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Summary

This dissertation investigates simulation-based methods to estimate time series processes
and Lévy-driven stochastic volatility models.

In the first chapter, we advocate the use of an Indirect Inference method to estimate
the parameter of a COGARCH(1,1) process for equally spaced observations. This requires
that the true model can be simulated and a reasonable estimation method for an approxi-
mate auxiliary model. We follow previous approaches and use linear projections leading to
an auxiliary autoregressive model for the squared COGARCH(1,1) returns. The asymp-
totic theory of the Indirect Inference estimator relies on a uniform strong law of large
numbers and asymptotic normality of the parameter estimates of the auxiliary model,
which require continuity and di�erentiability of the COGARCH(1,1) process with respect
to its parameter and which we prove via Kolmogorov’s continuity criterion. This leads to
consistent and asymptotically normal Indirect Inference estimates under moment condi-
tions on the driving Lévy process. A simulation study shows that the method yields a
substantial finite sample bias reduction compared with previous estimators.

In the second chapter we develop new estimators for general time series observations.
We estimate the parameter of a time series process by minimizing the integrated weighted
mean squared error between the empirical and simulated characteristic function, when
the true characteristic functions cannot be explicitly computed. Motivated by Indirect
Inference, we use a Monte Carlo approximation of the characteristic function based on
iid simulated blocks. As a classical variance reduction technique, we propose the use of
control variates for reducing the variance of this Monte Carlo approximation. These two
approximations yield two new estimators that are applicable to a large class of time series
processes. We show consistency and asymptotic normality of the parameter estimators
under strong mixing, moment conditions, and smoothness of the simulated blocks with
respect to its parameter. In a simulation study we show the good performance of these new
simulation based estimators, and the superiority of the control variates based estimator
for Poisson driven time series of counts.

Finally, the third chapter is dedicated to the estimation of multivariate CO-
GARCH(1,1) processes (MUCOGARCH(1,1)). In order to apply an estimator based on
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control variates as developed in Chapter 2, it is crucial to know the second order struc-
ture of the MUCOGARCH(1,1) process in closed form. Moreover, using a moment based
estimator as a benchmark estimator is also desirable. This describes the problems we
study, where we apply the generalized method of moments to the MUCOGARCH(1,1)
process. More specifically, we obtain explicit expressions for the second order structure of
the “squared returns” process observed on a discrete-time grid with fixed grid size. Un-
der moment and strong mixing conditions, we show that the resulting estimator is weak
consistent and asymptotically normal. Su�cient conditions for strong mixing, stationarity
and identifiability of the model parameter are also discussed. We investigate the finite
sample behavior of the estimator in a simulation study.



Zusammenfassung

Diese Dissertation schlägt neue simulationsbasierte Methoden zur Schätzung von Zeitrei-
henprozessen und von Lévy-getriebenen stochastischen Volatilitätsmodellen vor und un-
tersucht ihre Eigenschaften.

Im ersten Kapitel verwenden wir eine indirekten Inferenzmethode, um die Parameter
eines COGARCH(1,1) Prozesses für Beobachtungen auf einem gleichmässigen Gitter zu
schätzen. Dies setzt voraus, dass das wahre Modell simuliert werden kann und dass eine
vernünftige Schätzmethode für ein geeignetes approximatives Hilfsmodell vorliegt. Wir fol-
gen früheren Ansätzen und verwenden lineare Projektionen, die zu einem autoregressiven
Hilfsmodell für die quadrierten COGARCH(1,1)-Renditen führen. Die asymptotische The-
orie des indirekten Inferenzschätzers benutzt das gleichmässigen starken Gesetz der großen
Zahlen und die asymptotischen Normalität der Parameterschätzer des Hilfsmodells. Bei-
des erfordert Stetigkeit und Di�erenzierbarkeit des COGARCH(1,1)-Prozesses in seinen
Parametern. Wir beweisen beides mittels des Stetigkeitskriteriums von Kolmogorov. Dies
sichert stark konsistente und asymptotisch normale indirekte Inferenzschätzer unter Mo-
mentenbedingungen für den treibenden Lévy Prozess. Eine Simulationsstudie zeigt, dass
die Methode im Vergleich zu früheren Schätzern zu einer erheblichen Reduzierung der
Verzerrung bei endlichen Stichproben führt.

Im zweiten Kapitel entwickeln wir neue Schätzer für allgemeine Zeitreihenbeobach-
tungen. Wir schätzen den Parameter eines Zeitreihenprozesses durch Minimierung des
integrierten gewichteten mittleren quadratischen Fehlers zwischen der empirischen und
der simulierten charakteristischen Funktion für den Fall, dass die wahre charakteristis-
che Funktion nicht explizit berechnet werden kann. Motiviert durch die indirekte In-
ferenzmethode verwenden wir eine Monte-Carlo-Approximation der charakteristischen
Funktion auf der Basis von simulierten unabhängigen Blöcken. Als klassische Varianzre-
duktionstechnik schlagen wir die Verwendung von Kontrollvariablen vor, um die Varianz
dieser Monte-Carlo-Approximation zu reduzieren. Beide Approximationen ergeben zwei
neue Schätzer, die auf eine große Klasse von Zeitreihenprozessen anwendbar sind. Wir
beweisen starke Konsistenz und asymptotische Normalität der Parameterschätzer unter
Mischungs sowie Momentenbedingungen und Glattheit in Bezug auf den Parameter der
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simulierten Blöcke. In einer Simulationsstudie zeigen wir relevante Eigenschaften dieser
neuen simulationsbasierten Schätzer und insbesondere die Überlegenheit des auf Kontrol-
lvariablen basierenden Schätzers für Poisson-getriebene Zeitreihen von Zähldaten.

Schließlich beschäftigen wir uns im dritten Kapitel mit der Schätzung multivariater
COGARCH(1,1)-Prozesse (MUCOGARCH(1,1)). Um einen Schätzer anzuwenden, der auf
den in Kapitel 2 entwickelten Kontrollvariablen basiert, benötigt man die zweite Ord-
nungsstruktur des MUCOGARCH(1,1)-Prozesses in geschlossener Form. Darüber hinaus
ist die Verwendung eines momentenbasierenden Schätzers als Benchmark wünschenswert.
Wir wenden die verallgemeinerte Momentenmethode auf den MUCOGARCH(1,1)-Prozess
an. Insbesondere erhalten wir explizite Ausdrücke für die zweite Ordnungsstruktur
des quadrierten Renditeprozesses, der auf einem zeitdiskreten gleichmässigen Gitter
beobachtet wird. Unter Mischungs sowie Momentenbedingungen zeigen wir, dass der re-
sultierende Schätzer schwach konsistent und asymptotisch normal ist. Ausreichende Be-
dingungen für stark mischend, Stationarität und Identifizierbarkeit der Modellparameter
werden ebenfalls diskutiert. In einer Simulationsstudie untersuchen wir das Verhalten des
Schätzers für endliche Stichproben.
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Introduction

Time Series

A set of observations recorded at specific times is called a time series. They appear in
almost every area of applied science, some examples being population size, number of
sunspots, temperature or rainfall data, disease counts, exchange rates or stock prices, just
to name a few. For a detailed overview with a range of topics on time series analysis we
refer to the classical monographs Box and Jenkins [11], Brockwell and Davis [13], Hamilton
[43], Lütkepohl [68] or Shumway and Sto�er [94]. In order to understand the mechanism
generating the time series, it is necessary to set up a hypothetical probability model to
represent the data. In this thesis we focus on parametric models, whose behavior depends
on a fixed parameter ◊ œ � µ Rq for q œ N. In order to draw inferences from the data, a
crucial step is parameter estimation, which consists basically of finding the best parameter
◊ œ � for which the chosen model fits the data well.

The estimation of time series processes is an ongoing problem of statistical inference.
Maximum likelihood estimation (MLE) has been extensively used for parameter estima-
tion, since under weak regularity conditions it is known to be asymptotically e�cient. For
many models, however, MLE is not always feasible to carry out, due to a likelihood that
may be intractable to compute, or maximization of the likelihood is di�cult.

To overcome such problems, alternative methods have been developed, for instance,
the generalized method of moments (GMM) in Hansen [44], the quasi-maximum likelihood
estimation (QMLE) in White [102], composite likelihood methods in Lindsay [66] and
Indirect Inference in Gourieroux et al. [39] and Smith [96]. We follow the line of research
of Indirect Inference.

Indirect Inference

Indirect Inference is a simulation-based technique, which requires only that the true model
can be simulated and a reasonable estimation method for an approximate auxiliary model.
Originally, it was introduced for complex econometric models to overcome the estimation
problem of an intractable likelihood function, as e.g. for continuous time models with sto-
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chastic volatility observed on a grid of points. Indirect Inference can be used for instance
as a vehicle to produce estimators which are robust, when there are outliers in the obser-
vations. It works as follows: let X1, . . . , Xn be the observations of the true model, with
true parameter ◊0 œ �. We first choose an auxiliary model, with parameter fi œ � µ Rr

for r œ N, which we believe is able to capture some features of the observed data, and that
can be easily estimated. Then, we use these observations to compute the estimator fîn of
the auxiliary parameter fi. Next, for many di�erent ◊ œ � we simulate K Ø 1 independent
samples of size n of the true model (X(k)

i (◊))n
i=1 and compute the estimators fîn,k(◊) for

k = 1, . . . , K. The Indirect Inference estimator of ◊ is then defined as

◊̂n,II = arg min
◊œ�

....fîn ≠ 1
K

Kÿ

k=1
fîn,k(◊)

....
�

, (0.0.1)

where � is a symmetric and positive definite weight matrix. The idea behind the method
is that the estimation step via simulations is actually approximating the so-called link
function ◊ ‘æ fi(◊), which is a map connecting the parameters spaces � and �. If this map
is one-to-one, it is natural to believe that whenever 1

K

qK
k=1 fîn,k(◊) is close to fîn, then,

the Indirect Inference estimator ◊̂n,II will be closer to ◊0 (see also Figure 1).

Figure 1: Indirect Inference diagram

The COGARCH(1,1) process

In this thesis, we apply the Indirect Inference estimator (0.0.1) to the continuous time
GARCH(1,1) (COGARCH(1,1)) process introduced in Klüppelberg et al. [55]. The CO-
GARCH(1,1) process generalizes the famous discrete time GARCH(1,1) process from
Bollerslev [10] and Engle [29] in a natural way. GARCH processes and their extensions
have found numerous applications in the field of finance. In particular, financial return
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data is usually characterized as uncorrelated, but not independent, heavy-tailed and with
time-varying volatility, and GARCH processes exhibit such properties (the so-called styl-
ized facts). However, over the years the analysis of stock price data in the finance industry
has moved from analyzing monthly data, to intraday data. Additionally, stock market data
is nowadays recorded for every transaction, and these occur irregularly in time. Therefore,
it seems reasonable to consider stock prices in continuous time, giving rise to continuous
time stochastic volatility models, among which the COGARCH is an important one. The
COGARCH process is a stochastic volatility model defined as

Pt(◊) =
⁄ t

0
‡s(◊)dLs, t Ø 0, (0.0.2)

with parameter ◊, L is a Lévy process with Lévy measure ‹L ”© 0 and having càdlàg sample
paths. The volatility process (‡s(◊))sØ0 is predictable and its stochasticity depends only
on L.

The COGARCH(1,1) process satisfies the stylized facts of financial returns and, as
a continuous time model, is suited for modeling high-frequency data. Figure 2 shows a
simulation for the COGARCH(1,1) price process and assesses empirically some properties
of the log-returns process

Gi(◊) := P�i(◊) ≠ P(i≠1)�(◊) =
⁄ i�

(i≠1)�
‡s(◊)dLs, (0.0.3)

for i = 1, . . . , 10 000 and � = 1. First of all, since the COGARCH(1,1) process is driven
by a Lévy process, it moves away from the wrong Gaussianity in a natural way. Fig-
ures 2(a) and (b) plot the log price and returns for exchange rate data, namely GBP
(British Pound)/USD (United States Dollar). In particular one sees some evidences of
jumps and the formation of clusters of volatility in the returns. A nice property of the
COGARCH process is that it also allows for jumps in the log price and volatility clustering
in the log price returns (Figure 2(c) and (d)). Additionally, COGARCH (log) price returns
are uncorrelated, while squared (log) prices returns are dependent.

Several methods have been proposed to estimate the parameter ◊ of a COGARCH(1,1)
process. For this model, we advocate in do Rêgo Sousa et al. [27] the use of the Indirect
Inference method to estimate its parameter. In particular, Indirect Inference has been
shown in the literature to reduce finite sample bias (Gourieroux et al. [40, 41]), and this is
our motivation. Our contribution here is the asymptotic theory of the Indirect Inference
estimator for COGARCH(1,1) processes, which is completely new and, in verifying em-
pirically that it yields a substantial finite sample bias reduction compared with previous
estimators.

In order to prove consistency and asymptotic normality we need to verify that the
COGARCH(1,1) process and the chosen auxiliary model satisfy some regularity condi-
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(a) log price GBP/USD (b) log price returns GBP/USD

(c) simulated log price (Pi(◊)) (d) simulated log price returns (Gi(◊))

Figure 2: COGARCH(1,1) process: L is a compound Poisson process with rate 1 and iid
N(0, 1) jumps and � = 1

tions. The starting point (A) is an appropriate auxiliary model that provides a one-to-one
binding function. We follow previous approaches and use linear projections leading to an
auxiliary autoregressive (AR) model of appropriate order for the squared COGARCH re-
turns (G2

i (◊))iœN as in (0.0.3). Often the properties of the binding function are assessed
via simulation, but for our models the binding function can be proved to be one-to-one.

Part (B), strong consistency and asymptotic normality of the estimator fîn of the AR
model parameter fi, is obtained in a similar way as in classical time series analysis (see
e.g. Brockwell and Davis [13]), extending the theory to residuals, which may not be white
noise, but an arbitrary stationary and ergodic process with finite variance. The strong law
of large numbers and asymptotic normality of fîn will then be a consequence of the fact
that (G2

i (◊))iœN is also strong mixing with appropriate mixing coe�cients.
(C) is related to regularity conditions of the map ◊ ‘æ fîn(◊). To achieve strong consis-
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tency of the Indirect Inference estimator we need to show that

sup
◊œ�

Îfîn(◊) ≠ fi◊Î a.s.æ 0, n æ Œ.

To move from point-wise to uniform convergence we use a uniform strong law of large
numbers in a compact parameter space �. This is applicable provided that Gi(◊) in (0.0.3)
is a continuous function in ◊ and E sup◊œ� G4

i (◊) < Œ for all i œ N. The continuity of this
map does not follow directly from the continuity of ‡s(◊) for fixed s, because the Lévy
process in the stochastic integral in (0.0.3) may have infinite variation. Under conditions
on the moments and the characteristic exponent of the driving Lévy process, we find a
version of Gi(◊) which is continuous by Kolmogorov’s continuity criterion, and as a result
we conclude strong consistency of the Indirect Inference estimator. A Taylor expansion
of fîn(◊) around the true parameter value ◊0 yields asymptotic normality by the delta
method. This requires continuous di�erentiability of Gi(◊) in ◊, which will follow from a
result of Hutton and Nelson [47] together with Kolmogorov’s continuity criterion. Later in
this thesis we come back to a di�erent Indirect Inference estimator, which can be applied
to general time series processes.

Indirect Inference based on the empirical characteristic function and con-
trol variates

Instead of focusing on one specific model as we did previously, we develop next a new
Indirect Inference estimator based on the empirical characteristic function and control
variates that is applicable to a large class of time series processes.

The Indirect Inference estimator in (0.0.1) relies on an auxiliary model, which sum-
marises the features of the true model with parameter ◊ in the parameter fi◊ œ Rr for
r œ N. A natural question to ask is, what happens if we decide to use an auxiliary model
with more parameters, perhaps countably many, or even uncountably many? Would this
result in better estimators?

This is one of the motivations for introducing an auxiliary model (auxiliary criterion)
which is based on the p-dimensional characteristic function of the time series processes.
In this case, the binding function would be of the form ◊ ‘æ Ï◊ where Ï◊ is not a finite
dimensional vector anymore, but instead a map from Rp to C. This is the estimator defined
in Knight and Yu [58], which we call the oracle estimator of ◊0 since it assumes that the
binding function is known in closed form. More specifically, from the observed data, we
construct the observed blocks

Xj = (Xj , . . . , Xj+p≠1), j = 1, . . . , n,
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we estimate

Ïn(t) = 1
n

nÿ

j=1
eiÈt,XjÍ, t œ Rp, (0.0.4)

and define the oracle estimator

◊̂n = argmin◊œ�Qn(◊), (0.0.5)

where
Qn(◊) =

⁄

Rp
|Ïn(t) ≠ Ï(t, ◊)|2w(t)dt, ◊ œ �, (0.0.6)

with suitable weight function w such that the integral is well-defined, and the binding
function is

Ï(t, ◊) = EeiÈt,X1(◊)Í, t œ Rp. (0.0.7)

In an ideal situation, the binding function ◊ ‘æ Ï(·, ◊) has an explicit expression and
the estimator ◊̂n in (2.2.3) can be used. What happens now, if the binding function is
unknown? Following the ideas of Indirect Inference we approximate it by simulations and
define a similar estimator.

In Davis et al. [24], we focus on time series processes for which the true characteristic
function has no explicit expression and, approximate it by simulations. A natural way to
approximate the binding function (0.0.7) is to proceed as we did in Indirect Inference, by
simulating K iid paths of size n of the true model and for each of them compute (2.2.2)
or by simulating one path of size greater than n as e.g. in Section 5.2 of Carrasco et al.
[15]. But why do we proceed exactly in this way? At this point, we have the freedom
to simulate the paths in various ways and approximate the binding function in the most
sensible way. We choose to work with a large number of independent short paths, which
we call blocks. In this way, we approximate the binding function using many iid blocks.
While being unbiased, this approximation will generally have smaller variance than the
approximation based on a few paths of the same length as the data, as this would result
in dependent blocks. This is the motivation for the simulation based parameter estimator
we propose here. More specifically, for many di�erent ◊ œ �, we simulate, independent of
the observed time series, an iid sample of blocks

X̃j(◊) = (X̃(j)
1 (◊), . . . , X̃(j)

p (◊)), j = 1, . . . , H, (0.0.8)

for H œ N, and define the Monte Carlo approximation of Ï(·, ◊) based on these simulations
as

ÏH(t, ◊) = 1
H

Hÿ

j=1
eiÈt,X̃j(◊)Í, t œ Rp. (0.0.9)
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If we replace Ï(·, ◊) in (2.2.4) by ÏH(·, ◊), we obtain the simulation based parameter esti-
mator

◊̂n,H = arg min
◊œ�

Qn,H(◊), (0.0.10)

where
Qn,H(◊) =

⁄

Rp
|Ïn(t) ≠ ÏH(t, ◊)|2w(t)dt, (0.0.11)

with suitable weight function w such that the integral is well-defined. Indeed this gives a
characteristic function approximation which yields, by minimizing the integrated distance,
strongly consistent and asymptotically normal parameter estimators, which we prove. We
also report their small sample properties for di�erent models.

However, as the Monte Carlo approximation of the characteristic function is computed
from iid blocks from a time series, control variates techniques provide an even more ac-
curate approximation for the binding function. The idea of control variates is to use the
knowledge of other quantities that can be computed from the model (e.g. certain mo-
ments) to get a better approximation for an unknown quantity. These known quantities
are called control variates. We choose the first two terms in the Taylor expansion of the
complex exponential eiÈt,X̃1(◊)Í, Èt, X̃1(◊)Í and Èt, X̃1(◊)Í2 for ◊ œ � as control variates.
This requires knowing the mean and covariance matrix of X̃1(◊) for ◊ œ �, which is not
a strong assumption for many time series processes.

In assessing the performance of both the Monte Carlo approximation and the control
variates approximation of the characteristic function, two trends emerge. First, both the
Monte Carlo and the control variates approximations work better for small values of
the argument. Second, the control variates approximation performs much better than
the Monte Carlo approximation, in particular, for small values of the argument. As a
consequence, we propose a control variates based parameter estimator whose integrated
mean squared error distance distinguishes between small and large values of the argument.

In a simulation study we show the good performance of these new simulation based
estimators for two important models. The first one is the long-range dependence ARFIMA
process. Long-range dependence models are characterized by having an autocovariance
function that decays like a power function and they can be applied in numerous fields,
including environmental and economic time series. Here, the simulation based parameter
estimator already performs similarly to the oracle estimator in terms of bias and standard
deviation, so there is no need to use control variates approximation. The second model is
a Poisson driven time series of counts. It is a nonlinear model, which has been proposed
in Zeger [106] and applied, for instance, for modeling disease counts (see also Campbell
[14], Chan and Ledolter [16] and Davis et al. [21]). Here the binding function cannot
be computed in closed form, so the oracle estimator is not applicable. The results show
the superiority of the control variates based parameter estimator, when compared with
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the simulation based parameter estimator. When compared with the composite pairwise
likelihood estimator in Davis and Yau [20], the control variates based parameter estimator
has comparable or even smaller bias.

The idea of using control variates for getting better approximations of the characteris-
tic function employed here and its good performance is a valuable result, which comes in
addition to its usefulness for parameter estimation in time series processes. This combi-
nation could also be useful for approximating finite dimensional characteristic functions,
distributions or densities of time series processes. Additionally, although we have focused
here on time series processes, the control variates based parameter estimator developed here
can also be applied to problems involving iid data for which the oracle estimator cannot
be applied. One such situation is when estimating ◊0 from observations X1, . . . , Xn

iid≥ F◊0 ,
where (F◊, ◊ œ �) is some family of distributions parameterized by ◊ for which neither its
density nor its characteristic function can be computed in closed-form.

The final part of this thesis deals with parameter estimation in a multivariate stochastic
volatility model.

Parameter estimation for the MUCOGARCH(1,1) process

Finally, we investigate the problem of parameter estimation in the multivariate CO-
GARCH(1,1) process (MUCOGARCH(1,1)) introduced in Stelzer [98]. It combines the fea-
tures of the COGARCH(1,1) process with the ones of the multivariate BEKK GARCH(1,1)
process of Engle and Kroner [30].

Multivariate models are necessary because in many areas of application, one has to
model and understand the joint behavior of several time series. Therefore, the MUCOG-
ARCH(1,1) is appropriate for modeling and understanding volatility and prices in several
stocks and prices jointly. Market behavior is represented by a large portfolio of the joint
d≠dimensional stochastic process and it is defined as

Pt(◊) =
⁄ t

0
Vs≠(◊)1/2dLs, t Ø 0, (0.0.12)

where L is a multivariate Lévy process in Rd with Lévy measure ‹L ”© 0 and having càdlàg
sample paths. The matrix-valued MUCOGARCH(1,1) volatility process (Vs)sØ0 depends
on a parameter ◊ œ �, it is predictable and its stochasticity depends only on L.

Since it is based on a Lévy process, it allows for jumps on the volatility process and
as well in the (log)-price process. The goal of the matrix process (Vs)sØ0 is to model the
volatility simultaneously in all components, and as well as dependence structure.

Individually, each (log) price component behaves like the COGARCH path shown
in Figure 2, exhibiting volatility clustering in the (log) price returns, with (log) price
returns uncorrelated, but not independent. We plot in Figure 3 the (log) price process
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for two components together with its volatility process. The diagonal entries of (Vs)sØ0
(Figures 3(b) and (c)) correspond to the individual volatility of the first and second (log)
price process from Figure 3(a), respectively. Their correlation is indicated by the o�-
diagonal entry of (Vs)sØ0 (Figure 3(d)).

(a) bivariate (log) price (Pi(◊)) (b) volatility (Vi,11(◊))

(c) volatility (Vi,22(◊)) (d) volatility (Vi,12(◊))

Figure 3: MUCOGARCH(1,1) process: L is a bivariate compound Poisson process with
rate 4 and iid N(0, 1/4I2) jumps, where I2 is the 2-dimensional identity matrix

In order to apply an estimator based on control variates developed for the one dimen-
sional model, it is crucial to know the second order structure of the MUCOGARCH(1,1)
process in closed form. Moreover, using a moment based estimator as a benchmark esti-
mator is also desirable. However, the second order structure of the ’squared returns’ is not
yet known.

Hence, our first challenge is to derive the second order structure of the squared returns
in closed form, which already in the one-dimensional case, require complicated lengthy
calculations. We accomplished this for the d-dimensional model by applying stochastic



xvi Abstract

integration theory adapted for vector and matrix-valued process. In particular, we use
integration by parts, Itô isometry, the compensation formula, and general inequalities to
obtain upper bounds for moments of stochastic integrals with integrands involving (Vs)sØ0
and integrators involving (Ls)sØ0 and its quadratic variation.

Then, we apply the generalized method of moments (GMM) to the MUCOGA-
RCH(1,1) process. Consistency and asymptotic normality of the GMM estimator is given
under standard assumptions of mixing, existence of moments of the MUCOGARCH(1,1)
volatility process and model identifiability. Then we give su�cient conditions under which
these assumptions will hold.

We use the su�cient conditions for mixing given in Stelzer and Vestweber [99] and the
conditions for asymptotic second order stationarity in Stelzer [98] to obtain consistency of
the GMM estimator under rather general conditions. We also obtain asymptotic normality
of the estimator under appropriate additional moment restrictions on the driving Lévy
process.

The identifiability question is more delicate, since the formulas for the second order
structure of the (log) price returns involve operators which are not invertible and, therefore,
the strategy used for showing identifiability as in the one-dimensional COGARCH(1,1)
process cannot be applied. Instead, we derive identifiability conditions which rely mainly
on the autocovariance structure of the squared returns.

This describes the contribution of the paper do Rêgo Sousa and Stelzer [26], where we
compute and prove the asymptotic properties of a generalized method of moment estimator
for the parameters of MUCOGARCH(1,1) process.

Final remarks

The thesis contains three chapters, which are self-contained, with their own introduc-
tion. Notations and abbreviations may di�er among them, since di�erent notations and
abbreviations seem reasonable in di�erent contexts. The chapters are based on a publica-
tion (Chapter 1), a submitted preprint (Chapter 2) and a work in progress (Chapter 3),
respectively:

• Chapter 1 is based on the paper do Rêgo Sousa et al. [27] that is published as:

T. do Rêgo Sousa, S. Haug, and C. Klüppelberg. Indirect Inference for Lévy-driven
continuous-time GARCH models. Scandinavian Journal of Statistics, 2019. To ap-
pear.

• Chapter 2 is based on the paper Davis et al. [24] that is submitted for publication
as:
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R.A. Davis, T. do Rêgo Sousa, and C. Klüppelberg. Indirect Inference for time series
using the empirical characteristic function and control variates. 2019. Submitted.
arXiv: 1904.08276.

• Chapter 3 is based on the paper do Rêgo Sousa and Stelzer [26] that is work in
progress:

T. do Rêgo Sousa and R. Stelzer. Method of moment based estimation for the mul-
tivariate COGARCH(1,1) process. 2019. In preparation.
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Chapter 1:
Indirect Inference for Lévy-driven continuous-time
GARCH models

1.1 Introduction

The COGARCH(1,1) process was introduced in Klüppelberg et al. [55] as a continuous
time analog of the discrete time GARCH(1,1) process. It is defined as

Pt(◊) =
⁄ t

0
‡s(◊)dLs, t Ø 0, (1.1.1)

with parameter ◊ (to be specified in Section 2.2), L is a Lévy process with Lévy measure
‹L ”© 0 and having càdlàg sample paths. The volatility process (‡s(◊))sØ0 is predictable
and its stochasticity depends only on L. The COGARCH process satisfies many stylized
features of financial time series and is suited for modeling high-frequency data (see Bayracı
and Ünal [2], Bibbona and Negri [7], Haug et al. [45], Klüppelberg et al. [57], Maller et al.
[70], and Müller [76]).

In many practical problems, one observes the log-price process (Pi�(◊0))n
i=1 on a fixed

grid of size � > 0 and the question of interest is how to estimate the true parameter ◊0.
The data used for estimation are returns (Gi(◊0))n

i=1, where

Gi(◊0) := P�i(◊0) ≠ P(i≠1)�(◊0) =
⁄ i�

(i≠1)�
‡s(◊0)dLs. (1.1.2)

Several methods have been proposed to estimate the parameter of a COGARCH process. A
method of moments was proposed in Haug et al. [45], Bibbona and Negri [7] used prediction
based estimation as developed in Sørensen [97], and Maller et al. [70] proposed a pseudo
maximum likelihood (PML) method which also works for non-equally spaced observations.
Both moment and prediction based estimators are consistent and asymptotically normal
under certain regularity conditions. The asymptotic properties of the PML estimator were
studied in Iannace [49] and in Kim and Lee [53], which require that � ¿ 0 as n æ Œ. For
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the COGARCH process, Bayracı and Ünal [2] used Indirect Inference with an auxiliary
discrete-time GARCH model with Gaussian residuals. No theoretical results were proved,
but their simulation study suggests that Indirect Inference estimators achieve a similar
performance as the PML estimator of Maller et al. [70] for fixed � > 0. Furthermore,
Müller [76] proposed a Markov chain Monte Carlo method, when L is a compound Poisson
process.

In this paper we advocate an Indirect Inference method, di�erent to the one suggested
in Bayracı and Ünal [2], to estimate the COGARCH parameter and derive the asymptotic
properties of the estimator. Such methods were introduced in Smith [95] and generalized
in Gourieroux et al. [39], and they o�er a way to overcome many estimation problems by a
clever simulation method. In short, it only requires that the true model can be simulated
and a reasonable estimation method for an approximate auxiliary model.

Indirect Inference was originally introduced for complex econometric models to over-
come the estimation problem of an intractable likelihood function, as for continuous time
models with stochastic volatility (see Bianchi and Cleur [6], Jiang [51], Laurini and Hotta
[63], Raknerud and Skare [88], and Wahlberg et al. [101]). Indirect Inference can also be
used as a vehicle to produce estimators which are robust, when there are outliers in the
observations (see de Luna and Genton [25] for robust estimation of a discrete time ARMA
and Fasen-Hartmann and Kimmig [31] of a continuous time ARMA). Another motivation
is given in Gourieroux et al. [40, 41], where it is shown that Indirect Inference can re-
duce the finite sample bias considerably. This is our motivation to study the asymptotic
properties of Indirect Inference estimators (IIE) in the context of COGARCH estimation.

The Indirect Inference procedure works as follows. Let fi denote the parameter of
an auxiliary model chosen for the COGARCH returns (Gi(◊0))n

i=1 or some transformed
random variables. From this data we estimate fi and obtain fîn. For many di�erent ◊ œ �
we simulate K Ø 1 independent samples of size n of COGARCH returns (G(k)

i (◊))n
i=1 and

compute the estimators fîn,k(◊) for k = 1, . . . , K. The IIE of ◊ is then defined as

◊̂n,II := arg min
◊œ�

1
fîn ≠ 1

K

Kÿ

k=1
fîn,k(◊)

2€
�

1
fîn ≠ 1

K

Kÿ

k=1
fîn,k(◊)

2
, (1.1.3)

where � is a symmetric and positive definite weight matrix. Under certain regularity
conditions, IIEs are consistent and asymptotically normal. These regularity conditions are
mainly related to three aspects: (A) find an auxiliary model whose parameter is connected
to the COGARCH parameter through a one-to-one binding function, (B) prove strong
consistency and asymptotic normality of fîn, and (C) prove that the estimator fîn(◊), as
a function of ◊, satisfies conditions for the application of a uniform strong law of large
numbers (SLLN) and a delta method for the asymptotic normality.

The starting point (A) is an appropriate auxiliary model that provides a one-to-one
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binding function. We follow previous approaches and use linear projections leading to
an auxiliary autoregressive (AR) model of appropriate order for the squared COGARCH
returns (G2

i (◊))iœN. Often the properties of the binding function are assessed via simulation
(see Garcia et al. [37] and Lombardi and Calzolari [67]), but for our models the binding
function can be proved to be one-to-one.

Part (B), strong consistency and asymptotic normality of the estimator fîn of the AR
model parameter fi, is obtained in a similar way as in classical time series analysis (see
e.g. Brockwell and Davis [13]), extending the theory to residuals, which may not be white
noise, but an arbitrary stationary and ergodic process with finite variance. The SLLN and
asymptotic normality of fîn will then be a consequence of the fact that (G2

i (◊))iœN is also
strong mixing with appropriate mixing coe�cients.

(C) is related to regularity conditions of the map ◊ ‘æ fîn(◊). To achieve strong con-
sistency of the IIE we need to show that

sup
◊œ�

Îfîn(◊) ≠ fi

◊

Î a.s.æ 0, n æ Œ.

To move from point-wise to uniform convergence we use a uniform SLLN in a compact
parameter space �. For the estimator we study here, the application of a uniform SLLN
holds provided that Gi(◊) is a continuous function in ◊ and E sup

◊œ� G4
i (◊) < Œ for

all i œ N. The continuity of this map does not follow directly from the continuity of
‡s(◊) for fixed s, because the Lévy process in the stochastic integral in (1.1.2) may have
infinite variation. Under conditions on the moments and the characteristic exponent of
the driving Lévy process, we find a version of Gi(◊) which is continuous by Kolmogorov’s
continuity criterion, and as a result we conclude strong consistency of the IIE ◊̂n,II. A
Taylor expansion of fîn(◊) around the true parameter ◊0 yields asymptotic normality by
the delta method. This requires continuous di�erentiability of Gi(◊) in ◊, which will follow
from a result of Hutton and Nelson [47] together with Kolmogorov’s continuity criterion.

Our paper is organised as follows. We start in Section 2 with the formal definition of
a stationary COGARCH process as returns process, and recall its relevant properties. We
also present the autoregressive (AR) auxiliary model of the squared returns and define the
least squares estimator (LSE) and Yule-Walker estimator (YWE) of the AR parameter, as
well as the binding function giving the link to the COGARCH parameter. In Section 2.3
we present the IIE and the conditions, which guarantee a uniform SLLN and asymptotic
normality of the IIE. In Section 3 we prove strong consistency and asymptotic normality
of the LSE and YWE under the non-standard conditions of stationary ergodicity and a
mixing property. Section 4 is dedicated to strong consistency and asymptotic normality of
the IIE of the COGARCH process. Section 5 presents a simulation study and shows that
the bias reduction based on the IIE is indeed substantial compared to previous estimators.
Technical results like conditions for the existence of a version of the COGARCH returns,
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which is continuous in its parameter and other auxiliary results are summarized in an
Appendix.

Throughout we write Î · Î for the ¸1-norm in Rd for d œ N and recall that in Rd all
norms are equivalent. For a matrix A œ Rp◊q we also write ÎAÎ for the matrix norm
generated by the ¸1-norm. For a vector x œ Rd and a d ◊ d positive definite matrix �
we write ÎxÎ� = x€�x. Furthermore, we denote by Lp the space of p-integrable random
variables, and by dim(A) the dimension of a subset A of Rd. For a function f(◊) in
R with ◊ œ Rq the gradient with respect to ◊ is Ò◊f(◊) = ( ˆ

ˆ◊l
f(◊))q

l=1 œ Rq, and
Ò2

◊f(◊) = ( ˆ2

ˆ◊k◊l
f(◊))q

k,l=1 œ Rq◊q denotes the Hessian matrix.

1.2 COGARCH process, auxiliary autoregressive representa-
tion and Indirect Inference Estimation

1.2.1 Definition of the COGARCH process

For the parameter space of the COGARCH process given as {◊ = (—, ÷, Ï)€ : —, ÷, Ï > 0},
we construct a strictly stationary version of the volatility process as in Klüppelberg et al.
[55]. First define the process (Ys(◊))sØ0 by

Ys(◊) := ÷s ≠
ÿ

0<uÆs

log(1 + Ï(�Lu)2), s Ø 0, (1.2.1)

with Laplace transform Ee≠pYs(◊) = es�◊(p), where

�
◊

(p) = ≠p÷ +
⁄

R
((1 + Ïx2)p ≠ 1)‹L(dx), p Ø 0. (1.2.2)

We shall often use the fact that for p > 0 by Lemma 4.1(a) in [55],

E|L1|2p < Œ if and only if |�
◊

(p)| < Œ.

Define the volatility process (‡2
t (◊))tØ0 by

‡2
t (◊) :=

1
—

⁄ t

0
eYs(◊)ds + ‡2

0(◊)
2
e≠Yt≠(◊), t Ø 0, (1.2.3)

where Yt≠(◊) denotes the left limit at t and ‡2
0(◊) the starting value of the volatility

process. If E|L1|2 < Œ and �
◊

(1) < 0, then by Lemma 4.1(c) of [55], ‡2
t (◊) dæ ‡2Œ(◊) as

t æ Œ, where
‡2

Œ(◊) d= —

⁄ Œ

0
e≠Ys(◊)ds.
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Setting the starting value as

‡2
0(◊) d= —

⁄ Œ

0
e≠Ys(◊)ds, independent of L, (1.2.4)

by Theorem 3.2 of [55] for such ◊ the process (‡2
t (◊))tØ0 is strictly stationary. Then by

Proposition 4.2 of [55] for the stationary process and k œ N,

E‡2k
0 (◊) < Œ if and only if EL2k

1 < Œ and �
◊

(k) < 0. (1.2.5)

Furthermore, for k = 1, 2 either of this implies that the squared returns from (1.1.2) have
corresponding finite moments (Proposition 5.1 of [55]). Additionally, by Corollary 3.1 of
[55] the process (Pt(◊))tØ0 defined in (3.1.1) with stationary (‡t(◊))tØ0 has stationary
increments.

1.2.2 Autoregressive representation for the squared returns

We estimate the COGARCH parameter, when the log-price process is observed on a regular
grid of fixed size � > 0 based on the returns (Gi(◊))iœN as defined in (1.1.2).

We state the basic assumptions and recall some properties of the COGARCH process.

Proposition 1.2.1 (Theorems 3.1 and 3.4 in Haug et al. [45]). Assume that the following
hold:
(A1) The parameter vector ◊ = (—, ÷, Ï)€ satisfies —, ÷, Ï > 0.

(A2) EL1 = 0 and VarL1 = 1.

(A3) The variance cL of the Brownian component of L is known and satisfies 0 Æ cL <

VarL1.

(A4) EL4
1 < Œ.

(A5)
s
R x3‹L(dx) = 0.

(A6) �
◊

(2) < 0.
Denote the expectation and variance of the squared returns process by

µ
◊

= EG2
1(◊) and “

◊

(0) = VarG2
1(◊).

Then the following assertions hold:
(a) The autocovariance function of the squared returns process is given by

“
◊

(h) = Cov(G2
i (◊), G2

i+h(◊)) = “
◊

(0)k
◊

e≠hfl◊ , h œ N. (1.2.6)

(b) If µ
◊

, “
◊

(0), k
◊

, fl
◊

> 0, then these parameters uniquely determine ◊.
(c) The process (Gi(◊))iœN is –-mixing with exponentially decaying mixing coe�cients.
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Assume that the driving Lévy process satisfies assumptions (A2)-(A5) of Proposi-
tion 1.2.1. We take as parameter space of the COGARCH process a compact set � satis-
fying the relevant conditions of Proposition 1.2.1; more precisely,

� µ M := {◊ = (—, ÷, Ï)€ : —, ÷, Ï > 0, �
◊

(2) < 0 and µ
◊

, “
◊

(0), k
◊

, fl
◊

> 0}. (1.2.7)

In what follows, we denote the true model parameter by ◊0 œ �. We present the auxil-
iary autoregressive model using the structure of COGARCH squared returns. Define the
centered squared returns for ◊ œ � as

G̃2
i (◊) := G2

i (◊) ≠ µ
◊

, i œ N. (1.2.8)

Proposition 1.2.2 (Auxiliary AR(r) model). Let ◊ œ � and r Ø 2 be fixed. Define

Ui(◊) := G̃2
i+r(◊) ≠ PHiG̃

2
i+r(◊), i œ N,

where Hi = sp{G̃2
i+r≠j(◊), j = 1, . . . , r} is the closed span in the Hilbert space L2 and PHi

the projection on Hi. Then there exist unique real numbers a
◊,1, . . . , a

◊,r such that

Ui(◊) = G̃2
i+r(◊) ≠

rÿ

j=1
a

◊,jG̃2
i+r≠j(◊), i œ N. (1.2.9)

Moreover, the process (Ui(◊))iœN is strictly stationary with EUi(◊) = 0 and VarUi(◊) < Œ.

