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Abstract—This paper is concerned with fully distributed con-
sensus control of linear multi-agent systems with undirected
graphs. Two kinds of reduced-order adaptive output-feedback
protocols are proposed. For the edge-based protocol, each edge is
adapted by a scalar that is determined by the output information
of the associated two agents; for the node-based protocol, each
agent multiplies the connecting weights by a scalar that is
determined by the relative output information of all neighbouring
agents. Sufficient conditions in terms of the solvability of some
matrix equations are derived for the existence of the two
protocols. Furthermore, a tractable algorithm is constructed
for designing the protocol gains. Compared with the existing
related results, the proposed protocols have the following three
merits simultaneously: of lower dimension, using relative output
information about neighbouring agents and in the fully distributed
fashion. A simulation example on formation flying of spacecrafts
is presented to illustrate the efficacy of the proposed method.

Index Terms—Consensus, multi-agent systems, output feed-
back, reduced order, adaptive control.

I. INTRODUCTION

MULTI-AGENT systems (MASs) have drawn consid-
erable attention in the past ten years, and related

applications can be found in various areas, e.g., distributed
optimization, robot/vehicle formation and social networks [1]–
[9]. A fundamental control problem of MASs is consensus,
that is, to find a control protocol such that the states of all
agents converge to some common trajectory. A basic require-
ment about a control protocol for MASs is the fact that it can
be implemented in a distributed way. This is because agents in
practice usually have limited communication capabilities such
that each agent can only communicate with its neighbours. Up
to now, there have been many results that can manage this
challenge. To mention a few, consensus seeking of single-
integrator systems was investigated in [10], where it was
shown that a directed spanning tree is necessary for consensus

This work was supported by the Alexander von Humboldt Foundation of
Germany and by the joint Sino-German project “Control and Optimization for
Event-triggered Networked Autonomous Multi-agent Systems” funded by the
German Research Foundation (DFG) and the National Science Foundation of
China (NSFC).

X. Li is with the Department of Automation, Shanghai Jiao Tong University,
Shanghai 200240, China (e-mail: lixianwei1985@gmail.com).

F. Liu and M. Buss are with Chair of Automatic Control Engineer-
ing, Technical University of Munich, 80333 Munich, Germany (e-mail:
fangzhou.liu@tum.de; mb@tum.de).

S. Hirche is with Chair of Information-oriented Control, Technical Univer-
sity of Munich, 80333 Munich, Germany (e-mail: hirche@tum.de).

of MASs; consensus of general linear MASs was studied in
[11], and a kind of dynamic output-feedback protocols with
controller interaction were proposed; in [12], [13], a novel
dynamic output-feedback protocol was proposed for general
linear MASs, and moreover, a unified robust control point
of view was provided for the existence of output-feedback
protocols without exchanging controller information.

A drawback of the aforementioned results is the fact that
the smallest nonzero eigenvalue of the Laplacian matrix is
needed for protocol design. This requires that the weights of
the communication graph must be exactly known. Moreover,
even if the graph is known, it is still difficult to exactly
compute the eigenvalues of the Laplacian matrix when the
network size is large. As a result, although the protocols in the
aforementioned results can be implemented distributively, the
corresponding design process is not of the distributed nature.
Inspired by this limitation, many efforts have been made to
explore fully distributed control protocols for consensus of
linear MASs, especially those adaptively adjusting scalar gains
about the graph by using local information only [14]–[18].
Fully distributed state-feedback protocols were constructed
for general linear MASs in [14], [16] with undirected and
directed graphs, respectively. Adaptive consensus of linear
MASs with external disturbances are further studied under
a kind of dynamic state-feedback protocols in [18]. Inspired
by the output-feedback protocols in [11], adaptive dynamic
output-feedback protocols were proposed in [15] for general
linear MASs with undirected graphs, where leader-follower
consensus with the leader having an nonzero input was also
discussed. To deal with directed graphs, the authors further
proposed a kind of sequential observer based adaptive output-
feedback protocols in [17] for linear MASs.

Although there have been some results about fully dis-
tributed consensus control of MASs as mentioned above, how
to reduce the complexity of the constructed protocols is still
challenging. Particularly, the order of each local controller of
the protocols in [15] is identical to that of the agents. In
view of this fact, we term a protocol like those in [15] as
a full-order protocol. As such, it is seen that the dynamic
output-feedback protocols without the adaptive mechanism
in [11], [12], [19] also fall into the full-order type. Based
on this observation, a natural idea for reducing the protocol
complexity is to design reduced-order protocols, that is, the
order of each local controller is smaller than that of the
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agents; see [20], [21]. However, note that no fully distributed
reduced-order protocol has been developed for MASs. The
reduced-order protocols in [20], [21] are based on the design
theory of traditional reduced-order observer-based controllers.
In addition to solving some matrix equations, they also need
to know the smallest nonzero eigenvalue of the Laplacian
matrix. By using local output information only, it is unknown
yet whether the protocols in [20], [21] can be extended to
the case that the graph related gains are adaptively adjusted.
Moreover, note that the protocols therein have their own
shortcomings. Specifically, the one in [20] requires absolute
output information of individual agents, which is impractical in
some applications; while the one in [21] requires relative input
information between neighbouring agents, such that the un-
derlying graph over which the controller information flows is
actually different from the original communication graph. It is
thus open and challenging to design fully distributed reduced-
order output-feedback protocols for consensus of MASs.

