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Abstract II 
 

 

The advanced development of pedestrian-flow simulations enables Architects and En-

gineers in cases, which are difficult to calculate by conventional manual calculation 

methods, to proof if a building fulfils its fire-safety-requirements. However, these sim-

ulations are most times conducted in the later in a buildings’ design phases, since the 

manual creation of such simulations is labour intensive and costly. Recent studies 

though have proven the beneficial impact of early stage simulations. Thus, this thesis 

examines the development of a concept and implementation of an automated creation 

of “Early Stage Pedestrian Simulation”. The field of Energy Management, where such 

concepts have already been developed, functions as prime example and basis for the 

research concept. As a case-study, the thesis’ concept is developed for the pedestrian-

flow simulation “crowd:it”. 
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Zusammenfassung III 
 

 

 

Der fortgeschrittene Entwicklungsstand von Personenstrom-Simulationen ermöglicht 

Ingenieuren und Architekten in, mit üblichen Handrechenverfahren schwer zu berech-

nenden Fällen, das Erreichen von Brandschutzzielen nach zu weisen. Diese Simulati-

onen werden jedoch meist erst in späteren Entwicklungsphasen eines Bauprojekts 

durchgeführt, da das manuelle Anfertigen solcher Simulationen sehr arbeitsintensiv 

und teuer ist. Neuste Studien belegen jedoch den positiven Einfluss von Simulationen 

in frühen Entwicklungsphasen. Infolgedessen beschäftigt sich diese Arbeit mit der Ent-

wicklung eines Konzepts und Implementierung zur automatisierten Anfertigung soge-

nannter “Early Stage Pedestrian Analysis”. Als Grundlage dafür dienen bereits Entwi-

ckelte Konzepte aus dem Feld des Energie Managements, wo solche Analyse Kon-

zepte schon entwickelt wurden. Das Konzept der Arbeit wird als Fallstudie für die Soft-

ware zur Simulation von Personen Strömen „crowd:it“ entwickelt. 
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1.1 Motivation 

When public buildings are being developed, a major concern is the users’ safety. Fire-

safety regulations require many different standards which must be fulfilled. Multiple 

categories of fire-safety measures do exist. Some apply to the materials which must 

be fire resistant or fire-retardant. Other laws specify the number of people which can 

stay in given areas, or the maximum evacuation time for the pedestrians in those areas. 

Modern pedestrian-flow simulations offer Architects and Engineers additional tools to 

verify if these requirements are met. Currently however, those simulations are carried 

out at the end of the planning cycle, when only minor changes to the building’s layout 

can be done and changes to a buildings design, if needed, might be seen as setback 

and costly to achieve. 

The ability to analyse a building in its early stages could spot bottlenecks and structural 

weakness whilst the design can be altered without much of an additional effort. It ena-

bles planners to test the performance of different designs or to detect highly influential 

key parameters for successful evacuations. One could analyse several early designs 

and improve its layout early on, instead of having to proof a designs effectiveness in 

the end of the development progress. This workflow of simulating early design is more 

desirable as it is proved to be beneficial and, essentially, reduces costs whilst also 

improving critical performance aspects.  

It is technically possible to conduct early stages simulations, much like it is common 

practice in the energy management sector to use methods of early design uncertainty 

analysis. However, customers are most times unwilling to pay for such analysis, as 

pedestrian simulations up to this day are mainly manually developed and the early 

stages uncertainty of information would require for many, slightly differing simulations 

to be created.  

1 Introduction and Motivation 
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1.2 Research Goal and structure 

This thesis’ goal is to develop a concept for an implementation of early stage pedes-

trian simulation. The research for the concept’s development will be derived from con-

cepts of the use of uncertainty and sensitivity analysis of early stage building projects 

conducted in the energy sector. 

The thesis is divided in the following chapters: 

• In Chapter 2 we review latest literature on the topic of uncertainty and sensitivity 

analysis. We examine several papers approach to state-of-the-art early stage 

simulations. The knowledge gained in this chapter will be used for the creation 

of our own concept, applied to early stage pedestrian simulation. 

• In Chapter 3, different concepts of pedestrian-simulations are briefly studied. 

The software crowd:it is introduced, as it will be used as this thesis’ platform for 

the development and implementation. Therefore, its functionalities are ex-

plained in more detail. 

• In Chapter 4 we develop our concept of early stage pedestrian simulation. 

Therefore, the knowledge gathered from Chapter 2 and 3 is synthesised. Sim-

plifications, boundary conditions and assumptions are set. Crowd:its geomet-

rical representation is examined and rules established to manipulate its data. 

The concept of level of development and possible in- and output parameters 

are discussed.  

• Chapter 4 summarizes the implementation methods used and describes the key 

parts of code. 

• In Chapter 5 to prove the concepts functionality, a sensitivity analysis is con-

ducted on a buildings early stage of design. 

• In Chapter 6 the results of this thesis are critically discussed. Concepts and 

ideas for future research are proposed.  
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Early stage uncertainty analysis has seen a lot of attention in the building sector as of 

recent years. Especially concepts to predict a designs energy consumption has been 

in focus of current research, as buildings pose for a third of the world’s energy con-

sumption (IPCC, 2018). Therefore, as part of the Paris-Agreement, the EU, aiming to 

be CO2 neutral by the year 2050 (European Commission, 2019), has ruled the building 

industry to vastly reduce newly designed buildings’ energy needs to contribute towards 

achieving the 20/20/20 Goals. This led to the development of several concepts for early 

stage calculation of energy consumption.  

The following Literature review examines recent researches conducted and terminol-

ogy being used for early level of development (LOD) analysis. The knowledge gained 

in this chapter will be used as basis of a concept of pedestrian simulations in an early 

LOD. 

2.1 Introduction  

It is being acknowledged that conducting early stage analysis has high impacts on a 

building’s performance (Bogenstätter, 2000). Krygel (2018) claims that: “Energy simu-

lation to provide feedback during the early stages of design is often not done, even 

though decisions at this stage have the largest impact on energy and cost”. However, 

it is noteworthy that, as Singh (2018) states: “A  lot of modelling efforts required to 

make physical simulation models, also an automatic translation of BIM data to BEM 

(Building energy management) data hasn’t proved much reliable (J. B. Kim et al., 

2015)”. 

2.2 Level of Development  

A buildings design progress is split up in different Levels of Development (LOD). The 

American BIMForum defines five stages of LOD (BimForum, 2019) with different levels 

of information available, increasing at each design stage (Singh, Singaravel, & Geyer, 

2018).  