Proof. We adapt the proof of Proposition 2.2 of Fasen-Hartmann and Kimmig [31] for
the COGARCH process. Since ◊ œ � µ M, by Proposition 1.2.1(a), the autocovariance
function of (G̃2

i (◊))iœN satisfies “
◊

(0) > 0 and “
◊

(h) æ 0 as n æ Œ. By Proposition 5.1.1
of Brockwell and Davis [13] it follows that the autocovariance matrix of (G̃2

i (◊))r
i=1 is

non-singular. Hence, the numbers a
◊,1, . . . , a

◊,r are uniquely given by

Q

cccca

a
◊,1

a
◊,2
...

a
◊,r

R

ddddb
=

Q

cccca

“
◊

(0) “
◊

(1) . . . “
◊

(r ≠ 1)
“

◊

(1) “
◊

(0) . . . “
◊

(r ≠ 2)
...

...
...

“
◊

(r ≠ 1) “
◊

(r ≠ 2) . . . “
◊

(0)

R

ddddb

≠1 Q

cccca

“
◊

(1)
“

◊

(2)
...

“
◊

(r)

R

ddddb
(1.2.10)

leading to (1.2.9).

Proposition 1.2.2 gives an AR(r) representation for r Ø 2 for the COGARCH squared
returns from (1.2.8) by rewriting (1.2.9) as G̃2

i+r(◊) =
qr

j=1 a
◊,jG̃2

i+r≠j(◊) + Ui(◊) for
i œ N. Let

fi

◊

:= (µ
◊

, a

◊

, “
◊

(0))€ = (µ
◊

, a
◊,1, . . . , a

◊,r, “
◊

(0))€, (1.2.11)
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and let C µ Rr be a compact subset of the set containing all possible real coe�cients
of a strictly stationary AR(r) process. Then we define a compact parameter space of the
auxiliary model as

� :=
Ë

≠ 1
‘

,
1
‘

È
◊ C ◊

Ë
‘,

1
‘

È
, (1.2.12)

where ‘ is a small positive constant.
We will investigate two well-known estimators of fi

◊

in (1.2.11), namely the least
squares estimator (LSE) and the Yule-Walker estimator (YWE) defined by

fîn,LS(◊) =

Q

ca
µ̂n(◊)

ân,LS(◊)
“̂n(0; ◊)

R

db and fîn,YW(◊) =

Q

ca
µ̂n(◊)

ân,YW(◊)
“̂n(0; ◊)

R

db , (1.2.13)

respectively, whose components are given as follows.

Definition 1.2.3. The estimators of the mean and variance are given by

µ̂n(◊) = 1
n

nÿ

i=1
G2

i (◊) and “̂n(0; ◊) = 1
n

nÿ

i=1
(G2

i (◊) ≠ µ̂n(◊))2.

(a) The LSE of (a
◊,1, . . . , a

◊,r)€ is given by

ân,LS(◊) = arg min
cœC

Sn(c; ◊),

for C as in (1.2.12), and

Sn(c; ◊) := 1
n ≠ r

n≠rÿ

i=1

1
(G2

i+r(◊) ≠ µ̂n(◊)) ≠ c1(G2
i+r≠1(◊)

≠ µ̂n(◊)) ≠ · · · ≠ cr(G2
i (◊) ≠ µ̂n(◊))

22
.

(b) The YWE of (a
◊,1, . . . , a

◊,r)€ is given by

ân,YW(◊) = �̂≠1
n (◊)“̂n(◊), n œ N, (1.2.14)

where �̂≠1
n (◊) = (“̂n(i ≠ j; ◊))r

i,j=1 and “̂n(◊) = (“̂n(1; ◊), . . . , “̂n(r; ◊))€ are defined in
terms of the empirical autocovariance function

“̂n(h; ◊) = 1
n

n≠hÿ

i=1
(G2

i (◊) ≠ µ̂n(◊))(G2
i+h(◊) ≠ µ̂n(◊)), h, n œ N, n > h.

We now define a function that will connect the COGARCH process to its auxiliary
AR model from Proposition 1.2.2.
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Proposition 1.2.4 (Binding function). Define the binding function fi : � æ � by fi(◊) =
fi

◊

as in (1.2.11). Then fi is injective and continuously di�erentiable for r Ø 2.

Proof. As in the proof of Lemma 2.5 in Fasen-Hartmann and Kimmig [31], we decompose
fi : � æ � into three maps fi = fi1 ¶ fi2 ¶ fi3. Define fi1 : � æ R4 by

fi1(◊) = (µ
◊

, k
◊

, fl
◊

, “
◊

(0))€,

which is by Proposition 1.2.1(b) injective. Next define fi2 : fi1(�) æ Rr+2 by

fi2(µ
◊

, k
◊

, fl
◊

, “
◊

(0)) = (µ
◊

, “
◊

(1), . . . , “
◊

(r), “
◊

(0))€.

By (1.2.6), “
◊

(h) = “
◊

(0)k
◊

e≠hfl◊ for h œ N, and simple algebra shows that k
◊

and fl
◊

are
uniquely determined by

k
◊

= “2
◊

(1)
“

◊

(0)“
◊

(2) and fl
◊

= log
1“

◊

(1)
“

◊

(2)
2
, (1.2.15)

and, therefore, fi2 is injective. Finally, define the map fi3 : fi2(fi1(�)) æ �, by

fi3(µ
◊

, “
◊

(1), . . . , “
◊

(r), “
◊

(0)) = (µ
◊

, a
◊,1, . . . , a

◊,r, “
◊

(0))€.

The map fi3 is injective, since “
◊

(1), . . . , “
◊

(r) are uniquely determined by a
◊,1, . . . , a

◊,r

and “
◊

(0). We need r Ø 2 in order to recover (“
◊

(1), “
◊

(2)) from (“
◊

(0), a
◊,1, a

◊,2) using
the system of Yule-Walker equations (1.2.10), so that (1.2.15) remains valid. This implies
the injectivity of the composition fi.

Now we prove that fi is continuously di�erentiable. The map fi1 is given in terms of
equations (3.6)-(3.9) of Theorem 3.1 of Haug et al. [45], which are continuously di�er-
entiable maps of �

◊

(1) and �
◊

(2) as defined in (1.2.2). By assumption (A4) of Proposi-
tion 1.2.1 the Lévy process L has finite fourth moment and, therefore, both �

◊

(1) and
�

◊

(2) exist and are continuously di�erentiable in ◊. By (1.2.6), fi2 is continuously di�eren-
tiable. Finally, fi3 is also continuously di�erentiable since it is defined recursively by means
of the Yule-Walker equations (1.2.10). This proves that the composition fi is continuously
di�erentiable.

1.2.3 Indirect Inference Estimation

Let fîn(◊) denote an estimator of the auxiliary AR(r) model for r Ø 2 based on the returns
(Gi(◊))n

i=1, where ◊ lies in a compact subspace � of M as in (1.2.7). We define now the
IIE for the COGARCH process.
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Definition 1.2.5. Let Gn := (Gi(◊0))n
i=1 be the returns as defined in (1.1.2). Let fîn be

one of the estimators given in (1.2.13) of fi

◊0 as defined in (1.2.11). For arbitrary ◊ œ �
and k = 1, . . . , K let fîn,k(◊) be estimators of fi

◊

based on independent simulated paths
Gn,k(◊) := (G(k)

i (◊))n
i=1. Let � be a symmetric and positive definite weight matrix. Define

the function

L̂II : � æ [0, Œ) based on Gn by L̂II(◊, Gn) :=
...fîn ≠ 1

K

Kÿ

k=1
fîn,k(◊)

...
�

.

Then the IIE of ◊0 is defined as

◊̂n,II := arg min
◊œ�

L̂II(◊, Gn). (1.2.16)

Concerning the asymptotic behavior of the IIE one would hope that strong consis-
tency and asymptotic normality of the estimator of the auxiliary model parameter also
implies strong consistency and asymptotic normality of the IIE. However, as the Indirect
Inference method is based on the simulation of the COGARCH process for many di�erent
parameters, we need a stronger (uniform) consistency result and also additional regular-
ity conditions to ensure this. The following is a modification of Propositions 1 and 3 of
Gourieroux et al. [39], and it is the analog of Theorem 3.2 of Fasen-Hartmann and Kimmig
[31] in the context of our model.

Proposition 1.2.6. Assume the setting of Definition 1.2.5 and r Ø 2.
(a) If the uniform SLLN

sup
◊œ�

Îfîn(◊) ≠ fi

◊

Î a.s.æ 0, n æ Œ, (1.2.17)

holds, then the IIE (1.2.16) is strongly consistent:

◊̂n,II
a.s.æ ◊0, n æ Œ.

(b) Assume additionally to (1.2.17) that the following assumptions hold:

(b.1) for every n œ N the map ◊ ‘æ fîn(◊) is continuously di�erentiable,
(b.2) for every ◊ œ � we have

Ô
n(fîn(◊) ≠ fi

◊

) dæ N (0, �
◊

) as n æ Œ, and
(b.3) for every sequence (◊n)nœN with ◊n

a.s.æ ◊0 as n æ Œ it also holds that

Ò
◊

fîn(◊n) Pæ Ò
◊

fi

◊0 , n æ Œ,

and Ò◊fi(◊0) has full column rank 3.
(b.4) The true parameter ◊0 lies in the interior of �.
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Then the IIE (1.2.17) is asymptotically normal:
Ô

n(◊̂n,II ≠ ◊0) dæ N (0, �
◊0), n æ Œ,

where the asymptotic variance is given by

�
◊0 = (J

◊0)≠1I
◊0(J

◊0)≠1 (1.2.18)

with

J
◊0 = (Ò

◊

fi
◊0)€�(Ò

◊

fi
◊0) and

I
◊0 = (Ò

◊

fi
◊0)€�

1
1 + 1

K

2
�

◊0�(Ò
◊

fi
◊0). (1.2.19)

Proof. Part (a) follows as a particular case of the proof of Theorem 3.2 of [31]. For part
(b), we need to check assumptions (C.3)-(C.5) of that theorem. By construction of the
estimator (1.2.13) the asymptotic covariance matrices in (C.3) and (C.4) are identical, so
that (b.2) implies (C.3) and (C.4). Instead of verifying (C.5) we modify their argument
(under (b.1) and (b.4)), when manipulating the first order condition

0 = Ò◊L̂II(◊̂n,II, Gn) = 2(Ò◊fîn(◊̂n,II))T �(fîn(◊̂n,II) ≠ fîn). (1.2.20)

We follow Theorem 3.2 of Newey and McFadden [78], and perform a Taylor expansion of
order 1 around the true value ◊0 of the function fîn(◊̂n,II) in (1.2.20). After rearranging
the terms this leads to

Ô
n(◊̂n,II ≠ ◊0) = ≠

1
(Ò◊fîn(◊̂n,II))T �(Ò◊fîn(◊n))

2≠1!Ò◊fîn(◊̂n,II)
"

�
Ô

n
!
fîn(◊0) ≠ fîn

"
,

where ◊n is such that Î◊n ≠ ◊0Î Æ Î◊̂n,II ≠ ◊0Î. The asymptotic normality follows for
n æ Œ from (a), (b.2) and (b.3).

1.3 Auxiliary autoregressive model - strong consistency and
asymptotic normality

Our objective is to investigate the asymptotic behavior of the IIE for the COGARCH
parameter ◊ using an AR(r) model for fixed r Ø 2 as auxiliary model. This amounts to
verifying all assumptions of Proposition 1.2.6.

In a first step we investigate strong consistency and asymptotic normality of the two
estimators of the auxiliary AR(r) parameter from Definition 1.2.3, which result from the
projection presented in Proposition 1.2.2, and may have a non-zero mean. We recall that
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in classical time series theory the two estimators are asymptotically equivalent (cf. the
proof of Theorem 8.1.2 in Brockwell and Davis [13]).

Here the situation is di�erent and, to the best of our knowledge, has not yet been cov-
ered in the literature. The noise process (Ui(◊))iœN from (1.2.9) is defined as the projection
errors over the finite past. Thus, Ui(◊) is orthogonal to Hi = sp{G̃2

i+r≠j(◊), j = 1, . . . , r},
but we cannot guarantee that it is also orthogonal to sp{G̃2

i+r≠j(◊), j œ N}, so it may not
be a white noise process. Therefore, the classical asymptotic theory for the estimation of
autoregressive processes (when data come from an AR model with white noise residuals)
does not apply directly. Since the residuals are stationary and ergodic with zero mean
and finite variance, and since Ui(◊) is orthogonal to Hi = sp{G̃2

i+r≠j(◊), j = 1, . . . , r}, we
obtain results by modifying the classical arguments.

This section provides asymptotic results for the estimators of the auxiliary AR model
for some arbitrary, but fixed COGARCH parameter ◊, where the dependence on ◊ is
irrelevant, and we omit it for ease of notation. We define (Wi)iœN := (G2

i )iœN and rewrite
the auxiliary AR(r) model of Proposition 1.2.2 with parameter fi = (µ, a, “(0)) as

W̃i+r =
rÿ

j=1
ajW̃i+r≠j + Ui, i œ N,

where W̃i = G̃2
i = Wi ≠ µ, µ = EW1 and “(0) = VarW1.

1.3.1 Strong consistency of LSE and YWE

Lemma 1.3.1. Let the assumptions of Proposition 1.2.1 hold. Then as n æ Œ, µ̂n
a.s.æ µ

and “̂n(h) a.s.æ “(h) for h œ N0.

Proof. From Proposition 1.2.1 we know that E|W1| < Œ and (Wi)iœN is ergodic, so that
Birkho�’s ergodic theorem (see e.g. Theorem 4.4 in Krengel [62]) gives immediately µ̂n

a.s.æ
µ as n æ Œ. To prove almost sure convergence of the empirical autocovariance function,
we first investigate it, when the mean µ is known:

“ú
n(h) := 1

n

n≠hÿ

i=1
(Wi ≠ µ)(Wi+h ≠ µ), h œ N0. (1.3.1)

Since WiWi+h is for every i œ N a measurable map of finitely many values of (Wi)iœN, the
sequence (WiWi+h)iœN is ergodic. From Proposition 1.2.1(a), E|W1W1+h| < Œ, so that
Birkho�’s ergodic theorem gives “ú

n(h) a.s.æ “(h) as n æ Œ. Simple algebra shows that

“̂(h) ≠ “ú(h) = 1
n

n≠hÿ

i=1
(Wi + Wi+h ≠ µ̂n ≠ µ)(µ ≠ µ̂n). (1.3.2)

Since as n æ Œ, µ̂n
a.s.æ µ, the di�erence “ú

n(h) ≠ “̂n(h) a.s.æ 0; hence, “̂n(h) a.s.æ “(h).
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Theorem 1.3.2 (Consistency of LSE and YWE). Let the assumptions of Proposition 1.2.1
hold. Then as n æ Œ, ân,LS

a.s.æ a and ân,YW
a.s.æ a.

Proof. We start by proving strong consistency of the LSE, when the mean µ is known:

a

ú
n,LS = arg min

cœC
Sú

n(c), (1.3.3)

for C as in (1.2.12), and

Sú
n(c) = 1

n ≠ r

n≠rÿ

i=1

!
(Wi+r ≠ µ) ≠ cr(Wi+r≠1 ≠ µ) ≠ · · · ≠ c1(Wi ≠ µ)

"2
.

As in Section 8.10* of [13] we write the auxiliary AR(r) model in matrix form as

Ỹn = W̃na + Un, n œ N,

where Ỹn = (W̃r+1, . . . , W̃n)€, Un = (U1, . . . , Un≠r)€ and W̃n is the n ◊ r design matrix,

W̃n =

Q

cccca

W̃r W̃r≠1 . . . W̃1
W̃r+1 W̃r . . . W̃2

...
...

...
W̃n≠1 W̃n≠2 . . . W̃n≠r

R

ddddb
. (1.3.4)

Then notice that (n ≠ r)Sú
n(c) = (Ỹn ≠ W̃nc)€(Ỹn ≠ W̃nc), revealing the LSE as a linear

regression-type estimator given by

a

ú
n,LS = (W̃ €

n W̃n)≠1
W̃

€
n Ỹn, (1.3.5)

provided that the r ◊ r matrix W̃

€
n W̃n is invertible. We prove that n≠1

W̃

€
n W̃n converges

a.s. as n æ Œ to an invertible matrix. For each fixed u, v œ {1, . . . , r} the (u, v)-th entry
of this matrix is

1
n

n≠r≠1ÿ

i=0
W̃r+1≠u+iW̃r+1≠v+i.

Since W̃r+1≠u+iW̃r+1≠v+i is for every i œ N0 a measurable map of finitely many values
of (Wi)iœN, the sequence (W̃r+1≠u+iW̃r+1≠v+i)iœN0 is ergodic. Since EW 2

1 < Œ Birkho�’s
ergodic theorem gives

1
n

n≠r≠1ÿ

i=0
W̃r+1≠u+iW̃r+1≠v+i

a.s.æ EW̃1W̃1+|u≠v|, n æ Œ, (1.3.6)

and thus n≠1
W̃

€
n W̃n

a.s.æ � as n æ Œ, where � is the autocovariance matrix of the squared
COGARCH returns, which is non-singular (cf. the proof of Proposition 1.2.2). Thus, � is
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invertible and, therefore, the estimator given in (1.3.5) is well defined for n large enough.
With (1.3.5) we calculate

a

ú
n,LS ≠ a = (W̃ €

n W̃n)≠1
W̃

€
n (W̃na + Un) ≠ a

= n(W̃ €
n W̃n)≠1 1

n
W̃

€
n Un

= n(W̃ €
n W̃n)≠1 1

n

nÿ

i=1

1
W̃i+r ≠

rÿ

j=1
ajW̃i+r≠j

2
Q

cca

W̃i+r≠1
...

W̃i

R

ddb

=: (n≠1
W̃

€
n W̃n)≠1 1

n

nÿ

i=1
Zi. (1.3.7)

Since Zi is for every i œ N a measurable map of finitely many values of (Wi)iœN, the
sequence (Zi)iœN is ergodic. According to Proposition 1.2.2, W̃i+r ≠ qr

j=1 ajW̃i+r≠j is un-
correlated with W̃i, . . . , W̃i+r≠1 for all i œ N. Since E|Z1| < Œ Birkho�’s ergodic theorem
gives

1
n

nÿ

i=1
Zi

a.s.æ EZ1 = 0.

This together with the fact that the first term of (1.3.7) converges a.s. to �≠1 shows that

a

ú
n,LS

a.s.æ a, n æ Œ.

It remains to prove that (ân,LS ≠a

ú
n,LS) a.s.æ 0 as n æ Œ. Write the LSE in the matrix form

ân,LS = (W̄ €
n W̄n)≠1

W̄

€
n Ȳn,

where W̄n and Ȳn denote the matrix and vector defined in Eq. (1.3.4), with entries of the
form W̄i = Wi≠µ̂n. Using the matrix identity A≠1x≠C≠1y = A≠1(x≠y)+A≠1(C≠A)C≠1y

gives

ân,LS ≠ a

ú
n,LS =

1
W̄

€
n W̄n

n

2≠11
W̄

€
n Ȳn

n
≠ W̃

€
n Ỹn

n

2

+
1

W̄

€
n W̄n

n

2≠11
W̃

€
n W̃n

n
≠ W̄

€
n W̄n

n

21
W̃

€
n W̃n

n

2≠11
W̃

€
n Ỹn

n

2
.

(1.3.8)

By Birkho�’s ergodic theorem n≠1
W̄

€
n W̄n, n≠1

W̃

€
n W̃n and n≠1

W̃

€
n Ỹn converge a.s. to

two matrices and a vector, respectively. Additionally, by (1.3.2) we can apply Birkho�’s
ergodic theorem to obtain as n æ Œ,

1
W̄

€
n Ȳn

n
≠ W̃

€
n Ỹn

n

2 a.s.æ 0 and
1

W̃

€
n W̃n

n
≠ W̄

€
n W̄n

n

2 a.s.æ 0,

showing that the LSE is strongly consistent. For the YWE the proof is a direct consequence
of Lemma 1.3.1 and the continuous mapping theorem.



14 1. Indirect Inference for COGARCH models

1.3.2 Asymptotic normality of the LSE and YWE

One of the requirements for asymptotic normality of the IIE of the COGARCH parameter
◊ is condition (b.2) of Proposition 1.2.6. This means we have to prove asymptotic normality
of fîn,LS and fîn,YW. We start with an auxiliary result.

Lemma 1.3.3. Let the assumptions of Proposition 1.2.1 hold. Let a

ú
n,LS be the LSE defined

in (1.3.3) and a

ú
n,YW be the modification of the YWE defined in (1.2.14), when the true

mean µ is known, i.e., with “̂n(·) replaced by “ú(·) from (1.3.1). Then as n æ Œ,

(a)
Ô

n(µ̂2
n ≠ µ2) Pæ 0,

(b)
Ô

n(aú
n,YW ≠ ân,YW) Pæ 0,

(c)
Ô

n(aú
n,YW ≠ a

ú
n,LS) Pæ 0,

(d)
Ô

n(aú
n,LS ≠ ân,LS) Pæ 0.

Proof. (a) Write
Ô

n(µ̂2
n ≠ µ2) =

Ô
n(µ̂n + µ)(µ̂n ≠ µ) and notice that by Lemma 1.3.1

we only need to show that
Ô

n(µ̂n + µ) is bounded in probability. It follows from (1.2.6)
that “(h) decays exponentially in h and thus

qŒ
h=≠Œ |“(h)| < Œ. Let ‘ > 0 be fixed and

apply Chebyshev’s inequality to get

P(
Ô

n|µ̂n + µ| > ‘) Æ ‘≠2nVar(µ̂n) æ ‘≠2
Œÿ

h=≠Œ
“(h) < Œ, n æ Œ,

where the convergence follows from Theorem 7.1.1 in Brockwell and Davis [13].
(b) Write a

ú
n,YW = (�ú

n)≠1
“

ú
n with autocovariance function “ú(·) defined in (1.3.1). Using

properties of the inverse matrix we get
Ô

n(aú
n,YW ≠ ân,YW) =

Ô
n

!
�̂≠1

n “̂n ≠ (�ú
n)≠1

“

ú
n

"

= �̂≠1
n

Ô
n(�ú

n ≠ �̂n)(�ú
n)≠1

“̂n + (�ú
n)≠1Ô

n(“̂n ≠ “

ú
n).

The estimators �̂n, �ú
n and “̂n are all bounded in probability. For fixed h œ N0 it follows

from (1.3.2) and Lemma 1.3.3(a) that
Ô

n(“̂n(h) ≠ “ú
n(h)) Pæ 0 as n æ Œ. Therefore,Ô

n(�ú
n ≠ �̂n) and

Ô
n(“̂n ≠ “

ú
n) also converge to zero in probability as n æ Œ, which

entails (b).
(c) This follows similarly as in the proof of Theorem 8.1.1 in Brockwell and Davis [13].
(d) By (1.3.8) and observing that n≠1

W̄

€
n W̄n, n≠1

W̃

€
n W̃n and n≠1

W̃

€
n Ỹn are bounded in

probability, we only need to show that n≠ 1
2 {W̄

€
n Ȳn≠W̃

€
n Ỹn} and n≠ 1

2 {W̃

€
n W̃n≠W̄

€
n W̄n}

converge to zero in probability as n æ Œ. These terms only depend on the autocovariance
function of the process (Wi)iœN and therefore convergence in probability to zero follows
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from
Ô

n(“̂n(h) ≠ “ú
n(h)) Pæ 0 as n æ Œ as can be seen from (1.3.2), and the fact thatÔ

nµ̂n is bounded in probability.

The following is the main result of this Section and proves Assumption (b.2) of Propo-
sition 1.2.6.

Theorem 1.3.4 (Asymptotic normality of the LSE and YWE). Let the assumptions of
Proposition 1.2.1 hold. Assume additionally that E|L1|8+‘ < Œ and �

◊

(4 + ‘
2) < 0 for

some ‘ > 0 and that the matrix � defined in (1.3.9) is positive definite. Then, both LSE
and YWE for the AR(r) model for r Ø 2 are asymptotically normal with covariance matrix

� =

Q

cccccca

R

ddddddb

1 0 . . . 0 0
0

�≠1
0

...
...

0 0
0 0 . . . 0 1

�ú, (1.3.9)

where � is the autocovariance matrix of (Wi)r
i=1,

�ú = EC1C

€
1 + 2

Œÿ

i=1
EC1C

€
1+i, (1.3.10)

with Ci œ Rr+2 given by

Ci =

Q

ccccccca

W̃i

(W̃i+r ≠ qr
j=1 ajW̃i+r≠j)W̃i+r≠1

...
(W̃i+r ≠ qr

j=1 ajW̃i+r≠j)W̃i

W 2
i ≠ µ2

R

dddddddb

. (1.3.11)

Proof. Write

Ô
n(fîn,LS ≠ fi) =

Ô
n

Q

ca
µ̂n ≠ µ

ân,LS ≠ a

“̂n(0) ≠ “(0)

R

db

=
Ô

n

Q

ca
0

ân,LS ≠ a

ú
n,LS

µ2 ≠ µ̂2
n

R

db +
Ô

n

Q

ca
µ̂n ≠ µ

a

ú
n,LS ≠ a

“̂n(0) + µ̂2
n ≠ EW 2

1

R

db

(1.3.12)
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and

Ô
n(fîn,YW ≠ fi) =

Ô
n

Q

ca
µ̂n ≠ µ

ân,YW ≠ a

“̂n(0) ≠ “(0)

R

db

=
Ô

n

Q

ca
0

ân,YW ≠ a

ú
n,YW

µ2 ≠ µ̂2
n

R

db +
Ô

n

Q

ca
0

a

ú
n,YW ≠ a

ú
n,LS

0

R

db +
Ô

n

Q

ca
µ̂n ≠ µ

a

ú
n,LS ≠ a

“̂n(0) + µ̂2
n ≠ EW 2

1

R

db .

(1.3.13)

We apply Lemma 1.3.3 to the right-hand side of (1.3.12) and (1.3.13) and find that it
su�ces to prove that

Ô
n

Q

ca
µ̂n ≠ µ

a

ú
n,LS ≠ a

“̂n(0) + µ̂2
n ≠ EW 2

1

R

db dæ N (0, �), n æ Œ.

Using (1.3.7) we write

Ô
n

Q

ca
µ̂n ≠ µ

a

ú
n,LS ≠ a

“̂n(0) + µ̂2
n ≠ EW 2

1

R

db =
Ô

n

Q

ca

1
n

qn
i=1(Wi ≠ µ)

n(W̃ €
n W̃n)≠1 1

n

qn
i=1 Zi

1
n

qn
i=1(Wi ≠ µ̂n)2 + µ̂2

n ≠ EW 2
1

R

db

=

Q

cccccca

R

ddddddb

1 0 . . . 0 0
0

n(W̃ €
n W̃n)≠1

0
...

...
0 0
0 0 . . . 0 1

1Ô
n

nÿ

i=1

Q

ca
Wi ≠ µ

Zi

W 2
i ≠ EW 2

1

R

db

=: Bn
1Ô
n

nÿ

i=1
Ci.

(1.3.14)

For the asymptotic normality of (1.3.14) we use the Cramér-Wold device and show that

Ô
n

1 1
n

nÿ

i=1
⁄

€
Ci

2
dæ N (0, ⁄

€�ú
⁄), n æ Œ,

for all vectors ⁄ œ Rr+2 such that ⁄

€�ú
⁄ > 0. It follows from Proposition 1.2.1(c)

that the squared returns process (Wi)iœN is –-mixing with exponentially decaying mixing
coe�cients. Since each Ci is a measurable function of Wi, . . . , Wi≠r it follows from Re-
mark 1.8 of Bradley [12] that (⁄€

Ci)iœN is also –-mixing with mixing coe�cients satisfying
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–
C

(n) Æ –
W

(n ≠ (r + 1)) for all n Ø r + 2. Therefore
qŒ

n=0(–
C

(n))
‘

2+‘ < Œ for all ‘ > 0.
Since E|L1|8+‘ < Œ and �

◊

(4 + ‘
2) < 0 it follows from (1.2.5) that E|W1|4+‘/2 < Œ and,

as a consequence, E|⁄€
C1|2+‘/4 < Œ. Thus, the CLT for –-mixing sequences applies (see

Theorem 18.5.3 of Ibragimov and Linnik [50]) so that

Ô
n

1 1
n

nÿ

i=1
⁄

€
Ci

2
dæ N (0, ’), n æ Œ,

where ’ = E⁄

€
C1C

€
1 ⁄ + 2

qŒ
i=1 E⁄

€
C1C

€
1+i⁄. After rearranging this equation we find

(1.3.10). Let Bn = (bn
u,v)r+2

u,v=1 denote the matrix as defined in (1.3.14). Using (1.3.6) we
get for 2 Æ u, v Æ r + 1,

bn
u,v

a.s.æ E(W1 ≠ µ)(W1+|u≠v| ≠ µ), n æ Œ.

Then the inner block of the matrix Bn converges a.s. to �≠1. This gives (1.3.9),which
finishes the proof.

1.4 IIE of the COGARCH process - strong consistency and
asymptotic normality

The objective of this section is to prove strong consistency and asymptotic normality of
the IIE of the COGARCH parameter ◊. Let (Gi(◊0))n

i=1 be the returns originating from a
COGARCH log-price process (3.1.1). As auxiliary model we use an AR(r) model for fixed
r Ø 2 as in Proposition 1.2.2, whose parameters are estimated by one of the estimators
fîn from Definition 1.2.3, which we consider as functions of the COGARCH parameter ◊.

1.4.1 Preliminary results

We begin with an auxiliary result, which is a consequence of Theorem 3.2 of [55].

Lemma 1.4.1. Assume that E|L1|2 < Œ and �
◊i

(1) < 0 for i = 1, . . . , d. Then for every
t > 0,

(‡2
t (◊1), . . . , ‡2

t (◊d)) d= (‡2
0(◊1), . . . , ‡2

0(◊d)).

In what follows we shall need for fixed Ï > 0 the stochastic process

Ks(Ï) =
ÿ

0<uÆs

(�Lu)2

1 + Ï(�Lu)2 , s Ø 0. (1.4.1)

Lemma 1.4.2. The process (Ks(Ï))sØ0 is a Lévy process and E|Ks(Ï)|p < Œ for all
p œ N.
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Proof. That (Ks(Ï))sØ0 is a Lévy process is clear. Since

sup
sØ0

|�Ks(Ï)| = sup
sØ0

(�Ls)2

1 + Ï(�Ls)2 Æ 1
Ï

< Œ (1.4.2)

it follows that (Ks(Ï))sØ0 has bounded jumps and, therefore, it has moments of all orders
(see e.g. Theorem 2.4.7 of [1]).

For p Ø 1 consider the sets

�(p) µ M(p) := {◊ œ M : �
◊

!
p
"

< 0}, (1.4.3)

where �(p) is compact, and recall from (1.2.5) that the condition �
◊

!
p) < 0 implicitly

requires E|L1|2p < Œ.

Lemma 1.4.3. Let p Ø 1 and t Ø 0 be fixed and consider the sets �(p) and M(p) as in
(1.4.3). Then the following hold.
(a) There exist numbers ◊

ú
1, . . . , ◊

ú
N œ M(p) such that

sup
◊œ�(p)

e≠Yt(◊) Æ
Nÿ

j=1
e≠Yt(◊ú

j ).

(b) There exists some ‡ú > 0 such that ‡0(◊) Ø ‡ú a.s. for all ◊ œ �.

Proof. (a) We use a Heine-Borel argument to control the exponential term. Since �(p) is
compact we can find a finite collection of open sets (�(p)

j )N
j=1 such that �(p) ™ fiN

j=1�(p)
j µ

M(p). For each fixed j the closure �(p)
j is a subspace of M(p) and therefore there exists a

point ◊

ú
j = (—ú

j , ÷ú
j , Ïú

j )€ œ M(p) such that ÷ Ø ÷ú
j , Ï Æ Ïú

j for all ◊ œ �(p)
j . This implies

that for all ◊ œ �(p)
j :

Yt(◊) = ÷t ≠
ÿ

0<uÆt

log(1 + Ï(�Lu)2) Ø ÷ú
j t ≠

ÿ

0<uÆt

log(1 + Ïú
j (�Lu)2) = Yt(◊ú

j ), t Ø 0.

This implies sup
◊œ�(p) e≠Yt(◊) Æ qN

j=1 e≠Yt(◊ú
j ).

(b) is Proposition 2 of Klüppelberg et al. [56].

Remark 1.4.4. Both fîn,YW (by (1.2.14)) and fîn,LS (as in the proof of Proposition 5.6
of Fasen-Hartmann and Kimmig [31]) can be written as a map g : Rr+2 æ Rr+2 for r Ø 2
with g(x) = (g1(x), . . . , gr+2(x)) for x = (x1, . . . , xr+2) applied to the vector

fn(◊) =
1 1

n

nÿ

i=1
G2

i (◊), 1
n

n≠hÿ

i=1
G2

i (◊)G2
i+h(◊), h = 0, . . . , r

2
, n œ N. (1.4.4)
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Since g involves only matrix multiplications and matrix inversion of non-singular matrices,
it inherits the smoothness properties of Gi(◊) for i œ N. Since (Gi(◊))iœN is stationary and
ergodic, Birkho�’s ergodic theorem applies and fn(◊) converges a.s. as n æ Œ pointwise
to

f(◊) = (EG2
1(◊),EG2

1(◊)G2
1+h(◊), h = 0, . . . , r). (1.4.5)

Remark 1.4.5. The results that follow are related to continuity and di�erentiability of
the random elements (Gi(◊), ◊ œ �) for i œ N with respect to ◊. According to (1.2.3) and
(1.2.4) we find

Gi(◊) =
⁄ i�

(i≠1)�
‡s((—, ÷, Ï))dLs =


—

⁄ i�

(i≠1)�
‡s((1, ÷, Ï))dLs =


— Gi((1, ÷, Ï)),

which is linear in
Ô

—, hence, (Gi(◊), ◊ œ �) is obviously continuous in — and has a partial
derivative with respect to — > 0.

1.4.2 Strong consistency of the IIE

To ensure strong consistency of ◊̂n,II, we need to verify that fîn(◊) satisfies the uniform
SLLN of Proposition 1.2.6(a). The results of Lemma 1.3.1 and Theorem 1.3.2 guarantee
point-wise strong consistency. Uniform strong consistency will hold by continuity of g (cf.
Lemma 1.6.2), if we can apply a uniform SLLN to the sequence in (1.4.4).

Since the sequence of random elements (Gi(◊), ◊ œ �)iœN is stationary and ergodic,
we need to show (cf. Theorem 7 in Straumann and Mikosch [100]) that Gi(◊) is for every
i œ N a continuous function of ◊ on � or on some compact subspace �(p) of � and that

E sup
◊œ�(p)

G4
i (◊) < Œ.

Proving that Gi(◊) is Ê-wise continuous in its parameter ◊ is not straightforward, since

Gi(◊) =
⁄ i�

(i≠1)�
‡s(◊)dLs

is a stochastic integral, driven by an arbitrary Lévy process, which also drives the sto-
chastic volatility process. If L has finite variation, we can use dominated convergence to
show continuity, but this is not possible when L has infinite variation sample paths; cf.
Remark 1.4.9 below. However, as we shall show in the next result, applying Kolmogorov’s
continuity criterion, we can always find a version (G(c)

i (◊))iœN of the sequence (Gi(◊))iœN,
which is continuous on a possibly smaller compact parameter space �(p) ™ � for �.
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Theorem 1.4.6 (Hölder continuity). Assume that E|L1|2p(1+‘) < Œ for some p > 2 and
‘ > 0. Then there exists a version (G(c)

i (◊))iœN of the random elements (Gi(◊))iœN which
is Hölder continuous of every order “ œ [0, (p ≠ 2)/(2p)) on �(p(1+‘)) as defined in (1.4.3).
Additionally, defining

Ui = sup
0<Î◊1≠◊2Î<1

◊1,◊2œ�(p(1+‘))

|G(c)
i (◊1) ≠ G

(c)
i (◊2)|

Î◊1 ≠ ◊2Î“
, i œ N, (1.4.6)

we have for every q œ [0, 2p)

E sup
◊œ�(p(1+‘))

|G(c)
i (◊)|q < Œ and EU q

i < Œ. (1.4.7)

Proof. Without loss of generality we prove this for i = 1. We find a continuous version of
the random element G1(◊) on �(p(1+‘)). We first prove continuity with respect to (÷, Ï)
and assume that ◊1, ◊2 œ �(p(1+‘)) with —1, —2 = 1. Using the simple inequality |a ≠ b|2p Æ
|a2 ≠ b2|p, the stationarity of ‡0(◊) in Lemma 1.4.1, its di�erentiability (1.6.10) proven in
Lemma 1.6.4 of the Appendix, and the mean value theorem gives

⁄ �

0
E|‡s(◊1) ≠ ‡s(◊2)|2p ds Æ

⁄ �

0
E|‡2

s(◊1) ≠ ‡2
s(◊2)|p

= �E|‡2
0(◊1) ≠ ‡2

0(◊2)|p

Æ �
1
E sup

◊œ�(p(1+‘))
|Ò÷,Ï‡2

0(◊)|p
2
Î◊1 ≠ ◊2Îp < Œ

(1.4.8)

by Lemma 1.6.5 with k = 1. By (A2) of Proposition 1.2.1, (Lt)tØ0 is a martingale. Since
E|L1|2p < Œ and

s �
0 E|‡s(◊1) ≠ ‡s(◊2)|2pds < Œ we can apply Theorem 66 of Ch. 5 in

Protter [86] to the stochastic integral in (3.1.1) and obtain

E|G1(◊1) ≠ G1(◊2)|2p = E
---
⁄ �

0
(‡s(◊1) ≠ ‡s(◊2))dLs

---
2p Æ cú

⁄ �

0
E|‡s(◊1) ≠ ‡s(◊2)|2pds,

where cú is a positive constant. This combined with (1.4.8) gives

E|G1(◊1) ≠ G1(◊2)|2p Æ c�Î◊1 ≠ ◊2Îp, (1.4.9)

where c = cú�E sup
◊œ�(p(1+‘)) |Ò÷,Ï‡2

0(◊)|p. Since —1, —2 = 1 we show continuity with
respect to (÷, Ï); i.e. the parameter space has dimension d = 2. Since p > 2 = d we can
apply Kolmogorov’s continuity criterion (Theorem 10.1 in Schilling and Partzsch [91], or
Theorem 2.5.1 of Ch. 5 in Khoshnevisan [52]). Then there exists a version (G(c)

1 (◊), ◊ œ
�(p(1+‘))) of (G1(◊), ◊ œ �(p(1+‘))) which is Hölder continuous of every order “ œ [0, (p ≠
2)/(2p)); hence, also continuous. Since � is compact, Lemma 1.6.1 together with (1.4.9)
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gives E sup
◊œ�(p(1+‘)) |G(c)

1 (◊)|q < Œ for every q œ [0, 2p). Finally, the second expectation
in (1.4.7) is finite by Theorem 10.1 in [91].

Because of Remark 1.4.5, G
(c)
1 (◊) is linear in

Ô
— and, therefore, the results can be

generalized to the map ◊ ‘æ G
(c)
1 (◊) on �(p(1+‘)). Indeed, let —ú be as in (1.6.15) and

—ú = inf{— > 0 : (—, ÷, Ï) œ �} > 0.