Motivated by the above observations, this paper investigates
the fully distributed consensus control problem of linear MASs
via reduced-order adaptive output-feedback control protocols.
The communication graph is assumed to be undirected. Two
kind of reduced-order adaptive dynamic output-feedback pro-
tocols are constructed: the first one updates the scalar gains
from the output difference of the two agents on each edge,
termed an edge-based protocol, while the second one from
the output difference sum of all neighbouring agents for
each node, termed a node-based protocol. By appropriately
parameterizing the protocol gains, existence conditions are
derived for the two protocols, which require the solvability
of some matrix equations related to agent dynamics. More-
over, a design algorithm is presented, which shows that the
proposed adaptive output-feedback protocols with (nx−nu)th-
order local controllers are always feasible, provided that the
agents are stabilizable and detectable and the communication
graph is connected. Thus, like the full-order results in [15],
the proposed results confirm that some reduced-order fully
distributed consensus protocols must exist and can be easily
found. Moreover, compared with the reduced-order protocols
in [20], [21], the proposed protocols make use of relative
output information more straightforwardly. The efficacy of
the proposed theoretical results are finally demonstrated by
a simulation example about formation flying of spacecrafts.

Notation: Represent the set of all m × n real matrices by
Rm×n and an n×n identity matrix by In, where the subscript
is omitted if no confusion is caused. A square, positive definite
(semi-definite) matrix is denoted by P > 0 (≥ 0). Kronecker
product and Hadamard product for two matrices A and B are
represented by A ⊗ B and A ◦ B, respectively. For (block)
diagonal matrix with A1, . . . , An on the diagonal, we write it
as diag{A1, . . . , An}. Image(·) indicates the image of a matrix
(·). ‖(·)‖ denotes the 2-norm of a vector (·).

An undirected graph is denoted by G(V, E) with V =
{1, . . . , N} the set of N nodes and E ⊆ V × V the edge set.
The associated adjacency matrix is denoted by A = [aij ]N×N ,
where aij > 0 if (j, i) ∈ E and aij = 0 otherwise. For an
undirected graph, we mean aij = aji for i, j = 1, . . . , N . If
(j, i) ∈ E or aij > 0, node j is said to be a neighbouring

node of node i and the set of all the neighbouring node of
node i is denoted by Ni. The associated Laplacian matrix
L = [lij ]N×N is defined as lii =

∑
k∈Ni

aik and lij = −aij
for i, j = 1, 2, . . . , N and i 6= j. A path of the graph is a
sequence of edges connecting two nodes. We say an undirected
graph is connected if every node can be reached from every
other node over any path.

Lemma 1 ([22, Lemma 1]): Consider an undirected graph
G(V, E) and suppose it is connected. Then zero is a sim-
ple eigenvalue of the Laplacian matrix L, and λ2(L) =

min1Tx=0, x6=0
xTLx
xTx > 0 is the smallest nonzero eigenvalue.

II. MAIN RESULTS

We will present two reduced-order adaptive output-feedback
protocols for consensus control of general linear MASs. The
consensus problem will be first formulated. Then consensus
analysis conditions for the concerned protocols will be pro-
vided, and finally a design algorithm will be presented.

A. Problem Statement

Consider N (N ≥ 2) homogeneous dynamic agents with
each one represented by a linear time-invariant system:

ẋi(t) = Axi(t) +Buui(t),

yi(t) = Cyxi(t), i = 1, . . . , N, (1)

where xi ∈ Rnx , ui ∈ Rnu and yi ∈ Rny are the state, control
input and local output of agent i, respectively, and A, Bu

and Cy are appropriately-dimensioned real system matrices.
Without loss of generality, we assume that the matrix triple
(A,Bu, Cy) is stabilizable and detectable.

The consensus problem is to find a control protocol that
drives the states of all the agents to track common trajectories.
Denote by an undirected graph G(V, E) the communication
topology of a distributed protocol. We are interested in dis-
tributed control protocols that make only use of relative in-
formation between neighbouring agents. Symbols with accent
“∼” are used to denote the relative information between
neighbouring agents. For instance,

x̃i(t) ,
∑
j∈Ni

aij(xi(t)− xj(t)) =
N∑
j=1

lijxj(t),

ỹi(t) ,
∑
j∈Ni

aij(yi(t)− yj(t)) =
N∑
j=1

lijyj(t), (2)

where A = [aij ]N×N and L = [lij ]N×N are the adjacency
matrix and Laplacian matrix of G(V, E), respectively, and
Ni is the set of neighbouring agents to agent i. Signals x̃i
and ỹi are the relative state and relative output of agent i,
respectively. Protocols making use of x̃i for consensus control
are called state-feedback protocols, while those making use
of ỹi are output-feedback protocols. Since full (relative) state
information is not always available, output-feedback protocols
are of more relevance in applications.

