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Abstract

This thesis deals with battery health management approaches that have the objective to pro-
long the useful life of devices powered with Lithium-Ion (Li-Ion) batteries. To that end, three
novel aging mitigating techniques are proposed that cover different areas of application. These
strategies make use of contextual information and significantly mitigate battery aging.

With this aim in mind, we present these mitigation techniques in combination with three
typical use cases of battery health management and make the following contributions within
this thesis. In our first use case, we introduce a State-of-Health (SOH)-aware active cell balanc-
ing technique for Electric Vehicles (EVs) that adapts load currents to reduce stress on already
impaired cells. In the second use case, we develop a context-aware intelligent charging scheme
for smartphones that delays charging based on usage predictions. Battery aging is mitigated by
reducing the duration for which the battery stays on a full charge level. In addition to delayed
charging, the target charge level is lowered, thereby further mitigating battery aging. In the
third use case, we develop a control strategy for a system consisting of an Electrical Energy
Storage (EES) and Photovoltaic (PV) that minimizes both financial cost, i.e., the sum of battery
aging cost, PV depreciation and grid electricity costs, as well as the privacy leakage.

The design and development of rechargeable battery-powered devices are mainly driven by
(i) fast system performance, e.g., high processor speeds in smartphones, high driving speeds
and acceleration in EVs, (ii) lower economic impact, e.g., cheap phones or affordable EVs,
and (iii) increased customer satisfaction, e.g., high single cycle runtime, high availability, and
flexibility. Today Li-Ion batteries are the most prevalent type of secondary batteries. Their
fields of application cover a wide power range including smartphones, tablets, laptops, EVs,
and stationary storages. With the increasing importance of renewable energies and the rise of
the Internet of Things (IoT), the number of devices that rely on Li-Ion batteries in the future
will grow further. We have got used to a seemingly infinite supply of raw materials and com-
plex products being sold at cheap prices. Often, devices are replaced long before they become
unusable and battery health is commonly neglected in system design. However, there are very
good reasons to focus on extending the useful life of devices: Electronic waste increases and
contaminates the soil. Rare earth materials slowly get more expensive and make recycling an
attractive alternative. Besides, the number of customers that care about sustainable products is
on the rise. Furthermore, the mining of lithium unbalances sensitive ecosystems and land use
rights have negative social impacts on the local population. Similarly, poor ethical conditions
occur in cobalt mining, which comes with child labor and unsafe working conditions.

Battery health management has the objective to mitigate battery aging. Over time and us-
age, batteries suffer from resistance growth and capacity fading. Aging control parameters of
Li-Ion batteries, that can be targeted by system designers, are average State-of-Charge (SOC),
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SOC swing, and temperature. By leveraging usage patterns, high average SOC can be reduced,
thereby mitigating battery aging. Similarly, reduced SOC swing can prolong battery cycle life.
Lower charge and discharge currents are less detrimental and can be achieved by slow charging
or by avoiding peak loads, e.g., through load shifting. Proper cooling of Li-Ion batteries is re-
quired to not expose the battery to overly high temperatures. In cold environments, preheating
is required for battery health-aware usage. Even if not in use, battery health degrades due to cal-
endar aging. Battery health management targets these factors and mitigates aging by applying
operational limits and smart battery health-aware control algorithms.

For our battery health management strategies, contextual information is exploited to adjust
the battery aging relevant control parameters. Within this thesis, three novel aging mitigation
control strategies are proposed.

In our first use case, we develop an SOH-aware cell balancing strategy for EV battery packs.
We find that the useful life of a battery pack depends on the weakest cell since the capacity of
the weakest or least healthy cell determines the limits of charge and discharge processes. A
way to compensate for the limitations induced by the weaker cells is active cell balancing.
Mitigation of the degradation of the least healthy cell extends the useful life of the pack and
therefore of the whole device. The time until End-of-Life (EOL) can be extended by unburden-
ing the less healthy cells from detrimental conditions if an active cell balancing architecture is
installed. Using active cell balancing, the balancing currents are adjusted such that healthy cells
are stressed more than less healthy cells and therefore the useful life of the pack is extended as
the less healthy cells experience a lower current and lower SOC swing. We find that in the first
use case, the SOH-aware cell balancing scheme for large scale battery packs on module-level
mitigates aging by up to 23.5 % over passive cell balancing and up to 17.6 % over active SOC
cell balancing.

In our second use case, we discuss an intelligent charging strategy for smartphones. As
smartphones are often charged overnight, the battery remains at high SOCs for long periods.
The introduction of charge delays based on contextual information of device usage lowers the
average SOC. Charging is delayed such that the phone reaches the full charge level only shortly
before the phone is unplugged. In addition to charge delays, reduction of the charge level can
be achieved if the required charge is known in advance and the upper charge limit is lowered.
Lower average SOC results in less severe aging. The choice of the charge level needs to be made
following the usage pattern, e.g., the target SOC should accommodate the energy required until
the smartphone is recharged. The combination of charge delays and lowered target charge SOC
almost doubles the cycle life of smartphones.

In the third use case, we propose a control strategy that trades-off privacy, electricity costs,
and battery aging for a residential home set-up consisting of an EES, PV, and a smart meter.
We find that health-aware operation often conflicts with system operation goals. Therefore,
compromising strategies need to be developed. Co-optimization problems of battery health and
the system objective, e.g., minimization of financial costs, need to be formulated. Either it
is possible to reach optimality for both objectives using the appropriate control parameters or
slightly lower system performance should be taken into consideration to gain battery health.
As battery health is a longterm effect and environmental costs often are not easily quantified,
battery health is often neglected these days. We find that the financial operation and degradation
costs for a trade-off solution of privacy and financial cost lie in the range of USD 600-1700.
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Li-Ion battery aging factors are mostly independent of the application domain. On the other
hand, the implementability of strategies depends on the target system whose requirements and
infrastructure need to be considered. For example in Android, access to the charger chip is
limited, making it difficult for independent app developers to introduce charge delays. Another
example are system components. If an active balancing architecture or an advanced thermal
system are existent, balancing and cooling control strategies can be co-optimized with battery
aging mitigation. Similarly, if known, the charging patterns can be exploited to prolong battery
cycle life. Predictors are a way to estimate the usage pattern, e.g., PV generation estimation
based on the weather forecast or prediction of smartphone energy consumption from statistical
data.

Bringing all together, we present a holistic view of multi-scale battery health management
and also discuss cross-scale approaches. The aging management strategies operate on four
different abstraction levels, namely, module-, device- and system-level. The challenge lies in the
identification of feasible modifications of the charge and discharge patterns, which often depend
on the application requirements. The factors contributing to the aging need to be targeted while
impairing as little as possible the user experience as well as other system components. Towards
this, we propose a modular framework to rapidly evaluate the aging mitigation capabilities of
our use cases. We quantify the effects of techniques applied on cell-, module-, device- and
system-level and discuss cross-layer strategies and implications.

In summary, this thesis proposes battery health management strategies for EVs, smart-
phones, and stationary storages. The discussed techniques and cycle life gains shall help to
develop further aging mitigating strategies for environment-friendly and economically efficient
products with increased useful life.
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Kurzfassung

Diese Dissertation befasst sich mit Ansätzen zum Batteriezustandsmanagement mit dem Ziel,
die Lebensdauer von Geräten mit Lithium-Ionen Batterien zu verlängern. Zu diesem Zweck
werden drei neuartige Techniken zur Verlängerung der Lebensdauer von Batterien vorgeschla-
gen, die in verschiedenen Anwendungen eingesetzt werden können. Diese Strategien nutzen
Kontextinformationen und verringern die Alterung der Batterie erheblich.

Diesbezüglich stellen wir drei Strategien und Anwendungsfälle des Batteriezustandsmana-
gements vor und leisten in dieser Arbeit die folgenden Beiträge. In unserem ersten Anwen-
dungsfall führen wir eine State-of-Health (SOH)-basierte Methode zum aktiven Ausgleich von
Zellladungen (auch Active Cell Balancing genannt) für Elektroautos ein, welche Lastströme
anpasst, um die Belastung bereits beeinträchtigter Zellen zu verringern. Im zweiten Anwen-
dungsfall entwickeln wir ein kontextsensitives intelligentes Ladeschema für Smartphones, das
die Ladung basierend auf Nutzungsvorhersagen verzögert und den Sollladezustand reduziert,
wodurch die Batteriealterung gemindert wird. Im dritten Anwendungsfall entwickeln wir eine
kostenminimierende Steuerungsstrategie für ein System, das aus einem stationären Energiespei-
cher und einer Photovoltaik-Anlage besteht. Konkret wird die Summe aus Batteriealterungskos-
ten, der Photovoltaik-Abschreibung und der Netz-Stromkosten minimiert sowie die Privatsphäre
maximiert.