For arbitrary ◊1, ◊2 œ �(p(1+‘)) we use Remark 1.4.5, the mean value theorem for — ‘æ Ô
—

and the Hölder continuity of order “ of (÷, Ï) ‘æ G
(c)
1 ((1, ÷, Ï)), the definition of the ¸1-

norm and the fact that “ œ (0, 1) to get

|G(c)
1 (◊1) ≠ G

(c)
1 (◊2)|

Æ |G(c)
1 ((1, ÷1, Ï1)) ≠ G

(c)
1 ((1, ÷2, Ï2))|—ú + 1

2
Ô

—ú
|—1 ≠ —2| sup

◊œ�(p(1+‘))
|G(c)

1 (◊)|

Æ KÎ(÷1, Ï1) ≠ (÷2, Ï2)Î“


—ú + 1
2
Ô

—ú
|—1 ≠ —2|“ |2—ú|1≠“ sup

◊œ�(p(1+‘))
|G(c)

1 (◊)|

Æ Î◊1 ≠ ◊2Î“
1
K


—ú + 1

2
Ô

—ú
|2—ú|1≠“ sup

◊œ�(p(1+‘))
|G(c)

1 (◊)|
2
,

(1.4.10)

showing the Hölder continuity of ◊ ‘æ G
(c)
1 (◊) on �(p(1+‘)). The first expectation in (1.4.7)

is finite since |G(c)
1 (◊)| Æ —ú|G(c)

1 ((1, ÷, Ï))|. Now let ◊1, ◊2 œ �(p(1+‘)) be such that 0 <

Î◊1 ≠ ◊2Î < 1. Using the inequality in the first line of (1.4.10) and the definition of the
¸1-norm gives

sup
0<Î◊1≠◊2Î<1

◊1,◊2œ�(p(1+‘))

|G(c)
1 (◊1) ≠ G

(c)
1 (◊2)|

Î◊1 ≠ ◊2Î“

Æ
1

sup
0<Î◊1≠◊2Î<1

◊1,◊2œ�(p(1+‘))

|G(c)
1 ((1, ÷1, Ï1) ≠ G

(c)
1 ((1, ÷2, Ï2)|

Î◊1 ≠ ◊2Î“

2
—ú

+ sup
0<Î◊1≠◊2Î<1

◊1,◊2œ�(p(1+‘))

|—1 ≠ —2|
2
Ô

—úÎ◊1 ≠ ◊2Î“
|G(c)

1 (◊)|

Æ
1

sup
0<Î◊1≠◊2Î<1

◊1,◊2œ�(p(1+‘))

|G(c)
1 ((1, ÷1, Ï1) ≠ G

(c)
1 ((1, ÷2, Ï2)|

Î(÷1, Ï1) ≠ (÷2, Ï2)Î“

2
—ú + 1

2
Ô

—ú
sup

◊œ�(p(1+‘))
|G(c)

1 (◊)|

(1.4.11)

Applying the supremum and raising both sides of (1.4.11) to the power q gives the result.
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Remark 1.4.7. In view of Theorem 1.4.6 we will from now on work with a continuous
version of the returns (Gi(◊), ◊ œ �(p(1+‘)))iœN.

Theorem 1.4.8 (Strong consistency of the IIE). Assume that E|L1|2p(1+‘) < Œ for some
p > 2 and ‘ > 0 and let (Gi(◊0))n

i=1 be the returns (1.1.2) with parameter ◊0 œ �(p(1+‘))

from (1.4.1). Suppose that the auxiliary AR(r) model for r Ø 2 is estimated by the LSE or
the YWE of Definition 1.2.3. Then

◊̂n,II
a.s.æ ◊0, n æ Œ.

Proof. According to Proposition 1.2.6(a), strong consistency of the IIE will follow if, as
n æ Œ,

sup
◊œ�(p(1+‘))

Îfîn,LS(◊) ≠ fi

◊

Î a.s.æ 0 and sup
◊œ�(p(1+‘))

Îfîn,YW(◊) ≠ fi

◊

Î a.s.æ 0.

By Remark 1.4.4 and Lemma 1.6.2 it su�ces to prove that

sup
◊œ�(p(1+‘))

Îfn(◊) ≠ f(◊)Î a.s.æ 0, n æ Œ, (1.4.12)

for fn and f as defined in (1.4.4) and (1.4.5), respectively. The Cauchy-Schwarz inequality
gives for every h œ N0,

E sup
◊œ�(p(1+‘))

G2
1(◊)G2

1+h(◊) Æ
1
E sup

◊œ�(p(1+‘))
G4

1(◊)
2 1

2
1
E sup

◊œ�(p(1+‘))
G4

1+h(◊)
2 1

2
< Œ.

(1.4.13)
The right-hand side of (1.4.13) is finite by Theorem 1.4.6. It also follows from the same
theorem that E sup

◊œ�(p(1+‘)) G2
1(◊) < Œ and, hence, by Theorem 7 in Straumann and

Mikosch [100] the uniform SLLN holds and we obtain for all h œ N0 as n æ Œ,

sup
◊œ�(p(1+‘))

---
1
n

nÿ

i=1
G2

i (◊) ≠ EG2
1(◊)

--- a.s.æ 0 and

sup
◊œ�(p(1+‘))

---
1
n

nÿ

i=1
G2

i (◊)G2
i+h(◊) ≠ EG2

1(◊)G2
1+h(◊)

--- a.s.æ 0.

(1.4.14)

Hence (1.4.12) follows from (1.4.14), finishing the proof.

Remark 1.4.9. If the Lévy process (Lt)tØ0 has finite variation sample paths, then the
stochastic integral in (1.1.2) can be treated pathwise as a Riemann-Stieltjes integral, such
that continuity of (Gi(◊), ◊ œ �)iœN follows from Lemma 1.4.3(c) and dominated conver-
gence. Therefore, Theorem 1.4.6 is valid for ◊0 œ � ´ �(p(1+‘)) for p > 2 and some ‘ > 0.
Additionally, since the total variation process is also a Lévy process we can use Theorem 66
of Ch. 5 in Protter [86] to show that EL4

1 < Œ implies E sup
◊œ� G4

i (◊) < Œ for all i œ N.
Therefore, also Theorem 1.4.8 is valid for ◊0 œ � ´ �(p(1+‘)).
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1.4.3 Asymptotic normality of the IIE

In order to prove asymptotic normality of the IIE, we need to verify the conditions (b.1),
(b.2) and (b.3) of Proposition 1.2.6. We recall that (b.2) has been proved in Theorem 1.3.4,
and it remains to prove (b.1) and (b.3), which are related to the smoothness of fîn(◊) as
a function of ◊.

Di�erentiability properties of (Gi(◊), ◊ œ �(p(1+‘)))

Condition (b.1) refers to the di�erentiability of the map fîn(◊). By Remark 1.4.4 and
the chain rule we only need to prove di�erentiability of Gi(◊) with respect to ◊ for every
i œ N. Since Gi(◊) is defined in terms of a stochastic integral we can not simply interchange
the order of the Riemann di�erentiation and the stochastic integration, however, under
appropriate regularity conditions formulated of Hutton and Nelson [47] this is possible.

We start by investigating the candidate for the di�erential of (Gi(◊), ◊ œ �(p(1+‘)))
with �(p(1+‘)) as in (1.4.3), namely the map

◊ ‘æ
⁄ i�

(i≠1)�
Ò◊‡s(◊)dLs := Ò◊Gi(◊). (1.4.15)

We show in Lemma 1.4.10 that we can find a version of the integral on the right-hand side,
which is continuous on a subspace �(2p(1+‘)) of �(p(1+‘)). Then, Theorem 1.4.11 asserts
that Gi(◊) is di�erentiable on �(2p(1+‘)) and that its di�erential is indeed given by (1.4.15).

Lemma 1.4.10 (Hölder continuity of derivatives). Assume that E|L1|4p(1+‘) < Œ for
some p > 2 and ‘ > 0. Then there exists a version (Ò◊G

(c)
i (◊))iœN of the random elements

(Ò◊Gi(◊))iœN which is Hölder continuous of every order “ œ [0, (p ≠ 2)/p) on �(2p(1+‘)) as
defined in (1.4.3). Additionally, defining

Vi = sup
0<Î◊1≠◊2Î<1

◊1,◊2œ�(2p(1+‘))

| ˆ
ˆ◊l

Gi(◊1) ≠ ˆ
ˆ◊l

Gi(◊2)|
Î◊1 ≠ ◊2Î“

, i œ N, (1.4.16)

we have for every q œ [0, p) and l œ {1, 2, 3}

E sup
◊œ�(2p(1+‘))

---
ˆ

ˆ◊l
Gi(◊)

---
q

< Œ and EV q
i < Œ.

Proof. Without loss of generality we consider i = 1. In view of Remark 1.4.5 we write
(1.4.15) as

1 1
2
Ô

—

⁄ �

0
‡s((1, ÷, Ï))dLs,


—

⁄ �

0

ˆ

ˆ÷
‡s((1, ÷, Ï))dLs,


—

⁄ �

0

ˆ

ˆÏ
‡s((1, ÷, Ï))dLs

2€
.

(1.4.17)
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From Remark 1.4.7 the first component of (1.4.17) is continuous in — even on �. For
the remaining two components we show continuity with respect to (÷, „). Thus, assume
that ◊1, ◊2 œ �(2p(1+‘)) with —1 = —2 = 1. Using the distributional property of ‡s(·) in
Lemma 1.4.1 and the di�erentiability of ◊ ‘æ ‡s(◊) in Lemma 1.6.4 gives for every Borel
set B µ R that

P
1 ˆ

ˆ÷
(‡s(◊1) ≠ ‡s(◊2)) œ B

2

= P
1

lim
hæ0,hœQ

[‡s(◊1 + (h, 0)) ≠ ‡s(◊1)] ≠ [‡s(◊2 + (h, 0)) ≠ ‡s(◊2)]
h

œ B
2

= lim
hæ0,hœQ

P
1 [‡s(◊1 + (h, 0)) ≠ ‡s(◊1)] ≠ [‡s(◊2 + (h, 0)) ≠ ‡s(◊2)]

h
œ B

2

= lim
hæ0,hœQ

P
1 [‡0(◊1 + (h, 0)) ≠ ‡0(◊1)] ≠ [‡0(◊2 + (h, 0)) ≠ ‡0(◊2)]

h
œ B

2

= P
1 ˆ

ˆ÷
(‡0(◊1) ≠ ‡0(◊2)) œ B

2
,

so that
ˆ

ˆ÷
(‡s(◊1) ≠ ‡s(◊2)) d= ˆ

ˆ÷
(‡0(◊1) ≠ ‡0(◊2)). (1.4.18)

Similar calculations show that (1.4.18) is also valid for ˆ
ˆ÷ replaced by ˆ

ˆÏ . Thus,
(Ò÷,Ï‡s(◊))sØ0 is stationary and it follows from its di�erentiability (1.6.10) proven in
Lemma 1.6.4 of the Appendix, and the mean value theorem that

⁄ �

0
EÎÒ÷,Ï‡s(◊1) ≠ Ò÷,Ï‡s(◊2)Îp ds

= �EÎÒ÷,Ï‡0(◊1) ≠ Ò÷,Ï‡0(◊2)Îp Æ �
1
E sup

◊œ�(p(1+‘))
ÎÒ2

÷,Ï‡0(◊)Îp
2
Î◊1 ≠ ◊2Îp < Œ,

by Lemma 1.6.5 with k = 2. The rest of the proof follows along the same lines those in
the proof of Theorem 1.4.6.

Theorem 1.4.11 (Di�erentiable version of (Gi(◊))iœN). Assume the conditions of
Lemma 1.4.10. Then there is a version (Gi(◊), ◊ œ �(2p(1+‘)))iœN for �(2p(1+‘)) as in
(1.4.3), which is continuously di�erentiable and its derivative is given a.s. by (Ò◊Gi(◊), ◊ œ
�(2p(1+‘)))iœN.

Proof. Without loss of generality we consider i = 1. From Remark 1.4.5 it follows that
G1(◊) =

Ô
—G1((1, ÷, Ï)) so that obviously

ˆ

ˆ—
G1(◊) = 1

2
Ô

—
G1((1, ÷, Ï)) =

⁄ �

0

ˆ

ˆ—
‡s(◊)dLs.
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Interchanging the partial di�erentiation with respect to (÷, „) and the stochastic integral
requires the four regularity conditions of Theorem 2.2 of Hutton and Nelson [47]. Let
Ft := ‡({Ls, 0 Æ s Æ t}), such that (Ft)tØ0 is the filtration generated by the Lévy process
L. Condition (i) of that paper is satisfied, since (‡t(◊))tØ0 is predictable, we consider the
parameter space M with the Borel ‡-algebra, and the parameter ◊ is independent of t.
Since ‡s(◊) =

Ô
—‡s((1, ÷, Ï)) these regularity conditions need only to be checked for the

map (÷, Ï) ‘æ ‡s((1, ÷, Ï)). Condition (ii) requires that
s �

0 ‡2
s(◊)dÈLÍs < Œ a.s. for every

◊ œ �(2p(1+‘)), where ÈLÍ = (ÈLÍs)sØ0 is the characteristic of the martingale L. Since L

is a square integrable Lévy process, ÈLÍs = sEL2
1 and, thus, this condition holds since

s ‘æ ‡s(◊) has bounded sample paths on the compact interval [0, �]. The first part of
condition (iii) requires that for every fixed s, the map ◊ ‘æ ‡s(◊) is absolutely continuous.
From the definition of ‡2

s(◊) in (1.2.3) we have for —1 = —2 = 1,

‡2
s(◊) = e≠Ys≠(◊)

1 ⁄ s

0
eYv(◊)dv +

⁄ Œ

0
e≠Yv(◊)dv

2
=: h(◊)(f(◊) + g(◊)). (1.4.19)

Then for fixed ◊1, ◊2 œ �(2p(1+‘)) we use Lemma 1.6.4 in combination with the mean value
theorem and Lemma 1.4.3(a) to get

|‡2
s(◊1) ≠ ‡2

s(◊2)|
Æ

---(f(◊1) + g(◊1))
1
h(◊1) ≠ h(◊2) + h(◊2)

!
f(◊1) ≠ f(◊2) + g(◊1) ≠ g(◊2

"2---

Æ (h(◊2) + f(◊1) + g(◊1))
1
|h(◊1) ≠ h(◊2)| + |f(◊1) ≠ f(◊2)| + |g(◊1) ≠ g(◊2)|

2

Æ sup
◊œ�

{h(◊) + f(◊) + g(◊)}
1
|h(◊1) ≠ h(◊2)| + |f(◊1) ≠ f(◊2)| + |g(◊1) ≠ f(◊2)|

2

Æ Î◊1 ≠ ◊2Î
Nÿ

j=1

Ó
sup
◊œ�

(h(◊) + f(◊) + g(◊))
ÔÓ

e≠Ys(◊ú
j )(s + Ks(Ïú))

+
⁄ s

0
eYv(◊ú

j )(v + Kv(Ïú))dv +
⁄ Œ

0
e≠Yv(◊ú

j )(v + Kv(Ïú))dv
Ô

, (1.4.20)

where (◊ú
j )N

j=1 œ M(2p(1+‘)). Since � is compact and for each fixed s Ø 0, ◊ ‘æ ‡s(◊)
is continuous, sup

◊œ�{h(◊) + f(◊) + g(◊)} is finite. Furthermore, Lemma 1.6.3 implies
that the other three random variables on the right-hand side of (1.4.20) have finite first
moment, and are therefore also a.s. finite. Thus (1.4.20) implies that the map ◊ ‘æ ‡2

s(◊)
is a.s. Lipschitz continuous on �(2p(1+‘)) and, as a consequence, absolutely continuous on
�(2p(1+‘)). For the second part of condition (iii) we recall first that we have assumed that
— = 1, such that we focus on the partial di�erentiation of the parameter (÷, Ï)€. A non-
decreasing predictable process (⁄t)tØ0 is needed such that for every t and ◊ œ �(2p(1+‘))

⁄ t

0
ÎÒ÷,Ï‡s(◊)Î2dÈLÍs < ⁄t a.s.
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From (1.4.19), the product rule and Proposition 2 of [56] we find

ÎÒ÷,Ï‡s(◊)Î Æ 1
2‡ú {ÎÒ÷,Ïh(◊)Î(f(◊) + g(◊)) + h(◊)ÎÒ÷,Ïf(◊) + Ò÷,Ïg(◊)Î}. (1.4.21)

We use Lemma 1.6.4 and the definition of the process (Yt(◊))tØ0 in (1.2.1). First note that

÷ Æ sup{÷ > 0 : (—, ÷, Ï) œ �} =: ÷ú < Œ,

Ï Ø inf{Ï > 0 : (—, ÷, Ï) œ �} =: Ïú > 0,
(1.4.22)

and we get the bound

f(◊) =
⁄ s

0
eYv(◊)dv =

⁄ s

0
exp

Ó
÷v ≠

ÿ

0<uÆs

log (1 + Ï(�Lu)2)
Ô

dv Æ se÷ús. (1.4.23)

Hence it follows from (1.4.19) that

ÎÒ÷,Ïf(◊)Î =
s s

0 veYv(◊)dv +
s s

0 eYv(◊)Kv(Ï)dv Æ
1
s + Ks(Ïú)

2
se÷ús,

ÎÒ÷,Ïh(◊)Î = se≠Ys≠(◊) + e≠Ys≠(◊)Ks(Ï) Æ e≠Ys(◊)!s + Ks(Ïú)
"
, (1.4.24)

ÎÒ÷,Ïg(◊)Î =
s Œ

0 ve≠Yv(◊)dv +
s Œ

0 e≠Yv(◊)Kv(Ï)dv Æ
⁄ Œ

0

!
v + Kv(Ïú))e≠Yv(◊)dv.

From (1.4.21) and the bounds given in (1.4.23) and (1.4.24) we obtain

ÎÒ÷,Ï‡s(◊)Î
Æ 1

2‡ú e≠Ys(◊)(s + Ks(Ïú))
1
se÷ús +

⁄ Œ

0
e≠Yv(◊)dv

2
(1.4.25)

+ 1
2‡ú e≠Y s≠(◊)

;
(s + Ks(Ïú))se÷ús +

⁄ Œ

0
e≠Yv(◊)(v + Kv(Ïú))dv

<
=: ls(◊).

Using the compactness of �(2p(1+‘)), (1.4.25) and Lemma 1.4.3(a) gives

sup
(÷,Ï)œ�(2p(1+‘))

ÎÒ÷,Ï‡s(◊)Î Æ sup
(÷,Ï)œ�(2p(1+‘))

ls(◊) Æ
Nÿ

j=1
ls(◊ú

j ),

where (◊ú
j )N

j=1 in M(2p(1+‘)). Thus,
⁄ t

0
ÎÒ÷,Ï‡s(◊)Î2dÈLÍs < 1 + EL2

1

⁄ t

0

--
Nÿ

j=1
ls(◊ú

j )
--2ds := ⁄t, 0 Æ t Æ �,

which is a well defined process. Since (⁄t)tØ0 is adapted to the filtration (Ft)tØ0 and
continuous, it is predictable. The fourth regularity condition we need to check is that the
maps

◊ ‘æ
⁄ �

0
‡s(◊)dLs and ◊ ‘æ

⁄ �

0
Ò÷,Ï‡s(◊)dLs

are continuous, which has been proved in Theorem 1.4.6 and Lemma 1.4.10. This concludes
the proof.
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Remark 1.4.12. In view of Theorem 1.4.11 we will from now on work with returns
(Gi(◊), ◊ œ �(2p(1+‘)))iœN with �(2p(1+‘)) as in (1.4.3), which are continuously di�eren-
tiable with

Ò◊Gi(◊) =
⁄ i�

(i≠1)�
Ò◊‡s(◊)dLs, i œ N.

As a consequence, also the map ◊ ‘æ fîn(◊) is continuously di�erentiable on �(2p(1+‘)) and,
hence condition (b.1) of Proposition 1.2.6 holds.

Convergence of the derivatives

Finally, we prove condition (b.3) of Proposition 1.2.6.

Proposition 1.4.13 (Consistency of the derivatives). Assume that E|L1|4p(1+‘) < Œ
for some p > 2/5 and ‘ > 0. Let fîn be one of the estimators fîn,LS and fîn,YW from
Definition 1.2.3. Then for every sequence (◊n)nœN µ �(2p(1+‘)) as in (1.4.3) and ◊n

a.s.æ ◊0

we have Ò
◊

fîn(◊n) Pæ Ò
◊

fi

◊0 as n æ Œ.

Proof. Recall from Remark 1.4.4 that we can write each of the two estimators fîn,LS
and fîn,YW as a continuously di�erentiable map g : Rr+2 æ Rr+2, whose Ja-
cobi matrix exists and all partial derivatives of g are continuous. Hence, fîn(◊) =
(g1(fn(◊)), . . . , gr+2(fn(◊)))€ for ◊ = (—, ÷, Ï) =: (◊1, ◊2, ◊3), and we obtain for the partial
derivatives by the chain rule

ˆ

ˆ◊l
gk(fn(◊)) =

1ˆgk(fn(◊))
ˆx1

, . . . ,
ˆgk(fn(◊))

ˆxr+2

21 ˆ

ˆ◊l
fn(◊)

2
. (1.4.26)

for every l = 1, 2, 3 and k = 1, . . . , r + 2. By the continuous mapping theorem and (1.4.26)
it su�ces to prove that as n æ Œ,

fn(◊n) Pæ f(◊0) and ˆ

ˆ◊j
fn(◊n) Pæ ˆ

ˆ◊l
f(◊0), l = 1, 2, 3.

Let l œ {1, 2, 3} be fixed. It follows from (1.4.14) and from Lemma 1.7.2 that as n æ Œ,

sup
◊œ�(2p(1+‘))

Îfn(◊) ≠ f(◊)Î Pæ 0 and sup
◊œ�(2p(1+‘))

...
ˆ

ˆ◊l
fn(◊) ≠ ˆ

ˆ◊l
f(◊)

... Pæ 0. (1.4.27)

Since

Îfn(◊n) ≠ f(◊0)Î Æ Îfn(◊n) ≠ f(◊n)Î + Îf(◊n) ≠ f(◊0)Î
Æ sup

�(2p(1+‘))
Îfn(◊) ≠ f(◊)Î + Îf(◊n) ≠ f(◊0)Î,

(1.4.28)
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from the continuity of f on �(2p(1+‘)), the fact that ◊n
Pæ ◊0, and (1.4.27) it follows that

fn(◊n) Pæ f(◊0). Similar calculations as in (1.4.28) show that

ˆ

ˆ◊l
fn(◊n) Pæ ˆ

ˆ◊l
f(◊0),

concluding the proof.

We are now ready to state asymptotic normality of the IIE.

Theorem 1.4.14 (Asymptotic normality of the IIE). Assume that E|L1|4p(1+‘) < Œ for
some p > 2/5 and ‘ > 0. Let (Gi(◊0))n

i=1 be the returns (1.1.2) with true parameter ◊0,
which lies in the interior of �(2p(1+‘)) as in (1.4.3). Suppose that the auxiliary AR(r) model
for r Ø 2 is estimated by the LSE or the YWE of Definition 1.2.3. If the matrix � := �

◊0

defined in (1.3.9) of Theorem 1.3.4 is positive definite and Ò◊fi(◊0) has full column rank
3, then Ô

n(◊̂n,II ≠ ◊0) dæ N (0, �
◊0), n æ Œ,

where �
◊0 is defined in (1.2.18).

Proof. The asymptotic normality follows from Proposition 1.2.6. Since ◊ œ �(2p(1+‘)) ™
�(p(1+‘)) ™ �, Theorem 1.4.8 implies condition (a). Conditions (b.1) and (b.3) are valid
by Proposition 1.4.13 and the fact that Ò◊fi(◊0) has full column rank 3. Furthermore,
(b.2) holds by Theorem 1.3.4, since �

◊0 is positive definite.

Remark 1.4.15. We explain how to estimate the asymptotic covariance matrix �
◊0 of

◊̂n,IIfromTheorem 1.4.14. First, note that it depends on K, Ò◊fi

◊0 , �
◊0 and �. Using

the map ◊ ‘æ Ò◊fi

◊

from (1.2.11) we compute Ò◊fi

◊̂n,II
. An application of the continuous

mapping theorem in combination with the continuity of ◊ ‘æ Ò◊fi

◊

and Theorem 1.4.8 gives
Ò◊fi

◊̂n,II

a.s.æ Ò◊fi

◊0. Recall that �
◊0 depends on the inverse of the autocovariance function

�
◊0 and on �ú

◊0
as defined in (1.3.10). A strongly consistent estimator of �

◊0 is given by
�

◊̂n,II
. Finally, let Ĉk be as in (1.3.11) with Wk replaced by G2

k(◊0) and fi = (µ, a, “(0))
replaced by fîn. Then we estimate �ú

◊0
by

µ̂n,C1,CT
1

+ 2
n≠r≠1ÿ

i=1
µ̂n,C1,CT

1+i
,

where

µ̂n,C1,CT
1+i

= 1
n ≠ i ≠ r

n≠i≠rÿ

k=1
CkCT

k+i, i = 0, . . . , n ≠ r ≠ 1.
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Remark 1.4.16. If the Lévy process (Lt)tØ0 has finite variation sample paths, then the
stochastic integral in (1.1.2) can be treated pathwise as a Riemann-Stieltjes integral, such
that continuous di�erentiability of (Gi(◊), ◊ œ �)iœN follows by dominated convergence
with dominating function as in (1.4.25). Therefore, Theorem 1.4.11 is valid for ◊0 œ � ´
�(2p(1+‘)) for some p > 2 and ‘ > 0. Additionally, since the total variation process is also
a Lévy process we can use Theorem 66 of Ch. 5 in Protter [86] to show that, if EL8+”

1 < Œ
for some ” > 0, then E sup

◊œ�(p(1+‘)) ÎÒ◊Gi(◊)Î4+”/2 < Œ for all i œ N. This combined
with Remark 1.4.9 and a dominated convergence argument can be applied to show that
Lemma 1.4.13 is valid for ◊0 œ �(2p(1+‘)), and, as a consequence, also Theorem 1.4.14.

1.5 Simulation study

The data used for estimation is a sample of COGARCH squared returns G

2
n = (G2

i (◊0))n
i=1

as defined in (1.1.2) with true parameter value ◊0 œ � as in (1.2.7) observed on a fixed
grid of size � = 1. We choose a pure jump Variance Gamma (VG) process as the driving
Lévy process, which has infinite activity and has been used successfully for modeling stock
prices (see Haug et al. [45] and reference therein). The Lévy measure of the VG process
with parameter C > 0 has Lebesgue density

‹L(dx) = C

|x| exp{≠(2C)1/2|x|}dx, x ”= 0. (1.5.1)

The Indirect Inference method of Gourieroux et al. [39] based on simulations was orig-
inally proposed to estimate models where the binding function is di�cult or impossible to
compute. However, the binding function ◊ ‘æ fi

◊

from Proposition 1.2.4 can be computed
explicitly from the formulas given in Theorem 3.1 of Haug et al. [45] and the Yule-Walker
equations in (1.2.10), leading to the IIE

◊̂n,IIú := arg min
◊œ�

Îfîn ≠ fi

◊

Î�. (1.5.2)

We perform a simulation study to evaluate the finite sample performance of the IIE ◊̂n,IIú

in (1.5.2) and also to compare it with the method of moments (MM) estimator ◊̂n,MM
(Algorithm 1 of Haug et al. [45]) and the optimal prediction based (OPB) estimator
◊̂n,OPB (equation (7) of Bibbona and Negri [7]). As in the simulation studies of [7, 45],
we take the VG process with true parameter value ◊0 = (0.04, 0.053, 0.038) and C = 1 in
(1.5.1), which implies �

◊0(4) = ≠0.0261 < 0. Under these conditions, all three estimators
◊̂n,MM (Theorem 3.8 of [45]), ◊̂n,OPB (Theorem 3.1 of [7]) and IIE ◊̂n,IIú (Theorem 1.4.8)
are consistent.
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The MM is based on r empirical autocovariances, OPB based on r predictors, and
IIE based on an AR(r) auxiliary model. Inspection of several empirical autocovariance
functions of the squared returns G

2
n with n = 10 000 revealed r = 70 as a suitable number

of lags in most of the cases, and we choose r = 70 for all three estimators.
We compare the three estimators in a simulation study in Section 1.5.1. Then we show

in Section 1.5.2, how the IIE based on simulations defined in (1.2.16) can reduce the finite
sample bias of ◊̂n,IIú considerably. Finally, to understand how the condition �

◊0(4) < 0
a�ects the estimation, we investigate the finite sample bias of both IIEs for two di�erent
true parameter values ◊

(1)
0 and ◊

(2)
0 satisfying �

◊

(2)
0

(4) < �
◊0(4) < �

◊

(1)
0

(4) < 0, where
�

◊

(1)
0

(4) is near zero.

1.5.1 Simulation results

The computations are performed using the R software (R Core Team [87]). Simulation of
the COGARCH process and computation of ◊̂n,MM and ◊̂n,OPB are performed with the
COGARCH R package from Bibbona et al. [8] (see also the YUIMA R package of Iacus
et al. [48] for the simulation and estimation of higher order COGARCH models). We first
compute ◊̂n,MM based on the sample G

2
n. The estimators ◊̂n,OPB and ◊̂n,IIú are computed

via the optimization routine optim in R, which requires an initial parameter value and we
take ◊̂n,MM as this value. To compute fîn in (1.5.2) we use the YWE from Definition 1.2.3
and take the identity matrix for � to compute ◊̂n,IIú . In principle, there is an optimal
choice of � (see Remark 3 of de Luna and Genton [25] and Prop. 4 of Gourieroux et al.
[39]). It depends on the covariance matrix � of the auxiliary model in (1.3.9) (see also
Remark 4.24(b) of [31]). This matrix depends on an infinite series and on covariances
between COGARCH returns to the powers 2,4,6 and 8, and has no explicit expression.
According to Remark 3 of [25] and empirical evidence reported on p. S97f of Gourieroux
et al. [39] the gain of e�ciency when using the optimal weight matrix is negligible, so that
we only consider estimators based on the identity matrix for �.

We focus on the YWE for the auxiliary model, a comparison including the LSE will be
given in the first author’s PhD Thesis. The estimator ◊̂n,OPB only returns a result when
�

◊̂n,OPB
(4) < 0. The estimators ◊̂n,MM and ◊̂n,IIú always return a value. The results are

given in Table 1.1, where we excluded those paths for which the condition �
◊̂n

(4) < 0 is
not satisfied for at least one of the estimators compared here. The results are based on
1 000 independent samples of COGARCH squared returns.

The results in Table 1.1 for the estimators ◊̂n,MM and ◊̂n,OPB are similar to those
of Table 2 of Bibbona and Negri [7]. The OPB estimator has the smallest RMSE. The
MM has the smallest relative bias for the parameter Ï, and the OPB the smallest for —

and „. The estimator ◊̂n,IIú performed similarly to ◊̂n,MM, but it has a large bias for the
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Table 1.1: Performance assessment based on 1 000 independent samples of COGARCH
squared returns G

2
n for n = 10 000, sampled with parameter values —0 = 0.04, ÷0 = 0.053

and Ï0 = 0.038: mean, standard deviation (Std), root mean squared error (RMSE), and
relative bias (RB). Both IIEs ◊̂n,IIú in (1.5.2) and ◊̂n,II in (1.5.3) used the identity matrix
for �. The IIE ◊̂n,II is based on K = 100 simulated paths.

Mean Std RMSE RB
—̂ 0.04698 0.02032 0.02148 0.17457

◊̂n,IIú ÷̂ 0.05038 0.01482 0.01504 -0.04939
Ï̂ 0.03243 0.00994 0.01139 -0.14663
—̂ 0.05226 0.01805 0.02182 0.30658

◊̂n,MM ÷̂ 0.05662 0.01576 0.01616 0.06827
Ï̂ 0.03667 0.01023 0.01031 -0.03513
—̂ 0.04439 0.01609 0.01667 0.10965

◊̂n,OPB ÷̂ 0.05274 0.01317 0.01317 -0.00489
Ï̂ 0.03583 0.00815 0.00843 -0.05712
—̂ 0.04204 0.02032 0.02041 0.05105

◊̂n,II ÷̂ 0.05318 0.01623 0.01622 0.00336
Ï̂ 0.03661 0.00955 0.00965 -0.03661

parameters — and Ï. This is probably due to the fact that ◊̂n,IIú depends on fîn, which is a
biased estimator of fi even for AR models with i.i.d. noise as shown in Shaman and Stine
[93]. The auxiliary AR model from Proposition 1.2.2 has stationary and ergodic residuals,
and certainly fîn has a bias, which propagates to the IIE. As a remedy, we use the IIE
based on simulations and show that it can reduce the bias of ◊̂n,IIú , it also outperforms
◊̂n,MM and ◊̂n,OPB.

1.5.2 Finite sample bias

In Gourieroux et al. [40, 41] it is shown that Indirect Inference based on simulations can
reduce the finite sample bias considerably, in particular, when the bias originates from the
estimator of the auxiliary model. The idea of the bias reduction is that the IIE

◊̂n,II = arg min
◊œ�

....fîn ≠ 1
K

Kÿ

k=1
fîn,k(◊)

....
�

, K œ N, (1.5.3)

from Definition 1.2.5 finds a ◊ œ � which minimizes the distance between two biased
estimators, fîn and 1

K

qK
k=1 fîn,k(◊). As they have a similar bias, they have a chance to

cancel. We proceed to investigate the finite sample performance of the estimator ◊̂n,II in
(1.5.3).
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Table 1.2: Performance assessment based on 1 000 independent samples of COGARCH
squared returns G

2
n for n = 5 000 and n = 7 500, sampled with parameter values —0 = 0.04,

÷0 = 0.053 and Ï0 = 0.038: mean, standard deviation (Std), root mean squared error
(RMSE) and relative bias (RB). Both IIEs ◊̂n,IIú in (1.5.2) and ◊̂n,II in (1.5.3) used the
identity matrix for �. The IIE ◊̂n,II is based on K = 100 simulated paths.

n = 5 000
Mean Std RMSE RB

—̂ 0.04710 0.02196 0.02307 0.17738
◊̂n,IIú ÷̂ 0.04977 0.02036 0.02061 -0.06094

Ï̂ 0.03168 0.01317 0.01461 -0.16637
—̂ 0.04999 0.03228 0.03377 0.24968

◊̂n,II ÷̂ 0.05935 0.02458 0.02538 0.11974
Ï̂ 0.03990 0.01379 0.01391 0.04989

n = 7 500
Mean Std RMSE RB

—̂ 0.05093 0.02015 0.02291 0.27323
◊̂n,IIú ÷̂ 0.05401 0.01786 0.01788 0.01896

Ï̂ 0.03439 0.01158 0.01212 -0.09502
—̂ 0.04181 0.02375 0.02381 0.04537

◊̂n,II ÷̂ 0.05322 0.01897 0.01896 0.00408
Ï̂ 0.03668 0.01093 0.01101 -0.03487

According to [41], the number of simulated paths K in (1.5.3) has to be large enough
to ensure that E fîn(◊) is well approximated by 1

K

qK
k=1 fîn,k(◊) for all ◊ appearing in the

optimization algorithm. Furthermore, the asymptotic variance of the IIE decreases with
K (see Eq. (3.5.10)). To compute ◊̂n,II we need to evaluate the function

◊ ‘æ 1
K

Kÿ

k=1
fîn,k(◊) (1.5.4)

for all ◊ giving a representation of the parameter space. To compute (1.5.4) for a fixed ◊, we
simulate K independent samples Gn,k(◊) := (G(k)

i (◊))n
i=1 for k = 1, . . . , K. For di�erent ◊

we use the same pseudo-random numbers to generate the K independent samples, which
turns (1.5.4) into a deterministic function of ◊ and thus suitable for optimization.

In order to save computation time when computing (1.5.4) we use for every simulated
path the fact that Gn,k(◊) =

Ô
—Gn,k((1, ÷, „)) (see Remark 1.4.5) and thus it follows



1.5. Simulation study 33

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●
●●

●●

●
●

●●
●●

●●

●●

●●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●
●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●●

●

●

●
●

●

●●

●

●●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●●

●●

●

●

●●
●
●

●

●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●
●●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●
●

●
●

●
●●●

●

●●

●

●

●
●

●

●

●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●●

●

●

●●
●●

●
●

●

●

●

●

●

●
●●
●●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●
●●

●●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

−3 −2 −1 0 1 2 3

0.
00

0.
05

0.
10

0.
15

0.
20

β, n = 5000

Normal Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●
●

●●

●

●●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●
●

●
●●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

−3 −2 −1 0 1 2 3

0.
00

0.
04

0.
08

0.
12

η, n = 5000

Normal Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●●●

●

●

●

●
●

●
●●

●

●

●●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●
●

●

●●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

−3 −2 −1 0 1 2 3

0.
00

0.
02

0.
04

0.
06

0.
08

ϕ, n = 5000

Normal Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

●●

●
●

●

●
●

●

●

●

●

●
●

●

●●
●●●

●
●●
●

●
●

●●

●

●●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

● ●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●●●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●
●●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●
●

●●
●●

●
●●

●
●

●

●
●

●●

●

●

●

●

●●

●
●

●

●

●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●●●
●

●●
●

●

●

●
●

●●●

●

●

●

●

●● ●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●●

●●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●●
●

●●

●●
●

●

●

●
●

●
●

●

●●
●

●●

●

●

●

●
●

●●●
●

●●
●
●

●

●

●
●●●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●
●

●●

●

●
●

●●

●

●

●
●

●

●●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●
●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●●
●

●

●●

●●

●

●

●●

●
●

●●●
●●

●

●

●●

●

●

●
●

●

●

●

●●
●

●
●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●●
●

●
●

●
●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●●

●●
●

●

●

●

●●

●

●
●

●

●

●

●
●●●

●

●
●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●
● ●●

●

●●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●●
●

●

●
●

●
●●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●●

●

●
●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●●
●●

●●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

−3 −2 −1 0 1 2 3

0.
00

0.
05

0.
10

0.
15

0.
20

β, n = 10000

Normal Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

●●

●
●●

●
●

●

●

●
●

●
●

●

●
●

●

●
●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●●

●
●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●

●

●
●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●

●
●

●●

●

●

●

●

●●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●●●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●●
●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

−3 −2 −1 0 1 2 3

0.
00

0.
04

0.
08

0.
12

η, n = 10000

Normal Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●●
●●

●

●
●

●

●

●

●●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●●

●

●
●

●

●
●●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●
●●
●

●
●●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●●

●

●

●

●●

●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●●

●

●
●

●

●●

●

●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●●●
●●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−3 −2 −1 0 1 2 3

0.
00

0.
02

0.
04

0.
06

0.
08

ϕ, n = 10000

Normal Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

Figure 1.1: QQ plots of the estimators ◊̂n,II of ◊0 as in Table 1.1 for n = 5 000 (top line)
and n = 10 000 (bottom line).

from Definition 1.2.3 that

fîn,k(◊) =

Q

ca
µ̂n(◊)

ân,k(◊)
“̂n,k(0; ◊)

R

db =

Q

ca
—µ̂n,k((1, ÷, „))
ân,k((1, ÷, „))

—2“̂n,k(0; (1, ÷, „))

R

db . (1.5.5)

As it is computationally impossible to perform the optimization (1.5.3) for all ◊ œ �,
we have to restrict � in a reasonable way, and we restrict � to values in the set

�rest := {◊ œ � : �
◊

(4) < 0, ◊ œ (0, —̂max) ◊ (0, ÷̂max) ◊ (0, Ï̂max)}

where —̂max, ÷̂max and Ï̂max are upper bounds for the estimated parameters from Table 1.1
for all 1 000 independent samples G

2
n and all estimators.