To make full use of relative output ỹi, we propose two
distributed adaptive output-feedback protocols for consensus
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control. The edge-based output-feedback protocol is given by

ṙi(t) = Hri(t) + Fr

∑
j∈Ni

cij(t)aij (ỹij(t) + CyBr r̃ij(t)) ,

ui(t) = Gri(t) + Fu

∑
j∈Ni

cij(t)aij (ỹij(t) + CyBr r̃ij(t)) ,

(3)

with the law of adaption

ċij(t) = αij (ỹij(t) + CyBr r̃ij(t))
T

(ỹij(t) + CyBr r̃ij(t)) ,

cij(0) = cji(0) > 0, αij = αji, i = 1, . . . , N ; j ∈ Ni, (4)

while the node-based output-feedback protocol is given by

ṙi(t) = Hri(t) + di(t)Fr (ỹi(t) + CyBr r̃i(t)) ,

ui(t) = Gri(t) + di(t)Fu (ỹi(t) + CyBr r̃i(t)) , (5)

with the law of adaption

ḋi(t) = βi (ỹi(t) + CyBr r̃i(t))
T

(ỹi(t) + CyBr r̃i(t)) ,

di(0) > 0, i = 1, . . . , N. (6)

Here, αij and βi are any positive scalar constants and ri ∈ Rnr

is the local controller state for agent i and

ỹij(t) , yi(t)− yj(t), r̃ij(t) , ri(t)− rj(t),

r̃i(t) ,
∑
j∈Ni

aij(ri(t)− rj(t)) =
N∑
j=1

lijrj(t).

Matrix gains H , G, Br, Fr and Fu, which have proper
dimensions, are protocol parameters to be designed. Note that
the order of the local controller, nr, is not required to be such
that nr = nx, that is, local controllers are not required to
be of full order as that of agents. A kind of adaptive full-
order dynamic output-feedback protocols have been addressed
in [15]. However, it will be clear that this paper can deal with
both full-order and reduced-order cases. Following [15], the
two notions, edge-based protocols and node-based protocols
are due to the information used for computing the adaptive
gains. Adaptive gains are associated with each edge for the
former case, and with each node for the latter case.

What is worth pointing out is that our goal is to provide
a tractable characterization of reduced-order adaptive output-
feedback protocols. On one hand, although the above protocols
seem to have a special form, it will be seen in Section II-D that
the proposed design method provides a more general formu-
lation of some existing results. On the other hand, it is known
that designing a reduced-order output-feedback controller is
not tractable in general. Without a proper parameterization of
the gain matrices, even if one can formulate a general linear
dynamic output-feedback protocol (e.g., a node-based protocol
like ṙi = Arri +Br r̃i +By ỹi and ui = Crri +Dr r̃i +Dy ỹi),
finding feasible gain matrices is still not tractable.

The consensus control problem to be addressed in this paper
is stated as follows: For the MAS (1), find an output-feedback
protocol (3) (resp., (5)) such that the states of the resulting
closed-loop system satisfy limt→∞ ‖xi(t)→ xj(t)‖ = 0 and
limt→∞ ‖ri(t)→ rj(t)‖ = 0 for all i, j = 1, . . . , N .

Remark 1: Although the protocols (3) and (5) are mo-
tivated by combining adaptive designs and reduced-order

designs, a main challenge of designing reduced-order adap-
tive protocols is how to establish a proper law of adaption
on some “error” while keeping the tractability of design
conditions. For instance, the law in [15, (2)] is given by
ċij = εijaij (ỹij − Cy r̃ij)

T
(ỹij − Cy r̃ij), where ỹij − Cy r̃ij

might be intuitively understood as the “error”. However, it
is unclear what such an “error” should be for the existing
reduced-order protocols in [20], [21]. For the protocols (3)
and (5), since ri are some intermediate variables for control
but of no physical meaning, it is also difficult to tell what such
an “error” should be without carefully designing the laws (4)
and (6), let alone, as explained before, the fact that different
parameterizations are adopted in (3)/(5) and [20], [21].

Remark 2: On one hand, the first difference between the
two protocols is obviously the number of adaptive gains. Note
that the smallest number of edges for a connected undirected
graph is N−1. In such an extreme case, the number of adaptive
gains for (3) is 2(N − 1). Thus, for any connected undirected
graph with N ≥ 3, the number of adaptive gains for (3) is
always larger than that for (5). In other words, the edge-
based protocol (3) in general involves more adaptive gains
than the node-based one (5), which implies that (3) is more
complex. On the other hand, if we see cijaij and diaij as the
time-varying weights of edge (i, j) of the new communication
graph, then the Laplacian of the new graph for the former
case keeps symmetric while that for the latter does not. This
symmetry might benefit system analysis. For instance, if the
adaptive gains are fixed after converging, the communication
graph of the closed-loop system is undirected with a symmetric
Laplacian, to which many existing results for MASs on fixed
undirected graphs can be applied.

Remark 3: The adaptive gains cij and di are non-decreasing
when consensus has not been precisely reached. Thus, if
the system is subject to external disturbances such that the
consensus error is not convergent to zero, then cij and di could
continuous increasing to infinity. To circumvent this drawback,
one may use the so-called σ-modification technique to damp
the adaptive gains. Nevertheless, a trade-off that in general has
to be made is no convergence guarantee, but only boundedness
guarantee, for the consensus error, if the external disturbances
are assumed to be bounded (see [15], [23]).

B. Consensus Analysis Under the Edge-Based Protocol

In this subsection, we present some sufficient conditions
under which the closed-loop system resulting from the edge-
based protocol (3) reaches consensus. The case for the node-
based one (5) will be discussed in the next subsection.

1) Error Dynamics: Let cii =
∑

j∈Ni
cijaij

lii
for i =

1, . . . , N and cij = 0 for i = 1, . . . , N and j /∈ Ni. Thus,∑
j∈Ni

cij(t)aij (ỹij(t) + CyBr r̃ij(t))

=

N∑
j=1

cij(t)lij (yj(t) + CyBrrj(t)) .