Das Design und die Entwicklung von wiederaufladbaren batteriebetriebenen Geräten wird
hauptsächlich angetrieben durch (i) schnelle Systemleistung, z.B. hohe Prozessorgeschwindig-
keit in Smartphones, oder hohe Reichweite und Beschleunigung von Elektroautos, (ii) geringe-
re Kosten, z.B. kostengünstige Mobiltelefone oder erschwingliche Elektrofahrzeuge, und (iii)
erhöhte Kundenzufriedenheit, z.B. hohe Einzelzykluslaufzeit, hohe Verfügbarkeit und Flexibi-
lität. Heutzutage sind Lithium-Ionen Batterien die am weitesten verbreitete Art von Sekundär-
batterien. Ihre Anwendungsbereiche decken ein breites Spektrum ab, darunter Smartphones,
Tablets, Laptops, Elektrofahrzeuge und stationäre Speicher. Mit der zunehmenden Bedeutung
erneuerbarer Energien und dem Aufkommen des Internet-of-Things wird auch in Zukunft die
Anzahl von Geräten steigen, die auf Lithium-Ionen Batterien angewiesen sind. Wir haben uns
an ein scheinbar unendliches Angebot an Rohstoffen und komplexen Produkten gewöhnt, die
zu günstigen Preisen angeboten werden. Oft werden Geräte ausgetauscht, lange bevor sie un-
brauchbar sind, und der Zustand der Batterie wird beim Systemdesign häufig vernachlässigt. Es
gibt jedoch gute Gründe, sich auf die Verlängerung der Nutzungsdauer von Geräten zu konzen-
trieren: Elektroschrott häuft sich, verschmutzt Böden, seltene Erden verteuern sich und erhö-
hen die Attraktivität des Recyclings. Dazu kommt, dass die Zahl der Kunden, die Interesse an
nachhaltigen Produkten zeigen, steigt. Der Abbau von Lithium bringt außerdem empfindliche
Ökosysteme aus dem Gleichgewicht und die Verteilung von Landnutzungsrechten hat negative
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soziale Auswirkungen auf die lokale Bevölkerung. In ähnlicher Weise geht der Kobaltabbau mit
Kinderarbeit und unsicheren Arbeitsbedingungen einher.

Das Batteriezustandsmanagement hat das Ziel, die Alterung der Batterie zu verringern. Im
Laufe der Zeit leiden Batterien unter ansteigendem Innenwiderstand und Kapazitätsschwund.
Die Alterungsfaktoren von Lithium-Ionen Batterien, die bei der Systementwicklung beachtet
werden sollten, sind der durchschnittliche State-of-Charge (SOC), SOC-Abweichung und Tem-
peratur. Durch die Berücksichtigung von Nutzungsverhalten kann ein hoher durchschnittlicher
SOC reduziert werden, wodurch die Batteriealterung gemindert wird. In ähnlicher Weise kön-
nen verringerte Entladezyklustiefen die Lebensdauer der Batterie verlängern. Niedrigere Lade-
und Entladeströme sind weniger schädlich und können durch langsames Laden oder durch Ver-
meiden von Spitzenlasten, beispielsweise durch Lastverschiebung, erzielt werden. Ausreichen-
de Wärmeabfuhr muss gewährleistet sein, damit die Lithium-Ionen Batterien keinen zu hohen
Temperaturen ausgesetzt werden. In kalten Umgebungen ist ein Vorwärmen erforderlich, um
der Batterie nicht zu schaden. Selbst ohne aktive Nutzung altern Batterien bei längerer Lage-
rung. Das Batteriezustandsmanagement zielt auf die oben genannten Faktoren ab und mindert
die Alterung durch Betriebsgrenzen und Lebensdauer-verbessernde Regelungsstrategien.

Bei diesen Strategien zum Batteriezustandsmanagement werden Kontextinformationen ge-
nutzt, um die für die Alterung der Batterie relevanten Steuerungsparameter anzupassen. In die-
ser Arbeit werden drei neuartige Strategien zur Verringerung der Batteriealterung vorgeschla-
gen.

Im ersten Anwendungsfall entwickeln wir eine SOH-basierte Strategie für Batteriepacks in
Elektrofahrzeugen. Wir nutzen die Beobachtung, dass die Lebensdauer eines Batteriepacks von
der schwächsten Zelle abhängt, da die Kapazität der schwächsten Zelle die Grenzen der Lade-
und Entladevorgänge bestimmt. Ein Weg, um die durch die schwächeren Zellen induzierten
Einschränkungen zu kompensieren, ist Active Cell Balancing. Die Verringerung der Beanspru-
chung der schwächsten Zelle verlängert die Nutzungsdauer des Packs und damit des gesamten
Geräts. Die Zeit bis zum Lebensende des Packs kann verlängert werden, indem die weniger ge-
sunden Zellen von schädlichen Bedingungen entlastet werden. Eine Architektur für Active Cell
Balancing ermöglicht zusätzlich die Anpassung der Ausgleichsströme. Dadurch werden gesun-
de Zellen mehr als schwächere Zellen belastet. Die Nutzungsdauer des Packs verlängert sich,
wenn die schwächeren Zellen einen geringeren Strom und eine geringere SOC Veränderung er-
fahren. Wir stellen fest, dass das SOH-basierte Zellenausgleichsschema für große Batteriepacks
die Alterung um bis zu 23.5 % gegenüber dem passiven Cell Balancing verringert und bis zu
17.6 % gegenüber aktivem Cell Balancing.

Im zweiten Anwendungsfall stellen wir eine intelligente Ladestrategie für Smartphones vor.
Da Smartphones häufig über Nacht geladen werden, verbleibt die Batterie über lange Zeit auf
hohem SOC. Durch Verzögerung des Ladens basierend auf dem Nutzungskontext kann der
Durchschnitts-SOC verringert werden. Zusätzlich kann eine Reduzierung des Ladezustands er-
reicht werden, wenn die benötigte Energie im Voraus bekannt ist. Ein niedrigerer durchschnitt-
licher SOC führt zu einer geringeren Alterung. Die Wahl des Ladestands muss sich am Nut-
zerverhalten orientieren, z.B. sollte der Zielladezustand die erforderliche Energie bereitstellen
können, die für den nächsten Entladezyklus eines Smartphones benötigt wird. Die Kombinati-
on aus Ladeverzögerungen und verringerter Zielladung führt nahezu zu einer Verdopplung der
Lebensdauer von Smartphones.
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Im dritten Anwendungsfall stellen wir eine Regelungsstrategie vor, welche die Privatsphä-
re, Elektrizitätskosten und die Batteriealterung in einem Set-up bestehend aus einem stationären
Batteriespeicher, einer Photovoltaik-Anlage und einem Smart Meter abwägt. Wir beobachten,
dass ein funktionsbewusster Betrieb häufig mit den Zielen des Systembetriebs kollidiert. Daher
müssen Kompromissstrategien entwickelt werden. Co-Optimierung des Batteriezustands und
des Systemziels, z.B. Minimierung der finanziellen Kosten, müssen formuliert werden. Ent-
weder ist es möglich, mit den entsprechenden Steuerungsparametern ein Optimum für beide
Ziele zu erzielen, oder es sollte eine geringfügig geringere Systemleistung in Betracht gezo-
gen werden, um den Batteriezustand zu verbessern. Da die Batteriegesundheit eine langfristige
Auswirkung hat und die Umweltkosten häufig nicht leicht zu beziffern sind, wird die Batterie-
gesundheit heutzutage häufig vernachlässigt. Schließlich stellen wir fest, dass die finanziellen
Betriebs- und Alterungskosten für eine Kompromisslösung zwischen Privatsphäre und Kosten
im Bereich von 600-1700 US Dollar liegen.

Die Alterungsfaktoren von Lithium-Ionen Akkus sind größtenteils unabhängig von der An-
wendungsdomäne. Andererseits hängt die Umsetzbarkeit von Strategien vom Zielsystem ab,
dessen Anforderungen und Infrastruktur berücksichtigt werden müssen. Beispielsweise ist der
Zugriff auf den Ladechip in Android-Geräten begrenzt, was es unabhängigen App-Entwicklern
erschwert, Ladeverzögerungen einzuführen. Ein weiteres Beispiel sind Systemkomponenten.
Wenn eine Architektur für Active Cell Balancing oder ein aktives thermisches Management-
system vorhanden sind, können Cell Balancing-Strategien zusammen mit einer Verringerung
der Batteriealterung optimiert werden. Ebenso können, falls bekannt, die Lademuster ausge-
nutzt werden, um die Batterielebensdauer zu verlängern. Prädiktoren sind eine Möglichkeit das
Nutzungsmuster zu bestimmen. Beispiele sind die Vorhersage der Photovoltaik-Erzeugung ba-
sierend auf der Wettervorhersage oder die Vorhersage des Smartphone-Energieverbrauchs aus
statistischen Daten.

Im vorletzten Kapitel wird eine ganzheitliche Sichtweise des Multi-Scale-Battery-Health-
Managements präsentiert und darüber hinaus werden übergreifende Systemansätze diskutiert.
Die Herausforderung besteht darin, mögliche Änderungen der Lade- und Entlademuster zu
identifizieren, die häufig von den Anwendungsanforderungen abhängen. Strategien zum Bat-
teriezustandsmanagement arbeiten auf vier verschiedenen Abstraktionsebenen: Zell-, Modul-,
Geräte- und Systemebene. Die Faktoren, die zur Lebensdauer der Batterie beitragen, müssen
gezielt angegangen werden ohne das Benutzererlebnis sowie andere Systemkomponenten zu
beeinträchtigen. Um dies zu erreichen, schlagen wir ein modulares Framework vor, um die
Alterungsreduzierung unserer Anwendungsfälle effizient zu bewerten. Wir quantifizieren die
Auswirkungen von Techniken auf Zellen-, Modul-, Geräte- und Systemebene und diskutieren
ebenen-übergreifende Strategien und Implikationen.

Zusammenfassend schlägt diese Arbeit Strategien für das Batterielebensdauermanagement
für eine Vielzahl von Anwendungen vor. Die diskutierten Techniken sollen dazu beitragen, wei-
tere Strategien zur Verringerung der Alterung für umweltfreundliche und wirtschaftlich effizi-
ente Produkte mit längerer Lebensdauer zu entwickeln.
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1
Introduction

Battery-powered systems are ubiquitous. They are present in various fields of applications, such
as smartphones, laptops, Electric Vehicles (EVs), and stationary storages. Lithium-Ion (Li-Ion)
batteries are frequently used in such systems, due to their high power capability and energy
density. However, batteries suffer from aging and often are the prevalent reason for device
replacement once the end of useful life has been reached. The old devices become obsolete
and are discarded even though many parts remain to be in a working condition. This raises
both economical as well as environmental concerns. The primary focus of energy and power
management for battery-powered devices is to enhance the runtime in a single cycle, whereas
battery aging mitigation and cycle life improvement have often been neglected. We propose to
increase the focus on battery health management to achieve extended useful life, reduced waste,
and sustainable system design.

