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Abstract— Human drivers have complex and individual be-
havior characteristics which describe how they act in a spe-
cific situation. Accurate behavior models are essential for
many applications in the field of autonomous driving, ranging
from microscopic traffic simulation, intention estimation and
trajectory prediction, to interactive and cooperative motion
planning. Designing such models by hand is cumbersome and
inaccurate, especially in urban environments, with their high
variety of situations and the corresponding diversity in human
behavior. Learning how humans act from recorded scenarios
is a promising way to overcome these problems. However,
predicting complete trajectories at once is challenging, as
one needs to account for multiple hypotheses and long-term
interactions between multiple agents. In contrast, we propose to
learn Markovian action models with deep neural networks that
are conditioned on a driver’s route intention (such as turning
left or right) and the situational context. Step-wise forward
simulation of these models for the different possible routes of
all agents allows for multi-modal and interaction-aware scene
predictions at arbitrary road layouts. Learning to predict only
one time step ahead given a specific route reduces learning
complexity, such that simpler and faster models are obtained.
This enables the integration into particle-based algorithms such
as Monte Carlo tree search or particle filtering. We evaluate
the learned model both on its own and integrated into our
previously presented dynamic Bayesian network for intention
estimation and show that it outperforms our previous hand-
tuned rule-based model.

I. INTRODUCTION

Driver behavior models are frequently used as transition
models for iterative trajectory prediction, filtering-based in-
tention estimation, forward simulation based motion plan-
ning as well as for microscopic simulation and traffic flow
modeling. Common approaches consist of rule-based models
which define a (in most cases) deterministic mapping from
situation and intention of a driver to an action resulting in a
state transition to the subsequent time step. Although simple
approaches such as the Intelligent Driver Model (IDM) [1]
are well suited for high-level traffic flow modeling or deter-
ministic trajectory prediction in car following scenarios, they
are neither capable of capturing the complex decision making
process of human drivers in more diverse scenarios, nor of
representing the variance of the potential future behavior.
Especially in urban environments, the magnitude of different
influences makes the modeling of driver behavior by hand
cumbersome and error-prone.
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Fig. 1. Learned probabilistic and interaction-aware driver behavior models
iteratively applied to generate possible scene predictions (colors indicate
prediction horizon of up to 7 s). The green vehicle yields for the hypotheses
of turning left/going straight, but is allowed to drive for turning right. The
variance in the driver’s actions highly depends on the situation, which can
be seen in a higher lateral uncertainty for turning maneuvers.

Data-driven approaches are more promising to achieve
high-accuracy models that are able to represent subtle nu-
ances of driver behavior. In the area of trajectory predic-
tion, typically a mapping from current state to complete
trajectories of several seconds into the future is learned.
However, these relationships are in general hard to learn:
the prediction of a traffic scene with multiple agents needs
to incorporate possible interactions and account for both low-
level action uncertainty (such as lateral position in a lane)
as well as high-level decision uncertainty, such as the route
an agent will follow at an intersection. Incorporating all this
within the learning process requires both complex models
and lots of data. Existing work either learns solely high-
level intentions [2], does not consider urban scenarios [3] or
tackles the whole prediction problem with complex, nested
neural network based models [4].

In contrast, we propose to learn probabilistic and
interaction-aware Markovian behavior models that are condi-
tioned on the driver’s route intention using deep neural net-
works. Such models allow the integration into various kinds
of state-of-the-art algorithms that commonly still rely on
hand-tuned models: forward simulation based motion plan-
ning algorithms (e.g. Monte Carlo tree search (MCTS) [5],
partially observable Markov decision processes (POMDPs)
[6]), or intention estimation and trajectory prediction algo-
rithms (e.g. dynamic Bayesian networks (DBNs) [7]). As
many of these algorithms are sampling-based, the models
might be called thousands of times per time step. Thus,
our focus is on simple and fast models that are still able
to accurately capture the variety that is present in urban
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scenarios. By learning the mean and variance of a Gaus-
sian action distribution, the presented models account for
situation-dependent variance in human actions.

We compare different network architectures and show that
even simple feed-forward models are able to outperform the
hand-tuned rule-based model from [7], providing a more
accurate trajectory prediction using forward simulation. The
model is able to learn lane following, distance keeping,
yielding to other traffic participants at intersections, stopping
at red lights as well as to even capture subtleties such as
cutting curves and curvature dependent lateral uncertainty
(see Fig. 1). To showcase the applicability of such a learned
model, we integrate it into our previously presented DBN
[7] for driver intention estimation and trajectory prediction
and compare it to the previous rule-based action model.