Define the state vector s , col{s1, . . . , sN} with si ,
col{xi, ri}. By combining the agents with the protocols (3),
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the closed-loop system is given by

ṡ(t) =
[
I⊗ Ã+ (C(t) ◦ L)⊗ B̃

]
s(t), (7)

where C , [cij ]N×N and

Ã ,

[
A BuG
0 H

]
, B̃ ,

[
BuFuCy BuFuCyBr

FrCy FrCyBr

]
.

Furthermore, define the state transformation se , (Le ⊗ I) s,
where Le , I − 1

N 11T. Denote se = col{se1, . . . , seN} and
thus sei = si − 1

N

∑N
j=1 sj . Since cij(0) = cji(0) and αij =

αji imply cij(t) = cji(t) for all t ≥ 0 and L is symmetric,
we have Le (C(t) ◦ L) = C(t) ◦ L = (C(t) ◦ L)Le. Thus, the
closed-loop system (7) can be transformed into the following
form:

ṡe(t) = (Le ⊗ I)
[
I⊗ Ã+ (C(t) ◦ L)⊗ B̃

]
s(t)

=
[
I⊗ Ã+ (C(t) ◦ L)⊗ B̃

]
se(t), (8)

The following lemma can be obtained, which bridges the
consensus property of the original MAS and the convergence
property of the system (8) under the protocol (3).

Lemma 2: For the MAS (1) with the protocol (3), consensus
is reached if and only if se(t)→ 0 as t→∞.

Proof: Note that Leq = 0 for some vector q if and only
if q ∈ Image(1). Thus, se(t) = (Le ⊗ I) s(t)→ 0 as t→∞
if and only if s(t) → Image(1 ⊗ I) as t → ∞, which is
obviously equivalent to the fact that consensus is reached.

2) Existence Condition: Now we present the following re-
sult on the existence of a distributed adaptive output-feedback
protocol (3) such that consensus is reached.

Theorem 1: Consider the MAS (1) and the protocol (3),
and suppose that the communication graph G is undirected
and connected. Then consensus is reached, and cij(t), i, j =
1, . . . , N , converge to some finite positive constants as t→∞,
if the following statements hold:

1) Matrices H , G and Br are such that H is Hurwitz and

ABr −BrH = BuG. (9)

2) Matrices Fu and Fr are such that

BuFu +BrFr = −PCT
y , (10)

where P is a positive definite matrix solving the follow-
ing ARE for any positive definite matrix Q:

PAT +AP − PCT
y CyP +Q = 0. (11)

Proof: Introduce the following matrix T and its inverse
T−1, which are obviously well-defined:

T =

[
Inx Br

0 Inr

]
, T−1 =

[
Inx −Br

0 Inr

]
.

By substituting the equations (9) and (10), we obtain

Ā , TÃT−1 =

[
Inx

Br

0 Inr

] [
A BuG
0 H

] [
Inx

−Br

0 Inr

]
=

[
A −ABr +BuG+BrH
0 H

]
=

[
A 0
0 H

]
,

B̄ , TB̃T−1

=

[
Inx

Br

0 Inr

] [
BuFuCy BuFuCyBr

FrCy FrCyBr

]
×
[

Inx
−Br

0 Inr

]
=

[
BuFuCy +BrFrCy 0

FrCy 0

]
=

[
−PCT

y Cy 0
FrCy 0

]
.

Perform a state transformation s̄ = col{s̄1, . . . , s̄N} ,
(I⊗ T ) se. Then it follows from (8) that

˙̄s(t) = (I⊗ T )
[
I⊗ Ã+ (C(t) ◦ L)⊗ B̃

]
se(t)

=
[
I⊗ Ā+ (C(t) ◦ L)⊗ B̄

]
s̄(t). (12)

From Lemma 2, it is known that consensus is reached if and
only if se(t) → 0 as t → ∞. Since the state transformation
from se to s̄ is invertible, requiring se(t) → 0 as t → ∞ is
equivalent to requiring s̄(t)→ 0 as t→∞. Alternatively, the
state equations of s̄(t) as above can be represented by

˙̄x(t) =
[
I⊗A− (C(t) ◦ L)⊗ PCT

y Cy

]
x̄(t), (13)

˙̄r(t) = (I⊗H) r̄(t) + [(C(t) ◦ L)⊗ FrCy] x̄(t),

where[
x̄
r̄

]
=

[
col{x̄1, . . . , x̄N}
col{r̄1, . . . , r̄N}

]
=

[
I⊗ [Inx

, 0nx×nr
]

I⊗ [0nr×nx
, Inr

]

]
s̄.

Obviously, consensus is reached if and only if x̄(t) → 0
and r̄(t) → 0 as t → ∞. Note that x̄ is not affected by
r̄. Moreover, r̄ is governed by a linear time-invariant system
with x̄ as the input and this system is asymptotically stable
since H is assumed to be Hurwitz. Thus, hereafter we only
need to prove that C(t) is bounded and x̄(t)→ 0 as t→∞.

For the system (13), construct a candidate Lyapunov func-
tion as

V (t) = x̄T(t)
(
I⊗ P−1

)
x̄(t)+

N∑
i=1

N∑
j=1,j 6=i

aij
2αij

(cij(t)− c̄)2 ,

where c̄ is a positive constant to be determined and P is the
positive definite matrix given in Statement 2 of the theorem.
Taking the derivative of V (t) along the solution of x̄(t) in
(13) and cij(t) in (4), we have

V̇ = 2x̄T
(
I⊗ P−1

)
˙̄x+

N∑
i=1

N∑
j=1,j 6=i

aij
αij

(cij − c̄) ċij

= 2x̄T
(
I⊗ P−1

) [
I⊗A− (C ◦ L)⊗ PCT

y Cy

]
x̄

+
N∑
i=1

N∑
j=1,j 6=i

(aijcij − aij c̄) (ỹij + CyBr r̃ij)
T

× (ỹij + CyBr r̃ij) .

