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Abstract

The increasing use of model-based tools enables further use
of formal verification techniques in the context of distributed real-
time systems. To avoid state explosion, it is necessary to construct
verification models that focus on the aspects under consideration.

In this paper, we discuss how we construct a verification
model for timing analysis in distributed real-time systems. We (1)
give observations concerning restrictions of timed automata to
model these systems, (2) formulate mathematical representations
on how to perform model-to-model transformation to derive
verification models from system models, and (3) propose some
theoretical criteria how to reduce the model size. The latter
is in particular important, as for the verification of complex
systems, an efficient model reflecting the properties of the system
under consideration is equally important to the verification
algorithm itself. Finally, we present an extension of the model-
based development tool FTOS, designed to develop fault-tolerant
systems, to demonstrate our approach.

I. Introduction

The complexity of distributed real-time systems is growing
rapidly; model-based development tools are used to accelerate
the development process and increase the quality of the produced
code. In addition, it is possible to integrate formal verification as
analysis technique into these tools.

Currently, the standard verification process is achieved by
first translating system models into verification models, followed
by verifying relevant properties by verification engines using
special algorithms. In the verification community, researchers
focus on tighter theoretical complexity bounds or computationally
faster algorithms to reduce the required time for verification.
Nevertheless, if it comes to verification of complex systems,
an efficient model reflecting the properties of the system under
consideration becomes essential. By efficient model, we refer
to a model containing “just-enough” information of the system
behavior regarding these properties. In fact, an inefficient mod-
eling with irrelevant details can simply render the verification
intractable.
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Within this paper, we introduce an approach for the construc-
tion of such an efficient model for the verification of timing
assumptions and constraints. The approach is presented in, but not
restricted to, the context of FTOS [1], a model-based development
tool for the design of fault-tolerant systems.

In our presentation, we first introduce FTOS, mention insights
regarding differences in comparison to other development tools,
and propose our two-phase verification methodology (sec. II).
Then based on FTOS and timed automata [2], we describe the
model construction process, focusing on the aspects concerning
expressiveness, modification, and efficiency.

« (Expressiveness) We give observations regarding restric-
tions of timed automata to construct models of real-time
systems (sec. III-A, III-B, III-D); these observations are
valid not only in the context of FTOS, but apply also for
other systems.

+ (Modification) We formulate mathematical representations
how to perform model modification to derive verification
models from system models (sec. III-C).

o (Efficiency) With the understanding of (1) complexities of
verification and (2) our problem structure, we propose some
theoretical criteria regarding how to construct an efficient
model, such that it is possible for existing model checkers
to generate results within reasonable time (sec. IV).

At last, we report our preliminary implementation (sec. V),

mention related work (sec. VI), and conclude this paper
(sec. VII).

II. FTOS and Motivating Examples
A. Introduction to FTOS

FTOS is a model-based development tool for the development
of fault-tolerant real-time systems, that alleviates designers’ bur-
den by offering code generation for non-functional aspects with
high extensibility.

The conceptual modeling in FTOS uses multi-aspect tech-
niques comprising four different perspectives:

o Hardware Model: The hardware model specifies the hard-

ware used, including specifications of electronic control
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Figure 1. Behaviorial models and architec-
tures.

units (ECUs) and the interconnecting network.

o Software Model: The underlying model of computation
in FTOS shares large similarities with that of Giotto [3],
which is based on the concept of Logical Execution Times.
A designer should specify tasks, ports, inputs, outputs, and
Jjobs.

e Fault Model: The fault model specifies the fault hypothesis
of the system, which includes the set of fault containment
units (FCUs) (possible faults concerning locations, types,
durations), and the set of fault configurations (possible
simultaneously activating FCUs). Examples for the fault
hypothesis are:

1) A network link can have message lost (fault type:
MsgLoss) with minimum interval between consecu-
tive occurrences equal to 3 milliseconds’.

2) A software task can produce errors (fault type:
WrongResult) due to a fault within an associated
sensor; once happened, it will not be corrected un-
less explicitly done by the user or the fault-tolerant
mechanism. The minimum interval for the correct
operation between two consecutive faults of the sensor
is expected to be 500 milliseconds?.

o Fault-tolerance Model: The fault-tolerance model speci-
fies methods to detect errors and to repair and restore the
system.