II. RELATED WORK

The need for accuracy and detail in driver behavior model-
ing typically varies depending on the purpose of application.
Models used for traffic flow analysis tend to be less detailed,
as individual driver behavior patterns do not matter as much,
whereas models used for estimating driver intentions, or
for predicting how humans react to an autonomous vehicle,
should be able to capture human behavior patterns in more
detail.

A. Rule-based Behavior Models

The traffic simulator SUMO [8] comes with different
behavior models built in. It is distinguished between car-
following, lane-changing, and junction models. The most
known car-following models are the so-called Krauß-model
[9] and the intelligent driver model (IDM) [1]. Typically,
these models have free parameters, such as desired time
headway or acceleration/deceleration ability and define a
deterministic mapping from relative distances and velocities
to accelerations. Most of the models follow the concept of
driving as fast as possible while ensuring complete safety,
meaning that each agent will always be able to avoid a
collision with its preceding agent. This is a strong assumption
which typically does not hold in real traffic. Similarly, the
lane changing and junction models can be parameterized,
e.g., in terms of maximum lateral acceleration, minimum
time gap or tendency to ignoring the right of way. Thanks to
its simplicity, the IDM is widely applied for driver intention
estimation (e.g., [7], [10]) and for modeling how others
react to specific plans of an autonomous vehicle (e.g., during
forward simulation using Monte Carlo tree search [5]).

Although these heuristics-based models are well suited for
traffic simulation, they tend to be not detailed and realistic
enough for accurate prediction of humans. Furthermore,
they consist of multiple interdependent parameters that are
cumbersome to tune by hand.

In our previous work [7], we define a set of influence-
based action models, each determining a range of reasonable
acceleration given a specific influence, such as a preceding
vehicle, the road curvature, or an upcoming traffic light.

Besides applying the IDM for the influence of the pre-
ceding vehicle, we propose new heuristics-based models
for stopping at stop signs and red lights, slowing down
before curvatures and approaching gaps at intersections.
These additional components successfully extend the usage
of rule-based models to complex urban scenarios. However,
the design and tuning of all of the aforementioned models
by hand is cumbersome and they are not able to distinguish
minor subtleties in human behavior. Furthermore, they do not
account for the fact that the variance of human behavior is
situation-dependent as well. This model serves as a baseline
for the evaluation of the learned models and is referred to as
rule-based model.

B. Data-driven Behavior Models

Learning complete trajectories, i.e., multiple time steps
at once, is a common approach, as it allows to consider
long-term deviations within the loss function. To account
for interactions between multiple agents, Alahi et al. [11]
combine what they call social pooling with LSTMs, allow-
ing to create relationships between an agent and its close
neighborhood. They show promising results in the area of
pedestrian prediction in crowded spaces.

A recent deep-learning-based multi-agent trajectory pre-
diction framework called DESIRE [4] aims to achieve
interaction-awareness, account for the multi-modality of the
future (e.g. induced by different possible routes) and achieve
long-term accuracy–all within one training procedure. The
model consists of multiple modules handling the trajectory
sample generation (based on a conditional variational auto-
encoder), the trajectory ranking and refinement (based on
inverse optimal control) and the scene context fusion (using
a convolutional neural network encoded scene context). Al-
though it shows very promising results, such nested models
typically need lots of training data and may be too complex
to be integrated into sampling-based filtering and forward
simulation frameworks.

In [12], a Bayesian network estimates route intentions
of drivers at intersections based on learned conditional
probability tables that define the kinematic state transitions.
Discretizing the state space results in low complexity, but
also does not allow for accurate, fine-grain models.

Wheeler et al. [13] present a survey on learned probabilis-
tic driver behavior models for highways scenarios. Compar-
ing different models including random forests, linear/static
Gaussian and linear/discrete Bayesian on the context classes
of free-flow, car following and lane change, they found
that mixture regression and linear Bayesian achieve the best
results, depending on the evaluation metric.

In [14], learned context-dependent action models of traffic
participants based on random forests are embedded into a
DBN to estimate the state of the current situation and predict
the future motion of drivers. As an outlook, they highlight
the possible benefits of conditioning the learning process on
driver intentions.