Since

ỹij + CyBr r̃ij = Cy

[
I Br

]
(si − sj)

= Cy

[
I Br

]
(sei − sej)

= Cy

[
I Br

]
T−1 (s̄i − s̄j)

= Cy

[
I Br

] [ Inx
−Br

0 Inr

]
(s̄i − s̄j)
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= Cy

[
I 0

]
(s̄i − s̄j) = Cy (x̄i − x̄j)

(14)

and cij(t) = cji(t) for all t ≥ 0, we have

N∑
i=1

N∑
j=1,j 6=i

(aijcij − aij c̄) (ỹij + CyBr r̃ij)
T

(ỹij + CyBr r̃ij)

=
N∑
i=1

N∑
j=1,j 6=i

(aijcij − aij c̄) (x̄i − x̄j)T CT
y Cy (x̄i − x̄j)

= 2
N∑
i=1

N∑
j=1,j 6=i

(aijcij − aij c̄) x̄Ti CT
y Cy (x̄i − x̄j)

= 2x̄T
[
(C ◦ L − c̄L)⊗ CT

y Cy

]
x̄.

Substituting this equation into V̇ (t) leads to

V̇ = x̄T
[
I⊗

(
P−1A+ATP−1

)]
x̄− 2c̄x̄T

(
L ⊗ CT

y Cy

)
x̄.

Since
(
1T ⊗ I

)
(I⊗ Cy) x̄ =

(
1TLe ⊗ Cy[I, 0]T

)
s = 0, it

follows from Lemma 1 that

x̄T
(
L ⊗ CT

y Cy

)
x̄ ≥ λ2(L)x̄T

(
I⊗ CT

y Cy

)
x̄.

Let c̄ be any constant such that c̄ ≥ 1
2λ
−1
2 (L). Using these

relations results in

V̇ ≤ x̄T
[
I⊗

(
P−1A+ATP−1

)]
x̄− 2c̄λ2(L)x̄T

(
I⊗ CT

y Cy

)
x̄

≤ x̄T
[
I⊗

(
P−1A+ATP−1

)]
x̄− x̄T

(
I⊗ CT

y Cy

)
x̄

= x̄T
(
I⊗ P−1QP−1

)
x̄ ≤ 0.

Since V̇ (t) ≤ 0 and V (t) ≥ 0 for all t ≥ 0, it is seen that
V (t) is bounded, which implies that cij(t) and thus C(t) are
bounded. Moreover, since ċij(t) ≥ 0 and cij(t) > 0, it is
proved that cij(t) converge to some finite positive constants.
In addition, because V̇ (t) ≤ 0 and V̇ (t) = 0 implies x̄(t) = 0,
it is known from Lasalle’s theorem (see [24, Theorem 4.4])
that x̄(t)→ 0 as t→∞. Consequently, consensus is reached
under the protocol (3). The proof is completed.

C. Consensus Analysis Under the Node-Based Protocol

In this subsection, the consensus property of the closed-
loop system under the node-based protocol (5) will be anal-
ysed. Define D , diag{d1, . . . , dN}. Then the corresponding
closed-loop system is given by

ṡ(t) =
(
I⊗ Ã+D(t)L ⊗ B̃

)
s(t).

Note that D(t)LLe = D(t)L. Thus se(t) satisfies

ṡe(t) =
(
I⊗ Ã+ LeD(t)L ⊗ B̃

)
se(t). (15)

Similar to Lemma 2, we can establish the equivalence of the
consensus of the original system and the convergence of se(t).
As a result, we can obtain the following consensus condition
through proving the convergence of se(t) in (15).

Theorem 2: Consider the MAS (1) and the protocol (5),
and suppose that the communication graph G is undirected
and connected. Then consensus is reached, and di(t), i =
1, . . . , N , converge to some finite positive constants as t→∞,
if Statements 1) and 2) in Theorem 1 hold.

Proof: Similar to (12), the new state s̄(t) = (I⊗ T ) se
satisfies

˙̄s(t) =
(
I⊗ Ā+ LeD(t)L ⊗ B̄

)
s̄(t).

Moreover, similar to (13), the above system can be written as

˙̄x(t) =
(
I⊗A− LeD(t)L ⊗ PCT

y Cy

)
x̄(t), (16)

˙̄r(t) = (I⊗H) r̄(t) + (LeD(t)L ⊗ FrCy) x̄(t).

Since the second subsystem is stable, to prove the convergence
of s̄e(t) through s̄(t), we only need to prove the convergence
of x̄(t). Construct a candidate Lyapunov function as

W (t) = x̄T(t)
(
L ⊗ P−1

)
x̄(t) +

N∑
i=1

1

βi

(
di(t)− d̄

)2
,

where d̄ is a positive constant to be determined and P is the
positive definite matrix satisfying (11). Since the communica-
tion graph is assumed to be undirected and connected and there
holds

(
1T ⊗ I

)
x̄ =

(
1TLe ⊗ [I, 0]T

)
s = 0, it follows from

Lemma 1 that x̄T
(
L ⊗ P−1

)
x̄ ≥ λ2(L)x̄T

(
I⊗ P−1

)
x̄ ≥ 0.

