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Abstract: Standard upper and lower bounds on the capacity of relay channels are cut-set (CS),
decode-forward (DF), and quantize-forward (QF) rates. For real additive white Gaussian noise (AWGN)
multicast relay channels with one source node and one relay node, these bounds are shown to be
quasi-concave in the receiver signal-to-noise ratios and the squared source-relay correlation coefficient.
Furthermore, the CS rates are shown to be quasi-concave in the relay position for a fixed correlation
coefficient, and the DF rates are shown to be quasi-concave in the relay position. The latter property
characterizes the optimal relay position when using DF. The results extend to complex AWGN channels
with random phase variations.
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1. Introduction

A multicast relay channel (MRC) is an information network with a source node, a relay node,
and two or more destination nodes, and where one message originating at the source should be received
reliably at the destinations. We consider additive white Gaussian noise (AWGN) MRCs and show
that certain information rate expressions are quasi-concave in the receiver signal-to-noise ratios (SNRs),
the squared source-relay correlation coefficient, and the relay position. In particular, we study cut-set (CS),
decode-forward (DF), and quantize-forward (QF) rates. Quasi-concavity suggests that efficient algorithms
can optimize signaling and the relay position. However, the main motivation of this work is not practicality,
but simply to provide better understanding of the problem.

Relay positioning has been studied by many authors, with a focus on rate enhancement (e.g., [1,2]),
range extension (e.g., [3,4]), and outage probability (e.g., [1,5,6]). We study the problem of placing a relay
to maximize the multicast rate by extending results of [7–10]. A preliminary version of this paper without
proofs appeared in [11]. Our focus is on real alphabet channels. However, our main results also apply to
complex alphabet channels if there are random phase variations so that beamforming is not useful.

This paper is organized as follows. Section 2 presents the MRC model and reviews the CS, DF, and QF
rates. Section 3 develops quasi-concavity results in the squared source-relay correlation coefficient ρ2 and
the channel SNRs. Section 4 introduces a distance dependence for the channel gains and shows that the CS
rate is quasi-concave in the relay position when ρ is fixed. We further show that the DF rate is quasi-concave
in the relay position. Section 5 illustrates quasi-concavity for one-, two-, and three-dimensional networks,
and compares the performance of two DF strategies. Section 6 discusses complex AWGN channels and
a sum (source plus relay) power constraint. Section 7 concludes the paper. Appendices A and B review
useful results on concavity and quasi-concavity, and prove a few new results.
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2. Model and Information Rates

2.1. Model

An MRC has three types of nodes:

• a source node s that generates a message W and transmits the symbols Xn
s = Xs,1, Xs,2, . . . , Xs,n;

• a relay node r that receives and forwards symbols Yr,k and Xr,k, respectively, for k = 1, 2, · · · , n;
• destination nodes j = 1, 2, . . . , N where node j receives Yn

j = Yj,1, Yj,2, . . . , Yj,n and estimates W as Ŵj.

We denote the destination node set as T = {1, 2, . . . , N}. The classic relay channel has N = 1 and
Figure 1 shows an MRC with N = 2.
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Figure 1. Multicast relay channel (MRC) with two destinations.

A memoryless MRC has a function h(·) and a noise random variable Z so that for every time instant
the N + 1 channel outputs Y = (Yr Y1 . . . YN) are given by

Y = h(Xs, Xr, Z).

The noise Z is statistically independent of Xs and Xr, and the noise variables at different times are
statistically independent.

An encoding strategy for M messages has

• W uniformly distributed over {1, 2, . . . , M};
• an encoding function es(·) such that Xn

s = es(W);
• relay functions er,k(·) with Xr,k = er,k(Yr,1, . . . , Yr,k−1), where k = 1, 2, . . . , n;
• decoding functions dj(·) such that dj(Yn

j ) = Ŵj, j ∈ T .

The error probability at destination j is Pe,j = Pr
[
Ŵj 6= W

]
. The multicast rate is R = (log2 M)/n

bits/use. The rate R is achievable if, for any ε > 0 and sufficiently large n, there is an encoding strategy
with Pe,j ≤ ε for all j ∈ T . The capacity C is the supremum of the achievable rates.

2.2. Information Rates

The following bounds were given in [12] for the relay channel (N = 1). Their extensions to MRCs
are straightforward.

