

Technische Universität München

Ingenieurfakultät Bau Geo Umwelt

Lehrstuhl für Computergestützte Modellierung und Simulation

Integration of BIM-based pedestrian simulations in

the early design stages

Bachelorthesis

für den Bachelor of Science Studiengang Umweltingenieurwesen

Autor: Janik Scholl

Matrikelnummer:

1. Betreuer: Prof. Dr.-Ing. André Borrmann

2. Betreuer: M. Sc. Jimmy Abualdenien

Ausgabedatum: 12. February 2019

Abgabedatum: 02. August 2019

Abstract II

The advanced development of pedestrian-flow simulations enables Architects and En-

gineers in cases, which are difficult to calculate by conventional manual calculation

methods, to proof if a building fulfils its fire-safety-requirements. However, these sim-

ulations are most times conducted in the later in a buildings’ design phases, since the

manual creation of such simulations is labour intensive and costly. Recent studies

though have proven the beneficial impact of early stage simulations. Thus, this thesis

examines the development of a concept and implementation of an automated creation

of “Early Stage Pedestrian Simulation”. The field of Energy Management, where such

concepts have already been developed, functions as prime example and basis for the

research concept. As a case-study, the thesis’ concept is developed for the pedestrian-

flow simulation “crowd:it”.

Abstract

Zusammenfassung III

Der fortgeschrittene Entwicklungsstand von Personenstrom-Simulationen ermöglicht

Ingenieuren und Architekten in, mit üblichen Handrechenverfahren schwer zu berech-

nenden Fällen, das Erreichen von Brandschutzzielen nach zu weisen. Diese Simulati-

onen werden jedoch meist erst in späteren Entwicklungsphasen eines Bauprojekts

durchgeführt, da das manuelle Anfertigen solcher Simulationen sehr arbeitsintensiv

und teuer ist. Neuste Studien belegen jedoch den positiven Einfluss von Simulationen

in frühen Entwicklungsphasen. Infolgedessen beschäftigt sich diese Arbeit mit der Ent-

wicklung eines Konzepts und Implementierung zur automatisierten Anfertigung soge-

nannter “Early Stage Pedestrian Analysis”. Als Grundlage dafür dienen bereits Entwi-

ckelte Konzepte aus dem Feld des Energie Managements, wo solche Analyse Kon-

zepte schon entwickelt wurden. Das Konzept der Arbeit wird als Fallstudie für die Soft-

ware zur Simulation von Personen Strömen „crowd:it“ entwickelt.

Zusammenfassung

Table of Contents IV

Table of figures VI

Table of tables VIII

Table of Abbreviations IX

1 Introduction and Motivation 10

1.1 Motivation ... 10

1.2 Research Goal and structure .. 11

2 Literature Review: Early Stage-of-Development Simulations 12

2.1 Introduction .. 12

2.2 Level of Development .. 12

2.3 Fuzziness ... 13

2.3.1 Early Stage Simulation Evaluation Methods ... 14

2.4 Conclusion ... 15

3 Pedestrian-Flow Simulations 16

3.1 Crowd:it .. 17

3.1.1 Geometric representation .. 18

3.1.2 Creating Paths ... 23

3.2 Flood-field .. 24

3.2.1 Type of Simulations ... 25

4 Concept 26

4.1 Setup .. 26

4.2 Level of Development .. 27

4.3 Determination of input Parameters ... 28

4.3.1 The “.floor”-file .. 29

4.3.2 Transform-Operations.. 31

4.3.3 Fuzziness ... 35

4.4 Manipulating the floor-file .. 35

4.4.1 The Crowdit File ... 35

Table of Contents

Table of Contents V

5 Implementation 37

5.1 File Structure .. 37

5.1.1 File .. 38

5.2 Classes .. 39

5.2.1 Geometry ... 39

5.2.2 Parser.cs .. 41

5.2.3 UncertaintyManger.cs .. 43

5.2.4 Manipulator.cs .. 43

5.2.5 Program.cs ... 44

6 Evaluation 46

6.1 Setting up the Simulation... 46

6.2 Input Parameters ... 46

6.3 Results ... 47

7 Conclusion 50

8 Table of Literature 51

Appendix A 53

Appendix B 54

Table of figures VI

Figure 3.1: (Plum & Jäger, 2011) Evacuationmodels .. 16

Figure 3.2: Unassigned simObj .. 18

Figure 3.3: Origin .. 19

Figure 3.4: Destination .. 19

Figure 3.5: Stair... 20

Figure 3.6: Escalator ... 21

Figure 3.7: WaitingZone ... 22

Figure 3.8: Elevator and Elevator Matrix .. 22

Figure 3.9: A complex path’s “Path-Tree” .. 23

Figure 4.1: BDL stages 1-5. Abualdenien and Borrmann (2018) 28

Figure 4.2: Sample-Project ... 29

Figure 4.3: XML-.floor-file ... 30

Figure 4.4: Possible outcomes of moving and scaling neighbouring walls 32

Figure 4.5: Scaling and moving a door .. 33

Figure 4.6: The three different cases of neighbouring walls defined for the concept . 34

Figure 4.7: The ".floor"-file .. 35

Figure 5.1: The concepts folder structure, pre early stage simulation 37

Figure 5.2: Input Xml-File ... 38

Figure 5.3 CalculateMidpoint() Function: ... 40

Figure 5.4: The Parser .. 41

Figure 5.5: The read status .. 42

Figure 5.6: The write status .. 42

Figure 5.7: The input status .. 43

Figure 5.8: The program class's process ... 45

Figure 6.1: dxf-File before (left) and after (right) the setup .. 46

Figure 6.2: The buildings floorplans in crowd:it. .. 47

Table of figures

Table of figures VII

Figure 6.3: Diagram of the evacuation times for each variation, sorted in order:

Parameter A, B, C, D,E .. 48

Figure 6.4: Diagram of the evacuation times for each variation, sorted in order:

Parameter B, A, C, D,E .. 48

Figure 6.5: Diagram of the evacuation times for each variation, sorted in order:

Parameter C, A, B, D,E .. 49

Figure 6.6: Diagram of the evacuation times for each variation, sorted in order:

Parameter D, A, B, C,E .. 49

Figure 6.7: Diagram of the evacuation times for each variation, sorted in order:

Parameter E, A, B, C, D ... 49

Table of tables VIII

Table 4.1: List of Simulation and pedestrian settings available in crowd:it 27

Table 6.1: Evacuation times and the uncertain parameters .. 48

Table of tables

Table of Abbreviations IX

BIM Building Information Modelling

simObj Simulation Object

LOD Level of Development

BLD Building Development Level

MCM Monte Carlo Method

Table of Abbreviations

Introduction and Motivation 10

1.1 Motivation

When public buildings are being developed, a major concern is the users’ safety. Fire-

safety regulations require many different standards which must be fulfilled. Multiple

categories of fire-safety measures do exist. Some apply to the materials which must

be fire resistant or fire-retardant. Other laws specify the number of people which can

stay in given areas, or the maximum evacuation time for the pedestrians in those areas.

Modern pedestrian-flow simulations offer Architects and Engineers additional tools to

verify if these requirements are met. Currently however, those simulations are carried

out at the end of the planning cycle, when only minor changes to the building’s layout

can be done and changes to a buildings design, if needed, might be seen as setback

and costly to achieve.

The ability to analyse a building in its early stages could spot bottlenecks and structural

weakness whilst the design can be altered without much of an additional effort. It ena-

bles planners to test the performance of different designs or to detect highly influential

key parameters for successful evacuations. One could analyse several early designs

and improve its layout early on, instead of having to proof a designs effectiveness in

the end of the development progress. This workflow of simulating early design is more

desirable as it is proved to be beneficial and, essentially, reduces costs whilst also

improving critical performance aspects.

It is technically possible to conduct early stages simulations, much like it is common

practice in the energy management sector to use methods of early design uncertainty

analysis. However, customers are most times unwilling to pay for such analysis, as

pedestrian simulations up to this day are mainly manually developed and the early

stages uncertainty of information would require for many, slightly differing simulations

to be created.