Harter, Schneider & Lang (2018) discuss the LOD model to conduct a Life Cycle As-

sessment of Buildings in early design stages. For this purpose, they extract information 

at different stages of LOD from BIM models. However, comparing two different stages 

2 Literature Review: Early Stage-of-Development Simulations 
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of LOD, they find that some parameters lack information in early design stages, which 

have to be estimated to increase the calculations accuracy.  

Abualdenien and Borrmann (2018) criticise the LOD definitions to be informal and im-

precise, as they only bring textual and graphical information, which leads to multiple 

ways of interpretation and different expectation for the detail of information at each 

level. Additionally, they claim that BIM tools produce too detailed designs even in early 

stage LODs. Their demand is to precisely define LOD requirements and incorporate 

their uncertainties to improve the quality of collaborative process.  

As concept to solve the problem of the LOD’s unclear definition, Abualdenien and Bor-

mann (2018) developed a 5 stage LOD concept for the overall building, with a new 

term Building Development Level (BDL).: 

 BDL1 represents the building as 2D site plan with information about the build-

ing’s usage, position and orientation. BDL2 defines the buildings height, thus 

creating a 3D model out of the 2D plan. They add information about the founda-

tion and the buildings external components’ midsurfaces. In BDL3 the authors 

add information about the structural system, construction type and materials. 

Storeys are introduced and defined. The inner structures are defined in BDL4, 

creating internal spaces. They also add percentage of opening for each level 

and allow for estimated loads to be defined. BDL 5 is adds more precise mate-

rials, construction type, load and layer structure. 

 By using this concept, the authors intend to describe the uncertainty of information by 

explicitly describing the maturity the information available. Furthermore, they state that 

their approach allows simulations to be conducted on early stage buildings while pre-

venting false impressions of high accuracy through the consideration of fuzziness. 

2.3 Fuzziness 

“Missing information can only be estimated within a certain range of fuzziness” (Harter, 

Schneider, & Lang, 2018). The term “fuzziness” is used to describe variability of an 

elements attribute values due to lack of information or knowledge resulting from early 

stages of design. Hence, early design simulation always must deal with certain degrees 

of fuzziness. Models developed require a certain level of information, missing infor-

mation is supplemented by suitable assumptions and rules (Singh, Singaravel, & 

Geyer, 2018). For instance, Harter, Schneider and Lang (2018) claim that estimation 
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of information always lies within a certain fuzziness range, which is based on empirical 

studies. 

2.3.1 Early Stage Simulation Evaluation Methods 

Confirming Abualdenien and Borrmann’s proposal to further specify the LOD concept, 

Sing, Singaravel & Geyer (2018) developed an alternative LOD model: 

They named their model adaptive LOD (aLOD). aLOD has three stages of de-

velopment. Sing et. al. used their model to conduct an Energy Prediction a mul-

tilevel model. Each individual aLOD has parameters that have a defined range 

of fuzziness. After creating the model in aLOD1 all possible combinations of 

these parameters are generated and analysed. The analysation serves as feed-

back, which is then used to re-design aLOD and repeat the cycle or design 

aLOD2. In aLOD2 the specified parameters are again part of a feedback and 

development loop, until the user is satisfied with the results and moves on to 

design aLOD3, where the process is repeated. 

 To generate the variations, Sing et. al. use of the Monte Carlo Method (MCM). In their 

study, they aimed to estimate a buildings energy consumption for each aLOD. Hence, 

the annual energy consumption for each of the variations created by the MCM was 

estimated. They state that the alternatives at each aLOD can be chosen based on 

lowest mean, min, or max value.  

Hygh, DeCarolis, Hill & Ranjithan (2012) concept is an expansion to Sing et al’s 

method, by conducting a linear regression on the database created from the MCM in 

combination with the energy consumption estimation. Following, the regressions coef-

ficients were normalized to permit comparison. In contrast to sensitivity analysis, this 

approach enables to predict behaviour when certain components underly uncertain-

ties. 

Another evaluation method is the sensitivity analysis- where a systems sensitivity to-

wards the uncertainty of its parameters is being tested. Design decisions could be sup-

ported by identifying the most influenced parameter using sensitivity analysis (Rumnici 

& Abualdenien, 2019) 
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2.4 Conclusion 

Lack of information granted by early LOD models is not to be understood as negative 

term. This lack of information, also called fuzziness is the driving force behind early 

stage analysis. After a model to represent the projects level of development is being 

picked or defined, parameters with certain degree of fuzziness are the research’s ba-

sis. One has to assume the min and max range of fuzziness appropriate for his level 

of development. Once this step is taken, the lack of information provides the possibility 

to create uncertainty analysis to gradually improve a buildings concept. Another ap-

proach is to conduct sensitivity analysis, driven by the input parameter’s fuzziness, to 

gain greater knowledge of a building’s behaviour.    
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Figure 3.1: (Plum & Jäger, 2011) Evacuationmodels 

(Translated) 

Different types of pedestrian-flow Simulations can be split into two main categories and 

several subcategories each. These models contrast in approaching the simulation of 

pedestrian flows. The branch of Hydraulic-models applies empirical data gained from 

field studies and tries to predict a masses movement similar to a liquids behaviour. In 

contrast, individual-models are focused on an a single human’s behaviour and assign 

personas to their pedestrian models, aiming to mimic spontaneous, unexpected be-

haviour of moving crowds caused by an individual’s decision.  

According to Plum and Jäger (2011), a Hydraulic-modes describe uses empirical data  

to measure flow rates dependent on spatial pedestrian density. For specific groups, 

evacuation paths and stationary flowrates, one can calculate an estimation of a build-

ing’s evacuation time. Dynamic-models focus on pedestrian flow to gain information 

about move speed. Network-models represent paths as graphs, adding the ability to 

consider individual parameters, such as immobile pedestrians.  

Kneidl (2013) explains Microscopic-approaches to be considering each pedestrian as 

individual. This allows local events to be simulated, such as congestions in front of 

Evacuationmodels

Hydraulicmodels 
and 

Networkmodels

Capacity-Analysis

Dynamicmodels Networkmodels

Individualmodels

Discrete Continious

3 Pedestrian-Flow Simulations 
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stairs or exits or the development of one-directional pathways. Microscopic models can 

be divided into either discrete or continuous models, which differentiate in spatial and 

temporal discretization. According to Kneidl, high granularity in terms of spatial dis-

cretization enables a simulation result to be consistent, the downside being the in-

creased demand of computation power needed to conduct such simulation.  