Lenz et al. [3] compare different deep neural network
architectures for Markovian motion prediction in highway



scenarios. As they do not condition on driver intentions
such as lane changing or lane keeping, they model their
actions as Gaussian mixture distribution to account for future
multimodality. They find that a fully connected feed-forward
network outperforms recurrent architectures on the domain
at hand. As their presented architecture achieves promising
results, we include it in the evaluation of this paper.

In contrast to the presented literature, we propose to learn
neural network based probabilistic and context-dependent
action models that are conditioned on a driver’s route in-
tention, which are able to cope with the high uncertainty
and situational complexity present in urban environments.

III. PROBLEM STATEMENT

A traffic scene consists of a set of agents
V = {V 0, · · ·, V K}, with K ∈ N0, in a static environment
(map) with discrete time, continuous state, and continuous
action space. The map consists of a road network with
topological, geometric and infrastructure (yield lines, traffic
signs, etc.) information as well as the prevailing traffic rules.
At time step t, each of the agents is represented by its route
intentions rit and its kinematic state xit = [xit, y

i
t, ψ

i
t, v

i
t]
>

comprising the Cartesian position, heading, and absolute
velocity. The agents’ lengths and widths are considered
to be given, but for the sake of brevity, are not included
within xi. The route intention rit defines a path through the
road network the agent desires to follow (see Sec. IV-A for
detailed definition). At each time step, each agent executes
an action ait = [ait, δ

i
t]
> comprising the longitudinal

acceleration and the steering angle. This action depends
on the agent’s route intention, the map and the kinematic
states of all agents, transforming the current kinematic
state xit to the new state xit+1. Noisy measurements
zit = [zix,t, z

i
y,t, z

i
θ,t, z

i
v,t]
> are used to update the belief

of the agent’s state. The data association (detection and
tracking of objects) is considered to be given as it is handled
by another module. Thus, high-level cubic objects represent
the measurements of the single vehicles.

The objective of this work is to derive an accurate action
model p(ai|ri,x0, · · · ,xK ,map) which allows to predict
the next kinematic state of an agent as close as possible given
its current kinematic state and its route intention. As this
model is intended to be integrated as a probabilistic transition
model into sampling based algorithms, the input to the model
is deterministic (a sample of the belief), whereas the output
is a probability distribution over actions, from which one
can again draw samples, if desired. In this work, the action
is modeled to be normally distributed given a specific route
intention and the current situational context:

p(ai|ri,x0, · · · ,xK ,map) = N
([
µa
µδ

]
,

[
σ2
a 0

0 σ2
δ

])
(1)

IV. APPROACH

We model the development of a traffic situation as a
Markov process consisting of multiple interacting agents.
The action of one agent at a specific time step t is modeled to
be independent of the actions of the other agents at the same
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Fig. 2. Excerpt of the DBN (left) from [7] showing the dependencies of
an agent’s action on its route intention and the states of the surrounding
agents. We learn this Markovian action model using a neural network (right),
which defines the probabilistic mapping from features to a Gaussian action
distribution comprising acceleration a and steering angle δ. The features
are determined given the parents of the action node and the map object.
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Fig. 3. (a): Possible routes at an intersection (green). (b): Conflict areas
(yellow) from V 0’s perspective for going straight, considering all possible
route intentions of V 1. [7]

time step given their current kinematic states. This is shown
in the left part of Fig. 2: the action ai of agent V i only
depends on its route intention ri and the kinematic states
[x0, · · · ,xK ] of all agents, but not on other agents’ actions.
Thus, all agents can be predicted independently from t to
t + 1. For small time steps, this is a mild assumption, as
one can assume that drivers don’t know the future actions of
other drivers when deciding for an action. As the context is
updated in each time step (given the one-step prediction of
each agent of the last time step), an interdependency between
multiple agents’ trajectories emerges over time.

In contrast to existing rule-based action models, we
propose to learn this probabilistic mapping from context
and route intention to action distribution with deep neural
networks (right part of Fig. 2).

A. Route Intention and Conflict Areas

The agent’s route intention ri ∈ Ri serves as a path
that guides its behavior. It is represented by a sequence of
consecutive lanes in the road network. The set of possible
routes Ri is determined given the current lane matching and
a specified metric horizon lH using breadth-first search in the
topological map (see Fig. 3(a)). As each route has a different
geometry, may imply different traffic rules and relations to
other agents, the desired route strongly influences a driver’s
actions.