1 Introduction and Motivation

Introduction and Motivation 11

1.2 Research Goal and structure

This thesis’ goal is to develop a concept for an implementation of early stage pedes-

trian simulation. The research for the concept’s development will be derived from con-

cepts of the use of uncertainty and sensitivity analysis of early stage building projects

conducted in the energy sector.

The thesis is divided in the following chapters:

• In Chapter 2 we review latest literature on the topic of uncertainty and sensitivity

analysis. We examine several papers approach to state-of-the-art early stage

simulations. The knowledge gained in this chapter will be used for the creation

of our own concept, applied to early stage pedestrian simulation.

• In Chapter 3, different concepts of pedestrian-simulations are briefly studied.

The software crowd:it is introduced, as it will be used as this thesis’ platform for

the development and implementation. Therefore, its functionalities are ex-

plained in more detail.

• In Chapter 4 we develop our concept of early stage pedestrian simulation.

Therefore, the knowledge gathered from Chapter 2 and 3 is synthesised. Sim-

plifications, boundary conditions and assumptions are set. Crowd:its geomet-

rical representation is examined and rules established to manipulate its data.

The concept of level of development and possible in- and output parameters

are discussed.

• Chapter 4 summarizes the implementation methods used and describes the key

parts of code.

• In Chapter 5 to prove the concepts functionality, a sensitivity analysis is con-

ducted on a buildings early stage of design.

• In Chapter 6 the results of this thesis are critically discussed. Concepts and

ideas for future research are proposed.

Literature Review: Early Stage-of-Development Simulations 12

Early stage uncertainty analysis has seen a lot of attention in the building sector as of

recent years. Especially concepts to predict a designs energy consumption has been

in focus of current research, as buildings pose for a third of the world’s energy con-

sumption (IPCC, 2018). Therefore, as part of the Paris-Agreement, the EU, aiming to

be CO2 neutral by the year 2050 (European Commission, 2019), has ruled the building

industry to vastly reduce newly designed buildings’ energy needs to contribute towards

achieving the 20/20/20 Goals. This led to the development of several concepts for early

stage calculation of energy consumption.

The following Literature review examines recent researches conducted and terminol-

ogy being used for early level of development (LOD) analysis. The knowledge gained

in this chapter will be used as basis of a concept of pedestrian simulations in an early

LOD.

2.1 Introduction

It is being acknowledged that conducting early stage analysis has high impacts on a

building’s performance (Bogenstätter, 2000). Krygel (2018) claims that: “Energy simu-

lation to provide feedback during the early stages of design is often not done, even

though decisions at this stage have the largest impact on energy and cost”. However,

it is noteworthy that, as Singh (2018) states: “A lot of modelling efforts required to

make physical simulation models, also an automatic translation of BIM data to BEM

(Building energy management) data hasn’t proved much reliable (J. B. Kim et al.,

2015)”.

2.2 Level of Development

A buildings design progress is split up in different Levels of Development (LOD). The

American BIMForum defines five stages of LOD (BimForum, 2019) with different levels

of information available, increasing at each design stage (Singh, Singaravel, & Geyer,

2018).

Harter, Schneider & Lang (2018) discuss the LOD model to conduct a Life Cycle As-

sessment of Buildings in early design stages. For this purpose, they extract information

at different stages of LOD from BIM models. However, comparing two different stages

2 Literature Review: Early Stage-of-Development Simulations

Literature Review: Early Stage-of-Development Simulations 13

of LOD, they find that some parameters lack information in early design stages, which

have to be estimated to increase the calculations accuracy.

Abualdenien and Borrmann (2018) criticise the LOD definitions to be informal and im-

precise, as they only bring textual and graphical information, which leads to multiple

ways of interpretation and different expectation for the detail of information at each

level. Additionally, they claim that BIM tools produce too detailed designs even in early

stage LODs. Their demand is to precisely define LOD requirements and incorporate

their uncertainties to improve the quality of collaborative process.

As concept to solve the problem of the LOD’s unclear definition, Abualdenien and Bor-

mann (2018) developed a 5 stage LOD concept for the overall building, with a new

term Building Development Level (BDL).:

 BDL1 represents the building as 2D site plan with information about the build-

ing’s usage, position and orientation. BDL2 defines the buildings height, thus

creating a 3D model out of the 2D plan. They add information about the founda-

tion and the buildings external components’ midsurfaces. In BDL3 the authors

add information about the structural system, construction type and materials.

Storeys are introduced and defined. The inner structures are defined in BDL4,

creating internal spaces. They also add percentage of opening for each level

and allow for estimated loads to be defined. BDL 5 is adds more precise mate-

rials, construction type, load and layer structure.

 By using this concept, the authors intend to describe the uncertainty of information by

explicitly describing the maturity the information available. Furthermore, they state that

their approach allows simulations to be conducted on early stage buildings while pre-

venting false impressions of high accuracy through the consideration of fuzziness.

2.3 Fuzziness

“Missing information can only be estimated within a certain range of fuzziness” (Harter,

Schneider, & Lang, 2018). The term “fuzziness” is used to describe variability of an

elements attribute values due to lack of information or knowledge resulting from early

stages of design. Hence, early design simulation always must deal with certain degrees

of fuzziness. Models developed require a certain level of information, missing infor-

mation is supplemented by suitable assumptions and rules (Singh, Singaravel, &

Geyer, 2018). For instance, Harter, Schneider and Lang (2018) claim that estimation

Literature Review: Early Stage-of-Development Simulations 14

of information always lies within a certain fuzziness range, which is based on empirical

studies.

2.3.1 Early Stage Simulation Evaluation Methods

Confirming Abualdenien and Borrmann’s proposal to further specify the LOD concept,

Sing, Singaravel & Geyer (2018) developed an alternative LOD model:

They named their model adaptive LOD (aLOD). aLOD has three stages of de-

velopment. Sing et. al. used their model to conduct an Energy Prediction a mul-

tilevel model. Each individual aLOD has parameters that have a defined range

of fuzziness. After creating the model in aLOD1 all possible combinations of

these parameters are generated and analysed. The analysation serves as feed-

back, which is then used to re-design aLOD and repeat the cycle or design

aLOD2. In aLOD2 the specified parameters are again part of a feedback and

development loop, until the user is satisfied with the results and moves on to

design aLOD3, where the process is repeated.

 To generate the variations, Sing et. al. use of the Monte Carlo Method (MCM). In their

study, they aimed to estimate a buildings energy consumption for each aLOD. Hence,

the annual energy consumption for each of the variations created by the MCM was

estimated. They state that the alternatives at each aLOD can be chosen based on

lowest mean, min, or max value.

Hygh, DeCarolis, Hill & Ranjithan (2012) concept is an expansion to Sing et al’s

method, by conducting a linear regression on the database created from the MCM in

combination with the energy consumption estimation. Following, the regressions coef-

ficients were normalized to permit comparison. In contrast to sensitivity analysis, this

approach enables to predict behaviour when certain components underly uncertain-

ties.

Another evaluation method is the sensitivity analysis- where a systems sensitivity to-

wards the uncertainty of its parameters is being tested. Design decisions could be sup-

ported by identifying the most influenced parameter using sensitivity analysis (Rumnici

& Abualdenien, 2019)

Literature Review: Early Stage-of-Development Simulations 15

2.4 Conclusion

Lack of information granted by early LOD models is not to be understood as negative

term. This lack of information, also called fuzziness is the driving force behind early

stage analysis. After a model to represent the projects level of development is being

picked or defined, parameters with certain degree of fuzziness are the research’s ba-

sis. One has to assume the min and max range of fuzziness appropriate for his level

of development. Once this step is taken, the lack of information provides the possibility

to create uncertainty analysis to gradually improve a buildings concept. Another ap-

proach is to conduct sensitivity analysis, driven by the input parameter’s fuzziness, to

gain greater knowledge of a building’s behaviour.