• CS Rate: C ≤ RCS where

RCS =max
{

min
1≤j≤N

min
(

I(XsXr; Yj), I(Xs; YrYj|Xr)
)}

(1)
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and where the maximization is over all XsXr.
• Direct-Transmission (DT) Rate: C ≥ RDT where

RDT = max{ min
1≤j≤N

I(Xs; Yj|Xr = x∗)} (2)

and where the maximization is over all x∗ and Xs.
• DF Rate: C ≥ RDF where

RDF =max
{

min
1≤j≤N

min
(

I(XsXr; Yj), I(Xs; Yr|Xr)
)}

(3)

and where the maximization is over all XsXr.
• QF Rate: C ≥ RQF where

RQF =max
{

min
1≤j≤N

min
(

I(XsXr; Yj)− I(Yr; Ŷr|XsXrYj), I(Xs; ŶrYj|Xr)
)}

(4)

where Ŷr is an auxiliary random variable, and where the maximization is over all XsXrŶr such that Xs

and Xr are independent and Xs − XrYr − Ŷr forms a Markov chain.

2.3. Real Alphabet AWGN MRC

The real alphabet AWGN MRC has real channel symbols and

Yr = as,rXs + Zr (5)

Yj = as,jXs + ar,jXr + Zj (6)

where j ∈ T . The as,r, as,j, and ar,j are channel gains between the nodes (see Figure 2). We later relate
these gains to distances between the nodes. The Zr and Zj, j = 1, 2, . . . , N, are independent and identically
distributed Gaussian random variables with zero mean and unit variance. We may alternatively write (5)
and (6) in vector form as

Yj = AjX + Zj (7)

where X = (Xs Xr)T , Yj = (Yr Yj)
T , Z = (Zr Zj)

T , and

Aj =

(
as,r 0
as,j ar,j

)
. (8)
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Figure 2. AWGN MRC with two destinations.

We consider individual average block power constraints

E

[
n

∑
k=1

X2
s,k

]
≤ nPs, E

[
n

∑
k=1

X2
r,k

]
≤ nPr. (9)

The SNR and the capacity of the link from node u (with transmit power Pu) to node v are the respective

SNRu,v = a2
u,vPu (10)

C(SNRu,v) =
1
2

log (1 + SNRu,v) . (11)

We simplify the above rate bounds for the AWGN MRC.

• CS Rate:

RCS = max
ρ

[
min

1≤j≤N
min

(
C
(
SNRs,j + SNRr,j + 2ρ

√
SNRs,jSNRr,j

)
,

C
(
(1− ρ2)(SNRs,j + SNRs,r))

)]
(12)

where the correlation coefficient ρ satisfies |ρ| ≤ 1. One can restrict attention to non-negative ρ.
• DT Rate:

RDT = min
1≤j≤N

C(SNRs,j). (13)

• DF Rate:

RDF = max
ρ

[
min

1≤j≤N
min

(
C(SNRs,j + SNRr,j + 2ρ

√
SNRs,jSNRr,j),C((1− ρ2)SNRs,r)

)]
. (14)

One can again restrict attention to non-negative ρ.
• QF Rate: Optimizing XsXrŶr seems difficult. Instead, we choose Xs and Xr to be zero-mean Gaussian

with variances Ps and Pr, respectively. We further choose Ŷr = Yr + Zr where Zr is zero-mean Gaussian
with variance Nr. Optimizing Nr gives (see [13], pp. 336–337)

R̃QF = min
1≤j≤N

C

(
SNRs,j +

SNRr,jSNRs,r

SNRs,j + SNRr,j + SNRs,r + 1

)
. (15)
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3. Quasi-Concavity in SNRs and ρ2

3.1. CS Rate

We consider two characterizations of RCS. First, let aT
j = (as,j ar,j) be the second row of Aj, let QX be

the covariance matrix of X (see Appendix A), and let det M be the determinant of the square matrix M.
The CS rate (12) can be expressed as the maximum of

RCS(QX) = min
1≤j≤N

min

(
1
2

log
(

aT
j QX aj + 1

)
,

1
2

log

(det Q(YT
j Xr)T

Pr

))
(16)

over the convex set of QX with diagonal entries Ps and Pr. The first logarithm in (16) is clearly concave in
QX. The second logarithm is concave in Q(YT

j Xr)T (see Appendix A) and Q(YT
j Xr)T is linear in QX. To prove

the latter claim, observe that

Q(YT
j Xr)T = ÃjQXÃT

j +

(
I2 0
0 0

)
(17)

where ÃT
j =

(
AT

j [0 1]T
)

and I2 is the 2× 2 identity matrix. Hence RCS(QX) is concave in (the convex set
of) QX because it is the minimum of 2N concave functions.

