y EX P = 0 / yV IR = 0, an position-offset between the two interface
displacements is present. The passivity-based controller exhibits a strong phase error at all frequencies.
The pure adaptive feed-forward filter shows aligned phases and amplitudes. However, a significant
offset can be found. The reason is that the approach only accounts for the harmonics from the excitation
signal. Sensor noise can introduce drift effects. The method which combines the two approaches shows
the alignment of phase and amplitude and no offsets. Fig. 6.20 shows the tracking of the reference
system dynamics. The real-time hybrid test with combined adaptive-feed forward filter and passivity-
based control exhibit synchronized interfaces and shows agreement with the reference system. The
reference tracking, however, is not perfect. This is due to problems with the identification of the reference
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Figure 6.19: Interface synchronization with adaptive feed-forward filters and passivity-based control.
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system.
In summary, the combined adaptive feed-forward filter with passivity based control offers the opportunity
to couple subcomponents with harmonic excitations accurately, stably and without an offset error.





Chapter 7

Closure

Parts of this chapter have been submitted for publication in [7] and [9].

In this thesis, adaptive feedforward filters have been successfully applied to real-time hybrid tests. The
following chapter concludes the thesis and discusses suggestions for future research directions.

7.1 Conclusions

Time discrete filters can represent the virtual component Finite impulse response filters are non-
recursive time discrete filters which are unconditionally stable. It was shown that the number of filter
coefficients depends solely on the length which is determined by the damping in the structure. In con-
trast, the computational effort of time integration schemes depends on the size of the system. More
specifically, it depends on the modal density and the bandwidth of the problem, if reduction methods are
used. The computational effort caused by finite impulse response filters is not affected by the modal
density. The results indicate that in cases where a relatively short filter can represent the impulse re-
sponses, the use of finite impulse response filters reduces the computational effort significantly. This
fact is shown with the help of an example in Sec. 2.4.

Interface forces can be estimated using models if no sensors are placed directly at the interface.
The use of transmission simulators is proposed. Transmission simulators replicate the dynamics of an
interface. They are necessary if the sensor- and actuator-interfaces cause significantly different stiff-
ness or friction properties compared to the emulated system. If the dynamic effects of the transmission
simulator are negligible, the problem can be solved using projection. The rotations are coupled but trans-
lations are measured, which is similar to the virtual point approach from [93]. If inertia effects as well
as stiffness and damping are present, they have to be compensated using models of the transmission
simulator. Sec. 3.2 shows that augmented-state Kalman filters can significantly smoothen the resulting
interface forces and interface displacements.

Many representations of real-time hybrid testing methods are equivalent and frameworks can
help to categorize them. In literature, many methods exist which help to solve control problems related
to coupling virtual and experimental components. The coupling problem is discussed in Sec. 4.1. All
available methods compensate for delays and actuator dynamics. They can be structured in frameworks
such as the ones described by [79] or [102]. The control schemes can include feedback control and
feedforward control. The analysis shows that the polynomial forward prediction method (see Sec. 4.3)—
which is widely used in literature—is a lead compensator which adapts to the specific frequency of
excitation.

131
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Feed-forward filters couple virtual and experimental component without deteriorating the stabil-
ity of the test. As discussed in Sec. 4.2, feedforward filters generate actuator input based on knowl-
edge of the system. If the system is unknown, adaptive feedforward filters offer superior properties.
Finite impulse response based fxLMS filters can be used if transient dynamics are relevant. If steady-
state and periodic excitation can be assumed, harmonic basis functions are more efficient than filters
based on finite impulse responses.