During code generation, FTOS selects, adapts and combines

pre-implemented code templates based on model features. A
detailed description of FTOS can be found in [1].

B. General Settings and Examples

The concepts presented in this paper do not only apply
for FTOS, but also a range of other related projects, such as

IThis minimum interval is called least time between faults (LTBF)
in FTOS and is derived from the required probability of the system to
withstand the fault.

2In (1) the message loss is transient, and in (2) computation errors
caused by hardware faults are permanent.

Giotto [3] or event-driven tasks with fixed deadlines. Figure
1 shows the different models of execution. An aperiodic or
sporadic function is event driven; when such an event happens,
a deadline is assigned to the task handling the event. Giotto
functions are functions that interact synchronously at macro step
level (logical level), while at micro step level the execution is
asynchronous. For detailed description of Giotto and the concept
of logical execution time, see [3]. FTOS functions are extensions
of Giotto functions. Intuitively they are equipped with fault-
tolerance abilities such that the system can resist faults defined
by the fault model. In fig. 1, three redundant copies (R1, R2, R3)
are deployed on the three machines (ECU;, ECUz, ECUs).

The figure also shows the necessity of a mapping the behav-
ioral model (in FTOS: software model) to the architecture model
(in FTOS: hardware model). Note that in general a design space
exploration is needed for finding such a mapping. For details,
we refer readers to articles regarding platform-based design [4].
Since this mapping is specified in FTOS by the developer, our
analysis can start from a given selection of hardware and software
settings.

C. Verification Goals

The main property of fault-tolerant systems that needs to be
verified is the ability to withstand the assumed faults. The fault
assumptions are summarized in the fault hypothesis (in FTOS:
fault model) that defines faults regarding its location, effect, and
frequency.

The verification of such systems is hindered by two aspects:
deadline violations and non-determinism due to e.g. imperfect
synchronization of redundant units.

1) In ordinary systems, correctness relies on the assumption
that a scheduling never leads to deadline violations (without
loss of generality, we assume that deadlines specified in
our model are hard). Nevertheless, in fault-tolerant sys-
tems, the constraint can be loosened. Due to replication,
a deadline violation of one unit might be tolerated. In
fact, the violation of the deadline can be categorized as
an occurrence of a fault defined in the fault model. This
brings dramatic differences between fault-tolerant systems
and ordinary systems, i.e., deadline violation is feasible
or acceptable provided that there exists a fault-tolerance
mechanism such that the effect of fault can be eliminated.

2) On the other hand, replication also introduces further diffi-
culties. In ordinary Giotto systems, internal determinism is
guaranteed, meaning that two deployments having the same
relative ordering in the micro step level will have the same
behavior, irrelevent of the absolute timing. Unfortunately,
internal determinism will not be maintained if no con-
straints are added additionally on FTOS functions. Consider
fig. 2, where M, M, and M3 are three deployments.
The send action will broadcast messages to other machines
regarding its liveness. Ideally, when no error happens, then
each machine should conceive a consistent view of the
system. However, when the scheduling of M3 changes to
that of M}, with zero time transmission, the result will be
an inconsistent view at M; and M. This brings semantic
incompatibility between different deployments.
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Figure 2. Internal nondeterminism due to
scheduling differences.

To solve these problems, we thus propose the concept called
deterministic assumption [5]. Intuitively, the goal is to assume
that the implementation of fault tolerance mechanisms will al-
ways provide a consistent view for all correct machines regardless
of deadline violation and scheduling issues. In practice, this will
place constraints regarding the earliest and latest arrival time
between messages sent, which need to be verified.

For above purpose, we adapt a two-phase verification process
in our tool FTOS-Verify:

e (Phase 1: Verification on the platform independent
layer) We first assume that the deterministic assumption
holds in all deployments. Based on this assumption, we
construct a verification model. The model is an abstract
machine (closed model) where injection of faults is regu-
lated based on the fault model. The model offers precision
by revealing detailed mechanisms of fault-tolerance. Our
theoretical foundation enables us to construct a concise
model with huge benefits®. For this phase, the mathematical
formulation and the proof of theorems are stated in [5]; it
will not be the focus of this paper.

o (Phase 2: Validity checking of the behavior-
architectural mappings) In this phase, we have to
focus on two aspects. First, we have to check whether the
deterministic assumption holds in the platform. Second, we
have to check if there exists possibilities where deadlines
are violated, and the violation exceeds the constraint
specified and regulated in the fault model. Note that
since the correctness of the data and mechanisms are
checked in the first phase, in the latter phase only protocol
checking (timing) is needed. This will be the focus and
the main contribution of the paper. For the analysis of the
temporal behavior, we transform the models in FTOS to
communicating timed automata (CTA). In the following
sections, we will describe our observations, relevant parts
of the construction process, and theoretical criteria for
model efficiency. By using a generalized view, the results
are applicable not only in the context of FTOS, but can be
used for verifying temporal behavior for generic distributed
real-time systems.