Thus, W ≥ 0 and the equality holds only if x̄ = 0. Taking
the derivative of W along the solution of x̄ in (16) and di in
(6), we have

Ẇ = 2x̄T
(
L ⊗ P−1

)
˙̄x+

N∑
i=1

2

βi

(
di − d̄

)
ḋi

= 2x̄T
(
L ⊗ P−1

) (
I⊗A− LeDL⊗ PCT

y Cy

)
x̄

+ 2
N∑
i=1

(
di − d̄

)
(ỹi + CyBr r̃i)

T
(ỹi + CyBr r̃i)

= x̄T
[
L ⊗

(
P−1A+ATP−1

)
− 2LDL⊗ CT

y Cy

]
x̄

+ 2sT (L ⊗ I)
[(
D − d̄I

)
⊗
[
I Br

]
CT

y Cy

×
[
I Br

]]
(L ⊗ I) s.

Similar to the equations in (14), there holds

sT
[
L
(
D − d̄I

)
L ⊗

[
I Br

]T
CT

y Cy

[
I Br

]]
s

= sTe

[
L
(
D − d̄I

)
L ⊗

[
I Br

]T
CT

y Cy

[
I Br

]]
se

= s̄T

[
L
(
D − d̄I

)
L ⊗

[
I −Br

0 I

]T [
I Br

]T
CT

y Cy

×
[
I Br

] [ I −Br

0 I

]]
s̄

= s̄T
[
L
(
D − d̄I

)
L ⊗

[
I 0

]T
CT

y Cy

[
I 0

]]
s̄

= x̄T
[
L
(
D − d̄I

)
L ⊗ CT

y Cy

]
x̄.

From this equation, we have

Ẇ = x̄T
[
L ⊗

(
P−1A+ATP−1

)
− 2d̄L2 ⊗ CT

y Cy

]
x̄.

Since the matrix L is symmetric, we can decompose it as L =
[N−1/21,U ]Λ[N−1/21,U ]T, where [N−1/21,U ] is a unitary
matrix and Λ is a diagonal matrix with the eigenvalues of L
on the diagonal. Particularly, the first entry of Λ is zero. Let
x̂ = col{x1, . . . , xN} , [N−1/21,U ]Tx̄. Thus,

Ẇ = x̄T
[
[N−1/21,U ]Λ[N−1/21,U ]T ⊗

(
P−1A+ATP−1

)
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−2d̄[N−1/21,U ]Λ2[N−1/21,U ]T ⊗ CT
y Cy

]
x̄

= x̂T
[
Λ⊗

(
P−1A+ATP−1

)
− 2d̄Λ2 ⊗ CT

y Cy

]
x̂

=
N∑
i=2

λi(L)x̂Ti
(
P−1A+ATP−1 − 2d̄λi(L)CT

y Cy

)
x̂i.

Let d̄ be any constant such that d̄ ≥ 1
2λ
−1
2 (L). Then

Ẇ ≤
N∑
i=2

λi(L)x̂Ti
(
P−1A+ATP−1 − CT

y Cy

)
x̂i

=
N∑
i=2

λi(L)x̂Ti P
−1QP−1x̂i ≤ 0.

Since Ẇ (t) ≤ 0 and W (t) ≥ 0, W (t) is bounded. Thus,
di(t) and D(t) are bounded. From the facts that ḋi(t) ≥ 0 and
di(t) > 0, it follows that di(t) converge to some finite positive
constants. Moreover, because Ẇ (t) ≤ 0 and Ẇ (t) = 0 implies
x̄(t) = 0, it follows from Lasalle’s theorem that x̄(t) → 0 as
t→∞. Consequently, consensus is reached under the protocol
(5). The proof is completed.

The consensus conditions, Theorems 1 and 2, show that the
consensus problem can be solved by the proposed adaptive
output-feedback protocols (3) and (5), as long as the protocol
gains are properly parameterized. Especially, designing the
protocol gains only needs to know the system matrices of
agents but does not need to compute the eigenvalues of
the Laplacian matrix. The next natural question to ask is,
whether the protocol gains that satisfy the specifications in the
theorems are feasible under some common assumptions about
the agents. This will be answered in the next subsection.

Remark 4: Theorems 1 and 2 can only deal with consen-
sus on undirected graphs. Note that, even for state-feedback
consensus control, adaptive protocols on directed graphs are
quite different from those on undirected graphs (please refer to
[15], [16] for related results). The main difficulty in extending
Theorems 1 and 2 to directed graphs is due to the loss of
symmetry of the Laplacian, which will make the previous
derivations invalid. Designing reduced-order adaptive proto-
cols on directed graphs deserves investigation in the future.

Remark 5: The consensus problem studied in this paper is
leaderless. However, it is not difficult to extend Theorems
1 and 2 to the leader-follower case if the followers interact
through some connected undirected graphs. To brief the edge-
based case, let us denote the leader as ẋ0 = Ax0; y0 = Cyx0.
Then the tracking error of agent i is ei = yi − y0. An edge-
based reduced-order adaptive protocol can be constructed as

ṙi = Hri + Fr

N∑
j=1

cijaij (ỹij + CyBr r̃ij)

+ ci0biFr (ei + CyBrri) ,

ui = Gri + Fu

N∑
j=1

cijaij (ỹij + CyBr r̃ij)

+ ci0biFu (ei + CyBrri) ,

where cij , i, j = 1, . . . , N , are given by (4), ci0 are given by

ċi0 = αi0 (ei + CyBrri)
T

(ei + CyBrri) ,

ci0(0) > 0, αi0 > 0, i = 1, . . . , N, (17)

and bi is a positive constant if agent i is connected to the
leader, and bi = 0 otherwise. It can be verified that the lumped
state ε = col{ε1, . . . , εN} with εi = col{ei, ri} satisfies

ε̇ =
[
I⊗ Ã+ (C ◦ L+ C0B)⊗ B̃

]
ε, (18)

where C0 = diag{c10, . . . , cN0} and B = diag{b1, . . . , bN}.
By following the proof for the convergence of se in (8), it can
be verified that Statements 1) and 2) in Theorem 1 ensure the
convergence of ε, implying that consensus is reached. A node-
based counterpart can also be constructed. Related details are
omitted here for brevity.