The conditioning on a driver’s route intention mainly
serves two purposes: Firstly, it reduces the neural network’s
prediction complexity by eliminating the need to predict for
multiple route hypotheses. Thus, the learning algorithm does
not have to cope with the multi-modality induced by different
route options. Furthermore, the varying number of possible
routes (depending on the road topology) is handled outside
of the neural network, which would be hard to model with
a fixed input and output sized neural network. Secondly, it
allows to define relevant features along the planned path,
such as upcoming road curvature or longitudinal distances
to stop lines, and to build simplified relationships between
agents on complex road layouts. The routes of two agents are
related by dividing them into parts that either merge, diverge,
cross, are identical, or have no relevant relation at all. Dif-
ferent road junction types such as roundabouts, intersections
or highway entrances can thus be broken down into these
types of relations, allowing for a better generalization.

To derive interaction features of agents at intersections,
we introduce the notion of conflict areas: Given two
agents on two routes, their conflict area is defined by the
intersecting set of the areas of both routes, i.e., the area
in which their lanes overlap. We assume an agent doesn’t
know which route other agents are going to follow, thus,
all possible conflict areas are considered (see Fig. 3(b)). For
each conflicting agent, the possible conflict areas are merged
and the distances of both agents to entry and exit of this
area are determined and represented as features. Furthermore,
the other agent’s velocity and the right of way are used as
features (see Sec. IV-D).

B. Motion Model

Instead of directly learning a state transition model, we
restrict the neural network to learn a two dimensional action
distribution comprising acceleration a and steering angle
δ. This reduces learning complexity and enforces the non-
holonomic vehicle constraints. The kinematic state transition
is defined deterministically given these actions using the
kinematic bicycle model [15]

ẋ =


ẋ
ẏ

ψ̇
v̇

=


vcos(ψ + β)
vsin(ψ + β)
v
lr

sin(β)

at

 , (2)

with β = arctan
(

lr
lf+lr

tan(δ)
)

. The parameters lf and lr
define the distances from center of gravity to the front and
rear axis respectively. They are determined by minimizing
the motion reconstruction error (see Sec. IV-C). In between
two discrete time steps, it is assumed that the acceleration
and the steering angle are kept constant.

C. Target Generation

The inverse of the bicycle model allows the calculation of
the acceleration and steering angle given two consecutive
kinematic states xt and xt+1. The targets can thus be
determined given a sequence of states. As the system of
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Fig. 4. First plot: determination of acceleration using inverse motion model
with unfiltered (blue) and filtered (red) velocity and yaw-angle (real data).
The filter applies a moving mean and a moving average with window size
1 s. Second plot: corresponding motion reconstruction (red) and original
motion (green). As the reconstruction with unfiltered velocity and yaw-angle
does not differ noticeably from the filtered one, it is not depicted.

equations is over-determined, we ignore the components of
x and y and rely on v and ψ to generate the targets:

at =
vt+1 − vt

∆T
(3)

δt = sgn

(
∆ψ

v̄

)
arctan

 lf + lr√
( v̄

∆ψ )2 − l2r

 , (4)

with v̄ = vt+vt+1

2 . The steering angle is considered to be zero
if an agent stands still or the term under the square root is
negative. Before calculating the targets, the data sequences
are resampled to ∆T = 0.2 s by linearly interpolating the
kinematic states and features. To reduce the negative impact
of noise in the targets on the learning process, the velocity
and yaw angle are smoothed with moving mean and median
(window size 1 s) before applying the inverse motion model
(see first plot of Fig. 4 for a comparison of reconstructed
acceleration with filtered and unfiltered velocity).

To analyze the accuracy of the motion model and to
derive the parameters lf and lr, the kinematic states can
be reconstructed using the actions and the forward motion
model and compared to the original trajectories. A typical
example of the original data and the reconstructed states can
be seen in the second plot of Fig. 4.

For the learning procedure, we consider the smoothed tra-
jectories (and corresponding targets) and the actually driven
route to be ground truth, thus we can learn with complete
data and do not need to utilize expectation-maximization.