30ur theorem states that we can construct a synchronous verification
model (exponentially smaller reachable state space) provided that (1)
the deterministic assumption holds and (2) the properties are local (in-
machine) LTL properties without using temporal operator X. This makes
formal verification of large systems practicable.
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Figure 3. Timed automaton representing
point-to-point transmission with capacity 1.

III. System Modeling and Observations

We use an extended format of communicating timed automata
(CTA) [6] using variables of finite domain to express the features
of the behavioral model. It is important to mention that this
extended format does not change the expressiveness of CTA.

Definition 1. A system of communicating timed automata is a

tuple S = {Ai,..., An}, where A; = (Qi, Vi, Ci, Synci, g,

Jump;, Inv;) is an automaton with the following constraints.
e (; is a finite set of modes (locations).

Vi is the set of finite-domain integer variables.

Ci = {¢iy,---,Cin } is the set of clock variables.

Synci = {Siy,-.-,8i,} is the set of synchronizers; each
synchronizer s is of the format s € {?,!} x X where
elements in X represent synchronizer symbols. Conceptually,
7 represents receiving, and ! represents sending.
® ¢; € Q; is the initial location of the automaton.

e Jump; = Qi X Guards; X Sync; — Q; X Resets; is the

Jjump from mode to mode.

1) Guards; is the conjunction of inequalities of the form
i, ~ k orvj, ~ k', where c¢;, € C;, vj, € Vj,5 =
1...n, kK €N, and ~ € {=,>,<}.

2) Resets; is the set of assignments of the form c;, := 0
or v, 1= k', where ¢, € Ci, vi, €V;, and k' eN.

e [nv; is the set of mode invariants mapping a mode to a
subspace of RIS indicating the possible clock values to
maintain in the mode.

In the following, we summarize required components of the
verification model and outline our observations.

A. Network Element with Finite Capacity

To model the network of the distributed system, an appropriate
level of detail must be selected. In general, for a network with
message delay and n junction points, we have to model such a
network with n(n — 1) automata to handle point-to-point com-
munication. Fig. 3 is the template (defined in UPPAAL [6]) of a
timed automaton which models the point-to-point transmission
with storage capacity equal to 1, and one overflow location.
The function decipher (source, dest) is used to return the
index of the channel.

Observation 1. For modeling of network components, only finite
capacity can be reached. Furthermore, the number of controlled
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Figure 4. A timed automaton to represent
task execution with context switch.

locations grows exponentially as the number of allowed storage
increases, because the variable delay (due to the fault model) or
the routing scheme may lead to an arbitrary ordering of arrived
messages”.

B. Task Element with Finite Precision

For Giotto-like MoCs, tasks are units which perform dedicated
computations. Modeling the task execution can vary based de-
pending on whether the applied scheduling is preemptive. Fig. 4
shows a timed automaton representing the task execution with
potential context switches. Since context switch and preemption
can occur, the task should keep the record for the remaining time
(portion) to finish the task. The variable percentage represents
the progress of execution and increment reflects the minimal
advance related to the time accuracy used during verification. The
constraints regarding time accuracy imply finite precision in the
model.

Observation 2. Modeling of tasks can only be achieved with
finite precision, since with context switch, we need to record
the portion of executed tasks. This also brings issues between
expressiveness and complexity; a better accuracy regarding the
timing behavior of the context switch (with finer time unit) leads
to increasing complexity of the resulting model since it depends
on the biggest integer used in the system.