D. Design of Protocol Gains

In this subsection, we discuss the feasibility of the protocol
gains that are specified in Theorems 1 and 2. For simplicity,
suppose that Bu has full column rank; if this is not satisfied,
one can extract the linearly independent columns of Bu as
the new input matrix and then repeat the design procedures.
Motivated by [25], the following algorithm is proposed for
designing the protocol gains of (3) and (5).

1) Select a matrix J ∈ Rnx×(nx−nu) such that
[
Bu J

]
is nonsingular. Partition the inverse of

[
Bu J

]
as[

Bu J
]−1

=

[
Su

Sr

]
} nu rows
} nx − nu rows .

2) Compute the matrices Br, H and G from the known
matrices J , Su and Sr that are obtained as above and
another matrix K ∈ Rnu×(nx−nu) such that

H = SrA(J −BuK) and H is Hurwitz,
Br = J −BuK, G = (Su +KSr)ABr. (19)

3) Compute the protocol gains Fu and Fr as

Fu = − (Su +KSr)PCT
y , Fr = −SrPC

T
y , (20)

where P is given as in Theorem 1.
Following the proof of [25, Theorem 2], it can be verified

that the matrices obtained as above satisfy the specifications
stated in the proposed consensus analysis conditions.

Remark 6: Some comments about the proposed protocols
and the above algorithm are provided as follows:

1) The matrix H is controlled by the variable K (Sr and
J are determined in the first step). It is known from
[25, Remark 3] that the matrix pair (SrAJ, SrABu)
are stabilizable, provided that Sr and J are given as
above and the pair (A,Bu) is stabilizable. Thus, by
some standard design methods in linear control theory,
it is easy to find a matrix K such that H is Hurwitz.
Moreover, it is well known that the Riccati equation (11)
is always feasible for some positive definite matrix P ,
since the pair (A,Cy) is detectable. Consequently, it is
seen that all the steps in the algorithm are feasible under
the usual assumption about agents that (A,Bu, Cy) are
stabilizable and detectable.

2) Without accounting the laws of adaption, each local con-
troller of the protocols designed by the algorithm is of
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(nx−nu)th order (in view of H ∈ R(nx−nu)×(nx−nu)).
In this sense, the dynamic output-feedback protocols
(3) and (5) resulting from this algorithm are some
reduced-order protocols, which are computationally less
demanding than the full-order adaptive dynamic output-
feedback ones in [15].

3) Theorems 1 and 2 are also applicable for designing full-
order protocols. For this case, it is more straightforward
to find the protocol gains such that (9) and (10) are
satisfied. Specifically, by directly selecting Br = −I
and Fu = 0, the equation (9) reduces to H = A+BuG
and the matrix Fr in (10) is given by Fr = PCT

y . It is
easy to see that the protocols (3) and (5) recover the full-
order ones in [15, (2) and (3)]. Thus, the results therein
can be viewed as special cases of the proposed protocols
and consensus analysis conditions in this paper.

4) By resorting to the results in [20], one could construct
another kind of reduced-order adaptive protocols, for
which a node-based one might be given by

ṙi = Hri + Fyi + TBuui, ui = diGK1ỹi + diGK2r̃i

with H ∈ R(nx−ny)×(nx−ny). In no regard of the feasi-
bility, an obvious drawback of the protocol, however,
is the fact that it needs absolute output information
about agents, so that it cannot be applied in some sce-
narios where only relative information between agents
is available. On the contrary, the proposed protocols
(3) and (5) do not need absolute output information.
Another work about reduced-order protocols is [21],
based on which one might overcome this issue. However,
the protocol therein needs relative input information
between agents, which makes each controller require
the information about neighbours’ neighbours. On the
contrary, the information flow in the protocols (3) and
(5) is directly based on the communication graph.

5) It is well known that reduced-order output-feedback
controllers are difficult to design in general. The reduced
order of each local controller in the algorithm is set to
nx − nu, so as to illustrate that both theorems always
guarantees the existence of some reduced-order proto-
cols under standard assumptions. However, it should be
stressed that they do not exclude the possible existence
of protocols that satisfy nr < nx−nu. For instance, let

A =

 1 0 0
1 1 0
0 1 1

 , Bu =

 7.4
11.1
16.9
3

 , Cy =

 0
0
1

T

.

A feasible solution satisfying (9) and (10) is as follows:

Br =

 3.7
3.7
2.9
3

 , G = 1, H = −1, Fu = Fr = −1,

P =

 61.5 51.3 11.1
51.3 56.9 14.8
11.1 14.8 6.6

 ,
Q =

 0.21 0.18 −0.24
0.18 2.64 0.08
−0.24 0.08 0.76

 .