For K = 100 and n = 10 000, every evaluation of (1.5.4) takes approximately 13
minutes on a personal computer. The next goal would be to evaluate (1.5.3) using a
gradient based routine. This is out of reach with respect to computation time. As a remedy
we adopt the strategy of precomputing (1.5.4) on a fine grid �grid µ �rest. The set �grid
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Table 1.3: Performance assessment based on 1 000 independent samples of CO-
GARCH squared returns G

2
n for n = 10 000, sampled with parameter values ◊

(1)
0 =

(0.04, 0.051, 0.040) and ◊

(2)
0 = (0.04, 0.055, 0.036): mean, standard deviation (Std), root

mean squared error (RMSE) and relative bias (RB). Both IIEs ◊̂n,IIú in (1.5.2) and ◊̂n,II
in (1.5.3) used the identity matrix for �. The IIE ◊̂n,II is based on K = 100 simulated
paths.

◊

(1)
0 = (0.04, 0.051, 0.040)

Mean Std RMSE RB
—̂ 0.05452 0.02341 0.02754 0.36298

◊̂n,IIú ÷̂ 0.05027 0.01294 0.01296 -0.01433
Ï̂ 0.03478 0.00857 0.01003 -0.13046
—̂ 0.04586 0.02133 0.02211 0.14658

◊̂n,II ÷̂ 0.05142 0.01421 0.01421 0.00827
Ï̂ 0.03788 0.00872 0.00897 -0.05300

◊

(2)
0 = (0.04, 0.055, 0.036)

Mean Std RMSE RB
—̂ 0.04315 0.01858 0.01883 0.07886

◊̂n,IIú ÷̂ 0.05177 0.01603 0.01635 -0.05867
Ï̂ 0.03109 0.01057 0.01165 -0.13643
—̂ 0.04084 0.01829 0.01830 0.02090

◊̂n,II ÷̂ 0.05571 0.01666 0.01667 0.01295
Ï̂ 0.03570 0.00948 0.00948 -0.00828

was created by generating an equally spaced grid on �rest with componentwise distance for
the parameters ÷ and Ï equal to 0.001 (resulting in about 6 000 di�erent points). The grid
for the component — was then created with � = 0.001, but without the need to simulate
the COGARCH path again by using the relation in (1.5.5). Afterwards, with COGARCH
returns G

2
n generated independently from the samples Gn,k(◊), k = 1, . . . , K, applied to

compute (1.5.4), we compute fîn, and the estimator ◊̂n,II is then simply given by

arg min
◊œ�grid

....fîn ≠ 1
K

Kÿ

k=1
fîn,k(◊)

....
�

,

where we choose the identity matrix for �. The results are presented in the bottom line of
Table 1.1. We notice a significant bias reduction for the simulation based estimator ◊̂n,II
compared to ◊̂n,IIú . The standard deviation of the estimator for ÷ is slightly larger for ◊̂n,II,
but this is expected since the simulations increase the asymptotic variance by a factor of
(1 + 1

K ) as can be seen from (3.5.10). The relative bias of the components of ◊̂n,II is also



1.6. Appendix to Section 1.4.2 35

smaller than that of ◊̂n,MM and ◊̂n,OPB. Since the standard deviations of the components
of ◊̂n,II are larger than for those of ◊̂n,OPB and the bias reduction is comparable for the
parameters ÷ and Ï, the RMSE does not seem to improve, even though the bias of ◊̂n,II
is smaller.

We also compare the performance of the IIE with and without simulation for di�erent
sample sizes n with ◊0 as in Table 1.1. The results are given in Table 1.2. For n = 5 000 we
only observe a bias reduction of ◊̂n,II for ÷̂, whereas the bias reduction of ◊̂n,II is noticeable
for all three components already for n = 7 500 and of course for n = 10 000; cf. Table 1.1.

We also can see in Figure 1.1 that for n = 5 000 and n = 10 000 the asymptotic
normality of ◊̂n,II has not yet been reached, although some improvement for growing
sample sizes is visible in the QQ plots of —̂ and ÷̂, however not for Ï̂.

To clarify if the bias reduction of ◊̂n,II depends on the choice of the true parameter
values we perform a simulation study with two di�erent values: ◊

(1)
0 = (0.04, 0.051, 0.040)

and ◊

(2)
0 = (0.04, 0.055, 0.036). Both values are in the stationarity region with

�
◊

(1)
0

(4) = ≠0.0060, �
◊0(4) = ≠0.0261, �

◊

(2)
0

(4) = ≠0.0460.

The results are presented in Table 1.3. As for ◊0 in Table 1.1, they also show significant
bias reduction for both values ◊

(1)
0 and ◊

(2)
0 for the estimator ◊̂n,II based on simulations,

when compared to ◊̂n,IIú . However, the bias for —̂(1) is much larger than for —̂ and —̂(2)

reflecting the fact that �
◊

(1)
0

(4) is very close to zero. The estimators ÷̂(1) and Ï̂(1) seem to
be robust with respect to this fact. Additionally, the relative biases for —̂(2) and Ï̂(2) are
even smaller than those for —̂ and Ï̂ and —̂(1) and Ï̂(1).

1.6 Appendix to Section 1.4.2

The first Lemma states important properties about moments of a continuous version of
a stochastic process found via Kolmogorov’s continuity criterion. The property stated in
(1.6.1) is needed for the application of a uniform SLLN in Theorem 1.4.8. Lemma 1.6.4 is
used to compute Ò◊‡2

0(◊) and Ò2
◊‡2

0(◊), needed to find a continuous version of the map
◊ ‘æ s i�

(i≠1)� ‡s(◊)dLs in Theorem 1.4.6, and of ◊ ‘æ s i�
(i≠1)� Ò◊‡s(◊)dLs in Lemma 1.4.10.

Lemma 1.6.1. Let (X(◊), ◊ œ �) be a stochastic process with compact parameter space
� µ Rd

+ for d œ N. Assume that there exist positive constants p, c, ‘ such that for all
◊1, ◊2 œ �:

E|X(c)(◊1) ≠ X(◊2)|p Æ cÎ◊1 ≠ ◊2Îd+‘.

Then there exists a continuous version (X(c)(◊), ◊ œ �) of (X(◊), ◊ œ �) such that for
q œ [0, p)

E sup
◊œ�

|X(c)(◊)|q < Œ. (1.6.1)
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Proof. Since � is compact we can use the Heine-Borel theorem to find a finite collection
of open sets (�j)N

j=1 such that � µ fiN
j=1�j and Î◊1 ≠ ◊2Î Æ ”ú for every ◊1, ◊2 œ �j .

Choosing an arbitrary ◊j œ �j fl� for j = 1, . . . , N and using |a≠ b|q Æ 2q≠1|aq ≠ bq| gives
for q < p,

E sup
◊œ�

|X(c)(◊)|q Æ
Nÿ

j=1
E sup

◊œ�j

|X(c)(◊)|q

Æ
Nÿ

j=1
2q≠1E sup

◊œ�j

)|X(c)(◊) ≠ X(c)(◊j)|q + |X(c)(◊j)|q*

Æ 2q≠1
Nÿ

j=1
(1 + E|X(c)(◊j)|q) < Œ,

since E|X(c)(◊)|p < Œ for all ◊ œ �.

The following Lemma is well-known from Analysis, and can be found for instance as
Exercise 6 in Ch. 15.7 of [60].

Lemma 1.6.2. Suppose that g : Rp æ Rq is continuous and that

sup
◊œ�

Îfn(◊) ≠ f(◊)Î a.s.æ 0, n æ Œ,

where (fn(◊))nœN is a sequence of random vectors in Rp, f : � œ Rd ‘æ Rp is a determin-
istic function and � is compact. Then,

sup
◊œ�

Îg(fn(◊)) ≠ g(f(◊))Î a.s.æ 0, n æ Œ.

Lemma 1.6.3. Let p, b Ø 1, a, k Ø 0, ◊ œ M be fixed and (Ks(Ï̃))sØ0 as defined in (1.4.1)
for fixed Ï̃ > 0. If E|L1|2p(1+‘) < Œ and �

◊

(p(1 + ‘)) < 0 for some ‘ > 0, then

E
3 ⁄ Œ

0
(sa + skKb

s(Ï̃))e≠Ys(◊)ds

4p

< Œ.

Proof. The proof is similar to the proof of Proposition 4.1 of Lindner and Maller [64]. For
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every j œ N0 define Qj(◊) :=
s j+1

j (sa + skKb
s(Ï̃))e≠Ys(◊)ds. Then

EQp
j (◊)

= E
1 ⁄ j+1

j
(sa + skKb

s(Ï̃))e≠Ys(◊)ds
2p

Æ E
1

sup
jÆsÆj+1

(sa + skKb
s(Ï̃))e≠Ys(◊)

2p

Æ E
1!

(j + 1)a + (j + 1)kKb
j+1(Ï̃))p sup

jÆsÆj+1
e≠pYs(◊)

2
(1.6.2)

Æ
1
E

!
(j + 1)a + (j + 1)kKb

j+1(Ï̃)
"p(1+‘)/‘

2‘/(1+‘)1
E sup

jÆsÆj+1
e≠p(1+‘)Ys(◊)

21/(1+‘)

by the Hölder inequality. Since by Lemma 1.4.3 (Ks(Ï̃))sØ0 is a Lévy process with moments
of all orders, repeated di�erentiation of the characteristic function of Kj+1(Ï̃) gives a
constant c > 0 such that

E
!
(j + 1)a + (j + 1)kKb

j+1(Ï̃)
"p(1+‘)/‘ Æ c(j + 1)mp(1+‘)/‘, (1.6.3)

where m = a+k+b. Since the process (eYs(◊)≠s�◊(1))sØ0 is a martingale, we can use Doob’s
martingale inequality, the Laplace transform in (1.2.2) and the fact that �

◊

(1) < 0 to get

E sup
jÆsÆj+1

e≠p(1+‘)Ys(◊) Æ e≠(j+1)p(1+‘)�◊(1)E sup
jÆsÆj+1

e≠p(1+‘)Ys(◊)+sp(1+‘)�◊(1)

Æ e≠(j+1)p(1+‘)�◊(1)Ee≠p(1+‘)Yj+1(◊)+p(1+‘)(j+1)�◊(1)

= Ee≠p(1+‘)Yj+1(◊)

= e(j+1)�◊(p(1+‘)).

(1.6.4)

Equation (1.6.2) together with (1.6.3) and (1.6.4) gives

EQp
j (◊) Æ cú(j + 1)mpe(j+1)�◊(p(1+‘))/(1+‘) < Œ, (1.6.5)

where cú = c‘/(1+‘). Let – := ÂpÊ be the integer part of p and suppose that p > –. Then

1 ⁄ n

0
(sa + skKb

s(Ï̃))e≠Ys(◊)ds
2p

=
1 n≠1ÿ

j=0
Qj(◊)

2p

=
n≠1ÿ

j1=0
· · ·

n≠1ÿ

j–=0
Qj1(◊) . . . Qj–(◊)

1 n≠1ÿ

j–+1=0
Qj–+1(◊)

2p≠–

Æ
n≠1ÿ

j1=0
· · ·

n≠1ÿ

j–=0

n≠1ÿ

j–+1=0
Qj1(◊) . . . Qj–(◊)Qp≠–

j–+1(◊).

(1.6.6)
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If p is an integer the last sum in (1.6.6) disappears. By (1.6.5), for each j = 1, . . . , – +
1, Qj œ Lp so we can apply the Hölder inequality with 1

p + · · · + 1
p + p≠–

p = 1 to the
right-hand side of (1.6.6). This together with (1.6.5) gives

E
1 ⁄ n

0
(sa + skKb

s(Ï̃))e≠Ys(◊)ds
2p

Æ
n≠1ÿ

j1=0
· · ·

n≠1ÿ

j–=0

n≠1ÿ

j–+1=0

!
E(Qp

j1(◊)
" 1

p . . .
!
EQp

j–
(◊)

" 1
p
!
E(Qp

j–+1(◊)
" p≠–

p (1.6.7)

Æ cú1 n≠1ÿ

j=0
(j + 1)me(j+1)/(p(1+‘))�◊(p(1+‘))

2– ◊

1 n≠1ÿ

j=0
(j + 1)m(p≠–)e(j+1)(p≠–)/(p(1+‘))�◊(p(1+‘))

2
.

Since �
◊

(p(1+‘)) < 0 both series in (1.6.7) converge. The monotone convergence theorem
applied to the expectation in the first line of (1.6.7) gives the result.

Lemma 1.6.4. Let ◊ = (—, ÷, Ï) with —, ÷, Ï > 0 and consider the process (Ys(◊))sØ0 as
in (1.2.1). Let Ks(Ï) be as defined in (1.4.1). Then the following assertions hold:
(a) For every fixed s > 0,

Ò÷,Ï
!
e≠Ys(◊)" = e≠Ys(◊)

A
≠s

Ks(Ï)

B

. (1.6.8)

(b) If E|L1|2(1+‘) < Œ and �
◊

(1 + ‘) < 0 for some ‘ > 0, then

Ò÷,Ï

1 ⁄ Œ

0
e≠Ys(◊)ds

2
=

⁄ Œ

0
e≠Ys(◊)

A
≠s

Ks(Ï)

B

ds (1.6.9)

Ò2
÷,Ï

1 ⁄ Œ

0
e≠Ys(◊)ds

2
=

⁄ Œ

0
e≠Ys(◊)

A
s2 ≠sKs(Ï)

≠sKs(Ï) (d2
s(Ï) + dÕ

s(Ï))

B

ds. (1.6.10)

Proof. (a) The partial derivatives of Ys(◊) = ÷s ≠ q
0<uÆs log(1 + Ï(�Lu)2) are given by

ˆYs(◊)
ˆ÷

= s and ˆYs(◊)
ˆÏ

= ≠Ks(Ï),

where the derivative with respect to Ï follows by dominated convergence since we have
the following bound independent of Ï:

Ks(Ï) Æ
ÿ

0<uÆs

(�Lu)2 < Œ. (1.6.11)
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A simple application of the chain rule gives (1.6.8).
(b) It follows from Lemma 1.4.3(a) that we can find a collection of points (◊ú

j )N
j=1 in M

such that

sup
◊œ�

e≠Ys(◊) Æ
Nÿ

j=1
e≠Ys(◊ú

j ), s Ø 0. (1.6.12)

The first derivative of Ks(Ï) follows from dominated converge with the upper bound in
(1.6.11) and is given by

K Õ
s(Ï) = ≠

ÿ

0<uÆs

(�Lu)4

(1 + Ï(�Lu)2)2 , s Ø 0.

Now, similar calculations as in (1.4.2) show that |K Õ
s(Ï)| Æ Ks(Ïú)/Ïú for Ïú as defined

in (1.4.22). This combined with (1.6.12) allows us to obtain an upper bound for the sum
of the bounds of the absolute values of the integrals at the r.h.s. of (1.6.9) and (1.6.10)
given by

Nÿ

j=1

⁄ Œ

0
e≠Ys(◊ú

j )!s + s2 + Ks(Ïú)(1 + 2s + 1/„ú) + d2
s(Ïú)

"
ds. (1.6.13)

Since E|L1|2(1+‘) < Œ and �
◊

ú
j
(1 + ‘) < 0 for all j = 1, . . . , N we can apply Lemma 1.6.3

with p = 1 to prove that the integral in (1.6.13) has finite first moment and is therefore well
defined. This allows us to use dominated convergence to di�erentiate under the integral
sign and then use the chain and product rule combined with (1.6.8) to obtain (1.6.9) and
(1.6.10).

Lemma 1.6.5. Let p Ø 1 and k œ {1, 2}. If E|L1|2kp(1+‘) < Œ for some ‘ > 0, then

E sup
◊œ�(p(1+‘))

ÎÒk
÷,Ï‡2

0(◊)Îp < Œ and E sup
◊œ�(kp(1+‘))

ÎÒk
÷,Ï‡0(◊)Îp < Œ.

Proof. For k œ {1, 2} let Rkp denote the integral defined in (1.6.13) with (◊ú
j )N

j=1 œ
M(kp(1+‘)) as in (1.4.3). By the same argument preceding (1.6.13) and from (1.2.4) we
get

sup
◊œ�(kp(1+‘))

1
ÎÒ÷,Ï‡2

0(◊)Î + ÎÒ2
÷,Ï‡2

0(◊)Î
2

Æ c—úRkp, k = 1, 2, (1.6.14)

where c > 0 and
—ú = sup{— > 0 : (—, ÷, Ï) œ �} < Œ. (1.6.15)

Since from Lemma 1.4.3(b) we know that ‡0(◊) Ø ‡ú > 0, the chain rule implies that

ÎÒ÷,Ï‡0(◊)Î Æ 1
‡ú ÎÒ÷,Ï‡2

0(◊)Î. (1.6.16)
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Using (1.6.16) combined with the chain rule for the second order derivative gives

ÎÒ2
÷,Ï‡0(◊)Î Æ 1

4‡ú ÎÒ2
÷,Ï‡2

0(◊)| + 1
8(‡ú)3 ÎÒ÷,Ï‡2

0(◊)Î2. (1.6.17)

Using (1.6.14) combined with (1.6.16) gives

E sup
◊œ�(p(1+‘))

ÎÒ÷,Ï‡0(◊)Îp Æ E
1 1

‡ú c—úRp

2p
< Œ,

by an application of Lemma 1.6.3. Now, (1.6.14) combined with (1.6.17) gives

E sup
◊œ�(2p(1+‘))

ÎÒ2
÷,Ï‡0(◊)Îp Æ E

1 1
4‡ú c—úR2p + 1

8(‡ú)3 (c—úR2p)2
2p

< Œ,

by an application of the Cauchy-Schwartz inequality and Lemma 1.6.3 with p replaced by
2p.

1.7 Appendix to Section 1.4.3

Lemmas 1.7.2 and 1.7.1 are used in the proof of Proposition 1.4.13 to control the conver-
gence of arithmetic means defined in terms of the sequences (Gi(◊))iœN and (Ò◊Gi(◊))iœN
with Ò◊Gi(◊) defined in the sense of Remark 1.4.12.

Lemma 1.7.1. Let ◊ = (—, ÷, „) =: (◊1, ◊2, ◊3) with —, ÷, „ > 0 and � > 0. Suppose that
E|L1|2 < Œ and �

◊

(1) < 0. Let (‡t(◊))tØ0 be the stationary volatility process starting with
‡0(◊) as in (1.2.4) independent of L. Then for all three components of ◊ the sequences

1 ⁄ i�

(i≠1)�
‡s(◊)dLs,

⁄ i�

(i≠1)�

ˆ

ˆ◊j
‡s(◊)dLs

2

iœN

are stationary and ergodic.

Proof. Without loss of generality assume j = 1. Define the i.i.d. sequence (Sk)kœZ with

Sk = (�Lu, (k ≠ 1)� < u Æ k�).

We consider

((‡s(◊), ◊ œ �), (i ≠ 1)� < s Æ i�) =: g(◊, ◊ œ �, (Sk)i
k=≠Œ)

as a measurable function of all relevant jumps �Lu. Additionally, since limits of di�eren-
tiable functions are measurable, there exists a measurable map h such that

( ˆ

ˆ◊1
‡s(◊), (i ≠ 1)� < s Æ i�) = h((Sk)i

k=≠Œ, (◊ + (c, 0, 0))cœQ).
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By observing that a stochastic integral is defined as a measurable map depending on the
integrand and integrator processes, we can write

⁄ i�

(i≠1)�
‡s(◊)dLs = g((Sk)i

k=≠Œ, ◊)

and ⁄ i�

(i≠1)�

ˆ

ˆ◊1
‡s(◊)dLs = h((Sk)i

k=≠Œ, (◊ + (c, 0, 0))cœQ).

Using Proposition 5 in Straumann and Mikosch [100] (see also Theorem 2.1 in Krengel
[62]) we can conclude the stationarity and ergodicity of the process (Gi(◊), ÒGi(◊))iœN
based on the stationarity and ergodicity of the sequence (Si)iœZ and the measurability of
g and h.

Lemma 1.7.2. If E|L1|4p(1+‘) < Œ for some p > 5/2 and ‘ > 0 then for every l œ {1, 2, 3}
and h œ N0 we have

sup
◊œ�(2p(1+‘))

---
ˆ

ˆ◊l

1 1
n

n≠hÿ

i=1
G2

i (◊)G2
i+h(◊)

2
≠ ˆ

ˆ◊l

!
EG2

1(◊)G2
1+h(◊)

"--- Pæ 0, n æ Œ. (1.7.1)

Proof. The proof follows closely the strategy in the proof of Proposition 5.5 of Fasen-
Hartmann and Kimmig [31], which divides the proof into three steps: Pointwise conver-
gence, local Hölder continuity, and stochastic equicontinuity. Let l œ {1, 2, 3} and h œ N0
be fixed. Write µ̂n(h; ◊) = 1

n

qn≠h
i=1 G2

i (◊)G2
i+h(◊). Then, a simple application of the chain

and product rule gives

ˆ

ˆ◊l
µ̂n(h; ◊) = 1

n

n≠hÿ

i=1

Ë
2Gi(◊)

1 ˆ

ˆ◊l
Gi(◊)

2
G2

i+h(◊) + 2G2
i (◊)Gi+h(◊)

1 ˆ

ˆ◊l
Gj+h(◊)

2È
.

(1.7.2)
Step 1. Pointwise convergence. Let ◊ œ �(2p(1+‘)) be fixed. It follows from Lemma 1.7.1
that the sequence (Gi(◊), ˆ

ˆ◊l
Gi(◊))iœN is stationary and ergodic. Additionally, it follows

from the lemma’s assumptions combined with Theorem 1.4.6, Lemma 1.4.10 and the
Hölder inequality with 1

5 + 2
5 + 2

5 = 1 that

EG1(◊)
1 ˆ

ˆ◊l
G1(◊)

2
G2

1+h(◊)

Æ (EG5
1(◊))1/5

3
E

1 ˆ

ˆ◊l
G1(◊)

25/242/5
(EG5

1+h(◊))2/5 < Œ. (1.7.3)

The same calculations in (1.7.3) can be applied to show that the expectation of the second
term in the summation (1.7.2) is also finite. This allows us to apply Birkho� convergence
theorem to conclude that

ˆ

ˆ◊l
µ̂n(h; ◊) Pæ EG2

1(◊)G2
1+h(◊), n æ Œ.
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Step 2. ˆ
ˆ◊l

µ̂n(h; ◊) is locally Hölder-continuous on �(2p(1+‘)). For i œ N let Ui and Vi

be as defined in (1.4.6) and (1.4.16), respectively. By stationarity of (Gi(◊), ◊ œ �)iœN and
( ˆ

ˆ◊l
Gi(◊), ◊ œ �)iœN, Ui

d= U1, Vi
d= V1 and for every ◊1, ◊2 œ �(2p(1+‘)) with Î◊1 ≠◊2Î < 1

it follows from Theorem 1.4.6 and Lemma 1.4.10 that there exists “ œ (0, 1) such that for
all i œ N:

|Gi(◊1) ≠ Gi(◊2)| Æ UiÎ◊1 ≠ ◊2Î“ and
---

ˆ

ˆ◊l
Gi(◊1) ≠ ˆ

ˆ◊l
Gi(◊2)

--- Æ ViÎ◊1 ≠ ◊2Î“ .

Using the inequality

|a1b1c2
1 ≠ a2b2c2

2| Æ |a1||b1||c1 + c2||c1 ≠ c2| + |a1||c2
2||b1 ≠ b2| + |b2c2

2||a1 ≠ a2|,

valid for every a1, a2, b1, b2, c1, c2 œ R gives for all i œ N,
---Gi(◊1)

1 ˆ

ˆ◊l
Gi(◊1)

2
G2

i+h(◊1) ≠ Gi(◊2)
1 ˆ

ˆ◊l
Gi(◊2)

2
G2

i+h(◊2)
---

Æ 2
3

sup
◊œ�(2p(1+‘))

|Gi(◊)|
---

ˆ

ˆ◊l
Gi(◊)

---|Gi+h(◊)|
4

Ui+hÎ◊1 ≠ ◊2Î“

+
3

sup
◊œ�(2p(1+‘))

|Gi(◊)||G2
i+h(◊)|

4
ViÎ◊1 ≠ ◊2Î“

+
3

sup
◊œ�(2p(1+‘))

---
ˆ

ˆ◊l
Gi(◊)

---|G2
i+h(◊)|

4
UiÎ◊1 ≠ ◊2Î“

=: Ii,hÎ◊1 ≠ ◊2Î“ .

(1.7.4)

Another application of the Hölder inequality combined with (1.4.7) and an analogous
result for Ò◊Gi(◊) gives EI1,h < Œ. Similar calculations as in (1.7.4) can be used to show
that for all i œ N

---G2
i (◊1)Gi+h(◊1)

1 ˆ

ˆ◊l
Gi+h(◊1)

2
≠ G2

i (◊2)Gi+h(◊2)
1 ˆ

ˆ◊l
Gj+h(◊2)

2--- Æ Iú
i,hÎ◊1 ≠ ◊2Î“ ,

(1.7.5)
with EIú

1,h < Œ.
Step 3. Stochastic equicontinuity. Let ›, ‹ > 0 and 0 < ” < min{1, ÷›/E(I1,h + Iú

1,h)}.
Then, it follows from (1.7.2), (1.7.4), (1.7.5) and Markov’s inequality that

P
1

sup
0<Î◊1≠◊2Î<”

◊1,◊2œ�(2p(1+‘))

---
ˆ

ˆ◊l
µ̂n(h; ◊1) ≠ ˆ

ˆ◊l
µ̂n(h; ◊2)

--- > ÷
2

Æ E(I1,h + Iú
1,h)”“

÷
< ›.

This together with the pointwise convergence in Step 1 allow us to conclude the uniform
convergence in (1.7.1) by means of Theorem 10.2 in Pollard [84].



Chapter 2:
Indirect Inference for Time Series Using the Em-
pirical Characteristic Function and Control Vari-
ates

2.1 Introduction

Let (Xj)jœZ be a stationary time series, whose distribution depends on ◊ œ � µ Rq for some
q œ N. Denote by ◊0 œ � the true parameter, which we want to estimate from observations
X1, . . . , XT of the time series. Maximum likelihood estimation (MLE) has been extensively
used for parameter estimation, since under weak regularity conditions it is known to be
asymptotically e�cient. For many models, however, MLE is not always feasible to carry
out, due to a likelihood that may be intractable to compute, or maximization of the
likelihood is di�cult, or because the likelihood function is unbounded on �. To overcome
such problems, alternative methods have been developed, for instance, the generalized
method of moments (GMM) in Hansen [44], the quasi-maximum likelihood estimation
(QMLE) in White [102], and composite likelihood methods in Lindsay [66].

In a similar vein, [33] proposed an estimator based on matching the empirical charac-
teristic function (chf) computed from blocks of the observed time series and the true chf.
More specifically, given a fixed p œ N, the observed blocks of X1, . . . , XT are

Xj = (Xj , . . . , Xj+p≠1), j = 1, . . . , n, (2.1.1)

where n = T ≠ p + 1. In that paper, a finite set of points in Rp needs to be chosen as
arguments for which the true and the empirical chf are compared. However, the practical
choice of this set depends on the problem at hand and the asymptotic results derived in
Feuerverger [33] do not o�er practical guidance for choosing these points. To overcome this
limitation [104] and Knight and Yu [58] considered a integrated weighted squared distance
between the empirical and the true chfs.
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This method has been used in a variety of applications; an interesting review paper,
[105] contains a wealth of examples and references. More recent publications, where the
method has been successfully applied to discrete-time models include Knight et al. [59],
Meintanis and Taufer [73], Kotchoni [61], Milovanovic et al. [74], Francq and Meintanis
[35] and Ndongo et al. [77]. The method also applies to continuous-time processes after dis-
cretization and has been used prominently for Lévy-driven models. The book [4] provides
additional insight and references in this field.

All these papers assume the ideal situation that the chf has an explicit expression, as
a function of ◊ œ �. We call the corresponding parameter estimator the oracle estimator
and use it for comparison with the two new estimators we propose in this paper for
models whose chf is not available in closed form. Both these estimators are constructed
from a functional approximation of the chf constructed from simulated sample paths of
(Xj(◊))jœZ.

While much attention has been given to the choice of the integrated distance used
when computing such estimators, which under some regularity conditions can achieve the
Cramér-Rao e�ciency bound (see eq. (2.3) of Knight and Yu [58] and Proposition 4.2 of
Carrasco et al. [15]), the focus of our paper is on the practical and theoretical aspects that
emerge when it is required to approximate the theoretical chf for parameter estimation.

Our first estimator is computed from a simple Monte Carlo approximation to replace
the true, but unknown chf. This is similar to the simulated method of moments of Mc-
Fadden [72] and of the indirect inference method ([96] and Gourieroux et al. [39]). In
particular, indirect inference has been successfully applied in a variety of situations: pa-
rameter estimation of continuous time models with stochastic volatility (Bianchi and Cleur
[6], Jiang [51], Raknerud and Skare [88], Laurini and Hotta [63] and Wahlberg et al. [101]),
robust estimation (de Luna and Genton [25] and Fasen-Hartmann and Kimmig [31]), and
finite sample bias reduction (Gourieroux et al. [40, 41] and [27]).

More precisely, for many di�erent ◊ œ �, we simulate an iid sample of blocks denoted
by

X̃j(◊) = (X̃(j)
1 (◊), . . . , X̃(j)

p (◊)), j = 1, . . . , H, (2.1.2)

for H œ N, and define a simulation based parameter estimator, which minimizes the in-
tegrated weighted mean squared error, which is the integrated distance we use, between
the empirical chf computed from the blocks (2.1.2) of the observed time series and its
simulated version computed from a large number of simulated paths of the time series.

This is in contrast to the simulation based estimator defined in Section 5.2 of Carrasco
et al. [15], which is computed from one long time series path instead of the iid sample
of blocks in (2.1.2). Since the Monte Carlo approximation of the chf here is computed
from independent blocks, it should have smaller variance than the corresponding one for
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dependent blocks. By the same method in Carrasco et al. [15], Forneron [34] estimated
the structural parameters and the distribution of shocks in dynamic models.

Indeed this gives a chf approximation which yields, by minimizing the integrated dis-
tance, strongly consistent and asymptotically normal parameter estimators. We also report
their small sample properties for di�erent models.

However, as the Monte Carlo approximation of the chf is computed from iid blocks from
a time series, control variates techniques (see [38] and [89]) provide an even more accurate
approximation for the chf. Control variates techniques are classical variance reduction
methods in simulation. The idea is to use a set of control variates, which are correlated
with the chf. The method then approximates the joint covariance matrix of the control
variates and the chf, and uses it to construct a new Monte Carlo approximation of the
chf. We choose the first two terms in the Taylor expansion of the complex exponential
eiÈt,X1(◊)Í, Èt, X1(◊)Í and Èt, X1(◊)Í2 for ◊ œ � as control variates. This requires knowing
the mean and covariance matrix of X1(◊) for ◊ œ �.

In assessing the performance of both the Monte Carlo approximation and the control
variates approximation of the chf, two trends emerge. First, both the Monte Carlo and
the control variates approximations work better for small values of the argument. Second,
the control variates approximation performs much better than the Monte Carlo approxi-
mation, in particular, for small values of the argument. As a consequence, we propose a
control variates based parameter estimator whose integrated mean squared error distance
distinguishes between small and large values of the argument.

Under regularity conditions we prove strong consistency of the proposed parameter
estimators and asymptotic normality of the simulation based parameter estimator. We find
that the simulation based parameter estimator is asymptotically normal with asymptotic
covariance matrix equal to the one of the oracle estimator as derived in [58]. From this
we conclude that there cannot be any improvement in the limit law for the asymptotic
normality of the control variates based estimator. However, we prove that it is computed
from a better approximation of the chf. Thus, the control variates estimator improves the
finite sample performance compared to the simulation based parameter estimator.

The finite sample performance of the estimators are investigated for two important
models. We begin with a stationary Gaussian ARFIMA model, whose chf is explicitly
known so that we can use the oracle estimator and compare its performance with the
simulated based estimator. Their performance is comparable and also very close to the
MLE, so in this model there is no need to use control variates. The second example is
a nonlinear model for time series of counts, which has been proposed originally in Zeger
[106] and applied, for instance, for modeling disease counts (see also Campbell [14], Chan
and Ledolter [16] and Davis et al. [21]).

In the second example, the oracle estimator does not apply, since the chf of the vector
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X1(◊) cannot be computed in closed form. For this model and di�erent parameter sets,
both the simulation based and the control variates based estimators perform satisfactory,
and the control variates based estimator improves the performance of the simulation based
estimator considerably. When compared with the composite pairwise likelihood estimator
in Davis and Yau [20], the control variates based estimator has comparable or even smaller
bias.

Our paper is organized as follows. In Section 2.2 we present the oracle estimator,
and the estimators computed from a Monte Carlo approximation and from a control
variates approximation of the chf in detail. Here we also motivate the choice of the control
variates used. The asymptotic properties of the two new estimators are established in
Section 2.3. As all estimators are computed from true or approximated chf’s we assess their
performance in Section 2.4, first for a Gaussian AR(1) process and then for the Poisson-AR
process. Practical aspects of calculating the weighted least squares function are discussed
in Section 2.5, as well as the estimation results for finite samples. In Section 2.5.1 we
compare the oracle estimator, the simulation based parameter estimator and the MLE for
a Gaussian ARFIMA model, whereas in Section 2.5.2 we compare the simulation based
parameter estimator and the control variates based estimator for the Poisson-AR process.
The proofs of Section 2.3 are given in the Appendix.

2.2 Parameter estimation based on the empirical character-
istic function

Throughout we use the following notation. For z œ C we use the L2-norm: |z| =
Ô

z z,
where z is the complex conjugate of z. For x œ Rd and d œ N we denote by |x| the L2-
norm, but recall that in Rd all norms are equivalent. Furthermore, È·, ·Í denotes the usual
Euclidean inner product in Rd. For z œ C the symbols Ÿ(z) and ⁄(z) denote its real and
imaginary part. For a function f : Rq æ Rp its gradient is given by Ò◊f(◊) = ˆf(◊)

ˆ◊T œ Rp◊q

and Ò2
◊f(◊) = ˆvec(Ò◊f(◊))

ˆ◊T œ Rpq◊q.

2.2.1 The oracle estimator

Let (Xj(◊))jœZ be a stationary time series process, whose distribution depends on ◊ œ � µ
Rq for some q œ N. Denote by ◊0 œ � the true parameter, which we want to estimate,
and suppose that we observe X1, . . . , XT . Given a fixed p œ N, define for ◊ œ � the
p-dimensional blocks

Xj(◊) = (Xj(◊), . . . , Xj+p≠1(◊)), j = 1, . . . , n, (2.2.1)
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where n = T ≠ p + 1. The observed blocks corresponds to

Xj = (Xj , . . . , Xj+p≠1), j = 1, . . . , n,

which can be used to estimate the empirical characteristic function (chf), defined as

Ïn(t) = 1
n

nÿ

j=1
eiÈt,XjÍ, t œ Rp. (2.2.2)

Under mild conditions such as ergodicity, Ïn(t) converges a.s. pointwise to the true chf
Ï(t) = EeiÈt,X1Í for all t œ Rp. We assume that p is chosen in such a way that Ï(·) uniquely
identifies the parameter of interest ◊. The idea of estimating ◊0 from a single time series
observation by matching the empirical chf of blocks of the observed time series and the
true one has been proposed in [104] and Knight and Yu [58], and we use the one in [58],
where the oracle estimator of ◊0 is defined as

◊̂n = argmin◊œ�Qn(◊), (2.2.3)

where
Qn(◊) =

⁄

Rp
|Ïn(t) ≠ Ï(t, ◊)|2w(t)dt, ◊ œ �, (2.2.4)

with suitable weight function w such that the integral is well-defined, and chf

Ï(t, ◊) = EeiÈt,X1(◊)Í, t œ Rp.

In an ideal situation, Ï(·, ◊) has an explicit expression, which is known for all ◊ œ �.

2.2.2 Estimator based on a Monte Carlo approximation of Ï(·, ◊)
Unfortunately, a closed form expression of the chf Ï(·, ◊) is for many time series pro-
cesses not available. However, it can be approximated by a Monte Carlo simulation, and
an idea borrowed from the simulated method of moments (McFadden [72], see also [96]
and Gourieroux et al. [39] for a similar idea in the context of indirect inference) is to
replace Ï(·, ◊) by its functional approximation constructed from simulated sample paths
of (Xj(◊))jœZ. For many di�erent ◊ œ �, we simulate, independent of the observed time
series, an iid sample of the blocks in (2.2.1) denoted by

X̃j(◊) = (X̃(j)
1 (◊), . . . , X̃(j)

p (◊)), j = 1, . . . , H, (2.2.5)

for H œ N, and define the Monte Carlo approximation of Ï(·, ◊) based on these simulations
as

ÏH(t, ◊) = 1
H

Hÿ

j=1
eiÈt,X̃j(◊)Í, t œ Rp. (2.2.6)
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If we replace Ï(·, ◊) in (2.2.4) by ÏH(·, ◊), we obtain the simulation based parameter esti-
mator

◊̂n,H = arg min
◊œ�

Qn,H(◊), (2.2.7)

where
Qn,H(◊) =

⁄

Rp
|Ïn(t) ≠ ÏH(t, ◊)|2w(t)dt, (2.2.8)

with suitable weight function w such that the integral is well-defined.

Remark 1. An alternative approximation to (2.2.6) of the chf is based on generating one
long time series path and use the empirical chf of the consecutive blocks of p-dimensional
random variables constructed as in (2.2.1). While being unbiased, the approximation will
generally have larger variance than the approximation proposed in (2.2.6) using indepen-
dent blocks of random variables. Nevertheless, in some cases when it is expensive to gener-
ate realizations even of size p, such as the case when a long burn-in is required to achieve
stationarity, it may be computationally more e�cient to generate one long series. While
we do not pursue this approach here, the technical aspects of using one large realization is
not much di�erent than the estimate based on independent replicates as in (2.2.6).

Since ÏH(·, ◊) is based on H iid time series blocks, we can reduce its variance further
using control variates to produce an even more accurate approximation for the chf. This
will result in an improved version of ◊̂n,H .

2.2.3 Estimator based on a control variates approximation of Ï(·, ◊)

The estimator ◊̂n,H in (2.2.7) requires only that the stationary time series process can be
simulated, and is therefore easily applicable to a large class of models. When computing
Qn,H(◊) of (3.2.1), it is very important that the error

›H(t, ◊) = |ÏH(t, ◊) ≠ Ï(t, ◊)|, t œ Rp, ◊ œ �, (2.2.9)

in approximating the true chf is small, since it propagates to ◊̂n,H . In order to reduce the
variance of the empirical chf ÏH(·, ◊), we use the method of control variates, as often used
variance reduction technique in the context of Monte Carlo integration ([38], [79], Portier
and Segers [85]).

We construct a control variates approximation of Ï(·, ◊) from the iid sample X̃j(◊), j =
1, . . . , H, as in (2.2.5). We also require explicit expressions for the moments EÈt, X1(◊)Í‹

for ‹ = 1, 2 and ◊ œ �.
Recall that X̃1(◊) d= X1(◊) for all ◊ œ �, so that both random variables have the same

moments. As in Portier and Segers [85], we denote by P◊ the distribution of the block



2.2. Parameter estimation based on the empirical characteristic function 49

X1(◊) and by PH,◊ its empirical version. For example, if ft(x) = eiÈt,xÍ for t, x œ Rp, we
want to provide a good approximation for

Ï(t, ◊) = Eft(X1(◊)) =: P◊(ft), ◊ œ �.