3.1 Crowd:it 

Crowd:it is a software package for microscopic, agent based crowd simulation, devel-

oped on the “Optimal Steps Model” by (Seits & Köster, 2016), as well as on Dr. Ange-

lika Kneidl’s research at Technical University Munich (accu rate, 2019). 

Accu:rate (2019) describes crowd:it as based on a three-tier model consisting of: 

 • A locomotion layer (how exactly do people move through space: The Optimal Steps 

Model).  

• A navigation layer (graphs that map the orientation of people).  

• A behavioural layer.  

The underlying Optimal Steps Model enables real-world pedestrian stepping behav-

iour. Agents slow down naturally when faced with dense crowds by taking smaller 

steps. (Thus, no density-speed relation is needed as input.) Agents reflect real human 

behaviour, avoid collisions with each other and obstacles, and seek the easiest way to 

their destination. As a result, congestion, lane formation and inefficient pedestrian rout-

ing are depicted realistically (accu rate, 2019).  
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3.1.1 Geometric representation 

Crowd:it defines two kinds of geometry objects:  

• Simple geometry, which can be a point, edge or polygon. These objects pose 

as obstacle and cannot be crossed by pedestrians.  

• Simulation objects (simObjs), which can further be divided into the following 

sub-categories: 

Unassigned simulation Objects: 

Undefined simObjs (orange) of which all other types of simObjs are created 

from.  

Pedestrians cross these objects as they will not be considered by the floodfield. 

 

 

Origins: 

Area in which agents are spawned. 

Attributes: 

• Min premovement time(s) 

Min time agents wait before starting to move 

• Max premovement time(s) 

Max time agents wait before starting to move 

• Sorted Birth Cells 

Determines if agents in this cell are to be spawned in a spatially sorted 

or random distribution 

• Interval name 

Name of interval assigned 

• Generate from(s) 

Figure 3.2: Unassigned 

simObj 
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Point of time where the fist agent is spawned 

• Generate to(s) 

Point of time where the last agent is spawned 

• Number of Agents 

Number of agents to be spawned 

 

Destinations: 

Area which can be used as paths intermediate- or end destination. Agents dis-

appear once they reach their end destination. 

Attributes: 

• Disable dynamic flooding 

Toggles the dynamic floodfield  

 

Stairs: 

Connector between two floors. 

Attributes: 

• Number of Treads 

Number of treads 

• Tread width 

Figure 3.3: Origin 

Figure 3.4: Destination 
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Tread width in meters 

• Connects to floor 

Floor that the stair connects to. If empty, the stair ends at the same level 

as it started 

• Direction upwards  

Indicates the stairs upwards direction (arrow in fig. 4.5). Can be changed 

by pressing “Turn 90°” 

 

 

 

 

 

 

 

 

 

 

Escalator: 

Connector between two floors. All Agents are moving at same speed once they 

stepped on the escalator.  

Attributes (additional to stair's attributes):  

• Speed in m/s 

Agents’ travel speed on escalator 

• Number of Landing Treads 

Number of landing treads 

• Travel Direction 

Agents’ travel direction indicated by the smaller arrows in the bottom. 

Changeable by clicking “Flip travel Direction” 

Figure 3.5: Stair 
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WaitingZone: 

Area in which agents wait for an fixed amount of time, an interval to end or other 

agents/group members to arrive. 

Attributes: 

• Capacity 

The waitingZone’s capacity 

• Deviation 

Deviation of time to wait for agents 

• Distribution 

The deviations random distribution. Can be normal, uniform or distributed 

• Recurring every (s) 

Determines if the waitingZone’s opening window reopens periodically af-

ter a certain amount of time 

• Time to wait(s) 

Time agents must wait before leaving the waitingZone 

  

Figure 3.6: Escalator 
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Elevator: 

Area connecting two floors. Agents entering this areal are teleported to their 

destination floor, where they wait until the elevators travel time is over. 

Attributes: 

• Capacity 

The elevators capacity 

• Boarding time 

Time needed for agents to fully enter the elevator 

• Elevator Matrix 

Matrix containing the travel times between each floor  

 

Figure 3.8: Elevator and Elevator Matrix 

Figure 3.7: WaitingZone 
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3.1.2 Creating Paths 

In crowd:it, paths represent the only possibility for agents to move from point A to point 

B. Paths are modelled by hand and can only contain simObjs or a collection of these. 

Agents moving along a path start at the first object (origin), where they are tasked to 

try to reach the next object in the paths list. Once they have reached this object, they 

are assigned their next destination object. This process is repeated until an agent can-

not reach its next path-element or the end of the path is reached, where the agent is 

being de-spawned. Every path must start with an origin (or a set of origins) and end 

with a destination (or set of destinations). A path may contain unlimited amounts of 

simObjs, sets and pathsnippets, as well as sets of sets, sets of pathsnippets etc. This 

structure allows the user to model complex paths. 

Figure 3.9: A complex path’s “Path-Tree”  

The "Portals-Seh-publikum" set contains 6 origins. This is the paths entry point. The next members in 

the list are a mixture of sets and pathSnippets. The last member of the path ends with a set of destina-

tions. 
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3.1.2.1 Sets 

Sets are a collection of at least two different objects. These objects can be simObjs, 

pathSnippets or other sets. Whenever an agent enters a set along its path it must 

decide which of the sets objects it chooses to be the next destination. Agents do not 

know their next destination prior to entering the set, the decision is made “on the fly” 

while the simulation is taking place. Its decision is dependent on the heuristic assigned 

to the set. 

Each set must have one of the following different heuristics assigned to it: 

• closest: Agents seek the closest object within the Set. This is the default heu-

ristic. 

• less Crowded: Agents seek the least populated object within the Set, and then 

the closest of these. 

• distributed: Agents select uniformly any object within the Set. 

• distributedAndEmpty: Agents select uniformly any object within the Set, pro-

vided it has the capacity for them. For instance, you may wish to simulate seats 

by setting each seat as a Waiting Zone. Each seat must be empty to be selected 

by an agent. 

• shortestQueueLane: Agents choose a queue with the fewest number of people. 

Naturally, this is only appropriate if a set contains a Waiting Zone. 

• fixedRatio: Fixed values can be set, that define the distribution among the set 

members. The sum of the values per set must sum up to 1 

3.1.2.2 Pathsnippets 

Pathsnippets are a collection of objects, which agents must go through in the order in 

which they appear in the pathSnippet. Pathsnippets contain simObjs, sets and other 

pathSnippets. Other than set, pathSnippets only have one heuristic “InOrder”, leaving 

agents with no choice to choose from for the next object as their destination.  