Suppose next that we wish to consider ρ and the SNRs individually rather than via QX. Define
the vector

S = (SNRs,r,SNRs,1, · · · , SNRs,N ,SNRr,1, · · · ,SNRr,N) (18)

and the functions

f j(ρ, S) = SNRs,j + SNRr,j + 2ρ
√

SNRs,jSNRr,j (19)

gj(ρ, S) = (1− ρ2)
(
SNRs,j + SNRs,r

)
(20)

RCS(ρ, S) = min
1≤j≤N

min
(
C( f j(ρ, S)),C(gj(ρ, S))

)
. (21)

We establish the following results. We restrict attention to 0 ≤ ρ ≤ 1 and positive S.

Lemma 1. f j(ρ, S) and gj(ρ, S) are concave in ρ, concave in S, and quasi-concave in (ρ2, S).

Proof. Concavity with respect to ρ is established by observing that f j(ρ, S) is linear in ρ, and gj(ρ, S) is
linear in −ρ2 which is concave in ρ.

Consider next concavity with respect to S. The Hessian of f j(ρ, S) with respect to S has only one
non-zero eigenvalue

−ρ

2
·
SNR2

s,j + SNR2
r,j

SNR3/2
s,j SNR3/2

r,j

. (22)

Thus, f j(ρ, S) is concave in S for non-negative ρ and positive S. The function gj(ρ, S) is linear in S, and thus
concave in S.

Now consider quasi-concavity with respect to (ρ2, S). Substituting a = SNRs,j, b = SNRr,j, c = ρ2

into the fifth function of Lemma A6 in Appendix B, we find that f j(ρ, S) is quasi-concave in (ρ2, S). For
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the gj(ρ, S), observe that ab is quasi-concave for non-negative (a, b), see the first function of Lemma A6.
This implies (see (A7))

(λa1 + λ̄a2)(λb1 + λ̄b2) ≥ min (a1b1, a2b2) (23)

for 0 ≤ λ ≤ 1, and where λ̄ = 1− λ. Substituting ai = 1− ρ2
i and bi = SNRs,j,i + SNRs,r,i for i = 1, 2,

we find that gj(ρ, S) is quasi-concave in (ρ2, S).

Theorem 1. RCS(ρ, S) is concave in ρ, concave in S, and quasi-concave in (ρ2, S).

Proof. RCS(ρ, S) involves taking logarithms and minima of (quasi-) concave functions. The results thus
follow by applying Lemma 1 above and Lemma A5, Parts 2 and 3, in Appendix B.

Corollary 1. Consider S as a function of P = (Ps, Pr). Then RCS(ρ, S(P)) is quasi-concave in (ρ2, P).

Proof. The proof follows from the proof of Theorem 1 and because S is a linear function of P.

To illustrate the quasi-concavity, consider one relay and the channel gains as,r = 5/2, as,1 = 1,
and ar,1 = 5/3. This scenario corresponds to the geometry in Section 5.1 with r = 0.4. Figure 3 shows a
contour plot of RCS(ρ, S(P)) when Ps = 1. Observe that the contour lines form convex regions, as predicted
by Corollary 1.
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Figure 3. Contour plot of RCS(ρ, S(P)) when Ps = 1.
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3.2. DF Rate

Consider the functions

g∗j (ρ, S) = (1− ρ2)SNRs,r (24)

RDF(ρ, S) = min
1≤j≤N

min
(
C( f j(ρ, S)),C(g∗j (ρ, S))

)
. (25)

As above, we restrict attention to 0 ≤ ρ ≤ 1 and positive S.

Theorem 2. RDF(ρ, S) is concave in ρ, concave in S, and quasi-concave in (ρ2, S).

Proof. The proof is similar to that of Theorem 1.