D. Feature Generation

The input features of the neural network summarize the
current situational context including the geometry of the
upcoming road, traffic rules and road infrastructure, and the
most relevant surrounding agents. Most of these features
can only be defined given a specific route intention, such
as the upcoming road curvature, the conflict areas (see IV-
A) and the corresponding right of way, or which vehicle
is considered to be the directly preceding one. The route
intention is thus described by these features, rather than by



TABLE I
FEATURES

Predicted Vehicle

velocity of predicted vehicle V i vi

lateral position in lane dlat,0

Route

curvature values ahead at distances [c0, c5, · · · , cH ]
reasonable acc given curvature ahead acurv

relative angle to point on centerline at distances [φ0, φ1, · · · , φ15]
relative angle to direction of centerline γ0

width of lane w0

Traffic Rules

speed limit vspeedlim

distance to next traffic light dtrafficlight

next traffic light state strafficlight

distance to next stop line dstopline

distance to next yield line dyieldline

distance to next intersection dintersection

whether always right of way at next intersection rowalways

Interaction

velocity of preceding agent V p vp

distance to preceding agent V p dp

velocity of closest conflicting agent V c vc

distance V c to conflict area (entry) dcentry
distance V c to conflict area (exit) dcexit
distance V i to conflict area (entry) dientry

distance V i to conflict area (exit) diexit
right of way for conflict rowi,c

discrete options such as right turn. This allows an arbitrary
road layout with different number of possible routes.

In this work, we found that the directly preceding agent
and the closest conflicting agent are the two most influencing
agents. To reduce complexity, only these two other agents
are included within the feature set. Considering more and
potentially even a varying number of agents should be part
of future research. A complete list of used features is given
in Tab. I. Different combinations of features are tried during
evaluation to determine their importance (see Sec. V).

There are two features that are not self-explanatory: the so
called reasonable acceleration given the upcoming curvature
acurv is a pre-computed feature based on domain knowledge.
It is intended to subsume the set of upcoming curvature
values and is calculated according to a desired maximum
lateral acceleration. Given this lateral acceleration, one can
determine the maximum acceleration for one time step that
still allows the agent to brake in time. This heuristic is also
used in the rule-based model for the velocity adaptation
depending on the curvature (see [7] for more details). The
boolean feature rowalways specifies whether an agent does
always have right of way on its route at the next intersection
(no matter if other agents are present nor what routes they
are going to take). We added this feature, as agents on
priority lanes tend to not slow down before intersections at
all, whereas agents that might have to yield slow down even
if there are no other agents around.

As the model is conditioned on the driver’s intended route,
this intention has to be known for training in order to set the
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Fig. 5. Heteroscedastic variance in human driver behavior: depicted is a
validation plot of a learned model with mean (green) and variance (yellow)
and one trajectory of the validation dataset (blue). It can be seen that the
variance of the learned actions strongly depends on the situation.

features accordingly. We assume drivers do not change their
minds about the routes they desire to follow. This allows to
automatically label the route intention after observing which
routes were actually taken. Tracks of agents that were lost
before they have completely traversed an intersection are
disregarded for training.

E. Loss function

To be able to integrate the action model into various
sampling based algorithms, it is supposed to learn a map-
ping from a deterministic set of features to a probability
distribution of actions. Our data shows that the variance in
driver behavior strongly depends on the situation. Thus, we
do not only learn the mean of the actions, but also learn
the context-dependent variance of the action distribution.
A validation plot showing this so-called heteroscedastic
variance can be seen in Fig. 5. We model this distribution
to be a unimodal Gaussian given a specific route hypothesis.
Therefore, the overall belief including the uncertainty about
the route intention will still be multimodal. For the sake of
problem simplification, the covariance between acceleration
and steering angle is assumed to be zero.

The loss function given the predicted Gaussian with mean
µ = [µa, µδ]

> and covariance matrix Σ = diag(σ2
a, σ

2
δ ) and

the targets t = [at, δt]> is given by the negative log likeli-
hood

lNLL(µ,Σ, t) =
1

2
(µ− t)>Σ−1(µ− t) + log(

√
|Σ|), (5)

with |Σ| being the determinant of the covariance matrix.
This loss enables to learn both the mean and variance in one
training procedure.

V. EVALUATION

A. Models and Hyperparamters

We compare the following types of neural networks to
show how they are suited for the task of one-step motion
prediction: Linear fully connected, long short-term memory
(LSTM), gated recurrent unit (GRU), and the architecture
presented by Lenz et al. [3], which was originally introduced
as a driver behavior model in highway scenarios. The last



TABLE II
HYPERPARAMETERS

Parameter Linear LSTM GRU Lenz

fact ReLU – – ELU
Nlayers 4 2 2 5
Nn/layer 274 274 274 400
pdrop. 0.06 0.2 0.3 0.5
mbatchn. 0.3 – – –

layer of each of the network types is a fully connected
linear layer that outputs the action distribution parameters
µa, µδ, σ

2
a, σ

2
δ . The outputs for the variances are transformed

by an exponential function before calculation of the loss to
ensure positive values.

