
Department of Informatics
Technical University of Munich

Lean BIM-based communication and
workflow during design phases
Lean BIM-basierte Kommunikation und Workflow in der
Designphase

Marija Rakić

Master’s Thesis in Informatics

Supervisor:
Prof. Dr.-Ing. Frank Petzold

Advisors:
Ata Zahedi, M.Sc.
Jimmy Abualdenien, M.Sc.

Submission Date:
15. 6. 2019

I confirm that this master’s thesis is my own work and I have documented all sources and material used.

Munich, 15. 6. 2019 Honest Student

Abstract

The final design of a building is a result of the joint efforts between many experts within the Architecture,
Engineering and Construction (AEC) industry. Building Information Modeling (BIM) aims to streamline this
collaboration while allowing all parties to access the relevant data. For example, if an engineer cannot
perform analysis due to a missing value, he/she must wait for the responsible architect to specify it.

Different values get defined in different project stages. Level of Development (LOD) describes matu-
rity of the BIM model. BIMForum defines six LOD levels and specifications of which information each
level provides. However, it does not take into consideration the information fuzziness. Therefore, a re-
search project EarlyBIM has developed a multi-LOD meta-model that “explicitly describes the LOD re-
quirements of each individual building component type taking into consideration the possible uncertainties.”
[Abualdenien and Borrmann, 2019]

Due to the fragmented nature of AEC industry, there is great potential for a machine-readable commu-
nication protocol. BIM Collaboration Format is mostly used based on the textual comments, which the
architect in the aforementioned example would be able to act upon. However, a computer could not under-
stand this comment and analyze it for future references. With this in mind, our research group designed an
adaptive minimized communication protocol and a ticketing system, in which only the computer-readable
information on existing issues is exchanged. [Zahedi and Petzold, 2018]

This paper presents a plugin for Autodesk Revit using the principles of the aforesaid communication
system and multi-LOD meta-model. The plugin compares a model to the requirements specified in the
multi-LOD meta-model, visualizes all the missing values, and offers a way of integrating them into the
building model. The changes to the model are logged and can be viewed using an external tool, such as
a custom database combined with a web interface.

i

ii

Contents

Abstract i

Abbreviations v

1 Introduction 1
1.1 An overview . 1
1.2 Theoretical background . 1

1.2.1 Building Information Modeling - BIM . 1
1.2.2 Industry Foundation Classes - IFC . 3

1.3 Literature review . 5
1.3.1 One problems . 5
1.3.2 Two suggested solutions . 5

1.4 Objectives of the Thesis . 6
1.5 Structure of the Thesis . 6

2 Problem & Solution 7
2.1 Problem . 7
2.2 Solution . 7

3 Existing system 9

4 Implementation 11
4.1 An introduction to developing a Windows application . 11
4.2 Framework and libraries used to develop the plug-in . 12
4.3 Revit plug-in ecosystem . 15
4.4 System setup . 17
4.5 Graphical User Interface . 18

4.5.1 Starting the plug-in for the first time . 18
4.5.2 Home page for an architect . 18
4.5.3 An architect requesting an analysis . 19
4.5.4 Home page for an engineer . 19
4.5.5 Analysis results . 20
4.5.6 Creating a missing parameter . 22
4.5.7 Data type of a missing value . 23
4.5.8 Creating a missing value . 25
4.5.9 Filtering tasks by type . 26
4.5.10 Suggesting a missing value . 27
4.5.11 Pending tasks . 28
4.5.12 Solved tasks . 30
4.5.13 Newly created value under Revit Properties . 31
4.5.14 Tree view . 32
4.5.15 Selecting an element . 33
4.5.16 Charts . 34
4.5.17 Changing the user . 35
4.5.18 Successfully running the analysis . 36

iii

4.6 Communication within the system . 37
4.7 Implementation . 40

4.7.1 MarijaRakicMasterThesis . 41
4.7.2 IExternalApplication . 41
4.7.3 IExternalCommand . 43
4.7.4 Singleton . 44
4.7.5 Views . 44
4.7.6 User Controls . 47
4.7.7 Validation rules . 50
4.7.8 ViewModels . 51
4.7.9 Commands . 55
4.7.10 ExternalEventHandler . 56
4.7.11 Managers . 59
4.7.12 Utils . 60
4.7.13 MultiLODLib . 62
4.7.14 MarijaRakicMasterThesis.DataTypes . 66
4.7.15 MarijaRakicMasterThesis.Converters . 70
4.7.16 com.server.api . 71

5 Summary 75
5.1 Future work . 75

Bibliography 81

iv

Abbreviations

2D - Two Dimensional
3D - Three Dimensional
AEC - Architecture, Engineering and Construction
BIM - Building Information Modeling
CAD - Computer-Aided Design
IFC - Industry Foundation Classes
WPF - Windows Presentation Foundation
XAML - Extensible Application Markup Language
UI - User Interface
JSON - JavaScript Object Notation
HTTP - Hypertext Transfer Protocol
XML - eXtensible Markup Language
HTTP - HyperText Transfer Protocol

v

1 Introduction

This chapter is organized as follows: first, an overview of the current state is given. It is followed by a short
theoretical background on Building Information Modeling and Industry Foundation Classes. Next, a related
work is discussed. Finally, the objectives of the thesis are presented.

1.1 An overview

To create a final version of a building model, many different experts from the Architecture, Engineering
and Construction (AEC) industry have to work together. The model has to go through many iterations
of feedback, testing and improvement in order to reach a stage where it is ready for construction. For
these iterations to happen, data needs to be passed from one stakeholder to another, for example from
an architect to a structural engineer. Unfortunately, this exchange is not always a seamless process.
Architects have their own set of software tools they use; engineers of different specialization have different
software applications for their field-specific analysis. Not less important are clients that have to maintain
the building after the design and construction phases are done, since the maintenance is the longest part
of the building’s life cycle. The data exchanged needs to be understood by the side receiving it. In other
words, a person who receives it should be able to import it into the tools they use. Prior to existence of a
standard for exchange format and its wide use, a lot of data exchanged needed to be re-input manually.
Just imagine an architect sending data, which an engineer needs to input manually before being able
to run analysis, and then the engineer returning the results back to the architect who has to input them
back to the software they use. With every exchange cycle, the probability that someone input incorrect
data increases. After a significant number of iterations, the model is finalized, the construction happens,
and then the model is handed over to the building owner, who has to manually input parameters into the
maintenance system. If a problem occurs somewhere along the way and it is discovered late in the design
phase or during the construction phase, it might be very expensive to fix and the estimated project duration
might be exceeded.

Unlike the automotive industry, where processes are almost entirely digitalized and without a need for
human interaction, the AEC industry is still highly dependent on human participation. In the AEC industry
there is a huge number of small companies; in comparison, the automotive industry has a small number of
big players. Due to its fragmented nature, no member is powerful enough to impose a workflow or software
tools that everyone would have to use. Building Information Modeling (BIM) addresses this need for a
unified workflow process that enhances the aforesaid collaboration in the AEC industry and specifies the
use of a common exchange format - Industry Foundation Class (IFC). The next section gives a definition
of those two and other related terms.

1.2 Theoretical background

This section explains a Building Information Modeling (BIM) and an Industry Foundation Classes (IFC) in
more detail.

1.2.1 Building Information Modeling - BIM

Computers, their accessibility and growing performance speed up development in many fields, including
the Architecture, Engineering and Construction (AEC) industry. Some ideas existed before, some ap-
peared after computers, and some, like Building Information Modeling (BIM), originated and evolved in

1

parallel to the advancement of computers. While starting as an influential vision in 1962 [Engelbart, 2001],
it was not until the 1970s that BIM as a process came to life and only in the 1980s, when technology could
support its implementation, did it appear as a software package. However, at this time computers were not
powerful enough for BIM to reach its full potential, and so it has taken until recent decades for it to become
widely known.

Building Information Modeling (BIM) is a 3D model-based process. Since the final design of a building is
a result of the joint efforts between many experts within the AEC industry, it is necessary to streamline this
collaboration and ensure a smooth handover to the client at the end. This culminates in a model that can
be used even for maintenance and renovation purposes after the construction phase has finished. Among
other goals, BIM aims to save time and money by allowing for easy collaboration between different spe-
cialties as well as for a fast and early exchange of information. This increases productivity and decreases
risks that can appear by manual re-entering of the data created in the previous stage, and shifts design
decisions to an earlier stage of the project, at which it is cheaper to make adjustments than at later stages.

’B’ in BIM represents not just buildings as objects, but everything that is the outcome of a building
process. ’I’ stands for information that is transported throughout the entire building life cycle, starting with
a design and continuing through the construction phase, yet not ending there, but also lasting during the
period of the building operation. BIM is so powerful due to the exchange of information in quick iterations.
In the past, models were simply passed from one stage to another, from one stakeholder to another. In
BIM, information is exchanged frequently, allowing all parties to have the data relevant to them, view it,
suggest improvements, and spot possible problems early on, potentially saving a lot of money and time
that could be wasted if the project went wrong.

It’s not always easy to adopt something new, especially a big and complex workflow like BIM. Due to a
steep learning curve needed, four levels of BIM have been defined (0, 1, 2 and 3) to describe the progress
of BIM implementation. Level 0 refers to the 2D CAD models, when the exchange of the models is purely
paper-based. Level 1 refers to the 3D models, when the exchange takes the form of sending and receiving
individual digital files. Level 2 is where the AEC industry is at the moment. Everyone is still working on
their own model, but the data is exchanged through the Common Data Environment (CDE). Level 3 is the
full implementation of the BIM process for which there is one central model throughout the process.

BIM levels refer to a maturity of a BIM process and are not to be confused with BIM Levels of Develop-
ment (LOD) or BIM dimensions, which both refer to BIM models.

Initially the abbreviation LOD referred to Level of Detail, a term which was not precise enough. Level
of Development includes both information on the geometry of a model, usually called Level of Geometry
(LOG) or Level of Detail, and information on the semantics of a model, called Level of Information (LOI).
BIMForum, the US chapter of buildingSMART International, has defined six LOD levels and specifications
of which information each level has to provide.

BIM models can be viewed in dimensions ranging from 2D to 6D. 2D and 3D provide the well-known two
and three dimensions, respectively. Since a BIM model is more than just a geometrical representation of a
building, time information can be added to a 3D model, which is then considered to be a 4D model. Next,
a 5D adds cost information. Finally, 6D refers to the facility management.

The adoption rate of BIM is definitely growing, yet the question is whether it is faster, slower or as ex-
pected. Fragmentation of the AEC industry hinders growth. Experts from several disciplines use various
modeling or analysis tools that produce output in different formats. If the model is created and exported
in a closed format, it forces all the other stakeholders to adjust to that and use the same or compati-
ble software. Therefore governments, as the largest clients, are trying to pull the industry in the direc-
tion of change, hoping that the industry will, in return, push the acceptance and utilization of the system
[Walasek and Barszcz, 2017]. Some countries, like the United States, Singapore, South Korea, the United
Kingdom and Scandinavian countries [Borrmann et al., 2015], are enforcing the use of BIM on all govern-
ment projects. This means that all project and asset information, documentation and data need to exist in
digital form. The United Kingdom is an example of a country that has systematically planned and imposed
the use of BIM starting from 2016, announcing it in 2011, thus giving a 5 year period to prepare for its
implementation [GOV.UK, 2011]. As a result, the BIM adoption rate has risen significantly in the past 8

2

years [Royal Institute of British Architects, 2018]. The percentage of companies that are “aware [of] and
currently using” BIM has gone from only 13% in 2011 to 74% in 2018. At the same time, the percent-
age of “just aware” companies has dropped from 45% in 2011 to 25% in 2018, meaning that 99% of the
companies are at least aware of BIM.

A distinction between openBIM and nativeBIM as two BIM workflows is made depending on the format
of the exchange data. OpenBIM refers to using BIM with open standards. NativeBIM is not in contrast
to, but rather closely related to openBIM. A process starts in a nativeBIM way, by creating a blueprint
using proprietary software, and then exporting and sending it in an openBIM manner. A well-known format
used to exchange models between various applications is Industry Foundation Classes (IFC), which is
presented in the next section.

BIM Collaboration Format - BCF

BIM Collaboration Format (BCF) is an open standard for reporting problems or proposing a design change
and tracking the progress. It separates communication from the model: only lite messages are exchanged,
while the model is hosted on a Common Data Environment (CDE). Every issue has a unique identifier,
information on a faulty unit or missing data, and eventually an assignee responsible for resolving it. Without
using BCF, a person creating the report would take a screenshot of the problematic element, write a
comment and share it with other stakeholders. When using BCF, upon opening the existing issue using
the usual software tool, a specialist is presented with the error itself, without a need to look for it in the
entire model.

In a BCF-based communication, parties in the AEC industry exchange an XML-like file containing infor-
mation on a model flaws. This formatted file is edited after a flaw has been taken care of, and sent back.
Since the file is potentially exchanged between many field experts at the same time, it can happen that
older versions of the same file are passed around. This could be avoided if BCF was implemented as a
cloud solution. In the first version created by Solibri, Inc.1 and Tekla Corporation2 in 2009, BCF consisted
of topics that were connected to a model element using the element’s globally unique identifier (GUID), as
well as view point and optionally screenshot. buildingSMART took over and the second version appeared
in 2014, introducing BIM-Snippets, machine-readable topics. However, they are still not commonly used.

1.2.2 Industry Foundation Classes - IFC

Industry Foundation Classes (IFC) is a data model and a file format developed in order to ease interoper-
ability in the Architecture, Engineering and Construction (AEC) industry. It was created by buildingSMART,
an international association of companies sharing the same goal of improving the open exchange of data
in the BIM workflow. IFC is vendor independent and defined by ISO specification. It firstly appeared in
1994 and has had multiple iterations since. The current version IFC4 is from 2016, although the previous
version IFC2.3 is still widely spread. The file schema is defined in the header of the IFC document, as well
as name, description and other information. IFC comes in three different formats: as a text (STEP) file,
which is the most widely used, as an XML file (used less due to its large size), and as a ZIP file.

One can think of IFC as a PDF of the AEC industry [BIMconnect, 2017]. It ensures that everyone can
view data being exchanged, regardless of which software was used to create a model.

Most of the time, a single stakeholder is not interested in the full IFC model. Also, exchanging an entire
model would be too expensive, since all the tools importing it would need to implement several views of
an IFC geometry representation, even when they are not needed for an expert analysis. Specialists care
only about the part of the model that they need for their work. For example, an energy professional is
interested only in part of IFC data needed to determine the level of energy efficiency of the building. For
this reason, buildingSMART created Model View Definition (MVD), which defines various subsets of IFC
model for different purposes.

1https://www.solibri.com
2https://www.tekla.com

3

https://www.solibri.com
https://www.tekla.com

An example of a MVD model with a purpose to be handing over to a client after the construction is
finished is called Construction Operations Building Information Exchange (COBie). It contains information
needed for the building maintenance. It does not contain any graphical information, and can be viewed in
a form of a spreadsheet, meaning no additional software is required, other than the one everyone is likely
to already have. It is not yet widespread.

4

1.3 Literature review

In this section, i firstly review one paper that stresses out the importance of the early phases of the building
design. After that, i go over two suggested solutions to the problem of insufficient information in those early
phases.

1.3.1 One problems

The importance of the early phase: the case of construction and building projects

[Kolltveit and Grønhaug, 2004] examined different aspects of a project’s early phase and their implications
on the project’s success. They started from a small number of research on the early phase of the project
and its great importance on the project’s overall performance, and wanted to know which aspects of this
early phase are especially important. They presented results from a large-scale project, during which they
conducted a large-scale research project focused on the early phase of the project. During the research,
additional education was provided to the project stakeholders; the authors collected meeting notes, and
conducted a series of interviews and questionnaires. The authors identified two aspects that have a
major influence on the project’s overall performance: uncertainty and the influence of project stakeholders.
Uncertainty is the highest in the early stages of the project. At the same time, that is the time when the
technical concept is developed. The authors pointed out that the influence of stakeholders is highest in
the early phase, since the cost of introducing a change is lower than at any following stage. According to
the results, stakeholders are aware of this, yet they do not seem to leverage it. Kolltveit and Grønhaug
explained this by the claim that the construction and building industry is very conservative and slow in
accepting changes.