3.2 Flood-field 

 The floodfield stores the forces’-values affecting an agent. This force guides the 

agents along their path. Negative (push-)forces are created by obstacles, for instance 

walls or, in case of a dynamic floodfield, cross- and counterflows. Positives (pull-)forces 

are generated by destinations to “pull” the agents. The floodfield can be described as 
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potential a paths origin and destination, derived from those forces. Its values are stored 

in floor-cells, whose size is dependent on the chosen spatial granularity. 

3.2.1 Type of Simulations 

Crowd:it does not distinguish between different simulation approaches.  However, in 

practice, simulations can be split into two different main categories, comfort studies 

and evacuation simulations. Out of those two kinds, evacuation simulations are more 

specifically defined- to the degree that accu-rate currently develops an automated re-

port system for evacuation simulations. 

Evacuation simulations usually start with a fully occupied building. They either end after 

the building was successfully evacuated or after a predefined (most times ruled by fire-

safety regulations) evacuation time is exceeded. The paths in such simulations tend to 

be less complex as agents are advised to follow a fire protection concept for evacua-

tion, which directs them to the next closes (emergency-) exit. The process of evacua-

tion can be described as people independently getting in safety from endangered areas 

(RIMEA, 2019). 

The term “Comfort studies” unifies all other kind of simulations. Comfort studies range 

from simulating the course of a day of in a museum, over a mass’s movement within a 

football stadium up to the early hours in an office building or peak-hours of a train-

stations’ rush-hour. This setup offers infinitely more different path options, as different 

personas might show different behaviour or get assigned to different paths. In order to 

conduct comfort studies, a buildings usage must be clearly defined, which is usually 

beyond an early stage of LOD.  
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4.1 Setup 

The boundary conditions between each testcase must be equal in order to be compa-

rable. Crowd:it offers a variety of settings for the simulation, floor-discretization and 

agents. It is desirable for simulations results to be as exact and realistic as possible. In 

contrast, it is necessary to reduce simulation time, since even simulations with small 

geometry and only a small number of agents may take up to a minute to be computed 

each. Small projects with e.g. five objects with three uncertainty values each would 

require 35 =243 individual simulations to be carried out. Considering the desired com-

plexity and number of uncertain objects in future projects, some trade-offs in simulation 

accuracy are unavoidable. Table 4.1 contains a collection of simulation settings and 

agents’ attributes together with an explanation for their function and the value used in 

our project. Agents’ values for movement speed and size are based Weidmann (1993). 

Parameter Function Value 

Cell size [meters] Describes each cell’s size 

(default: 2) 

2.00 

Compress output Will zip the simulation output when checked 

(default: ON) 

TRUE 

Distance between two points 

[meters] 

Distance between two points 0.20 

Update rate floor field (simu-

lation step) 

Specifies the rate at which the dynamic floor field val-

ues should be re-calculated. The rate is per time-step, 

i.e. 1 means one calculation per time-step. By in-

creasing the rate, the simulation is more realistic, but 

computation time increases 

(default: 1) 

2 

Use dynamic floor field Toggles an algorithm that makes the simulation far 

more realistic but increases computation time signifi-

cantly (default: TRUE) 

FALSE 

4 Concept 
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Use undirected floor filed Toggles an algorithm that speeds up simulation cal-

culation when you have many origins or destinations 

(over 100) (default: FALSE) 

FALSE 

Cell discretization Setting of the discretization for the project’s floors (de-

fault: 0.10) 

0.20 

Min velocity [m/s] An agent’s minimum walking speed 0,46 

Mean velocity [m/s] Average walking speed of all agents in the scenario 1,34 

Max velocity [m/s] An agent’s maximum walking speed 1,61 

Deviation for velocity [m/s] Populations standard deviation of velocities 0,26 

Min torso diameter [m] An agent’s minimal possible torso diameter 0,42 

Max torso diameter [m] An agent’s maximal possible torso diameter 0,46 

Perception radius [m] An agent’s perception radius, used to calculate den-

sity (default 2.0) 

2.0 

Comfort distance for origins 

[m] 

Distance two agents may appear in an origin 0.2 

Table 4.1: List of Simulation and pedestrian settings available in crowd:it 

4.2 Level of Development 

The information needed for pedestrian simulations varies depending on which kind of 

simulation is planned to be conducted. As described in chapter 3.2.1. Comfort studies 

usually require a higher LOD then evacuation simulations. We chose to use evacuation 

simulation for this thesis, hence, the simulations demands towards the buildings LOD 

shift towards the early stages. The simulation’s minimal requirements in order to be 

functional are: 

• Exterior and Interior Walls 

• Origins, representing a building’s populated rooms 

• Destinations. Which serve as the buildings exit points 

• In case of multilevel buildings: stairs as floor connectors 

This thesis will adapt the Building Development Level (BDL) defined in chapter 2.3.1.    

Abualdenien and Borman (2018) aimed to provide different specialised fields with a 

consistent definition of uncertainty concept by creating the BDL concept. The BDL suit-

able for pedestrian simulation is BDL. Abualdenien and Borman define BDL4 as stage 

in which a more precise definition of the structure is modelled, leading to a definition of 
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the internal spaces. In this level, the percentage of opening and estimated load can be 

specified. BDL4 is the first stage defining the inner walls and rooms.  

 

4.3 Determination of input Parameters 

BDL4 sees the first appearance of the interior’s layout and load. Therefore, these pa-

rameters underly the highest degree of uncertainty and will be used as input parame-

ters for our simulation. Interior walls, openings and their size and stairs are dominant 

in dictating an agent’s ability to move through the building. It is important to note that 

the buildings pedestrian load will not be part of our concept of the uncertainty analysis. 

We assume that it is technically possible to include this parameter as input parameter 

and assign an uncertainty value to it. However, this would require the manipulation of 

not only the “. floor” file, but also the “.crowdit” file.  

Figure 4.1: BDL stages 1-5. Abualdenien and Borr-

mann (2018)  
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The evacuation simulations key-parameter is the evacuation time. This parameter will 

function as output parameter. Other possible parameters are the average overall dis-

tance travelled by agents or spatial density in simulation objects. Unfortunately, these 

parameters can not be easily compared by collecting all output data into one large 

dataset, as they tend to be easily miss-interpreted, since many different factors partake 

in these results.   