Adaptive feedforward filters can be used to couple systems with multiple DOF interfaces Har-
monic basis functions are an efficient way to reduce the filter size. The algorithms are based on LMS-type
adaptation laws and on RLS-type adaptation laws. Both types of algorithms require a prior identification
phase and assume steady-state. The LMS-based algorithm (Sec. 5.2) is robust against errors in the
identification since it will stay stable with a sufficiently small adaptation gain for phase errors of ±π/2.
LMS filters are a computationally efficient and easy to implement type of adaptive feedforward filters. The
drawback, however, is the slow convergence which can make practical application unfeasible in some
cases. Large identification errors can lead to instability. In general, the RLS-type adaptation laws ex-
hibit faster convergence (Sec. 5.4). Sequential identification and adaptation with identification errors can
cause a remaining interface gap. The simultaneous identification and adaptation process can overcome
identification errors during the adaptation phase. An aggressive choice of the forgetting factor, however,
can cause the violation of the steady-state assumption, because rapid changes in the harmonic inter-
face forces excite transient dynamics. For the practical implementation of the method, it is important to
compensate for unmeasured dynamics—i.e. inertia and stiffness effects—of the interface using a model.
The experiments on a beam test rig (Sec. 6.1) show that the methods can replicate a structure with a
multiple DOF interface with standard testing equipment such as modal shakers and acceleration sen-
sors. The experiments support the presumption that it is possible to couple not only purely harmonically
excited systems but also systems with arbitrary periodic excitations.

Power flow supervision make the stability of tests with adaptive feedforward filters independent
of identification errors. In Sec. 5.3, a method for adjusting the parameters of the adaptive feedforward
filter based on power-flows in the test setup is proposed. The objective is to maintain a passive behavior
of the actuation and control system. The stabilization acts on the leakage factor and the adaptation gain
of a LMS adaptation law. A simple numerical system is used to investigate the effect of the algorithm
parameters on the stabilization. The study of a simple purely numerical case leads to the following
conclusions:

• Step size ∆↓aµ defines the convergence speed of the adaptation gain µLMS . High values can
lead to lower values of µLMS—which, in turn, cause a slower adaptation.

• Step size ∆↑aγ defines the convergence speed of the leakage factor νLMS . Higher values can
reduce the peak values of power outflow but increase the settling time.

• The power-outflow limit Pl im has only a slight influence on the final value of the adaptation gain,
but lower values of |Pl im| reduce the peak interface gap.

In Sec. 6.2, the method has been applied to an experimental test case which coupled a physical cubic
spring with a virtual mass-spring-damper system. The results show that the proposed method helps
to stabilize the filter with initially unstable filter behavior. In cases where adaptation with the chosen
filter parameters is impossible such as for an error in the identified dynamics, the passivity constraint is
maintained, and the adaptation gain µLMS is taken down to zero. The vanishing of the adaptation gain
implies that the adaptation has failed, but damaging behavior is prevented.
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The combination of adaptive feedforward filters and passivity-based control helps to remove
drift effects. Adaptive feedforward filters with harmonic basis functions can lead to transient drift ef-
fects since they act at the excitation frequencies. If additionally transient dynamics are supposed to be
coupled, the feedforward control can be combined with a feedback control scheme. Because the feed-
back system has to be stable for adaptive feedforward filters to be applied, passivity-based control is
used to enforce stability. The passivity-based control is, in fact, an adaptive damper element which acts
on the virtual component. The damping rate is controlled by power outflow from the actuation system
which is an indicator for a violation of the passivity requirement. As shown in Sec. 6.2, the approach
removes drifts while enabling an accurate and stable coupling of the subcomponents.

7.2 Outlook

As a result of the work of this thesis, several research questions remain open and new questions are
arising. Further ideas were generated during the work on the thesis. Some may be useful for defining
future research directions:

Efficient computations The efficient computation of the response of the virtual component is a bot-
tleneck. Model order reduction techniques are a way to bring down this computational effort. In future
research, different existing model order reduction techniques can be compared. New methods can be
developed which include roughly estimated models of the experimental component and help to improve
the reduction basis.