This chapter shall provide an introduction to rechargeable Li-Ion batteries, their character-
istics, aging factors, mitigation strategies as well as areas of application, and respective chal-
lenges. Section 1.1 gives a general overview of the topic of battery health-aware management
and explains the motivation for this thesis. Section 1.2 provides basic background on Li-Ion bat-
teries. Section 1.3 reviews application domains of Li-Ion batteries and their respective require-
ments that should be considered when designing health management strategies. In Section 1.4,
multi-scale battery health management levels, techniques, and challenges are introduced. Next,
in Section 1.5, the main contributions of this thesis are summarized and the structure of the
thesis is outlined. Finally, in Section 1.6, the associated publications are listed.

1.1 Motivation

Battery aging is a big concern in mobile devices such as laptops, tablets, or smartphones as
well as in EVs and stationary storages. Battery aging results in premature device replacements
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and the disposal of whole devices that still include many functioning parts. The resulting huge
amount of electronic waste is highly poisonous for the environment. While in past decades,
processor speed has been the limiting factor for the useful life of mobile devices, nowadays
battery aging is the main reason for device replacement. In the case of EVs, increased capacity
fading results in a lower driving range. As EV charging takes a comparatively long time, user
satisfaction strongly depends on the available driving range. Stationary storages are probably
less critical when it comes to capacity fading. Nevertheless, if placed in residential homes,
the required storage space matters, and reduction in energy and power density are undesirable.
The premature replacement of a device that suffers from insufficient runtime of the battery is
economically undesirable from the consumer perspective. Manufacturers seem to win from this
situation as they can sell more new devices. But sustainability gains more and more importance
in product choice for a growing number of consumers and therefore has become a factor that
needs to be considered by manufacturers.

Factors that contribute to battery aging are the average State-of-Charge (SOC), SOC swing,
cell temperature, and the charge and discharge current. Generally, higher average SOC and
higher discharge depth are detrimental for the battery. Therefore, the reduction of target charge
SOC levels has a positive impact on battery health. Similarly, lower currents are the health
friendlier choice and should be considered in intelligent charging and discharging approaches.
Battery aging results in reduced available capacity and resistance growth. If recharges are re-
quired too often due to faded available capacity, the device becomes unusable and is discarded.
On the upside, it is possible to treat batteries in a conscious way to significantly extend their
cycle life. Towards this, we propose less detrimental battery health management techniques in
this thesis.

While in previous days replacements of mobile devices were commonly triggered by in-
sufficient processor speed, these days, battery capacities having decreased to an unacceptable
level are the far more prominent reason for the purchase of a new device. Hence, batteries have
become a limiting factor in many mobile devices. Not only that they run out of capacity before
other parts of the device become unusable but also the size of Li-Ion batteries has not signifi-
cantly reduced during the past few years. Other than for processors, there is no Moore’s Law
for batteries [132]. Some manufacturers even purposely slowed down smartphones through an
update to account for aged batteries and got fined [54]. Given that many manufacturers have
built-in non-removable batteries claiming that they can, therefore, offer thinner devices, a bat-
tery replacement is commonly not the option chosen by the user. Instead, they replace the whole
device. EV manufacturers follow a different approach and commonly oversize batteries to not
impair the driving range and the user experience [35]. To not violate the warranty, i.e., 80 % of
the initial capacity remaining after eight years, only a fraction of the actual available capacity
of an EV battery is used in the early life of the battery. As the overall capacity fades, the usable
capacity fraction is then gradually increased over time such that the user does not notice any
impairments on the driving range.

A survey published in 2017 has shown that only 8 % out of 1200 participating users had
replaced their smartphone battery, and 13 % had exchanged their laptop battery at some point in
time [131]. As a result, otherwise perfectly working devices are disposed of. Recycling is costly
and the necessary infrastructure is not everywhere available. Besides, most users are unaware
of how to treat their mobile devices in a battery health-aware manner. The same survey [131]

2



1. Introduction

revealed that 27 % out of 1200 participating users commonly charge their device when they
receive a low battery warning. Most likely these users also charge to full level, thereby exposing
the battery to high SOC swing cycles which is detrimental for Li-Ion batteries. Furthermore,
61 % of the users are not aware of Li-Ion aging factors and therefore cannot apply proper battery
treatment [131]. It is likely, that an equivalent survey for other battery-powered devices, such
as EVs and stationary energy storages, would give similar results.

Yet, the potential for increased battery health-aware usage exists according to the survey
in [131]. 25 % of smartphone users would find charging times of more than 2 h acceptable,
hence a lower charging current could be applied. 36 % of smartphone users follow a fixed
charging routine, which could be exploited by lower charging currents, delayed charging, and
even longer charging time might still be acceptable if the user experience is not compromised.
The survey shows that users care about battery health and are willing to compromise for in-
creased health. Even though this study has focused on smartphone usage and batteries, we
believe that similar observations could be made for other battery-powered devices, such as EVs
and stationary storages, and that similar willingness for battery health-aware behavior exists.

In the context of this thesis, battery health management strategies are proposed. We intro-
duce a State-of-Health (SOH)-aware cell balancing scheme for large scale battery packs making
use of an existing active cell balancing infrastructure. Next, charge delays and lowering of the
target SOC are evaluated concerning aging mitigation and implementability on smartphones.
Finally, a trade-off between privacy, time-of-use electricity prices, and battery degradation in
the context of smart metering in residential homes featuring a Photovoltaic (PV) and Electrical
Energy Storage (EES) is analyzed. A co-optimization problem is formulated to find control
strategies for the EES. The discussed techniques and cycle life gains shall help to develop fur-
ther aging mitigating strategies for environmentally friendly and economically efficient products
with increased useful life.

1.2 Background on batteries

In the following, we discuss some basic properties of batteries such as the general functioning of
rechargeable batteries, battery health degradation, safety issues, cost, and battery management
systems. Before we do so, some general terms and definitions are presented. The available
charge of a battery depends on the amount of energy that has already been used within one
cycle. It fades over time and with a growing number of charge and discharge cycles conducted.
We refer to this phenomenon as capacity fading and describe it in terms of SOH. The SOH κ
is defined as the ratio of the actual capacity of a cell C0 and the nominal capacity of a new cell
CN.

κ =
C0

CN

(1.1)
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Figure 1.1: Discharging a battery: Electrons travel from anode to cathode.

The SOC S describes the ratio of available charge Q0 of a cell and the usable capacity C0

of a cell. The Depth of Discharge (DOD) δ is the percentage of discharged charge.

S =
Q0

C0

(1.2)

δ = 1− Q0

C0

(1.3)

The voltage that is measured between the terminals of a battery under no-load conditions is
referred to as Open Circuit Voltage (OCV). It increases with higher SOC. Charge and discharge
current are often normalized against the capacity of a battery and are expressed in terms of C-
rate. For example, discharging a battery with 1 C depletes the battery within 1 h while a rate of
2 C fully discharges the battery in 0.5 h.

1.2.1 Secondary batteries
A battery is an electrochemical energy storage device consisting of one or more cells. Multi-
ple cells connected in parallel and series are also called a battery pack. Two types need to be
distinguished, primary and secondary batteries. While the former ones are disposed of after
depletion, the latter ones can be recharged and can be used multiple times. In other words,
their chemical reaction is reversible. In general, a battery consists of two electrodes, a positive
and negative one called the anode and cathode, respectively. The electrolyte serves as a buffer
through which ions travel between electrodes as shown in Figure 1.1. During discharge, the
shuttle ions in the positive active material of the anode are oxidized and electrons are produced.
These electrons move through the outer circuit and power a connected load. The shuttle ions
move through the electrolyte to the cathode and are reduced. They consume the electrons com-
ing in from the outer circuit. This process is reversed when charging the battery. The separator
prevents the direct contact of anode and cathode but lets the shuttle ions pass.

Li-Ion batteries are nowadays widely employed in various application domains due to their
favorable energy density, power capability, size, and weight characteristics. Compared to other
cell chemistries, the advantages of Li-Ion batteries are their high specific energy and energy
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density as well as their high power density. Some Li-Ion battery types, that were specifically
developed for power applications, offer a high rate-capability. Furthermore, Li-Ion batteries
have a low self-discharge rate and comparably good calendar life without memory effect [25].
They operate reliably in a broad temperature range. Due to all these properties, Li-Ion batteries
are very cost-effective.

Within the group of Li-Ion batteries, different types exist which vary in their characteristics.
In the following, we summarize the main features of selected, well known Li-Ion electrode ma-
terials as described in [127]. Lithium Cobalt Oxide (LCO)/Graphite electrodes are one of the
most common types used in Li-Ion batteries. Typical areas of application are laptop computers,
smartphones, and digital cameras. This electrode type is appreciated by system designers for
its stable capacity and its high specific energy. On the downside, compared to other Li-Ion bat-
tery electrode materials, LCO batteries have a relatively short life cycle, low thermal stability,
and smaller load capacity. Nickel-Mangan-Cobalt-Oxide (NMC) electrodes are used in high
energy and high power applications. They come at a lower cost and better safety compared to
LCO batteries. NMC cells that are optimized for energy have mostly average cycle life. How-
ever, some specialized cells for use in satellites have extremely good cycle life characteristics.
NMC/Graphite batteries that are optimized for power characteristics are particularly suitable
for high discharge rates. LiMn2O4/Graphite batteries are sometimes blended with NMC, which
then results in good cycle life. Finally, Lithium Iron Phosphate (LFP) cells have a very long
cycle life. They are thermally stable, in particular, if graphite is used as the negative electrode
material. However, they have relatively low specific energy and low energy density. Within the
scope of this thesis, we develop health management strategies for all types of Li-Ion batteries
as the general aging characteristics are very similar.