To apply the control variates technique, we need control functions, which are correlated
with ft(X1(◊)) and whose expectations are known. We use the first two terms in the
Taylor series of the complex function ft(x), which suggests the vector of control functions
ht,◊ = (h1,t,◊, h2,t,◊)T , where for ‹ = 1, 2,

h‹,t,◊(x) = Èt, xÍ‹ ≠ EÈt, X1(◊)Í‹ , t œ Rp,

so that P◊(ht,◊) = 0, the zero vector in R2. The Monte Carlo approximation of Ï(·, ◊)
based on the iid sample X̃j(◊), j = 1, . . . , H, is then

PH,◊(ft) = 1
H

Hÿ

j=1
ft(X̃j(◊)) = 1

H

Hÿ

j=1
eiÈt,X̃j(◊)Í = ÏH(t, ◊). (2.2.10)

Since EPH,◊(ft) = Eft(X1(◊)), the Monte Carlo approximation ÏH(t, ◊) is unbiased and
has variance

Var[PH,◊(ft)] = H≠1‡2
◊(ft) with ‡2

◊(ft) = P◊({ft ≠ P◊(ft)}2). (2.2.11)

Then for every vector — œ C2, we have that PH,◊(ft) ≠ —T PH,◊(ht,◊) is also an unbiased
estimator of Ï(t, ◊). Since X̃j(◊), j = 1, . . . , H, is an independent sample,

Var[PH,◊(ft) ≠ —T PH,◊(ht,◊)] = H≠1‡2
◊(ft ≠ —T ht,◊)

and, if we di�erentiate the map — ‘æ ‡2
◊(ft ≠ —T ht,◊) with respect to — and set it equal to

zero, we obtain (cf. Approach 1 in Glynn and Szechtman [38]) the theoretical optimum

—
(opt)
◊,ft

(ht,◊) = {P◊(ht,◊hT
t,◊)}≠1P◊(ht,◊ft), (2.2.12)

provided the inverse exists. In this case, the estimator

Ï
(cvopt)
H (t, ◊) = PH,◊(ft) ≠ (—(opt)

◊,ft
(ht,◊))T PH,◊(ht,◊) (2.2.13)

has minimal asymptotic variance. In order to investigate the existence of the above inverse
note that for each fixed t œ Rp and ◊ œ �,

det(P◊(ht,◊hT
t,◊)) = Var[Èt, X̃1(◊)Í]Var[Èt, X̃1(◊)Í2] ≠ {Cov[Èt, X̃1(◊)Í, Èt, X̃1(◊)Í2]}2.

Since by the Cauchy-Schwarz inequality,

{Cov[Èt, X̃1(◊)Í, Èt, X̃1(◊)Í2]}2 Æ Var[Èt, X̃1(◊)Í]Var[Èt, X̃1(◊)Í2],
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it follows (see e.g. Klenke [54], Theorem 5.8) that

det(P◊(ht,◊hT
t,◊) = 0 ≈∆ aÈt, X̃1(◊)Í + bÈt, X̃1(◊)Í2 + c

a.s.= 0, (2.2.14)

for some a, b, c œ R with |a| + |b| + |c| > 0. As the scalar product is random, universal
coe�cients to satisfy the right-hand side of (2.2.14) exist only in degenerate cases, which
we do not consider.

Since —
(opt)
◊,ft

(ht,◊) is unknown, it needs to be estimated (e.g. by one of the methods in
[38], and we use the one described in eqs. (6) and (7) in Portier and Segers [85]):

—̂H,◊,ft(ht,◊)
= {PH,◊(ht,◊hT

t,◊) ≠ PH,◊(ht,◊)PH,◊(hT
t,◊)}≠1{PH,◊(ht,◊ft) ≠ PH,◊(ht,◊)PH,◊(ft)}.

(2.2.15)

For the iid sample X̃j(◊), j = 1, . . . , H, as in (2.2.5) we obtain the control variates approx-
imation of Ï(·, ◊) given by

Ï
(cv)
H (t, ◊) = PH,◊(ft) ≠ ŸH(t, ◊), t œ Rp, (2.2.16)

where
ŸH(t, ◊) = (—̂H,◊,ft(ht,◊))T PH,◊(ht,◊). (2.2.17)

Recall from (2.2.10) that PH,◊(ft) = ÏH(t, ◊), so we could simply replace ÏH(t, ◊) in
(3.2.1) by Ï

(cv)
H (t, ◊) as given in (2.2.16). However, as we shall see in Section 2.4, the

control variates approximation Ï
(cv)
H (t, ◊) provides superior approximations of Ï(t, ◊) only

for values of t, for which Var(Èt, X̃1(◊)Í) is small. Thus, we replace ÏH(t, ◊) in (3.2.1) by
a combination of ÏH(t, ◊) and Ï

(cv)
H (t, ◊). More precisely, we propose the following control

variates based estimator:
◊̂

(cv)
n,H,k = argmin◊œ�Q

(cv)
n,H,k(◊), (2.2.18)

where for appropriate k > 0,

Q
(cv)
n,H,k(◊)

=
⁄

Rp

----Ïn(t) ≠
3

Ï
(cv)
H (t, ◊)1{ „Var(Èt,X1Í)<k} + ÏH(t, ◊)1{ „Var(Èt,X1Í)Øk}

4----
2 w(t)

‰Var(Èt, X1Í)dt,

(2.2.19)

with suitable weight function w such that the integral is well-defined. Note that

‰Var(Èt, X1Í) = tT �̂pt

where �̂p = (“̂p(i ≠ j))p
i,j=1 with

“̂p(h) = 1
n ≠ h

n≠hÿ

j=1
(Xj ≠ µ̂n)(Xj+h ≠ µ̂n), h = 1, . . . , p, (2.2.20)
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and µ̂n = 1
n

qn
j=1 Xj . The choice of the indicator function 1{ „Var(Èt,X1Í)<k} is justified by

the fact that, when estimating the parameter ◊0, we focus on approximations of Ï(t, ◊) for
◊ close to ◊0.

2.3 Asymptotic behavior of the parameter estimators

Before performing the parameter estimation we need to make sure that the parameters are
identifiable from the model. For the estimators we propose, we require simply that the chf
uniquely identifies the parameter of interest. This will always hold true for the examples
we consider later on.

The properties of the iid sample of the blocks (X̃j(◊))jœN as a function of ◊ will play a
crucial role for the properties of the estimators ◊̂n,H and ◊̂

(cv)
n,H,k from (2.2.7) and (2.2.18),

respectively.
In the sequel, we will make various assumptions on di�erent aspects of the underlying

process, smoothness of the model, moments of the process, and properties of the weight
function. We group these assumptions into the following categories.

Assumptions A (Parameter space and time series process).

(a.1) � is a compact subset of Rq and ◊0 œ �o, the interior of �.

(a.2) (Xj)jœZ is a stationary and ergodic sequence.

(a.3) (Xj)jœZ is –-mixing with rate function (–j)jœN satisfying
qŒ

j=1(–j)1/r < Œ for some
r > 1.

Assumptions B (Continuity and di�erentiability in ◊0).

(b.1) For each j œ N, the map ◊ ‘æ X̃j(◊) is continuous on �.

(b.2) For each j œ N, the map ◊ ‘æ X̃j(◊) is twice continuously di�erentiable in an open
neighborhood around ◊0.

Assumptions C (Moments).

(c.1) E|X1|u < Œ, where u = 2r/(r ≠ 1) with r > 1 being such that (a.3) holds.

(c.2) E
rp

j=1 |Xj |– < Œ for some – œ (u/2, u] where u = 2r/(r ≠ 1) with r > 1 being such
that (a.3) holds.

(c.3) E sup◊œ� |X1(◊)|4 < Œ.
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(c.4) For each ◊ œ �, E|Ò◊X1(◊)| < Œ.

(c.5) E sup◊œ� |Ò◊X1(◊)|2(1+‘) < Œ and E sup◊œ� |Ò2
◊X1(◊)|1+‘ < Œ for some ‘ > 0.

Assumptions D (Weight function).

(d.1)
s
Rp w(t)dt < Œ.

(d.2)
s
Rp |t|w(t)dt < Œ.

(d.3)
s
Rp |t|2(1+‘)w(t)dt < Œ for some ‘ > 0.

(d.4)
s
Rp

w(t)
|t|2 dt < Œ.

Assumption B is indeed satisfied by many linear and non-linear time series processes,
in particular, when they have a representation Xj(◊) = f(Zj , Zj≠1, · · · ; ◊) or Xj(◊) =
f(Zj , Xj≠1(◊), Xj≠2(◊), · · · ; ◊) for iid noise variables (Zj)jœZ, and f : RŒ ◊ � ‘æ R is a
measurable function. Prominent examples are the MA(Œ) and AR(Œ) representations of a
causal or invertible ARMA(p, q) model (see e.g. eqs. (3.1.15) and (3.1.18) in Brockwell and
Davis [13]) or the ARCH(Œ) representation of a GARCH(p, q) model (see e.g. Francq and
Zakoïan [36], Theorem 2.8). In this case, assumptions (b.1) and (b.2) will hold whenever the
map f is continuously di�erentiable for ◊ œ �. For example, if f is Lipschitz-continuous
for ◊ œ �, then the continuity assumption (b.1) holds.

The key asymptotic properties, consistency and asymptotic normality of our estimates
are stated in the following theorems. The proofs of these results are postponed to the
appendix.

We formulate first the strong consistency results of the parameters.

Theorem 2.3.1 (Consistency of ◊̂n,H). Assume that (a.1), (a.2), (b.1), and (d.1) hold.
Let H = H(n) æ Œ as n æ Œ. Then

◊̂n,H
a.s.æ ◊0, n æ Œ.

Theorem 2.3.2 (Consistency of ◊̂
(cv)
n,H,k). Assume that the conditions of Theorem 2.3.1

hold, and additionally (c.1), (c.3), and (d.4). Let H = H(n) æ Œ as n æ Œ. Then

◊̂
(cv)

n,H,k
a.s.æ ◊0, n æ Œ.

The asymptotic normality of the simulation based parameter estimator reads as follows.

Theorem 2.3.3 (Asymptotic normality of ◊̂n,H). Assume that all Assumptions A and B
hold, and that the moment conditions (c.2), (c.4), and (c.5) hold. Furthermore, assume
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that the weight function satisfies (d.1), (d.2) and (d.3). Let H = H(n) := H̄(n)n and
H̄(n) æ Œ as n æ Œ. Define for i = 1, . . . , q

j1,i(t, ◊) = sin(Èt, X̃1(◊)Í)Èt, ˆ

ˆ◊(i) X̃1(◊)Í, l1,i(t, ◊) = cos(Èt, X̃1(◊)Í)Èt, ˆ

ˆ◊(i) X̃1(◊)Í,

and
b

(i)
1 (t) =

A
≠ sin(Èt, X̃1(◊0)Í)
cos(Èt, X̃1(◊0)Í)

B

Èt, ˆ

ˆ◊(i) X̃1(◊0)Í. (2.3.1)

Set

b1(t) =

Q

cca

(b(1)
1 (t))T

...
(b(q)

1 (t))T

R

ddb (2.3.2)

and
Kj(◊) =

⁄

Rp
E[b1(t)]

A
cos(Èt, X1Í) ≠ Ÿ(Ï(t, ◊0))
sin(Èt, X1Í) ≠ ⁄(Ï(t, ◊0))

B

w(t)dt, j œ N.

Let Q = (Qk,i)q
k,i=1 with

Qk,i =
⁄

Rp

1
Ej1,k(t, ◊0)Ej1,i(t, ◊0) + El1,k(t, ◊0)El1,i(t, ◊0)

2
w(t)dt. (2.3.3)

If Q is a non-singular matrix, then
Ô

n(◊̂n,H ≠ ◊0) dæ N(0, Q≠1WQ≠1), n æ Œ, (2.3.4)

where
W = Var[K1(◊0)] + 2

Œÿ

j=2
Cov[K1(◊0), Kj(◊0)] (2.3.5)

Theorem 2.3.3 shows that ◊̂n,H is asymptotically normal and achieves the same asymp-
totic e�ciency as the oracle estimator from (2.2.3) (see Theorem 2.1 in [58]). Therefore,
there cannot be any improvement in the limit law for the asymptotic normality of ◊̂

(cv)
n,H,k.

However, as we show in Section 2.4 it is based on a better approximation of the chf Ï(·, ◊)
than that used for ◊̂n,H . Thus, the control variates estimator ◊̂

(cv)
n,H,k improves the finite

sample performance compared to the simulation based estimator ◊̂n,H .

2.4 Assessing the quality of the estimated chf

In this section we compare the performance of both the Monte Carlo approximation
ÏH(·, ◊) and the control variates approximation Ï

(cv)
H (·, ◊) of the chf as defined in (2.2.6)

and (2.2.16), respectively. We start with the following comparison of the two chf approxi-
mations.
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Remark 2 (Comparison of Ï
(cv)
H (·, ◊) and ÏH(·, ◊)). Assume that (c.3) holds, and let

Ï
(cvopt)

H and Ï
(cv)

H be as defined in (2.2.13) and (2.2.16), respectively. We use that
—̂H,◊,ft(ht,◊) a.s.æ —

(opt)
◊,ft

(ht,◊) as n æ Œ with limit given in (2.2.12). This follows from the
representation of —̂H,◊,ft(ht,◊) as

—̂H,◊,ft(ht,◊) = —̂H,◊,Ÿ(ft)(ht,◊) + i—̂H,◊,⁄(ft)(ht,◊)

and the almost sure convergence of both terms.
The quantities needed to compute the estimator in (2.2.15) are, for each ‹, Ÿ = 1, 2:

PH,◊(ft) = 1
H

Hÿ

j=1
eiÈt,X̃j(◊)Í, (2.4.1)

PH,◊(h‹,t,◊) = 1
H

Hÿ

j=1

1
Èt, X̃j(◊)Í‹ ≠ EÈt, X1(◊)Í‹

2
,

PH,◊(fth‹,t,◊) = 1
H

Hÿ

j=1
eiÈt,X̃j(◊)Í1Èt, X̃j(◊)Í‹ ≠ EÈt, X1(◊)Í‹

2
,

PH,◊(h‹,t,◊hŸ,t,◊) = 1
H

Hÿ

j=1

1
Èt, X̃j(◊)Í‹ ≠ EÈt, X1(◊)Í‹

2
◊

1
Èt, X̃j(◊)ÍŸ ≠ EÈt, X1(◊)ÍŸ

2
. (2.4.2)

Hence, strong consistency of —̂H,◊,ft(ht,◊) follows from the SLLN. This together with
P◊(ht,◊) = 0 implies by Theorem 1 in Glynn and Szechtman [38] that, as H æ Œ,

H1/2!Ÿ!
Ï

(cv)

H (t, ◊) ≠ Ï(t, ◊)
"" dæ N

!
0, ‡2

◊

!Ÿ(ft) ≠ [—(opt)
◊,Ÿ(ft)(ht,◊)]T ht,◊

""
,

H1/2!⁄!
Ï

(cv)

H (t, ◊) ≠ Ï(t, ◊)
"" dæ N

!
0, ‡2

◊

!⁄(ft) ≠ [—(opt)
◊,⁄(ft)(ht,◊)]T ht,◊

""
,

with
‡2

◊

!Ÿ(ft) ≠ [—(opt)
◊,Ÿ(ft)(ht,◊)]T ht,◊

" Æ ‡2
◊

!Ÿ(ft)
"

and
‡2

◊

!⁄(ft) ≠ [—(opt)
◊,⁄(ft)(ht,◊)]T ht,◊

" Æ ‡2
◊

!⁄(ft)
"
,

with ‡2
◊(·) as defined in (2.2.11). Therefore, Ï

(cv)

H (·, ◊) provides an approximation of the
integral Qn(◊) in (2.2.4) with smaller variance than ÏH(·, ◊). As a consequence, this favors
the control variates estimator ◊̂

(cv)

n,H,k over the simulation based estimator ◊̂n,H for large
sample sizes n œ N.
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For all forthcoming examples we choose p = 3 and H = 3 000. We begin with a
stationary Gaussian AR(1) process, where we know the chf Ï(·) explicitly, and then proceed
to the Poisson-AR process, where we approximate the true unknown chf by a precise
simulated version.

2.4.1 The AR(1) process

We start with a stationary Gaussian AR(1) process to show how the method of control
variates improves the Monte Carlo approximation of its chf. Let (Xj(◊))jœZ be the AR(1)
process

Xj(◊) = „Xj≠1(◊) + Zj(◊), j œ Z, (Zj(◊))jœZ
iid≥ N(0, ‡2), (2.4.3)

with parameter space � being a compact subset of {◊ = („, ‡) : |„| < 1, ‡ > 0}. Then the
true chf of X1(◊) = (X1(◊), X2(◊), X3(◊)) is given by

Ï(t, ◊) = e≠ 1
2 tT �3(◊)t, t œ R3,

where the covariance matrix �3(◊) is explicitly known and identifies the parameter ◊

uniquely; see e.g. [13], Example 3.1.2. For a fixed ◊ œ � and many t œ R3 we compute the
absolute errors

›H(t, ◊) = |ÏH(t, ◊) ≠ Ï(t, ◊)| and ›
(cv)
H (t, ◊) = |Ï(cv)

H (t, ◊) ≠ Ï(t, ◊)| (2.4.4)

where ÏH(·, ◊) is the Monte Carlo approximation of the chf of X1(◊) = (X1(◊), X2(◊), X3(◊))
and Ï

(cv)
H (·, ◊) its control variates approximation. To understand how well we can approxi-

mate Ï(·, ◊), we plot in Figure 2.1, ›H(t, ◊) and ›
(cv)
H (t, ◊) against


Var[Èt, X1(◊)Í] for dif-

ferent parameters ◊. These quantities are computed from an iid sample Xj(◊), j = 1, . . . , H

as in (2.2.5). To simulate iid observations from the model (2.4.3), we use the fact that the
one-dimensional stationary distribution is X1(◊) ≥ N(0, ‡2/(1 ≠ „2)), and then use the
recursion in (2.4.3) to simulate X2(◊) and X3(◊). We chose 500 randomly generated values
of t from the 3-dimensional Laplace distribution with chf given in (2.5.2).

It is clear from Figure 2.1 that both the Monte Carlo and the control variates approx-
imations work better when


Var[Èt, X1(◊)Í] is small, and also that the control variates

approximations are best for small values of


Var[Èt, X1(◊)Í]. The superiority of the control
variates approximation for all t and all parameter settings is clearly visible, and already
expected from Remark 2.
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Figure 2.1: Gaussian AR(1) model: absolute error ›H(t, ◊) and ›
(cv)
H (t, ◊) for p = 3 and H =

3 000 as in eq. (2.4.4). We use 500 randomly generated values of t œ R3 from the Laplace
distribution (with chf as in (2.5.2) below), which are plotted against


Var[Èt, X1(◊)Í].
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2.4.2 The Poisson-AR model

We consider a nonlinear time series process for time series of counts, which has been
proposed originally in Zeger [106]. A prototypical Poisson-AR(1) model suggested in Davis
and Rodriguez-Yam [19] assumes that the observations (Xj(◊))jœZ are independent and
Poisson-distributed with means e—+–j(◊) where the process (–j(◊))jœZ is a latent stationary
Gaussian AR(1) process, given by the equations

–j(◊) = „–j≠1(◊) + ÷j(◊), j œ Z, (÷j(◊))jœZ
iid≥ N(0, ‡2),

with parameter space � being a compact subset of {◊ = (—, „, ‡) : |„| < 1, — œ R, ‡ > 0}.
The parameter ◊ is uniquely identifiable from the second order structure, which has been
computed in Section 2.1 of Davis et al. [22].

For this model, the true chf of X1(◊) = (X1(◊), X2(◊), X3(◊)) cannot be computed in
closed form. To mimic the assessment of the errors in eq. (2.4.4), we simulate 1 000 000 iid
observations from X1(◊) by first simulating a Gaussian AR(1) process (–1(◊), –2(◊), –3(◊))
(as described in Section 2.4.1) and then simulating independent Poisson random variables
with means e—+–1(◊), e—+–2(◊) and e—+–3(◊), respectively. From this we compute the em-
pirical characteristic function and take it as Ï(·, ◊) in the absolute error terms (2.4.4).

Now, as in Section 2.4.1, we compare the performance of both the Monte Carlo ap-
proximation and the control variates approximation of the chf. Figure 2.2 presents the
results. The plots in Figure 2.2 are also in favor of the control variates approximation,
when compared to the Monte Carlo approximation.

2.5 Practical aspects and estimation results for finite samples

Our objective is to obtain a simple expression of the integrated mean squared error Qn,H(◊)
in (3.2.1), which is needed to compute the estimator in (2.2.7). For a weight function w

in (3.2.1), we write

w̃(x) =
⁄

Rp
eiÈt,xÍw(t)dt, x œ Rp, (2.5.1)

for its Fourier transform. Our preference is on weight functions such that (2.5.1) is known
explicitly.
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Figure 2.2: Poisson-AR model: Absolute errors ›H(t, ◊) and ›
(cv)
H (t, ◊) for p = 3 and H =

3 000 as in eq. (2.4.4). We use 500 randomly generated values of t œ R3 from the Laplace
distribution (with chf as in (2.5.2) below), which are plottet against


Var[Èt, X1(◊)Í].
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Example 2.5.1. [Weight functions and their characteristic functions]
(i) Laplace: w is a multivariate Laplace density with chf

w̃(t) = 1
(1 + (2fi2)≠1 tT t) , t œ Rp. (2.5.2)

(ii) Cauchy: w is a multivariate Cauchy density with chf

w̃(t) = e≠
Ô

tT t, t œ Rp.

(iii) Gaussian: w is a standard multivariate Gaussian density with chf

w̃(t) = e≠ 1
2 tT t, t œ Rp. (2.5.3)

⇤

Lemma 2.5.2. Let Qn,H(◊) be as in (3.2.1) and w a weight function with Fourier trans-
form w̃. Then

Qn,H(◊) = 1
n2

nÿ

k=1

nÿ

j=1
w̃(Xj ≠ Xk) + 1

H2

Hÿ

j=1

Hÿ

k=1
w̃(X̃j(◊) ≠ X̃k(◊)) (2.5.4)

≠ 1
Hn

Hÿ

k=1

nÿ

j=1

1
w̃(Xj ≠ X̃k(◊)) + w̃(X̃k(◊) ≠ Xj)

2
.

Proof. Since |z|2 = zz̄ for z œ C, for every ◊ œ �,

Qn,H(◊) =
⁄

Rp

----
1
n

nÿ

j=1
eiÈt,XjÍ ≠ 1

H

Hÿ

j=1
eiÈt,X̃j(◊)Í

----
2
w(t)dt

=
⁄

Rp

3 1
n

nÿ

j=1
eiÈt,XjÍ ≠ 1

H

Hÿ

j=1
eiÈt,X̃j(◊)Í

43 1
n

nÿ

k=1
e≠iÈt,XkÍ ≠ 1

H

Hÿ

k=1
e≠iÈt,X̃k(◊)Í

4
w(t)dt

= 1
n2

nÿ

k=1

nÿ

j=1

⁄

Rp
eiÈt,Xj≠XkÍw(t)dt ≠ 1

Hn

Hÿ

k=1

nÿ

j=1

⁄

Rp
eiÈt,Xj≠X̃k(◊)Íw(t)dt

≠ 1
Hn

Hÿ

j=1

nÿ

k=1

⁄

Rp
eiÈt,X̃j(◊)≠XkÍw(t)dt + 1

H2

Hÿ

j=1

Hÿ

k=1

⁄

Rp
eiÈt,X̃j(◊)≠X̃k(◊)Íw(t)dt

= 1
n2

nÿ

k=1

nÿ

j=1
w̃(Xj ≠ Xk) ≠ 1

Hn

Hÿ

k=1

nÿ

j=1

1
w̃(Xj ≠ X̃k(◊)) + w̃(X̃k(◊) ≠ Xj)

2

+ 1
H2

Hÿ

j=1

Hÿ

k=1
w̃(X̃j(◊) ≠ X̃k(◊)).



60 2. Indirect Inference for Time Series

Formula (2.5.4) is very useful, since it avoids the computation of a p-dimensional
integral. Additionally, since the first double sum on the right-hand side of (2.5.4) does not
depend on the argument ◊, for the optimization it can be ignored.

Remark 3. When evaluating the integrated weighted mean squared errors (3.2.1), (2.2.19),
or (2.5.4) in practice, they need to be deterministic functions of ◊. This is enforced by taking
a fixed seed for every j = 1, . . . , H, when simulating X̃j(◊) for di�erent values of ◊ œ �.

In the following two examples we study the finite sample behavior of the estimators ◊̂n,H

and ◊̂
(cv)
n,H,k. We begin with a stationary Gaussian ARFIMA model, whose chf is explicitly

known so that we can use the oracle estimator from Section 2.2.1. Afterwards we come
back to the Poisson-AR process. We choose p = 3, since the 3-dimensional chf contains
su�cient information to identify the parameter of interest. We also choose H = 3 000.

2.5.1 The ARFIMA model

Let (Xj(◊))jœZ be the stationary Gaussian ARFIMA(0, d, 0) model

(1 ≠ B)dXj(◊) = Zj(◊), j œ Z, (Zj(◊))jœZ
iid≥ N(0, ‡2),

where B is the backshift operator, with parameter space � being a compact subset of
{◊ = (d, ‡) : d œ (≠0.5, 0.5), ‡ > 0}. Then the true chf of X1(◊) = (X1(◊), X2(◊), X3(◊))
is given by

Ï(t, ◊) = e≠ 1
2 tT �3(◊)t, t œ R3, ◊ œ �,

where the covariance matrix �3(◊) is explicitly known and identifies the parameter ◊

uniquely; see e.g. Pipiras and Taqqu [83], Corollary 2.4.4.
For the long-memory case, for each value of d œ {0.05, . . . , 0.45} we compare the new

estimators with the MLE method as implemented in the R package arfima. Thus, for
many ◊ œ �, we generate iid Gaussian random vectors with mean zero and covariance
�3(◊) and use them to construct the simulation based estimator ◊̂n,H .

Since the chf Ï(·, ◊) is known in closed form, we are able to compute the ora-
cle estimator ◊̂n from (2.2.4). For practical purpose we choose the weight function
w(t) = (2fi)≠3/2e≠ 1

2 tT t, t œ R3.
Then the integral in (2.2.4), which needs to be minimized with respect to the parameter
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◊, can be evaluated similarly as in (2.5.4), giving for the chf being known,

Qn(◊) =
⁄

R3

----
1
n

nÿ

j=1
eiÈt,XjÍ ≠ e≠ 1

2 tT �3(◊)t
----
2
w(t)dt

= 1
n2

nÿ

j=1

nÿ

k=1
exp

Ó
≠ 1

2(Xj ≠ Xk)T (Xj ≠ Xk)
Ô

+
!

det
!
(2�3(◊) + I)≠1"" 1

2

≠2
!

det
!
(�3(◊) + I)≠1"" 1

2
1
n

nÿ

j=1
exp

Ó
≠ 1

2X

T
j (�3(◊) + I)≠1

Xj

Ô
. (2.5.5)

We compare in Table 2.2 the performance of the simulation based estimator ◊̂n,H , the
oracle estimator ◊̂n in (2.2.3) based on the minimization of (2.5.5), and the MLE. We
notice that ◊̂n,H is comparable to the oracle estimator, so in this model there is no need to
use control variates. In particular, the RMSEs are almost the same for all d Ø 0.20. The
MLE has a smaller RMSE, but both ◊̂n and ◊̂n,H have a smaller bias than the MLE.

— „ ‡ — „ ‡ — „ ‡
D = 10

TRUE -0.613 -0.500 1.236 -0.613 0.500 1.236 -0.613 0.900 0.622
Bias(◊̂n,H) -0.015 0.025 0.002 -0.012 0.014 -0.032 -0.016 -0.010 0.002
RMSE(◊̂n,H) 0.096 0.101 0.119 0.148 0.107 0.120 0.298 0.054 0.128
Bias(◊̂(cv)

n,H,k) 0.023 0.031 -0.007 0.006 0.002 -0.018 0.061 -0.007 -0.036
RMSE(◊̂(cv)

n,H,k) 0.102 0.129 0.122 0.138 0.098 0.098 0.285 0.049 0.132
D = 1

TRUE 0.150 -0.500 0.619 0.150 0.500 0.619 0.150 0.900 0.312
Bias(◊̂n,H) -0.004 0.024 -0.016 -0.006 0.005 -0.023 -0.016 -0.033 0.028
RMSE(◊̂n,H) 0.057 0.144 0.088 0.074 0.141 0.081 0.147 0.084 0.095
Bias(◊̂(cv)

n,H,k) 0.003 -0.011 -0.017 0.001 0.023 -0.019 0.003 -0.009 -0.012
RMSE(◊̂(cv)

n,H,k) 0.055 0.124 0.085 0.071 0.102 0.069 0.145 0.062 0.087
D = 0.1

TRUE 0.373 -0.500 0.220 0.373 0.500 0.220 0.373 0.900 0.111
Bias(◊̂n,H) -0.011 0.032 -0.045 -0.015 -0.322 -0.036 -0.019 -0.517 0.044
RMSE(◊̂n,H) 0.043 0.408 0.098 0.047 0.657 0.102 0.066 0.801 0.099
Bias(◊̂(cv)

n,H,k) -0.002 0.056 -0.044 -0.003 -0.120 -0.038 -0.004 -0.310 0.031
RMSE(◊̂(cv)

n,H,k) 0.042 0.482 0.112 0.045 0.504 0.108 0.062 0.555 0.090

Table 2.1: Comparison of the simulation based estimator ◊̂n,H of (2.2.7) and the control
variates based estimator ◊̂

(cv)
n,H,k of (2.2.18) with k = 1, both with H = 3 000. The models

are classified by the index D of dispersion of e—+–1 . For both estimators the empirical
chf has been computed with n = 500, p = 3, and w is the Laplace density as in (2.5.2).
Moreover, 500 replications have been used to compute bias, standard deviation (Std) and
root mean squared error (RMSE).
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2.5.2 The Poisson-AR process

The Poisson-AR model has been defined in Section 2.4.2. We conduct a simulation ex-
periment in the same setting as in Table 5 in Davis and Rodriguez-Yam [19] and Table 3
in Davis and Yau [20]. The results are shown in Table 2.1 for n = 500 and nine di�erent
parameter settings, where we also classify the models by the corresponding index of dis-
persion D of the random variable e—+–1 , which assumes values in {0.1, 1, 10} as shown in
Davis and Rodriguez-Yam [19].

d = 0.05 d = 0.10 d = 0.15
Bias Std RMSE Bias Std RMSE Bias Std RMSE

◊̂n,H 0.000 0.056 0.056 0.002 0.054 0.054 0.004 0.049 0.049
◊̂n -0.005 0.050 0.050 -0.004 0.047 0.047 -0.004 0.044 0.045
MLE -0.015 0.040 0.043 -0.015 0.040 0.043 -0.016 0.040 0.043

d = 0.20 d = 0.25 d = 0.30
Bias Std RMSE Bias Std RMSE Bias Std RMSE

◊̂n,H 0.003 0.047 0.047 0.000 0.046 0.046 -0.003 0.048 0.048
◊̂n -0.004 0.045 0.045 -0.006 0.044 0.044 -0.007 0.046 0.047
MLE -0.016 0.040 0.043 -0.017 0.039 0.043 -0.017 0.039 0.043

d = 0.35 d = 0.40 d = 0.45
Bias Std RMSE Bias Std RMSE Bias Std RMSE

◊̂n,H -0.006 0.050 0.051 -0.013 0.051 0.052 -0.022 0.047 0.052
◊̂n -0.009 0.049 0.050 -0.013 0.051 0.052 -0.021 0.048 0.052
MLE -0.019 0.039 0.043 -0.021 0.037 0.043 -0.027 0.034 0.043

Table 2.2: Comparison of the simulation based estimator ◊̂n,H for H = 3 000, the oracle
estimator ◊̂n and the MLE. For both estimators we have set n = 400, p = 3, and w is
the Gaussian density as in (2.5.3). Moreover, 500 replications have been used to compute
bias, standard deviation (Std) and root mean squared error (RMSE).

We compare both the simulation based estimator ◊̂n,H and control variates based esti-
mator ◊̂

(cv)
n,H,k. We fix H = 3 000, p = 3 and the 3-dimensional Laplace density as in (2.5.2)

for w. To simulate iid observations of (X1(◊), X2(◊), X3(◊)) we proceed as explained in
Section 2.4.2. The simulation based estimator ◊̂n,H in (2.2.7) is computed via (2.5.4). Un-
fortunately, such a formula cannot be obtained for the control variates based estimator
◊̂

(cv)
n,H,k, since the introduction of the correction ŸH in (2.2.17) introduces addional polyno-

mial terms into Q
(cv)
n,H,k in (2.2.19). Thus, we resort to numerical integration to evaluate

◊̂
(cv)
n,H,k.

Our findings are as follows. For D œ {1, 0.1}, the control variates based estimator
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◊̂
(cv)
n,H,k for k = 1 presents smaller bias and RMSE than the simulation based estimator ◊̂n,H

in most cases, in all others it is comparable. Additionally, a significant improvement in the
bias for estimating „ is noticeable for ◊ = (0.373, 0.500, 0.220) and ◊ = (0.373, 0.900, 0.111).

We compare now the control variates based estimator ◊̂
(cv)
n,H,k in Table 2.1 with the

results for the consecutive pairwise likelihood (CPL) from Table 3 in Davis and Yau [20],
which is refereed to as CPL1 in that paper. The bias of ◊̂

(cv)
n,H,k is smaller than that of

CPL1 for the estimated — and ‡ for almost all cases, in all others it is comparable. For
„ the bias of ◊̂

(cv)
n,H,k and CPL1 are comparable, except that ◊̂

(cv)
n,H,k has poor performance

for estimating „ for the true parameter (—, „, ‡) = (0.373, 0.9, 0.111). This is due to the
fact that the simulated sample paths contain a large number of zeros, giving very little
information for the parameter estimation.

We fix H = 3 000 and simulate observations of the (X1, X2, X3) by using H simulated
paths of length p = 3. We also include the CV estimator in (2.2.18), where we choose
the weight function as w̃(t) = (‰Var(Èt, X1Í))≠1w(t) and w(t) as the multivariate Laplace
distribution as in (2.5.2). This choice was motivated by the findings in Section 2.4 for the
PDM, where the estimates of the chf were most well behaved for values of t for which
‰Var(Èt, X1Í) was small.

2.6 Appendix to Section 2.3

In the following we always set H = H(n) and H̄ = H̄(n) = H(n)/n, but omit the argument
n for notational simplicity.

Throughout the letter c stands for any positive constant independent of the respective
argument. Its value may change from line to line, but is not of particular interest.

For a matrix with only real eigenvalues ⁄min(·) denotes the smallest eigenvalue.
We often use the uniform SLLN, which guarantees for a continuous stochastic process

(Z(t))tœRp satisfying E suptœK |Z(t)| < Œ that suptœK |Z(t) ≠ EZ(t)| a.s.æ 0 as n æ Œ for
every compact set K µ Rp. More precisely, we use the SLLN on the separable Banach
space C(K), the space of continuous functions on the compact set K µ Rp, endowed with
the sup norm (see e.g. Theorem 16(a) in Ferguson [32] or Theorem 9.4 in Parthasarathey
[80]).

2.6.1 Proof of Theorem 2.3.1

Let
Q(◊) =

⁄

Rp

--Ï(t, ◊0) ≠ Ï(t, ◊)
--2w(t)dt
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be the candidate limiting function of Qn,H(◊). For ” > 0 define the set

K” = {t œ Rp : |t| Æ ”}. (2.6.1)

Since |eiÈt,X̃1(◊)Í| = 1 for all ◊ and t, and the random elements (X̃j(◊), ◊ œ �)Œ
j=1 are iid,

the uniform SLLN holds giving

sup
(t,◊)œ�◊K”

----
1
H

Hÿ

j=1
eiÈt,X̃j(◊)Í ≠ Ï(t, ◊)

----
a.s.æ 0, n æ Œ. (2.6.2)

In particular, for ◊ = ◊0 we also have

sup
tœK”

----
1
n

nÿ

j=1
eiÈt,XjÍ ≠ Ï(t, ◊0)

----
a.s.æ 0, n æ Œ. (2.6.3)

Applying the inequality ||a|2 ≠ |b|2| Æ 2|a ≠ b| for a, b œ C, |a|, |b| Æ 1 gives

|Qn,H(◊) ≠ Q(◊)|

Æ
⁄

Rp

----
---
1
n

nÿ

j=1
eiÈt,XjÍ ≠ 1

H

Hÿ

j=1
eiÈt,X̃j(◊)Í

---
2 ≠ |Ï(t, ◊0) ≠ Ï(t, ◊)|2

----w(t)dt

Æ 2
⁄

Rp

----
1
n

nÿ

j=1
eiÈt,XjÍ ≠ Ï(t, ◊0) + Ï(t, ◊) ≠ 1

H

Hÿ

j=1
eiÈt,X̃j(◊)Í

----w(t)dt

Æ 2
⁄

Rp

;---
1
n

nÿ

j=1
eiÈt,XjÍ ≠ Ï(t, ◊0)

--- + sup
◊œ�

---Ï(t, ◊) ≠ 1
H

Hÿ

j=1
eiÈt,X̃j(◊)Í

---
<

w(t)dt

Æ 2 sup
(t,◊)œ�◊K”

;---
1
n

nÿ

j=1
eiÈt,XjÍ ≠ Ï(t, ◊0)

--- +
---Ï(t, ◊) ≠ 1

H

Hÿ

j=1
eiÈt,X̃j(◊)Í

---
< ⁄

K”

w(t)dt

+ 8
⁄

Kc
”

w(t)dt.

(2.6.4)

Applying sup◊œ� on both sides of (2.6.4), using (2.6.2) combined with (d.1), and taking
the limit for ” ¿ 0 gives

sup
◊œ�

|Qn,H(◊) ≠ Q(◊)| a.s.æ 0, n æ Œ. (2.6.5)

Now we prove that Q(◊) = 0 if and only if ◊ = ◊0. Obviously Q(◊0) = 0. If ◊ ”= ◊0, then the
distributions of X1 and X̃1(◊) are di�erent and thus also their characteristic functions are
di�erent. Since characteristic functions are continuous, it follows that they are di�erent
at least on an interval with positive Lebesgue measure; hence Q(◊) > 0. Therefore, Q(◊)
is uniquely minimized at ◊0 and this fact together with (2.6.5) gives strong consistency of
◊̂n,H .
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2.6.2 Proof of Theorem 2.3.2

We have that ‰Var(Èt, X1Í) = tT �̂pt, with �̂p being the p-dimensional empirical covariance
matrix of the observed time series (X1, . . . , XT ) as in (2.2.20). Let k > 0 be fixed and

Q(cv)(◊) =
⁄

Rp

--Ï(t, ◊0) ≠ Ï(t, ◊)
--2 w(t)

tT �pt
dt

be the candidate limiting function of Q
(cv)
n,H,k(◊) in (2.2.19), where �p is the theoretical

p-dimensional covariance matrix of the time series process (Xj)jœZ.
Based on the definition of Q

(cv)
n,H,k(◊) in (2.2.19), we divide the domain of integration

in the integrated mean squared error |Q(cv)
n,H,k(◊) ≠ Q(cv)(◊)| into {‰Var(Èt, X1Í) < k} and

{‰Var(Èt, X1Í) Ø k}, equivalently into Ln = {t œ Rp : tT �̂pt < k} and its complement Lc
n.

Recall also (2.2.16) and (2.2.17). Using |eix| = 1 for all x œ R, together with |ab≠cd| Æ
|b||a ≠ c| + |c||b ≠ d| for a, b, c, d œ C gives for the integral on Lc

n:

|Q(cv)
n,H,k(◊) ≠ Q(cv)(◊)|Lc

n

:=
⁄

Lc
n

-----

----
1
n

nÿ

j=1
eiÈt,XjÍ ≠ 1

H

Hÿ

j=1
eiÈt,X̃j(◊)Í

----
2 1
tT �̂pt

≠ --Ï(t, ◊0) ≠ Ï(t, ◊)
--2 1

tT �pt

-----w(t)dt

Æ
⁄

Lc
n

-----

----
1
n

nÿ

j=1
eiÈt,XjÍ ≠ 1

H

Hÿ

j=1
eiÈt,X̃j(◊)Í

----
2

≠ --Ï(t, ◊0) ≠ Ï(t, ◊)
--2

-----
1

tT �̂pt
w(t)dt

+ 4
⁄

Lc
n

----
1

tT �̂pt
≠ 1

tT �pt

-----w(t)dt.