Evaluating the quality of the test results It is possible to generate a reference output for simple
systems in order to evaluate methods. This procedure is, however, cumbersome because an exact
model of the experimental component has to be identified or the virtual component has to be built as a
physical structure. The knowledge of the correct overall system behavior contradicts the hybrid testing
paradigm. For industrial scale problems, it may be impossible to generate reference outputs. In practice,
it is important to know confidence intervals for the response of the emulated system with respect to
hybrid testing results. Uncertainty quantification offers a toolbox which is helpful in this field. One idea
is to use simplified models to estimate the accuracy of the test. The statistical information can help to
design controllers which yield results in a specified uncertainty range.

Contact problems Mechanical contacts occur in various fields of engineering: Examples include air-
to-air refueling procedures, satellite docking maneuvers or prosthetic feet touching the ground. Contact
problems are specific since the system properties change abruptly during the test. The jumps in the
system properties are dependent on their states. Most research on contact problems in hybrid tests has
been conducted on pseudo-dynamic tests so far. There is still the need for improved methods to deal
with contact problems using real-time hybrid tests.

Learning algorithms The methods which were developed in this work focus on systems with periodic
excitations. They exploit the properties of the excitations and learn from the responses of the structures.
Proceeding with this idea leads to learning algorithms for more general applications. Batch wise learning
algorithms such as iterative learning control could be applied to generalize the ideas for adaptive control
proposed in this thesis. Adaptive model predictive control could be a solution for tests where the model
structure is known, but model parameters are unknown. Those parameters can be estimated during the
test and the resulting model of the experimental component can be used for further analysis. General
non-linear effects could be addressed, e.g. using neural networks.
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General-purpose software The ultimate vision for real-time hybrid testing is a middleware software
which can be used with a wide range of actuators, sensors and simulation software. Ideally, this software
works out-of-the-box with industrial robots or Stewart platforms and has an interface with popular simu-
lation software. The requirement for real-time interfaces with simulation software and actuation systems
remains problematic because the control software of robots and algorithms in simulation software are
mainly closed-source. Learning algorithms can help to couple systems with repeating excitation patterns
without intervening in the closed software platforms. On the hardware side, adapter concepts have to be
developed which make it possible to adapt to the dynamic properties of the tests: E.g., springs or flex-
ible structures can serve as an interface which allows precise force control if the actuator solely allows
displacement control.

New application fields In many cases, real-time hybrid testing still is a highly application-specific
technology which demands application-specific solutions. The design and the properties of the hybrid
test is dependent on excitation, stiffness- and mass-ratios, the interface complexity, necessary actuation
forces, stroke lengths as well as the properties of the virtual component. For this reason, it makes sense
to develop also application-specific methods.
New application fields can emerge where the interface between the subcomponents is well defined and
simple. Rotor systems can give a natural and straightforward interface which represents the rotational
DOF. Examples of future applications of real-time hybrid testing is the test of drive-train components
such as dual-mass flywheels and the investigation of problems with brake squeal. Another potential
application field is the dynamics of cables. An example is hybrid tests with railway pantographs. The
topic has already been addressed in research but remains an interesting research field since the fast
simulation of overhead lines is challenging. The test of damper elements can be extended to a broader
variety of industries. An example is suspension systems of mountain bikes. Finally, another exciting
research topic is the design of real-time hybrid tests of prosthetic feet. Here, the main challenges are
the modeling of human gait and control problems due to contact.
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Appendix A

Derivation of IIR-Filters

The follwoing derivations refer to the time discrete filters in Sec. 2.4. For each damping case three steps
are taken, namely the inverse Laplace transformation, discretization and the z-transformation.