Corollary 2. RDF(ρ, S(P)) is quasi-concave in (ρ2, P).

Proof. See the proof of Corollary 1.

3.3. DT Rate

The DT rate (13) is clearly concave in S and P.

3.4. QF Rate

Consider the functions

hj(S) = SNRs,j +
SNRr,jSNRs,r

SNRs,j + SNRr,j + SNRs,r + 1
(26)

R̃QF(S) = min
1≤j≤N

C(hj(S)). (27)

We establish the following results. We restrict attention to non-negative S.

Lemma 2. hj(S) is quasi-concave in (SNRr,j,SNRs,r).

Proof. Substitute a = SNRr,j, b = SNRs,r, k = SNRs,j + 1 into the second function of Lemma A6 in
Appendix B, and apply Lemma A5, Part 1.

Theorem 3. R̃QF(S) is quasi-concave in S if the SNRs,j, j = 1, 2, . . . , n, are held fixed.

Proof. Apply Lemma 2 above and Lemma A5, Parts 2 and 3, in Appendix B.

4. Quasi-Concavity in Relay Position

Suppose the channel gain for the node pair (i, j) is

ai,j =
√

ξi,j

/
Dα/2

i,j (28)
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where ξi,j is a “fading” gain, Di,j = ‖i− j‖ is the Euclidean distance between the positions i and j of nodes
i and j, respectively, and α ≥ 2 is a path-loss exponent. We thus have

SNRi,j =
ξi,jPi

Dα
i,j

=
ξi,jPi

‖i− j‖α
.

We establish quasi-concavity results in ρ2 and r, where r is the position of the relay node.

4.1. CS Rate

Consider the functions (19)–(21) but relabeled as f j(ρ, r), gj(ρ, r), and RCS(ρ, r) to emphasize the
dependence on the considered parameters. We again consider 0 ≤ ρ ≤ 1 and positive S.

Lemma 3. f j(ρ, r) and gj(ρ, r) are quasi-concave in r for fixed ρ. Furthermore, f j(ρ, r) is quasi-concave in (ρ2, r).

Proof. Consider the functions

f̃ j(ρ, Dα) =
ξs,jPs

Dα
s,j

+
ξr,jPr

Dα
+ 2ρ

√
ξs,jPs

Dα
s,j

ξr,jPr

Dα
(29)

g̃j(ρ, Dα) = (1− ρ2)

(
ξs,jPs

Dα
s,j

+
ξs,rPs

Dα

)
(30)

which are quasi-linear in Dα for fixed ρ since they are decreasing in Dα. However, Dα
r,j is a convex function

of r for α ≥ 1, and thus Lemma A5, Part 5, in Appendix B establishes that f j(ρ, r) is quasi-concave in r for
fixed ρ. Similarly, Dα

s,r is a convex function of r for α ≥ 1, and we find that gj(ρ, r) is quasi-concave in r for
fixed ρ.

Next, substitute a = Dα and b = ρ2 into the third function of Lemma A6, and use Lemma A5, Part 1,
to show that f̃ j(ρ, Dα) is quasi-concave in (ρ2, Dα). However, f̃ j is decreasing in Dα and Dα

r,j is convex in r,

so Lemma A5, Part 5, establishes that f j(ρ, r) is quasi-concave in (ρ2, r).

Unfortunately, g̃j is quasi-convex (and not quasi-concave) in (ρ2, Dα). To see this, substitute a = Dα

and b = ρ2 into the fourth function of Lemma A6. Quasi-concavity would have been useful since it would
have permitted using Lemma A5, Parts 2 and 4, to establish the quasi-concavity of

RCS(r) = max
ρ

[
min

1≤j≤N
min

(
C( f j(ρ, r)),C(gj(ρ, r))

)]
. (31)

However, we have been unable to prove this, and our numerical results suggest that RCS(ρ, r) is not
quasi-concave in (ρ2, r). Nevertheless, Lemma 3 suffices to establish an intermediate result which is useful
in Section 5 when we study ρ = 0.

Theorem 4. RCS(ρ, r) is quasi-concave in r for fixed ρ, 0 ≤ ρ ≤ 1.