(2.6.6)

By (a.3) and (c.1) it follows from Theorem 3(a) in Section 1.2.2 of Doukhan [28] that

|Cov(X0, Xj)| Æ 8–
1
r
j

!
E|X1|u" 2

u æ 0, j æ Œ. (2.6.7)

Since Var(X1) > 0, it follows from (2.6.7) combined with Proposition 5.1.1 in [13] that
det(�p) > 0, and therefore, the minimum eigenvalue ⁄min(�p) of �p is positive. Thus, for
all t œ Rp,

tT �pt Ø ⁄min(�p) |t|2 > 0. (2.6.8)

By (a.2) and the ergodic theorem �̂p
a.s.æ �p and, since the eigenvalues of a matrix are con-

tinuous functions of its entries (cf. Bernstein [5], Fact 10.11.2), also ⁄min(�̂p) a.s.æ ⁄min(�p) >

0. It follows from (2.6.8) and from the a.s. convergence of the eigenvalues that there exists
N > 0 such that Hence, there exists some N œ N such that

tT �̂pt Ø |t|2⁄min(�̂p) Ø |t|2 ⁄min(�p)
2 > 0, n Ø N. (2.6.9)
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Thus, for t œ Lc
n we obtain

----
1

tT �̂pt
≠ 1

tT �pt

----- Æ 2
k⁄min(�p)|t|2 |tT (�p ≠ �̂p)t| Æ 2|�p ≠ �̂p|

k⁄min(�p) . (2.6.10)

This together with (2.6.10) gives the following upper bound for the right-hand side of
(2.6.6):

⁄

Rp

-----

----
1
n

nÿ

j=1
eiÈt,XjÍ ≠ 1

H

Hÿ

j=1
eiÈt,X̃j(◊)Í

----
2

≠ --Ï(t, ◊0) ≠ Ï(t, ◊)
--2

-----
w(t)

k
dt

+ 8|�p ≠ �̂p|
k⁄min(�p)

⁄

Rp
w(t)dt.

(2.6.11)

The first integral can be estimated as |Qn,H(◊)≠Q(◊)| in (2.6.4) which tends to 0 uniformly
for ◊ œ � provided that (d.1) holds. Since �̂p

a.s.æ �p, also the second integral in (2.6.11)
tends 0 a.s. as n æ Œ.

We turn to the integrated mean squared error |Q(cv)
n,H,k(◊) ≠ Q(cv)(◊)| on Ln. Let L =

{t œ Rp : |t| Æ
Ò

2k
⁄min(�p)}. The control variates correction used in (2.2.19) can be regarded

as a continuous function g : R9 ‘æ R2 whose entries are the arithmetic means defined in
(2.4.1)-(2.4.2). By (c.3) and the uniform SLLN, each of these arithmetic means converge
a.s. uniformly on L ◊ � as n æ Œ and H æ Œ. Thus, it follows from the continuity of g

and the continuous mapping theorem that

sup
(t,◊)œL◊�

|ŸH(t, ◊)|2 a.s.æ 0. (2.6.12)

For n Ø N it follows from (2.6.9) that Ln ™ L and thus using the inequality
--|a + b|2c ≠ |d|2e

-- Æ --|a + b|2 ≠ |d|2--|c| + |d|2|c ≠ e| Æ (|a ≠ d| + |b|)(4 + |b|)|c| + 4|c ≠ e|,
valid for a, b, c, d, e œ C with |d| Æ 2 gives

⁄

Ln

-----

----

3 1
n

nÿ

j=1
eiÈt,XjÍ ≠ 1

H

Hÿ

j=1
eiÈt,X̃j(◊)Í

4
+ ŸH(t, ◊)

----
2 1
tT �̂pt

≠ --Ï(t, ◊0) ≠ Ï(t, ◊)
--2 1

tT �pt

-----w(t)dt

Æ
⁄

L

A----
1
n

nÿ

j=1
eiÈt,XjÍ ≠ Ï(t, ◊0)

---- +
----

1
H

Hÿ

j=1
eiÈt,X̃j(◊)Í ≠ Ï(t, ◊)

----

+ |ŸH(t, ◊)|
41

4 + |ŸH(t, ◊)|
2 w(t)

tT �pt
dt + 4

⁄

L

----
1

tT �̂pt
≠ 1

tT �pt

----w(t)dt

:=I1,n(◊) + I2,n(◊).
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From (2.6.8), (2.6.12), (2.6.2), and (2.6.3) with K” = L for ” =
Ò

2k/⁄min(�p)) ,and
(d.4) it follows that sup◊œ� I1,n(◊) a.s.æ 0 as n æ Œ. Finally, sup◊œ� I2,n(◊) a.s.æ 0 by similar
arguments as used in (2.6.10) and (2.6.11), since for t œ L, also applying (d.4),

----
1

tT �̂pt
≠ 1

tT �pt

----- Æ 2
(⁄min(�p))2|t|4 |tT (�p ≠ �̂p)t| Æ 2|�p ≠ �̂p|

(⁄min(�p))2|t|2

and ⁄

Rp

w(t)
|t|2 dt < Œ

.

2.6.3 Proof of Theorem 2.3.3

By the definition of ◊̂n,H in (2.2.7) and under assumptions (a.1) and (b.2) we have

Ò◊Qn,H(◊̂n,H) = 0.

A Taylor expansion of order 1 of Ò◊Qn,H around ◊0 gives

0 = Ò◊Qn,H(◊0) + Ò2
◊Qn,H(◊n)(◊̂n,H ≠ ◊0)

where ◊n
a.s.æ ◊0 as n æ Œ. Therefore, asymptotic normality of

Ô
n(◊̂n,H ≠ ◊0) will follow

by the delta method, if we prove that as n æ Œ:

(1)
Ô

nÒ◊Qn,H(◊0) converges weakly to a multivariate normal random variable, and

(2) Ò2
◊Qn,H(◊n) converges in probability to a non-singular matrix.

We start with the first point and compute the partial derivatives of Qn,H :

ˆ

ˆ◊(i) Qn,H(◊) = ˆ

ˆ◊(i)

3 ⁄

Rp
|Ïn(t) ≠ ÏH(t, ◊)|2w(t)dt

4

=
⁄

Rp

ˆ

ˆ◊(i)

1
Ÿ(Ïn(t) ≠ ÏH(t, ◊))2 + ⁄(Ïn(t) ≠ ÏH(t, ◊))2

2
w(t)dt

= ≠2
⁄

Rp

1
Ÿ(Ïn(t) ≠ ÏH(t, ◊)) ˆ

ˆ◊(i) Ÿ(ÏH(t, ◊))

+ ⁄(Ïn(t) ≠ ÏH(t, ◊)) ˆ

ˆ◊(i) ⁄(ÏH(t, ◊))
2
w(t)dt, i œ 1, . . . , q.

(2.6.13)

Recall that Ïn(t) and ÏH(t, ◊) denote the empirical characteristic functions of the
observed blocks (X1, . . . , Xn) as in (2.2.2) and of its Monte Carlo approximation
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(X̃1(◊), . . . , X̃H(◊)) as in (2.2.6), respectively. Define the partial derivatives of the real
and imaginary part of ÏH(t, ◊):

b
(i)
H (t, ◊) = 1

H

Hÿ

j=1

A
≠ sin(Èt, X̃j(◊)Í)
cos(Èt, X̃j(◊)Í)

B

Èt, ˆ

ˆ◊(i) X̃j(◊)Í, i = 1, . . . , q, (2.6.14)

and summarize them into

bH(t, ◊) =

Q

cca

(b(1)
H (t, ◊))T

...
(b(q)

H (t, ◊))T

R

ddb . (2.6.15)

Then consider
A

Ÿ(Ïn(t) ≠ Ï(t, ◊0))
⁄(Ïn(t) ≠ Ï(t, ◊0))

B

≠
A

Ÿ(ÏH(t, ◊) ≠ Ï(t, ◊0))
⁄(ÏH(t, ◊) ≠ Ï(t, ◊0))

B

=: gn(t) ≠ g̃H(t, ◊). (2.6.16)

Abbreviate bH(t) := bH(t, ◊0) and g̃H(t) := g̃H(t, ◊0). Then it follows from (2.6.13), (2.6.15)
and (2.6.16) that

Ò◊Qn,H(◊0) = 2
⁄

Rp
bH(t)gn(t)w(t)dt ≠ 2

⁄

Rp
bH(t)g̃H(t)w(t)dt. (2.6.17)

We analyze the asymptotic behavior of the first term in (2.6.17) in Lemma 2.6.2. More
precisely, we show there that

s
K”

bH(t)gn(t)w(t)dt for K” as in (2.6.1) converge in distri-
bution to a q-dimensional Gaussian vector. Afterwards, Lemmas 2.6.3 and 2.6.4 show that
as ” æ Œ, componentwise in Rq,

lim sup
næŒ

Var
1 ⁄

Kc
”

bH(t)
Ô

ngn(t)w(t)dt
2

æ 0 and
⁄

Kc
”

E[b1(t)]G(t)w(t)dt
Pæ 0,

where G is a zero mean R2-valued Gaussian field.
We show by a standard Chebyshev argument that the second term in (2.6.17) converges

in probability componentwise to 0 in (2.6.45). The convergence of the second derivatives
Ò2

◊Qn(◊n) will be the topic of Lemma 2.6.5. For the scalar products above we use the
following bounds several times below.

Lemma 2.6.1. Let ‹ Ø 1, t œ Rp, k, i œ {1, . . . , q} and j œ Z be fixed and assume that
(b.2) holds.Then the following bounds hold true.

(a) If E|Ò◊X1(◊)|‹ < Œ for ◊ œ �, then there exists a constant c > 0 such that

E
---Èt, ˆ

ˆ◊(k) X̃j(◊)Í
---
‹ Æ c|t|‹E|Ò◊X1(◊)|‹ , t œ Rp. (2.6.18)
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(b) If E|Ò2
◊X1(◊)|‹ < Œ for ◊ œ �, then there exists a constant c > 0 such that

E
---Èt, ˆ

ˆ◊(k)ˆ◊(i) X̃j(◊)Í
---
‹ Æ c|t|‹E|Ò2

◊X1(◊)|‹ , t œ Rp. (2.6.19)

The same bounds hold uniformly, taking expectations over sup◊œ� or over suptœK for
some compact K µ Rp at both sides of (2.6.18) and (2.6.19), provided the corresponding
expectations exist.

Proof. (a) Applying the Cauchy-Schwarz inequality for the inner product, the fact that
(X̃j(◊), ◊ œ �) d= (X̃1(◊), ◊ œ �) d= (X1(◊), ◊ œ �), bounding the L2-norm by the L1-
norm, employing the inequality | qp

j=1 —j |‹ Æ p‹≠1 qp
j=1 |—j |‹ valid for —1, . . . , —p œ R and

‹ Ø 1 gives

E
---Èt, ˆ

ˆ◊(k) X̃j(◊)Í
---
‹ Æ |t|‹E

---
ˆ

ˆ◊(k) X̃j(◊)
---
‹

= |t|‹E
---

ˆ

ˆ◊(k) X1(◊)
---
‹

Æ |t|‹E
3 pÿ

r=1

---
ˆ

ˆ◊(k) Xr(◊)
---
4‹

Æ p‹≠1|t|‹
pÿ

r=1
E

---
ˆ

ˆ◊(k) Xr(◊)
---
‹

Æ p‹≠1|t|‹
pÿ

r=1
E|Ò◊Xr(◊)|‹ = p‹ |t|‹E|Ò◊X1(◊)|‹ =: c|t|‹E|Ò◊X1(◊)|‹ .

(2.6.20)

Part (b) follows by analogous calculations.

Lemma 2.6.2. Under assumptions (a.2), (b.2), (a.3), (c.2) and (c.4) we have on the Borel
sets of Rq,

⁄

K”

bH(t)
Ô

ngn(t)w(t)dt
dæ

⁄

K”

E[b1(t)]G(t)w(t)dt, n æ Œ, (2.6.21)

where G is an R2-valued Gaussian field.

Proof. Under assumptions (a.3) and (c.2), it follows from Lemma 4.1(2) in Davis et al.
[23] that

Ô
n(Ïn(·) ≠ Ï(·, ◊0)) convergences in distribution on compact subsets of Rp to a

complex-valued Gaussian field G̃, equivalently the vector of real and imaginary part con-
verge to a bivariate Gaussian field G. Since the random elements (X̃j(◊), ◊ œ �)jœN are iid
and the partial derivatives exist by (b.2), also (X̃j(◊0), Ò◊X̃j(◊0))jœN are iid. Then it fol-
lows from the definitions (2.6.14), (2.6.15), and Lemma 2.6.1 with K = K”) in combination
with (c.4) that

E sup
tœK”

|b1(t)| Æ c sup
tœK”

|t|E|Ò◊X1(◊0)| Æ c|”|E|Ò◊X1(◊0)| < Œ. (2.6.22)

Hence, the uniform SLLN guarantees that

sup
tœK”

|bH(t) ≠ Eb1(t)| a.s.æ 0, n æ Œ.
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Slutsky’s theorem gives then bH(·)Ôngn(·, ◊0) convergences in distribution on compact
subsets of Rp to E[b1(·)]G(·) as n æ Œ. The result in (2.6.21) follows from the continuity
of the integral by another application of the continuous mapping theorem on C(K”).

Lemma 2.6.3. Under assumptions (b.2), (c.4) and (d.2) we have componentwise in Rq,

lim sup
næŒ

Var
3 ⁄

Kc
”

bH(t)
Ô

ngn(t)w(t)dt

4
æ 0, ” æ Œ. (2.6.23)

Proof. Since bH(·) and gn(·) are independent and Egn(t) = 0, we have E[bH(t)gn(t)] = 0
for all t œ Rp. An application of the Cauchy-Schwartz inequality for integrals gives

Var
3 ⁄

Kc
”

bH(t)
Ô

ngn(t)w(t)dt

4
= E

3 ⁄

Kc
”

bH(t)
Ô

ngn(t)w(t)dt

42

Æ
3
E

⁄

Kc
”

|bH(t)|2n|gn(t)|2w(t)dt

43 ⁄

Kc
”

w(t)dt

4
.

(2.6.24)

We first obtain a bound for the product between the first component gn,1(·) of gn(·) and
the first component b

(i)
H,1(·) of b

(i)
H (·). Define for t œ Rp and j œ Z

Uj(t) = cos(Èt, XjÍ) ≠ Ÿ(Ï(t, ◊0)), Vj(t) = ≠ sin(Èt, X̃j(◊0)Í)Èt, ˆ

ˆ◊(i) X̃j(◊0)Í. (2.6.25)

Then,

gn,1(t) = 1
n

nÿ

j=1
Uj(t) and b

(i)
H,1(t) = 1

H

Hÿ

j=1
Vj(t), t œ Rp.

Under (a.3) it follows from Theorem 3(a) in Section 1.2.2 of Doukhan [28] that for fixed t,

|Cov(U0(t), Uj(t))| Æ 8–
1
r
j

!
E|U0(t)|u" 2

u , j œ N, (2.6.26)

where u = 2r
(r≠1) and, thus, it follows from the stationarity of (Uj(t))jœN combined with

(2.6.26) and the fact that |U0(t)| Æ 2 that

nE
---
1
n

nÿ

j=1
Uj(t)

---
2

= 1
n

nÿ

j=1
EU2

j (t) + 2
n

n≠1ÿ

j=1

1
1 ≠ k

n

2
E|U0(t)Uj(t)|

Æ EU2
0 (t) + 16

!
E|U0(t)|u" 2

u

Œÿ

j=1
–

1/r
j

Æ 4 + 64
Œÿ

j=1
–

1/r
j < Œ,

(2.6.27)
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where the bound is independent of t. Recall that H = H(n) = H̄(n)n. Under (c.4), it
follows from the iid property of (Vj(t))jœN

nE
---

1
H

Hÿ

j=1
Vj(t) ≠ EV0(t)

---
2

= nVar
3 1

H̄n

H̄nÿ

j=1
Vj(t)

4

= EV 2
1 (t)

H̄(n)
Æ c|t|2E|Ò◊X1(◊0)|2

H̄(n)
Æ c|t|2

H̄(n)
.

(2.6.28)

Using the fact that
--- 1

n

qn
j=1 Uj(t)

--- Æ 2, adding and subtracting EV0(t) with the inequality
|a + b|2 Æ 2(|a|2 + |b|2), and (2.6.28) gives

nE
---
1
n

nÿ

j=1
Uj(t)

---
2---

1
H

Hÿ

j=1
Vj(t)

---
2

Æ 2nE
---
1
n

nÿ

j=1
Uj(t)

---
2
(EV0(t))2 + 8nE

---
1
H

Hÿ

j=1
Vj(t) ≠ EV0(t)

---
2

Æ c
1
1 + |t|2

H̄(n)

2
.

(2.6.29)

The calculations in (2.6.27), (2.6.28), and (2.6.29) can now be applied to show that for all
n œ N,

nE|gn(t)|2|bH(t)|2 Æ c
1
1 + |t|2

H̄(n)

2

and, thus, it follows from (2.6.24) together with (d.1) and (d.3) that

lim sup
næŒ

Var
3 ⁄

Kc
”

bH(t)
Ô

ngn(t)w(t)dt

4

Æ lim sup
næŒ

c

H̄(n)

⁄

Kc
”

(1 + |t|2)w(t)dt

⁄

Kc
”

w(t)dt æ 0, ” æ Œ.

(2.6.30)

Lemma 2.6.4. Under assumptions (b.2), (d.2) and (c.4)
⁄

Kc
”

E[b1(t)]G(t)w(t)dt
Pæ 0, ” æ Œ.

Proof. It follows from (2.6.14), (2.6.15), (c.4), and (2.6.22) E|b1(t)| Æ c|t|E|Ò◊X1(◊0)| <

Œ. Now we find an upper bound for the variance of each component of G(t) for a fixed t.
Let Uj(t) be as defined at the left-hand side of (2.6.25) and notice that the first component
of G(t) is the distributional limit of 1Ô

n

qn
j=1 Uj(t). Since (Uj(t))jœN is –-mixing by (a.3),
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we can apply the CLT in [50] (Theorem 18.5.3 with ” = 2/(r ≠ 1)) and find that the
variance of the first component of G(t) is given by

‡2
U = E[U2

0 (t)] + 2
Œÿ

j=1
E[U0(t)Uj(t)].

This combined with Theorem 3(a) in Section 1.2.2 of [28] and the fact that EUj(t) = 0
and |Uj(t)| Æ 2 for all j œ N gives by (a.3) and (2.6.26)

|‡2
U | Æ 4 +

Œÿ

j=1
|Cov(U0(t), Uj(t))| Æ 4 + 8

Œÿ

j=1
(2–j)1/r!

E|U0(t)|u" 2
u Æ 4 + 64

Œÿ

j=1
(2–j)1/r.

A similar calculation shows that the variance of the second component of G(t) is also
bounded by a finite constant, which does not depend on t. Therefore, E|G(t)| Æ c. This
combined with (2.6.22) and assumption (d.2) gives

E
---
⁄

Kc
”

E[b1(t)]G(t)w(t)dt
--- Æ cE|Ò◊X1(◊0)|

⁄

Kc
”

|t|w(t)dt æ 0, ” æ Œ.

Since L1-convergence implies convergence in probability the result follows.

This proves part (1) of the delta method.

We now turn to part (2). In order to calculate the second derivatives of Qn,H(◊), which
exist by (b.2), we rewrite (2.6.13) as

ˆ

ˆ◊(i) Qn,H(◊)

= ≠2
⁄

Rd

Ó1 1
n

nÿ

j=1
cos(Èt, Xj(◊)Í) ≠ 1

H

Hÿ

j=1
cos(Èt, X̃j(◊)Í)

2 ˆ

ˆ◊(i) Ÿ(ÏH(t, ◊))

+
1 1

n

nÿ

j=1
sin(Èt, Xj(◊)Í) ≠ 1

H

Hÿ

j=1
sin(Èt, X̃j(◊)Í)

2 ˆ

ˆ◊(i) ⁄(ÏH(t, ◊))
Ô

w(t)dt

=: 2
⁄

Rd

Ó
in,H(t, ◊)jH,i(t, ◊) ≠ kn,H(t, ◊)lH,i(t, ◊)

Ô
w(t)dt.

For the second derivatives we calculate for every i, k œ {1, . . . , q},

ˆ

ˆ◊(k)ˆ◊(i) Qn,H(◊) = 2
⁄

Rp

Ó
jH,k(t, ◊)jH,i(t, ◊) + in,H(t, ◊)gH,k,i(t, ◊)

+ lH,k(t, ◊)lH,i(t, ◊) ≠ kn,H(t, ◊)hH,k,i(t, ◊)
Ô

w(t)dt,

(2.6.31)
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where we summarize all quantities used in the following list:

in,H(t, ◊) = 1
n

nÿ

j=1
cos(Èt, XjÍ) ≠ 1

H

Hÿ

j=1
cos(Èt, X̃j(◊)Í)

jH,i(t, ◊) = ˆ

ˆ◊(i) in,H(t, ◊) = 1
H

Hÿ

j=1
sin(Èt, X̃j(◊)Í)Èt, ˆ

ˆ◊(i) X̃j(◊)Í

gH,k,i(t, ◊) = ˆ

ˆ◊(k) jH,i(t, ◊)

= 1
H

Hÿ

j=1
cos(Èt, X̃j(◊)Í)Èt, ˆ

ˆ◊(k) X̃j(◊)ÍÈt, ˆ

ˆ◊(i) X̃j(◊)Í

+ sin(Èt, X̃j(◊)Í)Èt, ˆ

ˆ◊(k)ˆ◊(i) X̃j(◊)Í

kn,H(t, ◊) = 1
n

nÿ

j=1
sin(Èt, XjÍ) ≠ 1

H

Hÿ

j=1
sin(Èt, X̃j(◊)Í)

lH,i(t, ◊) = ≠ ˆ

ˆ◊(i) kn,H(t, ◊) = 1
H

Hÿ

j=1
cos(Èt, X̃j(◊)Í)Èt, ˆ

ˆ◊(i) X̃j(◊)Í

hH,k,i(t, ◊) = ˆ

ˆ◊(k) lH,i(t, ◊)

= 1
H

Hÿ

j=1
≠ sin(Èt, X̃j(◊)Í)Èt, ˆ

ˆ◊(k) X̃j(◊)ÍÈt, ˆ

ˆ◊(i) X̃j(◊)Í

+ cos(Èt, X̃j(◊)Í)Èt, ˆ

ˆ◊(k)ˆ◊(i) X̃j(◊)Í.

Lemma 2.6.5. If the assumptions (a.2), (b.1), (b.2), (c.5), (d.3) hold and (◊n)nœN µ �
satisfying ◊n

a.s.æ ◊0, then for every k, i œ {1, . . . , q}, as n æ Œ
ˆ

ˆ◊(k)ˆ◊(i) Qn,H(◊n) Pæ
⁄

Rp

1
Ej1,k(t, ◊0)Ej1,i(t, ◊0) + El1,k(t, ◊0)El1,i(t, ◊0)

2
w(t)dt.

(2.6.32)

Proof. We first prove
⁄

Rp
in,H(t, ◊n)gH,k,i(t, ◊n)w(t)dt

Pæ
⁄

Rp
Ei1,1(◊0, t)Eg1,k,i(◊0, t)w(t)dt, n æ Œ.

(2.6.33)
Step 1: Uniform convergence on �: It follows from the iid property of the random
elements (X̃j(◊), ◊ œ �)jœN that the sequence (X̃j(◊), Ò◊X̃j(◊), Ò2

◊X̃j(◊), ◊ œ �)jœN is iid.
Lemma 2.6.1 together with (c.5) gives the uniform bound

E sup
◊œ�

|g1,k,i(t, ◊)| Æ c
1
|t|2E sup

◊œ�
|Ò◊X1(◊)|2 + |t|E sup

◊œ�
|Ò2

◊X1(◊)|
2

< Œ,
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and it follows from the uniform SLLN that for every fixed t œ Rp

sup
◊œ�

|gH,k,i(t, ◊) ≠ Eg1,k,i(t, ◊)| a.s.æ 0, n æ Œ. (2.6.34)

Similarly,

sup
◊œ�

----
1
H

Hÿ

j=1
cos(Èt, X̃j(◊)Í) ≠ Ÿ(Ï(t, ◊))

----
a.s.æ 0, n æ Œ. (2.6.35)

Because of (a.2) the ergodic theorem gives

1
n

nÿ

j=1
cos(Èt, XjÍ) a.s.æ Ÿ(Ï(t, ◊0)), n æ Œ. (2.6.36)

Therefore, (2.6.35) combined with (2.6.36) and the triangle inequality imply

sup
◊œ�

|in,H(t, ◊) ≠ Ei1,1(t, ◊)| a.s.æ 0, n æ Œ. (2.6.37)

Step 2: Pointwise convergence of in,H(t, ◊n)gH,k,i(t, ◊n): The triangle inequality im-
plies

|in,H(t, ◊n)gH,k,i(t, ◊n) ≠ Ei1,1(◊0, t)Eg1,k,i(◊0, t)|
Æ|in,H(t, ◊n)gH,k,i(t, ◊n) ≠ Ei1,1(t, ◊n)Eg1,k,i(t, ◊n)|

+ |Ei1,1(t, ◊n)Eg1,k,i(t, ◊n) ≠ Ei1,1(◊0, t)Eg1,k,i(◊0, t)|
Æ sup

◊œ�

)|in,H(t, ◊)gH,k,i(t, ◊) ≠ Ei1,1(t, ◊)Eg1,k,i(t, ◊)|*

+ |Ei1,1(t, ◊n)Eg1,k,i(t, ◊n) ≠ Ei1,1(◊0, t)Eg1,k,i(◊0, t)|.

(2.6.38)

Since ◊n
a.s.æ ◊0 and the map ◊ ‘æ Ei1,1(t, ◊)Eg1,k,i(t, ◊) is continuous in �, (by (b.2) and

(c.5)) it follows that the second term on the right-hand side of (2.6.38) converges a.s.
to zero. Additionally, since the uniform convergences on (2.6.34) and (2.6.37) imply the
uniform convergence of the product in,H(t, ◊)gH,k,i(t, ◊) on � it follows that the first term
on the right-hand side of (2.6.38) also converges a.s. to zero.

Step 3: L1-convergence: Since we have already shown a.s. convergence, it follows from
Theorems 6.25(iii) and 6.19 in [54] (with H(x) = |x|1+Á) that L1-convergence follows
provided that

sup
nœN

E|in,H(t, ◊n)gH,k,i(t, ◊n)|1+‘ < Œ

for some ‘ > 0. Using the fact that |in,H(t, ◊n)| Æ 2 and the inequality | 1
n

qn
j=1 —j |1+‘ Æ
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1
n

qn
j=1 |—j |1+‘, —1, . . . , —n œ R, we obtain

E|in,H(t, ◊n)gH,k,i(t, ◊n)|1+‘

Æ 21+‘E|gH,k,i(t, ◊n)|1+‘

Æ 21+‘ 1
H

Hÿ

j=1
E

--- cos(Èt, X̃j(◊n)Í)Èt, ˆ

ˆ◊(k) X̃j(◊n)ÍÈt, ˆ

ˆ◊(i) X̃j(◊n)Í

+ sin(Èt, X̃j(◊n)Í)Èt, ˆ

ˆ◊(k)ˆ◊(i) X̃j(◊n)Í
---
1+‘

Æ 21+‘ 1
H

Hÿ

j=1
E

---Èt, ˆ

ˆ◊(k) X̃j(◊n)ÍÈt, ˆ

ˆ◊(i) X̃j(◊n)Í + Èt, ˆ

ˆ◊(k)ˆ◊(i) X̃j(◊n)Í
---
1+‘

,

(2.6.39)

since | cos(·)|, | sin(·)| Æ 1. Now we use the inequality |a + b|1+‘ Æ 2‘(|a|1+‘ + |b|1+‘) for
a, b œ R, assumption (c.5) for the uniform bound in Lemma 2.6.1 and the fact that the
sequence (X̃j(◊), Ò◊X̃j(◊), Ò2

◊X̃j(◊), ◊ œ �)jœN is iid to continue
Now we use the inequality |a + b|1+‘ Æ 2‘(|a|1+‘ + |b|1+‘) for a, b œ Rq, ap-

ply the Cauchy-Schwarz inequality for the inner product, and use the fact that
(X̃j(◊), Ò◊X̃j(◊), Ò2

◊X̃j(◊), ◊ œ �)jœN are iid and assumption (c.5) for the uniform bound
in Lemma 2.6.1 to continue

Æ 21+2‘ 1
H

Hÿ

j=1

3
E

---Èt, ˆ

ˆ◊(k) X̃j(◊n)ÍÈt, ˆ

ˆ◊(i) X̃j(◊n)Í
---
1+‘

+ E
---Èt, ˆ

ˆ◊(k)ˆ◊(i) X̃j(◊n)Í
---
1+‘

4

Æ c
1
H

Hÿ

j=1

!|t|2(1+‘)E|Ò◊X1(◊n)|2(1+‘) + |t|1+‘E|Ò2
◊X1(◊n)|1+‘"

Æ c
1
|t|2(1+‘)E sup

◊œ�
|Ò◊X1(◊)|2(1+‘) + |t|1+‘E sup

◊œ�
|Ò2

◊X1(◊)|1+‘
2

:= v(t) < Œ.

(2.6.40)

Step 4: Convergence of the random integrals: Define the sequence of functions

vn(t) = E|in,H(t, ◊n)gH,k,i(t, ◊n) ≠ Ei1,1(◊0, t)Eg1,k,i(◊0, t)|, t œ Rp,

and recall that from the L1-convergence showed in Step 3, for every t œ Rp we have
vn(t) æ 0 as n æ Œ. From the definition of the function v in the last line of (2.6.40) it
follows that supnœN vn(t) Æ 2v(t). Additionally, assumption (d.3) implies that

⁄

Rp
v(t)w(t)dt < Œ.
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Therefore, it follows from Fubini’s Theorem and dominated convergence that

E
----
⁄

Rp

!
in,H(t, ◊n)gH,k,i(t, ◊n) ≠ Ei1,1(◊0, t)Eg1,k,i(◊0, t)

"
w(t)dt

----

Æ E
⁄

Rp
|in,H(t, ◊n)gH,k,i(t, ◊n) ≠ Ei1,1(◊0, t)Eg1,k,i(◊0, t)|w(t)dt

=
⁄

Rp
vn(t)w(t)dt æ 0, n æ Œ,

(2.6.41)

and therefore the convergence in probability of (2.6.33) follows from the L1-convergence
in (2.6.41).

The proofs for the other three remaining integrals on the right-hand side of (2.6.31)
follow along the same lines. The result in (2.6.32) is then a consequence of the fact that
for all t œ Rp, Ei1,1(t, ◊0) = Ek1,1(t, ◊0) = 0.

Proof of Theorem 2.3.3: We handle each term in (2.6.17) separately. As a direct con-
sequence of Theorem 2.3.1 and Lemmas 2.6.2, 2.6.3, 2.6.4 and 2.6.5,

≠2(Ò2
◊Qn,H(◊n))≠1

⁄

Rp
bH(t)

Ô
ngn(t)w(t)dt

dæ N(0, Q≠1WQ≠1), n æ Œ,

with Q as in (2.3.3),

W = Var
3 ⁄

Rp
E[b1(t)]G(t)w(t)dt

4

and G being the R2-valued Gaussian field from Lemma 2.6.2. For arbitrary k, r œ {1, . . . , q}
we have

Wk,r = Cov
3 ⁄

Rp
E[b(k)

1 (t)]T G(t)w(t)dt,

⁄

Rp
E[b(r)

1 (t)]T G(t)w(t)dt

4

=
⁄

Rp

⁄

Rp
E[b(k)

1 (t)]TE[G(t)G(s)T ]E[b(k)
1 (s)]w(t)w(s)dtds.

(2.6.42)

Since (Xj)jœN is –-mixing by (a.3), we can apply the CLT in [50] (Theorem 18.5.3 with
” = 2/(r ≠ 1)) and find that

E[G(t)G(s)T ] = E[F1(t)F1(s)T ] + 2
Œÿ

j=2
E[F1(t)Fj(s)T ], (2.6.43)

where

Fj(t) =
A

cos(Èt, XjÍ) ≠ Ÿ(Ï(t, ◊0))
sin(Èt, XjÍ) ≠ ⁄(Ï(t, ◊0))

B

. (2.6.44)
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Substituting (2.6.43) and (2.6.44) into (2.6.42) gives with Fubini’s Theorem

Wk,r =
⁄

Rp

⁄

Rp
E[b(k)

1 (t)]T
3
E[F1(t)F1(s)T ]

+ 2
Œÿ

j=2
E[F1(t)Fj(s)T ]

4
E[b(k)

1 (s)]w(t)w(s)dtds

=
⁄

Rp

⁄

Rp
E[b(k)

1 (t)]TE[F1(t)F1(s)T ]E[b(k)
1 (s)]w(t)w(s)dtds

+ 2
Œÿ

j=2

⁄

Rp2
E[b(k)

1 (t)]TE[F1(t)Fj(s)T ]E[b(k)
1 (s)]w(t)w(s)dtds

= E
1 ⁄

Rp
E[b(k)

1 (t)]T F1(t)w(t)dt
22

+ 2
Œÿ

j=2
E

51 ⁄

Rp
E[b(k)

1 (t)]T F1(t)w(t)dt
21 ⁄

Rp
E[b(k)

1 (s)]T Fj(t)w(s)ds
26

,

which gives (2.3.5).
The second term in (2.6.17) is, up to a constant,

⁄

Rp
bH(t)g̃H(t)w(t)dt.

It follows from the fact that (X̃j(◊0))jœN
d= (Xj)jœN combined with (2.6.30) that

Var
3 ⁄

Rp
bH(t)

Ô
ng̃H(t)w(t)dt

4

Æ c

H̄(n)

3 ⁄

Rp
(1 + |t|2)w(t)dt

43 ⁄

Rp
w(t)dt

4
=: c

H̄(n)
æ 0,

(2.6.45)

as n æ Œ. Thus (2.3.4) follows from Chebyshev’s inequality. ⇤
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Chapter 3:
Method of moment based estimation for the mul-
tivariate COGARCH(1,1) process

3.1 Introduction

The modeling of financial data has received much attention over the last decades, where
several models have been proposed for capturing its stylized facts. Prominent models are
the class of ARCH (autoregressive conditionally heteroskedastic) and GARCH (generalized
ARCH) processes (see Engle [29] and Bollerslev [10], respectively). They are able to capture
most of these stylized facts about financial data (see Cont [18] and Guillaume et al. [42]).

To model and understand the behavior of stochastic volatility, it is most natural to
consider it as a process in continuous time, specially when dealing with high-frequency
financial data. The COGARCH process is a natural generalization of the discrete time
GARCH process to continuous time. It exhibits many stylized features of financial time
series and is well suited for modeling high-frequency data (see Bayracı and Ünal [2],
Bibbona and Negri [7], Haug et al. [45], Maller et al. [70], Klüppelberg et al. [57] and
Müller [76]).

The MUCOGARCH process introduced in Stelzer [98] is a multivariate extension of
the COGARCH process. It combines the features of the continuous time GARCH pro-
cesses with the ones of the multivariate BEKK GARCH process of Engle and Kroner [30].
Multivariate models are necessary because in many areas of application, one has to model
and understand the joint behavior of several time series (Lütkepohl [68, Section 1.1]).
The MUCOGARCH is therefore, as a multivariate model, appropriate for modeling and
understanding volatility in several assets jointly. It is a d≠dimensional stochastic process
and it is defined as

Gt =
⁄ t

0
V

1/2
s≠ dLs, t Ø 0, (3.1.1)

where L is an Rd-valued Lévy process with Lévy measure ‹L ”© 0 and having càdlàg sample
paths. The matrix valued volatility process (Vs)sØ0 depends on a parameter ◊0 œ � µ Rq,



80 3. Method of moment for multivariate COGARCH(1,1) processes

it is predictable and its stochasticity depends only on L. As it is common, we assume that
we have a sample of size n of the log-price process (3.1.1) observed on a fixed grid of size
� > 0, and compute the log-price returns

Gi =
⁄ i�

(i≠1)�
V

1/2
s≠ dLs, i = 1, . . . , n. (3.1.2)

Therefore, the question of interest is how to estimate the true parameter ◊0 from
the observations (Gi)n

i=1. In the univariate case, several methods have been proposed
to estimate the parameters of the COGARCH process (Haug et al. [45], Maller et al.
[70], Bayracı and Ünal [2], Bibbona and Negri [7] and do Rêgo Sousa et al. [27]). All
these methods rely on the fact that the COGARCH process is, under certain regularity
conditions, ergodic and strongly mixing.

Recently, Stelzer and Vestweber [99] introduced su�cient conditions for the existence
of a unique stationary distribution, for the geometric ergodicity, and for the finitenss
of moments of the stationary distribution in the MUCOGARCH process. These results
imply ergodicity and strong mixing of the log-price process (Gi)Œ

i=1, thus paving the way
for statistical inference. We will employ the results of this paper to use the generalized
method of moments (GMM) for estimating the parameter of the MUCOGARCH process.

Our first challenge is to compute the second-order structure of the squared returns in
closed form, which already in the one-dimensional case, require rather lengthy calculations.
This will be the topic of Lemmas 3.4.2 and 3.4.3.

Consistency and asymptotic normality of the GMM estimator is given under standard
assumptions of mixing, existence of moments of the MUCOGARCH volatility process and
model identifiability. Then we give su�cient conditions under which these assumptions
will hold.

Su�cient conditions for mixing and the existence of p Ø 1 moments of the MUCOG-
ARCH volatility process are already given in Stelzer and Vestweber [99]. We use their
conditions and the conditions for asymptotic second-order stationarity in Stelzer [98] to
obtain consistency of the GMM estimator under rather general conditions. Asymptotic
normality of the estimator is also obtained under appropriate additional moment restric-
tions on the driving Lévy process.

The identifiability question is more delicate, since the formulas for the second-order
structure of the log-price returns involve operators which are not invertible and, therefore,
the strategy used for showing identifiability as in the one-dimensional COGARCH process
cannot be in general applied. Instead, we derive identifiability conditions which rely mainly
on the autocovariance structure of the squared returns.

Our paper is organized as follows. In Section 2, we fix the notation and briefly introduce
Lévy processes. In Section 3 we define the MUCOGARCH process, and obtain in Section
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4 its second-order structure. Section 5 introduces the GMM estimator and discusses suf-
ficient conditions for stationarity, mixing and identifiability of the model parameters. In
Section 3.6, we study the finite sample behavior of the estimators in a simulation study.
Finally, Section 3.7 presents the proofs for results in Section 3.4.

3.2 Preliminaries

3.2.1 Notation

Denote the set of non-negative real numbers by R+. For z œ C the symbols Ÿ(z) and ⁄(z)
denote its real and imaginary part. We denote by Mm,d(R), the set of real m ◊ d matrices
and write Md(R) for Md,d(R). The group of invertible d◊d matrices is denoted by GL(R),
the linear subspace of symmetric matrices by Sd, the (closed) positive semidefinite cone
by S+

d and the (open) positive definite cone by S++
d . We write Id for the d ◊ d identity

matrix. The tensor (Kronecker) product of two matrices A, B is written as A¢B. The vec
operator denotes the well-known vectorization operator that maps the set of d◊d matrices
to Rd2 by stacking the columns of the matrices below one another. Similarly, vech stacks
the entries on and below the main diagonal of a square matrix. For more information
regarding the tensor product, vec and vech operators we refer to Horn and Johnson [46]
and Bernstein [5]. The spectrum of a square matrix is denoted by ‡(·). Finally, Aú denotes
the transpose of a matrix A œ Mm,d(R) and A(i,j) denotes the entry at the ith line and
jth column of A. Norms of vectors or matrices are denoted by Î · Î, and Î · Î2 denotes
the operator norm on Md2(R) associated with the usual Euclidean norm. If the norm is
not specified, then it is irrelevant which particular norm is used. The symbol c stands for
any positive constant, whose value may change from line to line, but is not of particular
interest.