The best found hyperparameters for the presented models
as well as the parameters used by Lenz et al. are presented in
Tab. II. Those parameters are used for the remainder of the
evaluation. Furthermore, the Adam optimizer [16] is chosen,
using a batch size of 1024, a learning rate of 0.001 and a
sequence length for the recurrent architectures of 3 s.

The different architectures are furthermore compared to
the rule-based action model from [7] (see Sec. II-A). This
model is able to slow down before curvatures, keep appro-
priate distances to preceding vehicles, stop at traffic lights,
stop lines and before intersections (if yielding is required)
and implements a gap-approach for intersection crossing. The
parameters of this model were tuned by hand using different
urban scenarios.

B. Training and Validation Data

Real driving data is recorded with a measuring vehicle
with GPS/INS based localization and dynamic occupancy
grid based object tracking using lidar and radar sensors [17].
This dataset, denoted as Dreal, consists of 40 minutes of
urban scenarios including both roundabouts and unsignalized
intersections and is split into 30 minutes for training and 10
minutes for validation.

As the real driving data is very limited and not as diverse
(e.g. does not contain traffic lights), we additionally recorded
simulations using a proprietary traffic simulator. This dataset,
denoted as Dsim, consists of 0.465 hours of naturalistic
driving data including 40 agents randomly traversing a
different, and more diverse urban environment. It includes
traversing signalized as well as unsignalized intersections
(both T-junction and 4-way junctions) and some lane changes
on multi-lane intersections. This results in 18.6 hours of data,
split into 10 hours for training and 8.6 hours for validation.

The map which is used to determine the possible routes
and features is based on OpenDRIVE [18]. The agents of the
simulation are controlled using the driver model of [19].

C. Results

1) Comparison of Model Architectures: The different
model architectures are compared using the simulation
dataset Dsim, as it contains more diverse scenes (e.g. in-
cluding traffic lights or lane changes, not present in the real
driving dataset), thus allowing for a better comparison.
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Fig. 6. Comparison of different network architectures using Dsim: Losses
over training iterations (validation solid, training dashed) depicted in the
upper image and corresponding position prediction root mean square errors
in the lower images with different zoom factors.

The validation and training losses of the different models
are depicted in the upper part of Fig. 6. It can be seen
that the linear model trains the fastest and achieves the
lowest overall loss (lNLL = −4.02, see also Tab. III). The
lower part of Fig. 6 shows the corresponding root mean
square position errors RMSExy depending on the prediction
horizon. For short term predictions of up to around 2 s,
all of the learned models outperform the rule-based model.
Low one-step prediction errors are especially important for
inference in a DBN. For long-term predictions, the linear
model achieves the best results amongst the neural networks.
However, the rule-based model becomes more accurate for
predictions with very long horizons exceeding 15 s. This can
be explained by the accumulating prediction error, for which
the learned models cannot counteract. If this error is too high,
the features determined during forward simulation are not
represented within the training data anymore. This problem
is commonly known in machine learning based trajectory
prediction and could be reduced with techniques such as
data as demonstrator [20]. The rule-based system, on the
contrary, is designed to be attracted by the center of the lane,
such that a vehicle will always stay close to the centerline.
The runtime τ of any of the learned models (averaged over
a batch of 1000 samples) is less than a third of the one of
the rule-based model (see Tab. III). This is foremost the case
due to efficient batch processing, allowing for fast execution
when multiple samples can be processed independently (such
as in particle filtering).

A qualitative result on the real data Dreal can be seen in
Fig. 7, comparing the forward simulation of the rule-based
model to the learned linear model. It can be seen that the
learned model is able to pick up subtleties such as cutting
curves and curvature dependent lateral uncertainty. The linear
neural network model also outperforms the rule-based model,
as shown in Fig. 8. However, this dataset is quite small and
does not contain as diverse situations as the simulated one.