Proof. RCS(ρ, r) is the minimum of functions that are quasi-concave in r. Lemma A5, Part 2,
thus establishes the theorem.
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4.2. DF Rate

The quasi-convexity of g̃j(ρ, Dα) relaxes for the DF rate (25). Consider the negative of the fourth
function of Lemma A6 in Appendix B with k1 = 0:

f (a, b) = (1− b)k2/a. (32)

This function is quasi-linear in (a, b) since both its superlevel and sublevel sets are convex. This result
implies the following theorem. We again consider the functions (24)–(25) but relabeled as g∗j (ρ, r) and
RDF(ρ, r). We further define

g̃∗j (ρ, Dα) = (1− ρ2)
ξs,rPs

Dα
(33)

RDF(r) = max
ρ

[
min

1≤j≤N
min

(
C( f j(ρ, r)),C(g∗j (ρ, r))

)]
. (34)

As above, we consider 0 ≤ ρ ≤ 1 and positive S.

Theorem 5. RDF(ρ, r) is quasi-concave in (ρ2, r), and RDF(r) is quasi-concave in r.

Proof. g̃∗j (ρ, Dα) is quasi-linear in (ρ2, Dα) and decreasing in Dα. Furthermore, Dα
s,r is convex in r, and

thus Lemma A5, Part 5, in Appendix B establishes that g∗j (ρ, r) is quasi-concave in (ρ2, r). RDF(ρ, r) is
therefore quasi-concave in r, as it is the minimum of quasi-concave functions (see Lemma A5, Part 2).
Furthermore, RDF(r) is concave in r by Lemma A5, Part 4.

5. DF Performance

This section presents numerical results for the DF strategy and compares them to results from [7–9].
We consider 1-, 2-, and 3-dimensional MRCs with different numbers N of destination nodes. For simplicity,
we consider the low SNR or broadband regime where

C(SNR) =
1
2

log(1 + SNR)→ 1
2
SNR. (35)

In other words, we consider the CS and DF rates without the logarithms. This approach is valid
not only in the limit of low SNR, but more generally because we proved our quasi-concavity results
without taking logarithms. Furthermore, in the low SNR regime the rates of full-duplex and half-duplex
transmission are the same under a block power constraint.

We choose Ps = Pr = P = 1, α = 2, and ξu,v = 1 for all node pairs (u, v). We study both coherent
transmission where ρ is optimized and non-coherent transmission with ρ = 0. The rates are in nats/channel
use. Alternatively, suppose we use sync pulses sampled at 2W samples per second, where W is the
(one-sided) signal bandwidth. Suppose further that the (one-sided) noise power spectral density is
1 Watt/Hz. Then at low SNR the rates in nats/channel use are the same as the rates in nats/sec.
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5.1. One Dimension

Consider a relay channel (N = 1) where the source is at the origin (s = 0) and the destination is at
point 1 (1 = 1). Figure 4 shows the low SNR CS rates, DF rates, and the routing-based DF (RDF) rates
developed in [7], which are given by

RCS →
1
2

min

(
ξs,1Ps

‖s− 1‖α
+

ξr,1Pr

‖r− 1‖α
+

2ρ
√

ξs,1ξr,1PsPr

‖s− 1‖α/2‖r− 1‖α/2 , (1− ρ2)

(
ξs,1Ps

‖s− 1‖α
+

ξs,rPs

‖s− r‖α

))
(36)

RDF →
1
2

min

(
ξs,1Ps

‖s− 1‖α
+

ξr,1Pr

‖r− 1‖α
+

2ρ
√

ξs,1ξr,1PsPr

‖s− 1‖α/2‖r− 1‖α/2 , (1− ρ2)
ξs,rPs

‖s− r‖α

)
(37)

RRDF → max
0≤β≤1

1
2

[
min

(
ξr,1Pr

‖r− 1‖α
,

β ξs,rPs

‖s− r‖α

)
+

(1− β) ξs,1Ps

‖s− 1‖α

]
. (38)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Relay Position

0

0.5

1

1.5

2

2.5

3

M
ul

tic
as

t R
at

e 
[n

at
s/

ch
an

ne
l u

se
]

Cut-Set Bound (Coherent)
Cut-Set Bound (Non-Coherent)
DF Strategy (Coherent)
DF Strategy (Non-Coherent)
RDF Strategy

Figure 4. Relay channel rates for low signal-to-noise ratio (SNR) and P = 1.