Additionally, we employ an intuitive notation with respect to (stochastic) integration
with matrix-valued integrators, referring to any of the standard texts (for example, Protter
[86]) for a comprehensive treatment of the theory of stochastic integration. Let (At)tœR+

in Mm,d(R) and (Bt)tœR+ in Mr,u(R) be càdlàg and adapted processes and (Lt)tœR+ in
Md,r(R) be a semimartingale. We then denote by

s t
0 As≠dLsBs≠ the matrix Ct œ Mm,u(R)

which has ij-th entry
qd

k=1
qr

l=1
s t

0 Aik,s≠Blj,s≠dLkl,s. If (Xt)tœR+ is a semimartingale in
Rm and (Yt)tœR+ one in Rd, then the quadratic variation ([X, Y ]t)tœR+ is defined as the
finite variation process in Mm,d(R) with ij-th entry [Xi, Yj ]t for t œ R+, i = 1, . . . , m and
j = 1, . . . , d. We also refer to Lemma 2.2 in Behme [3] for a collection of basic properties
related to integration with matrix-valued integrators. Lastly, let Q : Md2(R) ‘æ Md2(R)
be the linear map defined by

(QX)(k≠1)d+l,(p≠1)d+q = X(k≠1)d+p,(l≠1)d+q for all k, l, p, q = 1, . . . , d, (3.2.1)
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which has the property that Q(vec(X) vec(Z)T ) = X ¢ Z for all X, Z œ Sd (Pigorsch and
Stelzer [82, Theorem 4.3]). Let Kd be the commutation matrix which can be characterized
by Kd vec(A) = vec(Aú) for all A œ Md(R) (see Magnus and Neudecker [69] for more de-
tails). Now, define Q œ Md4(R) as the matrix associated with the linear map vec ¶Q¶vec≠1

on Rd4 , and Kd œ Md4(R) as the matrix associated with the linear map vec(Kd vec≠1(x))
for x œ Rd4 .

3.2.2 Lévy processes

A Lévy process L = (Lt)tœR+ in Rd is defined by its Lévy-Khintchine form EeiÈu,LtÍ =
exp{tÂL(u)} for t œ R+ with

ÂL(u) = iÈ“L, uÍ ≠ 1
2Èu, �LuÍ +

⁄

Rd
(eiÈu,xÍ ≠ 1 ≠ iÈu, xÍI[0,1](ÎxÎ))‹L(dx), u œ Rd,

where “L œ Rd, �L œ S+
d and the Lévy measure ‹L is a measure on Rd satisfying ‹L({0}) =

0 and
s
Rd

!ÎxÎ2 · 1
"

‹L(dx) < Œ. We assume L to have càdlàg paths. The discontinuous
part of the quadratic variation of L is denoted by ([L, L]dt )tœR+ and it is also a Lévy process.
It has finite variation, zero drift and Lévy measure ‹[L,L]d(B) =

s
Rd IB (xxú) ‹L(dx) for all

Borel sets B ™ Sd. For more details on Lévy processes we refer to Applebaum [1] and Sato
[90].

3.3 The MUCOGARCH process

Throughout, we assume that all random variables and processes are defined on a given
filtered probability space (�, F , P, (Ft)tœT ), with T = N in the discrete-time case and
T = R+ in the continuous-time one. In the continuous-time setting, we assume the usual
conditions (complete, right-continuous filtration) to be satisfied. Moreover, we implicitly
assume that the given filtered probability space is enlarged (Protter [86, p. 293]), to al-
low for arbitrary initial conditions of stochastic di�erential equations. We start with the
definition of the MUCOGARCH process.

Definition 3.3.1. (MUCOGARCH(1,1) - Stelzer [98, Definition 3.1]) Let L be an Rd-
valued Lévy process and A, B œ Md(R) and C œ S++

d . The process G = (Gt)tœR+ solving

dGt = V
1/2

t≠ dLt (3.3.1)
Vt = C + Yt (3.3.2)

dYt = (BYt≠ + Yt≠Bú)dt + AV
1/2

t≠ d[L, L]dt V
1/2

t≠ Aú (3.3.3)

with initial values G0 in Rd and Y0 in S+
d (R) is called a MUCOGARCH(1,1) process. The

process Y = (Yt)tØ0 is called a MUCOGARCH(1,1) volatility process. Hereafter we will
always write MUCOGARCH for short.
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The interpretation of the model parameters B and C is the following. If ‡(B) œ
(≠Œ, 0) + iR, the process V , as long as no jump occurs, returns to the level C at an
exponential rate determined by B. Additionally, since all jumps are positive semidefinite,
C is not a mean level but, instead, a lower bound for V .

According to Theorems 3.2 and 4.4 in Stelzer [98], in order for the MUCOGARCH
process to be well-defined, we need that its initial value Y +

0 œ S+
d . In this case, the solution

(Yt)tœR+ is locally bounded and of finite variation. Additionally, the process (Gt, Yt)tœR+

and its volatility process (Yt)tœR+ are time homogeneous strong Markov processes on
Rd ◊ S+

d and S+
d , respectively.

3.4 Second-order structure of the MUCOGARCH process

In this section, we compute the second-order structure of the squared returns process
(GiG

ú
i )iœN defined in terms of (3.1.2), which will be used in Section 3.5 bellow to estimate

the parameters A, B and C of the MUCOGARCH.
First, we will state various assumptions on di�erent aspects of the underlying Lévy

process L, and the model parameter. We group these assumptions into the following cat-
egories.

Assumptions a (Lévy process).

(a.1) L is an Rd-valued Lévy process with non-zero Lévy measure ‹L.

(a.2) ⁄

Rd
xixjxk ‹L(dx) = 0, for all i, j, k œ {1, . . . , d}.

(a.3) EÎL1Î4 < Œ.

(a.4) EL1 = 0.

(a.5) Var(L1) = (‡W + ‡L)Id, with ‡W Ø 0 and ‡L > 0.

(a.6) There exists a constant flL > 0 such that

E[vec([L, Lú]d), vec([L, Lú]d)ú]d1 = flL(Id2 + Kd + vec(Id) vec(Id)ú).

Assumptions b (Parameter space).

(b.1) The matrix
B = B ¢ I + I ¢ B + ‡L(A ¢ A), (3.4.1)

is invertible.
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(b.2) The matrix
C = B ¢ Id2 + Id2 ¢ B + AR (3.4.2)

is invertible, where A = (A ¢ A) ¢ (A ¢ A) and flL(Q + KdQ + Id4).

Assumption c (Second-order stationarity).

(c.1) (Yt)tœR+ is a second-order stationary MUCOGARCH volatility process.

We recall now the expressions for the second-order structure of the process Y and of
the log returns process (Gi)iœN.

Proposition 3.4.1 (Stelzer [98, Theorems 4.8, 4.11, Corollary 4.19 and Proposition 5.2]).
If assumptions (a.1), (a.3)-(a.6), all of b and (c.1) hold, then

E(vec(Y0)) = ≠‡LB≠1(A ¢ A) vec(C) (3.4.3)
acovY (h) = eBhVar(vec(Y0)) (3.4.4)

Var(vec(Y0)) = ≠C≠1#!
‡2

LC(B≠1 ¢ B≠1)A + AR"
(vec(C) ¢ vec(C))

+
!
‡L(A ¢ A) ¢ Id2 + AR"

vec(C) ¢ E(vec(Y0))
+

!
‡LId2 ¢ (A ¢ A) + AR"

E(vec(Y0)) ¢ vec(C)
$

(3.4.5)
E(G1) = 0

Var(G1) = (‡L + ‡W )�E(C + Y0) (3.4.6)
acov

G

(h) = 0 for all h œ Z/{0}.

Based on Proposition 3.4.1, we state now the second-order properties of the MUCOG-
ARCH process. The proofs are postponed to Section 3.7. In the following, for a second-
order stationary Rd-valued process, its autocovariance function acovX : R ‘æ Md(R)
is given by acovX(h) = cov (Xh, X0) = E (XhXú

0 ) ≠ E (X0) E (X0)ú for h Ø 0 and
by acovX(h) = (acovX(≠h))ú for h < 0. For matrix-valued processes (Zt)tœR, we set
acovZ = acovvec(Z).

Lemma 3.4.2. If all assumptions a,b and c hold and the matrix A is invertible, then

acov
GG

ú(h) = eB�hB≠1(Id2 ≠ e≠B�)(‡L + ‡W )Var(vec(V0))
◊ (eBú� ≠ Id2)[(‡W + ‡L)(Bú)≠1 ≠ 2((A ¢ A)ú)≠1]

(3.4.7)

Lemma 3.4.3. If the conditions of Lemma 3.4.2 hold, then

E vec(G1G

ú
1) vec(G1G

ú
1)ú

= �flL(Q + KdQ + Id2)E vec(V0) vec(V0)ú(Id2 + Kd)Q(Dú)(Id2 + Kd) + D + Dú,

(3.4.8)
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with Q as in (3.2.1), Kd is the commutation matrix,

D := (‡L + ‡W )
11

2(‡L + ‡W )�2E vec(V0)E vec(V0)ú + Var(vec(V0))B̃
2

(3.4.9)

B̃ :=
#
(Bú)≠1(eBú� ≠ Id2) ≠ Id2�

$#
(‡W + ‡L)(Bú)≠1 ≠ 2((A ¢ A)ú)≠1$

(3.4.10)

Remark 3.4.4. In the one-dimensional case (d = 1), using the parametrization Ï = A¢A,
� = ≠2B, — = ≠2BC, gives the COGARCH(1,1) in Klüppelberg et al. [55] and simple
algebra shows that (3.4.7) and (3.4.8) agree with the formulas given in (2.6) and (2.5),
respectively in Haug et al. [45].

3.5 Moment based estimation of the MUCOGARCH process

In this section, we consider the matrices A◊, B◊ œ Md(R) and C◊ œ S++
d from Defini-

tion 3.3.1 as depending on a parameter ◊ œ � µ Rq for q œ N. Throughout, we assume
that all Assumptions a and b from Section 3.4 hold.

The data used for estimation is a sample of d-dimensional log-price process (Gi)n
i=1

as defined in (3.1.2) with true parameter ◊0 œ �. We assume that the quantities ‡L, ‡W

and flL defined in Assumptions (a.5) and (a.6) are known. These assumptions are not
very restrictive and are comparable to assuming iid standard noise in the discrete time
multivariate GARCH process, which is very common (see eq. (11.6) in Francq and Zakoïan
[36]).

Based on the observations (Gi)n
i=1 and a fixed H < n, the sample moments are defined

as

k̂n,H = 1
n

n≠Hÿ

i=1
Di = 1

n

n≠Hÿ

i=1

Q

cccca

vec(GiG
ú
i )

vec(vec(GiG
ú
i ) vec(GiG

ú
i )ú)

...
vec(vec(GiG

ú
i ) vec(Gi+HG

ú
i+H)ú)

R

ddddb
. (3.5.1)

The value H needs to be chosen in such a way that the model parameters are identifiable
and also to ensure a good fit of the autocovariance structure to the data. For each ◊ œ �,
for which the matrices A◊, B◊ and C◊ satisfy the assumptions required in Lemma 3.4.2,
let

k◊,H =

Q

cccca

E◊ vec(G1G

ú
1)

E◊ vec(vec(G1G

ú
1) vec(G1G

ú
1)ú)

...
E◊ vec(vec(G1G

ú
1) vec(G1+HG

ú
1+H)ú)

R

ddddb
, (3.5.2)
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where the expectations are defined as in (3.4.6), (3.4.7) and (3.4.8) by replacing A, B and
C by A◊, B◊ and C◊, respectively. Then, the GMM estimator of ◊0 is given by

◊̂n = arg min
◊œ�

Ó
(k̂n,H ≠ k◊,H)T �(k̂n,H ≠ k◊,H)

Ô
, (3.5.3)

where � is a positive definite weight matrix. Additionally to Assumption a and b we
provide additional assumptions required for proving consistency and asymptotic normality
of ◊̂n.

Assumptions d (Parameter space and log-price process).

(d.1) The parameter space � is a compact subset of Rq.

(d.2) The true parameter ◊0 lies in the interior of �.

(d.3) The matrix A◊ is invertible for all ◊ œ �.

(d.4) [Identifiability]. Let H > 1 be fixed. For any ◊ ”= ◊̃ œ � we have k◊,H ”= k◊̃,H .

(d.5) The map ◊ ‘æ (A◊, B◊, C◊) is twice continuously di�erentiable.

(d.6) The sequence (Gn)nœN is stationary and strongly mixing with exponentially decaying
mixing coe�cients –

G

.

Assumptions e (Moments).

(e.1) EÎG1Î4 < Œ.

(e.2) There exists a positive constant ” > 0 such that EÎG1Î8+” < Œ.

Assumptions (e.1) and (e.2) can be written in terms of moments of L and Y0.

Lemma 3.5.1. If EÎY0Îr < Œ and EÎL1Î2r < Œ for some r Ø 1, then EÎG1Î2r < Œ.

Proof. It follows from Stelzer [98, Proposition 4.7] (with k = r) that EÎYtÎr < Œ for all
t œ R+ and t ‘æ EÎYtÎr is locally bounded. Then an application of Protter [86, Theorem 66
of Ch. 5] together with the fact that EÎL1Î2r < Œ and the definition of (Vt)tœR+ in (3.3.2)
gives

EÎG1Î2r = E
....

⁄ �

0
V

1/2
s≠ dLs

....
2r

Æ c

⁄ �

0
EÎV

1/2
s≠ Î2rds Æ c

⁄ �

0
EÎC + Ys≠Îrds < Œ.

We are now ready to state the strong consistency of the empirical moments.
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Lemma 3.5.2. If (d.6) and (e.1) hold, then k̂n,H
a.s.æ k◊0 as n æ Œ.

Proof. It follows from (d.6) that the log-price process (Gn)nœN is ergodic. By (e.1) both
EÎ vec(G1G

ú
1)Î and EÎ vec(G1G

ú
1) vec(G1+hG

ú
1+h)úÎ are finite, and thus we can apply

Birkho�’s ergodic theorem (Krengel [62, Theorem 4.4]) to conclude the result.

Next, we state the weak consistency property of the GMM estimator.

Theorem 3.5.3. If (d.1), (d.3), (d.4), (d.5),(d.6) and (e.1) hold, then the GMM estimator
defined in (3.5.3) is weakly consistent.

Proof. We check assumptions 1.1-1.3 in Mátyás et al. [71] that ensure weak consistency of
the GMM estimator in (3.5.3). Assumption 1.1 is also satisfied due to our identifiability
condition (d.4). It follows from (3.5.3) combined with Lemma 3.5.2 that

sup
◊œ�

Îk̂n,H ≠ k◊,H ≠ (k◊0,H ≠ k◊,H)Î = Îk̂n,H ≠ k◊0,HÎ a.s.æ 0, n æ Œ, (3.5.4)

which is assumption 1.2 of [71]. Since the weight matrix � in (3.5.3) is non-random, their
assumption 1.3 is automatically satisfied, completing the proof.

In order to prove asymptotic normality of the GMM estimator, we need some auxiliary
results.

Lemma 3.5.4. If (d.1) and (d.5) hold, then the map � ‘æ k◊,H in (3.5.2) is continuously
di�erentiable.

Proof. The the map � ‘æ k◊,H depends on the moments given in (3.4.6), (3.4.7) and
(3.4.8). These moments are given in terms of products and Kronecker products involving
the quantities A◊, A≠1

◊ , B◊, B≠1
◊ , e≠–B◊ , – > 0, C◊, C◊ and C≠1

◊ . From (d.5) we obtain the
continuous di�erentiability of B◊, B≠1

◊ , C◊, C≠1
◊ and (A◊ ¢ A◊)≠1 on �. Let i œ {1, . . . , q}

be fixed. According to (2.1) in Wilcox [103], the matrix exponential is di�erentiable and

ˆ

ˆ◊i
e≠–B◊ = ≠

⁄ –

0
e≠(–≠u)B◊

3
ˆ

ˆ◊i
B◊

4
e≠uB◊ du. (3.5.5)

Using the definition of B◊ in (3.4.1) combined with (d.1) and (d.5) gives

sup
◊œ�

ÎB◊Î Æ 2
3

sup
◊œ�

ÎB◊Î
4

ÎIdÎ + ‡L

3
sup
◊œ�

ÎA◊Î2
4

< Œ. (3.5.6)

Additionally, an application of the chain rule to ˆ
ˆ◊i

B◊ combined with (d.1) and (d.5) gives
sup◊œ� Î ˆ

ˆ◊i
B◊Î < Œ and, therefore,

sup
◊œ�

....e≠(–≠u)B◊

3
ˆ

ˆ◊i
B◊

4
e≠uB◊

.... Æ sup
◊œ�

e(|–≠u|+|u|)ÎB◊Î
3

sup
◊œ�

....
ˆ

ˆ◊i
B◊

....

4
, u œ [0, –].

(3.5.7)
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Thus, the continuous di�erentiability of the map in (3.5.5) follows by dominated conver-
gence with dominating function as in (3.5.7). Another application of the chain rule shows
that the map ◊ ‘æ k◊,H is continuously di�erentiable on �.

Lemma 3.5.5. Assume that (d.2), (d.6) and (e.2) hold and let

� = E(F1F ú
1 ) + 2

Œÿ

i=1
E(F1F ú

1+i) (3.5.8)

with Fi = Di ≠ k◊0,H and Di as defined in (3.5.1). Then for H œ N0
Ô

n(k̂n,H ≠ k◊0,H) dæ N (0, �), n æ Œ. (3.5.9)

Proof. For the asymptotic normality of (3.5.1) we use the Cramér-Wold device and show
that

Ô
n

1 1
n

n≠Hÿ

i=1
⁄úFi

2
dæ N (0, ⁄ú�⁄), n æ Œ,

for all vectors ⁄ œ Rd2+(H+1)d4 . Since each Fi is a measurable function of Gi, . . . , Gi+H

it follows from (d.6) and Remark 1.8 of Bradley [12] that (⁄úFi)iœN is –-mixing with
mixing coe�cients satisfying –F (n) Æ –

G

(n ≠ (r + 1)) for all n Ø r + 2. Therefore,
qŒ

n=0(–F (n))
‘

2+‘ < Œ for all ‘ > 0. From (e.2) we obtain EÎ⁄úF1Î2+‘/4 < Œ for some
‘ > 0. Thus, the CLT for –-mixing sequences applies (see Theorem 18.5.3 of Ibragimov
and Linnik [50]), so that

Ô
n

1 1
n

n≠Hÿ

i=1
⁄úFi

2
dæ N (0, ’), n æ Œ,

where
’ = E⁄úF1F ú

1 ⁄ + 2
Œÿ

i=1
E⁄úF1F ú

1+i⁄.

After rearranging this equation we find (3.5.8).

Theorem 3.5.6. Assume the conditions of Theorem 3.5.3 and that the matrix � in (3.5.8)
is positive definite. If additionally Assumption (e.2) holds, then the GMM estimator defined
in (3.5.3) is asymptotically normal with covariance matrix (J◊0)≠1I◊0(J◊0)≠1 with

J◊0 = (Ò◊k◊0,H)€�(Ò◊k◊0,H) and I◊0 = (Ò◊k◊0,H)€��◊0�(Ò◊k◊0,H) (3.5.10)

Proof. We check Assumptions 1.7-1.9 of Theorem 1.2 in Mátyás et al. [71]. Since from
Lemma 3.5.4 the map ◊ ‘æ k◊,H is continuously di�erentiable, Assumption 1.7 is valid.
Now, for any sequence ◊̃n such that ◊̃n

Pæ ◊0 as n æ Œ, it follows from the continu-
ous mapping theorem by the continuity of the map � ‘æ ˆ

ˆ◊ k◊,H in Lemma 3.5.4 that
ˆ
ˆ◊ (k̂n,H ≠ k◊n) Pæ (k◊0 ≠ ˆ

ˆ◊ k◊0) as n æ Œ. Therefore, Assumption 1.8 is also satisfied.
Since Lemma 3.5.5 implies Assumption 1.9, we conclude the result.
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3.5.1 Su�cient conditions for strict stationarity and mixing

Su�cient conditions for the existence of a unique stationary distribution, geometric er-
godicity and for the finiteness of moments of order p of the stationary distribution have
recently been given in Stelzer and Vestweber [99]. We state these conditions in the next
theorem, which are conditions (i), (iv) and (v) of Theorem 4.3 in [99].

Theorem 3.5.7. [Geometric Ergodicity - [99, Theorem 4.3]] Let Y be a MUCOGARCH
volatility process which is µ-irreducible with support having non-empty interior and aperi-
odic. Assume that one of the following conditions is satisfied:

(i) setting p = 1 there exists an � œ S++
d such that

�B + B€� + ‡LA€�A œ ≠S++
d , (3.5.11)

where ‡L is as defined in (a.5).

(ii) there exist p œ [1, Œ) and an � œ S++
d such that

⁄

Rd

1
2p≠1

1
1 + K�,AÎyÎ2

2
2p ≠ 1

2
‹L(dy) + pK�,B < 0, (3.5.12)

where K�,B := maxXœS+
d ,tr(X)=1

tr((�B+B€�)X)
tr(�X) and

and K�,A := maxXœS+
d ,tr(X)=1

tr(A€�AX)
tr(�X) ,

(iii) there exist p œ [1, Œ) and an � œ S++
d such that

max
Ó

2p≠2, 1
Ô

K�,A

⁄

Rd
ÎyÎ2

2
1
1 + ÎyÎ2

2K�,A

2p≠1
‹L(dy) + K�,B < 0 (3.5.13)

where K�,B, K�,A are as in (ii).

Then a unique stationary distribution for the MUCOGARCH volatility process Y exists,
Y is positive Harris recurrent, geometrically ergodic and the stationary distribution has a
finite p-th moment.

A consequence of Theorem 3.5.7 is that the process Y is exponentially —-mixing. This
will also be true for the log-price process as we state next.

Corollary 3.5.8. If the conditions of Theorem 3.5.7 hold, then the log-price process
(Gi)iœN is exponentially —-mixing, and as a consequence also ergodic.

Proof. Since Y is exponentially —-mixing, homogeneous strong Markov ([98, Theorem 4.4]),
and driven only by the discrete part of the quadratic variation of L, the proof follows by
the same arguments as that of Theorem 3.4 in Haug et al. [45].
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For the consistency of the GMM estimator, we need to ensure that the stationary
distribution of the volatility process has finite second moment. However, conditions (3.5.12)
or (3.5.13) of Theorem 3.5.7 with p = 2 might be very restrictive. For example, condition
(3.5.13) with p > 1 requires that L is a compound Poisson ([99, Remark 4.4]). Therefore, it
is desirable to ensure the existence of second moments of the stationary distribution under
less restrictive conditions. The next theorem takes care of this issue, giving consistency of
the GMM estimator under rather weak conditions. Before we state it, we give the definition
of asymptotic second-order stationarity which will be used in its proof. A stochastic process
X œ Sd is said to be asymptotically second-order stationary with mean µ œ Rd2 , variance
� œ S+

d2 and autocovariance function f : R+ ‘æ Md2(R) if it has finite second moments
and

lim
tæŒ E (Xt) = µ, lim

tæŒ Var (vec (Xt)) = �

lim
tæŒ sup

hœR+
{ÎCov (vec (Xt+h) , vec (Xt)) ≠ f(h)Î} = 0.

(3.5.14)

Theorem 3.5.9. Assume that the matrices B, B, C are such that ‡(B), ‡(B), ‡(C) µ
(≠Œ, 0) + iR, that the MUCOGARCH volatility process is µ-irreducible with support
having non-empty interior and aperiodic and that there exists an � œ S++

d such that
�B + B€� + ‡LA€�A œ ≠S++

d . If additionally, (d.1), (d.3), (d.4) and (d.5) hold, then the
GMM estimator defined in (3.5.3) is weakly consistent.

Proof. Let D œ S+
d be a constant matrix, and let the MUCOGARCH process (Yt)tœR+

have starting value D. Then, a combination of assumptions (a.5), (a.6) with the fact that
the starting value D is non-random and the hypothesis imposed on the matrices B, B, C
allow us to apply Theorem 4.20(ii) in Stelzer [98] to conclude that the process (Yt)tœR+

is asymptotically second-order stationary. Additionally, Theorem 3.5.7(i) ensures that the
process (Yt)tœR+ has a unique stationary distribution, is geometrically ergodic and its
stationary distribution has finite first moment, i.e., EÎY0Î < Œ. Since

EÎYtÎ2 Æ Var(Yt) + (EÎYtÎ)2, t > 0, (3.5.15)

and both maps t ‘æ EÎYtÎ and t ‘æ Var(Yt) are continuous ([98, eqs. (4.7) and (4.16)]),
it follows from (3.5.15) that lim suptØ0 EÎYtÎ2 < Œ. Since Theorem 3.5.7(i) implies con-
vergence of the transition probabilities in total variation, which in turns implies weak
convergence (e.g. Klenke [54, Exercise 13.2.2]), we have that Yt

dæ Y0 as t æ Œ. Hence,
we can use the continuous mapping theorem and Billingsley [9, Theorem 25.11] to con-
clude that EÎY0Î2 < Œ. Finally, the result follows by an application of Lemma 3.5.1,
Corollary 3.5.8 and Theorem 3.5.3.
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Next, we state a result which gives su�cient conditions for the irreducibility of the
MUCOGARCH process, which is one of the necessary conditions for the geometric ergod-
icity result from Theorem 3.5.7.

Theorem 3.5.10. [Irreducibility and Aperiodicity 1 - [98, Theorem 5.1]] Let Y be a
MUCOGARCH volatility process driven by a compound Poisson process L with A œ
GLd(R) and Ÿ(‡(B)) < 0. If the jump distribution of L has a non-trivial absolutely contin-
uous component w.r.t. to the Lebesgue measure on Rd restricted to an open neighborhood
of zero, then Y in (3.3.3) is irreducible w.r.t. the Lebesgue measure restricted to an open
neighborhood of zero in S+

d and aperiodic.

For example, if L is a compound Poisson process with jump distribution having a
density, then it satisfies the conditions of Theorem 3.5.11. The conditions on the jump
distribution of the compound Poisson process can also be relaxed.

Theorem 3.5.11. [Irreducibility and Aperiodicity 2 - [98, Corollary 5.2]] Let Y be a
MUCOGARCH volatility process driven by a compound Poisson process L with A œ
GLd(R) and Ÿ(‡(B)) < 0. If the jump distribution of L has a non-trivial absolutely con-
tinuous component equivalent to the Lebesgue measure on Rd restricted to an open neigh-
borhood of zero, then Y in (3.3.3) is irreducible w.r.t. the Lebesgue measure restricted to
an open neighborhood of zero in S+

d and aperiodic.

Recall that for the asymptotic normality result, we need to ensure that the stationarity
distribution of the MUCOGARCH volatility process has more than 4 moments ((e.2))
and that it is also strongly mixing ((d.6)). For p > 1, the conditions of Theorem 3.5.7
are in general stronger than the one appearing in [98, Theorem 4.5] for the existence of
a stationary distribution and of its p-th moments (see Remark 4.9 in [99]). Thus, if the
matrix B œ Md(R) is diagonalizable with S œ GLd(C) such that S≠1BS is diagonal, it is
better to use Theorem 3.5.7 for p = 1 to ensure mixing and [98, Theorem 4.5] to ensure
the finiteness of p > 4 moments.

Theorem 3.5.12. ([98, Theorem 4.5]) Assume the conditions of Theorem 3.5.7, that
B œ Md(R) is diagonalizable with S œ GLd(C) such that S≠1BS is diagonal and that

⁄

Rd
((1 + –1Î vec(yyú)ÎB,S)p ≠ 1)‹L(dy) < ≠2⁄p, p > 1, (3.5.16)

where
ÎXÎB,S = Î(S≠1 ¢ S≠1)X(S ¢ S))Î2, X œ Md2(R), (3.5.17)

ÎxÎB,S = Î(S≠1 ¢ S≠1)xÎ2 on Rd2, ⁄ = max(R(‡(B))),

–1 = ÎSÎ2
2ÎS≠1Î2

2K2,BÎA ¢ AÎB,S and K2,B = maxXœS+
d ,ÎXÎ2=1

3
ÎXÎ2

Î vec(X)ÎB,S

4
. Then

EÎY0Îp < Œ.
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Proof. The assertion follows by the same arguments of [98, Theorem 4.5] combined with
Lindner and Maller [65, Proposition 4.1].

Since (3.5.16) with p > 4 implies condition (3.5.11), it su�ces to check (3.5.16) with
p > 4 in order to ensure that assumptions (d.6) and (e.2), required for the asymptotic
normality of the GMM estimator are valid.

3.5.2 Su�cient conditions for identifiability

We start with the identifiability of the matrix C◊.

Lemma 3.5.13. Assume the conditions of Lemma 3.4.2 and that ‡(B◊) µ (≠Œ, 0) + iR.
If the matrices A◊ and B◊ are known, then E◊(G1G

ú
1) uniquely determines C◊.

Proof. Since ‡(B◊ ¢I +I ¢B◊) = ‡(B◊)+‡(B◊) µ (≠Œ, 0)+iR, the matrix B◊ ¢I +I ¢B◊

is invertible. The rest of the proof follows by noticing that from (3.4.3) and (3.4.6) it follows
that

vec(C◊) = (‡L + ‡W )≠1�≠1(B◊ ¢ I + I ¢ B◊)≠1B◊E◊(G1G

ú
1). (3.5.18)

For the identification of the matrices A◊ and B◊ we need to use the autocovariance
and variance of the squared returns process in Lemmas 3.4.2 and 3.4.3, respectively. We
first state two auxiliary results, which provide conditions such that we can identify the
components of the autocovariance function in (3.4.7).

Lemma 3.5.14. Assume that B œ Md(R) is diagonalizable with S œ GLd(C) such that
S≠1BS is diagonal. If

----
‡L ≠ ‡W

2‡L

----ÎA ¢ AÎB,S < ≠2 max{Ÿ(‡(B))}, (3.5.19)

with Î · ÎB,S as in (3.5.17) then the matrix

(‡W + ‡L)(Bú)≠1 ≠ 2((A ¢ A)ú)≠1

is invertible.

Proof. From [5, fact 2.16.14], X≠1+Y ≠1 is non-singular if and only if X+Y is non-singular
and X, Y are non-singular. Setting X = B

(‡L+‡W ) , Y = ≠1
2(A¢A) and using the definition

of B in (3.4.1) we get

X + Y = 1
(‡L + ‡W )

3
(B ¢ I + I ¢ B) + (‡L ≠ ‡W )

2 (A ¢ A)
4

.
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Since B is diagonlizable, we can use Bernstein [5, Proposition 7.1.6] to obtain

B ¢ I + I ¢ B = (S ¢ S)(S≠1BS ¢ I)(S≠1 ¢ S≠1),

which guarantees that B¢I +I ¢B is also diagonlizable. Now we rewrite the first equation
on p. 106 in [98] with the matrix B replaced by (B ¢ I + I ¢ B) + (‡L≠‡W )

2 (A ¢ A) and
apply the Bauer-Fikes Theorem ([46, Theorem 6.3.2]) to see that (3.5.19) implies that all
eigenvalues of (X +Y )(‡L+‡W ) are in (≠Œ, 0)+iR and, therefore, X +Y is invertible.

Lemma 3.5.15. If A œ Md(R) is such that A(1,j) > 0 for some j œ {1, . . . , d}, then the
map X ‘æ AXAT for X œ Sd identifies A.

Proof. Assume first that A(1,1) > 0. For each i œ {1, . . . , d}, let ei be the ith column unit
vector in Rd and define the matrix E(i,j) = eie

T
j . The first line of the matrix AE(1,1)AT is

(A2
(1,1), A(1,1)A(2,1), . . . , A(1,1)A(d,1)). (3.5.20)

Since A(1,1) > 0, (3.5.20) allows us to identify first A(1,1) and then A(2,1), . . . , A(d,1). Now,
for each k œ {2, . . . , d}, notice that E(1,k) + E(k,1) is symmetric. Simple calculations reveal
that the first line of the matrix A(E(1,k) + E(k,1))AT is

(2A(1,1)A(1,k), A(1,1)A(2,k) + A(1,k)A(2,1), . . . , A(1,1)A(d,k) + A(1,k)A(d,1)). (3.5.21)

Since A(1,1) > 0, we identify A(1,k) from the first entry of (3.5.21). Now, since also
A(2,1), . . . , A(d,1) are known, we can identify A(2,k), . . . , A(d,k). Thus, all entries of A can
be identified. The proof for the cases A(1,j) > 0 for some j > 1 is achieved by the
same arguments and replacing AE(1,1)AT by AE(j,j)AT and A(E(1,k) + E(k,1))AT by
A(E(j,k) + E(k,j))AT for k ”= j, respectively.

Lemma 3.5.16. Assume the conditions of Lemma 3.5.14 and, furthermore that for all
◊ œ �, ‡(B◊) µ {z œ C : ≠fi < ⁄(z)� < fi, Ÿ(z) < 0} and that Var◊(vech(V0)) is
invertible. Based on (3.4.7), write acov◊,GG

ú(h) = eB◊�hM◊ for h œ N, where M◊ =
(eB�)≠1acov◊,GG

ú(1). Then, acov◊,GG

ú(1) and acov◊,GG

ú(2) uniquely identify B◊ and M◊.

Proof. Since M◊ is given in terms B◊ and acov◊,GG

ú(1), we only need to identify B◊.
Observe that we are using the vec operator only for convenience, as it interacts nicely with
tensor products of matrices and thus gives nicely looking formulae. However, the volatility
and “squared returns” processes takes values in Sd which is a d(d + 1)/2-dimensional
vector space, whereas the vec operator assumes values in a d2-dimensional vector space.
Instead of using the vech operator and cumbersome notation, we take an abstract point
of view. The variance of a random element of Sd is a symmetric positive semi-definite
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linear operator from Sd to itself. Likewise, the autocovariance of G1G

ú
1 and G1+hG

ú
1+h

is a linear operator from Sd to itself. The condition that Var◊(vech(V0)) is invertible is
equivalent to the invertibility of the linear operator, which is the variance of V0. Similarly
all other d2 ◊ d2 matrices in

eB�hB≠1(Id2 ≠ e≠B�)(‡L + ‡W )Var(vec(V0))(eBú� ≠ Id2)
◊ [(‡W + ‡L)(Bú)≠1 ≠ 2((A ¢ A)ú)≠1]

(3.5.22)

are representing linear operators from Sd to itself. Under the assumptions made, the above
product involves only invertible linear operators. Hence acov◊,GG

ú(h) is invertible (over
Sd) for every h > 0. Thus,

eB� = acov◊,GG

ú(2)[acov◊,GG

ú(1)]≠1. (3.5.23)

By the assumptions on the eigenvalues of B◊ there is a unique logarithm for eB◊� (see
[46, Section 6.4] or [92, Lemma 3.11]), so B◊� and thus B◊ is identified. Finally, note
that the matrices in the vec representations are uniquely identified by the employed linear
operators on Sd due to Pigorsch and Stelzer [81, Proposition 3.1] and Lemma 3.5.15.

Lemma 3.5.17. (Identifiability of A◊, B◊ and C◊) Assume the conditions of Lemma 3.5.14
and that the entries of the matrices A◊ and B◊ satisfy: A(1,d),◊ > 0, A(1,2),◊ ”= A(2,1),◊ and
B(1,2),◊ = B(2,1),◊. Then the map ◊ ‘æ k◊,2 in (3.5.2) is injective.
Proof. For the sake of clarity we omit ◊ in the notation and assume wlog that ‡L = 1.
Because of Lemma 3.5.13, we only need to show the identification of A and B.
Assume first that d = 2. Then the 4 ◊ 4-matrix B from (3.4.1) becomes
Q

ca

2B(1,1) + A2
(1,1) B(1,2) + A(1,1)A(1,2) B(1,2) + A(1,1)A(1,2) A2

(1,2)
B(2,1) + A(1,1)A(2,1) B(1,1) + B(2,2) + A(1,1)A(2,2) A(1,2)A(2,1) B(1,2) + A(1,2)A(2,2)
B(2,1) + A(1,1)A(2,1) A(1,2)A(2,1) B(1,1) + B(2,2) + A(1,1)A(2,2) B(1,2) + A(1,2)A(2,2)

A2
(2,1) B(2,1) + A(2,1)A(2,2) B(2,1) + A(2,1)A(2,2) 2B(2,2) + A2

(2,2)

R

db .

(3.5.24)

Using the entry at position (1, 4) and the fact that A(1,2) > 0 allow us to identify A(1,2).
Then, we use the entry at position (2, 3) to identify A(2,1). Now, we use the entries at
positions (1, 2) and (2, 1) together with the fact that A(1,2) ”= A(2,1) and B(1,2) = B(2,1) to
write A(1,1) = (B(1,2) ≠ B(2,1))/(A(1,2) ≠ A(2,1)). Similarly we use the entries at positions
(3, 4), (4, 3) to get A(2,2) = (B(3,4) ≠ B(4,3))/(A(1,2) ≠ A(2,1)). Now, since all the entries of A

are known, we can use the entries at positions (1, 1), (1, 2) and (2, 2) to identify the entries
of B.
Now assume that d > 2. Write the matrix B◊ from (3.4.1) in the following block form:

B◊ = B ¢ I + I ¢ B + A ¢ A =

Q

cca

B(1,1) · · · B(1,d)

... . . . ...
B(d,1) · · · B(d,d)

R

ddb , (3.5.25)
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where B(i,j) œ Md(R) for all i, j = 1, . . . , d. First, we have that

B(1,d) =
Q

cccca

B(1,d) + A(1,d)A(1,1) A(1,d)A(1,2) A(1,d)A(1,3) · · · A(1,d)A(1,d)
A(1,d)A(2,1) B(1,d) + A(1,d)A(2,2) A(1,d)A(2,3) · · · A(1,d)A(1,d)

...
...

... . . . ...
A(1,d)A(d,1) A(1,d)A(d,2) A(1,d)A(d,3) · · · B(1,d) + A(1,d)A(d,d)

R

ddddb
,

(3.5.26)

Since A(1,d) > 0 we can identify it from (3.5.26), because B(1,d)
(1,d) = A2

(1,d). Then we use the
o�-diagonal entries of the matrix B(1,d) in (3.5.26) together with A(1,d) to identify all the
o�-diagonal entries of the matrix A. Next we identify the diagonal entries of A. It follows
from (3.5.25) that

Y
]

[
B(k,k)

(1,2) = B(1,2) + A(k,k)A(1,2)

B(k,k)
(2,1) = B(2,1) + A(k,k)A(2,1)

, k = 1, . . . , d. (3.5.27)

Since A(1,2) ≠ A(2,1) ”= 0 and B(1,2) = B(2,1), the system of equations (3.5.27) gives

A(k,k) = (B(k,k)
(1,2) ≠ B(k,k)

(2,1) )/(A(1,2) ≠ A(2,1)), k = 1, . . . , d.

Finally, since the matrix A is now completely known, we can use (3.5.25) to identify all
entries of B.

In Lemma 3.5.17 we identify the matrices A◊ and B◊ only from B◊ and, therefore, some
restrictions on the o�-diagonal entries of B◊ appear. In order to avoid those restrictions,
we take the structure of E◊ vec(vec(G1G

ú
1) vec(G1G

ú
1)ú) in (3.4.8) into account. Already

in the 2-dimensional case the identification conditions are quite involved, and this has
mainly to do with the fact that the linear operator (Q + KdQ + Id2) at the right hand
side of (3.4.8) is not one-to-one in the space of matrices of the form E◊ vec(V0) vec(V0)ú.
We state this in the next lemma.