1.2.2 Battery health degradation

Battery aging manifests itself in two ways: capacity and power fading. Capacity fading means
the loss of usable capacity over time. Due to internal mechanisms, which will be discussed in
Section 2.1.1, the capacity of a Li-Ion battery decreases over time. This is problematic as in
most applications, it would negatively impact the user experience. Once capacity fading has
advanced, the device becomes unusable and will be discarded even though other parts might
still be in good condition. Capacity fading is induced by certain stress factors, such as elevated
or very low temperatures, the usage pattern, i.e., average SOC and SOC swing. The current and
C-rate are further factors influencing the battery aging. They can alternatively be expressed in
terms of SOC pattern and time.

Power capability means the ability of a battery to effectively deliver the stored capacity.
With a low internal resistance, the battery can better accommodate high loads. Power fading
means the growth of the inner resistance resulting in the battery heating up and increased voltage
drop under load. This may induce premature shut-downs of the device.

Battery aging not only happens during cycling but also during storage. The latter is called
calendar aging. Unfavorable temperatures and storage voltage level or storage SOC lead to
increased capacity fading during storage periods.

The End-of-Life (EOL) of a battery or device is reached once it has become unusable due
to capacity fading or power fading. When considering capacity fading, the EOL is commonly
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defined to be reached once 80 % (sometimes 70 %) of the initial capacity remain. At that point,
e.g., a smartphone no longer satisfies user needs by requiring too many recharges. In the case of
EVs, the EOL manifests when driving distances decrease notably and the weight of the battery,
that needs to be carried, is in no relation to the energy that is required to carry it. Sometimes a
battery that has reached its EOL can be used in a second life application, which is an active area
of research. However, commonly it will be discarded and sometimes not even properly recycled
due to missing infrastructure.

Unfortunately, battery aging currently cannot be avoided, and hopefully, advances in elec-
trochemistry and battery manufacturing will, in the future, bring batteries to the market which
suffer from lesser or no aging. In the meantime, we should use the battery as gently as possible
without remarkably impairing user experience and come up with battery health management
strategies.

1.2.3 Safety
While aging reduces the usability of the battery, unsafe operation conditions potentially destroy
the battery. Therefore, it is important to keep the battery within its Safe Operating Area (SOA).
Firstly, violation of voltage bounds harms the battery. During charging, an upper voltage bound
may not be exceeded and during discharge, the voltage may not fall below a certain level.
Secondly, the temperature needs to be maintained within safe levels. High temperatures can
cause severe damage and may impose safety risks. Similarly, temperatures that drop below a
certain level may severely damage the battery. Finally, the load current may not exceed a certain
threshold.

Effects of operating outside the SOA can be irreversible damage done to the battery, perfor-
mance loss or continuous operation fail up to the point of catching fire and causing dangerous
and threatening situations. The Battery Management System (BMS) may take different mea-
sures to handle such situations. It can actively send a request to the load controller to request a
lower load current. A fuse or switch may be included in the design, such that loads are discon-
nected if operated outside the SOA. In many applications such as EVs or stationary storages,
the BMS actively controls the environment through heaters or cooling systems to ensure stable
and safe conditions.

1.2.4 Battery management systems
The BMS can be seen as the digital representation of the physical battery. Its tasks are monitor-
ing and control of the current battery state, computation of parameters, and in some cases cell
balancing. It should ensure that the battery stays within its SOA and that the battery is optimally
used. There is no standard set of features for a BMS. Depending on the battery-powered device,
its requirements, and overall costs, varying functionality needs to be included in the BMS.

Monitoring and control of parameters such as voltage, current, and temperature help to
determine failures, malfunctions, and operation outside the safe bounds. Jointly with other
control units, the BMS ensures, that the battery does not leave the limits of safe operation. The
monitoring of voltage, current, and temperature further helps to estimate SOC and SOH. In
case of a failure, the BMS would disconnect the battery. Of course, failure detection should not
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rely on software only, and therefore, additional safety hardware circuits are used. To ensure safe
operation, the charge and discharge current should not exceed an upper limit. Also, temperature
deviations could indicate malfunctions.

Two important computation variables of the BMS are SOC and SOH as defined in Equa-
tions 1.2 and 1.1, respectively. The SOC represents the remaining charge in the battery and
indicates the remaining runtime. The SOH marks the ability of a battery to meet power and
energy requests. The estimate can also be used for maintenance and replacement planning.

A crucial and, at the same time, extremely difficult task of the BMS is to determine the
remaining charge of a cell or pack. This parameter is required when estimating the remaining
runtime of the device. It is also used to calculate the SOC. The SOC is the ratio of remaining
capacity currently stored in the battery and either the rated or the available capacity. The rated
capacity is provided by the manufacturer, while the available capacity is less due to aging. As
determining the available capacity is usually very difficult and as the estimated value often
contains huge inaccuracies, the relation of the currently stored capacity to the rated capacity
is commonly implemented as the default solution. The available capacity is also an important
indicator of the SOH. The lesser the available capacity gets, the more the health has degraded.

Determination of the available capacity is a very difficult task and therefore, often alter-
native and simpler means of SOH estimation are implemented in a BMS. Cycle counting is
a simple and widely used method. It is, however, very inaccurate as important aging factors
such as average SOC, SOC swing, and battery temperature are omitted. Furthermore, inconsis-
tent definitions of a cycle exist. Some systems increase the cycle counter each time the device
charges, while other systems only increase the counter when partial cycles add up to a full cy-
cle. Few devices even use an expiry date of the battery. This makes sense in safety-critical
applications, e.g., in the medical domain, to avoid that a device that stayed on the shelf for too
long and has undergone severe calendar aging is used. Nevertheless, it bears the danger, that
a device will age faster due to heavy usage and is still kept in use as the expiry date has not
been reached. A common method for SOH estimation is coulomb counting. Here, the in- and
outflowing current is measured to determine the number of cycles a device was exposed to but
also to derive the remaining available capacity. The drawback of this method is that drifts occur
and the results become unreliable. Usually, a full charge cycle delivers the best estimates on the
capacity. However, in most applications, the users tend to charge their device long before the
battery is fully depleted. Finally, advanced methods rely on precise measurements or are based
on elaborate aging models.

Due to aging and manufacturing variances, cells built into a battery pack vary in their usable
capacity. To increase the overall usable capacity of a pack, cell balancing techniques can be
applied. The cell with the lowest usable capacity limits the overall pack capacity by setting
the charge and discharge limits to remain in an SOA. The objective of cell balancing is to
equalize individual cell SOCs in the series-connected battery pack. In passive cell balancing,
the excess charge is transformed into heat over a resistor. This is also the cheapest solution.
On the other hand, in active cell balancing, the charge of healthier cells is transferred towards
cells with the lower usable capacity to improve charge and discharge limits. Hence, the overall
usable capacity of a pack is increased, and therefore, the runtime of the battery-powered device
is extended.
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Figure 1.2: Past [85] and future [103] cost development of EV battery packs in USD per kW h.

BMS architectures can roughly be classified into central and distributed topologies. In cen-
tral topologies, the BMS is implemented on a single master controller. This is very cost-effective
but has the disadvantage that it introduces a single point of failure to the system. On the other
hand, in a distributed system, each cell is equipped with a computation unit, which potentially
allows implementing solutions that make the system more robust to failures. The battery health
management strategies proposed in this thesis would ideally extend the functionalities of state-
of-the-art BMSs.

1.2.5 Costs

Battery health management extends the cycle life and hence increases the monetary cost effi-
ciency of battery-powered devices. A battery whose replacement is postponed by intelligent
aging management will reduce long-term operating costs. As can be seen in Figure 1.2, the
battery pack cost of EVs has dropped significantly over the past years [85] and is predicted to
further decrease [103]. Reduced battery costs will induce further growth of the electro-mobility
and stationary storage market.

Despite a drop in battery purchase prices, the costs of premature battery replacement are un-
desirable for both consumers as well as manufacturers. Countermeasures taken when batteries
age, such as performance reduction to save energy, commonly impair user satisfaction. For ex-
ample, Apple lowered system performance in devices with aged batteries, which seems to be a
reasonable measure to avoid premature shut-downs due to power fading. However, many users
would have preferred a battery replacement over sacrificing performance. As a result, Apple
had to lower battery replacement costs from previously USD 79 to USD 29 as of December
2018 [109]. As average costs for new smartphones are high, i.e., USD 567 in northern Amer-
ica or USD 259 in Europe in 2017 [68], battery replacement might slowly become the cheaper
option.

The situation for EVs is a bit different. Manufacturers usually give a warranty of eight to
ten years on the battery. This is shorter than the lifespan of the vehicle itself. Over-dimensioned
batteries account for future capacity fading and guarantee unrestrained driving range and user
experience. Nevertheless, battery aging mitigation will additionally help to avoid warranty
violation and to further extend the useful life of the battery.
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Figure 1.3: Projected split of the global Li-Ion battery market in 2020 by segment [55]

1.3 Application domains of Li-Ion batteries
With the introduction of smartphones and the rise of electro-mobility, an increase in secondary
battery employments can be observed. Li-Ion batteries are widely used due to their high power
capability and energy density. The application domains are manifold and all have specific re-
quirements and characteristics. While in 2014, the highest share of Li-Ion batteries was applied
in mobile devices [108], in 2020, it is assumed that the automotive segment will dominate the
market split, followed by mobile phones [55] as shown in Figure 1.3. Battery health manage-
ment is relevant for all application domains. In the following, we identify the respective require-
ments. Namely, we discuss EVs, stationary storages, and mobile devices, such as smartphones
and laptop computers. From our analysis of load patterns and aging behavior, we conclude
potential control parameters for battery health management.