Unfortunately, under the usual assumption that the agent
matrices (A,Bu, Cy) are stabilizable and detectable,
there is no general, tractable procedure, like those in the
algorithm, for checking the existence of a reduced-order
protocol with nr < nr − nu and further re-constructing
it. Except the case, nr = nx − nu, as in the algorithm,
checking and exploring such a reduced-order protocol
should be on a case-by-case basis.

III. SIMULATION EXAMPLE

In this section, to illustrate the efficacy of the propose
protocols, we provide an applied example on formation flying
of spacecrafts. As in the [11], the problem setting is stated
as follows. A group of spacecrafts are supposed to move in a
circular orbit with a virtual spacecraft as the origin, while the
linearized equations of relative dynamics of the ith spacecraft
are given by

ẋi =

[
0 I3
A1 A2

]
xi +

[
0
I3

]
ui,

where xi = col{pi, ṗi} ∈ R6, ui ∈ R3 and

A1 =

 0 0 0
0 3ω2

0 0
0 0 −ω0

 , A2 =

 0 2ω0 0
2ω0 0 0
0 0 0

 .
In the equation, pi ∈ R3 and ṗi ∈ R3 are the relative position
and velocity of the ith spacecraft in the x, y, z-axis of 3D
space, and ω0 is the angular rate of the virtual spacecraft.
Formation flying of spacecraft means pi − hi → pj − hj and
ṗi → ṗj , where hi−hj ∈ R3 denotes the desired, fixed relative
position between spacecrafts i and j. That is, the spacecrafts
have the same final velocity while keeping a fixed formation.

Suppose that each spacecraft can measure the relative posi-
tive pi−pj and know the desired position hi and hj . Motivated
by the edge-based protocol (3), the following distributed
controllers are proposed for formation flying:

ṙi = Hri + Fr

∑
j∈Ni

cijaij (ỹij + CyBr r̃ij) ,

ui = Gri + Fu

∑
j∈Ni

cijaij (ỹij + CyBr r̃ij)−A1hi, (21)

where cij is in (4), ỹij = (pi − hi)−(pj − hj) and H ∈ R3×3.
Motivated by the node-based one (5), the following alternative
distributed controllers can also be constructed:

ṙi = Hri + diFr

∑
j∈Ni

(ỹi + CyBr r̃i) ,

ui = Gri + diFu

∑
j∈Ni

(ỹi + CyBr r̃i)−A1hi, (22)

where di is in (6), ỹi =
∑N

i=1 lij (pj − hj) and H ∈ R3×3.
Remark 7: The idea of the reduced-order protocol in [20] is

to use the absolute output to re-construct the absolute state of
each agent. Thus, each local reduced-order controller therein
is actually a reduced-order observer. However, rather than this
physical meaning, the controller states in our protocols are just
some intermediate variables for the control purpose, similar to
most of the existing results like [11], [12], [15], [16].
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Example 1: Consider a group of 4 spacecrafts which com-
municate with each other according to a line graph. Let the
edge weights are all 1. Thus, the Laplacian matrix is

L =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 .
Let ω0 = 0.005. By the proposed algorithm, a feasible solution
of the gains of the protocols (21) and (22) is given by

H = −I, Br =

[
I
−I

]
, G =

 −1 −0.01 0
0.01 −1 0

0 0 −1

 ,
Fu =

 −2.7320 −0.0058 0
0.0058 −2.7321 0

0 0 −2.7320

 ,
FR =

 −1.7320 0 0
0 −1.7321 0
0 0 −1.7320

 ,
and the matrix P , which is used to obtain the above Fu and Fr

but is not presented here, is computed from the equation (11)
with Q = I. Note that, different from the results in [15], each
local controller of the above protocols is only of 3rd order (in
no regard of the laws of adaption). Thus, the proposed control
protocols as above are less computationally demanding.

For simulation, we specify the desired positions as h1 =
[−100; 0; 0], h2 = [−100; 0; 100], h3 = [0;−100; 100] and
h4 = [0;−100; 0]. For the protocol (21), let the scalars αij =
0.01 and the initial conditions cij(0) = 10−4, i, j = 1, . . . , 4.
For the protocol (22), let β1 = 0.01, β2 = 0.02, β3 = 0.03
and β4 = 0.04 and the initial conditions di(0) = 10−4, i =
1, . . . , 4. The initial states of the protocols are set to zero.
Figure 1 shows the simulation result under the above settings,
where the initial conditions of the spacecrafts are not presented
for saving space. It can be seen that the spacecrafts maintain
the specified flying formation, while the adaptive gains cij and
di converge to some positive constants. Thus, the effectiveness
of the proposed theoretical results are clearly illustrated.

IV. CONCLUSION

In this paper, the problem of fully distributed consensus
control of linear MASs has been investigated, and novel
reduced-order adaptive output-feedback protocols have been
constructed and analyzed. The edge-based protocol associates
each edge with a scalar gain that is adaptively updated by
the output difference of the two agents on each edge, while
the node-based one associates each agent with a scalar gain
that is updated by the output difference sum of all neighbour-
ing agents. Sufficient existence conditions have been derived
and a design algorithm has been presented for the proposed
protocols. It is shown that, under the common assumption
that the agents are stabilizable and detectable, the proposed
protocols with (nx − nu)th-order local controllers must exist
and can be easily found. Compared with the existing reduced-
order protocols, the propose ones rely on relative output
information of neighbouring agents only and can be designed

and implemented in a fully distributed way. A simulation
example on formation flying of spacecrafts has been provided
for illustrating the efficacy of the proposed method.
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