1.3.2 Two suggested solutions

multi-lod meta-model

[Abualdenien and Borrmann, 2019] argue that LOD, explained in Section 1.2.1, does not provide enough
information. For example, some building elements must be more detailed than others from the beginning
of the project. A single LOD value that would describe the entire building model is not appropriate in this
case. For this reason, the authors proposed a multi-LOD meta-model which specifies LOD, as defined by
BIMForum, on a component type base and takes into consideration the information uncertainty. By doing
so, they tried to address the following questions: how to have more than one LOD per building model, how
to take into consideration fuzziness of the data, and how to manage different design variants, all with a
special focus on the meta-model’s influence on the design decisions made in the project’s early phases.
The multi-LOD meta-model introduces an instance and data-model level. For a single component type,
multi-LOD meta-model separates geometrical and semantic requirements.

The authors utilized some well-known standardized concepts, such as IFC, explained in Section 1.2.2,
its PropertySet mechanism which allows for a dynamic extension of the model, and buildingSmart Data
Dictionary, which guarantees that everyone, regardless of the branch of the AEC industry they come from
or the language they speak, uses the same term for the same IFC entity, therefore resulting in a smooth
communication.

Next, Abualdenien and Borrmann evaluated the meta-model. For this purpose, the multi-LOD meta-
model on the data-model level was implemented as a web service. They took a Wall as an example of a
building component type and specified its multi-LOD meta-model requirements on multiple LOD levels.

Adaptive minimized communication protocol

[Zahedi and Petzold, 2018] proposed an Adaptive minimized communication protocol. This protocol would
be a computer-readable set of messages that architects and engineers exchange during the process of
assuring that the building model is efficient and complies to the regulations. The authors also tackled the

5

fact that it is difficult to make decisions in the early stages of the project due to insufficient information. They
acknowledged the work of [Abualdenien and Borrmann, 2019] and the multi-LOD meta-model. Zahedi
and Petzold proposed a Feedback function, which would be exchanged between an architect and an
engineer communicating the building model flaws. This function accepts multiple input parameters, making
it adaptive to different scenarios. The parameters are actionType, which specifies an action that should be
taken with respect to the model and its existing flaw, optionGroupID, allowing for multiple suggestion values
to be grouped together, GUID, uniquely identifying a building component, aLODx, objectID, propertyID, all
referring to the multi-LOD meta-model, value, and rating. No building model or its parts would have to be
exchanged, only small messages - therefore the minimized protocol.

1.4 Objectives of the Thesis

As part of my master thesis, I implemented an Autodesk Revit plugin, a showcase of how the communi-
cation protocol and the multi-LOD meta-model described in the previous section can be integrated into an
application that is widely used in the AEC industry. The plugin is intended to be used by architect and
engineers to assign tasks, which specify a building model’s missing data.

1.5 Structure of the Thesis

This thesis is organized as follows:
Chapter 2 brings in the problem that we believe exists in the AEC industry nowadays and offers a

potential solution.
Chapter 3 shortly presents the existing web service and a sequential database that my plug-in commu-

nicates with.
Chapter 4 introduces a reader to some basic programming concepts, with a focus on developing a

Windows application. Next, a Revit plug-in ecosystem is presented. A system set-up is explained, followed
by an explanation of the user interface and the features that the plug-in provides. Lastly, this chapter takes
a deep dive into the implementation details.

Chapter 5 gives a summary of the thesis, as well as some ideas for the future improvements of the
application.

6

2 Problem & Solution

2.1 Problem

Let’s take a close look at the communication that takes place in the Architecture, Engineering and Con-
struction (AEC) industry. An architect starts by creating a building model using a BIM authoring tool, for
example Autodesk Revit. After some time, the architect needs the feedback from an expert from a certain
field, for example from a structural engineer. The architect sends the model to the engineer. The engineer
receives a model and tries to perform the field-specific analysis.

A couple of different scenarios can occur at this point. Firstly, the engineer might not be able to run
the analysis at all, due to the missing value. In this case, the engineer would have to report a missing
value back to the architect and wait for them to input this value, before being able to run the analysis
successfully. Secondly, some of the values might not be specific/precise enough. In this case, the model
might appear finished, even though the values are not precise and might differentiate in the final version
of the model. In both of these cases, the engineer needs to communicate those model flaws back to the
architect who requested the analysis. At this point, a question arises of the analysis report format. Prior
to existence of the standard communication protocols, an engineer would write down all the flaws in an
unformatted report, maybe take some screen shots of the related building elements and attach them to
the report. Then, the architect would have to manually track down each reported flaw and fix it. There
would not be an option to automatically generate reports or track down the fixed and the remaining tasks.
Another approach to this problem is using BIM Collaboration Format (BCF). BCF is based on the textual
comments, which are human readable (the architect in the aforementioned example would be able to act
upon), but not computer readable.

Multiple exchanges of these requests and reports are likely to happen between an architect and a
single field specialist. Eventually, after all the required changes have been applied, the engineer runs the
analysis successfully and reports positive results back to the architect. After that has been finished, the
architect may need an estimate from a specialist in a different field. The aforementioned communication
then repeats as many times as there are different field specialists required for the project.

2.2 Solution

We wanted to provide means which would provide this communication. I built a Revit plug-in which facil-
itates this repeated request/reply exchange between an architect and an engineer. There is a need for a
server and a database, and so I used an existing Node server and an SQL database, which are explained
in Section 3. The overall system architecture is as follows:

7

Figure 2.1 System architecture

A client application consists of a Revit application, a file with an .addin extension, further explained
in Section 4.3, and a file with a .dll extension (a plug-in file), whose development is further explained in
Section 4.7, as seen on the left side of Figure 2.1.

8

3 Existing system

Prior to the development of this application, a MySQL database and a simple web interface and HTTP
server have been developed. I used this database and server to permanently persist data used by my
application.

Schema of the database is as follows:

Figure 3.1 A database schema, by Christopher Onuoha, an part of an IDP project, TUM, December 2018

For every database table, the server provides REST API point to:

• insert an element,

• get an element by its ID,

• get all elements which contain a given keyword,

• get all elements from the table,

• update an element, and

• delete an element.

A client and a server applications exchange information. When an architect requests an analysis,
an instance of a New Analysis is created in the database, and when an engineer runs the analysis,

9

an instance of a Feedback is created. Even though it has the same name as the function defined by
[Zahedi and Petzold, 2018], it should not be confused with it. Feedback function is more comprehensive,
whereas Feedback database table is not a top-level entity; it is dependent on other database tables, namely
NewAnalysis and Change_Suggestion.

Each flaw reported to an architect is stored in the database as an instance of Change_Suggestion object.
Change_Suggestion is an appropriate name for the table in the database, since it is very descriptive. Yet,
it would be too long to be presented to a Revit user, and potentially ambiguous. If a model has a flaw, it
means that the architect’s task is fix that flaw. Hence, an engineer creates a Task and an architect’s task is
to solve them. Even thought it introduces a second term for the same concept, i found it more appropriate.
Hence, every time a model flaw is presented to a Revit user, it is referred to as a Task.

10

4 Implementation

Autodesk1 Revit is a Building Information Modeling software available for Windows operating system. It
provides a lot of built-in functionalities to architects and engineers. Nonetheless it allows this set of avail-
able features to be easily extendable by having a plugin-based architecture. Developing a plug-in would
not be possible if Revit did not expose to developers the same classes and methods which the native
commands use. A list of these classes and methods that are exposed, together with their names, input
and output parameters and descriptions, is called Application Programming Interface (API). Revit API is
available for .NET framework 4.0 compatible languages, such as Visual Basic .NET or Visual C#. With
this in mind, I chose to develop the plug-in using C#, a general-purpose, multi-paradigm programming
language developed by Microsoft.

Autodesk seems to be using terms "plug-in" and "add-in" interchangeably. In addition, Revit "sees" a
plug-in as an external application, which will be explained in Section 4.3. Considering this, i will use words
plug-in and application interchangeably in the remainder of this thesis.

This chapter is organized as follows: firstly, we have an introduction to developing a Windows application.
Secondly, i shorty explain the third-party libraries that have been used in the development of the plug-in
and why they were needed. This is followed by an overview of Revit plug-in ecosystem. Next, i talk
about the system’s predefined data and use it to explain the user interface of the application. Finally, the
implementation of the plugin is described.

4.1 An introduction to developing a Windows application

Windows Presentation Foundation (WPF) is part of the .NET framework responsible for building a user
interface for Windows desktop applications. To achieve this, WPF uses Extensible Application Markup
Language (XAML). XAML is similar to eXtensible Markup Language (XML), but it adds additional features.
For example, we can use a keyword Binding to bind a variable to a XAML control, so that if the variable (a
data source) changes, the XAML control (a view) changes as well and vice versa.

Every XAML file is followed by a file with extension .xaml.cs. This file is called code-behind. It can be
used to initialize some data which is presented in the XAML control or handle events, for example, a button
click or an input text change.

WPF was developed with Model View ViewModel (MVVM), a software architectural pattern, in mind, but
it is not mandatory to use it. In this pattern, a Model defines a format in which the data is to be stored and
used. Very often it implements the INotifyPropertyChanged interface, to allow for the aforementioned
data binding. The Model is not aware of either View or ViewModel. A View presents data to a user, but it
does not store any data itself. However, the View holds information on its DataContext - a ViewModel that
stores the data and implements logic. Except for the DataContext, the View should not hold any data or
logic itself; its sole responsibility is to present data to the user. The ViewModel glues a View and a Model ;
it holds data, so it has information on the Model, but it should not know about the View.

Nowadays, there are almost no applications that work in offline mode only; the majority of applications
exchange some data over Internet. In the next section, i shorty explain details of those exchanges.

HTTP communication protocol and its request methods

The Hypertext Transfer Protocol (HTTP) is a communication protocol in which a client sends a request to
a server and the server sends back a response. An example of a request is when a person uses a web

1https://www.autodesk.com/

11

https://www.autodesk.com/

browser (a client) to ask for a list of recent news from a newspapers website (a server), or when the same
person posts a comment on the news they have read on the aforementioned website.

The most common HTTP request methods are:

• POST, which is used to create a new resource,

• GET, which is used to retrieve data from the server,

• PUT, which is used to update the specified resource, and

• DELETE, which is used to delete the specified resource.

This plug-in that i have developed is an example of an HTTP client, since it communicates with an
existing server, which is a simple wrapper around an existing MySQL database.

4.2 Framework and libraries used to develop the plug-in

NuGet

NuGet is a package manager for .NET framework. It is used to install, update and deinstall third-party
libraries and frameworks.

Json.NET

When data is exchanged over the internet, it is sent in a form of bits, i.e. zeros and ones. It is up to
developers on both sides of this channel to decide on a communication exchange protocol, in order to be
able to “pack” the data before sending and “unpack” data upon receiving it.

Json.NET2 is a “popular high-performance JSON framework for .NET”, as per the authors’ definition. It
is an open source library used to serialize and deserialize JSON data.

Json.NET developers claim to be “50% faster than DataContractJsonSerializer, and 250% faster than
JavaScriptSerializer”, both classes being part of .NET framework. Json.NET is easy to integrate into the
project using NuGet, described in Section 4.2. An example of the usage is deserialization of the data
received from the server, that should be casted into the client-side model, e.g. an instance of the class
People.

Listing 4.1 Deserializing data received from a server into a People object

var response = _client.Get(request);
return JsonConvert.DeserializeObject<People>(response.Content);

More examples of the usage of this library can be found in Section 4.7.16.

RestSharp

RestSharp3 is “Simple REST and HTTP API Client for .NET”, as per the authors’ definition. It would be pos-
sible to establish this RESTful communication without a third-party library, since a native System.Net.Http
provides an HttpClient class. Therefore, sometimes it is just a matter of personal preference whether to
use a native or a third-party feature. RestSharp is easy to integrate into the project using NuGet, described
in Section 4.2.

2https://www.newtonsoft.com/json
3http://restsharp.org

12

https://www.newtonsoft.com/json
http://restsharp.org

Extended WPF ToolkitTM

Extended WPF ToolkitTM4 is a free and open source collection of WPF controls, provided under the Mi-
crosoft Public License. It seems to still be popular, even though it is no longer actively developed. However,
this could be due to the lack of the alternatives. Extended WPF ToolkitTM is easy to integrate into the project
using NuGet, described in Section 4.2.

Material Design In XAML

Material Design In XAML 5 is a UI library. Including the library gives the application a modern look and
feel.

Material Design In XAML is easy to integrate into the project using NuGet, described in Section 4.2.
However, using this plug-in in the Revit application is not a straightforward process, due to a specific way
in which Revit loads frameworks and libraries its plug-ins require.

Even though the official Getting started tutorial states that it is as simple as creating the resource dic-
tionary by merging four XAML files, and including it in the control where we want to use it, this was not
enough. I defined the resource dictionary file in the following way:

Listing 4.2 Creating a resource dictionary by merging XAML files

<ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">
<ResourceDictionary.MergedDictionaries>

<ResourceDictionary Source="pack://application:,,,/MaterialDesignThemes.Wpf;
component/Themes/MaterialDesignTheme.Light.xaml" />

<ResourceDictionary Source="pack://application:,,,/MaterialDesignThemes.Wpf;
component/Themes/MaterialDesignTheme.Defaults.xaml" />

<ResourceDictionary Source="pack://application:,,,/MaterialDesignColors;
component/Themes/Recommended/Primary/MaterialDesignColor.DeepPurple.xaml" />

<ResourceDictionary Source="pack://application:,,,/MaterialDesignColors;
component/Themes/Recommended/Accent/MaterialDesignColor.Lime.xaml" />

</ResourceDictionary.MergedDictionaries>
</ResourceDictionary>

To make it available to the concrete XAML file, this resource needs to be specified in the following way:

Listing 4.3 Specifying a single Window’s resource

<Window.Resources>
<ResourceDictionary

Source="/MarijaRakicMasterThesisAsembly;component/MaterialDesign.xaml" />
</Window.Resources>

MarijaRakicMasterThesisAsembly is a solution assembly file, and MaterialDesign.xaml is a name of
the resource dictionary file.

In case the window needs to specify more than one resource, e.g. we want to include a converter and a
Material Design resource dictionary, resources need to be merged in the following way:

Listing 4.4 Specifying multiple Window’s resources

<Window.Resources>
<ResourceDictionary>

<BooleanToVisibilityConverter x:Key="Converter" />
<ResourceDictionary.MergedDictionaries>

<ResourceDictionary
Source="/MarijaRakicMasterThesisAsembly;component/MaterialDesign.xaml" />

4https://github.com/xceedsoftware/wpftoolkit
5http://materialdesigninxaml.net/

13

https://github.com/xceedsoftware/wpftoolkit
http://materialdesigninxaml.net/

</ResourceDictionary.MergedDictionaries>
</ResourceDictionary>

</Window.Resources>

After taking all these steps, the plug-in should successfully use the Material Design library, but unfortu-
nately it was not the case. I found no resources explaining why this problem occurs. One GitHub6 issue
suggested the following solution, which turned out to work:

Listing 4.5 The hack to make the application work

ColorZoneAssist.SetMode(new GroupBox(), ColorZoneMode.Accent);
Hue hue = new Hue("name", System.Windows.Media.Color.FromArgb(1, 2, 3, 4),

System.Windows.Media.Color.FromArgb(1, 5, 6, 7));

A small presentation of how using Material Design makes a visual difference is shown in Figure 4.1.
This was achieved by simply including a Material Design library. No changes to the code itself were made,
no additional properties, attributes or different XAML elements have been used.

(a) With Material Design

(b) Without Material Design

Figure 4.1 The same plugin page, with and without Material Design

Live Charts

Live Charts 7 is a “Simple, flexible, interactive & powerful data visualization for .Net”, as per the authors’
definition. It is a free and open source library that offers many different charts out-of-the-box. This appli-
cation utilizes only two of them, due to the limited information stored on the server, described in Section 3.
The future versions of the application could easily include more graphs. Live Charts is easy to integrate
into the project using NuGet, described in Section 4.2.

Similarly to including Material Design library, this library requires a hack to make it work in combination
with Revit. The following code snippet comes from Pie chart code-behind, and it handles a Pie chart’s click
event:

Listing 4.6 A hack to make the LiveCharts library work, code-behind

private void Chart_OnDataClick(object sender, ChartPoint chartpoint)
{

// an empty method

6https://github.com/
7https://lvcharts.net/

14

https://github.com/
https://lvcharts.net/

}

Listing 4.7 A hack to make the LiveCharts library work, XAML click event

<PieChart DataClick="Chart_OnDataClick" />

4.3 Revit plug-in ecosystem

From a Revit user’s point of view, the basic application should be as small as possible, so that the user
is not overwhelmed with the functionality they do not need for their field of expertise. Nevertheless, each
user can customize Revit with the plug-ins they will actually use. This makes the application faster and less
memory demanding compared to the full packed software, without compromising the set of functionalities
it offers. Autodesk offers an official marketplace of Revit plug-ins that contains a little more than one
thousand plug-ins in June 2019.