Pedestrian-Flow Simulations 16

Figure 3.1: (Plum & Jäger, 2011) Evacuationmodels

(Translated)

Different types of pedestrian-flow Simulations can be split into two main categories and

several subcategories each. These models contrast in approaching the simulation of

pedestrian flows. The branch of Hydraulic-models applies empirical data gained from

field studies and tries to predict a masses movement similar to a liquids behaviour. In

contrast, individual-models are focused on an a single human’s behaviour and assign

personas to their pedestrian models, aiming to mimic spontaneous, unexpected be-

haviour of moving crowds caused by an individual’s decision.

According to Plum and Jäger (2011), a Hydraulic-modes describe uses empirical data

to measure flow rates dependent on spatial pedestrian density. For specific groups,

evacuation paths and stationary flowrates, one can calculate an estimation of a build-

ing’s evacuation time. Dynamic-models focus on pedestrian flow to gain information

about move speed. Network-models represent paths as graphs, adding the ability to

consider individual parameters, such as immobile pedestrians.

Kneidl (2013) explains Microscopic-approaches to be considering each pedestrian as

individual. This allows local events to be simulated, such as congestions in front of

Evacuationmodels

Hydraulicmodels
and

Networkmodels

Capacity-Analysis

Dynamicmodels Networkmodels

Individualmodels

Discrete Continious

3 Pedestrian-Flow Simulations

Pedestrian-Flow Simulations 17

stairs or exits or the development of one-directional pathways. Microscopic models can

be divided into either discrete or continuous models, which differentiate in spatial and

temporal discretization. According to Kneidl, high granularity in terms of spatial dis-

cretization enables a simulation result to be consistent, the downside being the in-

creased demand of computation power needed to conduct such simulation.

3.1 Crowd:it

Crowd:it is a software package for microscopic, agent based crowd simulation, devel-

oped on the “Optimal Steps Model” by (Seits & Köster, 2016), as well as on Dr. Ange-

lika Kneidl’s research at Technical University Munich (accu rate, 2019).

Accu:rate (2019) describes crowd:it as based on a three-tier model consisting of:

 • A locomotion layer (how exactly do people move through space: The Optimal Steps

Model).

• A navigation layer (graphs that map the orientation of people).

• A behavioural layer.

The underlying Optimal Steps Model enables real-world pedestrian stepping behav-

iour. Agents slow down naturally when faced with dense crowds by taking smaller

steps. (Thus, no density-speed relation is needed as input.) Agents reflect real human

behaviour, avoid collisions with each other and obstacles, and seek the easiest way to

their destination. As a result, congestion, lane formation and inefficient pedestrian rout-

ing are depicted realistically (accu rate, 2019).

Pedestrian-Flow Simulations 18

3.1.1 Geometric representation

Crowd:it defines two kinds of geometry objects:

• Simple geometry, which can be a point, edge or polygon. These objects pose

as obstacle and cannot be crossed by pedestrians.

• Simulation objects (simObjs), which can further be divided into the following

sub-categories:

Unassigned simulation Objects:

Undefined simObjs (orange) of which all other types of simObjs are created

from.

Pedestrians cross these objects as they will not be considered by the floodfield.

Origins:

Area in which agents are spawned.

Attributes:

• Min premovement time(s)

Min time agents wait before starting to move

• Max premovement time(s)

Max time agents wait before starting to move

• Sorted Birth Cells

Determines if agents in this cell are to be spawned in a spatially sorted

or random distribution

• Interval name

Name of interval assigned

• Generate from(s)

Figure 3.2: Unassigned

simObj

Pedestrian-Flow Simulations 19

Point of time where the fist agent is spawned

• Generate to(s)

Point of time where the last agent is spawned

• Number of Agents

Number of agents to be spawned

Destinations:

Area which can be used as paths intermediate- or end destination. Agents dis-

appear once they reach their end destination.

Attributes:

• Disable dynamic flooding

Toggles the dynamic floodfield

Stairs:

Connector between two floors.

Attributes:

• Number of Treads

Number of treads

• Tread width

Figure 3.3: Origin

Figure 3.4: Destination

Pedestrian-Flow Simulations 20

Tread width in meters

• Connects to floor

Floor that the stair connects to. If empty, the stair ends at the same level

as it started

• Direction upwards

Indicates the stairs upwards direction (arrow in fig. 4.5). Can be changed

by pressing “Turn 90°”

Escalator:

Connector between two floors. All Agents are moving at same speed once they

stepped on the escalator.

Attributes (additional to stair's attributes):

• Speed in m/s

Agents’ travel speed on escalator

• Number of Landing Treads

Number of landing treads

• Travel Direction

Agents’ travel direction indicated by the smaller arrows in the bottom.

Changeable by clicking “Flip travel Direction”

Figure 3.5: Stair

Pedestrian-Flow Simulations 21

WaitingZone:

Area in which agents wait for an fixed amount of time, an interval to end or other

agents/group members to arrive.

Attributes:

• Capacity

The waitingZone’s capacity

• Deviation

Deviation of time to wait for agents

• Distribution

The deviations random distribution. Can be normal, uniform or distributed

• Recurring every (s)

Determines if the waitingZone’s opening window reopens periodically af-

ter a certain amount of time

• Time to wait(s)

Time agents must wait before leaving the waitingZone

Figure 3.6: Escalator

Pedestrian-Flow Simulations 22

Elevator:

Area connecting two floors. Agents entering this areal are teleported to their

destination floor, where they wait until the elevators travel time is over.

Attributes:

• Capacity

The elevators capacity

• Boarding time

Time needed for agents to fully enter the elevator

• Elevator Matrix

Matrix containing the travel times between each floor

Figure 3.8: Elevator and Elevator Matrix

Figure 3.7: WaitingZone

Pedestrian-Flow Simulations 23

3.1.2 Creating Paths

In crowd:it, paths represent the only possibility for agents to move from point A to point

B. Paths are modelled by hand and can only contain simObjs or a collection of these.

Agents moving along a path start at the first object (origin), where they are tasked to

try to reach the next object in the paths list. Once they have reached this object, they

are assigned their next destination object. This process is repeated until an agent can-

not reach its next path-element or the end of the path is reached, where the agent is

being de-spawned. Every path must start with an origin (or a set of origins) and end

with a destination (or set of destinations). A path may contain unlimited amounts of

simObjs, sets and pathsnippets, as well as sets of sets, sets of pathsnippets etc. This

structure allows the user to model complex paths.

Figure 3.9: A complex path’s “Path-Tree”

The "Portals-Seh-publikum" set contains 6 origins. This is the paths entry point. The next members in

the list are a mixture of sets and pathSnippets. The last member of the path ends with a set of destina-

tions.

Pedestrian-Flow Simulations 24

3.1.2.1 Sets

Sets are a collection of at least two different objects. These objects can be simObjs,

pathSnippets or other sets. Whenever an agent enters a set along its path it must

decide which of the sets objects it chooses to be the next destination. Agents do not

know their next destination prior to entering the set, the decision is made “on the fly”

while the simulation is taking place. Its decision is dependent on the heuristic assigned

to the set.

Each set must have one of the following different heuristics assigned to it:

• closest: Agents seek the closest object within the Set. This is the default heu-

ristic.

• less Crowded: Agents seek the least populated object within the Set, and then

the closest of these.

• distributed: Agents select uniformly any object within the Set.

• distributedAndEmpty: Agents select uniformly any object within the Set, pro-

vided it has the capacity for them. For instance, you may wish to simulate seats

by setting each seat as a Waiting Zone. Each seat must be empty to be selected

by an agent.

• shortestQueueLane: Agents choose a queue with the fewest number of people.

Naturally, this is only appropriate if a set contains a Waiting Zone.

• fixedRatio: Fixed values can be set, that define the distribution among the set

members. The sum of the values per set must sum up to 1

3.1.2.2 Pathsnippets

Pathsnippets are a collection of objects, which agents must go through in the order in

which they appear in the pathSnippet. Pathsnippets contain simObjs, sets and other

pathSnippets. Other than set, pathSnippets only have one heuristic “InOrder”, leaving

agents with no choice to choose from for the next object as their destination.