C. Job Processing Element

The task of the job processing element is to manage the
execution of tasks and to implement the inter-task communica-
tion. The construction in timed automata may vary due to the
concrete application. However, for FTOS, a fixed sequence of
atomic actions is defined in the software model. Each atomic
action can be represented by a similar model as used for the
task model described previously. The main difference is that the

#As the synchronizer in CTA takes no time, the timing and the ordering
of messages should be modeled in the network automaton.

models of the atomic actions are linked together instead of having
a closed loop in the automaton representing the job processing
element. Here we omit the detailed construction process for the
original model, but focus on the transformation into the according
verification model.

To observe deadline violation, additional clocks that reflect the
time progress since event occurence, locations that represent the
deadlines, and jumps are required to annotate the original model.
We define this annotation as a sequence of edit-operations over
a labeled graph [7]; this facilitates the mathematical formulation
how we transform between models.

Definition 2. Define five atomic edit actions as follows®.

1) Clock add: Given a clock variable ¢, AX .clock_add(X, c)
is an operation that adds a clock to X. Formally speak-
ing, given A, = (Q:, Vi, Ci, Synci, ¢, Jump;, Inv;),
the result of clock_add(A;,c) is a new timed automaton
Al =(Q4, Vi, C; U {c}, Synci, gi, Jump;, Inv;).

2) Variable add: Given a variable v, AX .var_add(X,v) is
an operation that adds a variable to X. Formally speak-
ing, given A; = (Qi,Vi, Cs, Synci, qi, Jumps, Inv;),
the result of var_add(A;,v) is a new timed automaton
Ai = (Q4, Vi U {v}, Cs, Synci, qi, Jump;, Inv;).

3) Location add Given a location q and an invariant inv,
where inv is the conjunction of inequalities of the form
ci, ~ k with clock ¢;,, k € N, and ~ € {=,>,<},
AX.vertex_add(.A;, g, inv) is an operation that adds a lo-
cation to X with invariant condition inv. Formally speak-
ing, let A; = (Qi, Vi, Cs, Synci, qi, Jump;, Inv;), the
result of vertex_add(A;, q,inv) is a new timed automaton
Ai = (QiU{q}, Vi, Ci, Synci, qi, Jump;, Inv; U{inv}).

4) Jump add: Given two locations q,q' € Q with guard g,
assignment a, and set of synchronizers s, where

a) g is the conjunction of inequalities of the form c;, ~
k orv;, ~ k', where c;, is a clock, v;, is a variable,
kK €N, and ~ € {=,>,<}.

b) a is the set of assignments of the form c;, = 0 or
Vi, = k', where ¢, IS a clock, v;, is a variable, and

k' € N.
Let A; = (Q:,Vi,Ci, Synci, ¢i, Jump;, Inv;), then

the result of jump_add(A;,q,g,a,s,q') is a new timed
automaton A, = (Q;, Vi, Cy, Synci, q;, Jump; U
{((q,9,9),(qd",a))},Inv;) by adding an arc
((q7 g, 8)7 (qla a)) to Jumps;.
5) Jump edit: Given two locations q,q € Q with guards g, ¢,
assignments a,a’, and sets of synchronizers s, s’.
a) g,g9 are conjunctions of inequalities of the form
Ciy ~ k or vj, ~ k', where ¢, is a clock, vj, is
a variable, k,k' € N, and ~ € {=,>,<}.
b) a,a’ are sets of assignments of the form c;, := 0 or
Vi, = k', where ¢, is a clock, v;,, is a variable, and
k' eN
Let A; = (Qi, Vi, Cs, Synci, qi, Jumps, Inv;), then the
result of jump_edit(A;,q,g,a,5,q,9',a’,s") is a new
timed automaton A = (Qi, Vi, Cs, Synci, qi, Jump; U

SHere we merely define edit actions necessary for our propositions and
algorithms; more can be defined.
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{((q,9',5"),(d",a")I\{((q,9,9), (¢, a))}, Inv) by
changing the arc ((q,9,5),(q',a)) to ((¢,9', "), (¢',a"))
in Jump;.

Note that in our formulations, we assume due to simplification
reasons that the added element is not identical to any elements
in the original set, and every newly added location or jump is
well defined (e.g., to add .4 a new location with invariants using
clock ¢, ¢ should have been defined in A).