A code of the plug-in is compiled into a Dynamic Link Library (DLL) file. A DLL file (and consequently
the plug-in as well) cannot run standalone, it can only be used as part of another executable program that
runs on a Windows platform. From a developer’s point of view, a DLL provides modularity and memory
efficiency, to name a few. The application can get new features easily, without modifying the application
itself.

Three types of plug-ins

There are three ways to extend existing Revit functionalities: building a Macro, an External Command,
which is executed on a button click, and an External Application, which starts and ends with Revit. I
developed the plug-in in form of an External Application, since it provides with the most possibilities, as
will be shown in the following section.

Ribbon tab, panel and button

An External Application allows us to customize ribbon tabs and ribbon panels. The implementation of this
functionality is explained in Section 4.7.2. For now, we just take a look a the graphical outcome of the
aforesaid implementation.

We navigate to the Add-ins tab, where we can see a panel named TUM.

Figure 4.2 Add-ins tab with many panels, including the one called TUM

A panel can contain one or more buttons. Each button has an External command bound to it. Our panel
contains only one button named Compare to Multi-LOD model, as shown in Figure 4.2.

.addin file

When we start developing a plug-in, we need to tell Revit about it. Revit requires different information in
order to run our plug-in successfully, most notably the location of our assembly file (under the Assembly
tag) and the entry point (under the FullClassName tag), i.e. an instance of the class that implements the
IExternalApplication interface. All this information has to be stored in the XML format in a predefined
location on a local system. The location is likely to be in the following format:
C:\ProgramData\Autodesk\Revit\Addins\{Revit version}

15

Listing 4.8 An example of the .addin file

<?xml version="1.0" encoding="utf-8"?>
<RevitAddIns>

<AddIn Type="Application">
<Name>

MarijaRakicMasterThesis
</Name>
<FullClassName>

TUM.MasterThesis.MarijaRakic.ExternalApplication
</FullClassName>
<Text>

MarijaRakicMasterThesis
</Text>
<Description>

Lean BIM-based communication and workflow during design phases
</Description>
<VisibilityMode>

AlwaysVisible
</VisibilityMode>
<Assembly>

C:\Users\ga83cay\Documents\Marija Rakic - Master Thesis\MarijaRakicMasterThesis\
MarijaRakicMasterThesis\bin\Debug\MarijaRakicMasterThesisAsembly.dll

</Assembly>
<AddInId>

502fe383-2648-4e98-adf8-5e6047f9dc34
</AddInId>
<VendorId>

ADSK
</VendorId>
<VendorDescription>

Autodesk, Inc, www.autodesk.com
</VendorDescription>

</AddIn>
</RevitAddIns>

16

4.4 System setup

In order to demonstrate how the plug-in works, some database tables had to be prefilled with values before
running the application. Those will be listed later in this section.

In our system, a user can have one of three roles:

• Architect,

• Life Cycle Analyst (LCA), and

• Structural Engineer.

Our system has three users:

• Victoria, who is an Architect,

• Sarah, who is a LCA, and

• Jessie, who is a Structural Engineer.

In our system, one project is defined:

• MasterThesis

Our system keeps information about which users are assigned to which projects. Each of our three
users is assigned to the project.

There are six properties:

• Height of data type Number,

• Width of data type Number,

• StructuralMaterial of type Material,

• IsExternal of data type YesNo,

• LoadBearing of data type YesNo, and

• ThermalTransmitance of data type Number.

There is one product:

• Wall

There is a mapping between properties and products, and therefore every property is mapped with a
Wall.

Our system defines the following action types:

• MissingObject,

• MissingObjectProperty,

• CreateNewObject,

• DeleteObject,

• UpdateObjectProperty, and

• MissingPropertyValue.

Although six action types are defined, only two are used at the moment: MissingObject and MissingOb-
jectProperty. The rest of the actions could be implemented in some future versions of the application.

There is one aLODX:

• MasterThesisaLODX.

17

4.5 Graphical User Interface

4.5.1 Starting the plug-in for the first time

When a user starts the application for the first time, he/she is prompted with the list of existing users in the
system. As explained in Section 4.4, our system has three registered users, one per each role. Information
on the user’s name and role are shown in Figure 4.3. The user chooses their identity by clicking on one of
the rows.

Figure 4.3 Choose a user

Since this plug-in is just a demo of what can be achieved, many features are simplified or completely
omitted. The user log-in process is an example of a security feature that is omitted. The current imple-
mentation of the application does not require any password to confirm the user’s identity. However, in a
real life application, a user would have to confirm their identity by inputting a username and password.

Allowing the user to create an account, or at least create a request for an account, is another example of
the omitted feature. At the moment, all users are predefined in the system, and a person who would like to
join the system has no way of creating the account themselves. They would have to contact the owners of
the application and request an account from them. This mimics the use case where an administrator or a
responsible person from a company creates accounts for all their employees and assigns them appropriate
roles.

4.5.2 Home page for an architect

Let’s assume that the current user is our architect, Victoria. She creates a building model using Autodesk
Revit. At some point, she needs to know what a structural engineer thinks of her current building model.
She starts the plug-in by clicking on Add-Ins and then Compare to Multi-LOD model under TUM panel, as
seen in Figure 4.2. Her home page looks like Figure 4.4a.

(a) Before an analysis has been requested (b) After an analysis has been requested

Figure 4.4 Home page of the plug-in, as seen by an architect

First, information on the current user’s name and role is presented in the upper left corner. Next, there
is a message that No analysis has been requested yet. It also suggests that analysis can be requested at

18

any moment by clicking on a big Request analysis button. Upon clicking on this button, a window as seen
in Figure 4.5a is presented.

4.5.3 An architect requesting an analysis

In order to request a new analysis of the current building model, our architect Victoria has to choose a
person who will be responsible for running this analysis. She can choose between all engineers registered
in the system. In our case, that is the choice between Sarah, a Life Cycle Analyst, or Jessie, a Structural
Engineer. If there were more engineers registered in the system, they would be presented on this list as
well. On the other hand, even if there were more architects registered in the system, they would not show
up on this list.

Since our architect Victoria wants an opinion on the structural aspects of the building model first, she
selects Jessie by clicking on her name, chooses whether a structural engineer should create options for
the missing values or not, and a deadline for the analysis. The past dates are greyed out and cannot
be selected, assuring that the user selects only a valid date for a deadline. After all these options have
been chosen, Victoria clicks the Request analysis button, which permanently saves her request. All these
elements can be seen in Figure 4.5a.

(a) An empty form (b) A filled in form

Figure 4.5 Form for requesting a new analysis, as seen by an architect

After an analysis has been requested, the home page that the architect sees slightly changes, as seen
in Figure 4.4b. A new message is presented to the user, informing them that the analysis has been
successfully requested and that they are now Waiting for an engineer to run analysis. The Request analysis
button is still available, in the case the architect wants to request another type of analysis.

In the current implementation of the system, a responsible engineer becomes aware of the newly created
request for an analysis only when starting the application. In future versions, it could be possible to
implement a system where a user would be notified by a desktop notification once a new request exists,
assuring no requests go unnoticed and they are processed as soon as possible.

4.5.4 Home page for an engineer

When Jessie, our structural engineer, starts the application, her home page looks as seen in Figure 4.6a.
The name and role are presented in the upper left corner, in the same way as they are presented to
an architect. Before any architect requests an analysis from her, she sees a message that No analysis
has been requested yet. Nothing to do at the moment!. But as soon as there is a request, a message
will change to inform her that analysis [has been] requested. Please run it and the button Run analysis
appears on the screen to make this action possible, as seen in Figure 4.6b.

19

(a) Before an analysis has been requested
(b) After an analysis has been requested

Figure 4.6 Home page of the plug-in, as seen by an engineer

When running the analysis for the first time, an engineer is prompted to choose a file that contains
a list of requirements that the building model should comply with. Once this file has been chosen, this
information is stored locally and the same file will be used for all the future analyses. If the engineer wants
to choose another file at any later point, they can do that by clicking on the round directory button in the
upper right corner, as seen in Figure 4.6b.

4.5.5 Analysis results

It can happen that the engineer is not able to decide on the building model’s characteristics, because
the model is missing information needed to run the analysis successfully. In this case, the output of the
analysis is a list of tasks that the architect has to solve before the analysis could be performed.

A task can specify that the Revit element is missing a:

• property, e.g. a task that specifies that the Wall does not have its Thermal Transmittance property,
as seen in Figure 4.7a, or

• value, in the situation when the parameter exists but does not have a value. An example is a task
that specifies that the Wall is missing the value of its Height parameter, as seen in Figure 4.7b.

This list of tasks is presented in a table-like structure to both the engineer who ran the analysis and the
architect who requested it. Every row holds information on a single task. There are four columns:

• Element, showing the Revit element’s name,

• Description, showing whether the element is missing a parameter or a value,

• Value, showing a suggestion created by an engineer or value input by an architect, and

• Action, allowing an engineer to input a suggestion, or an architect to either input a value themselves,
or accept or decline a value that has been suggested by the engineer.

In addition to this, every row starts with a circle that will be further explained in Section 4.5.15.
Figure 4.7 present the list of tasks the architect sees. There are three scenarios: all tasks specify a

missing parameter, as seen in Figure 4.7a; tasks are a mixture between missing parameters and missing
values, as seen in Figure 4.7b; or all tasks specify a missing value. The text on the action button indicates
the action that the architect will take by clicking it.

20

(a) Missing parameters (b) Missing parameters and values

Figure 4.7 Analysis results, as seen by the architect

If the architect requested suggestions for the missing values, the engineer can see a button to Add
suggestion for every missing value, as in Figure 4.8a. If options were not requested, the engineer will not
have this button, as seen in Figure 4.8b.

21

(a) Options were requested (b) No options were requested

Figure 4.8 Analysis results, as seen by the engineer

4.5.6 Creating a missing parameter

Clicking either Add Parameter or Add Value buttons, a new window opens and asks the architect to input
the value. For a missing parameter, the architect also has to decide which group to place the newly created
parameter in. This is a mandatory step, so if this group is not specified, another window will appear and
inform the user that they cannot proceed without defining this value.

22

(a) An empty form (b) A filled in form

Figure 4.9 Creating a missing parameter, as seen by an architect

One important note when inputting decimal numbers using this DecimalUpDown control: the control
infers decimal separator from the settings of the operating system. For example, in US-settings, the
decimal number would be defined using a dot, e.g. 3.14. However, the same value would be defined as
3,14 in many different countries, for example Germany.

4.5.7 Data type of a missing value

There are different types of missing values. In the current implementation of the application the following
types are supported:

• numerical value,

• boolean value, and

• material.

Inputting each of these data types has a different interface. The interface for inputting a boolean value
can be seen in Figure 4.10a, and for inputting a material in Figure 4.10b.

23

(a) A missing value is of type boolean

(b) A missing value is of type material

Figure 4.10 Creating a missing parameter of different data types, as seen by an architect

In the case of material, the user can simply scroll the list of available materials and select the desired
material. The user also has an option to quickly access the desired material by either searching by its
name or filtering all materials by class. Revit users are used to having these functionalities, since Revit
offers the exact same search by name and filter by class features, as shown in Figure 4.11. I wanted to
offer them the same user experience in our application.

24

Figure 4.11 A native Revit list of materials, with a search by name and filter by class features

4.5.8 Creating a missing value

If the parameter exists, but does not contain the value which the engineer needs to successfully run the
analysis, the engineer creates a task for the architect to input this value. By clicking on the Missing value
button as seen in Figure 4.7b, a new window is opened. Then, depending on the data type as explained in
Section 4.5.7 a different field for inputting the missing value is presented, in the same way it is presented
for the missing parameter, as seen in Figure 4.10. Figure 4.12 is an example of this window for creating a
missing numerical value.

25

Figure 4.12 Creating a missing value

4.5.9 Filtering tasks by type

The user has an option to filter the list of tasks for only missing values or only missing parameters, by
selecting the check boxes in the upper right rectangle named Filter tasks by type. Figure 4.13a shows
results of filtering the list as seen in Figure 4.7b for only missing parameter results, while Figure 4.13b
represents filtering the same list for only missing values.

26

(a) Missing parameters only (b) Missing values only

Figure 4.13 Filtering the list of tasks by type

4.5.10 Suggesting a missing value

Another way of creating a new value is when the architect asks the engineer to suggest one or multiple
values for the missing element.

When the engineer clicks the button to add a suggestion, a new window opens, as seen in Figure 4.14a.
If the engineer wants to suggest multiple possible values, they should select the box with a Add another
suggestion label, as seen in Figure 4.14b.

When the engineer inputs a value and clicks Add button, the value is saved in the system and the
window closes. However, if the checkbox Add another suggestion is selected, the value is saved in the
system, yet the window remains open, giving the engineer an opportunity to input another possible value.
When the engineer is done inputting values, they uncheck the Add another suggestion box by clicking on
it again, and submit the last suggestion by clicking on the Add button.

27

(a) Suggest single value (b) Suggest multiple value

Figure 4.14 An engineer can suggest one or multiple values

This window is very similar to the window that the architect sees when creating a missing parameter,
except for the box that defines the Group parameter under option. Since it is completely up to the architect
how they will organize information on the building model within Revit, the engineer does not suggest this
value.

4.5.11 Pending tasks

After a suggestion has been created, it is removed from the list of open tasks and placed into the list of
pending tasks, as seen in Figure 4.15a. After the engineer has created the suggestion, they can no longer
take any action, but wait for the responsible architect to either approve or decline this value.

The architect sees the list of the pending tasks as shown in Figure 4.15b. They have an option of
accepting or declining the suggested value by clicking on the purple circle with a check mark or a green
circle with an x mark, respectively.

28

(a) As seen by the engineer
(b) As seen by the architect

Figure 4.15 A list of pending tasks

When the architect wants to accept one of the values suggested by the engineer, a new window as seen
in Figure 4.16 opens and the value field is prefilled. If the parameter is missing, the architect still has to
decide under which group to place it, therefore the upper box is yet to be filled in.

Figure 4.16 A value suggested by the engineer is automatically input in the value field

In the case of multiple suggestions per missing value, when the architect accepts one, all the others are
automatically declined.

It can happen that the architect wants to create a missing parameter, and that the Group parameter
under field is prefilled. This occurs in the following situation. An engineer runs the analysis and discovers
that all Walls in the Revit model are missing a certain parameter, e.g. IsExternal. The engineer creates a
task for each Revit element that holds this information. The architect receives the analysis report and starts

29

solving the problems one by one. The architect creates a missing IsExternal parameter for the randomly
chosen Wall. By creating this shared parameter in order to assign it to the first Wall, the architect implicitly
creates this parameter for all the other walls in the project. Yet this does not affect the remaining tasks that
still specify the missing parameter for all the other Walls. Hence when the architect wants to solve another
task of this kind, the Group Parameter Under data is prefilled, since Revit already has information on this
now existing parameter.

Figure 4.17b shows the case when both shared parameter has already been defined, so the the Group
Parameter Under data is prefilled, and the architect is about to accept the value suggested by the engineer,
so the value field is also prefilled. The only thing left to the architect to do is to click Add button and the
task is solved.

(a) Shared parameter exists, value is not suggested (b) Shared parameter exists, value is suggested

Figure 4.17 Different combinations of existence of shared parameter and suggested value

4.5.12 Solved tasks

After a task has been solved, it is removed from the list of Open tasks and placed on the list of Solved
tasks. Figure 4.18 shows that the architect has solved the task of missing parameter Height for the Wall
of type Generic - 200mm, and this newly created parameter now has the value of 100.

To switch between those two lists, the user clicks the desired button under the Task status box.

30

Figure 4.18 List of solved tasks

4.5.13 Newly created value under Revit Properties

Finally, after a value has been created, either a missing parameter or a missing value, it can be viewed in
the Revit’s Properties window. An example is our newly created Height parameter, grouped under Other,
that has a value of 100, as seen in Figure 4.19.