Lemma 3.5.18. (Identifiability for d = 2 with B◊ not necessarily symmetric). Assume
the conditions of Lemma 3.5.14. Let Z := (z◊,ij)4

i,j=1 := (‡W + ‡L)(Bú
◊)≠1 and

Var◊(vec(V0)) =

Q

cccca

·◊,1 ·◊,2 ·◊,2 ·◊,3
·◊,2 ·◊,4 ·◊,4 ·◊,5
·◊,1 ·◊,4 ·◊,4 ·◊,5
·◊,3 ·◊,5 ·◊,5 ·◊,6

R

ddddb
. (3.5.28)
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Let ◊ = (◊1, . . . , ◊10), A◊ =
A

◊1 0
0 ◊2

B

with ◊1 > 0, ◊2 ”= 0, B◊ =
A

◊3 ◊4
◊5 ◊6

B

and C◊ =
A

◊7 ◊8
◊9 ◊10

B

. Assume that B◊ ¢ I + I ¢ B◊ and A◊ ¢ A◊ commute and that either

A
≠·◊,1 ≠2z◊,41
≠·◊,2 z◊,21 + z◊,31

B

is invertible and z◊,24 + z◊,34 ”= 0, (3.5.29)

or A
≠·◊,5 z◊,24 + z◊,34
≠·◊,6 z◊,14

B

is invertible and z◊,41 ”= 0. (3.5.30)

Then the map ◊ ‘æ k◊,2 in (3.5.2) is injective.

Proof. Since (B◊ ¢ I + I ¢ B◊) and (A◊ ¢ A◊) commute, it follows that (eBú
◊ � ≠ I4) and

(‡W +‡L)(Bú
◊)≠1 ≠2((A◊ ¢A◊)ú)≠1 commute. From Lemma 3.5.16 we can identify B◊ and

B≠1
◊ (I4 ≠ e≠B◊�)(‡L + ‡W )Var◊(vec(V0))(eBú

◊ � ≠ I4)[(‡W + ‡L)(Bú)≠1 ≠ 2((A◊ ¢ A◊)ú)≠1]

from k◊,2. Using the invertibility of B◊ we identify

Var◊(vec(V0))[(‡W + ‡L)(Bú
◊)≠1 ≠ 2((A◊ ¢ A◊)ú)≠1]. (3.5.31)

Plugging (3.5.31) into E◊ vec(G1G

ú
1) vec(G1G

ú
1)ú as defined in (3.4.8) allows us to identify

(Q + KdQ + I4)E◊ vec(V0) vec(V0)ú. (3.5.32)

Using the definition of the linear map Q and the matrix commutation matrix K2, and
writing vec(V0) = (V0,1 V0,2 V0,2 V0,3)T , gives:

(Q + K2Q + I4)E◊ vec(V0) vec(V0)ú

= E◊

Q

cccca

3V 2
0,1 3V0,1V0,2 3V0,1V0,2 2V 2

0,1 + 3V0,1V0,3
3V0,1V0,2 2V 2

0,1 + 3V0,1V0,3 2V 2
0,1 + 3V0,1V0,3 3V0,2V0,3

3V0,1V0,2 2V 2
0,1 + 3V0,1V0,3 2V 2

0,1 + 3V0,1V0,3 3V0,2V0,3
2V 2

0,1 + 3V0,1V0,3 3V0,2V0,3 3V0,2V0,3 3V 2
0,3

R

ddddb
.

(3.5.33)

From (3.5.33) we identify, E◊V 2
0,1, E◊V 2

0,3, E◊V0,1V0,2, E◊V0,2V0,3 and E◊(2V 2
0,1 + 3V0,1V0,3).

Since E◊V0 is known from E◊ vec(G1G

ú
1), then Var◊(vec(V0)) is partially known. This,

together with (3.5.28) allow us to identify ·◊,1, ·◊,2, ·◊,5, ·◊,6 and ·◊,3 + 2·◊,4 := ‹◊. Thus,
we can write ·◊,3 = ‹◊ ≠ 2·◊,4, and the only unknown in (3.5.28) is ·◊,4. Write (3.5.31) as

Var◊(vec(V0))[Z ≠ Ô
2(Aú

◊)≠1 ¢ Ô
2(Aú

◊)≠1] =: P, (3.5.34)
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with P œ M2(R), Z being known, Var◊(vec(V0)) partially known and
Ô

2(Aú
◊)≠1 unknown.

Writing (3.5.34) as a linear system of equations with unknowns ·◊,4, ◊1 and ◊2, allow us
to identify them provided that one of the matrices in (3.5.29) or (3.5.30) are invertible.
Since ◊1 and ◊2 are now known, the identification of ◊3, . . . , ◊6 follows from (3.5.24) and

B◊ =

Q

cccca

2◊3 + ◊2
1 ◊4 ◊4 0

◊5 ◊3 + ◊6 + ◊1◊2 0 ◊4
◊5 0 ◊3 + ◊6 + ◊1◊2 ◊4
0 ◊5 ◊5 2◊6 + ◊2

2

R

ddddb
. (3.5.35)

Finally, the identification of ◊7, . . . , ◊10 follows by an application of Lemma 3.5.13.

Remark 3.5.19. It is worth noticing that the proof of Lemma 3.5.18 could not have been
achieved just by using the matrix B◊, since then, (3.5.35) would give a system with only
3 equations and 4 unknowns. Additionally, the commutativity condition imposed on the
matrices B◊ ¢ I + I ¢ B◊ and A◊ ¢ A◊ in Lemma 3.5.18 seem to be essential for the proof
as they lead to a system of equations involving only the entries of A◊.

Since commutativity is a quite strong condition, we prefer to work with the class of
MUCOGARCH processes, which are identifiable by Lemma 3.5.17. The exponential decay
of the autocovariance function of the model is still quite flexible, because of the interplay
between the matrices A◊ and B◊ (see (3.5.24), for instance).

In the next section, we investigate the finite sample performance of the estimators in
a simulation study.

3.6 Simulation study

To assess the performance of the GMM estimator, we will focus on the MUCOGARCH
model in dimension d = 2. We fix Lt = Ld

t +Bt for t œ R+ where Ld is a bivariate compound
Poisson process (CPP) and B is a standard bivariate Brownian motion, independent of Ld.
We choose Ld as a CPP, since it allows to simulate the MUCOGARCH volatility process
V exactly. Thus, we only need to approximate the Brownian part of the (log) price process
G in (3.1.1), which is done by an Euler scheme. Setting Ld as a CPP is not a very crucial
restriction, since for an infinite activity Lévy process one would need to approximate it
using only finitely many jumps. For example by using a CPP for the big jumps component
of Ld and an appropriate Brownian motion for its small jumps component (see Cohen
and Rosinski [17]). In applications, a CPP has also been used in combination with the
univariate COGARCH(1,1) process for modeling high frequency data (see Müller [76]).
The jumps of Ld are N(0, 1/4I2), and its rate is 4, so that Var(L1) = 2I2 and

E[vec([L, Lú]d), vec([L, Lú]d)ú]d1 = 1/4(I4 + K2 + vec(I2) vec(I2)ú).
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In this case, the chosen Lévy process L satisfies the hypothesis of Theorem 3.5.11 and all
assumptions a from Section 3.4 (with ‡L = ‡W = 1 and flL = 1/4).

Based on the identification Lemma 3.5.17, we assume that the model is parameterized
with ◊ = (◊(1), . . . , ◊(11)), and the matrices A◊, B◊ and C◊ are defined as:

A◊ =
A

◊(1) ◊(2)

◊(3) ◊(4)

B

, B◊ =
A

◊(5) ◊(6)

◊(6) ◊(7)

B

and C◊ =
A

◊(8) ◊(9)

◊(10) ◊(11)

B

. (3.6.1)

The data used for estimation is a sample of the log-price process G = (Gi)n
i=1 as

defined in (3.1.2) with true parameter value ◊0 œ � µ R11 observed on a fixed grid of size
� = 0.1 (the grid size for the Euler approximation of the Gaussian part is 0.01).

We experiment with two di�erent settings, namely:

Example 3.6.1. ◊0 is such that

A◊0 =
A

0.85 0.10
≠0.10 0.75

B

, B◊0 =
A

≠2.43 0.05
0.05 ≠2.42

B

and C◊0 =
A

1 0.5
0.5 1.5

B

. (3.6.2)

Example 3.6.2. ◊0 is such that A◊0 and C◊0 are as in Example 3.6.1 and

B◊0 = 1
4

A
≠2.43 0.05
0.05 ≠2.42

B

. (3.6.3)

In Example 3.6.1, ◊0 is chosen in such a way that the asymptotic normality of ◊̂n can
be verified. Then, In Example 3.6.2 we rescale B◊0 from Example 3.6.1 in such a way that
weak consistency is satisfied, but not asymptotic normality.

Due to the identifiability Lemma 3.5.17 we need to choose H Ø 2. For compari-
son purposes, we perform the estimation for each lag H œ {2, 5, 10} and sample size
n œ {1 000, 5 000, 10 000, 20 000, 50 000, 100 000}. The computations are performed with
the optim routine in combination with the Nelder-Mead algorithm in R (R Core Team
[87]). Initial values for the estimation were found by the DEoptim routine on a neighbor-
hood around the true parameter ◊0. This algorithm implements a di�erential evolution
algorithm (for more details see Mullen et al. [75]), and it is very useful for finding good
initial values in optimization problems. We only consider estimators based on the iden-
tity matrix for the weight matrix � in (3.5.3). The results are based on 500 independent
samples of MUCOGARCH returns.

In the following we report the finite sample results of the GMM for Examples 3.6.1
and 3.6.2.
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3.6.1 Simulation results for Example 3.6.1

We can check numerically that C◊0 is positive definite, A◊0 is invertible and ‡(B◊0), ‡(B◊0)
and ‡(C◊0) œ (≠Œ, 0) + iR. For � = I2 in Theorem 3.5.9, the eigenvalues of the matrix
B◊0 + Bú

◊0
+ ‡LAú

◊0
�A◊0 are ≠4.067 and ≠4.328, so it is negative definite. Hence, we can

apply Theorem 3.5.9 to conclude that the GMM estimator is weakly consistent. Now we
use Theorem 3.5.12 to ensure asymptotic normality by checking (3.5.16) with p > 4. For
our choice of ◊0 we have that B◊0 is diagonalizable with B◊0 = S◊0D◊0S≠1

◊0
, where

S◊0 =
A

≠0.671 ≠0.741
≠0.741 0.671

B

and D◊0 =
A

≠2.375 0
0 ≠2.475

B

. (3.6.4)

In addition, for p = 4.001,
⁄

R2
((1 + –1Î vec(yyú)ÎB◊0 ,S◊0

)p ≠ 1)‹L(dy) + 2⁄p = ≠0.024 < 0, (3.6.5)

where –1, ⁄ and the norm Î · ÎB,S is defined in Theorem 3.5.12. Therefore, also (e.2) is
satisfied and the GMM estimator is asymptotically normal. We also note that the chosen
matrix B◊0 is very close to not satisfying assumption (3.6.5). For instance, if we set B◊0

to
A

≠2.4 0.05
0.05 ≠2.4

B

, then the integral at the left hand side of (3.6.5) becomes 0.164 and,

therefore, one could not ensure the existence of more than 8 moments of the stationary
distribution of the price process, required for asymptotic normality. Of course, in this case
we would still have a weakly consistent estimator.

We investigate the behavior of the bias and standard deviation in Figures 3.1 and
3.2, where we excluded those paths for which the algorithm did not converged success-
fully (around 10 percent of the paths for n = 1 000 and less than 3 percent for larger
n). Figures 3.1 and 3.2 show the absolute values of the bias and standard deviation for
di�erent lags H and varying n. As expected, they decay when n increases. Additionally,
the results favor the choice of H = 10. It is also worth noticing that the estimation of
the parameters in the matrix B◊0 is more di�cult than the other parameters, specially for
n œ {1 000, 5 000, 10 000}.

Figures 3.3 and 3.4 assess asymptotic normality though normal QQ-plots. Based on
the previous findings we fix H = 10, since it gave the best results. This might have to do
with the fact that using just a few lags for the autocovariance function (H = 2 or H = 5)
was not su�cient for a good fit. We also restrict ourselves to n œ {5 000, 20 000, 100 000},
since they already allow us to confirm the convergence to the normal distribution. Here we
do not exclude those paths for which the algorithm did not converge (these are denoted by
large red points in the normal QQ-plots in Figures 3.3 and 3.4). These plots clearly indicate
asymptotic normality of the estimators. It is worth noting that the tails corresponding to
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the estimates of B◊0 deviate from the ones of a normal distribution for values of n œ
{5 000, 20 000}, but they get closer to a normal distribution for n = 100 000. The left tail
of the plots for A21,◊̂n

in Figure 3.3 is not close to a normal (although the plots show
it is converging). This is due to identifiability condition in Lemma 3.5.17 which requires
A21,◊ > 0 but A21,◊0 = 0.1 is very close to the boundary. For n = 5 000, there are very
large negative outliers for the estimates of the diagonal entries of B◊0 , which a�ects the
bias substantially.
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Figure 3.1: Absolute values of the bias of ◊̂n,H . The colors green, blue and red correspond
to H = 2, 5 and 10, respectively.
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Figure 3.2: Standard deviation (std) of ◊̂n,H . The colors green, blue and red correspond
to H = 2, 5 and 10, respectively.
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Figure 3.3: Normal QQ-plots of ◊̂n,10 for ◊0 as in (3.6.3). The red dots are values for which
the algorithm did not converged.



3.6. Simulation study 103
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Figure 3.4: Normal QQ-plots of ◊̂n,10 for ◊0 as in (3.6.3). The red dots are values for which
the algorithm did not converged.
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Bias
n = 1000 n = 5000 n = 10000 n = 20000 n = 50000 n = 100000

◊(1) -0.112 -0.050 -0.030 -0.020 -0.011 -0.003
◊(2) 0.028 0.035 0.038 0.039 0.036 0.035
◊(3) 0.050 -0.005 -0.012 -0.017 -0.032 -0.036
◊(4) -0.124 -0.058 -0.052 -0.034 -0.026 -0.024
◊(5) -0.054 0.002 -0.005 -0.006 -0.001 -0.003
◊(6) 0.011 0.002 -0.004 -0.010 -0.007 -0.007
◊(7) -0.109 -0.072 -0.038 -0.039 -0.022 -0.018
◊(8) 0.046 0.025 0.018 0.013 0.022 0.013
◊(9) 0.037 0.018 0.018 0.025 0.023 0.022

◊(10) 0.034 0.017 0.017 0.024 0.022 0.022
◊(11) 0.112 0.072 0.043 0.029 0.022 0.016

Std
n = 1000 n = 5000 n = 10000 n = 20000 n = 50000 n = 100000

◊(1) 0.173 0.118 0.105 0.093 0.081 0.077
◊(2) 0.203 0.142 0.126 0.110 0.092 0.087
◊(3) 0.188 0.172 0.100 0.099 0.061 0.055
◊(4) 0.222 0.130 0.134 0.114 0.092 0.086
◊(5) 0.322 0.189 0.180 0.162 0.137 0.131
◊(6) 0.286 0.195 0.175 0.157 0.134 0.130
◊(7) 0.415 0.239 0.231 0.207 0.162 0.169
◊(8) 0.434 0.296 0.282 0.228 0.179 0.178
◊(9) 0.327 0.244 0.214 0.175 0.168 0.152

◊(10) 0.324 0.244 0.209 0.175 0.168 0.153
◊(11) 0.442 0.309 0.268 0.224 0.187 0.162

Table 3.1: Bias and std for the GMM estimator ◊̂n,10. Estimation based on 500 replications
with ◊0 as in Example 3.6.2.
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3.6.2 Simulation results for Example 3.6.2

In this section we analyze the behavior of the GMM estimator when the consistency
conditions are valid, but asymptotic normality do not. Here, we have that C◊0 is positive
definite, A◊0 is invertible and ‡(B◊0), ‡(B◊0), ‡(C◊0) and ‡(B◊0/4 + Bú

◊0
/4 + ‡LAú

◊0
A◊0) œ

(≠Œ, 0) + iR. Thus, Theorem 3.5.9 applies and gives weakly consistency of the GMM
estimator. On the other hand, for p = 4.001 the integral in (3.6.5) is 14.22 > 0, and thus,
we cannot apply Theorem 3.5.6 to ensure asymptotic normality.

The results for Example 3.6.2 is given in Table 3.1. We only present the results for
H = 10, since this choice gave in general, smaller bias and standard deviation when,
compared with H = 2 and H = 5. The bias and standard deviation decreases in general as
n grows, showing consistency of the estimators. When compared with Example 3.6.1, the
estimation of the entries of B◊0 does not seem to be substantially more di�cult than the
entries of A◊0 and C◊0 . For n Ø 20 000, one observes the standard deviations for estimating
the entries of B◊0 and C◊0 is approximately twice as much the ones when estimating the
entries of A◊0 .

3.7 Proofs

3.7.1 Auxiliary results

Several results related to the algebra of multivariate stochastic integrals will be used here,
for which we refer to Lemma 2.1 in Behme [3]. Other additional Lemmas are stated bellow.

Fact 3.7.1. (See (4.15) in [98]) Let X, Z in Sd. Then there exist an invertible linear
operator Q such that

Q(vec(X) vec(Z)ú) = X ¢ Z.

Fact 3.7.2. Let (At)tœR+ in Mm,n(R), (Bt)tœR+ in Mn,1(R), (Ct)tœR+ in M1,p(R) and
(Dt)tœR+ in Mp,q(R). Then

5 ⁄ ·

0
AsdBs,

⁄ ·

0
dCsDs

6

t

=
⁄ t

0
Asd[B, C]sDs, t Ø 0. (3.7.1)

Fact 3.7.3. (Lemma 6.9 in [98] with drift) Assume that (Xt)tœR+ is an adapted cadlag
Md,d(R)-valued process satisfying E(ÎXtÎ) < Œ for all t œ R+, t ‘æ E(ÎXtÎ) is locally
bounded and (Lt)sœR+ is an Rd-valued Lévy process of finite variation with E(ÎL1Î) < Œ.
Then

E
⁄ �

0
Xs≠dLs =

⁄ �

0
E(Xs≠)E(L1)ds.
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Fact 3.7.4. Let (At)tœR+ in Md2,d2(R), (Bt)tœR+ in M1,d2(R) be adapted caglad processes
satisfying EÎAt vec(Id)BtÎ < Œ for all t œ R+, t ‘æ EÎAt vec(Id)BtÎ is locally bounded
and (Lt)sœR+ be an Rd valued Lé process satisfying Assumption 5.2 in [98]. Then,

E
⁄ t

0
Asd(vec([L, L]s))Bs = (‡W + ‡L)

⁄ t

0
E[As vec(Id)Bs]ds.

We need a lemma on the finiteness of the relevant moments.

Lemma 3.7.1. (Propositions 4.7-5.2 and 5.4 in [98]) Assume that (a.3), (a.4) and (c.1)
hold. Then, for k œ {1, 2}:

(a) EÎYtÎk < Œ for all t œ R+ and t ‘æ EÎYtÎk is locally bounded.

(b) EÎGtÎ2k < Œ for all t œ R+ and t ‘æ EÎGtÎ2k is locally bounded.

Proof. (a) See Proposition 4.7 in [98].
(b) The finiteness of the moments is proved in Propositions 5.2 and 5.4 in [98]. We prove
local boundedness. Let k = 1. It follows from (5.6) in [98] that for every � > 0,E(G1G

ú
1) =

(‡L+‡W )�E(V0). Thus, EÎGtÎ2 Æ (‡L+‡W )t
qd

j=1 E(V0,j,j), so that t ‘æ EÎGtÎ2 is locally
bounded. Let k = 2. We give an upper bound for E[Gi, Gi]2t , i = 1, . . . , d. It follows from
(3.2) in [98] that

[Gi, Gi]2t

=
3 dÿ

k,l=1

⁄ t

0
V

1/2
ik,s≠V

1/2
li,s≠d[Lk, Ll]s

42

=
3 dÿ

k,l=1

5 ⁄ t

0
V

1/2
ik,s≠V

1/2
li,s≠d([Lk, Ll]s ≠ E[Lk, Ll]s) +

⁄ t

0
V

1/2
ik,s≠V

1/2
li,s≠d(E[Lk, Ll]s)

642

=: (Mt + Nt)2.

(3.7.2)

Under (a.3), E([Lk, Ll]s) = 1k=l(EL2
k). This combined with Jensen’s inequality and (c.1)

gives,

EN2
t = E

3 dÿ

k=1

⁄ t

0
V

1/2
ik,s≠V

1/2
li,s≠(EL2

k)ds

42
Æ 2d≠1t

3 dÿ

k=1
(EL2

k)
4
E

⁄ t

0

!
V

1/2
ik,s≠V

1/2
ki,s≠

"2
ds

Æ 2d≠1t2EÎV0Î2
3 dÿ

k=1
(EL2

k)
4

.

(3.7.3)
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Using the Burkholder-Davis-Gundy inequality for the martingale Mt, using (a.3),
Fact 3.7.1(a) and ((c.1)) gives EM2

t Æ ct. This combined with (3.7.3) proves that
t ‘æ E[Gi, Gi]2t is locally bounded.

Lemma 3.7.2. Assume that (a.2), (a.3), (a.4), (a.5), (b.1) and (c.1) hold. If A œ GL(R),
then

Cov(vec(Y�), vec(G1G

ú
1)) = Cov(vec(Y�), vec(G�Gú

�))
= Var(vec(V0))(eBú� ≠ Id2)[(‡W + ‡L)(Bú)≠1 ≠ 2((A ¢ A)ú)≠1], � Ø 0.

(3.7.4)

Proof. Since (a.3), (a.4) and (c.1) hold, we can apply Fact 3.7.1 with k = 2 to conclude
that both Î vec(Y�)Î and ÎG1G

ú
1Î are square integrable random variables and thus, the

covariance at the left hand side of (3.4.1) is finite. Use integration by parts formula at the
end of p. 111 in [98] to write

G�Gú
� =

⁄ �

0
V

1/2
s≠ dLsGú

s≠ +
⁄ �

0
Gs≠dLú

sV
1/2

s≠ +
⁄ �

0
V

1/2
s≠ d[L, Lú]sV

1/2
s≠ := A� + Aú

� + C�.

(3.7.5)
It follows from Fact 3.7.1(a) and (b) together with the Cauchy-Schwarz inequality that

⁄ t

0
EÎV

1/2
s≠ ÎÎGs≠Îds Æ

⁄ t

0

!
EÎVs≠Î"1/2!

EÎGs≠Î2"1/2ds < Œ (3.7.6)

and therefore (At)tØ0 is a martingale and At œ L2 for all t Ø 0. Thus, the integration by
parts formula, the formula d(vec(As))ú = dLú

s(Gú
s≠ ¢V

1/2
s≠ ) (Lemma 2.1(vi) in [3]) and the

Itô isometry imply

Cov(vec(Y�), vec(A�))
= E

#
vec(Y�)(vec(A�))ú$ ≠ E vec(Y�)E(vec(A�))ú

= E
3 ⁄ �

0
vec(Ys≠)d(vec(As))ú +

⁄ �

0
d vec(Ys)(vec(As≠))ú + [vec(Y ), (vec(A))ú]�

4
≠ 0

= 0 + E
⁄ �

0
d vec(Ys)(vec(As≠))ú + E([vec(Y ), (vec(A))ú]�).

(3.7.7)

Let C̃ := (B ¢ I + I ¢ B) and recall from p.84 in [98] that

d vec(Ys) = C̃ vec(Ys≠)ds + (A ¢ A)(V 1/2
s≠ ¢ V

1/2
s≠ )d vec([L, L]ds) (3.7.8)

Using (3.7.8), the bilinearity of the quadratic covariation process, Facts 3.7.2, 3.7.1, 3.7.3,
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(a.2) and (3.7.6) and Itô isometry gives

E[vec(Y ), (vec(A))ú]�

= E
5 ⁄ ·

0
C̃ vec(Ys≠)ds +

⁄ ·

0
(A ¢ A)(V 1/2

s≠ ¢ V
1/2

s≠ )d vec([L, L]ds),
⁄ ·

0
dLú

s(Gú
s≠ ¢ V

1/2
s≠ )

6

�

= E
⁄ �

0
(A ¢ A)(V 1/2

s≠ ¢ V
1/2

s≠ )d[vec([L, L]d), Lú]s(Gú
s≠ ¢ V

1/2
s≠ ) = 0.

(3.7.9)

Let ls := E vec(Ys)(vec(As))ú and notice that it follows from Fact 3.7.1 and the Cauchy-
Schwarz inequality that EÎlsÎ < Œ and s ‘æ EÎlsÎ is locally bounded. Use (3.7.8), (3.7.9),
the compensation formula, Proposition 7.1.9 in [5], E vec(Vs) vec(As≠) = ls and Itô isom-
etry and (a.5) to get

l� = E
⁄ �

0
d vec(Ys)(vec(As≠))ú

= E
⁄ �

0

#
C̃ vec(Ys≠)ds + (A ¢ A)(V 1/2

s≠ ¢ V
1/2

s≠ )d(vec([L, L]ds)
$
(vec(As≠))ú

= C̃

⁄ �

0
E vec(Ys≠)(vec(As≠))úds

+ ‡L

⁄ �

0
E[(A ¢ A)(V 1/2

s≠ ¢ V
1/2

s≠ ) vec(Id)(vec(As≠))ú]ds

= (C̃ + ‡L(A ¢ A))
⁄ �

0
lsds.

(3.7.10)

Solving the matrix valued integral equation in (3.7.10) and using that A0 = 0 implies
l0 = 0, gives ls = 0 for all s Ø 0 (see [45]). Thus, it follows from (3.7.7)-(3.7.10) that

Cov(vec(Y�), vec(A�)) = 0, (3.7.11)

and, as a consequence Cov(vec(Y�), vec(Aú
�)) = 0. Let Vs≠ := V

1/2
s≠ ¢ V

1/2
s≠ . Then,

vec(C�)

=
⁄ �

0
Vs≠d vec([L, Lú]s) =

⁄ �

0
Vs≠d vec([L, Lú]ds) + ‡W

⁄ �

0
(V 1/2

s≠ ¢ V
1/2

s≠ ) vec(Id)ds

=
⁄ �

0
Vs≠d vec([L, Lú]ds) + ‡W

⁄ �

0
vec(Vs≠)ds.

(3.7.12)

Using the compensation formula, Fact 3.7.3 and the stationarity of (Vs)sœR+ we get

E
⁄ �

0
Vs≠d vec([L, Lú]s) = (‡W + ‡L)

⁄ �

0
EVs≠ vec(Id)ds = �(‡W + ‡L)E vec(V0).

(3.7.13)
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Additionally, it follows from Fact 3.7.1 that EÎ vec(Vs) vec(Y�)úÎ < Œ for all s Ø 0 and
that s ‘æ EÎ vec(Vs) vec(Y�)úÎ is locally bounded. Then,

E
3 ⁄ �

0
vec(Vs≠)ds (vec(Y�))ú

4
=

⁄ �

0
E vec(Vs≠)(vec(Y�))úds

= � vec(C)(E vec(Y0))ú +
⁄ �

0
E vec(Ys)(vec(Y�))úds.

(3.7.14)

Now it follows from the invertibility of (A ¢ A) and from the second equation following
(3.5) in [98] that

⁄ �

0
Vs≠d vec([L, Lú]ds)

= (A ¢ A)≠1
3

vec(Y�) ≠ vec(Y0) ≠
⁄ �

0
(B ¢ I + I ¢ B) vec(Ys≠)ds

4
.

(3.7.15)

The representation in (3.7.15) gives

E
53 ⁄ �

0
Vs≠d vec([L, Lú]ds)

4
(vec(Y�))ú

6

= E
5
(A ¢ A)≠1

1
vec(Y�) ≠ vec(Y0) ≠

⁄ �

0
(B ¢ I + I ¢ B) vec(Ys≠)ds

2
(vec(Y�))ú

6

= (A ¢ A)≠1
5
E vec(Y�)(vec(Y�))ú ≠ E vec(Y0)(vec(Y�))ú

≠ (B ¢ I + I ¢ B)
⁄ �

0
E vec(Ys≠)(vec(Y�))úds

6
.

(3.7.16)

Using the definition of C� in (3.7.5), together with (3.7.12), (3.7.13) and (3.7.16) gives

Cov(vec(C�), vec(Y�)) = (A ¢ A)≠1
5
E vec(Y�)(vec(Y�))ú ≠ E vec(Y0)(vec(Y�))ú

≠ (B ¢ I + I ¢ B)
3 ⁄ �

0
E vec(Ys≠)(vec(Y�))úds

46

+ �‡W vec(C)(E vec(Y0))ú + ‡W

⁄ �

0
E vec(Ys≠)(vec(Y�))úds

≠ �(‡W + ‡L)E vec(V0)E(vec(Y�))ú

= [‡W Id2 ≠ (A ¢ A)≠1(B ¢ I + I ¢ B)]
⁄ �

0
E vec(Ys)(vec(Y�))úds

+ (A ¢ A)≠1#
Var(vec(Y0)) ≠ Cov(vec(Y0), vec(Y�))

$ ≠ �‡L vec(C)E(vec(Y0))ú

≠ �(‡W + ‡L)E vec(Y0)E(vec(Y0))ú,

(3.7.17)
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where the last inequality follows from V0 = C + Y0 and the stationarity of (Ys)sœR+ . Using
(3.4.3) it follows first that

⁄ �

0
E vec(Ys)(vec(Y�))úds =

⁄ �

0
eB(�≠s)Var(vec(Y0))ds + �E vec(Y0)E(vec(Y0))ú

= B≠1(eB� ≠ Id2)Var(vec(Y0)) + �E vec(Y0)E(vec(Y0))ú,

(3.7.18)

and second that

Var(vec(Y0)) ≠ Cov(vec(Y0), vec(Y�)) = ≠(eB� ≠ Id2)Var(vec(Y0)). (3.7.19)

Substituting B ¢I +I ¢B = B ≠‡L(A¢A), using (3.7.18), (3.7.19), (b.1) and the formula
for E vec(Y0) in (3.4.3) gives

Cov(vec(C�), vec(Y�))
=

#
‡W Id2 ≠ (A ¢ A)≠1(B ≠ ‡L(A ¢ A))

$#B≠1(eB� ≠ Id2)Var(vec(Y0))
+ �E vec(Y0)E(vec(Y0))ú$

≠ (A ¢ A)≠1(eB� ≠ Id2)Var(vec(Y0)) ≠ �‡L vec(C)E(vec(Y0))ú

≠ �(‡W + ‡L)E vec(Y0)E(vec(Y0))ú

=
#
(‡W + ‡L)B≠1 ≠ 2(A ¢ A)≠1$

(eB� ≠ Id2)Var(vec(Y0))
≠ #

(A ¢ A)≠1BE vec(Y0) + ‡L vec(C)
$
�E(vec(Y0))ú

=
#
(‡W + ‡L)B≠1 ≠ 2(A ¢ A)≠1$

(eB� ≠ Id2)Var(vec(Y0))
≠ #

(A ¢ A)≠1B(≠‡LB≠1(A ¢ A) vec(C)) + ‡L vec(C)
$
�E(vec(Y0))ú

=
#
(‡W + ‡L)B≠1 ≠ 2(A ¢ A)≠1$

(eB� ≠ Id2)Var(vec(Y0)).

(3.7.20)

Finally, the result of the Lemma given in (3.7.4) follows from (3.7.5), (3.7.11), (3.7.20)
and the fact that

Cov(vec(Y�), vec(G�Gú
�)) = (Cov(vec(G�Gú

�), vec(Y�)))ú = (Cov(vec(C�), vec(Y�)))ú.

3.7.2 Proofs of Lemmas 3.4.2 and 3.4.3

The proof of Lemma 3.4.2 follows directly from Lemma 3.7.2 combined with (5.7) in [98].

3.7.3 Proof of Lemma 3.4.3

An application of the Cauchy-Schwarz inequality combined with Fact 9.9.61 in [5] and
Fact 3.7.1(b) gives EÎ vec(G1G

ú
1) vec(G1G

ú
1)úÎ2 Æ cEÎG1Î4

2 < Œ for some c > 0. Let
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as := vec(GsGú
s), s œ [0, �] and use the integration by parts formula to write

a�aú
� =

⁄ �

0
as≠d(aú

s) +
⁄ �

0
das(aú

s≠) + [a, aú]�

=
3 ⁄ �

0
das(aú

s≠)
4ú

+
⁄ �

0
das(aú

s≠) + [a, aú]�,

(3.7.21)

which means that we only need to compute

E
⁄ �

0
das(aú

s≠) and E[a, aú]�.

From (3.7.5), Lemma 2.1(vi) in Behme [3] and the symmetry of (Vt)tœR+ it follows that

dat = d(vec(GtG
ú
t ))

= d
3

vec
3 ⁄ t

0
V

1/2
s≠ dLsGú

s≠ +
⁄ t

0
Gs≠dLú

sV
1/2

s≠ +
⁄ t

0
V

1/2
s≠ d[L, Lú]sV

1/2
s≠

44

= d
3 ⁄ t

0
(Gs≠ ¢ V

1/2
s≠ )dLs +

⁄ t

0
(V 1/2

s≠ ¢ Gs≠)dLs +
⁄ t

0
(V 1/2

s≠ ¢ V
1/2

s≠ )d vec([L, Lú]s)
4

= (Gt≠ ¢ V
1/2

t≠ + V
1/2

t≠ ¢ Gt≠)dLt + (V 1/2
t≠ ¢ V

1/2
t≠ )d vec([L, Lú]t), t Ø 0.

(3.7.22)

Thus it follows from (3.7.22), the Itô isometry, the fact that [L, Lú]t = [L, Lú]dt + ‡wIdt,
facts 3.7.4 and 3.7.1 that

E
⁄ �

0
das(aú

s≠)

= E
3 ⁄ �

0
(Gs≠ ¢ V

1/2
s≠ + V

1/2
s≠ ¢ Gs≠)dLsaú

s≠ +
⁄ �

0
(V 1/2

s≠ ¢ V
1/2

s≠ )d vec([L, Lú]s)aú
s≠

4

= (‡L + ‡W )
3 ⁄ �

0
E

!
(V 1/2

s≠ ¢ V
1/2

s≠ ) vec(Id)aú
s≠

"
ds

4

= (‡L + ‡W )
⁄ �

0
E(vec(Vs≠)aú

s≠)ds.

(3.7.23)

It follows from (5.6) in [98] that

⁄ �

0
Eaú

s≠ds =
⁄ �

0

!
vec((‡L + ‡W )sEV0)

"úds = 1
2(‡L + ‡W )�2E vec(V0)ú. (3.7.24)
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Since we assumed here that all hypothesis for using Lemma 3.7.2 are valid, we can use
(3.7.4) with � = s to get

⁄ �

0
Cov(vec(Ys≠), as≠)ds

= Var(vec(Y0))
3 ⁄ �

0
(eBús ≠ Id2)ds

4#
(‡W + ‡L)(Bú)≠1 ≠ 2((A ¢ A)ú)≠1$

= Var(vec(Y0))B̃,

(3.7.25)

where B̃ is defined in (3.4.10). Using (3.7.23), (c.1) (3.7.24), (3.7.25) gives
⁄ �

0
E vec(Vs≠)aú

s≠ds =
⁄ �

0
Cov(vec(Vs≠), as≠)ds + (E vec(Vs))

⁄ �

0
E(aú

s≠)ds

=
⁄ �

0
Cov(vec(Ys≠), as≠)ds + (E vec(V0))

⁄ �

0
E(aú

s≠)ds

= 1
2(‡L + ‡W )�2E vec(V0)E vec(V0)ú + Var(vec(Y0))B̃

= (‡L + ‡W )≠1D,

(3.7.26)

where D is defined in (3.4.9). Let fs := (Gs≠ ¢ V
1/2

s≠ + V
1/2

s≠ ¢ Gs≠), s Ø 0 and recall
Vs≠ = V

1/2
s≠ ¢ V

1/2
s≠ . Using (3.7.5), Lemma 2.1(vi) in [3] and the symmetry of V

1/2
s≠ gives

[a, aú]�

=
5

vec
3 ⁄ ·

0
V

1/2
s≠ dLsGú

s≠ +
⁄ ·

0
Gs≠dLú

sV
1/2

s≠ +
⁄ ·

0
V

1/2
s≠ d[L, Lú]sV

1/2
s≠

4
,

3
vec

3 ⁄ ·

0
V

1/2
s≠ dLsGú

s≠ +
⁄ ·

0
Gs≠dLú

sV
1/2

s≠ +
⁄ ·

0
V

1/2
s≠ d[L, Lú]sV

1/2
s≠

44ú6

�

=
5 ⁄ ·

0
fs≠dLs +

⁄ ·

0
Vs≠d vec([L, Lú]s),

⁄ ·

0
dLú

sfú
s≠ +

⁄ ·

0
d(vec([L, Lú]s)ú)Vs≠

6

�

=
⁄ �

0
fs≠d[L, Lú]sfú

s≠ +
⁄ �

0
fs≠d[L, vec([L, Lú])ú]sVs≠

+
⁄ �

0
Vs≠d[vec([L, Lú]), Lú]sfú

s≠ +
⁄ �

0
Vs≠d[vec([L, Lú]), vec([L, Lú])ú]Vs≠

:= I1 + I2 + I3 + I4.

(3.7.27)

By Fact 3.7.1 we have EÎVs≠ÎÎfs≠Î < Œ and the map s ‘æ EÎVs≠ÎÎfs≠Î is locally
bounded. The same is true for the random variable ÎVs≠ÎÎVs≠Î. Thus, it follows from
(a.2) that we have EI2 = EI3 = 0. Using the second-order stationarity of (Vs)sœR+ in
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(c.1), the compensation formula and the formulas at p. 108 in [98]

EI4 = E
3 ⁄ �

0
Vs≠d[vec([L, Lú]), vec([L, Lú])ú]Vs≠

4

= E
3 ⁄ �

0
Vs≠d[vec([L, Lú]d), (vec([L, Lú]d))ú]dVs≠

4

=
⁄ �

0
E

!Vs≠flL[Id2 + Kd + vec(Id) vec(Id)ú]Vs≠
"
ds

= flL

⁄ �

0
(Q + KdQ + Id2)E(vec(Vs) vec(Vs)ú)ds

= �flL(Q + KdQ + Id2)E vec(V0) vec(V0)ú.

(3.7.28)

To compute EI1 we will need the following matrix identity, which is based on
Fact 7.4.30(xiv) in Bernstein [5] and Fact 3.7.1. Let A œ Md,1(R) and B, B2 œ Md,d(R) be
symmetric matrices. Then,

(A ¢ B + B ¢ A)(A ¢ B + B ¢ A)ú = (A ¢ B + Kd(A ¢ B))(A ¢ B + Kd(A ¢ B))ú

= (I + Kd)(A ¢ B)(Aú ¢ B)(I + Kd) = (I + Kd)Q vec(AAú) vec(B2)(I + Kd).
(3.7.29)

Write bs := E vec(GsGú
s) vec(Vs)ú, which is finite by Fact 3.7.1. Using the compensation

formula, (3.7.29) and the definition of fs gives

E
3 ⁄ �

0
fs≠d[L, Lú]sfú

s≠
4

= (‡L + ‡W )
⁄ �

0
E(fsfú

s )ds

= (‡L + ‡W )
⁄ �

0
E(Gs≠ ¢ V

1/2
s≠ + V

1/2
s≠ ¢ Gs≠)(Gú

s≠ ¢ V
1/2

s≠ + V
1/2

s≠ ¢ Gú
s≠)ds

= (‡L + ‡W )
⁄ �

0
(I + Kd)Qbs(I + Kd)ds

= (‡L + ‡W )(I + Kd)Q
3 ⁄ �

0
bsds

4
(I + Kd).

(3.7.30)

Finally, it follows from (3.7.26) that
⁄ �

0
bú

sds =
⁄ �

0
E vec(Vs)aú

s≠ds = (‡L + ‡W )≠1D. (3.7.31)

The result now is a direct consequence of (3.7.21), (3.7.26), (3.7.27), (3.7.28), (3.7.30)
and (3.7.31).
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