A.1 Derivation for ωi = 0
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A.3 Derivation for ωi > 0 and δi
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= 1
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A.5 IIR Coefficients
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�2
−2 cos

�
ωi

È
1−

�
δi
ωi

�2
∆t
�

exp (−δi∆t) exp (−2δi∆t)

critically
damped
modes

∆t exp (−ωi∆t) −2 exp (−ωi∆t) exp (−2ωi∆t)

overdamped
mode

sinh

�
ωi

s�
δi
ωi

�2−1∆t

�
exp(−δi∆t)

ωi

s�
δi
ωi

�2−1

−2 cosh
�
ωi

È�
δi
ωi

�2 − 1∆t
�

exp (−δi∆t) exp (−2δi∆t)

Table A.1: Coefficients of IIR filters (adapted from [19])





Appendix B

Simulation Parameters

Virtual Component (VIR)

mV IR 0.1kg

dV IR 0.05 N·s
m

kV IR 1000 N
m

Experimental Component (EXP)

mEX P 0.01kg

dEX P 0.05 N·s
m

kEX P 1000 N
m

Actuator (ACT)

mAC T 0.1 kg

dAC T 1 N·s
m

kAC T 100 N
m

Table B.1: System parameters used in the lumped mass system.

Transfer System ACT Test Specimen (EXP)

Dimensions a 0.05 m Young’s Modulus E 210 · 109 N
m2

b 0.01 m Length l 0.5 m
c 0.1 m Cross section width w 0.05 m
d 0.12 m Cross section height h 0.008 m

Mass m 0.2 kg
Moment of Inertia Θ 6.7333 · 10−4 kg m2

Table B.2: System parameters used in the numerical case study for interface force and state estimation in Sec. 3.2.
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Variable Values

step-size ∆↓aµ 0.0001 0.0004 0.0007 0.001

initial adaptation gain µini t 10

exponent bµ 10

step-size ∆↓aγ 0.001

step-size ∆↑aγ 0.01

initial regularization factor γmax 1

exponent bγ 2

power-generation limit Pl im −1W

excitation amplitude Aex t 10 N

excitation frequency fex t 50Hz

Table B.3: Parameters for the numerical experiment different adaptation gain step-sizes ∆↓aµ

Variable Values

step-size ∆↓aµ 0.0001

initial adaptation gain µini t 10

exponent bµ 10

step-size ∆↓aγ 0.001

step-size ∆↑aγ 0.001 0.004 0.007 0.01

initial regularization factor γmax 1

exponent bγ 2

power-generation limit Pl im −1W

excitation amplitude Aex t 10 N

excitation frequency fex t 50Hz

Table B.4: Parameters for the numerical experiment different leakage factor step-sizes ∆↑aγ
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Variable Values

step-size ∆↓aµ 0.0001

initial adaptation gain µini t 10

exponent bµ 10

step-size ∆↓aγ 0.001

step-size ∆↑aγ 0.01

initial regularization factor γmax 1

exponent bγ 2

power-generation limit Pl im −0.1W −0.4 W −0.7W −1W

excitation amplitude Aex t 10 N

excitation frequency fex t 50Hz

Table B.5: Parameters for the numerical experiment varying power-outflow limit Pl im





Appendix C

Stability Analysis of Feedback Systems

C.1 Non-Dimensional Form of Open-Loop Transfer Function with Actua-
tor Dynamics

The following section refers to the derivation of the non-dimensional open-loop transfer function in Sec. 4.2.3.
The transfer function of the assembly of actuator system and experimental component HTR(s), the
transfer function of the virtual component HV IR(s), the transfer function of the experimental component
HEX P(s), the transfer function of the coupled reference system HREF (s) and the controller C(s) are
given in Eqs. (C.1).

C(s) = kP

HTR(s) =
ΛEX P

U
=

mEX Ps2 + dEX Ps+ kEX P

(mAC T +mEX P)s2 + (dAC T + dEX P)s+ kAC T + kEX P

=
mEX P

mAC T +mEX P
· s2 + 2ζEX PωEX P

0 s+ωEX P2

0

s2 + 2ζAC T
p

kAC T mAC T+2ζEX P
p

kEX P mEX P

mAC T+mEX P s+ωTR2

0

HV IR(s) =
Y V IR

ΛEX P
=

Y V IR

Fex t
=

1
mV IRs2 + dV IRs+ kV IR

=
1

mV IR
· 1

s2 + 2ζV IRωV IR
0 s+ωV IR2

0

HEX P(s) =
Y EX P

ΛEX P
=

1
mEX Ps2 + dEX Ps+ kEX P

=
1

mEX P
· 1

s2 + 2ζEX PωEX P
0 s+ωEX P2

0

HREF (s) =
Y V IR

Fex t
=

Y EX P

Fex t
=

1
mV IRs2 + dV IRs+ kV IR + kEX P

(C.1)