31

Figure 4.19 Newly created wall’s parameter in the Properties view

4.5.14 Tree view

The list of tasks can be presented in a tree-like structure by grouping all the tasks that are related to a
single Revit element, as shown in Figures 4.20a and 4.20b.

32

(a) A collapsed tree view (b) An extended tree view

Figure 4.20 A tree view representation of tasks, grouped by Revit element

This representation of tasks is only a showcase that a flat list view with no grouping applied, as shown
in previous sections, is not the only option. However, the tree view is there only to present data. Unlike
the list view that groups tasks by their status (open, pending or solved) and allows for actions to be taken,
the tree view does not offer any way of interacting with tasks. This is left to be implemented in some future
versions of the application.

4.5.15 Selecting an element

The list of tasks can be very long and contain many tasks for many elements. To make it easier for the
user to navigate and access the element to which the task refers, the application implements the following
feature. Each row in the list of tasks starts with a small circle of a certain color. All tasks that relate to the
same element have the the circle of the same color. When the users clicks the task, the element related to
it changes color to the color of the small circle. This feature can be seen in Figure 4.21, which represents
two different walls being colored when two different tasks are selected.

33

Figure 4.21 Wall is colored when selected

4.5.16 Charts

The user has an option to view some simple reports on the progress of solving tasks. The current version
of the application implements two chart views:

• Pie chart, as seen in Figure 4.22a, and

• Stacked columns, as seen in Figure 4.22b.

34

(a) Pie chart (b) Stacked columns

Figure 4.22 Available charts

Pie chart presents the ratio of the open tasks per a Revit element. An example shown in Figure 4.22a
depicts a situation when all the open tasks refer to two instances of Walls, of type Generic - 200 mm. Both
walls have six open tasks.

In stacked columns, each column represents a single Revit element. This single column further presents
the ratio between open and solved tasks within a single Revit element. An example shown in Figure 4.22b
depicts a situation when all the tasks refer to two instances of Walls, of type Generic - 200 mm. First one
of them has three open and two solved tasks, while the other has three open and three solved tasks.

4.5.17 Changing the user

Information on the user who last used the application is stored locally, similar to Stay logged in feature that
is very common in many mobile, web and desktop application. The next time the application is started, an
assumption is made that the same person is using the application and so credentials are retrieved from
the local storage. If this is not the case, the person who is currently using the application has an option to
choose another identity by selecting one of the user currently defined in the system, excluding the currently
logged in user, as seen in Figure 4.23.

35

Figure 4.23 Changing the current user

4.5.18 Successfully running the analysis

After the architect has input all the values that the engineer has previously specified as needed, the
architect informs the engineer of this event by requesting the analysis again.

Now the engineer can check that the Revit model contains all information they need to run the analysis
successfully. After this is verified, they inform the architect that the analysis has been run successfully.

36

4.6 Communication within the system

This section gives a short overview of the communication that occurs between a client (a Revit plug-in)
and a server (a Node server and a MySQL database) application.

A communication starts when an architect creates a request for a new analysis, as seen on Figure 4.24.
A plug-in sends an HTTP request and receives an HTTP response that a new entity in the NewAnalysis
table has been successfully created.

Next, an engineer runs Revit and starts our plug-in, which automatically checks whether someone re-
quested a new analysis for the project that the engineer has opened. If there is, the engineer is informed
about this in a form of a text message as seen on Figure 4.6b. Upon clicking Run analysis button, the
Revit model is compared with the multi-LOD meta-model. Consequently, a new entity in the Feedback
database table, as well as a list of Change_Suggestions entities in the database table with the same name
are created. In case the architect has requested suggestions for missing parameters and values, the engi-
neer can create them. They are automatically sent to the server, to be written to the Change_Suggestion
database.

new analysis.pdf

Node server

1: requestNewAnalysis()

Architect Engineer

2: getNewAnalysis()

NewAnalysis

200: ok

A request for analysis
exists?

Yes No

Compare a model against
multi-LOD meta-model

requirements

Model is missing parameters
or values?

Yes No

Text

3.1: addFeedback()

3.2: addChange_Request()

Suggestions requested?

Yes No

Create suggestions

4: addChange_Request()

Figure 4.24 Requesting and running a new analysis

Next time the architect starts Revit and out plug-in, information about the project that the architect has
opened is retrieved from the server. First, the plug-in checks whether there is a NewAnalysis request,
as seen on Figure 4.25. If there is, an HTTP request for a related Feedback information is sent. Upon
receiving it, all the related Change_Suggestion data is retrieved and a list of Tasks is created out of it, as

37

an extended version of Change_Suggestion data, with a purpose of being used locally, within the client
application.

tasks-3.png

Figure 4.25 An architect solving tasks and accepting or declining suggested values

38

To either create a missing value or parameter or accept or decline an engineer’s suggestion, the architect
sends an HTTP request and receives a response after the value has been successfully updated in the
database table.

39

4.7 Implementation

In C# development, a project groups classes, resources and various configuration files that logically belong
together. Depending on a type, a project is compiled into a file with an .exe or a .dll extension, in other
words into an executable application or a library.

Projects can be grouped under a solution. Even though it is theoretically possible to avoid using projects
by putting everything into a single solution, it is usually a bad practise. Splitting a solution into multiple
projects follows many good programming principles. For example, a project has a smaller code base than
a solution, which makes it easier to maintain; also, it can be reused later. A solution should provide a
high cohesion by grouping the related classes and methods into a single project, while allowing for loose
coupling between projects.

The solution is split into five projects:

• MarijaRakicMasterThesis further described in section 4.7.1,

• MultiLODLib further described in section 4.7.13,

• MarijaRakicMasterThesis.DataTypes further described in section 4.7.14,

• MarijaRakicMasterThesis.Converters further described in section 4.7.15, and

• com.server.api further described in section 4.7.16.

Dependencies are defined per project. The aforementioned projects reference one another. Existing
dependencies within this solution are shown in Figure 4.26.

Figure 4.26 Solution dependencies

40

4.7.1 MarijaRakicMasterThesis

This project is split into several namespaces:

• TUM.MasterThesis.MarijaRakic, containing ExternalApplication, ExternalCommand,

RegisterPluginCommand and Singleton classes, all further described in the upcoming sections,

• TUM.MasterThesis.MarijaRakic.ExternalEventHandler, further described in Section 4.7.10,

• TUM.MasterThesis.MarijaRakic.Managers, further described in Section 4.7.11,

• TUM.MasterThesis.MarijaRakic.UserControl, further described in Section 4.7.6,

• TUM.MasterThesis.MarijaRakic.Utils, further described in Section 4.7.12,

• TUM.MasterThesis.MarijaRakic.ValidationRules, further described in Section 4.7.7,

• TUM.MasterThesis.MarijaRakic.View, further described in Section 4.7.5,

• TUM.MasterThesis.MarijaRakic.ViewModel, further described in Section 4.7.8, and

• TUM.MasterThesis.MarijaRakic.ViewModel.Commands, further described in Section 4.7.9.

This project must reference two DLLs: RevitAPI.dll and RevitAPIUI.dll. The first one provides
access to the general Revit API, and the second one provides access to the Revit API specialized in
interacting with the Revit user interface. As a consequence, the application must be implemented using
the 4.7 version of .NET framework 4.7, because Revit 2019 requires it.

Before doing a deep dive into the implementation specifics, I want to point out that i do not go into details
of the entire code base. Also, code snippets that will be used in the remainder of this thesis will not be an
exact copy of the running code; they will very often exclude the details that are not relevant to the point
being explained at that moment.

4.7.2 IExternalApplication

An ExternalApplication class contains information on actions that are to be taken when Revit starts and
shuts down. It implements the IExternalApplication interface, which is defined in the Autodesk.Revit.UI
namespace and requires two methods to be provided: OnStartup and OnShutdown.

On Revit start, we want to create a new box under the Add-ins tab in which we will put a button that
will start our plug-in. In Revit terms, this box is called RibbonPanel and we create it on the application
object. When creating a panel, there are two options: a default one is to create a panel on the Add-ins tab,
and the second one is to create a custom tab and add panel to it.

Listing 4.9 OnStartup method that creates a ribbon panel and a push button

public Result OnStartup(UIControlledApplication application)
{

// Create a ribbon panel on a "Add-ins" tab and name it
RibbonPanel ribbonPanel = application.CreateRibbonPanel(panelName);

// Create a pushButton and add it to the ribbon panel
CreatePushButtonOnRibbon(ribbonPanel);

application.ControlledApplication.ApplicationInitialized += DockablePaneRegisters;

return Result.Succeeded;
}

41

Next, we create a button that will run our plug-in when clicked. In Revit terms, this button is called
PushButton. It is defined by its name, a description and a full name (with the namespace information)
of the class that implements the IExternalCommand interface, as described in Section 4.7.3. We also
provide a small and a large image for the newly created PushButton.

Listing 4.10 Creating of a push button on a given ribbon panel

private void CreatePushButtonOnRibbon(RibbonPanel ribbonPanel)
{

// Create a pushButton and add it to the ribbon panel
string assemblyName = Assembly.GetExecutingAssembly().Location;
PushButton pushButton = ribbonPanel.AddItem(

new PushButtonData(pushButtonDictionary["name"],
pushButtonDictionary["text"],
assemblyName,
pushButtonDictionary["className"])) as PushButton;

// Set the large image shown on button
pushButton.LargeImage = ImageSourceForBitmap(Resources.push_button_32x32);

// Set the small image which is used if command is moved to Quick Access Toolbar
pushButton.Image = ImageSourceForBitmap(Resources.push_button_16x16);

}

Finally, we subscribe to the ApplicationInitialized event and when triggered, we invoke the Execute
method of an instance of the RegisterPluginCommand class.

Listing 4.11 Execute method that runs when a user starts our plug-in

private void DockablePaneRegisters(object sender, ApplicationInitializedEventArgs args)
{

RegisterPluginCommand registerPluginCommand = new RegisterPluginCommand();
registerPluginCommand.Execute(

new UIApplication(sender as Autodesk.Revit.ApplicationServices.Application));
}

This method is using an internal class RegisterPluginCommand that implements the IExternalCommand
interface. Its main job is to set an instance of the CompareToMultiLOD class as the provider, i.e. a class
that implements the IDockablePaneProvider interface, of the dockable pane.

Listing 4.12 A class that sets an instance of the CompareToMultiLOD class to be a provider of a dockable pane

internal class RegisterPluginCommand : IExternalCommand
{

public Result Execute(ExternalCommandData commandData, ref string message, ElementSet
elements)

{
return Execute(commandData.Application);

}

public Result Execute(UIApplication uiApplication)
{

CompareToMultiLOD managerPage = new CompareToMultiLOD();

DockablePaneId dockablePaneID = new
DockablePaneId(PaneIdentifiers.ManagerPaneIdentifier());

uiApplication.RegisterDockablePane(dockablePaneID, "Compare to Multi LOD meta
model", managerPage as IDockablePaneProvider);

42

return Result.Succeeded;
}

}

4.7.3 IExternalCommand

Every Revit application has to have a class that implements the IExternalCommand interface. This inter-
face defines an Execute method that needs to be provided, since it tells Revit what to do when a user
starts a plug-in.

An input parameter commandData is “an ExternalCommandData object which contains reference to Ap-
plication and View needed by external command”, as per the official documentation. We use it to extract
the following objects and store them in Singleton for later use.

• UIApplication “represents an active session of the Autodesk Revit user interface, providing access
to UI customization methods, events, the main window, and the active document”, as per the official
documentation. We use UIApplication to e.g. dock a pane.

• UIDocument is “an object that represents an Autodesk Revit project opened in the Revit user inter-
face”, as per the official documentation. We use UIDocument to e.g. color a selected Revit element
in a given color.

• Document is “an object that represents an open Autodesk Revit project”, as per the official documen-
tation. We use Document to e.g. fetch a Material or an Element, and to execute a Transaction.

Next, we open a dockable pane and let a user interact with it, as shown in Listing 4.13.

Listing 4.13 Execute method that runs when a user starts our plug-in

public Result Execute(ExternalCommandData commandData, ref string message, ElementSet
elements)

{
//Get application and document objects
UIApplication uiapp = commandData.Application;
Singleton.Instance.UIApplication = uiapp;
Singleton.Instance.UIDocument = uiapp.ActiveUIDocument;
Singleton.Instance.Document = uiapp.ActiveUIDocument.Document;

// Open dockable pane
DockablePaneManager.ShowOpenDockablePane(PaneIdentifiers.ManagerPaneIdentifier());

return Result.Succeeded;
}

This method is also a good place to do some initial setup of the application, for example set a URL to the
server, fetch information on the current user and the project, etc. This code is trivial, and therefore omitted
from this code snippet.

To open a dockable pane, a static class DockablePaneManager implements one static method. This
method accepts a pane’s unique identifier of type Guid as an input parameter and creates a DockablePaneId
as an output. Finally, it creates an instance of a DockablePane and shows it to the user. Implementation
of this class is as follows:

Listing 4.14 Creating and showing a dockable pane

public static class DockablePaneManager
{

public static void ShowOpenDockablePane(Guid guid)

43

{
DockablePaneId dockablePaneID = new DockablePaneId(guid);
DockablePane dockablePane = UIApplication.GetDockablePane(dockablePaneID);
dockablePane.Show();

}
}

4.7.4 Singleton

A singleton is a software design pattern. It provides assurance that there is only one instance of a class,
which is achieved by internally invoking a private constructor the first time an instance of a singleton class
is used.

It stores some values that are accessed from many different classes. For example, it stores information
on the Document, UIDocument and UIApplication of the currently open Revit project. It also stores
information on the current user and a Task the user is working on at the moment.

In addition, it caches some database tables, namely a list of ProductCatalog, a list of PropertyCatalog,
a list of RulesProductProperty, a list of Rule_aLOD and a list of aLODX. The assumption is made that
these values do not change frequently and that they will not change during a single use of our plug-in.
Therefore, they are fetched from the database only once, and after that their local copies are used.

Unfortunately, not all the initial architectural design decisions turned out to be good ones. Very often,
a communication between two views, and consequently ViewModels is needed. There are third-party
frameworks, e.g. MVVM light8 and Prism9, which provide this functionality out-of-the-box. However, due
to the lack of experience in the WPF development, i did not see the need for these frameworks right
from the beginning of the development process. Later on, then the need was obvious, it was no longer
easy to include them. The project had a significant code base that was modeled by the initial architectural
design decisions, which was not compatible with the aforementioned frameworks. Hence, a way around the
problem was to store information on an instance of the CompareToMultiLODViewModel class in Singleton
and use it when it is needed to invoke its methods from another class. This is not an ideal solution, because
it introduces unnecessary high coupling when compared to e.g. the publish-subscribe design pattern that
the aforesaid third-party frameworks use.

4.7.5 Views

In this section, I describe the development of the user interface. First, I list some standard controls that
have been heavily used, and then I go into some interesting details about each class.

The application is built using a lot of standard controls, such as:

• <Button />, which allows a user to take some action,

• <RadioButton />, which allow a user to choose one of multiple options,

• <CheckBox />, which allows a user to choose none or some of multiple options,

• <Grid />, which is used to organize other controls into rows and columns,

• <StackPanel />, which “Arranges child elements into a single line which can be oriented horizon-
tally or vertically”, as per the official documentation,

• <GroupBox />, which “creates a container that has a border and a header for user interface (UI)
content”, as per the official documentation,

• <Label />, which displays textual data,
8http://www.mvvmlight.net
9http://prismlibrary.github.io

44

http://www.mvvmlight.net
http://prismlibrary.github.io

• <ListView />, which displays a list of data items, and

• <TreeView />, which “displays hierarchical data in a tree structure that has items that can expand
and collapse”.

The application consists of four independent windows:

• CompareToMultiLOD, our main page that inherits from the class Page and implements interfaces
IDisposable and IDockablePaneProvider, and is shown in Figures 4.7 and 4.8,

• AnalysisWindow, which inherits from the class Window and implements the interface ICloseable,
and is shown in Figure 4.5,

• UserWindow, which inherits from the class Window and implements the interface ICloseable, and is
shown in Figure 4.3, and

• ValueWindow, which inherits from the class Window, and is shown in Figures 4.9, 4.10a, and 4.10b.
This window uses a custom user control MaterialsListView, described in Section 4.7.6.

In the remainder of this section, I focus on the interesting aspects of each of these classes.