3.2 Flood-field

 The floodfield stores the forces’-values affecting an agent. This force guides the

agents along their path. Negative (push-)forces are created by obstacles, for instance

walls or, in case of a dynamic floodfield, cross- and counterflows. Positives (pull-)forces

are generated by destinations to “pull” the agents. The floodfield can be described as

Pedestrian-Flow Simulations 25

potential a paths origin and destination, derived from those forces. Its values are stored

in floor-cells, whose size is dependent on the chosen spatial granularity.

3.2.1 Type of Simulations

Crowd:it does not distinguish between different simulation approaches. However, in

practice, simulations can be split into two different main categories, comfort studies

and evacuation simulations. Out of those two kinds, evacuation simulations are more

specifically defined- to the degree that accu-rate currently develops an automated re-

port system for evacuation simulations.

Evacuation simulations usually start with a fully occupied building. They either end after

the building was successfully evacuated or after a predefined (most times ruled by fire-

safety regulations) evacuation time is exceeded. The paths in such simulations tend to

be less complex as agents are advised to follow a fire protection concept for evacua-

tion, which directs them to the next closes (emergency-) exit. The process of evacua-

tion can be described as people independently getting in safety from endangered areas

(RIMEA, 2019).

The term “Comfort studies” unifies all other kind of simulations. Comfort studies range

from simulating the course of a day of in a museum, over a mass’s movement within a

football stadium up to the early hours in an office building or peak-hours of a train-

stations’ rush-hour. This setup offers infinitely more different path options, as different

personas might show different behaviour or get assigned to different paths. In order to

conduct comfort studies, a buildings usage must be clearly defined, which is usually

beyond an early stage of LOD.

Concept 26

4.1 Setup

The boundary conditions between each testcase must be equal in order to be compa-

rable. Crowd:it offers a variety of settings for the simulation, floor-discretization and

agents. It is desirable for simulations results to be as exact and realistic as possible. In

contrast, it is necessary to reduce simulation time, since even simulations with small

geometry and only a small number of agents may take up to a minute to be computed

each. Small projects with e.g. five objects with three uncertainty values each would

require 35 =243 individual simulations to be carried out. Considering the desired com-

plexity and number of uncertain objects in future projects, some trade-offs in simulation

accuracy are unavoidable. Table 4.1 contains a collection of simulation settings and

agents’ attributes together with an explanation for their function and the value used in

our project. Agents’ values for movement speed and size are based Weidmann (1993).

Parameter Function Value

Cell size [meters] Describes each cell’s size

(default: 2)

2.00

Compress output Will zip the simulation output when checked

(default: ON)

TRUE

Distance between two points

[meters]

Distance between two points 0.20

Update rate floor field (simu-

lation step)

Specifies the rate at which the dynamic floor field val-

ues should be re-calculated. The rate is per time-step,

i.e. 1 means one calculation per time-step. By in-

creasing the rate, the simulation is more realistic, but

computation time increases

(default: 1)

2

Use dynamic floor field Toggles an algorithm that makes the simulation far

more realistic but increases computation time signifi-

cantly (default: TRUE)

FALSE

4 Concept

Concept 27

Use undirected floor filed Toggles an algorithm that speeds up simulation cal-

culation when you have many origins or destinations

(over 100) (default: FALSE)

FALSE

Cell discretization Setting of the discretization for the project’s floors (de-

fault: 0.10)

0.20

Min velocity [m/s] An agent’s minimum walking speed 0,46

Mean velocity [m/s] Average walking speed of all agents in the scenario 1,34

Max velocity [m/s] An agent’s maximum walking speed 1,61

Deviation for velocity [m/s] Populations standard deviation of velocities 0,26

Min torso diameter [m] An agent’s minimal possible torso diameter 0,42

Max torso diameter [m] An agent’s maximal possible torso diameter 0,46

Perception radius [m] An agent’s perception radius, used to calculate den-

sity (default 2.0)

2.0

Comfort distance for origins

[m]

Distance two agents may appear in an origin 0.2

Table 4.1: List of Simulation and pedestrian settings available in crowd:it

4.2 Level of Development

The information needed for pedestrian simulations varies depending on which kind of

simulation is planned to be conducted. As described in chapter 3.2.1. Comfort studies

usually require a higher LOD then evacuation simulations. We chose to use evacuation

simulation for this thesis, hence, the simulations demands towards the buildings LOD

shift towards the early stages. The simulation’s minimal requirements in order to be

functional are:

• Exterior and Interior Walls

• Origins, representing a building’s populated rooms

• Destinations. Which serve as the buildings exit points

• In case of multilevel buildings: stairs as floor connectors

This thesis will adapt the Building Development Level (BDL) defined in chapter 2.3.1.

Abualdenien and Borman (2018) aimed to provide different specialised fields with a

consistent definition of uncertainty concept by creating the BDL concept. The BDL suit-

able for pedestrian simulation is BDL. Abualdenien and Borman define BDL4 as stage

in which a more precise definition of the structure is modelled, leading to a definition of

Concept 28

the internal spaces. In this level, the percentage of opening and estimated load can be

specified. BDL4 is the first stage defining the inner walls and rooms.

4.3 Determination of input Parameters

BDL4 sees the first appearance of the interior’s layout and load. Therefore, these pa-

rameters underly the highest degree of uncertainty and will be used as input parame-

ters for our simulation. Interior walls, openings and their size and stairs are dominant

in dictating an agent’s ability to move through the building. It is important to note that

the buildings pedestrian load will not be part of our concept of the uncertainty analysis.

We assume that it is technically possible to include this parameter as input parameter

and assign an uncertainty value to it. However, this would require the manipulation of

not only the “. floor” file, but also the “.crowdit” file.

Figure 4.1: BDL stages 1-5. Abualdenien and Borr-

mann (2018)

Concept 29

The evacuation simulations key-parameter is the evacuation time. This parameter will

function as output parameter. Other possible parameters are the average overall dis-

tance travelled by agents or spatial density in simulation objects. Unfortunately, these

parameters can not be easily compared by collecting all output data into one large

dataset, as they tend to be easily miss-interpreted, since many different factors partake

in these results.

4.3.1 The “.floor”-file

Crowd:it’s geometrical definition of objects has to be studied before one can define

geometric input parameters. Geometry data is stored in the “.floor”-file. The floor-file is

stored inside the “geometry” folder, which is part of the “projectName_res” directory.

For this purpose, the following use-case has been created. The floor-file is of the XML-

Document type.

Figure 4.2: Sample-Project

This project consists out of a origin (red-zone) surrounded by five walls (grey-objects). Between the

northern walls, a cut has been created (orange). After leaving the room, pedestrians are led to the

destination (green) via a hallway, limited by an additional wall in the north.

Concept 30

Figure 4.3: XML-.floor-file

This file is crowd:it’s data-structure derived from the previous geometry. Each floor is

represented by one floor-file at a time. A multi-storey building therefore has as many

floor-files as storeys. The files root is at “floor” node, containing the file’s attributes

“isoDate”, file-format and “xmlFormat”. Its solitary child nodes are of the type “layer”.

Layer nodes have one attribute named “id”, containing the layers names. When read-

ing from “.dxf” or IFC, crowd:it differentiates geometry objects based on their layer’s id.

Geometry on layers whose names contain the string “crowdit” will be interpreted as

Concept 31

“wunderZone”, which represent simObjs. Objects on any other layer which does not

contain the “crowd:it” string, is interpreted as type of “wall”.

Each object node contains at least one “point” node, consisting of two float values.

Each point-node adds one vertex to the object. Two vertices define an edge. Three or

more edges define a face.

Wall-objects are created by a single vertex, one edge or a face. These wall-objects are

not checked by crowd:it for inconsistencies, crossings or if vertices exist more than

once.

 SimObjs must be defined by at least one edge (e.g. 2 vertices). Crowd:it also forbids

a simObjs to have reoccurring vertices. The only exemption to this is the first and last

vertex being allowed but not mandatory to be equal.