Observe that all curves are quasi-concave (but not concave) in r. Theorems 4 and 5 predict the
quasi-concavity for all curves except for the coherent CS rates. Observe also that the curves for the coherent
and non-coherent rates merge for relay positions exceeding a certain value (r = 0.5 and r ≈ 0.47 for the
respective CS and DF rates). The reason for this behavior is that ρ = 0 is optimal for the coherent CS and
DF rates beyond these positions, see the ρ curve in [1] (Figure 16). Furthermore, the non-coherent CS rates
coincide with the non-coherent DF rates for a large range of r.

The best relay positions for the two strategies are different. For example, r = 0.5 maximizes RRDF
while the r maximizing RDF is closer to the source. This is because when the source transmits, the relay
and the destination listen, and the destination “collects” information. The relay can thus be positioned
closer to the source while maintaining the same information rate from the source to the relay, and from
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the source-relay pair to the destination. At the optimal positions, we compute RDF ≈ 2.26P nats/sec and
RRDF = 2P nats/sec, so the DF gain is ≈13%.

Finally, we illustrate that RDF(ρ, r) is quasi-concave in (ρ2, r) in Figure 5. The contour lines form
convex regions, as predicted by Theorem 5.
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Figure 5. Contour plot of RDF(ρ, r) in (37).

5.2. Two Dimensions

Consider N = 5 destinations positioned on a square in the two-dimensional Euclidean plane with
the source node at the origin. Figure 6a plots the node positions as circles, and the non-coherent RDF as a
function of the relay position. The best relay position is shown by a circle labeled r∗DF and the corresponding
rate is RDF ≈ 0.011P nats/sec. Figure 6c plots the low SNR two-hop rate

R2H → min
1≤j≤5

1
2

min
(

ξs,rPs

‖s− r‖α
,

ξr,jPr

‖r− j‖α

)
(39)

as a function of the relay position. The best relay position is shown by a circle labeled r∗2H and the
corresponding two-hop rate is R2H = 0.01P nats/sec. The non-coherent DF gain is thus ≈10%.

Figure 6b,d shows contour plots for RDF and R2H . The contours form convex regions, as predicted
by Theorem 5. Again, the relay position maximizing RDF lies closer to the source than the relay position
maximizing R2H .
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Figure 6. (a) RDF for N = 5; (b) RDF contour plot; (c) R2H for the same network; (d) R2H contour plot.

5.3. Three Dimensions

Consider N = 5 destinations positioned in 3-dimensional Euclidean space as in Figure 7. The figure
also shows the convex hull (a polyhedron) of the points. The points r∗DF and r∗2H denote the relay positions
that maximize the non-coherent RDF and R2H , respectively. We remark that r∗DF and r∗2H remain unchanged
if more destinations are positioned inside the polyhedron. This is because the points in the polyhedron
receive at least the same rate as the worst of the five nodes at the corner points.
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Figure 7. N = 5 destination geometry in three dimensions.

6. Discussion

6.1. Complex AWGN Channels

For complex-alphabet AWGN channels, we could replace (5) and (6) by adding phases φi,j for i = s, r
and j = 1, 2, . . . , N as follows:

Yr = as,r ejφs,r Xs + Zr (40)

Yj = as,j ejφs,j Xs + ar,j ejφr,j Xr + Zj (41)

where the noise variables Zr and Zj, j = 1, 2, . . . , N, are independent, identically distributed, circularly
symmetric, complex, Gaussian random variables with zero mean and unit variance. The distance
dependence of ai,j can be chosen as in (28) and the phase dependence as

φi,j = 2πDi,j
/

λ (42)

where λ = c/ fo is the wavelength, c is the speed of light, and fo is the carrier frequency.
For example, the DF rate (14), normalized by the number of real dimensions, is

RDF = max
ρ

[
min

1≤j≤N
min

(
C(SNRs,j + SNRr,j+

2<
{

ρej(φs,j−φr,j)
}√

SNRs,jSNRr,j

)
,C((1− |ρ|2)SNRs,r)

)]
(43)

where the complex correlation coefficient ρ satisfies 0 ≤ |ρ| ≤ 1. Observe that for a classic relay channel,
with N = 1 destination, one can choose ρ to make <

{
ρej(φs,1−φr,1)