The home page and custom user controls

The home page utilizes four user controls that will be described in Section 4.7.6. They are used like any
other native control, with opening and closing tags and an option to pass input parameters:

Listing 4.15 Usage of the custom user controls

<local:TasksListView MissingValues="{Binding IssuesCollectionViewSource.View}" />
<local:TasksTreeView MissingValues="{Binding MissingValuesPerElementList}" />
<local:PieChart />
<local:StackedColumns />

ValueWindow and xceed toolkit DecimalUpDown control

ValueWindow uses a third-party library Extended WPF ToolkitTM explained in Section 4.2 to implement a
field for inputting numerical values.

The library is included xmlns:xctk="http://schemas.xceed.com/wpf/xaml/toolkit" and used as
follows:

Listing 4.16 Usage of the DecimalUpDown control

<xctk:DecimalUpDown Value="{Binding ValueDouble}"
Name="myUpDownControl"
Height="40"
Visibility="{Binding Path=ShowReal, Converter={StaticResource Converter}}" />

We rarely work with just one XAML library per XAML file. Simply by creating a new Window, for example,
Microsoft Visual Studio automatically includes four different namespaces for us:

Listing 4.17 Microsoft Visual Studio automatically includes some namespaces when creating a new Window

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

45

When including more than one library and consequently using more than one namespace per a single
XAML file, names might conflict. To solve this problem, we assign a prefix to a library and use its controls
with this prefix, which assure unique names. xmlns denotes an XML namespace and it is required to
define a prefix for a library being included. In the previous example, we give a xctk prefix to the Extended
WPF ToolkitTM library and we use a DecimalUpDown control with this prefix.

The first namespace not having a prefix makes the code significantly cleaner, since the most commonly
used controls come from this namespace. We type e.g. <Button> instead of <{prefix}:Button>. We
could use prefix as well, but there is no need for that.

AnalysisWindow and DatePicker

One interesting feature of the AnalysisWindow class is DatePicker. We specify all the past dates to be
grayed out by defining the CalendarDateRange value of the BlackoutDates property. After the user has
chosen the date, we apply the ValidationRules, further described in the 4.7.7, to make sure the user
does not unintentionally input some incorrect value that is not a date.

Since only future dates are valid dates, DatePicker requires
xmlns:sys="clr-namespace:System;assembly=mscorlib"
to fetch information on the earliest possible date in the system as the start date and on the present date

as the end date.

Listing 4.18 Usage of the DatePicker

<DatePicker x:Name="FutureDatePicker"
Width="100"
Margin="0, 0, 0, 20"
materialDesign:HintAssist.Hint="Deadline">

<DatePicker.BlackoutDates>
<CalendarDateRange Start="{x:Static sys:DateTime.MinValue}"

End="{x:Static sys:DateTime.Today}" />
</DatePicker.BlackoutDates>

<DatePicker.SelectedDate>
<Binding Path="Deadline"

UpdateSourceTrigger="PropertyChanged">
<Binding.ValidationRules>

<domain:FutureDateValidationRule ValidatesOnTargetUpdated="True"
xmlns:domain="clr-namespace:TUM.MasterThesis.MarijaRakic.ValidationRules" />

</Binding.ValidationRules>
</Binding>

</DatePicker.SelectedDate>
</DatePicker>

Interface ICloseable

This namespace also contains one interface, called ICloseable, with the following definition:

Listing 4.19 Interface ICloseable definition

public interface ICloseable
{

void Close();
}

The purpose of this interface is to allow for easy closure of AnalysisWindow and UserWindow after they
have been shown on the home page.

46

We pass the Window instance from the XAML file as a command parameter in the following way:

Listing 4.20 Passing Window instance as a command parameter

<Window x:Name="MyWindow">

<Button Command="{Binding MyCommand}"
CommandParameter="{Binding ElementName=MyWindow}" />

</Window>

Then, we cast the method’s argument to ICloseable:

Listing 4.21 Casting method’s argument to ICloseable

public void Execute(object parameter)
{

viewModel.ExecuteMyCommand(parameter as ICloseable);
}

Finally, we initiate closing the window within the ExecuteMyCommand method.

Listing 4.22 Invoking the Close method on an instance of ICloseable

internal void ExecuteMyCommand(ICloseable window)
{

// execute some logic here; actual code irrelevant for this example

CloseWindow(window);
}

private void CloseWindow(ICloseable window)
{

if (window != null)
{

window.Close();
}

}

4.7.6 User Controls

User controls provide a way to split the code needed to implement the graphical interface of the application
into a couple of smaller classes, making the code easier to reuse and maintain.

In this application, there are five user controls:

• MaterialsListView, which groups the controls to show the list of materials, search it by name and
filter it by material class, as shown in Figure 4.10b,

• PieChart, which is implemented using the LiveCharts library (explained in Section 4.2). It presents
the ratio of open tasks per Revit element, as shown in Figure 4.22a,

• StackedColumns, which is implemented using the LiveCharts library (explained in Section 4.2). It
presents the ratio of open and solved tasks per Revit element, for all Revit elements of the currently
open model, as shown in Figure 4.22b,

• TasksListView, which presents the list of tasks in a table-like form, as shown in Figures 4.7 and
4.8, and

47

• TasksTreeView, which presents the list of tasks in a hierarchical way, grouped by the Revit element
that they are related to, as seen in Figure 4.5.14.

All of them inherit from the UserControl class and have a very basic constructor where only the
InitializeComponent() method is invoked.

Similar to Views described in Section 4.7.5, these user controls consist of many common XAML con-
trols. In addition, TasksListView and TasksTreeView have some interesting features that will be further
described in the remainder of this section.

Passing an argument to a custom user control

TasksListView and TasksTreeView accept an input parameter under the name MissingValues. By not
hardcoding the concrete array of data to the user control, we get a loosely coupled component that is,
consequently, easy to reuse in some future projects.

Data is bound to the user control in the following way:

Listing 4.23 Binding a value to the user control’s MissingValues property

<local:TasksListView MissingValues="{Binding IssuesCollectionViewSource.View}" />
<local:TasksTreeView MissingValues="{Binding MissingValuesPerElementList}" />

To achieve this, the following property and fields are implemented in the TasksTreeView’s code-behind:

Listing 4.24 Implementation of the binding parameter to the custom user control

public ObservableCollection<MissingValuesPerElement> MissingValues
{

get { return
(ObservableCollection<MissingValuesPerElement>)GetValue(MissingValuesProperty); }

set { SetValue(MissingValuesProperty, value); }
}

// Using a DependencyProperty as the backing store for MyProperty. This enables animation,
styling, binding, etc...

public static readonly DependencyProperty MissingValuesProperty =
DependencyProperty.Register("MissingValues",
typeof(ObservableCollection<MissingValuesPerElement>),
typeof(TasksTreeView),
new PropertyMetadata(new ObservableCollection<MissingValuesPerElement>()));

MissingValuesPerElement models data presented in the tree form, and is further described in Section
4.7.14.

Implementation of the same feature in the TasksListView control is different only in the data type of the
input value. Instead of ObservableCollection<MissingValuesPerElement>, TasksListView accepts
input parameter of the data type ICollectionView.

Visibility toggling and boolean to visibility converters

There are multiple ways to change the visibility of the XAML element. A built-in method exists for the case
when visibility is defined by a single variable. It should be included as a resource of a certain page, window
or user control like this:

Listing 4.25 Including BooleanToVisibilityConverter as a user control resource

<UserControl.Resources>
<BooleanToVisibilityConverter x:Key="Converter" />

</UserControl.Resources>

48

Later on, let’s say that we want to change the visibility of a list view. The converter is used as follows:

Listing 4.26 Using BooleanToVisibilityConverter to set the visibility of a ListView

<ListView Visibility="{Binding Path=ShowListView, Converter={StaticResource Converter}}">

Sometimes we need to set visibility based on the result of some boolean expression that includes two or
more variables. There are two ways to achieve this. One is to use MultiDataTrigger as shown in Listing
4.27, where we want to show StackPanel if the user is an architect AND they are viewing open tasks OR
if the user is an engineer AND they are viewing open tasks AND the architect has requested options to be
added to the results of the analysis:

Listing 4.27 Usage of MultiDataTrigger

<StackPanel.Style>
<Style>

<Setter Property="Control.Visibility"
Value="Hidden" />

<Style.Triggers>
<MultiDataTrigger>

<MultiDataTrigger.Conditions>
<Condition Binding="{Binding ElementName=ListViewUC, Path=IsOpenTasks}"

Value="true" />
<Condition Binding="{Binding ElementName=ListViewUC, Path=IsArchitect}"

Value="true" />
</MultiDataTrigger.Conditions>
<Setter Property="Control.Visibility"

Value="Visible" />
</MultiDataTrigger>
<MultiDataTrigger>

<MultiDataTrigger.Conditions>
<Condition Binding="{Binding ElementName=ListViewUC, Path=IsOpenTasks}"

Value="true" />
<Condition Binding="{Binding ElementName=ListViewUC, Path=IsEngineer}"

Value="true" />
<Condition Binding="{Binding ElementName=ListViewUC, Path=OptionsWanted}"

Value="true" />
</MultiDataTrigger.Conditions>
<Setter Property="Control.Visibility"

Value="Visible" />
</MultiDataTrigger>

</Style.Triggers>
</Style>

</StackPanel.Style>

Another way to achieve the same goal is to create a converter class that implements the IMultiValueConverter
interface. An example is the MultiValueConverter class, whose implementation is explained in Section
4.7.15. This converter sets visibility of the XAML element when both values are true. In the follow-
ing example, this converter sets StackPanel’s visibility when both values IsCheckedPendingTasks and
IsArchitect are true.

Listing 4.28 Usage of the MultiValueConverter class

<StackPanel.Visibility>
<MultiBinding Converter="{StaticResource MultiValueConverter}">

<Binding ElementName="ListViewUC"
Path="IsCheckedPendingTasks" />

<Binding ElementName="ListViewUC"
Path="IsArchitect" />

49

</MultiBinding>
</StackPanel.Visibility>

Similar to LiveCharts and Material Design In XAML’s loading problem described in Section 4.2, there is
a problem with loading of the MultiValueConverter class as well. To circumvent this, the following line
of code should be added to the code-behind of the TasksListView class, in the constructor, right before
initializing the component:
MultiValueConverter multiValueConverter = new MultiValueConverter();

4.7.7 Validation rules

This namespace consists of two classes that inherit from the ValidationRule class:

• NotEmptyValidationRule, which checks whether a user has input a mandatory value or not. Code
of this class can be seen in Listing 4.29 and

• FutureDateValidationRule, which checks whether the date that has been input is a future date.
Code of this class can be seen in Listing 4.30.

Listing 4.29 Implementation of the NotEmptyValidationRule class

public class NotEmptyValidationRule : ValidationRule
{

public override ValidationResult Validate(object value, CultureInfo cultureInfo)
{

return string.IsNullOrWhiteSpace((value ?? "").ToString())
? new ValidationResult(false, "Field is required.")
: ValidationResult.ValidResult;

}
}

Listing 4.30 Implementation of the FutureDateValidationRule class

public class FutureDateValidationRule : ValidationRule
{

public override ValidationResult Validate(object value, CultureInfo cultureInfo)
{

if (value == null)
{

return new ValidationResult(false, null);
}

if (!DateTime.TryParse((value ?? "").ToString(),
CultureInfo.CurrentCulture,
DateTimeStyles.AssumeLocal | DateTimeStyles.AllowWhiteSpaces,
out DateTime time))

{
return new ValidationResult(false, "Invalid date");

}

return time.Date <= DateTime.Now.Date ?
new ValidationResult(false, "Future date required")
: ValidationResult.ValidResult;

}
}

50

4.7.8 ViewModels

Our application consists of four ViewModel classes:

• AnalysisViewModel, which provides logic for an architect to request a new analysis from an engi-
neer, as shown in Figure 4.5a,

• CompareToMultiLODViewModel, which provides majority of logic that enables a user to take action
in a process of solving a tasks,

• UserViewModel, which provides logic to choose a user’s account or change the current user, as
shown in Figures 4.3 and 4.23 respectively, and

• ValueViewModel, which provides logic for an engineer to create suggestions and an architect to
input values for the missing parameter or parameter’s missing value, as shown in Figures 4.14a,
4.9a and 4.12, respectively.

All these classes implement the INotifyPropertyChanged interface in order to notify a view when the
data changes. The related code is grouped under the region in each of these classes:

Listing 4.31 Implementation of the INotifyPropertyChanged interface

#region INotifyPropertyChanged

public event PropertyChangedEventHandler PropertyChanged;

private void OnPropertyChanged(string PropertyName)
{

PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(PropertyName));
}

#endregion INotifyPropertyChanged

As with the View in Section 4.7.5 and User controls in Section 4.7.6, I describe some interesting features
of these classes in the remainder of this section.

UserViewModel

This class is a ViewModel for the UserWindow. It is responsible for selecting a user from a list of predefined
users in the system the first time a person runs the application, or changing the user later.

As explained in Section 4.5.17, information on the user who last used the application is stored locally.
To achieve this, we permanently persist the user’s name. The first step to achieve this is to access the
project’s settings by right clicking on the project file, and then choosing the last option called Properties.
Then, a table with columns Name, Type, Scope and Value appears under the Settings tab. In the first
empty row, we can define the name, type and scope of the variable we want to store.

In this project, two variables are defined and persisted: MultiLODpath and Name. Code snippet 4.32
shows how to store the Name variable.

Listing 4.32 Storing the Name variable in Settings

Properties.Settings.Default["Name"] = value;
Properties.Settings.Default.Save();

Accessing the variable’s value from Settings is as easy as accessing an element of an array. Upon
retrieving it, it should be casted to an appropriate data type. The following example shows retrieving the
Name variable and casting it to string:

51

Listing 4.33 Retrieving and casting the Name variable

string name = (string)Properties.Settings.Default["Name"];

ValueViewModel

This class is a ViewModel for the ValueWindow. It is responsible for handling different input types of the
missing value - numerical, boolean and material, as explained in Section 4.5.7, as well as for searching
and filtering the list of materials, as explained in the same section. Behind the scenes, filtering an array of
materials by name is implemented using a single command as shown in Listing 4.34. Assigning null value
to the View.Filter variable means that the array will not be filtered, in other words all array elements will
be presented to the user.

Filtering by material class is implemented in a similar way, since the same data model MaterialWithImage
contains information on both name (used in the upper example) and material class information, accessible
under the MaterialClass parameter.

Listing 4.34 Filtering an array by name

View.Filter = string.IsNullOrEmpty(value)
? null
: new Predicate<object>(o => ((MaterialWithImage)o).Material.Name.Contains

(value, StringComparison.OrdinalIgnoreCase));

ValueViewModel raises AddParametersMissingValueExternalEvent and
AddMissingParameterExternalEvent, further explained in Section 4.7.10, when an architect clicks the

Add button.
Whenever possible, I tried offering the same options to the Revit users that they are used to having

while working with the native Revit features. Therefore, i wanted to display the material’s image next to the
material’s name, in the same way Revit does it. For this reason, ValueViewModel implements a search
for the material’s image. Even though it sounds like a basic feature, unfortunately the Revit API does not
offer a direct way of accessing it. Hence, a code suggested on the Revit Autodesk forum 10 was adjusted
to meet the needs of the application and used to implement the aforementioned feature. Its final version is
as follows:

Listing 4.35 Retrieving of the material’s image

private string GetImagePath(ElementId appearanceAssetId)
{

AppearanceAssetElement aae = Document.GetElement(appearanceAssetId) as
AppearanceAssetElement;

if (null != aae)
{

Asset asset = aae.GetRenderingAsset();
if (null != asset)
{

if (asset[SchemaCommon.Thumbnail] is AssetPropertyString ap)
{

string path = ap.Value;

if (path.StartsWith("Mats") || path.StartsWith("Maps")) // Revit default
{

path = path.Insert(0, @"C:\Program Files (x86)\Common Files\Autodesk
Shared\Materials\2019\assetlibrary_base.fbm\ ");

}

10https://forums.autodesk.com/t5/revit-api-forum/get-an-up-to-date-material-preview-image-file-path/
td-p/7731827

52

https://forums.autodesk.com/t5/revit-api-forum/get-an-up-to-date-material-preview-image-file-path/td-p/7731827
https://forums.autodesk.com/t5/revit-api-forum/get-an-up-to-date-material-preview-image-file-path/td-p/7731827

else if (path.StartsWith("material", true,
System.Globalization.CultureInfo.CurrentCulture))

{
path = path.Insert(0, @"%tmp%\ ");

}

if (!string.IsNullOrEmpty(path) && File.Exists(path))
{

return path;
}

}
}

}
return null;

}

AnalysisViewModel

This class is a ViewModel for the AnalysisWindow. It is responsible for collecting all the information that
the architect has specified, i.e. an engineer responsible for running the analysis, whether options are
wanted, the deadline for running the analysis, and then sending this request to the server.