ζV IR = dV IR/2
p

mV IRkV IR, ζEX P = dEX P/2
p

mEX P kEX P and ζAC T = dAC T/2
p

mAC T kAC T are the damping ratios of
the virtual component, the experimental component and the actuator. ωV IR

0 =
p

kV IR/mV IR, ωEX P
0 =p

kEX P/mEX P , ωAC T
0 =

p
kAC T/mAC T and ωTR

0 =
p
(kEX P+kAC T )/mAC T eigenfrequencies of the virtual com-

ponent and the actuation system with the experimental component. The open-loop transfer function
reads

HOL(s) =C ·HTR(s) · �HV IR(s) +HEX P(s)
�

=

�
mEX P

mV IR
· s

2 + 2ζEX PωEX P
0 s+ωEX P2

0

s2 + 2ζV IRωV IR
0 s+ωV IR2

0

+ 1

�

· kP

mAC T +mEX P
· 1

s2 + 2ζAC T
p

kAC T mAC T+2ζEX P
p

kEX P mEX P

mAC T+mEX P s+ωTR2

0

.

(C.2)
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The system properties can be described with the mass ratioφAC T , the stiffness ratios κP , κEX P and κAC T ,
and the damping ratios ζV IR and ζAC T .

κEX P =
kEX P

kV IR
, κAC T =

kAC T

kV IR
, κP =

kP

kV IR

φEX P =
mEX P

mV IR
φAC T =

mAC T

mV IR

(C.3)

In order to make HOL(s) non-dimensional, the following terms are substituted by expressions which
depend only on non-dimensional parameters and the eigenfrequency of the coupled system ω0:

ωV IR2

0 =
φEX P + 1
κEX P + 1

·ω2
0 with ω0 =

√√ kEX P + kV IR

mEX P +mV IR

ωTR2

0 =
κAC T +κEX P

φAC T +φEX P
·ωV IR2

0 =
κAC T + κEX P

φAC T +φEX P
· φ

EX P + 1
κEX P + 1

·ω2
0

ωAC T2

0 =
κAC T

φAC T
·ωV IR2

0 =
κAC T

φAC T
· φ

EX P + 1
κEX P + 1

·ω2
0

ωEX P2

0 =
κEX P

φEX P
·ωV IR2

0 =
κEX P

φEX P
· φ

EX P + 1
κEX P + 1

·ω2
0

kP

mAC T +mEX P
=

κP

φAC T +φEX P
·ωV IR2

0 =
κP

φAC T +φEX P
· φ

EX P + 1
κEX P + 1

·ω2
0

2ζEX P
p

kEX P mEX P

mAC T +mEX P
=

2ζEX P
p
κEX PφEX P

φAC T +φEX P
ωV IR

0 =
2ζEX P

p
κEX PφEX P

φAC T +φEX P
·
√√φEX P + 1
κEX P + 1

·ω0

2ζAC T
p

kAC T mAC T

mAC T +mEX P
=

2ζAC T
p
κAC TφAC T

φAC T +φEX P
ωV IR

0 =
2ζAC T

p
κAC TφAC T

φAC T +φEX P
·
√√φEX P + 1
κEX P + 1

·ω0

(C.4)