Definition 3. Let an edit sequence be é = e10es .. .0en, Where
e1,€2...,e, are edit actions. Define the result of é on A, in
symbols Aej o es . ..o e, inductively as follows.

o Ae = A where € is the null sequence.
o Ve, A(AX.clock_add(X, c¢))oes . ..oe, = clock_add(A, c)

0€2...0¢€n.
o Vv, A(AX.var_add(X,v))oes...0e, = var_add(A,v) o
€2...0€n.

e Vg, L, A(MX.vertex_add(X,q,L)) o ez... 0 en =
vertex_add(A,q, L) oez...0en.

e Vq,q',a,5,9, A(\X.jump_add(X, q,9,a,s,q')) oez...0
en = jump_add(A, q,g,a,s,q')oea...oen.

e V¥q,q',a,9,s,a', 9,5, AX jump_edit(X,q, g,a,s,q, 9,
a',s'))oes...oe, =jump_edit(A4,q,g,a,s,¢,9,a’,s")
o€z...0 €.

Starting from the textual description of the fault model, we can
construct the set of deadline requirements Ui(qi, q:,T;) for the
system model S. Intuitively this means that for all runs entering
the location ¢;, it must subsequently enter g, within at most T;
time units. Based on above definitions, we sketch the algorithm
how to generate the verification model from the system model as
follows:

Algorithm: GenVerificationModelPart ()

/* Input: Original system model S = {A,,..
/¥ Output: Verification model S,, */
let é =e.
forall deadline requirements (g;, g}, T3), ¢ € Q4
/* add new clock and new variable for testing */
é:=¢éoAX.clock_add(X,c;).
é:=éoAX.wvar_add(X,v;).
/* qqi.vio; 18 the location for deadline violation */
é:= éo XX.vertex_add(X, qdi.vio;  D)-
forall incoming jumps ((q, g, s), (g:, a)) of g¢;,
é:=éo XX jump_edit(X,q,9,5,q,a,9,a’,s),
where o’ = a A (¢; :==0) A (v; :=0).
endfor
forall incoming jumps ((q, g, s), (¢}, a)) of ¢,
é:=éo XX jump_edit(X,q,9,5,q,,a,9,d,s),
where o/ = a U {(v; := 1)}.
endfor
forall reachable locations g from q;,
é:=éo XX jump_add(X,q, 9,9, d, qdl.vio; )
where g is defined as (v; = 0) A (¢; > T3).
endfor
endfor
return S, := Sé. /* apply changes in é */

LAY}

}

For the property of deterministic assumption mentioned in

212

section II-C, similar algorithms can be applied to annotate clocks,
locations, and jumps; the problem for checking deterministic
assumption in FTOS turns to be a reachability problem in timed
automata.

D. Dispatcher

With respect to the operating system, we have to model the
dispatcher explicitly. The modeled dispatcher merely captures the
scheme for the execution of threads; deadline violation, fault-
tolerance or error handling is modeled in the job processing
element. Therefore, it can be used in arbitrary settings and
not only in FTOS. Due to different scheduling algorithms, the
model of the dispatcher differs dramatically regarding actual
verifiability. For our analysis, we use priority based dispatchers
modeling either FIFO or round-robin techniques. Nevertheless,
as context switch of tasks/threads occurs, we have the following
observation.

Observation 3. Using a round-robin dispatcher leads to expo-
nential increase of possible behaviors compared to a FIFO-based
dispatcher with the number of parallel tasks, if no assumptions
on the task behavior can be made.

In summary, this section gave insight in the main components
of the verification model and their construction. Besides the
job processing element, all components and related observations
can be directly applied for arbitrary real-time systems. For
the job processing element, we described a generic way to
use annotations to construct a model to use for verifying the
absence of deadline violations. In the next section, we point out
how aperiodic behavior introduced by faults or events can be
considered.

IV. Invocation of Faults and Aperiodic Events

To perform verification, modeling the arrival of faults or ape-
riodic events is necessary to establish a closed model, and in this
section we consider its effect. In FTOS, the probability of faults is
implicitly reflected by the concept called least time between faults
(LTBF). In our analysis, the invocation of aperiodic tasks can be
done similarly - the least time between occurrences of events for
aperiodic tasks is defined as least time between arrivals (LTBA).
With LTBA or LTBF, we can augment the original model with a
timed automaton producing the event (called event agent) similar
to fig. 5. However, since LTBF (or LTBA) is an integer which
might be relatively large, and the complexity of verification in
timed systems is related to this integer®, the use of LTBF (or
LTBA) may hinder the practicability of model checking. Thus we
propose some methods to effectively reduce the value of LTBF
(or LTBA) with equivalence criterion. For simplicity reasons,
the following theorems are all discussed using event-triggered
aperiodic functions with LTBA without loss of generality.