4.3.2 Transform-Operations

Importing geometry files from “.dxf” or IFC results in a loss of information, since the

floor-file only contains raw geometrical data. Any relation between objects is lost, as it

is not necessary for the simulation kernel to know about the relations between different

geometry objects. Consequently, relations must be reinterpreted by defining rules for

neighbouring objects to behave similar as applications such as Autodesk Revit would

cause them to. Moving walls in Revit causes attached objects to be influenced in a

defined matter. Objects can be depended on each other, meaning one objects move-

ment moves the other object entirely. They can also be partially depended on each

other, causing minor changes when their neighbouring object is moved. And then there

are static objects, which can not be influenced by other objects at all. To mimic this

behaviour we now have to define the set of rules for inter object relations.

The definition of the Building Development Level provides walls, doors and stairs as

geometrical type of objects. Assuming an interior-wall’s position had some fuzziness

value regarding its position on the y-axis. For instance, the wall could be moved by 0.5

meters in positive y direction. How do neighbouring and or attached walls behave in

this case and what should their relations be?

Concept 32

 In Figure 4.4 the problematic information loss is being portrayed. The left-top corner

shows the original geometry. In the window to its right, the top wall has been moved in

positive y direction. The walls neighbouring were interpreted as unattached. This led

to holes in the geometry being created. Further to the right, the walls were interpreted

as attached, therefore, the attached edges are also moved up to the top. However, it

would also be plausible if the attached walls were moved in the positive y direction as

a whole.

Figure 4.4: Possible outcomes of moving and scaling neighbouring walls

Concept 33

The second row demonstrates the possible interpretations of uniformly scaling the top

wall by 0.8. The last row describes variations of moving the leftmost wall in the negative

x direction. Some of these variations are logically more convincing than others, ulti-

mately it is the developer responsibility to define his own set of rules to avoid unex-

pected behaviour.

In the third row, the leftmost wall was moved in the negative direction of the x axis.

Possible outcomes are depicted in the following two windows.

The first step is to define different operations that can be applied to input objects. Com-

puter graphics defines 3 types of transformations: translation, scaling, rotation. The

latter is excluded from further discussion, as this would create additional problems and

increase complexity. Scaling also has many different variations- as one could scale an

object in any direction or uniformly and be using any possible point as basepoint. Nev-

ertheless, scaling is included in our thesis concept, considering a doors or stairs is of

major interest for influence on pedestrian flow-rates. Transformation leaves less room

for different approaches and is also of high interest, hence it is also included into the

concept.

In any further consideration, all edges are assumed to be parallel to either the x or y

axis, which vastly reduces complexity of our concept. This in mind, the following ruleset

was developed.

4.3.2.1 Scaling

Scaling is only to be allowed for doors, stairs and free-standing walls. The scaling di-

rection is depended of the object.

Doors will be scaled along their long axis, which is derived from the floor-file since no

such information is existent in crowd:it. The scaling will affect the wall which is cut

through by the door. The edges/vertices shared between wall and door will be moved

Figure 4.5: Scaling and moving a door

Concept 34

by the same distance, as demonstrated in figure 4.5. Doors also are assumed not to

be positioned next to neighbouring walls running orthogonally to them.

Stairs could be scaled along both axis, and potential demand for both exists. Nonethe-

less, stairs will only be scaled against their walking direction. Otherwise the crowd:it

file would be required to be manipulated as well, since the tread-depth or number of

treads would be likely to change. Stairs which are moved or scaled are assumed to be

free-standing, not directly neighbouring other simulation or geometry objects.

Freestanding walls are scaled in the direction of their long axis, as scaling along the

short or “thickness” axis would only result in minor increases, unlikely to have effects

on simulation results.

4.3.2.2 Translating

Translation is allowed for all objects. Stairs once again must be freestanding. Trans-

lating doors functions like scaling, influencing the cut-through walls.

Three rules were developed, to created expectable behaviour of attached and neigh-

bouring objects, similar as to the ones seen in Revit. When a wall is moved all its

vertices will be moved by the same amount and in the same direction.

• If any wall B shares an identical edge with the moved wall A, wall B will also be

moved. This procedure is then to be rerun, to check if wall C shares an edge

with B, until all walls which are in a row are detected.

• If wall B’s edge is contained in one of the moving wall A’s edges and the edge

which is contained is orthogonal to the movement of wall A, then the contained

edge will also be moved by the same amount.

• If wall B shares an vertex with the moving wall A, then the edge which is posi-

tioned at this vertex and also orthogonal to wall A’s movement is moved by the

same amount as wall A.

Figure 4.6: The three different cases of neighbouring walls defined for the concept

Concept 35

4.3.3 Fuzziness

It is noteworthy that the floors discretization dictates the granularity of the simulation’s

interpretation of geometry. This can cause small spans of uncertainty to not affect ap-

pear in the simulation at all. The min and max fuzziness values of an object are chosen

by the end-user. Fire-Safety regulations or law such as the German “Versa-

mmlungsstättten Verordnung” could be used as guidelines for the span of fuzziness.

The fuzziness values are of constant probability and discrete distribution. We introduce

the term “Depth of uncertainty” to define the increment used between min and max

value.

4.4 Manipulating the floor-file

4.4.1 The Crowdit File

The crowd:it file is built up as shown in the graphic.

Figure 4.7: The ".floor"-file

The crowd:it file contains all simulation related information. The root-node is the “sce-

nario node, containing information about the XML-Format, the projects name, and iso-

Date.

Concept 36

The next node is the “spatial” node. It has two attributes: “id”, which got the name of

the origin “.dxf” or the imported “IFC” file, and “floorAt”, which links the Floor-XML and

the simulation.

This is followed by the “meta” node and its children, as well as the “settings”, “evalua-

tions” and “visualization” nodes.

A relevant node is the “meta” node, and its child node “morphosis”. This node assigns

functionality to SimObjs which were defined in the “.floor” file. The first of its nodes,

called “destination”, links the SimObj “destination-1” to the wunderZone=”simObj-155”,

found as last object in the “.floor” file. The linking between the geometry and its func-

tionality as SimObj goes by the objects id, which allows for the geometry of simObjs to

be manipulated even after they are created. To not destroy the connection between

the simObjs in the “.floor”file and the “.crowd:it” file the objects name must not be

changed, as this would cause the simulation to crash.

The linking between the “.floor-“ and “.crowdit”file allows for the creation of projects

with the same crowdit file but differing floorfiles, as long as the floors and simObjs

names are not changed. To create multiple variations the complete project folder hasto

be copied for each individual iteration. This ensures, that neither the simulation settings

or the floor-files name changes. After the files are copied the geometry can be changed

at desire, provided that the simObjs remain unchanged.

Implementation 37

The following implementation is based on the concept from previous chapter. The im-

plementation was created using Visual C# 4.0 .NETFramwork Version v.4.6.1 . The

application includes the System, System.Collections.Generic, System.Reflection, Sys-

tem.Numerics, System.Xml, System.IO, and System.Globalization namespaces.

5.1 File Structure

The application folder structure is shown in figure 5.1. Notable for usage are the “in-

putXML” folder and the “projects” folder. Inside the projects folder is a folder called:

“baseProject”. At this location is the project which holds the floor-file to be manipulated

and the .crowdit file. For every variation of the base simulation the “baseProject” folder

is copied into this directory and the copy renamed to the variations name. The names

of the simulation and floor-files remain unchanged enabling crowd:it to link the new

floor-files to an existing simulation. “project#_res” contains the simulations results in-

side a folder called “out” and the geometry files. The “intputXML” is introduced as user

input file. This file is a basic XML-file. Declaring an object as part of the uncertainty

5 Implementation

Figure 5.1: The concepts folder structure, pre early

stage simulation

Implementation 38

analysis requires the objects “id”, which has to match the id in the “.floor”-file, not the

“.crowdit”-file. Objects can either have a “Move” or “Scale” attribute.