The open-loop transfer function then reads

HOL(s) =


φEX P ·

s2 + 2ζEX P
r
κEX P

φEX P · φEX P+1
κEX P+1 ·ω0 · s+ κEX P

φEX P · φ
EX P+1
κEX P+1 ·ω2

0

s2 + 2ζV IR
Ç
φEX P+1
κEX P+1 ·ω0 · s+ φEX P+1

κEX P+1 ·ω2
0

+ 1


 ·

·
κP

φAC T+φEX P · φ
EX P+1
κEX P+1 ·ω2

0

s2 + 2
�
ζAC T
p
κAC TφAC T

φAC T+φEX P + ζEX P
p
κEX PφEX P

φAC T+φEX P

�
·
Ç
φEX P+1
κEX P+1 ·ω0 · s+ κAC T+κEX P

φAC T+φEX P · φEX P+1
κEX P+1 ·ω2

0

.

(C.5)

In the next step, the non-dimensional complex frequency ŝ = s
ω0

is used. The resulting transfer func-
tion HOL(ŝ) is non-dimensional:

HOL(ŝ) =


φEX P ·

ŝ2 + 2ζEX P
r
κEX P

φEX P · φEX P+1
κEX P+1 · ŝ+ κEX P

φEX P · φ
EX P+1
κEX P+1

ŝ2 + 2ζV IR
Ç
φEX P+1
κEX P+1 ŝ+ φEX P+1

κEX P+1

+ 1


 ·

·
κP

φAC T+φEX P · φ
EX P+1
κEX P+1

ŝ2 + 2
�
ζAC T
p
κAC TφAC T

φAC T+φEX P + ζEX P
p
κEX PφEX P

φAC T+φEX P

�
·
Ç
φEX P+1
κEX P+1 · ŝ+ κAC T+κEX P

φAC T+φEX P · φEX P+1
κEX P+1

(C.6)
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Two special cases are given in Eq. (C.7) and Eq. (C.8) where the mass of the experimental component
and the stiffness of the experimental component, respectively, disappear.

φEX P = 0 : HOL(ŝ) =

 
κEX P

κEX P+1

ŝ2 + 2ζV IR
q

1
κEX P+1 ·ω0 · ŝ+ 1

κEX P+1

+ 1

!
·

·
κP

φAC T · 1
κEX P+1

ŝ2 + 2 · ζAC T
r
κAC T

φAC T · 1
κEX P+1 · ŝ+ κAC T+κEX P

φAC T · 1
κEX P+1

(C.7)

κEX P = 0 : HOL(ŝ) =


φEX P ·

ŝ2 + 2ζEX P
r
φEX P+1
φEX P · ŝ+ φEX P+1

φEX P

ŝ2 + 2ζV IR
p
φEX P + 1ŝ+φEX P + 1

+ 1


 ·

·
κP ·(φEX P+1)
φAC T+φEX P

ŝ2 + 2ζ
AC T
p
κAC TφAC T ·

p
φEX P+1

φAC T+φEX P · ŝ+ κAC T ·(φEX P+1)
φAC T+φEX P

(C.8)

C.2 Closed-loop Transfer Function with Actuator Dynamics

The following section refers to the derivation of the closed-loop transfer function in Sec. 4.2.3. The
Laplace domain interface displacements are

Y EX P = −CHTRHEX P(−Y V IR + Y EX P)

⇒ Y EX P(CHTRHEX P + 1) = CHTRHEX P Y V IR (C.9)

and Y V IR = HV IRFex t + CHTRHV IR
�−Y V IR + Y EX P

�
(C.10)

Substituting (C.9) in (C.10) yields

Y V IR = HV IRFex t + CHTRHV IR

�
−Y V IR +

CHTRHEX P

CHTRHEX P + 1
Y V IR

�

Y V IR

�
1− CHTRHV IR

�
−1+

CHTRHEX P

CHTRHEX P + 1

��
= HV IRFex t .

(C.11)

Division by Fex t yields the closed-loop transfer function

HC L =
Y V IR

Fex t
=

HV IR

1+ CHTRHV IR
�
1− CHTRHEX P

CHTRHEX P+1

�

=
(CHTRHEX P + 1)HV IR

CHTRHEX P + 1+ CHTRHV IR (CHTRHEX P + 1− CHTRHEX P)

=
CHTRHEX P HV IR +HV IR

CHTR (HEX P +HV IR) + 1
.