The reachability problem for timed automata is PSPACE-complete,
i.e., the complexity is exponential to (1) the number of clocks and (2)
the maximum integer used in the system. Concerning (2), if the maximum
number changes from 10 to 100, intuitively the execution time can
increase by the factor of k99, where k > 1.
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Figure 5. A sample timed automaton repre-
senting the event agent.

Proposition 1. Let system S have one FTOS function with
periodic deadline T and one event-triggered aperiodic function.
e WLO.G, let Acvent = ({q},0,¢t,{levent},q,

{((¢g, (¢t > LTBAg),{levent}), (¢, (t :== 0))), ¢}) be the

timed automaton of the event agent, where LTBAgs = Ts

be the least time between two consecutive aperiodic events.
Let T, be the maximal time interval for the system to finish
processing the event (called deadline interval from now on)’.
If Ts > T, + T, then consider another system S’ where
S = jump_edit(S,q,(t > Ts),q,(t := 0),{levent}, (t >
T,+T), (t := 0), {levent}), i.e., the only difference is to change
LTBAs from Ts to T, + T. Then both systems are equivalent
regarding their behavior concerning deadline violation. That is,
for S and S', either they both satisfy the deadline, or they both
miss the deadline.

An intuitive argument for the bound 7}, + 7' can be derived
using fig. 6. Tasks and events influence the execution of each
other. The execution of an arriving event is influenced by the
currently running task. During the deadline interval of the event,
this and all preceeding tasks are influenced as well. The chain
of influence can only be stopped if the execution is decoupled.
Since preceeding tasks are decoupled by definition, two events
with a minimal bound of 7}, 47" can not influence the execution
of the same task. In fig. 6, we call a time point ¢ decoupling
point if two consecutive tasks immediately before and after ¢ are
not mutually influenced due to the occurrence of an event.

Proof: We consider four possible cases in S’

1) Consider the case where in S’, it is proven that no deadline
is violated. When the verification engine proofs that the
deadline is never violated with LT BAg = T/ in S’, the
deadline of the FTOS function in .S will never be violated
because T's > Ts/; the verification engine has already
considered all cases in S.

Consider the case where in S’, the counter-example indi-
cates that the i-th aperiodic task violates the deadline. We
further split the discussion in subjects whether it is the first
time for S to process the event. Our goal is to construct
a counter-example for deadline violation in S from the
counter-example in S’

2)

a) If i =1, i.e., it is the first time for S’ to execute the
aperiodic task, then this deadline violation can also
occur in S, since no constraints are made for the first
occurrence of events in S or S’.

"Let tgyrriva; be the time for the event arrival. If the system can not
finish processing this event within time t4yr;pq1 + Tp, then the system
violates the deadline.
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Figure 6. lllustrations for proofs of Proposi-
tion 1.

b) If i # 1, consider the (i — 1)-th aperiodic execution
which does not violate the deadline. Let the time for
the coming of event (¢—1)-th be ¢, and let the interval
between the (¢ — 1)-th and the i-th event be T". The
system should finish the (z — 1)-th processing before
time ¢ + T). Since T" > LTBAg = T, + T, from
time ¢ + T}, to ¢ + 7", FTOS function should finish
one of its execution and proceed a new one. Let the
time for the start of that cycle be t. If we change
the counter-example time trace such that no event
has happened before t, we still get a counter-example
trace in S’. This new counter-example trace is also a
counter-example trace in S.

3) Consider the case where in S’, the counter-example indi-
cates that the FTOS function violates the deadline. Let the
time which violates the deadline be ¢ (note that ¢ is the
multiple of 7"). Let the occurrence of the nearest event be
t' (if there exists no such event, then both S and S’ can
deadlock).

a) If t—t' > T, +T, then the event is processed before
time t—T', the starting of the period which violates the
deadline. In this way, the system violates the deadline
with only the existence of FTOS function, thus in S,
the deadline will also be violated.

If t —t' < T, + T, we consider whether the event is

the first one being processed.

b)

i) If yes, then the counter-example in S’ is also a
counter-example in S.