}
real and non-negative, as for real

alphabet AWGN channels. However, for N ≥ 2 one must choose complex ρ in general. Furthermore,
the quasi-concavity in r will not be valid in general because the phases φr,j change with r, and we cannot
optimize ρ for each destination node separately. However, we remark that this effect is “local" in the sense
that for large carrier frequencies the phase variations are sensitive to changes in r. A pragmatic approach
would then be to optimize r for non-coherent transmission (ρ = 0) even if beamforming is permitted.
Furthermore, if the channel exhibits random phase variations, then the best approach is to choose ρ = 0
(see [1], Figure 18) in which case we have quasi-concavity for both the CS and DF rates. Finally, we remark
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that it might be interesting to consider quasi-concavity in the correlation coefficients for problems where
the source and relay have sufficiently many antennas to overcome the problem outlined above.

6.2. Sum-Power Constraint

For some applications, it is interesting to consider a sum-power constraint

E

[
n

∑
k=1
|X|2s,k + |X|

2
r,k

]
≤ nPT . (44)

As is usually done, we set Pr = PT − Ps and consider Ps, 0 ≤ Ps ≤ PT as a new optimization parameter.
One might now hope that RCS(Ps, r) or RDF(Ps, r) are quasi-concave in (Ps, r) for fixed ρ, or at least for
ρ = 0. Unfortunately, we have found counterexamples that show this is not the case. The rate functions do
seem to have interesting properties, however, and these deserve further exploration.

7. Conclusions

Various quasi-concavity results were established for AWGN MRCs. In particular, the CS rates are
quasi-concave in the relay position for a fixed correlation coefficient (Theorem 4) and the DF rates are
quasi-concave in the relay position (Theorem 5).
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Appendix A. Covariance Matrices and Concavity

The covariance matrix of a real-valued random column vector V is

QV = E
[
(V− E [V])(V− E [V])T

]
. (A1)

A useful property of covariance matrices is as follows (see [14], p. 684). If Q∗V is a principal minor of QV,
then the following function is concave in QV:

f (QV) = log
det QV

det Q∗V
. (A2)

Appendix B. Concave and Quasi-Concave Functions

We review results on quasi-concavity, and then establish quasi-concavity for several functions.

Appendix B.1. Definitions

Consider the following sets. The domain D f of a real-valued function f : Rn → R is the set of
arguments for which f is defined. The hypograph and hypergraph of f are the respective

H f = {(x, y) |y ≤ f (x)}, Ĥ f = {(x, y) |y ≥ f (x)}. (A3)
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The superlevel and sublevel sets of f with respect to β ∈ R are the respective

S f ,β = {x| f (x) ≥ β}, Ŝ f ,β = {x| f (x) ≤ β}. (A4)

Concave and quasi-concave functions can be defined via the convexity of these sets. Recall that a set
S , S ⊆ Rn, is convex if for any two points x1 and x2 in S and for any λ satisfying 0 ≤ λ ≤ 1 we have

λx1 + λ̄x2 ∈ S (A5)

where λ̄ = 1− λ. Suppose that D f is convex. The function f is concave over D f if and only if its hypograph
H f is convex. Similarly, f is convex over D f if and only if Ĥ f is convex. The function f is quasi-concave over
D f if and only if all its superlevel sets are convex, and f is quasi-convex overD f if and only if all its sublevel
sets are convex. A function that is quasi-convex and quasi-concave is called quasi-linear. For example, any
non-increasing or non-decreasing function is quasi-linear.

Appendix B.2. Basic Properties

Two properties of concave and quasi-concave functions are as follows; these properties are often used
as the definitions of such functions. Similar properties exist for convex and quasi-convex functions.

Lemma A1. The function f is concave if and only if

f (λx1 + λ̄x2) ≥ λ f (x1) + λ̄ f (x2) (A6)

for all x1 and x2 in D f and for all 0 ≤ λ ≤ 1.

Lemma A2. The function f is quasi-concave if and only if

f (λx1 + λ̄x2) ≥ min( f (x1), f (x2)) (A7)

for all x1 and x2 in D f and for all 0 ≤ λ ≤ 1.

The next two properties assume that f is twice differentiable and that D f is convex. Let H f (x) and
B f (x) be the respective Hessian and bordered Hessian of f at x.