1.3.1 Mobile devices
In Germany, 57 million people used smartphones in 2018 [12]. Worldwide, 37 % of the global
population is expected to use smartphones in 2019 with further growth predicted [41]. All
these smartphones as well as other mobile devices, such as tablets and laptops, are commonly
equipped with Li-Ion batteries. Also common oversizing of smartphone batteries [48] could be
further reduced if proper health management was in place. In the following, we discuss bat-
tery load characteristics and thermal conditions of mobile devices to identify aging mitigation
measures that prolong battery cycle life.

The main power-consuming entities within mobile phones are the Global System for Mo-
bile Communications (GSM) unit, Central Processing Unit (CPU), Random Access Mem-
ory (RAM), WiFi, Graphics, Liquid Crystal Display (LCD) and audio [19, 71, 118]. The GSM
unit contributes to total power consumption in the form of a high as well as a continuous ra-
tio. The share of other entities depends on the respective usage. Carroll et al. [19] find that
in a phone call, GSM is the highest contributor to energy consumption, whereas during video
playback the LCD shows the highest consumption, which also depends on its backlight settings.
Similarly, during an audio playback, the graphics unit holds a high share in power consumption.
The usage patterns depend, on the one hand, on the entity, e.g., wireless communication proto-
cols create specific power patterns. On the other hand, depending on the Operating System (OS)
task scheduler and resulting running applications, required hardware units are active and thus
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Figure 1.4: CC-CV charging measurement of a laptop battery [83]

result in specific power consumption patterns. Most active applications depend on the human
user, who decides when and how to use the phone. While regularly scheduled tasks follow a
predictable pattern, incoming communication energy requirements and the human user induced
energy consumption is less deterministic. These load patterns affect the average SOC and SOC
swing as well as temperature since hardware components transfer heat.

The Constant-Current-Constant-Voltage (CC-CV) protocol is used to charge smartphones
and laptops and, if applicable, the Universal Serial Bus (USB) battery charging specification
[148] is applied. In CC-CV charging, the phone is first charged with constant current until a
predefined voltage limit is reached. Then, the voltage is kept constant and the remaining charge
is slowly topped up as shown for a laptop computer in Figure 1.4. Many users charge their
mobile phones to full SOC overnight [45]. Over the day, the phone is discharged and discharges
are interleaved with states when the phone is not in active use but still receives messages, etc.
This charge and discharge patterns affect the average SOC and SOC swing and are therefore
relevant for battery aging.

High battery temperature increases aging. The battery cell temperature is influenced by
the ambient temperature during standby and additionally by thermal coupling with other heat
sources, such as CPU and Graphics Processing Unit (GPU), during usage [156, 157]. In smart-
phones, commonly no active cooling is implemented, while laptop computers include fans for
CPU cooling. The speed-dependent energy consumption of the fan needs to be carefully cho-
sen to mitigate aging without significantly compromising device runtime [160]. In the case of
smartphones, manufacturers often place the battery at the backside of the smartphone with high
distance to heat sources such as the CPU.

The constraints when designing a battery management system and in particular, the health
management part are on the one hand safety. The BMS should ensure both, compliance with
the SOA as well as user experience. Explosions of batteries as having occurred in Samsung
Galaxy 7 phones, immediately end the useful life of a device [9]. Gradual capacity fading leads
to a less sudden end but impairs usability, flexibility, and performance. On the other hand,
health management measures should be designed such that good user experience is maintained.

10



1. Introduction

In the case of notebook computers, the energy-consuming loads such as CPU, GPU, display,
etc. are of a similar type as in the case of smartphones. The performance of laptops, and
therefore, the resulting power consumption, is usually higher compared to a smartphone. This
means that the battery capacity needs to be higher and a battery pack usually consists of more
than just one cell. Naturally, the average power and energy consumption depends on typical
usage. Office applications commonly consume less power compared to gaming applications
or power-intensive simulations. Similar to the case of smartphones, the charging follows the
CC-CV protocol, but it is not handled over USB and hence the absolute charging current is
higher compared to smartphones. For example, highly demanding usage can result in premature
aging even when the laptop is plugged into a power outlet [83]. Other than in smartphones, a
fan is used for CPU cooling on laptops. Some manufacturers attach the battery outside the main
case to dissipate battery waste heat to the environment. In the office, many notebooks spend
most of the time in their docking stations and are taken out only for travel or meetings. Battery
charging could be scheduled very flexibly for improved battery health. In summary, charge and
discharge prediction for improved health management in the case of laptops needs to consider
different factors compared to smartphones.

1.3.2 Electric vehicles

Pack size and the usage pattern make the design of health-aware battery management systems
for EVs differ from the ones for consumer electronics. Nevertheless, some of the constraints can
be transferred. The battery packs in EVs usually consist of multiple cells connected in series and
parallel. The exact amount of cells and connection topology vary among manufacturers. Most
automotive manufacturers over-dimension the EV battery packs to accommodate the expected
degradation of the battery. For example, an EV that nominally requires a 12 kW h battery, is
commonly equipped with a 20 kW h battery to accommodate for about 40 % health degradation
within the expected 10 years usage time [35]. As a result, the user will not notice any changes
in operation.

The size and high power of EV battery packs necessitate active cooling mechanisms. Air-
flow cooling and liquid cooling are common options. Nevertheless, uneven temperature dis-
tribution occurs in battery packs even if active cooling is used. Along with manufacturing
variations, such temperature inhomogeneities result in imbalanced charge levels among cells.
Active cell balancing deals with the symptoms of this situation. The temperature distribution
within battery packs not only depends on thermal coupling and excess heat from charging or
discharging the cell but it is also influenced by the ambient temperature. EVs are used in all
kinds of climate zones. A globally operating manufacturer not only needs to consider tropical
zones with high temperatures and humidity all year round but also colder zones with degrees far
below zero for several months in winter. In the latter case, the preheating of batteries becomes
necessary to avoid damage.

Charging currents and charge duration depend on the type of charging used: Level 1,
Level 2, or Level 3 charging [22]. In Level 1 charging, the charging power is usually 1 kW
and the charge time for a full charge amounts to 8 h to 15 h. In Level 2 charging, the charging
power ranges from 3 kW to 20 kW and the time for a full charge is 3 h to 8 h. Finally, fast charg-
ing, also referred to as Level 3 charging, provides charging power of typically 50 kW and a full
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charge takes 20 min to 1 h. Charging opportunities exist at home with Level 1 or Level 2, at
work with Level 2 charging and at charging station networks with Level 2 or Level 3 charging.
Charging at work can take place during several hours and charging at home would often happen
overnight. In both cases, long periods of detrimental high SOC occur if charged immediately
when plugged-in. On the other hand, delaying charge is undesirable when charging at network
charger stations. The disadvantage of fast charging is the damaging influence of high charging
currents [79, 145]. Regenerative braking also recharges batteries during driving. Interestingly,
regenerative braking has been found to mitigate aging due to lower SOC swing [78, 80].

Advisable operation modes of EVs consist of low depth cycles at low average SOC. Power
consumption of the electrical engine in EVs depends on velocity, acceleration, and roadway
grade [155]. Additional power drain results from the air conditioning, heating system, and mul-
timedia system, etc. Standardized drive cycles, such as New European Driving Cycle (NEDC),
Artemis European driving cycle [2], or Worldwide Harmonized Light Vehicles Test Proce-
dure (WLTP) simulate typical drive scenarios like city trips, highway trips, high speed, use
of air conditioning, cold temperature, etc. Average SOC and SOC swing can be estimated from
such data. The approximation of battery usage is sufficient since it has been observed that the
aging of batteries cycled with realistic dynamic drive cycles is equivalent to static cycling with
identical average current and cycle depth [80].

The typical usage of an EV differs from combustion engine vehicles. Firstly, range anxiety
is a widespread phenomenon among EV users [49]. As a result, users tend to recharge earlier
than necessary. This behavior results in increased average SOC, which is detrimental for battery
health and is likely to be the dominant aging factor. However, the SOC swing is also reduced,
which results in less severe aging. The overall effect of range anxiety on battery health remains
an open question. Secondly, due to their limited driving range, EVs are commonly used for city
trips and less for long-distance journeys. However, expected advances in battery technology
will impact the typical usage patterns. EVs that are part of taxi fleets have a much higher degree
of utilization compared to privately owned EVs that spend most of the time unused in a parking
place. Similarly, EVs that are part of car-sharing pools differ in usage and utilization.

1.3.3 Stationary battery storages

While in the mobile applications discussed above, the purpose of the battery was to provide
energy in times of no access to an outlet, stationary battery storages are used to store excess
energy to use it at some later point in time to, for example, reduce costs in time-of-use pricing
schemes or to increase the degree of autarky. Residential EESs are often used along with PV
or wind turbines. Considering the case of PV, charging happens at times of energy generation,
and hence times of high sun irradiation. Discharge, on the other hand, happens at times of low
generation but high demand, i.e., the morning and evening hours. Charging or discharging of
the storage often is motivated by reducing the financial cost of electricity through leveraging
time-of-use prices.

Same as battery packs in EVs, EESs contain many cells connected in parallel and series,
which are potentially imbalanced and radiate heat. Cell balancing measures, as well as active
cooling, is required. Imbalance can be an even bigger challenge in second life scenarios, which
are often discussed in the context of stationary storages. Appropriate sizing of the storage is
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crucial as otherwise the full charge level will be prematurely reached and excess energy cannot
be stored. From an aging perspective, long storage times at a high SOC should be avoided. By
including forecast information on required usage, the average SOC during storage times can be
lowered [75].