If not, then consider the time where the previous
event occurs, and let the time be . Since ¢’ —t' >
T + T,, we can find a decoupling point #, where
t" +T, <t < t', where at £ it starts a new period.
In this way, we can perform the same technique
stated in (2-b) before £.

4) Consider the case where in S’, the counter-example in-
dicates that both the ¢-th aperiodic task and the FTOS
function violate the deadline. Let the time which violates
the deadline be ¢ (note that ¢ is the multiple of T"), then the
event occurs in time ¢ —T},. By an argumentation similar to
point 3-b, a counter-example trace in S can be established.

|

Remark: (1) Proposition 1 formulates the insight that previ-
ous events occurred long before can not influence the current
processing and scheduling, and therefore, are not the root cause
of deadline violation. In other words, we could also construct
a counter example with a single event as root cause. (2) The

ii)
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introduction of faults can be viewed analogously. For faults, in
FTOS (or similar fault-tolerant systems) the value of T, + T
is much smaller then 7T's (LTBF), and this brings significant
advantages for construction of a model with smaller state space.

Proposition 1 can only be used for very simple systems with
only one task and one event. In the following, we will generalize
the result to systems consisting of one periodic function with
period 1" and several aperiodic functions.

Proposition 2. Let S be a system with n aperiodic functions.
Each function with index i, where i = 1...n, is associated with
a pair (LTBA;,Ty,;) € NxN describing the LTBA and deadline
interval. Consider another system S’, where the only difference

is to perform the following change: if for all ¢+ = 1...n,
LTBA; > T(Zizlmn [T;J )+ T, then we change LT BA,; to

T(Zizlmn[T;i ) + T. Both systems S and S’ are equivalent
regarding their behavior concerning deadline violation.

Proof: We consider the following cases.

1) If S’ does not violate the deadline, then so does S.

2) Consider the case where in S’, the counter-example in-
dicates that the i-th aperiodic task of type j violates the
deadline.

a) If ¢ # 1, let the time for the 4-th and (¢ — 1)-th
arrival of type-j events be ¢ and t'. Our goal is to
find the decoupling point £ such that we can overlook
all previously happened events.

Since t — ' > T(Y,_, , [Z]) + T, then within
[t',t] the periodic function is executed at least o =

(Zzzln[T;ﬂ + 1) — 1 times. Consider the worst

case where it is only executed « times. Within

[t',t], there are a + 1 potential decoupling points

toy, ... tat1, WhereVkE =1...a+1,tp—tr_1 =1T.

Due to the sparsity of events, each type of event

arrives at most once within [¢',¢]. For each type

m, the according event with deadline interval T}, ,

will overlap in worst case at most [T;’ﬂ of these

potential decoupling points. Thus the total number of

overlapped points is at most » . _ ijf’] a,

which is less than the number of points among

{to,...,tat1}. Therefore, there exists at least one

point t; € {to,...,tat1} such that it is not over-

lapped by any deadline interval. Thus we can set the
decoupling point £ as t,. As a result, we can construct
an equivalent counter-example where no event has
happened before . This new counter-example trace

is also a counter-example trace in .S.

If ¢ = 1, let the time for the ¢-th arrival of type-j

events be .

b)

i) If for all type of events, the according events
occurred at most once before ¢, then the counter-
example is also a counter-example in S.

If there exists some type of events occurred more
than once: let ¢,,, for type m be the total number of
events occurred in the counter-example and ¢.,, be
the latest event arrival time. Choose m’ such that
cm >landVm=1...n,m # j, tc , > tc,,-

m

Then we can find the decoupling point between

ii)
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the (¢,,y —1)-th and (c,,,/)-th arrival of event with
type m/, similar to the argument in case 2-a.

3) Consider cases where the deadlock happens in the FTOS
function.

a) If in the counter-example no event has occurred, then
both .S and S’ can deadlock.

Otherwise, first we try to pick an event based on
arguments in 2-b-ii. If possible, then the decoupling
point can be found, and the counter-example for S
can be established. If selection based on 2-b-ii is not
possible, it follows the statement of 2-b-i that the
counter example for S’ is also a counter-example in
S.

b)

|
Lastly, we discuss the most general case.