4.3.1 The “.floor”-file 

Crowd:it’s geometrical definition of objects has to be studied before one can define 

geometric input parameters. Geometry data is stored in the “.floor”-file. The floor-file is 

stored inside the “geometry” folder, which is part of the “projectName_res” directory. 

For this purpose, the following use-case has been created. The floor-file is of the XML-

Document type.  

Figure 4.2: Sample-Project 

This project consists out of a origin (red-zone) surrounded by five walls (grey-objects). Between the 

northern walls, a cut has been created (orange). After leaving the room, pedestrians are led to the 

destination (green) via a hallway, limited by an additional wall in the north. 
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Figure 4.3: XML-.floor-file 

This file is crowd:it’s data-structure derived from the previous geometry. Each floor is 

represented by one floor-file at a time. A multi-storey building therefore has as many 

floor-files as storeys. The files root is at “floor” node, containing the file’s attributes 

“isoDate”, file-format and “xmlFormat”. Its solitary child nodes are of the type “layer”. 

Layer nodes have one attribute named “id”, containing the layers names. When read-

ing from “.dxf” or IFC, crowd:it differentiates geometry objects based on their layer’s id. 

Geometry on layers whose names contain the string “crowdit” will be interpreted as 
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“wunderZone”, which represent simObjs. Objects on any other layer which does not 

contain the “crowd:it” string, is interpreted as type of “wall”.  

Each object node contains at least one “point” node, consisting of two float values. 

Each point-node adds one vertex to the object. Two vertices define an edge. Three or 

more edges define a face.  

Wall-objects are created by a single vertex, one edge or a face. These wall-objects are 

not checked by crowd:it for inconsistencies, crossings or if vertices exist more than 

once. 

 SimObjs must be defined by at least one edge (e.g. 2 vertices). Crowd:it also forbids 

a simObjs to have reoccurring vertices. The only exemption to this is the first and last 

vertex being allowed but not mandatory to be equal. 

4.3.2 Transform-Operations 

Importing geometry files from “.dxf” or IFC results in a loss of information, since the 

floor-file only contains raw geometrical data. Any relation between objects is lost, as it 

is not necessary for the simulation kernel to know about the relations between different 

geometry objects. Consequently, relations must be reinterpreted by defining rules for 

neighbouring objects to behave similar as applications such as Autodesk Revit would 

cause them to. Moving walls in Revit causes attached objects to be influenced in a 

defined matter. Objects can be depended on each other, meaning one objects move-

ment moves the other object entirely. They can also be partially depended on each 

other, causing minor changes when their neighbouring object is moved. And then there 

are static objects, which can not be influenced by other objects at all. To mimic this 

behaviour we now have to define the set of rules for inter object relations.  

The definition of the Building Development Level provides walls, doors and stairs as 

geometrical type of objects. Assuming an interior-wall’s position had some fuzziness 

value regarding its position on the y-axis. For instance, the wall could be moved by 0.5 

meters in positive y direction. How do neighbouring and or attached walls behave in 

this case and what should their relations be?  
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     In Figure 4.4 the problematic information loss is being portrayed. The left-top corner 

shows the original geometry. In the window to its right, the top wall has been moved in 

positive y direction. The walls neighbouring were interpreted as unattached. This led 

to holes in the geometry being created. Further to the right, the walls were interpreted 

as attached, therefore, the attached edges are also moved up to the top. However, it 

would also be plausible if the attached walls were moved in the positive y direction as 

a whole. 

Figure 4.4: Possible outcomes of moving and scaling neighbouring walls 
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The second row demonstrates the possible interpretations of uniformly scaling the top 

wall by 0.8. The last row describes variations of moving the leftmost wall in the negative 

x direction. Some of these variations are logically more convincing than others, ulti-

mately it is the developer responsibility to define his own set of rules to avoid unex-

pected behaviour.  

In the third row, the leftmost wall was moved in the negative direction of the x axis. 

Possible outcomes are depicted in the following two windows. 

The first step is to define different operations that can be applied to input objects. Com-

puter graphics defines 3 types of transformations: translation, scaling, rotation. The 

latter is excluded from further discussion, as this would create additional problems and 

increase complexity. Scaling also has many different variations- as one could scale an 

object in any direction or uniformly and be using any possible point as basepoint.  Nev-

ertheless, scaling is included in our thesis concept, considering a doors or stairs is of 

major interest for influence on pedestrian flow-rates. Transformation leaves less room 

for different approaches and is also of high interest, hence it is also included into the 

concept. 

In any further consideration, all edges are assumed to be parallel to either the x or y 

axis, which vastly reduces complexity of our concept. This in mind, the following ruleset 

was developed. 

4.3.2.1 Scaling 

Scaling is only to be allowed for doors, stairs and free-standing walls. The scaling di-

rection is depended of the object.  

Doors will be scaled along their long axis, which is derived from the floor-file since no 

such information is existent in crowd:it. The scaling will affect the wall which is cut 

through by the door. The edges/vertices shared between wall and door will be moved 

Figure 4.5: Scaling and moving a door 
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by the same distance, as demonstrated in figure 4.5. Doors also are assumed not to 

be positioned next to neighbouring walls running orthogonally to them.   

Stairs could be scaled along both axis, and potential demand for both exists. Nonethe-

less, stairs will only be scaled against their walking direction. Otherwise the crowd:it 

file would be required to be manipulated as well, since the tread-depth or number of 

treads would be likely to change. Stairs which are moved or scaled are assumed to be 

free-standing, not directly neighbouring other simulation or geometry objects. 

Freestanding walls are scaled in the direction of their long axis, as scaling along the 

short or “thickness” axis would only result in minor increases, unlikely to have effects 

on simulation results.  

4.3.2.2 Translating 

Translation is allowed for all objects. Stairs once again must be freestanding. Trans-

lating doors functions like scaling, influencing the cut-through walls.  

Three rules were developed, to created expectable behaviour of attached and neigh-

bouring objects, similar as to the ones seen in Revit. When a wall is moved all its 

vertices will be moved by the same amount and in the same direction.  

• If any wall B shares an identical edge with the moved wall A, wall B will also be 

moved. This procedure is then to be rerun, to check if wall C shares an edge 

with B, until all walls which are in a row are detected. 

• If wall B’s edge is contained in one of the moving wall A’s edges and the edge 

which is contained is orthogonal to the movement of wall A, then the contained 

edge will also be moved by the same amount. 

• If wall B shares an vertex with the moving wall A, then the edge which is posi-

tioned at this vertex and also orthogonal to wall A’s movement is moved by the 

same amount as wall A.  