As explained in Sections 4.5.3 and 4.7.5, inputting the date that specifies the Deadline for running
the analysis is mandatory and it must be a future date. This is achieved completely through the XAML
validation rules NotEmptyValidationRule and FutureDateValidationRule described in Section 4.7.7,
so no additional code is required in the ViewModel.

CompareToMultiLODViewModel

This class is a ViewModel for the CompareToMultiLOD, in other words the home page. Since it is responsi-
ble for many different features, it quickly grew in size, so it was divided into two partial classes in two dif-
ferent files: CompareToMultiLODViewModel.cs and CompareToMultiLODViewModel.Commands.cs. Un-
fortunately, this only masks the fact that the class is "crowded" with code and features, but it undoubtedly
increases readability and makes the maintenance easier.

A very nice way of grouping those two files together is achieved by editing .csproj file:

Listing 4.36 Grouping two CompareToMultiLODViewModel partial classes

<Compile Include="ViewModel\CompareToMultiLODViewModel.Commands.cs">
<DependentUpon>CompareToMultiLODViewModel.cs</DependentUpon>

</Compile>

The result of this action can be seen in Figure 4.27:

Figure 4.27 Grouping two CompareToMultiLODViewModel partial classes

In order to verify whether the building model has all the elements that are required to successfully run the
analysis, an engineer invokes a Run method from the Analyser class of the MultiLODLib project (further
described in Section 4.7.13) in the following way:

53

Analyser analyser = new Analyser(Properties.Settings.Default["MultiLODpath"].ToString(),
MapingFilePath, Document, CurrentUser);

openTasks = analyser.Run();

This ViewModel stores information on all tasks for the current project in a variable called allTasks
declared as follows:
private ObservableCollection<Task> allTasks;
Open, pending and solved tasks are calculated by filtering allTasks by task’s Status value:

Listing 4.37 example is here

openTasks = new ObservableCollection<Task>(
allTasks.Where(x => x.Status == Status.Open));

pendingTasks = new ObservableCollection<Task>(
allTasks.Where(x => x.Status == Status.Pending));

solvedTasks = new ObservableCollection<Task>(
allTasks.Where(x => x.Status == Status.Solved));

Depending on the option chosen under the Task status box, a different array of tasks is assigned to the
underlying CollectionViewSource as follows:

Listing 4.38 Assign a different subset of tasks to be presented to a user

switch (status)
{

case Status.Open:
IssuesCollectionViewSource.Source = openTasks;
break;

case Status.Pending:
IssuesCollectionViewSource.Source = pendingTasks;
break;

case Status.Solved:
IssuesCollectionViewSource.Source = solvedTasks;
break;

default:
break;

}

CompareToMultiLODViewModel raises SelectElementExternalEvent and DeselectElementExternalEvent
when a user clicks on a task in the list. This results in selecting and deselecting Revit elements, also rec-
ognized by coloring the selected element in a randomly chosen color assigned to that element, as shown
in Figure 4.21.

To show a new window, the following code is used:

Listing 4.39 Showing a new window

// Workaround the fact that MainWindowHandle returns type ’IntPtr’, but Owner requires type
’Window’

HwndSource hwndSource = HwndSource.FromHwnd(UIApplication.MainWindowHandle);
Window wnd = hwndSource.RootVisual as Window;
if (wnd != null)
{

ValueWindow.Owner = wnd;
//ValueWindow.ShowInTaskbar = false;
ValueWindow.Show();

54

}

This code makes sure that the child window behaves in the same way as the parent window. If the parent
window, in our case the Revit application, is minimized, than the child window is minimized as well. When
Revit is put back into the focus, so is the child window. The line of code that is commented out specifies
whether the child window has an independent icon in the Window’s Taskbar or not. With the current setting
of the application, it has the separate icon; uncommenting this line would result in only one icon existing.

When an engineer wants to choose a MultiLOD file, as explained in Section 4.5.4, they click the directory
button in the upper right corner of the home page. Opening of the file from the local system is achieved in
the following code snippet that was taken from the official Microsoft documentation on Dialog Boxes 11:

Listing 4.40 Opening of the file from the local system

// Code taken from:
internal void ExecuteOpenFileDialogCommand()
{

// Configure open file dialog box
Microsoft.Win32.OpenFileDialog dlg = new Microsoft.Win32.OpenFileDialog();
dlg.Filter = "JSON documents (.json)|*.json"; // Filter files by extension

// Show open file dialog box
bool? result = dlg.ShowDialog();

// Process open file dialog box results
if (result == true)
{

// Open document
Properties.Settings.Default[MultiLODpath] = dlg.FileName;
Properties.Settings.Default.Save(); // Saves settings in application configuration

file
}

}

4.7.9 Commands

Every button is associated with an instance of a class that implements the ICommand interface. These in-
ternal classes are part of the TUM.MasterThesis.MarijaRakic.ViewModel.Commands namespace. They
all have a very similar code, since they do not hold any logic themselves; all the logic is contained in the
associated ViewModel.
AddValueCommand is an example of these classes: it has one private field that contains information on

the ViewModel that is passed as an argument of the constructor of the class. Next, we specify that the
class CanExecute always. Finally, when a user clicks a button, the Execute method is invoked, where we
pass information to the ViewModel for the further processing.

Listing 4.41 AddValueCommand as an example of the class that implements the ICommand interface

internal class AddValueCommand : ICommand
{

private CompareToMultiLODViewModel viewModel;

public AddValueCommand(CompareToMultiLODViewModel viewModel)
{

this.viewModel = viewModel;

11https://docs.microsoft.com/en-us/dotnet/framework/wpf/app-development/dialog-boxes-overview#Common_
Dialogs

55

https://docs.microsoft.com/en-us/dotnet/framework/wpf/app-development/dialog-boxes-overview#Common_Dialogs
https://docs.microsoft.com/en-us/dotnet/framework/wpf/app-development/dialog-boxes-overview#Common_Dialogs

}

#region ICommand

public event EventHandler CanExecuteChanged;

public bool CanExecute(object parameter)
{

return true;
}

public void Execute(object parameter)
{

viewModel.ExecuteAddValueCommand(parameter);
}

#endregion ICommand
}

4.7.10 ExternalEventHandler

Every time a new modeless dialogue is presented to the user, we are no longer on the Revit thread, the
only thread on which it is possible to make API calls. Obviously, we want to be able to make changes to
the Revit model even from the modeless dialogues, and Revit API provides us with External Events for
this purpose. In practise, this means raising an event from a non-Revit thread and implementing an event
handler that will be executed on the Revit thread where changes to the building model are allowed.

This namespace contains four classes that make changes to the building model:

• AddMissingParameterExternalEventHandler,

• AddParametersMissingValueExternalEventHandler,

• DeselectElementExternalEventHandler, and

• SelectElementExternalEventHandler.

Each of these classes implements the IExternalEventHandler interface, and consequently the follow-
ing two methods:

• public void Execute(UIApplication app), which “is called to handle the external event”, as per
the official documentation, and

• public string GetName(), which returns “String identification of the event handler”, as per the
official documentation.

Common for all these classes is that they execute a transaction on the Revit element. When a transaction
is committed, the associated document regenerates automatically.

SelectElementExternalEventHandler and DeselectElementExternalEventHandler

SelectElementExternalEventHandler and DeselectElementExternalEventHandler use the fairly sim-
ilar code to color the selected Revit Element in a specified color, as shown in Listing 4.42 and clear that
color when the element is deselected, as shown in Listing 4.43, respectively.

56

Listing 4.42 Set a color of the OverrideGraphicSettings

OverrideGraphicSettings ogs = new OverrideGraphicSettings();
System.Windows.Media.Color rbg =

(System.Windows.Media.Color)ColorConverter.ConvertFromString(color);
Autodesk.Revit.DB.Color color = new Autodesk.Revit.DB.Color(rbg.R, rbg.G, rbg.B);
Element solidFill = new FilteredElementCollector(Document)

.OfClass(typeof(FillPatternElement))

.Where(q => q.Name.Contains("Solid"))

.First();

ogs.SetSurfaceForegroundPatternId(solidFill.Id);
ogs.SetSurfaceForegroundPatternColor(color);

Listing 4.43 Clear a color of the OverrideGraphicSettings

OverrideGraphicSettings ogs = new OverrideGraphicSettings();

A final step is to execute a transaction on the current document. This step is completely the same for
both selecting and deselecting a Revit element.

Listing 4.44 Execute a transaction

using (Transaction t = new Transaction(Document, transactionName))
{

t.Start();

try
{

// elementId = Id of element you wish to highlight
UIDocument.ActiveView.SetElementOverrides(elementId, ogs);

}
catch (Exception ex)
{

TaskDialog.Show("Exception", ex.ToString());
}
UIDocument.RefreshActiveView();
t.Commit();

}

AddParametersMissingValueExternalEventHandler

AddParametersMissingValueExternalEventHandler simply sets the value of the specified element’s
parameter. Information on the parameter whose value should be set is stored in the
Singleton.Instance.Task.Parameter property. Since the Set() method accepts string, int, double or
ElementId as input parameter, we first convert the string input parameter.

Listing 4.45 A transaction to set the parameter’s value

using (Transaction transaction = new Transaction(Document, "update_property_value"))
{

transaction.Start();
try
{

// Set() accepts string, int, double or ElementId as input parameter
switch (value)
{

case string stringValue:

57

parameter.Set(stringValue);
break;

case int intValue:
parameter.Set(intValue);
break;

case bool boolValue:
parameter.Set(boolValue ? 1 : 0);
break;

case double doubleValue:
parameter.Set(doubleValue);
break;

case ElementId elementIdValue:
// Set Material id
parameter.Set(elementIdValue);
break;

default:
break;

}
}
catch (Exception ex)
{

System.Diagnostics.Debug.WriteLine("An error occurred while executing a transaction
update_property_value");

}
transaction.Commit();

}

AddMissingParameterExternalEventHandler

In case of the missing parameter, a situation is slightly more complicated. Implementation of this feature
comes from the official The Revit SDK samples (RoomSchedule), which was adapted to the needs of this
plug-in.

First, we need to check whether a shared parameter with a given name exists by using the SharedParameterExists
method from the Utils namespace, as described in Section 4.7.12.

If the shared parameter exists, we retrieve it by its name and continue with assigning a value to it by
raising AddParametersMissingValueExternalEvent. If the parameter does not exist, we need to create
it and execute a transaction to update the Revit model. For this, we use the following method:

Listing 4.46 A transaction to create a new shared parameter

// create shared parameter file
string modulePath = Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location);
string paramFile = modulePath + "\\MultiLODSharedParameters.txt";
if (File.Exists(paramFile))
{

File.Delete(paramFile);
}
FileStream fs = File.Create(paramFile);
fs.Close();

// cache application handle
Application revitApp = UIApplication.Application;

58

// prepare shared parameter file
UIApplication.Application.SharedParametersFilename = paramFile;

// open shared parameter file
DefinitionFile parafile = revitApp.OpenSharedParameterFile();

// create a group
DefinitionGroup apiGroup = parafile.Groups.Create("Compare to MultiLOD");

// create a visible {name specified in Singleton} of type {specified in Singleton}
ExternalDefinitionCreationOptions ExternalDefinitionCreationOptions =

new ExternalDefinitionCreationOptions(
Task.ProjectParameter.SharedParameter.Name,
Task.ProjectParameter.SharedParameter.ParameterType);

Definition sharedParamDefinition =
apiGroup.Definitions.Create(ExternalDefinitionCreationOptions);

// get category { specified in Singleton}
Category category = Document.Settings.Categories.get_Item(

Task.ProjectParameter.SharedParameter.BuiltInCategory);
CategorySet categories = revitApp.Create.NewCategorySet();
categories.Insert(category);

// insert the new parameter
InstanceBinding binding = revitApp.Create.NewInstanceBinding(categories);

using (Transaction transaction = new Transaction(Document, "Create shared parameter"))
{

transaction.Start();
try
{

Document.ParameterBindings.Insert(sharedParamDefinition, binding,
Task.ProjectParameter.BuiltInParameterGroup);

}
catch
{

System.Diagnostics.Debug.WriteLine("An error occurred while executing a transaction
’Create shared parameter’");

}
transaction.Commit();

}

4.7.11 Managers

The TUM.MasterThesis.MarijaRakic.Managers namespace contains three classes. Their common
characteristic is that they initialize some data in a very specific format required by a WPF control, e.g.
a chart library. Those three classes are:

• StackedColumnsManager, a static class that transforms a list of Tasks to an instance of the SeriesCollection
class, defined in the LiveCharts namespace. This class also returns an array of strings, each ele-
ment of the array representing a Revit element’s name to be a label assigned to a column, as shown
in Figure 4.22b.

• PieChartManager, a static class that transforms an IEnumerable of type MissingValuesPerElement
to an instance of the SeriesCollection class, defined in the LiveCharts namespace.

59

• GroupParameterUnderManager, a static class that initializes a list of GroupParameterUnder by
mapping a list of existing BuiltInParameterGroup into their human-readable versions. As dis-
cussed in Section 4.7.14, we need a way to fetch a human-readable equivalent of the BuiltInParameterGroup,
which is achieved in the following way:

Listing 4.47 Fetch a human-readable equivalent of all the BuiltInParameterGroup existing in the project

public static IList<GroupParameterUnder> InitializeGroupParametersUnder()
{

IList<GroupParameterUnder> groupParametersUnder = new
List<GroupParameterUnder>();

// Get all families existing in the Document
FilteredElementCollector collector = new FilteredElementCollector(Document);
collector.OfClass(typeof(Family));

// Loop through all families existing in the Document
foreach (Family family in collector)
{

if (family.IsEditable)
{

// Get familyManager
Document familyDocument = Document.EditFamily(family);
FamilyManager familyManager = familyDocument.FamilyManager;

// Loop through family’s BuiltInParameterGroup values
foreach (BuiltInParameterGroup item in

(BuiltInParameterGroup[])Enum.GetValues(typeof(BuiltInParameterGroup)))
{

if (familyManager.IsUserAssignableParameterGroup(item))
{

groupParametersUnder.Add(new
GroupParameterUnder(LabelUtils.GetLabelFor(item), item));

}
}
// Note:
// The following line of code is a quick&dirty solution, but atm i

didn’t know how else to solve this.
// Every following iteration will only add the same data to the list,

so it’s "safe" to break the loop
break;

}
}
// Sort the list alphabetically
groupParametersUnder = groupParametersUnder.OrderBy(x => x.Label).ToList();

// Return list
return groupParametersUnder;

}

Disclaimer: due to my limited understanding of many Revit and general architectural concepts, i am
not convinced that this is the best solution, but it seems to work.

4.7.12 Utils

The TUM.MasterThesis.MarijaRakic.Utils namespace contains only one method that checks whether
a shared parameter with a given name exists. If it does, the method returns information on its BuiltInParameterGroup

60

value. This value will further be used in combination with data contained in the GroupParameterUnder
entity to show a human-readable version of the Group parameter under value, as shows in Figure 4.28b.
The code is as follows:

Listing 4.48 Check whether a shared parameter with a given name exists

public static BuiltInParameterGroup? SharedParameterExists(string paramName)
{

BindingMap bindingMap = Document.ParameterBindings;
DefinitionBindingMapIterator iter = bindingMap.ForwardIterator();
iter.Reset();

while (iter.MoveNext())
{

Definition tempDefinition = iter.Key;

// find the definition of which the name is the appointed one
if (string.Compare(tempDefinition.Name, paramName) != 0)
{

continue;
}

// get the category which is bound
ElementBinding binding = bindingMap.get_Item(tempDefinition) as ElementBinding;
CategorySet bindCategories = binding.Categories;
foreach (Category category in bindCategories)
{

if (category.Name == Document.Settings.Categories.get_Item(
Task.ProjectParameter.SharedParameter.BuiltInCategory).Name)

{
return tempDefinition.ParameterGroup;

}
}

}

// return null if shared parameter doesn’t exist
return null;

}

61

4.7.13 MultiLODLib

This project consists of several internal data model classes and one public class called Analyser with one
public method called Run. This class acts as a building model analyser by iterating through an array of
requirements and verifying whether the building model complies with them. However, the current imple-
mentation of the application does not cover analyzing all existing building model elements, just walls. It is
left for some future version of the plug-in to handle other elements.