(C.12)





Appendix D

Derivation of Recursive Least Squares Adaptation
Laws

D.1 Rearranging Matrices for System Identification

The following expression is a simple example for reformulation of P g,u and θ in P̃ g,u and θ̃ , which is
necessary for the identification process in Sec. 5.2.2 and Sec. 5.4.2.

P g,uθ =




Re
�
Hg,u(Ω1)

� −Im
�
Hg,u(Ω1)

�
0 0

Im
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�
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�
0 0
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�
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�
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�
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�
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�
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



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θ1
θ2
θ3
θ4




=


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�
Hg,u(Ω1)

�
θ1 − Im

�
Hg,u(Ω1)

�
θ2

Im
�
Hg,u(Ω1)

�
θ1 +Re

�
Hg,u(Ω1)

�
θ2

Re
�
Hg,u(Ω2)

�
θ3 − Im

�
Hg,u(Ω2)

�
θ4

Im
�
Hg,u(Ω2)

�
θ3 +Re

�
Hg,u(Ω2)

�
θ4


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=



θ1 −θ2 0 0
θ2 θ1 0 0
0 0 θ3 −θ4
0 0 θ4 θ3
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
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P̃ g,u

D.2 Recursive Least Squares based on QR Decomposition

The following derivation refers to the RLS algorithm, which is used in Sec. 5.4.1. In Eq. 5.33, the
matrix Φ is only changed by the rank-nint matrix PT

g,uW T WP g,u in one time step. Using this fact, an
approach based on QR-factorization is an efficient and numerically stable way to obtain the solution of
Eq. (5.32). Φ is symmetric and positive-definite, since it is the sum of positive definite matrices. Hence,
it can be decomposed into the so-called square-root factors as described by Eq. (D.1). The other way
round, if Φ[k] is built up from the square-root factors Φ

1
2 [k], positive-definiteness is ensured.

Φ[k] = Φ
1
2 [k]Φ

T
2 [k] (D.1)
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Using the definition of the square-root factors in Eq. (D.1), the update Eqs. (5.33) can be split into factors
according to Eq. (D.2). One can verify that Eq. (D.2) is equivalent to Eqs. (5.33).

AAT = BBT

with A=

� p
µRLSΦ

1
2 [k] W[k+ 1]P g,u[k+ 1]p

µRLSθ
T [k]Φ

1
2 [k] −g T

ex t[k+ 1]

�

and B =
�
B1,1 B1,2
B2,1 B2,2

�
=

�
Φ

1
2 [k+ 1] 0

θ T [k+ 1]Φ
1
2 [k+ 1] B2,2

� (D.2)

If an orthogonal Transformation with the matrix C (CTC = I) according to Eq. (D.3) exists, Eq. (D.2)—
which corresponds to the update equations—holds (proof in [65]).

A= BC or AT = CTBT or CA= B with CTC = I (D.3)

This orthogonal Transformation can be seen as a sequence of rotations which transform A into B. It
corresponds to a QR-factorization of AT into BT and CT . This means that if B is obtained from A via
QR-factorization, the entries of B— θ T [k+1]Φ

1
2 [k+1] and Φ

1
2 [k+1]— obey the update Eqs. (5.33).

It is noteworthy that it is not necessary to find C explicitly in order to retrieve B. Since A contains
the matrices θ [k]Φ

1
2 [k] and Φ

1
2 [k] of time step k and B contains the matrices θ [k + 1]Φ

1
2 [k + 1]

and Φ
1
2 [k + 1] from time step k + 1, the QR-factorization of A can be used to update θ . To do so, the

final step is to solve Eq. (D.4) for θ [k+ 1].

θ T [k+ 1]B1,1 = B2,1 (D.4)
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