  

Figure 4.6: The three different cases of neighbouring walls defined for the concept 
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4.3.3 Fuzziness 

It is noteworthy that the floors discretization dictates the granularity of the simulation’s 

interpretation of geometry. This can cause small spans of uncertainty to not affect ap-

pear in the simulation at all. The min and max fuzziness values of an object are chosen 

by the end-user. Fire-Safety regulations or law such as the German “Versa-

mmlungsstättten Verordnung” could be used as guidelines for the span of fuzziness. 

The fuzziness values are of constant probability and discrete distribution. We introduce 

the term “Depth of uncertainty” to define the increment used between min and max 

value.  

4.4 Manipulating the floor-file 

4.4.1 The Crowdit File 

The crowd:it file is built up as shown in the graphic. 

 

Figure 4.7: The ".floor"-file 

The crowd:it file contains all simulation related information. The root-node is the “sce-

nario node, containing information about the XML-Format, the projects name, and iso-

Date. 
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The next node is the “spatial” node. It has two attributes: “id”, which got the name of 

the origin “.dxf” or the imported “IFC” file, and “floorAt”, which links the Floor-XML and 

the simulation.  

This is followed by the “meta” node and its children, as well as the “settings”, “evalua-

tions” and “visualization” nodes.  

A relevant node is the “meta” node, and its child node “morphosis”. This node assigns 

functionality to SimObjs which were defined in the “.floor” file. The first of its nodes, 

called “destination”, links the SimObj “destination-1” to the wunderZone=”simObj-155”, 

found as last object in the “.floor” file. The linking between the geometry and its func-

tionality as SimObj goes by the objects id, which allows for the geometry of simObjs to 

be manipulated even after they are created. To not destroy the connection between 

the simObjs in the “.floor”file and the “.crowd:it” file the objects name must not be 

changed, as this would cause the simulation to crash. 

The linking between the “.floor-“ and “.crowdit”file allows for the creation of projects 

with the same crowdit file but differing floorfiles, as long as the floors and simObjs 

names are not changed. To create multiple variations the complete project folder hasto 

be copied for each individual iteration. This ensures, that neither the simulation settings 

or the floor-files name changes. After the files are copied the geometry can be changed 

at desire, provided that the simObjs remain unchanged.  
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The following implementation is based on the concept from previous chapter. The im-

plementation was created using Visual C# 4.0 .NETFramwork Version v.4.6.1 . The 

application includes the System, System.Collections.Generic, System.Reflection, Sys-

tem.Numerics, System.Xml, System.IO, and System.Globalization namespaces. 

5.1 File Structure 

The application folder structure is shown in figure 5.1. Notable for usage are the “in-

putXML” folder and the “projects” folder. Inside the projects folder is a folder called: 

“baseProject”. At this location is the project which holds the floor-file to be manipulated 

and the .crowdit file. For every variation of the base simulation the “baseProject” folder 

is copied into this directory and the copy renamed to the variations name. The names 

of the simulation and floor-files remain unchanged enabling crowd:it to link the new 

floor-files to an existing simulation. “project#_res” contains the simulations results in-

side a folder called “out” and the geometry files. The “intputXML” is introduced as user 

input file. This file is a basic XML-file. Declaring an object as part of the uncertainty 

5 Implementation 

Figure 5.1: The concepts folder structure, pre early 

stage simulation 
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analysis requires the objects “id”, which has to match the id in the “.floor”-file, not the 

“.crowdit”-file. Objects can either have a “Move” or “Scale” attribute.  

 

5.1.1 File  

Inside our application we will have a specific location for our base project- containing 

the floorfile(s) we wish to manipulate. Inside the input folder is the input.XML document, 

being build up similar to the “.floor”-file. This document has a node for each object of 

our .floorfile which we plan on altering during our uncertainty analysis. Since every id 

has to be unique and has to remain unchanged in order for crowd:it to recognise the 

changed object correct, the linking between the objects will happen the same way as 

its done by crowd:it. Each object in the input file can have up to two attributes, a point 

attribute serving as vector, which will be the object’s moveVector, and one attribute 

serving as scale. Those value represent the max. uncertainty value, with each iteration 

moving/scaling the object further until its max value is reached. After reading-in the 

floor- and input-file, a new “.floor”-file with the exact same name for each iteration of 

the uncertainty analysis will be created. This file will be placed into an exact copy of 

our “baseProject” folder and will replace the old floorfile in this folder. After creating the 

new project with its new “.floor”-files, the crowd:it kernel is called to conduct simulation 

on this object. 

 

Figure 5.2: Input Xml-File 
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5.2  Classes 

The following chapter will describe the applications classes and their intended use and 

concept behind some implementations. Not all attributes and functions are mentioned 

but only the most important ones.  

5.2.1 Geometry 

The implementation uses a modified from of the boundary representation to interpret 

and represent geometrical objects. Faces are described by edges and vertices. Each 

face has a list of vertices, and each vertex has a list of faces it is referenced by. Faces 

must consist out of at least three edges, respectively three vertices. 

5.2.1.1 Vertex.cs 

The vertex class handles the pure geometric information. Vertices are constructed by 

a DoubleVector2. The C# System.Numerics namespace does not support double Vec-

tors. But CAD applications such as AutoCAD store geometric information in double 

precision. Hence, the System.DoubleNumerics was added to the project.  

Vertices are designed to keep track of affected objects. Each Vertex has a list of faces 

which contain this vertex. when reading the “.floor”-file, the parser will ensure that each 

vertex is unique. When one object is moved, it also automatically affects other objects 

sharing the same vertex. In rare cases this can lead to undesired behaviour. Most 

times when a room is modelled as simObj and shares a common vertex with a wall 

that is moved.  

5.2.1.2 Edge.cs 

The Edge class is designed to hold two vertices for each edge. Edges are part of the 

attribute of the face class. They were implemented to enable checking, whether faces 

are attached to each other and if two faces share a common edge.  

5.2.1.3 Face.cs 

Faces are made up by 3 or more vertices. Each face contains a list of its vertices. 

Faces can be of different element types: “wall, room, stair, door”. These element types 

mainly determine face’s behaviour when scaled. Walls and doors are scaled along their 

long axis, stairs in direction of their short. Rooms do not have special implementation, 
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neither are there any possibilities to directly influence their shape. However, rooms can 

indirectly be reshaped by dragging out our pulling in their limiting outer walls.  