5.1.1 File

Inside our application we will have a specific location for our base project- containing

the floorfile(s) we wish to manipulate. Inside the input folder is the input.XML document,

being build up similar to the “.floor”-file. This document has a node for each object of

our .floorfile which we plan on altering during our uncertainty analysis. Since every id

has to be unique and has to remain unchanged in order for crowd:it to recognise the

changed object correct, the linking between the objects will happen the same way as

its done by crowd:it. Each object in the input file can have up to two attributes, a point

attribute serving as vector, which will be the object’s moveVector, and one attribute

serving as scale. Those value represent the max. uncertainty value, with each iteration

moving/scaling the object further until its max value is reached. After reading-in the

floor- and input-file, a new “.floor”-file with the exact same name for each iteration of

the uncertainty analysis will be created. This file will be placed into an exact copy of

our “baseProject” folder and will replace the old floorfile in this folder. After creating the

new project with its new “.floor”-files, the crowd:it kernel is called to conduct simulation

on this object.

Figure 5.2: Input Xml-File

Implementation 39

5.2 Classes

The following chapter will describe the applications classes and their intended use and

concept behind some implementations. Not all attributes and functions are mentioned

but only the most important ones.

5.2.1 Geometry

The implementation uses a modified from of the boundary representation to interpret

and represent geometrical objects. Faces are described by edges and vertices. Each

face has a list of vertices, and each vertex has a list of faces it is referenced by. Faces

must consist out of at least three edges, respectively three vertices.

5.2.1.1 Vertex.cs

The vertex class handles the pure geometric information. Vertices are constructed by

a DoubleVector2. The C# System.Numerics namespace does not support double Vec-

tors. But CAD applications such as AutoCAD store geometric information in double

precision. Hence, the System.DoubleNumerics was added to the project.

Vertices are designed to keep track of affected objects. Each Vertex has a list of faces

which contain this vertex. when reading the “.floor”-file, the parser will ensure that each

vertex is unique. When one object is moved, it also automatically affects other objects

sharing the same vertex. In rare cases this can lead to undesired behaviour. Most

times when a room is modelled as simObj and shares a common vertex with a wall

that is moved.

5.2.1.2 Edge.cs

The Edge class is designed to hold two vertices for each edge. Edges are part of the

attribute of the face class. They were implemented to enable checking, whether faces

are attached to each other and if two faces share a common edge.

5.2.1.3 Face.cs

Faces are made up by 3 or more vertices. Each face contains a list of its vertices.

Faces can be of different element types: “wall, room, stair, door”. These element types

mainly determine face’s behaviour when scaled. Walls and doors are scaled along their

long axis, stairs in direction of their short. Rooms do not have special implementation,

Implementation 40

neither are there any possibilities to directly influence their shape. However, rooms can

indirectly be reshaped by dragging out our pulling in their limiting outer walls.

The Face class contains the CalculateMidpoint() class. The midpoint is needed to cal-

culate the directional scale. A polygons midpoint can be determined by calculating the

geometric centre of mass.

𝑠 =
1

𝑚
∗ ∑ 𝑥𝑖

𝑚

𝑖=1

With m being the number of unique points (vertices) and x each vertices coordinates.

5.2.1.4 Floor.cs

A ”.floor”-file’s data is equivalent to its corresponding floor object in the code. Each

floor holds a list of all its faces, edges and vertices. It also counts the faces which have

fuzziness values assigned and has a function to set the moveVectors and scaleValues

of these faces, according to the variation used.

5.2.1.5 Variation.cs

The Variation class is one the project’s main classes. For each variation of the early

stage simulation, a variation object is constructed. A variation’s object contains each

Figure 5.3 CalculateMidpoint() Function:

Implementation 41

of the building’s floors and herby its faces, edges and vertices. The uncertaintyMan-

ager advices the variation object which of the variation is represented by it. With this

information, the variation object then modifies the moveVector and scale of the objects

which underlay a degree of uncertainty in the current variation.

5.2.2 Parser.cs

The Parser class is a static class. Its prime function is the parseFloor function. Its input

parameters are a path string, filestatus, variation object and floor.

ParseFoor first evaluates if it was set into read, write or input fileStatus. It then loads

the appropriate XmlDocument and iterates through its nodes until it reaches the wall

or simObjs nodes. At this point a tempFaces object is created.

A switch case structure then evaluates the next step. If fileSatus=read, the application

enters the read state.

Firstly, a vertexList is created to hold all vertices parsed from the pointNodes. In this

state the parser iterates trough all pointNodes. In each iteration a tempVertex object is

created. The pointNodes attribute values are parsed into two double variables. If the

current floor does not already contain a vertex with these coordinates, a new vertex is

created and added to the vertexList. If such vertex already exist, the existing vertex is

added to the vertexList. After iterating through each pointNode, a new face object is

created. The face then gets assigned to vertexList and is added to the variations face

list. Once all nodes are parsed, the application breaks and returns to the main function.

Figure 5.4: The Parser

Implementation 42

In the write status, the parser iterates through all pointNodes and assigns them their

new value. To keep track which vertex is to be red, an iteration variable is incremented

every time a pointNode has been iterated through. The iteration variable is then used

as index, to call the corresponding vertex from the VertexList. The function exits once

all pointNodes are parsed.

Lastly, the parser can be put into the inputStatus. In this status, the parser searches

the genericNodes for matches with a floor’s faces via their names. If a match is found,

the floor’s facesToMove counter is incremented by one. Then either the face’s

moveVector or scale get their new value assigned.

Figure 5.5: The read status

Figure 5.6: The write status

Implementation 43

5.2.3 UncertaintyManger.cs

This static class handles the variation problem. It takes the depth of the given uncer-

tainty and numberOfFacesToMove to calculate the number of possible variations.

𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = 𝑑𝑒𝑝𝑡ℎ𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐹𝑎𝑐𝑒𝑠𝑇𝑜𝑀𝑜𝑣𝑒

It also calculates and sets up all possible variations of the Monte Carli Method.

The uncertainty manager also gets called to set the moveVector and Scale for each

object accordingly to the current variation.

5.2.4 Manipulator.cs

The manipulator is the other main class after the parser class. It is called by the pro-

gram class. The manipulator is handed the variation object, which at this point has a

list of all floors, each floor’s faces and vertices as well as the modified move and scale

values set by the uncertainty manager in the previous step.

Calling the Translate() function, the manipulator iterates through each object which has

a scaleValue or moveVector and calls the Translate() or Scale() function accordingly.

Figure 5.7: The input status

Implementation 44

To translate, a list of verticesToMove is created. The object’s (face A) vertices, which

is to be moved, are then added to this list.

The AddAttachedToMove function is called, which iterates through all other faces on

the same floor. It checks if any face (face B) from the floor’s faceList:

1. Was already moved. If so, the application returns and the next face is checked.

2. For each of face’s B edges it is checked if:

a. The current edge is parallel to the moveVector of face A.

i. If true, the application determines if face A shares an edge with

face B.

1. If true, all of face’s B vertices are added to the vertices-

ToMove list. And AddAttachedToMove is called by face B,

repeating the procedure of checking if any face C is at-

tached to B.

b. The current edge is orthogonal to the moveVector of face A.

i. If true, it the function tests if this edge is contained by any of face’s

A edges.

1. If true, only the contained edge’s vertices get added to the

verticesToMove list.

After this, the function returns and all vertices in the verticesToMove list are moved by

the same vector.

5.2.5 Program.cs

The program class is the interface for mainly the Manipulator, UncertaintyManager,

Variation and Manipulator classes. Its input data is the inputXML and the simulation

and its data inside the baseFolder. The Parser is called to parse the input both input

elements. Next, Variation and the UncertaintyManger are instantiated. The baseFolder

is copied and renamed after each Variation instance. The Variations moveVectors and

scaleFactors are set by the UncertaintyManger and finally the Manipulator gets called

to transform the different variations. The Parser then saves the newly created before

the simulations are started. After reaching this point, program terminates the applica-

tion.