(a) rule-based (b) linear network

Fig. 7. Qualitative comparison of rule based and learned linear model on
real driving data. The learned model is able to reproduce subtleties such
as cutting curves and different lateral uncertainties for curved and straight
roads.
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2) Feature Importance: To determine the importance of
the single features, we train the linear network on Dsim

starting with using only a single feature and iteratively
adding features which result in the highest reduction of
validation loss. Thus, redundant features can be pruned
and the complexity of the model reduced. The five most
important features and the corresponding validation losses
by adding each of these features are:

vi φ15 dinters. φ7 c70 all

lNLL -0.714 -2.093 -2.779 -3.249 -3.346 -4.016

It can be seen, that even with as few as five features, it is
possible for the network to learn basic behavior models that
achieve lower losses than both recurrent networks.

3) Route Intention Estimation: By conditioning the action
on a driver’s route intention, one can compare the different
route hypotheses with the actual observations and thus esti-
mate their probabilities. This is achieved by integrating the
learned model into the dynamic Bayesian network from [7].
A qualitative comparison of route estimation and the cor-
responding Kullback-Leibler divergence DKL to the ground
truth is shown in Fig. 10. The learned model achieves a lower
DKL is able to tell the correct route faster than the rule-based
model.

TABLE III
RUNTIMES τ [s], LOSSES AND POSITION PREDICTION RMSE ε [m] FOR

DIFFERENT NETWORK ARCHITECTURES USING DATASET Dsim

Method τ lNLL ε0.2 s ε1 s ε5 s ε10 s ε20 s

Rule-Based 2.2e-6 – 0.093 0.469 3.959 11.28 33.48
Linear 7.1e-7 -4.02 0.028 0.243 3.237 10.75 37.95
LSTM 6.8e-7 -3.26 0.027 0.272 4.414 16.40 60.02
GRU 6.4e-7 -3.05 0.033 0.346 5.326 20.25 67.96
Lenz et al. 6.3e-7 -3.40 0.029 0.235 3.393 13.07 54.11

Fig. 9. A disadvantage of conditioning a machine learning model on a
driver’s route intention: routes that are so unlikely that they are not present in
training data may result in unreasonable actions, such as red light violations.

An interesting disadvantage of conditioning the model
on a driver’s route intention can be seen in Fig. 9: When
enumerating all possible routes and running a forward sim-
ulation for each of the conditioned models, there might
exist route candidates that are so unlikely that they have
never been followed in the training data. Thus their features
may result in unreasonable actions during inference, as the
network only learns what actions are reasonable given a
route, but not which routes are reasonable given a situation.
As an improvement, one could additionally learn the route
priors and prune very unlikely hypotheses before forward
simulation.

VI. CONCLUSIONS

This paper proposes to learn Markovian action models
of human drivers from urban scenarios with deep neural
networks. These models represent a probabilistic mapping
from a feature-based representation of a traffic scene from
the point of view of a driver to a distribution over his/her
acceleration and steering angle. Conditioning this model on
the driver’s route intention, which is the main cause of multi-
modality in predictions, reduces learning complexity and
allows for arbitrary road layouts with varying number of
route hypotheses. The presented networks are able to predict
yielding to other traffic, stopping at traffic lights and even
account for subtleties such as cutting curves.

Learning the variance in a driver’s actions allows to
have a context-dependent magnitude of uncertainty in the
transition model, which better captures the reality of human
driving. Due to the simplicity of the models (2-4 layers),
they come with low runtimes, enabling their application to
sampling based frameworks such as Monte Carlo tree search
or particle filtering. We showed that the learned models
can easily be integrated into a DBN for route intention
estimation. All presented architectures outperformed the rule-
based model during forward simulation for short prediction
horizons. However, the networks do not counteract for the
accumulating error during forward simulation and thus have
difficulties with longer horizons.

Future work should focus on improving long-term predic-
tion performance: this could be achieved using techniques
such as data as demonstrator [20], allowing the models
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Fig. 10. Qualitative comparison of route estimation of green agent 0 at an urban scenario, wanting to turn left, using a DBN with rule-based (first plot)
and learned linear neural network (second plot) action models and corresponding Kullback-Leibler divergence DKL to ground truth (third plot).

to learn to approach the ground truth trajectories again
after slight deviation. Furthermore, a more detailed and
quantitative analysis of real driving data should be conducted
to determine the applicability to even more diverse scenarios.
Integration of the learned models in forward simulation based
interaction-aware planning algorithms (such as [5], [6]) will
yield insights on the benefits of more accurate behavior
models for the driving behavior of autonomous vehicles.
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