The Face class contains the CalculateMidpoint() class. The midpoint is needed to cal-

culate the directional scale. A polygons midpoint can be determined by calculating the 

geometric centre of mass. 

𝑠 =
1

𝑚
∗ ∑ 𝑥𝑖

𝑚

𝑖=1

 

With m being the number of unique points (vertices) and x each vertices coordinates. 

5.2.1.4 Floor.cs 

A ”.floor”-file’s data is equivalent to its corresponding floor object in the code. Each 

floor holds a list of all its faces, edges and vertices. It also counts the faces which have 

fuzziness values assigned and has a function to set the moveVectors and scaleValues 

of these faces, according to the variation used. 

5.2.1.5 Variation.cs 

The Variation class is one the project’s main classes. For each variation of the early 

stage simulation, a variation object is constructed. A variation’s object contains each 

Figure 5.3 CalculateMidpoint() Function: 
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of the building’s floors and herby its faces, edges and vertices. The uncertaintyMan-

ager advices the variation object which of the variation is represented by it. With this 

information, the variation object then modifies the moveVector and scale of the objects 

which underlay a degree  of uncertainty in the current variation. 

5.2.2 Parser.cs 

The Parser class is a static class. Its prime function is the parseFloor function. Its input 

parameters are a path string, filestatus, variation object and floor.  

ParseFoor first evaluates if it was set into read, write or input fileStatus. It then loads 

the appropriate XmlDocument and iterates through its nodes until it reaches the wall 

or simObjs nodes. At this point a tempFaces object is created.  

A switch case structure then evaluates the next step. If fileSatus=read, the application 

enters the read state.  

Firstly, a vertexList is created to hold all vertices parsed from the pointNodes. In this 

state the parser iterates trough all pointNodes. In each iteration a tempVertex object is 

created. The pointNodes attribute values are parsed into two double variables. If the 

current floor does not already contain a vertex with these coordinates, a new vertex is 

created and added to the vertexList. If such vertex already exist, the existing vertex is 

added to the vertexList. After iterating through each pointNode, a new face object is 

created. The face then gets assigned to vertexList and is added to the variations face 

list. Once all nodes are parsed, the application breaks and returns to the main function. 

Figure 5.4: The Parser 
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In the write status, the parser iterates through all pointNodes and assigns them their 

new value. To keep track which vertex is to be red, an iteration variable is incremented 

every time a pointNode has been iterated through. The iteration variable is then used 

as index, to call the corresponding vertex from the VertexList. The function exits once 

all pointNodes are parsed. 

Lastly, the parser can be put into the inputStatus. In this status, the parser searches 

the genericNodes for matches with a floor’s faces via their names. If a match is found, 

the floor’s facesToMove counter is incremented by one. Then either the face’s 

moveVector or scale get their new value assigned. 

 

 

 

Figure 5.5: The read status 

Figure 5.6: The write status 
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5.2.3 UncertaintyManger.cs 

This static class handles the variation problem. It takes the depth of the given uncer-

tainty and numberOfFacesToMove to calculate the number of possible variations. 

𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = 𝑑𝑒𝑝𝑡ℎ𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐹𝑎𝑐𝑒𝑠𝑇𝑜𝑀𝑜𝑣𝑒 

It also calculates and sets up all possible variations of the Monte Carli Method. 

The uncertainty manager also gets called to set the moveVector and Scale for each 

object accordingly to the current variation. 

5.2.4 Manipulator.cs 

The manipulator is the other main class after the parser class. It is called by the pro-

gram class. The manipulator is handed the variation object, which at this point has a 

list of all floors, each floor’s faces and vertices as well as the modified move and scale 

values set by the uncertainty manager in the previous step. 

Calling the Translate() function, the manipulator iterates through each object which has 

a scaleValue or moveVector and calls the Translate()  or Scale() function accordingly. 

Figure 5.7: The input status 
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To translate, a list of verticesToMove is created. The object’s (face A) vertices, which 

is to be moved, are then added to this list. 

The AddAttachedToMove function is called, which iterates through all other faces on 

the same floor. It checks if any face (face B) from the floor’s faceList: 

1. Was already moved. If so, the application returns and the next face is checked. 

2. For each of face’s B edges it is checked if: 

a. The current edge is parallel to the moveVector of face A.  

i. If true, the application determines if face A shares an edge with 

face B. 

1. If true, all of face’s B vertices are added to the vertices-

ToMove list. And AddAttachedToMove is called by face B, 

repeating the procedure of checking if any face C is at-

tached to B.  

b. The current edge is orthogonal to the moveVector of face A. 

i.  If true, it the function tests if this edge is contained by any of face’s 

A edges. 

1. If true, only the contained edge’s vertices get added to the 

verticesToMove list. 

After this, the function returns and all vertices in the verticesToMove list are moved by 

the same vector. 

5.2.5 Program.cs 

The program class is the interface for mainly the Manipulator, UncertaintyManager, 

Variation and Manipulator classes. Its input data is the inputXML and the simulation 

and its data inside the baseFolder. The Parser is called to parse the input both input 

elements. Next, Variation and the UncertaintyManger are instantiated. The baseFolder 

is copied and renamed after each Variation instance. The Variations moveVectors and 

scaleFactors are set by the UncertaintyManger and finally the Manipulator gets called 

to transform the different variations. The Parser then saves the newly created before 

the simulations are started. After reaching this point, program terminates the applica-

tion. 
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Figure 5.8: The program class's process 
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6.1 Setting up the Simulation.  

The Revit file of the HWH meets the standards of BDL4.The file was exported from 

Revit into AutoCAD. Any objects which are not of interest for the simulation were re-

moved. The file was then manually adjusted according to the concept’s definition from 

chapter 3. This mainly resulted in the removal of columns between walls and editing 

door objects. In the buildings northern area, a stair to be scaled and moved was added.  

Each room in the simulation is occupied by 8 agents.  

• Agents from the second-floor search for the closest stairway to the first-floor 

• Agents on the first-floor search for the closet stairway to the ground-floor 

• Agents on the ground floor search for the fastest way to the closest exit 

6.2 Input Parameters 

We will examine the systems sensitivity towards the fuzziness of five operations.  

• One the ground floor, we will examine the impact of the “WesternDoor’s“ (1) 

size. The range of uncertainty spans from 2.0 meters up to 2.6 meters (±20%)  

• Also on the ground floor, we create an additional exit which we will call “North-

Door”, its uncertainty range spans from 0.1 to 1 meters (2) 

• In addition, we narrow the “Lvl00-HallwayWidth” (3). Its min, max fuzziness 

spans from 1.50m to 2.00m. 