Lemma A3. (see [15], Section 3.1.4) f is concave if and only if H f (x) is negative semidefinite for all x ∈ D f .

Lemma A4. (see [16], p. 771) f is quasi-concave on the open and convex setD f if the determinants D2, D3, . . . , Dn

of the respective second to nth leading principal minors of B f (x) satisfy (−1)kDk < 0 for k = 2, 3, . . . , n and for all
x ∈ D f .

Appendix B.3. Compositions Preserving Quasi-Concavity

The following compositions preserve quasi-concavity.

Lemma A5. Suppose f and fi, 1 ≤ i ≤ n, are quasi-concave, then so are the functions

1. h = k1 f + k2, where k1 ≥ 0 and k2 ∈ R;
2. h = min

1≤i≤n
fi;

3. h = g ◦ f where f is quasi-concave and g is non-decreasing;
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4. h(a) = supb∈B f (a, b) where B is a convex set;
5. h(a, b) = f (g(a), b) where g is convex and f (ã, b) is non-increasing in ã for fixed b.

Proof. Properties 1)–4) are standard (see [15], Section 3.4). For property 5), observe that

h(λa1 + λ̄a2, λb1 + λ̄b2)

= f (g(λa1 + λ̄a2), λb1 + λ̄b2)

(a)
≥ f (λg(a1) + λ̄g(a2), λb1 + λ̄b2)

(b)
≥ min ( f (g(a1), b1), f (g(a2), b2)) (A8)

where (a) follows because g(λa1 + λ̄a2) ≤ λg(a1) + λ̄g(a2) and f (ã, b) is non-increasing in ã. Step (b)
follows because f is quasi-concave.

Appendix B.4. Examples of Quasi-Concave Functions

We establish quasi-concavity for several useful functions.

Lemma A6. The following functions are quasi-concave for x = (a b) with non-negative entries.

1. f (x) = ab
2. f (x) = ab

a+b+k for a positive constant k
3. f (x) = k1/a + 2

√
k2b/a for positive constants k1, k2

4. f (x) = −(1− b)(k1 + k2/a) for positive constants k1, k2, and b ≤ 1

Furthermore, the following function is quasi-concave for x = (a b c) with non-negative entries.

5. f (x) = a + b + 2
√

abc

Proof. We consider positive x, and we use bordered Hessians B f (x) and the derivatives Dk of their kth
leading principal minors, k = 2, 3, . . . , n. The results extend to non-negative x by using continuity at zero
values, except for the third and fourth functions where a = 0 makes the functions undefined.

1. We have D2 < 0 and D3 > 0 for

B f (x) =

0 b a
b 0 1
a 1 0

 .

2. We have D2 < 0 and D3 > 0 for

B f (x) =


0 b(b+k)

(a+b+k)2
a(a+k)

(a+b+k)2

b(b+k)
(a+b+k)2

−2b(b+k)
(a+b+k)3

2ab+(a+b+k)k
(a+b+k)3

a(a+k)
(a+b+k)2

2ab+(a+b+k)k
(a+b+k)3

−2a(a+k)
(a+b+k)3

 .
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3. We have D2 < 0 and D3 > 0 for

B f (x) =


0 − k1+

√
k2ab

a2

√
k2
ab

− k1+
√

k2ab
a2

4k1+3
√

k2ab
2a3 −

√
k2

2a3/2
√

b√
k2
ab −

√
k2

2a3/2
√

b
−

√
k2

2b3/2√a

 .

4. If b ≤ 1, we have D2 < 0 and D3 > 0 for

B f (x) =

 0 (1−b)k2
a2 k1 +

k2
a

(1−b)k2
a2 − 2(1−b)k2

a3 − k2
a2

k1 +
k2
a − k2

a2 0

 .

5. We have D2 < 0, D3 > 0 and D4 < 0 for

B f (x) =


0 1 +

√
bc
a 1 +

√
ac
b

√
ab
c

1 +
√

bc
a −

√
bc

2a3/2
1
2

√
c

ab
1
2

√
b
ac

1 +
√

ac
b

1
2

√
c

ab −
√

ac
2b3/2

1
2

√
a
bc√

ab
c

1
2

√
b
ac

1
2

√
a
bc −

√
ab

2c3/2

 . (A9)
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