The Analyser class has the following fields and properties:

• MultiLODpath, which contains a path to the local file containing a multi-LOD meta-model and
MultiLOD, which contains data loaded from the previously mentioned file,

• MapingFilePath, which contains a path to the local file containing mapping between Revit and IFC
properties, and MappingFile, which contains data loaded from the previously mentioned file,

• Document, which contains information on the currently open Revit project stored in an instance of
the Document class, coming from the Autodesk.Revit.DB namespace, and

• CurrentUser, which contains information on the current user.

The output of the Run method, and therefore the Analyser class as well, is an ObservableCollection
of type Task. Each element of this collection specifies one missing object’s property or property’s missing
value.

This section will first describe the multi-LOD meta-model that stores requirements that the Revit model
has to comply with, and then the Run method that analyzes the Revit model.

The multi-LOD meta-model

The multi-LOD meta-model is stored in a JSON file on the local system. This meta-model is still under
development and at the moment of implementing this plug-in and writing this thesis, it has the following
template:

Listing 4.49 An example of the multi-LOD meta-model

{
"id":1,
"level":"1",
"description":"Building Development Level 1",
"requirements":[

{
"id":21,
"componentTypeId":1,
"lodId":1,
"lodLevel":"200",
"componentTypeName":"Wall",
"ifcType":"IfcWall",
"requirements":[

{
"id":61,
"name":"Pset_GenericWall",
"componentType":1,
"levelOfDevelopment":1,
"geometryRepresentation":1,
"properties":[

{
"id":110,
"name":"Height",
"isMandatory":true,

62

"fuzzinessType":2,
"fuzzinessPercentage":60,
"isGeometric":true,
"dataType":"Number",
}

]
}

]
}

]
}

In order to easily load a meta-model from the file and use it in the code, several internal data model
classes have been created in the TUM.MasterThesis.MarijaRakic.MultiLODLib.Models namespace.
An internal class is a class that is visible only within the same assembly in which it is defined. In the
case of these data models, an internal access modifier is appropriate, because these structures should
not be accessible from outside of the MultiLODLib project; they are specific to this implementation of the
Analyser class.

In the remainder of this section I shorty explain those data model classes. In addition, I focus on the
properties that are used in the current implementation of the application.

A MultiLOD class is the top element consisting of an id property of type integer, a label and a
description of type string, and an array of type MultiLODRequirement. In the current implementation of
Analyser, only the array of MultiLODRequirement objects is used.

A MultiLODRequirement class consists of an id property of type integer, a componentTypeId of type
integer and a componentTypeName of type string, a lodId of type integer and a lodLevel of type string, an
ifcType of type string, and an array of type MultiLODComponentRequirement. In the current implemen-
tation of Analyser, only the array of MultiLODComponentRequirement objects is used. Since the current
version of Analyser handles only missing parameters or parameter’s value of walls, we do not use neither
componentTypeId, componentTypeName nor ifcType. In the future versions, the MappingFile should be
used to map information from the previously mentioned properties to a Revit element.

Further on, a MultiLODComponentRequirement class consists of an id property of type integer, a name
of type string, a componentType of type integer, a levelOfDevelopment of type integer, a geometryRepresentation
of type integer, and an array of type MultiLODProperty. Once again, only the array of MultiLODProperty
objects is used at the moment.

Finally, a MultiLODProperty class consists of an id of type integer, a name of type string, an isMandatory
of type boolean, a fuzzinessType of type integer, a fuzzinessPercentage of type integer, an isGeometric
of type boolean, and a dataType of ParameterType type. ParameterType is an enum coming from the
Autodesk.Revit.DB namespace and it is “An enumerated type listing all of the data type interpretation
that Autodesk Revit supports”, as per the official documentation.

In the current implementation of Analyser, only the following properties are used:

• Name, to store the name of the Revit parameter that we want to check whether exists and whether it
has a value,

• IsMandatory, to specify whether the element has to contain a certain parameter, and

• DataType, to specify data format of the parameter with a previously given name. DataType exists in
the same format that Revit expects it, so no additional mapping or casting of data types is needed.

Rest of the properties are yet to be utilized in some of the future versions of Analyser.

63

The Run method

The Run method works in the following way: first, it loads the multi-LOD object from a given local path and
deserializes it into an instance of the MultiLOD class. For this we use Newtonsoft, a third-party library
further described in Section 4.2.

Listing 4.50 Read multi-LOD meta-model from a file and deserialize it

// read file into a string and deserialize JSON to a type
MultiLOD multiLOD = JsonConvert.DeserializeObject<MultiLOD>(File.ReadAllText(path));

Next, MappingFile is initialized by reading the content of the local file that Revit uses to export a model
to the IFC format. Each line of this file has the following format: RevitCategory, IFCClassName and
IFCType, and so we map those information into the properties with the same names:

Listing 4.51 Private class MappingSchema

public string RevitCategory { get; }
public string IFCClassName { get; }
public string IFCType { get; }

After both of these properties are initialized, Run loops through all instances of MultiLODRequirement.
MultiLODRequirement specifies a componentTypeName, so we filter the currently open Document for all
elements of this type. In our case, this property always has the value of Wall.

Listing 4.52 Get all walls from the current project

FilteredElementCollector walls =
new FilteredElementCollector(Document).OfClass(typeof(Wall));

Next, we check whether each Revit element (in our case wall) has all parameters specified in the array
of MultiLODProperty objects.

We get all parameters with a certain name of an element by invoking the following method:

Listing 4.53 Get all parameters of the wall that have a given name

List<Autodesk.Revit.DB.Parameter> parameters =
wall.GetParameters(property.Name).ToList();

Cases that are of interest to us are if the parameter is specified to be mandatory, but:

• the list of parameters is empty, or

• a parameter does exist, but has no value.

In both cases we create a new Task. In the first case we store information on the missing shared
parameter with a Name and a ParameterType:

Listing 4.54 Saving information on the SharedParameter that is yet to be created by an architect

SharedParameter sharedParameter = new SharedParameter()
{

Name = property.Name,
ParameterType = property.DataType,
BuiltInCategory = BuiltInCategory.OST_Walls

};
ProjectParameter projectParameter = new ProjectParameter(sharedParameter);

In the latter, we store information on the existing Parameter that we fetched as shown in Listing 4.53.

64

Since the current plug-in version supports only walls, some information is hard-coded, e.g. a BuiltInCategory
of a SharedParameter, as shown in Listing 4.54. In future versions, information from the multi-LOD meta-
model should be combined with the mapping information from the MappingFile property to determine a
correct BuiltInCategory.

One final note: since Analyser is a project, it could easily be replaced by a different analyser class, as
long as it accepts the same input parameters and returns results in the same format.

65

4.7.14 MarijaRakicMasterThesis.DataTypes

This project contains data models. Classes are placed in the TUM.MasterThesis.MarijaRakic.DataTypes.Models
namespace, whereas enumerations are placed in the TUM.MasterThesis.MarijaRakic.DataTypes.Enums
namespace. It also contains a simple Utilities class that creates a random color for a Revit element.

Enumerations

Let’s have a look at the enumeration types first:

• ActionType specifies whether an element misses an entire parameter or only a parameter’s value.
It has two possible values: MissingPropertyValue and MissingObjectProperty.

• ButtonContent specifies the text on the button that can be seen in Figure 4.7a - Add Parame-
ter, 4.7b - Add Value, and 4.8a - Add Suggestion. It has three possible values: AddParameter,
AddValue, and AddSuggestion.

• Chart specifies the type of chart that is being presented to a user. It has two possible values:
PieChart and StackedColumns.

• IssuesView specifies whether tasks will be presented to a user in a form of a list or a tree. It has
two possible values: ListView and TreeView.

• Role specifies roles that exist in the system. At the moment of developing this plug-in, it is intended
to be used either by an Architect, a Life Cycle Analysts (LCA) or a Structural Engineer. Defining a
role as enumeration makes the system easily extensible. For example, introducing another type of
an engineer to the application would require two easy steps: adding another value to the Role enu-
meration, and specifying whether a User, which will be explained in the upcoming section, belongs
to the type of an architect or an engineer, since these two types of users have a very distinctive
responsibilities. It would also be possible to retrieve this information from the server. In this case,
application would be more easily extensible, since changing the existing roles would not require that
a user updates the application.

• Status specifies the state of a Task. It has three possible values:

– Open, meaning that an engineer has created the task, but the architect who requested the
analysis has not solved it yet,

– Pending, meaning that an architect has requested options from an engineer and the engineer
has suggested options, but the architect is yet to accept or decline them, and

– Solved, meaning that an architect has either created a solution themselves or that they have
accepted the solution suggested by an engineer.

Classes

Classes that model the data used in this application are the following:

• GroupParameterUnder is used to display the Group parameter under information while an ar-
chitect is creating a new parameter. It stores information in form of BuiltInParameterGroup, an
enum defined in the Autodesk.Revit.DB namespace and described as “An enumerated type listing
all of the built-in parameter groups supported by Autodesk Revit”, as per the official documenta-
tion. This information is used by Revit when creating a new shared parameter. However, this is
computer-readable data, that does not say much to the Revit user. Hence, we need to store the
human-readable equivalent of this information, and for that we use a string property called Label.
Initializing of this field is described in more detail in Section 4.7.11.

66

• MaterialWithImage is used to group information on the Material class, defined in the Autodesk.Revit.DB
namespace and that “Represents a material element within an Autodesk Revit project”, as per the
official documentation; and its image that is shown to a user while creating a new parameter or a
value of type Material, as seen in Figure 4.10b. As explained in Section 4.7.8, the Revit API does
not offer a direct way of accessing a Material’s image property. With this in mind, this class was
created to store this property once and easily access it every following time it is required.

• MissingValuesPerElement is used to group all Tasks that refer to the same Revit element. For this
reason, this class stores a list of Tasks and an instance of the ElementId class, which represents
“a unique identification for an element within a single project”, as per the official documentation; it
is defined in the Autodesk.Revit.DB namespace. In addition, this class stores the Revit element’s
name and color information. It is just an alias for the sake of a quick access, since the same data
can be accessed through any element of the Tasks list as well.

• ProjectParameter is used to store information on the SharedParameter, described later in this
section, and its BuiltInParameterGroup. It models information needed to create a new Project
parameter out of an existing Shared parameter, in the same way a Revit user would do it using the
native controls. Figures 4.28a and 4.28b depict creating a new project parameter using native Revit
controls and our plug-in, respectively. An example of the usage of this class in shown in Section
4.7.13.

(a) A native Revit form for creating a project parameter

(b) Our plug-in’s ’Group parameter under’ feature

Figure 4.28 Creating a new project parameter

• RevitElement is used to group information on the Revit element’s ElementId and Name properties.
The Name parameter is very easy to access when we have an instance of the Element. However,
that is not always the case, for example when an architect receives information from an engineer on
the tasks that are to be completed, we only have information on the ElementId. Even though it is

67

possible to fetch a Revit Element by ElementId, we want to avoid doing this every time we want to
print some message to the user, hence the need for this class.

• SharedParameter is used to store information on a shared parameter’s Name, a ParameterType,
defined in the Autodesk.Revit.DB namespace and described as “An enumerated type listing all of
the data type interpretation that Autodesk Revit supports”, as per the official documentation, and a
BuiltInCategory, defined in the Autodesk.Revit.DB namespace and described as “A list of all the
built in categories within Revit”, as per the official documentation. It models information needed to
create a new Shared parameter, in the same way a Revit user would do it using the native controls.
A Revit user can relate all these fields to the form for creating a shared parameter shown in Figure
4.29:

Figure 4.29 A native Revit form for creating a shared parameter

A note: a discipline will be inherited from ParameterType.

• Task is used to store information on the RevitElement that the task refers to, an instance of the
Parameter class in case the parameter exists, but misses a value; Parameter is defined in the
Autodesk.Revit.DB namespace and described as “The parameter object contains the value data
assigned to that parameter”. In case of the missing parameter, Task stores information on the
ProjectParameter that is yet to be created. Next, Task store a Status of the parameter, an
ActionType specifying whether the parameter or parameter’s value is missing, a missing Value
once it is created, and a Color assigned to the Revit element. Task also stores information on the
time when the Task is solved. The current database schema does not support permanently persist-
ing this value, but it is available for some future implementation of the system when, thanks to this
information, it would be possible to show a lot of different charts, e.g. a burn down chart and many
others that would model historical data.

• User is used to store information on the user’s Name of type string and Role of type Role, as de-
fined in the previous section. It also implements two methods that specify the type of a user, since
information on the sub-type of an engineer is irrelevant to the current implementation of the system:

Listing 4.55 Methods to check whether the current user is an architect or an engineer

public bool IsEngineer()
{

return Role == Role.LCA || Role == Role.StructuralEngineer;
}

68

public bool IsArchitect()
{

return Role == Role.Architect;
}

69

4.7.15 MarijaRakicMasterThesis.Converters

This is a very simple project that consists of only one class MultiValueConverter. This class allows more
than one boolean value to define, and consequently trigger the change of the display state of a XAML
element. It does so by translating a conjunction of two boolean values to a value from the Visibility
enum, whose possible states are Visible, Collapsed and Hidden.
MultiValueConverter class implements interface IMultiValueConverter coming from System.Windows.Data

namespace. As per the official documentation, this interface “Provides a way to apply custom logic in a
System.Windows.Data.MultiBinding.” This interface defines two methods to be implemented:

• Convert, which is described as “Converts source values to a value for the binding target. The data
binding engine calls this method when it propagates the values from source bindings to the binding
target” in the official method documentation, and

• ConvertBack, which “Converts a binding target value to the source binding values”, as per the
official documentation. For the purposes of this plug-in the ConvertBack is not needed, hence it is
not implemented.

The implementation of the Convert method is the following:

Listing 4.56 Method that converts a conjunction of two boolean values into Visibility

public object Convert(object[] values, Type targetType, object parameter,
System.Globalization.CultureInfo culture)

{
bool a = (bool)values[0];
bool b = (bool)values[1];

return a && b ? Visibility.Visible : Visibility.Collapsed;
}

This converter is imported to a XAML file as a resource in the following way:

Listing 4.57 Importing of the MultiValueConverter

<converters:MultiValueConverter x:Key="MultiValueConverter" />

and used to set the visibility of a XAML element, for example StackPanel, as following:

Listing 4.58 Usage of the MultiValueConverter

<StackPanel.Visibility>
<MultiBinding Converter="{StaticResource MultiValueConverter}">

<Binding ElementName="myElement"
Path="IsCheckedPendingTasks" />

<Binding ElementName="myElement"
Path="IsArchitect" />

</MultiBinding>
</StackPanel.Visibility>

Even though this is a fairly small class with only one class and two methods, it is still an independent
project because of the reusability reasons: it makes integration into other solutions easy.

70

4.7.16 com.server.api

Disclaimer: this project was not implemented by the author of this thesis.
This project consists of data models that mimic the server database tables and a singleton class called

Communicator. This class incorporates all methods for connecting to the existing API points. For this
to work, Communicator utilizes third-party libraries RestSharp (described in Section 4.2) to make HTTP
requests to the server and Newtonsoft (described in Section 4.2) to deserialize data received from the
server.

By default, Communicator connects to the localhost, which is useful for testing purposes while the
system is under development. Once the system is used in production, the default settings are no longer
enough. Hence, when using Communicator to retrieve information from the production server, the first
method that needs to be invoked is UpdateServerName(). As an input parameter, it accepts the server
URL in string format. An example would be UpdateServerName(“http://10.195.1.44:3005”), where
“http://” specifies the communication protocol, 10.195.1.44 is an address of the server and 3005 is a
port on which the application is available.

When it comes to data types, a server database consists of thirteen tables. Each one of them is mapped
to a C# structure that is part of the VeavCommunicationLib.Responses namespace. The following struc-
tures exist:

• ActionType,

• aLODX,

• AnalysisScope,

• ChangeSuggestion,

• Feedback,

• NewAnalysis,

• People,

• ProductCatalog,

• Project,

• ProjectAssignment,

• PropertyCatalog,

• Rule_aLOD, and

• RulesProductProperty.