6 Evaluation  

Figure 6.1: dxf-File before (left) and after (right) the setup 
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• At the first floor, the Lvl01-HallwaysWidth (4) lays between 1.0 and 2.0 meters 

(±33%) 

• The width of “Stair-lvl02-lvl01” ranges between 0.8 and 1,2 meters (±20%).  

The output value is the buildings evacuation time. Each variation is calculated 5 times. 

This results in 1035 simulations runs. On the authors machine, this calculation took 

about 5 hours. 

 

Figure 6.2: The buildings floorplans in crowd:it.  

 

6.3 Results 

The input parameters were changed every simulation after the following scheme: 

• A: “Lvl00-HallwayWidth” was changed every 84th simulation run 

• B: The “WestDoor” was changed every 28th simulation run 

• C: The “NorthDoor” after the 9th simulation 

• D: “Lvl01-HallwayWidth” every 3th simulation 

• E: And Stair-lvl02-Lvl01 every simulation 

1 

2 

3 

5

 

4 
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Table 6.1 shows the five slowest and the five fastest evacuations. “WestDoor’s” size is 

the most influential input parameters in regard to evacuation time. In any of the fastest 

evacuation runs it was at set to its max uncertainty value, creating the largest opening 

possible. Additionally, in each of the slowest 5 runs, it was at the minimal value, indi-

cating a bottleneck at the exit door.  

Comparing the slowest and fastest evacuation times, the best layout is 25% more effi-

cient than the “slowest” layout. 

 

Figure 6.4: Diagram of the evacuation times for each variation, sorted in order: 

 Parameter B, A, C, D,E 
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Table 6.1: Evacuation times and the uncertain parameters 
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Figure 6.3: Diagram of the evacuation times for each variation, sorted in order: 

 Parameter A, B, C, D,E 
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Figure 6.5: Diagram of the evacuation times for each variation, sorted in order: 

 Parameter C, A, B, D,E 

 

Figure 6.6: Diagram of the evacuation times for each variation, sorted in order: 

 Parameter D, A, B, C,E 

 

 

Figure 6.7: Diagram of the evacuation times for each variation, sorted in order: 

 Parameter E, A, B, C, D 

 

According to figure 6.4 and 6.7, parameter B (Lvl00-HallwayWidth) and E (Stair-lvl02-

lvl01) do have little impact on the evacuation progress. Their graphs are trend does 

not significantly change over the different variations. 

Parameter C(“NorthDoor”) and D(“Lvl01-HallwayWidth”) have negative impact on 

evacuation time when approaching max. uncertainty value (Figure 6.5 and 6.6). 

Parameter A (“WestDoor”), seen in Figure 6.3 does have positive influence on the 

building’s evacuation time, judging by its trendline. 

 

80

90

100

110

120

130
1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1
1

0
6

1
1

1
1

1
6

1
2

1
1

2
6

1
3

1
1

3
6

1
4

1
1

4
6

1
5

1
1

5
6

1
6

1
1

6
6

1
7

1
1

7
6

1
8

1
1

8
6

1
9

1
1

9
6

2
0

1
2

0
6

2
1

1
2

1
6

2
2

1
2

2
6

2
3

1
2

3
6

2
4

1

80

90

100

110

120

130

1 6
1

1
1

6
2

1
2

6
3

1
3

6
4

1
4

6
5

1
5

6
6

1
6

6
7

1
7

6
8

1
8

6
9

1
9

6
1

0
1

1
0

6
1

1
1

1
1

6
1

2
1

1
2

6
1

3
1

1
3

6
1

4
1

1
4

6
1

5
1

1
5

6
1

6
1

1
6

6
1

7
1

1
7

6
1

8
1

1
8

6
1

9
1

1
9

6
2

0
1

2
0

6
2

1
1

2
1

6
2

2
1

2
2

6
2

3
1

2
3

6
2

4
1

80

90

100

110

120

130

1 6
1

1
1

6
2

1
2

6
3

1
3

6
4

1
4

6
5

1
5

6
6

1
6

6
7

1
7

6
8

1
8

6
9

1
9

6
1

0
1

1
0

6
1

1
1

1
1

6
1

2
1

1
2

6
1

3
1

1
3

6
1

4
1

1
4

6
1

5
1

1
5

6
1

6
1

1
6

6
1

7
1

1
7

6
1

8
1

1
8

6
1

9
1

1
9

6
2

0
1

2
0

6
2

1
1

2
1

6
2

2
1

2
2

6
2

3
1

2
3

6
2

4
1



Conclusion 50 
 

 

In previous chapters we developed a concept for early stage pedestrian simulations 

and studied the various methodologies of uncertainty analysis.  After defining our own 

set of rules and use cases, we were able to design a basic, automated uncertainty 

analysis tool. We used this tool to conduct a pedestrian simulation of a building’s early 

stages design. We assume the research goal to be fully satisfied. 

The concept was successfully tested in chapter 6. We could proof that our concept is 

able to produce meaningful results by analysing a buildings crucial structural compo-

nent and their influence on pedestrian movements. With the knowledge gained from 

the results in chapter 6, we could design the buildings layout after the best variation 

and push this design to the next design stage. However, here lays the concepts great-

est weakness. It is impossible to transfer the variations model back into building design 

tools such as Revit. We do not believe such a tool will ever be developed, since too 

much information has been lost parsing the model into crowd:it. To overcome this in-

formation loss was the research’s greatest single challenge. 

Whilst the concept was a success, we do not see a potential for further development 

of early pedestrian simulation directly inside crowd:it. Instead, we propose to focus on 

creating tools that allow for BIM tools to create different variations which can be directly 

simulated by the desired simulation software. Future research might also focus on 

ways to conduct pedestrian simulations directly in BIM software. This would negate 

any loss of information which otherwise could happen during transferring files from one 

application to another, as it happened in this thesis with crowd:it.   

Additionally, we noticed in chapter 6 that carrying out multiple simulations consumes 

large amounts of computation resources and time. The number of simulations runs 

grows exponentially with each additional simulation object and degree of uncertainty, 

increasing calculation time even more. Hence, we propose research to examine if sim-

pler simulation models, such as the Hydraulic-model introduced in chapter 3 could be 

used in early stage simulations. 

7 Conclusion 
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Auf der beigefügten CD befindet sich folgender Inhalt: 

• Der schriftliche Teil der Arbeit als Worddokument 

• Die Daten des Projektes 

• Der Source-Code der Anwendung 
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