1.4 Battery health-aware multi-scale management
Having discussed the characteristics and requirements for health management from the appli-
cation perspective, we now outline strategies and control parameters for aging mitigation on
multiple levels. We identify four abstraction levels, namely cell-, module-, device- and system
level. The battery health management strategies presented in this thesis cover all of these ab-
straction levels. Each level has specific constraints and parameters for aging mitigation, which
are detailed in this section. In the following, we shortly introduce the levels for battery health
management. A detailed description of multi-scale battery health management and cross-scale
strategies will be presented in Chapter 6.

Cell-level

Chemists continue to experiment with new battery cell chemistries to improve the characteristics
of batteries. Cycle life is one of the concerns which new inventions try to improve. However,
system engineers can only select from existing battery types and need to consider the respective
properties for optimal system design. On cell-level, operational parameters such as high and
low voltage cutoffs and the maximum allowed current play an important role to protect the cell
from premature health degradation and damage. Selecting appropriate SOC levels and charging
currents can significantly mitigate aging.

Module-level

On battery module-level, more fine-tuning can be done. In particular, as cells age at different
speeds, a high discrepancy between the health of individual cells exists. Discharge conditions
often increase this discrepancy. Aging mitigating measures on module-level include active
cell balancing, which compensates for capacity variations, and aging-aware charge transfer
strategies, that try to reduce the capacity imbalance. Furthermore, if heterogeneous hybrid
energy storages are employed, aging optimal energy sources should be selected based on present
load characteristics, thereby protecting the Li-Ion battery from detrimental conditions.

Device-level

Battery health management on device-level leverages application-specific usage patterns and
modifies them to provide battery health-aware operation conditions. This usually means trading-
off battery cycle life improvement and performance or usability. Sacrificing too much usability
is not acceptable from the user perspective. Therefore, design parameters have to be carefully
decided. Battery charging optimization has a high potential for such modifications. EVs and
smartphones are often plugged-in for longer durations than required and have long idle times.
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These idle times can be leveraged and the charging process can be rescheduled or the charging
current can be reduced. As high average SOC levels are detrimental for the battery, reaching
the full charge level too early results in long storage times at a high SOC and therefore faster
aging. Charge delays depending on the predicted usage can help to enhance battery cycle life.

System-level

Finally, in systems consisting of multiple components, aging mitigating control strategies are
required. Such control strategies need to trade-off battery aging with other system optimization
objectives. Co-optimization of battery cycle life with system objectives such as financial cost,
performance, or privacy needs to be done. For example, a residential home equipped with
an EES and PV requires a battery health optimal as well as a financial cost-optimal strategy.
Another example could be a fleet of EVs whose trips should be scheduled such that batteries
age at the same speed.

Within this thesis, we present three use cases of battery health-aware management that in-
clude techniques from all four levels.

1.5 Contributions and organization
Having introduced Li-Ion battery basics, application domains of battery cells and packs as well
as their respective requirements in the previous section, contributions, and organization of the
thesis at hand are detailed in this section. This is followed by the list of publications this thesis
is based on in Section 1.6.

This thesis is organized into seven chapters. Chapter 1 gives an overview of Li-Ion battery
properties and their management systems, it outlines characteristics of application domains of
Li-Ion batteries and introduces the multiple levels on which battery health management can
be performed. Chapter 2 provides background information on Li-Ion health degradation fac-
tors and aging modeling. Battery aging depends on a multitude of factors including average
SOC, SOC swing, and temperature. Aging models capture aging mechanisms on different lev-
els. While electrochemical models describe battery dynamics and internal degradation mech-
anisms – some even on an atomistic or molecular level – data-driven models use analytical
data obtained from experimental investigation and measurements to approximate degradation.
Very fine-grained modeling requires high runtime which is not desirable in fast prototyping
and complex system-level simulations. In particular, for control algorithm design and strategy
evaluation, a relatively fast model that nevertheless covers a broad amount of aging factors is
required. We conclude that chapter by justifying the selection of models used within the scope
of this thesis.

Chapters 3, 4, and 5 present use cases of multi-scale battery health management as detailed
in Sections 1.5.1, 1.5.2, and 1.5.3. An SOH-aware cell balancing scheme for EV battery packs
is presented in Chapter 3. Then in Chapter 4, we discuss charge delays and lower charge
SOC. In Chapter 5, we present a system-level co-optimization of cost and privacy in residential
homes that are equipped with smart meters. The use cases cover three different application
domains, namely, EV, smartphones, and stationary storages to demonstrate the wide range of
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importance and potential of battery health management. Furthermore, the presented strategies
are not necessarily restricted to the application, and often the same or similar strategies may be
applied to other applications that use Li-Ion batteries.

In Chapter 6, we introduce the holistic view of multi-scale battery health management.
We identify health management strategies on cell-, pack-, device- and system-level as follows.
Operational limits to ensure safe and health-aware battery operation are imposed on cell-level.
Cell balancing strategies and architectures as well as cooling system choices along with thermal
management strategies impact the battery health on module-level. Their design and dimension-
ing needs to be carefully decided to extend cycle life. The battery loads and their operation
patterns can be leveraged to mitigate battery aging on the device-level. This can be achieved
by, e.g., hybrid energy storages to reduce peak currents drawn from the battery. Furthermore,
intelligent charging strategies lower the average SOC and apply lower charge currents. On
system-level, trade-offs between aging and other system constraints such as financial costs, the
scheduling of loads and energy generation, etc. need to be considered. A framework is de-
veloped to simulate battery aging as well as the impact of health management strategies and
component choices. The presented framework can be applied in various application domains
and allows for rapid analysis of various health management techniques at different abstraction
levels. We revisit the use case of the EV battery pack and discuss health management strategies
on all levels as well as cross-scale effects.

Finally, in Chapter 7, we summarize the results and conclude this work. We outline open
issues in the field of battery health-aware management. Battery health management enables
more sustainable device and system design as well as environmental benefits. Further research
in this direction is required as the demand for sustainable products is continuously growing
these days.

Now, we describe the main technical contributions of this thesis in more detail.

1.5.1 SOH-aware cell balancing for EV battery packs
Chapter 3 introduces an SOH-aware cell balancing technique that extends the cycle life of bat-
tery packs in EVs. While state-of-the-art active cell balancing solely focuses on equalizing
SOC levels, the proposed SOH-aware technique reduces the load current of cells with low SOH
using an active cell balancing architecture. Based on the observation that assigning the smallest
possible load current to cells with lower SOH extends cycle life, the technique identifies the
most beneficial charge transfers. The technique leverages the fact that the EV batteries are not
always fully discharged during a trip, and hence, it is not necessary to keep the SOC equalized
at all times.

The main technical challenge that we solve is to show how cell balancing can be further
exploited to significantly extend battery cycle life. This can be achieved by reduction of the
charge drawn from less healthy cells while stressing healthy cells more. Thereby, the C-rate as
well as the SOC swing are reduced on less healthy cells, resulting in mitigation of the battery
pack EOL. The presented algorithm mitigates aging by up to 23.5 % over passive cell balancing
and up to 17.6 % over active SOC cell balancing.

We further investigate the component choices and find that given a certain variance in initial
SOH levels, a minimum required balancing current can be found to achieve reasonable health
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improvement. The initial SOH variance plays a big role in the effectiveness of aging mitigation.
Therefore, thermal management should be closely coupled to the balancing strategy. The SOH-
aware cell balancing strategy and the respective evaluations have been published in [122].

1.5.2 Smart charging for smartphones
Chapter 4 discusses an intelligent charging strategy for smartphones. Smartphone batteries are
often charged overnight and in these cases, the battery remains at a high average SOC for a long
duration which accelerates battery degradation. We identify a charging scheme that adaptively
delays the charging and as a result, the average SOC is lowered and aging is mitigated. The
main technical challenge that we solve is to find a feasible implementation of this scheme on
Android phones that takes both the limitations of the operating system as well as the nonde-
terministic nature of the user behavior into consideration. To avoid insufficient battery charge
levels when the user unplugs the phone, the smartphone alarm is used to estimate the unplug
time. Furthermore, past usage is statistically analyzed and the performance of three predictors is
evaluated. Namely a Simple Moving Average (SMA), an Exponential Moving Average (EMA),
and a probabilistic predictor are investigated.

Lowering the target SOC reduces the average SOC as well. Similar to charge delays, the
required charge level can be determined through analysis of the past usage data to adapt the
target SOC level while charging. We discuss the combined effects of delayed charging and
lower charge levels. Next, the implementation challenges on currently available smartphones
are discussed and we find that the operating system does not provide any mechanisms to imple-
ment a solution that can be applied independently of the charger chip type. A modified battery
charging device is proposed that can be used with almost all existing smartphone models.

Furthermore, we conduct a user study to evaluate our proposed scheme based on the col-
lected smartphone usage routines. The collection of real smartphone usage profiles reveals that
cycle life can almost be doubled by the intelligent charging scheme. We conclude the chapter
with an extensive discussion of advances being made in intelligent chargers of mobile devices
and outline remaining issues. The proposed intelligent charging strategy and evaluation have
been published in [121] and [120].

1.5.3 Cost/privacy co-optimization for stationary storages
In Chapter 5, a system-level control strategy is proposed for a set-up consisting of an EES
and a PV in a residential home that is part of the smart energy grid. Within the smart energy
grid, smart meters continuously monitor the electricity usage of customers such that the energy
provider receives real-time information on energy consumption or generation based on which
dynamic pricing can be offered. However, communication of such information raises privacy
concerns concerning undesired exposure of human activity and the use of home appliances.
The combination of EES and PV is effective in hiding such privacy revealing information.
Privacy protection however comes at the cost of EES and PV installation, increased EES aging,
and possibly increased electricity cost. The control strategy of the system should, therefore,
minimize both financial cost, i.e., the sum of battery and PV depreciation and grid electricity
costs, and privacy exposure.
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The main technical challenge that we solve is to build an extensive simulation framework
and to identify suitable control strategies that trade-off cost and privacy. Our analysis shows
that a strategy solely focusing on privacy results in high financial costs, while for a typical
residential setting, the costs for a trade-off solution lie in the range of USD 600-1700.