Previously defined terms will be further explained in the example of a database table and a C# structure
People in the rest of this section. HTTP methods, as explained in Section 4.1, are used to send and
receive data from the server:

• Code snippet 4.59 shows the AddPeople method that uses an HTTP POST request to create a user
with a given name and role.

• Code snippet 4.60 shows three HTTP GET methods: GetAllPeople, GetPeopleById and GetPeopleByName
to retrieve information on all users, a user with a given ID, and all users with a given name, respec-
tively. It also shows deserialization of the HTTP response to a single value of type Person or to an
array of values of type Person.

• Code snippet 4.61 shows the UpdatePeople method that uses an HTTP PUT method to update the
user with a given ID.

71

• Code snippet 4.62 shows the RemovePeopleById method that uses an HTTP DELETE method to
delete a user with a given ID.

Listing 4.59 AddPeople method as an example of the HTTP POST method

public bool AddPeople(string personName, string personRole)
{

RestRequest request = new RestRequest("personsapi/");
request.AddParameter("id", 0);
request.AddParameter("PersonName", personName);
request.AddParameter("PersonRole", personRole);

var response = _client.Post(request);
JObject parsedResponse = JsonConvert.DeserializeObject(response.Content) as JObject;

if (parsedResponse == null) return false;
if (!parsedResponse.ContainsKey("status")) return false;
return parsedResponse["status"].ToString() == "Person Saved";

}

Listing 4.60 An examples of the HTTP GET methods and deserialization

public List<People> GetAllPeople()
{

RestRequest request = new RestRequest("personsapi/");
var response = _client.Get(request);
return JsonConvert.DeserializeObject<List<People>>(response.Content);

}

public People GetPeopleById(int id)
{

RestRequest request = new RestRequest("personsapi/{id}");
request.AddUrlSegment("id", id);

var response = _client.Get(request);
return JsonConvert.DeserializeObject<People>(response.Content);

}

public List<People> GetPeopleByName(string name)
{

RestRequest request = new RestRequest("personsapi/search/{keyword}");
request.AddUrlSegment("keyword", name);
var response = _client.Get(request);
JObject parsedResponse = JsonConvert.DeserializeObject(response.Content) as JObject;

if (parsedResponse == null) return null;
if (!parsedResponse.ContainsKey("data")) return null;

return parsedResponse["data"].Value<JArray>().ToObject<List<People>>();
}

Listing 4.61 UpdatePeople method as an example of the HTTP GET method

public bool UpdatePeople(People updatedPeople)
{

RestRequest request = new RestRequest("personsapi/");
request.AddParameter("id", 0);
request.AddParameter("PersonName", updatedPeople.PersonName);

72

request.AddParameter("PersonRole", updatedPeople.PersonRole);

var response = _client.Put(request);
JObject parsedResponse = JsonConvert.DeserializeObject(response.Content) as JObject;

if (parsedResponse == null) return false;
if (!parsedResponse.ContainsKey("status")) return false;
return parsedResponse["status"].ToString() == "Person Updated";

}

Listing 4.62 RemovePeopleById method as an example of the HTTP DELETE method

public bool RemovePeopleById(int id)
{

RestRequest request = new RestRequest("personsapi/{id}");
request.AddUrlSegment("id", id);

var response = _client.Delete(request);
JObject parsedResponse = JsonConvert.DeserializeObject(response.Content) as JObject;

if (parsedResponse == null) return false;
if (!parsedResponse.ContainsKey("status")) return false;
return parsedResponse["status"].ToString() == "person Deleted";

}

All the other methods from the Communicator class are implemented in a similar way, just invoking a
different API point and deserializing response into a different data type.

The code of Communicator class is organized into regions to logically group multiple methods related
to one database table, and therefore local C# structure as well. Consequently, there are Action_Type
Functions, aLOD Functions, Analysis_Scope Functions, to name a few.

73

74

5 Summary

In the Architecture, Engineering and Construction (AEC) industry, different stakeholders need to commu-
nicate often. This implies frequent data exchange; at the same time it is crucial that no user has stale
data. Another problem is that each party in this communication holds information in the format native to
a software tool used in their field of expertise. Yet, to successfully exchange data, the person receiving
it should be able to import it into their (different) set of tools. Building Information Modeling (BIM) works
toward solving these problems. A desired outcome of a BIM process is an improved collaboration in this
fragmented industry.

A Level of Development (LOD) defines how precise the entire building model is during each stage of the
project duration. There are research attempts to define a more granular approach. The multi-LOD meta-
model, for example, assumes that different elements can have different levels of detail, as per the EarlyBIM
research project [Abualdenien and Borrmann, 2019]. This meta-model holds information on the model
stored in an IFC format, an open source data model for achieving interoperability in the AEC industry; the
meta-model itself is in a JSON format.

BIM Collaboration Format is an open file format for exchanging comments and reporting potential flaws
of a building model. A TUM research group proposed a new way of communication, one which acts as
an adaptive minimized communication protocol and a ticketing system. This is materialized in a form of
an HTTP communication server and an existing relational database used to store relevant aspects of this
communication.

I implemented a plug-in as a show case of the aforementioned communication protocol used directly
within Revit, so that there is no need for a separate communication application that users would have to
switch to. Since the admin interface is nonexistent, I acted as an administrator of the system and created
data needed to run the system successfully, such as users, projects, etc directly in the database. Using
C# and WPF, I created an application that allows an architect to request a new analysis from an engineer.
After attempting to run this analysis, if it turns out that the engineer cannot evaluate the model because
it is incomplete, this information is communicated back to the architect who requested the analysis with a
list of tasks to be completed before the analysis can be run successfully.

To check whether the model is complete and ready for an analysis, the multi-LOD meta-model is used.
The architect can ask for value suggestions from an engineer, and the engineer can suggest one or

multiple options. Only an architect can make changes to the building model, therefore they are responsible
for accepting or declining a value(s) suggested by the engineer.

5.1 Future work

There are some features that were out of scope of my thesis and are, therefore, left as future work.

• An existing Revit model could be compared against more multi-LOD meta-model requirements, not
just the one that specifies whether a parameter with a given name is mandatory.

• A communication protocol anticipates more possible actions, not just a missing parameter and a
parameter’s missing value. The entire element could be created, updated or marked for deletion
through the use of the plug-in.

• At the moment, the plug-in checks whether walls comply with the multi-LOD meta-model require-
ments. Not all the Revit elements share the same characteristics; different Revit elements have
different parameters. Therefore, the code is very "wall-specific" in some places. In the future, the

75

application could cover all the Revit elements. To achieve this, certain classes would have to imple-
ment parts of the checking process in a manner specific to the element type. Some of this code is
already part of the code base, but is not invoked. For example, when retrieving Material information
of an element, there are three different use cases:

– Elements of type Wall, Floor, RoofBase and FootPrintRoof have compound structures consist-
ing of one or more layers. We fetch those structural materials by a layer’s materialId property.

– Elements of type Beam, Column and Foundation have another way to get their material: using
their StructuralMaterialId property. This property returns an ElementId which identifies the
material that defines the instance’s structural analysis properties.

– All other Revit elements, such as Doors, Windows, etc, have unique parameters that can,
nonetheless, be accessed uniformly.

• The current implementation of the plug-in expects a Wall’s material information only in a list of ele-
ments’ parameters. However, a material could be part of the wall’s layers as well. This code also
exists, but is not used.

• Improving graphical aspects of the application is a never-ending job. The application UI could use
guidelines of an experienced UX expert. Regardless of this, one concrete feature could be added to
the application. At the moment, a tree view is just a showcase that the list of tasks can be shown
in many different ways, not just like as a simple table-like structure. It would be nice to provide the
same options to the user that they have while working with tasks from a list view - a button to add a
value, parameter or suggestion, an accept or decline button, information on the newly created value,
and selection and deselection of a Revit element. On the level of the entire tree view, it could be
possible to filter the tree view for open, pending and solved tasks.

• If the database would be extended to store a date when a Task is created and a date when the Task
is solved, the application could implement more charts. For example, a burn down chart could show
the number of open tasks at the beginning of the project and the number of solved tasks per each
day until all the tasks have been solved. It could also combine information on the open, pending and
solved tasks in one interactive chart where the user could choose whether to show all these tasks at
the same time or hide one or many of them.

76

List of Figures

2.1 System architecture . 8

3.1 A database schema, by Christopher Onuoha, an part of an IDP project, TUM, December 2018 9

4.1 The same plugin page, with and without Material Design 14
4.2 Add-ins tab with many panels, including the one called TUM 15
4.3 Choose a user . 18
4.4 Home page of the plug-in, as seen by an architect . 18
4.5 Form for requesting a new analysis, as seen by an architect 19
4.6 Home page of the plug-in, as seen by an engineer . 20
4.7 Analysis results, as seen by the architect . 21
4.8 Analysis results, as seen by the engineer . 22
4.9 Creating a missing parameter, as seen by an architect . 23
4.10 Creating a missing parameter of different data types, as seen by an architect 24
4.11 A native Revit list of materials, with a search by name and filter by class features 25
4.12 Creating a missing value . 26
4.13 Filtering the list of tasks by type . 27
4.14 An engineer can suggest one or multiple values . 28
4.15 A list of pending tasks . 29
4.16 A value suggested by the engineer is automatically input in the value field 29
4.17 Different combinations of existence of shared parameter and suggested value 30
4.18 List of solved tasks . 31
4.19 Newly created wall’s parameter in the Properties view . 32
4.20 A tree view representation of tasks, grouped by Revit element 33
4.21 Wall is colored when selected . 34
4.22 Available charts . 35
4.23 Changing the current user . 36
4.24 Requesting and running a new analysis . 37
4.25 An architect solving tasks and accepting or declining suggested values 38
4.26 Solution dependencies . 40
4.27 Grouping two CompareToMultiLODViewModel partial classes 53
4.28 Creating a new project parameter . 67
4.29 A native Revit form for creating a shared parameter . 68

77

78

Listings

4.1 Deserializing data received from a server into a People object 12
4.2 Creating a resource dictionary by merging XAML files . 13
4.3 Specifying a single Window’s resource . 13
4.4 Specifying multiple Window’s resources . 13
4.5 The hack to make the application work . 14
4.6 A hack to make the LiveCharts library work, code-behind 14
4.7 A hack to make the LiveCharts library work, XAML click event 15
4.8 An example of the .addin file . 16
4.9 OnStartup method that creates a ribbon panel and a push button 41
4.10 Creating of a push button on a given ribbon panel . 42
4.11 Execute method that runs when a user starts our plug-in 42
4.12 A class that sets an instance of the CompareToMultiLOD class to be a provider of a dockable

pane . 42
4.13 Execute method that runs when a user starts our plug-in 43
4.14 Creating and showing a dockable pane . 43
4.15 Usage of the custom user controls . 45
4.16 Usage of the DecimalUpDown control . 45
4.17 Microsoft Visual Studio automatically includes some namespaces when creating a new Win-

dow . 45
4.18 Usage of the DatePicker . 46
4.19 Interface ICloseable definition . 46
4.20 Passing Window instance as a command parameter . 47
4.21 Casting method’s argument to ICloseable . 47
4.22 Invoking the Close method on an instance of ICloseable 47
4.23 Binding a value to the user control’s MissingValues property 48
4.24 Implementation of the binding parameter to the custom user control 48
4.25 Including BooleanToVisibilityConverter as a user control resource 48
4.26 Using BooleanToVisibilityConverter to set the visibility of a ListView 49
4.27 Usage of MultiDataTrigger . 49
4.28 Usage of the MultiValueConverter class . 49
4.29 Implementation of the NotEmptyValidationRule class . 50
4.30 Implementation of the FutureDateValidationRule class . 50
4.31 Implementation of the INotifyPropertyChanged interface 51
4.32 Storing the Name variable in Settings . 51
4.33 Retrieving and casting the Name variable . 52
4.34 Filtering an array by name . 52
4.35 Retrieving of the material’s image . 52
4.36 Grouping two CompareToMultiLODViewModel partial classes 53
4.37 example is here . 54
4.38 Assign a different subset of tasks to be presented to a user 54
4.39 Showing a new window . 54
4.40 Opening of the file from the local system . 55
4.41 AddValueCommand as an example of the class that implements the ICommand interface . 55
4.42 Set a color of the OverrideGraphicSettings . 57

79

4.43 Clear a color of the OverrideGraphicSettings . 57
4.44 Execute a transaction . 57
4.45 A transaction to set the parameter’s value . 57
4.46 A transaction to create a new shared parameter . 58
4.47 Fetch a human-readable equivalent of all the BuiltInParameterGroup existing in the project 60
4.48 Check whether a shared parameter with a given name exists 61
4.49 An example of the multi-LOD meta-model . 62
4.50 Read multi-LOD meta-model from a file and deserialize it 64
4.51 Private class MappingSchema . 64
4.52 Get all walls from the current project . 64
4.53 Get all parameters of the wall that have a given name . 64
4.54 Saving information on the SharedParameter that is yet to be created by an architect 64
4.55 Methods to check whether the current user is an architect or an engineer 68
4.56 Method that converts a conjunction of two boolean values into Visibility 70
4.57 Importing of the MultiValueConverter . 70
4.58 Usage of the MultiValueConverter . 70
4.59 AddPeople method as an example of the HTTP POST method 72
4.60 An examples of the HTTP GET methods and deserialization 72
4.61 UpdatePeople method as an example of the HTTP GET method 72
4.62 RemovePeopleById method as an example of the HTTP DELETE method 73

80

Bibliography

[Abualdenien and Borrmann, 2019] Abualdenien, J. and Borrmann, A. (2019). A meta-model approach for
formal specification and consistent management of multi-lod building models. Advanced Engineering
Informatics, 40:135–153.

[BIMconnect, 2017] BIMconnect (2017). An analogy between ifc and pdf formats.

[Borrmann et al., 2015] Borrmann, A., König, M., Koch, C., and Beetz, J. (2015). Building Information
Modeling: Technologische Grundlagen und industrielle Praxis. Springer-Verlag.

[Engelbart, 2001] Engelbart, D. C. (2001). Augmenting human intellect: a conceptual framework (1962).
PACKER, Randall and JORDAN, Ken. Multimedia. From Wagner to Virtual Reality. New York: WW
Norton & Company, pages 64–90.

[GOV.UK, 2011] GOV.UK (2011). Policy paper: Government construction strategy.

[Kolltveit and Grønhaug, 2004] Kolltveit, B. J. and Grønhaug, K. (2004). The importance of the early
phase: the case of construction and building projects. International Journal of Project Management,
22(7):545–551.

[Royal Institute of British Architects, 2018] Royal Institute of British Architects, RIBA, E. L. L. (2018). The
national bim report 2018.

[Walasek and Barszcz, 2017] Walasek, D. and Barszcz, A. (2017). Analysis of the adoption rate of building
information modeling [bim] and its return on investment [roi]. Procedia Engineering, 172:1227 – 1234.
Modern Building Materials, Structures and Techniques.

[Zahedi and Petzold, 2018] Zahedi, A. and Petzold, F. (2018). Seamless integration of simulation and
analysis in early design phases. In Proceedings of the Sixth International Symposium on Life-Cycle
Civil Engineering (IALCCE 2018).

81

	Abstract
	Abbreviations
	Introduction
	An overview
	Theoretical background
	Building Information Modeling - BIM
	Industry Foundation Classes - IFC

	Literature review
	One problems
	Two suggested solutions

	Objectives of the Thesis
	Structure of the Thesis

	Problem & Solution
	Problem
	Solution

	Existing system
	Implementation
	An introduction to developing a Windows application
	Framework and libraries used to develop the plug-in
	Revit plug-in ecosystem
	System setup
	Graphical User Interface
	Starting the plug-in for the first time
	Home page for an architect
	An architect requesting an analysis
	Home page for an engineer
	Analysis results
	Creating a missing parameter
	Data type of a missing value
	Creating a missing value
	Filtering tasks by type
	Suggesting a missing value
	Pending tasks
	Solved tasks
	Newly created value under Revit Properties
	Tree view
	Selecting an element
	Charts
	Changing the user
	Successfully running the analysis

	Communication within the system
	Implementation
	MarijaRakicMasterThesis
	IExternalApplication
	IExternalCommand
	Singleton
	Views
	User Controls
	Validation rules
	ViewModels
	Commands
	ExternalEventHandler
	Managers
	Utils
	MultiLODLib
	MarijaRakicMasterThesis.DataTypes
	MarijaRakicMasterThesis.Converters
	com.server.api

	Summary
	Future work

	Bibliography