Implementation 45

Figure 5.8: The program class's process

Evaluation 46

6.1 Setting up the Simulation.

The Revit file of the HWH meets the standards of BDL4.The file was exported from

Revit into AutoCAD. Any objects which are not of interest for the simulation were re-

moved. The file was then manually adjusted according to the concept’s definition from

chapter 3. This mainly resulted in the removal of columns between walls and editing

door objects. In the buildings northern area, a stair to be scaled and moved was added.

Each room in the simulation is occupied by 8 agents.

• Agents from the second-floor search for the closest stairway to the first-floor

• Agents on the first-floor search for the closet stairway to the ground-floor

• Agents on the ground floor search for the fastest way to the closest exit

6.2 Input Parameters

We will examine the systems sensitivity towards the fuzziness of five operations.

• One the ground floor, we will examine the impact of the “WesternDoor’s“ (1)

size. The range of uncertainty spans from 2.0 meters up to 2.6 meters (±20%)

• Also on the ground floor, we create an additional exit which we will call “North-

Door”, its uncertainty range spans from 0.1 to 1 meters (2)

• In addition, we narrow the “Lvl00-HallwayWidth” (3). Its min, max fuzziness

spans from 1.50m to 2.00m.

6 Evaluation

Figure 6.1: dxf-File before (left) and after (right) the setup

Evaluation 47

• At the first floor, the Lvl01-HallwaysWidth (4) lays between 1.0 and 2.0 meters

(±33%)

• The width of “Stair-lvl02-lvl01” ranges between 0.8 and 1,2 meters (±20%).

The output value is the buildings evacuation time. Each variation is calculated 5 times.

This results in 1035 simulations runs. On the authors machine, this calculation took

about 5 hours.

Figure 6.2: The buildings floorplans in crowd:it.

6.3 Results

The input parameters were changed every simulation after the following scheme:

• A: “Lvl00-HallwayWidth” was changed every 84th simulation run

• B: The “WestDoor” was changed every 28th simulation run

• C: The “NorthDoor” after the 9th simulation

• D: “Lvl01-HallwayWidth” every 3th simulation

• E: And Stair-lvl02-Lvl01 every simulation

1

2

3

5

4

Evaluation 48

Table 6.1 shows the five slowest and the five fastest evacuations. “WestDoor’s” size is

the most influential input parameters in regard to evacuation time. In any of the fastest

evacuation runs it was at set to its max uncertainty value, creating the largest opening

possible. Additionally, in each of the slowest 5 runs, it was at the minimal value, indi-

cating a bottleneck at the exit door.

Comparing the slowest and fastest evacuation times, the best layout is 25% more effi-

cient than the “slowest” layout.

Figure 6.4: Diagram of the evacuation times for each variation, sorted in order:

 Parameter B, A, C, D,E

80

90

100

110

120

130

1 6
1

1
1

6
2

1
2

6
3

1
3

6
4

1
4

6
5

1
5

6
6

1
6

6
7

1
7

6
8

1
8

6
9

1
9

6
1

0
1

1
0

6
1

1
1

1
1

6
1

2
1

1
2

6
1

3
1

1
3

6
1

4
1

1
4

6
1

5
1

1
5

6
1

6
1

1
6

6
1

7
1

1
7

6
1

8
1

1
8

6
1

9
1

1
9

6
2

0
1

2
0

6
2

1
1

2
1

6
2

2
1

2
2

6
2

3
1

2
3

6
2

4
1

Table 6.1: Evacuation times and the uncertain parameters

80

90

100

110

120

130

1 6
1

1
1

6
2

1
2

6
3

1
3

6
4

1
4

6
5

1
5

6
6

1
6

6
7

1
7

6
8

1
8

6
9

1
9

6
1

0
1

1
0

6
1

1
1

1
1

6
1

2
1

1
2

6
1

3
1

1
3

6
1

4
1

1
4

6
1

5
1

1
5

6
1

6
1

1
6

6
1

7
1

1
7

6
1

8
1

1
8

6
1

9
1

1
9

6
2

0
1

2
0

6
2

1
1

2
1

6
2

2
1

2
2

6
2

3
1

2
3

6
2

4
1

Figure 6.3: Diagram of the evacuation times for each variation, sorted in order:

 Parameter A, B, C, D,E

Evaluation 49

Figure 6.5: Diagram of the evacuation times for each variation, sorted in order:

 Parameter C, A, B, D,E

Figure 6.6: Diagram of the evacuation times for each variation, sorted in order:

 Parameter D, A, B, C,E

Figure 6.7: Diagram of the evacuation times for each variation, sorted in order:

 Parameter E, A, B, C, D

According to figure 6.4 and 6.7, parameter B (Lvl00-HallwayWidth) and E (Stair-lvl02-

lvl01) do have little impact on the evacuation progress. Their graphs are trend does

not significantly change over the different variations.

Parameter C(“NorthDoor”) and D(“Lvl01-HallwayWidth”) have negative impact on

evacuation time when approaching max. uncertainty value (Figure 6.5 and 6.6).

Parameter A (“WestDoor”), seen in Figure 6.3 does have positive influence on the

building’s evacuation time, judging by its trendline.

80

90

100

110

120

130
1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1
1

0
6

1
1

1
1

1
6

1
2

1
1

2
6

1
3

1
1

3
6

1
4

1
1

4
6

1
5

1
1

5
6

1
6

1
1

6
6

1
7

1
1

7
6

1
8

1
1

8
6

1
9

1
1

9
6

2
0

1
2

0
6

2
1

1
2

1
6

2
2

1
2

2
6

2
3

1
2

3
6

2
4

1

80

90

100

110

120

130

1 6
1

1
1

6
2

1
2

6
3

1
3

6
4

1
4

6
5

1
5

6
6

1
6

6
7

1
7

6
8

1
8

6
9

1
9

6
1

0
1

1
0

6
1

1
1

1
1

6
1

2
1

1
2

6
1

3
1

1
3

6
1

4
1

1
4

6
1

5
1

1
5

6
1

6
1

1
6

6
1

7
1

1
7

6
1

8
1

1
8

6
1

9
1

1
9

6
2

0
1

2
0

6
2

1
1

2
1

6
2

2
1

2
2

6
2

3
1

2
3

6
2

4
1

80

90

100

110

120

130

1 6
1

1
1

6
2

1
2

6
3

1
3

6
4

1
4

6
5

1
5

6
6

1
6

6
7

1
7

6
8

1
8

6
9

1
9

6
1

0
1

1
0

6
1

1
1

1
1

6
1

2
1

1
2

6
1

3
1

1
3

6
1

4
1

1
4

6
1

5
1

1
5

6
1

6
1

1
6

6
1

7
1

1
7

6
1

8
1

1
8

6
1

9
1

1
9

6
2

0
1

2
0

6
2

1
1

2
1

6
2

2
1

2
2

6
2

3
1

2
3

6
2

4
1

Conclusion 50

In previous chapters we developed a concept for early stage pedestrian simulations

and studied the various methodologies of uncertainty analysis. After defining our own

set of rules and use cases, we were able to design a basic, automated uncertainty

analysis tool. We used this tool to conduct a pedestrian simulation of a building’s early

stages design. We assume the research goal to be fully satisfied.

The concept was successfully tested in chapter 6. We could proof that our concept is

able to produce meaningful results by analysing a buildings crucial structural compo-

nent and their influence on pedestrian movements. With the knowledge gained from

the results in chapter 6, we could design the buildings layout after the best variation

and push this design to the next design stage. However, here lays the concepts great-

est weakness. It is impossible to transfer the variations model back into building design

tools such as Revit. We do not believe such a tool will ever be developed, since too

much information has been lost parsing the model into crowd:it. To overcome this in-

formation loss was the research’s greatest single challenge.

Whilst the concept was a success, we do not see a potential for further development

of early pedestrian simulation directly inside crowd:it. Instead, we propose to focus on

creating tools that allow for BIM tools to create different variations which can be directly

simulated by the desired simulation software. Future research might also focus on

ways to conduct pedestrian simulations directly in BIM software. This would negate

any loss of information which otherwise could happen during transferring files from one

application to another, as it happened in this thesis with crowd:it.