It has been shown that one possibility to achieve privacy enhancement is load flattening.
This has the positive side effect that it simultaneously results in peak shaving which is beneficial
for the electricity provider as the complexity of demand-side management is reduced. Due
to high battery depreciation costs, the costs of privacy enhancement are higher than a purely
financial cost-optimal strategy. As increasing privacy is mutually beneficial for both, customers
and electricity providers, a new business model could be introduced, where the costs for peak
shaving could be shared among both parties. The results have been published in [123].

1.5.4 Summary of contributions
The main contributions of this work are summarized as follows.

• Introduction and evaluation of an SOH-aware active cell balancing technique that adapts
load currents to reduce stress on already impaired cells. It thereby mitigates the aging of
EV batteries on module-level.

• Development of a context-aware intelligent charging scheme for smartphones that delays
charge and reduces the target charge level and thereby mitigates battery aging on device-
level.

• Evaluation of smartphone usage predictors for the implementation of a prototype of the
intelligent charging system.

• Development of a control strategy for a system consisting of EES and PV that minimizes
both financial cost, i.e., the sum of battery aging cost, PV depreciation and grid electricity
costs, as well as the privacy enhancement. This strategy simultaneously results in peak
shaving.

• Identification of the trade-off of privacy and financial cost, where a controlled cost/privacy
strategy reduces costs by more than half. Due to the correlation of privacy enhancement
and peak shaving, which mutually benefits consumer and Utility Provider (UP), costs can
be split, which potentially creates a new business model.

• Discussion of the holistic view of multi-scale battery health management and evaluation
of cross-scale health management strategies.

1.6 List of publications
The research that has lead to this thesis has resulted in the following publications.

• Wanli Chang, Alma Pröbstl, Dip Goswami, Majid Zamani and Samarjit Chakraborty:
Battery- and Aging-Aware Embedded Control Systems for Electric Vehicles. In: Proceed-
ings of the IEEE Real-Time Systems Symposium (RTSS), 2014.
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2
Battery State-of-Health: Basics,

models and management approaches

This chapter discusses aging mechanisms and degradation factors in Li-Ion batteries in Sec-
tion 2.1 and then outlines existing model types and their suitability for designing multi-scale
battery health management systems in Section 2.2. A multitude of model types exists, making
it difficult to decide on the best choice. Also, the specific design goals play a role in model se-
lection. Furthermore, not only different cell chemistries impact the aging behavior of a cell but
also manufacturing variances, thermal conditions inside a pack as well as the load pattern. We
outline various existing battery aging models and summarize the ones used within this thesis,
thereby justifying our choice.

2.1 Health degradation of Li-Ion batteries

To discuss the suitability of different model types, we first need to understand the degradation
factors present in a battery. In this section, we therefore first discuss the electrochemical degra-
dation mechanisms in Section 2.1.1 and then link them to the respective aging causes and effects
in Section 2.1.2.

2.1.1 Electrochemical degradation mechanisms

In the following, we give an overview of the electrochemical effects taking place inside the
battery that lead to battery aging and in particular to capacity fading. The two main effects of
Li-Ion battery aging are capacity fade and power fade. Three degradation modes of Li-Ion cells
can be distinguished: Loss of Li-Ion inventory, loss of active material of the negative electrode,
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Figure 2.1: Effects and causes of battery degradation [11]

and loss of active material of the positive electrode [11]. Several aging mechanisms add to these
losses. They are shown in Figure 2.1 and are briefly described in the following.

Loss of Li-Ion inventory

Due to side reactions, cyclable lithium can be consumed and therefore is no longer available
for cycling between the electrodes. Hence, the capacity of the cell decreases. Two important
degradation mechanisms that lead to a loss of lithium are Solid Electrolyte Interphase (SEI)
growth and lithium plating. Other effects are SEI decomposition and electrolyte decomposition.
As the former two, namely SEI growth and lithium plating, have a higher impact on capacity
fade, we focus on their description.

The SEI is a film between the negative electrode and the electrolyte, which usually builds
up during the first charge. During the first charges, the built-up of SEI is wanted, but during
later cycles, further SEI growth leads to capacity fade and is undesired. The SEI is seen as pro-
tection for the negative electrode from corrosion and the electrolyte. Normally, it is electrically
insulating but allows the conduction of lithium ions. However, some solvents pass through the
SEI even after the first cycles and the SEI keeps growing. The more the SEI growths, the more
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lithium ions will be irreversibly bound, and when growing too much, kinetics slow down. As an
effect, the available capacity fades. The stability of the SEI is an important factor for the health
of a battery [11].

Lithium plating [151] occasionally occurs instead of normal intercalation. Intercalation
means the reversible insertion of lithium ions from the cathode into materials with layered
structures, e.g., the graphite anode. Lithium plating happens on the one hand at low tempera-
tures when the reaction rate slows down and on the other hand at high charge currents, which
lead to a fast reaction rate. This results in the anode partially being unavailable for the actual
process and also imposes security threats such as short-circuits and inflammation of metallic
lithium. To avoid lithium plating, over-voltage when charging and usage of the battery at low
temperatures should be avoided.

Loss of active material at the negative electrode (anode)

When the active mass of the anode vanishes, lithium ions can no longer be inserted into the
anode. Degradation mechanisms contributing to the loss of active anode material are binder
decomposition, graphite exfoliation (in case graphite is used as the anode material), lithium
plating, electrode particle cracking, and corrosion of current collectors.

The decomposition of the binder, which connects the battery to the current collector, con-
tributes to the battery’s degradation as lithium gets lost and the mechanical stability is reduced.
Graphite exfoliation is the complete separation of material layers instead of normal interca-
lation. As a result, the capacity of the battery decreases. In Li-Ion batteries, the anode is
commonly made of graphite but other anode materials exist.

Another degradation mechanism is the loss of electrical contact of active material parti-
cles. It results from volume changes during cycling. It has a very high impact on capacity
fading [151]. Contact loss can happen at multiple places: between carbon particles, between
the current collector and carbon, between the binder and carbon, and finally between the binder
and current collector.

Due to gas evolution and co-intercalation of the active material and the solvent, particle
cracking occurs and leads to loss of active material, loss of lithium, and graphite exfolia-
tion [151]. And finally, the overpotentials resulting from the corrosion of current collectors
primarily result in power fade. However, the corrosion also comes along with an inhomoge-
neous distribution of current and potential, thereby intensifying other health degradation mech-
anisms [151].

Loss of active material of the positive electrode (cathode)

In the case of the cathode, several aging factors are the same as for the anode and have been ex-
plained above. These factors are binder decomposition, loss of electric contact, electrode parti-
cle cracking, corrosion of current collectors. Additionally, structural disordering and transition-
metal dissolution from the cathode and resulting dendrite formation on the (carbon) anode may
occur [11].
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2.1.2 Causes for battery aging

Above, we explained the electrochemical degradation mechanisms for capacity and power fade.
As for system-level design, analytical models often are more suitable due to their reduced com-
plexity and faster simulation time, we summarize in the following the causes of battery aging.
This is also useful for the identification of potential target points in intelligent battery health
management. The interested reader may refer to Uddin et al. [146] who give a comprehensive
overview of the relationship of degradation causes, such as temperature, voltage, current, SOC,
etc. and the electrochemical degradation modes.

Usually one distinguishes between calendar and cycle aging. The first one describes the
aging causes during storage, where certain storage conditions impact the severeness of battery
degradation. The latter refers to additional causes that occur when the battery undergoes charge
and discharge cycles. The causes are summarized in Figure 2.1.

Barré et al. [7] summarize the causes that degrade the battery during calendar aging. The
storage temperature has a huge impact: Moderate temperatures should be preferred as too high
and too low temperature causes increased aging. The second most important aging cause is
the SOC level. Again, moderate levels are best for the battery, and too high as well as too
low levels should be avoided. The combined effect of temperature and SOC level on aging
needs further investigation to fully understand the interdependencies. Finally, time plays a role
as non-linearities in aging can be observed. Health dependency during calendar aging on a
low temperature and low cell voltage and corresponding SOC is experimentally confirmed by
Ecker et al. through measurements of a cell with a hard carbon anode and a LiNiMnCoO2

cathode [38]. The same holds for LiCoO2 cells as shown in [91]. In [141], increased degra-
dation is found when the cell voltage is above 4 V, which relates, in this case, to an SOC of
approximately 50 % or higher.