Proposition 3. Let system S have m periodic FTOS/Giotto
functions with periodic deadline Ty, ,Ty,,...Ty,,, where 1
1...m, and n aperiodic functions. Each function with index j,
where j = 1...n, is associated with a pair (LT BA;,Tp;) €
N X N describing the LTBA and deadline interval. Consider
another system S’, where the only difference is to perform
the following change: if for all 1 1...n, LTBA;, >
T,y I3+ + T, where T' is the least common
multiple of T;fl,sz, ...Ty,., then we change LTBA; to
T' (> .y . [F#1)+T'. Both systems S and S" are equivalent
regarding their behavior concerning deadline violation.

Proof: The main difference to the previous case is that
periodic functions with different tasks might influence each other.
Potential decoupling points occur only at points in time, where
all tasks start together. The proof idea is to view multiple periodic
functions as a whole by taking the least common multiple. Here
we omit the detailed proof. |

V. Implementation

For implementation, we extend the functionality of FTOS-
Verify to test the applicability. The verification model is con-
structed in a format acceptable by UPPAAL [6]. Note that tem-
plates in UPPAAL are not completely suitable for our usage, since
they only represent a fixed behavior with configurable parameters.
Therefore, algorithms to automatically generate timed automata
based on FTOS models are needed. We have implemented our
automated M2M transformation tool using openArchitecture-
Warebunder the Eclipse modeling framework’.

As use case, we apply the verification in the context of our
balanced-rod example'®, where the control functions are repli-
cated on three redundant machines to guarantee fault-tolerance.
All components mentioned previously are generated by our
automatic conversion technique; the resulting UPPAAL system
has 25 communicating timed automata. As timing information
for the different components, we use currently user-specified
assumptions. An integration of WCET-analyzers is foreseen. One

8http://www.openarchitectureware.org
http://www.eclipse.org/modeling/emf/
10For configurations, see http://wwwé6.in.tum.de for details.
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desired property specified is the guarantee for the absence of
deadline violation, which turns to be the reachability property in
UPPAAL.

The overall execution time varies from 1 to 25 minutes de-
pending on the accuracy of the verification model on a Intel 2.33
GHz machine using a FIFO-based priority-driven scheduler. The
memory consumption can reach up to 850Mb. The verification of
using a Round-Robin based scheduler showed to be too memory
comsuming.

VI. Related Work

We mention related work, but constrain ourselves in works
regarding the analysis of Giotto-like systems; for techniques
applying formal verification in real-time analysis, we refer readers
to the survey paper by Wang [8]. In Giotto, the Giotto-Compiler
will perform hardware mapping and apply analysis techniques to
check schedulability. Many design tools with Giotto-like MoCs
apply similar approaches, for example, TDL [9] or HTL [10], but
analysis techniques are not explicitly mentioned. One interesting
work comes from COMDES-II project [11], which is also based
on the concept of logical execution time; here, researchers apply
model transformation from system models to verification models.
Nevertheless, as we focus on fault-tolerant systems, our work
differs from the above works with the following facts. First, we
encounter a harder problem; by applying software fault-tolerance,
modeling the communication between multiple deployed units is
required, and this is not required by other Giotto-like MoCs.
For those MoCs, scheduling analysis developed in real-time
community could be enough without the use of model check-
ing. Furthermore, by proposing the similarity between aperiodic
events and fault occurrences, our theoretical criteria is powerful
to reduce dramatically the complexity of the model (not the veri-
fication algorithm). This is based on our understanding regarding
constituents for the complexity of timed verification.

VII. Conclusion

In this paper, we discussed the issue of constructing a model
to verify timing assumptions in the context of FTOS using timed
automata. However, due to our general approach, the results can
be applied to arbitrary distributed real-time systems.

Our contribution can be summarized as follows.

1) We give observations concerning modeling of general
distributed real-time systems using timed automata and
formulate our verification model construction process.
With the context of systems consisting of periodic and
aperiodic tasks, we give theoretical criteria how to reduce
the size of the verification model, which is particularly
useful for our approach. The change of the maximum
integer used in the system decreases the required time for
verification with exponential scale.

A prototype software for the conversion process is con-
structed with preliminary experiments.

2)

3)

Our work is currently based on user-specified assumptions
regarding the timing of involved components. The next step will
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be the integration of WCET analyzing tools to have a faithful
verification result.

Furthermore, we are investigating on approaches to separate
the verification problem for control functions executed in parallel
to make our approach applicable also for large-scale applications.
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