Additionally, we noticed in chapter 6 that carrying out multiple simulations consumes

large amounts of computation resources and time. The number of simulations runs

grows exponentially with each additional simulation object and degree of uncertainty,

increasing calculation time even more. Hence, we propose research to examine if sim-

pler simulation models, such as the Hydraulic-model introduced in chapter 3 could be

used in early stage simulations.

7 Conclusion

Table of Literature 51

Abualdenien, J., & Borrmann, A. (2019). A meta-model approach for formal

specification and consistent management of multi-LOD building models.

Advanced Engineering Informatics, pp. 135-153.

accu rate. (2019, 08 01). accu:rate GmbH, Institute for crowd simulation. Retrieved

from https://www.accu-rate.de: https://www.accu-rate.de/en/software-crowd-it-

en/

BimForum. (2019, 08 02). Retrieved from 2018 level of development specification

guide: https://bimforum.org/lod/

Bogenstätter, U. (2000). Prediction and optimization of life-cycle costs in early design.

Buildijng Reasearch & Information, pp. 376-386.

buildingSMART e.V. (2019, 07 31). buildingSMART. Retrieved from buildingSMART

know-how standarts: https://www.buildingsmart.de/bim-knowhow/standards

European Commission. (2019, 07 31). ec.europa.eu. Retrieved from

https://ec.europa.eu/clima/policies/strategies/2050_de

Harter, H., Schneider, P., & Lang, W. (2018). The Energy Grey Zone – Uncertainty in

Embedded Energy and Greenhouse Gas Emissions Assessment of Buildings

in Early Design Phases. IALCCE 2018. Ghent: International Symposium on Life-

Cycle Civil Engineering.

Hygh, J., DeCarolis, J., Hill, D., & Ranjithan, R. (2012, 09). Multivariate regression as

an energy assessment tool in early building design. Building and Envoirement,

pp. 165-175.

IPCC. (2018, 08 03). https://www.ipcc.ch/. Retrieved from

https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf

Kneidl, D. A. (2013). Methoden zur Abbildung menschlichen Navigationsverhaltens.

München: Technische Universität München.

Krygel E, N. B. (2008). BIM: successful sustainable design with buliding information

modelling. Idianapolis: Wiley.

NIBS, C. o. (2008). Commitee of the National Institute of Building Sciences.

8 Table of Literature

Table of Literature 52

Plum, A., & Jäger, G. (2011). Evakuierungssimulationen im Rahmen von

Sicherheitskonzepten von der Konzeption bis zur Realisierung an Beispielen. In

P. Andreas, & G. Jäger, Evakuierungssimulationen im Rahmen von

Sicherheitskonzepten von der Konzeption bis zur Realisierung an Beispielen (p.

10). Aachen: BFT Cognos.

RIMEA. (2019, 08 01). RiMEA e.V. Retrieved from Richtline für Mikroskopische

Entfluchtungsanalysen:

https://rimeaweb.files.wordpress.com/2016/06/rimea_richtlinie_

Ritter, F. (2011). Untersuchung der Möglichkeiten und Vorteile des modellgestützten

kooperativen Planens anhand von Autodesk Produkten. München.

Rumnici, M., & Abualdenien, J. (2019, August 01). The influence of design

uncertainties in annual energy consumption. Proc of the 31. Forum

Bauinformatik. Berlin: TU Berlin.

Seits, M., & Köster, G. (2016). Simulating pedestrian dynamics: Towards natural

locomotion and psychological decision making. München: Technische

Universität München.

Shawney. (2014). Internation BIM Implenentation Guide (1st ed). London: Royal

Institution of Chartered Surveyors (RCIS).

Singh, M. M., Singaravel, S., & Geyer, P. (2018, August 01). Information Exchange

Scenarios between Machine Learning Energy. The Sixth International

Symposium on Life-Cycle Civil Engineering, pp. 487-494.

Weidmann, U. (1993). Transporttechnik der Fussgänger: Transporttechnische

Eigenschaften des Fussgängerverkehrs. Zürich: IVT.

Appendix A 53

Appendix A

Plans and figures

Appendix B 54

Auf der beigefügten CD befindet sich folgender Inhalt:

• Der schriftliche Teil der Arbeit als Worddokument

• Die Daten des Projektes

• Der Source-Code der Anwendung

Appendix B

Hiermit erkläre ich, dass ich die vorliegende Bachelor-Thesis selbstständig angefertigt

habe. Es wurden nur die in der Arbeit ausdrücklich benannten Quellen und Hilfsmittel

benutzt. Wörtlich oder sinngemäß übernommenes Gedankengut habe ich als solches

kenntlich gemacht.

Ich versichere außerdem, dass die vorliegende Arbeit noch nicht einem anderen

Prüfungsverfahren zugrunde gelegen hat.

München, 11. August 2019

Janik Scholl

Janik Scholl

Erklärung

	Table of figures
	Table of tables
	Table of Abbreviations
	1 Introduction and Motivation
	1.1 Motivation
	1.2 Research Goal and structure

	2 Literature Review: Early Stage-of-Development Simulations
	2.1 Introduction
	2.2 Level of Development
	2.3 Fuzziness
	2.3.1 Early Stage Simulation Evaluation Methods

	2.4 Conclusion

	3 Pedestrian-Flow Simulations
	Figure ‎3.1: (Plum & Jäger, 2011) Evacuationmodels
	(Translated)
	3.1 Crowd:it
	3.1.1 Geometric representation
	3.1.2 Creating Paths
	Figure ‎3.9: A complex path’s “Path-Tree”
	The "Portals-Seh-publikum" set contains 6 origins. This is the paths entry point. The next members in the list are a mixture of sets and pathSnippets. The last member of the path ends with a set of destinations.
	3.1.2.1 Sets
	3.1.2.2 Pathsnippets

	3.2 Flood-field
	3.2.1 Type of Simulations

	Figure ‎3.7: WaitingZone
	Figure ‎3.8: Elevator and Elevator Matrix
	4 Concept
	4.1 Setup
	Table ‎4.1: List of Simulation and pedestrian settings available in crowd:it

	4.2 Level of Development
	4.3 Determination of input Parameters
	4.3.1 The “.floor”-file
	Figure ‎4.2: Sample-Project
	This project consists out of a origin (red-zone) surrounded by five walls (grey-objects). Between the northern walls, a cut has been created (orange). After leaving the room, pedestrians are led to the destination (green) via a hallway, limited by an ...
	Figure ‎4.3: XML-.floor-file

	4.3.2 Transform-Operations
	4.3.2.1 Scaling
	4.3.2.2 Translating

	4.3.3 Fuzziness

	4.4 Manipulating the floor-file
	4.4.1 The Crowdit File
	Figure ‎4.7: The ".floor"-file

	Figure ‎4.1: BDL stages 1-5. Abualdenien and Borrmann (2018)
	5 Implementation
	5.1 File Structure
	5.1.1 File

	5.2 Classes
	5.2.1 Geometry
	5.2.1.1 Vertex.cs
	5.2.1.2 Edge.cs
	5.2.1.3 Face.cs
	5.2.1.4 Floor.cs
	5.2.1.5 Variation.cs

	5.2.2 Parser.cs
	5.2.3 UncertaintyManger.cs
	5.2.4 Manipulator.cs
	5.2.5 Program.cs

	6 Evaluation
	6.1 Setting up the Simulation.
	6.2 Input Parameters
	Figure ‎6.2: The buildings floorplans in crowd:it.

	6.3 Results
	Figure ‎6.4: Diagram of the evacuation times for each variation, sorted in order: Parameter B, A, C, D,E
	Figure ‎6.5: Diagram of the evacuation times for each variation, sorted in order: Parameter C, A, B, D,E
	Figure ‎6.6: Diagram of the evacuation times for each variation, sorted in order: Parameter D, A, B, C,E
	Figure ‎6.7: Diagram of the evacuation times for each variation, sorted in order: Parameter E, A, B, C, D

	7 Conclusion
	8 Table of Literature
	Appendix A
	Appendix B