During cycle aging, the same factors as during calendar aging play a role but at the same
time, additional ones influence the aging rate as explained by Barré et al. [7]. While during stor-
age, only the ambient temperature influences the cell temperature, the cell temperature during
cycling, increased by the reactions inside the battery, additionally impacts the cell temperature
and hence, the aging rate [47]. Very high as well as very low temperatures are detrimental for
the battery cell. During cycling, the battery undergoes an SOC swing. The lower the SOC
swing, the better for the battery health [152]. Also, a higher charge/discharge voltage as well as
high currents negatively impact battery health. Savoye et al. [130] could show the detrimental
effects of current pulses on Li-Ion battery cells. Measurements on cycle aging of a 900 mA h
LiCoO2 battery at 25 ◦C [28] reveal that a higher cut-off voltage while charging to full charge
level increases the capacity fading. However, no dependence on the cut-off voltage while dis-
charging to the empty charge level was found. Furthermore, lower charging and discharging
rates decrease aging. Similarly, a longer duration of top-up charging, which compensates the
self-discharge of a fully charged battery and maintains the full charge level as long as the battery
is connected to the charger, increases the capacity fading.
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2.1.3 State-of-Health estimation techniques

Battery health estimation and measurement are required to evaluate the health management
techniques offline but also to monitor the effectiveness of operation modes and to adjust strate-
gies to the respective battery characteristics during runtime. Generally, physics-based and em-
pirical models can be distinguished [128]. The internal resistance and the remaining charge
capacity are typical measures for SOH, where a rise of 100 % of the internal resistance over
the initial value or a decrease of 20 % of the capacity are commonly defined as the EOL of the
respective device [64]. Through measurements, battery SOH can be concluded from changes in
the OCV curve [11, 98]. Hereby, voltage characteristics and voltage plateau lengths are related
to degradation modes. Another widely employed method for SOH diagnosis is Electrochemi-
cal Impedance Spectroscopy (EIS) [139]. Finally, incremental capacity vs. differential voltage
curves are another option for SOH estimation [115]. For online SOH estimation, the typical us-
age characteristics need to be considered. For example, while an EV needs to be parked while
being charged and hence almost no load occurs, a smartphone can well be used during charg-
ing which potentially influences the voltage and current measurements. Overviews of Li-Ion
battery health estimation and measurement techniques are provided in [10, 116, 128, 163].

EIS is a very reliable and widely employed method for battery health measurements in lab-
oratory environments. EIS is a non-destructive method, where a sinusoidal current and voltage
of a specific amplitude and frequency is applied to the battery. The phase shift and amplitude of
the output voltage (galvanostatic mode) or current (potentiostatic mode) are obtained for vari-
ous frequencies. Hereby, the impedance spectrum is measured [139]. More recently, real-time
EIS methods for online applications have been developed [34, 63, 105, 125].

Within the scope of this thesis, we define the SOH as the ratio of remaining to nominal
capacity. The straight forward solution for estimation of capacity is to discharge the battery
with the nominal current at the nominal temperature from a fully charged state to the cut-off
voltage [43, 117, 163]. Unfortunately, such nominal conditions are only available in laboratory
environments not within real application measurements. Therefore, accuracy is low when using
this method.

Measurement-based techniques have drawbacks in robustness and accuracy. Model-based
approaches overcome these drawbacks by modeling the physical dependencies of parameters
on the SOH [31]. Such model-based SOH estimation methods mostly rely on current, voltage,
and sometimes temperature measurements [64,117,154,162]. For example, a data-model fusion
method is applied in [111, 154] to fit a Resistor-Capacitor (RC) model with current and voltage
measurements obtained online with an adaptive forgetting recursive model. Thermal dynamics
are leveraged by Zhang et al. [162] for a real-time model-based capacity estimation scheme.
Gholizadeh et al. [52] also include nonlinearities and uncertainties for improved results. Further
schemes include Fractional-Order Calculus [64].

Data-driven online SOH estimation methods extract features and employ machine learning
approaches [31]. Existing approaches include genetic algorithms [27], Dynamic Bayesian Net-
works [60], prior knowledge-based neural network with Markov chains [31], Support Vector
Machine (SVM)-based approaches [84], Artificial Neural Networks (ANNs) [39, 92], Kalman
filters [1] and dual sliding mode observers [82], etc.
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Lee et al. [87] present an SOH estimation scheme where the battery aging of smartphones
is expressed as battery efficiency. Reduced efficiency means the progression of the degradation
process. However, this metric does not reveal information about the remaining capacity.

Within the scope of this thesis, offline SOH estimation is relevant to evaluate the proposed
degradation mitigation approaches. Online SOH estimation on the other hand is mainly rele-
vant for the SOH-aware cell balancing algorithm discussed in Chapter 3. The above mentioned
techniques should give an overview of the existing approaches but we expect further improve-
ments in this domain enabling even better and more adaptive health management strategies in
the future.

2.2 Battery aging models
The aging factors discussed above are reflected in varying levels of detail in existing aging
models. Depending on the design goal and application, a different kind of model is required.
In Section 2.2.1, we first discuss different model types that estimate the amount of aging on
different levels of detail: Ranging from a very fine-grained level where the electrochemical
mechanisms are correctly reproduced to black-box models that are based on statistics and no
representation of the electrochemical mechanisms is included. Then, in Section 2.2.2, we dis-
cuss several models and their suitability for system-level design. Finally, in Section 2.2.3, we
summarize two models that are used for the case studies in this thesis.

2.2.1 Model types

For the design of battery health management systems, we require models of battery SOH that
help us to understand the impact of design decisions on the real battery. Such models should not
be confused with SOH estimators that run online and determine the current SOH of a specific
battery. Nevertheless, the algorithms are often similar for both purposes. A huge variety of
models exists for this task, which estimate the impact of aging factors on different levels of
abstraction. In the following, we present two categorization approaches and afterward discuss
which kind of models are required for multi-scale battery health management systems.

Hu et. al [65] use a three-level categorization of available battery models. Firstly, white-box
models describe the internal degradation mechanisms. A typical example is the electrochem-
ical models. Secondly, black-box models are data-driven or model-free approaches. Neural
networks are part of this group. In between white- and black-box models, gray-box models
are located. The nature of models within this group is the approximation of internal dynamics.
Equivalent circuit models represent these kinds of models.

Barré et al. [7] present more fine-grained categories for aging models: The first group is
formed by electrochemical models. They are the most complex type of models as they describe
the dynamics of the cell based on the degradation mechanisms. Some do this even at an atom-
istic or molecular level. The second type is the equivalent circuit-based models. They approx-
imate the internal dynamics through equivalent circuits. The parameters are commonly esti-
mated from experimental investigation and measurements. Thirdly, performance-based models
implement the modeling of physical relations, e.g., by describing temperature dependencies,
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etc. The fourth category is analytical models with empirical data fitting. They describe cause-
effect relations, where parameters are obtained from measurement data. Big data-bases are
required to fit such predictors. Finally, statistical methods are the most abstract group. Here,
no understanding of underlying aging mechanisms is required and the models are purely data-
based.

In system-level design, we usually require models that have reasonable simulation times
for fast prototyping. Therefore, the fine grained insights of electrochemical models are not
required. Accuracy is an issue that still requires much investigation. At the moment, we should
note that not only aging models but also the environment imposes a large degree of inaccuracy
and even more uncertainty. We often want to evaluate strategies independent of the specific
cell chemistry, e.g., LCO, LFP, etc. Which means, that we cannot always reliably quantify
degradation. Nevertheless, we often can draw qualitative conclusions. Simplicity in algorithmic
structure, e.g., the pros and cons of recursion, can also be a criterion for model selection. In
particular, for the development of control algorithms, light-weight and fast models that can
potentially run online are preferable. The models to be chosen within this thesis are, therefore,
gray-box or black-box models in the classification scheme by Hu et al. [65].

2.2.2 Requirements

In the following, we discuss a selection of existing battery aging models. We then select two
models that are used for designing and evaluating the health management approaches in the
subsequent chapters. The presented models have in common that they are either publicly avail-
able or else the respective publications include sufficient information to easily implement the
model.

CAEBAT

Within the Computer Aided Engineering for Batteries (CAEBAT) project a multi-scale multi-
domain model for system-level design was developed [81]. The model follows a multi-physics
approach and includes thermal, electrical, and electrochemical calculations. The openly avail-
able software parts are the Open Architecture Software (OAS) and Virtual Integrated Battery
Environment (VIBE) [72]. However, in the meantime, several parts have been integrated into
commercial tools, i.e., ANSYS, and the free version is no longer maintained. The advantage
of this model is its presumably high accuracy due to the underlying physiochemical descrip-
tions. However, the documentation for the publicly available parts is rather limited at the time
of investigation and no direct interface to MATLAB, where we develop the control strategies, is
available. Nevertheless, investigation of the ANSYS system design tools, which include parts
of the CAEBAT project results, is seen as an interesting option for future work.

LIONSIMBA

The LIONSIMBA framework [144] can be used for Li-Ion battery design, simulation tasks, and
control application development. The framework is implemented in MATLAB and is openly
available. The model uses complex partial differential equations to describe the electrochemical
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processes inside the battery. It also offers very fine grained parametrization for battery input
parameters such as the thickness of the current collector or porosity of the separator. However,
the runtime and complexity are also relatively high and therefore, fast prototyping is difficult.

SIMSCAPE battery model

The SIMSCAPE battery model [99] is a generic model for various battery types including Li-Ion
batteries. Control algorithms developed in MATLAB can be easily incorporated. Not only stan-
dard electrical behavior is implemented but also thermal as well as aging characteristics. Pa-
rameterizations for several batteries are available. However, the battery aging functionality was
not available when the research for this thesis was started. Therefore, we decided to implement
a custom-built model as described in the next paragraph.

Millner aging model

The Millner [104] model implements battery aging based on crack propagation calculations
and uses empirical data of LFP batteries to fit the model. This model considers multiple aging
factors such as temperature, average SOC, SOC swing, and time. On the downside, the model
introduces complexity by recursively calculating the degradation. This results in difficulties
when designing control applications. We select this model for evaluation purposes of our work
due to its broad coverage of aging factors.

Suri et al. aging model

The Suri et al. [140] battery aging model was particularly developed for control applications.
In this model, a severity factor rates the severeness of damage induced by a combination of
aging factors, namely the SOC, the applied C-rate, and the temperature. The empirical data was
gained from measurements with an LFP cell. We select this model for the design of an EES
controller.

Conclusion

As the latter two models are lightweight while considering a wide range of the relevant aging
factors, they are used in the analysis of the health management use cases developed within
this thesis. The SOH-aware balancing strategy in Chapter 3 and the smart charging scheme in
Chapter 4 are evaluated using the Millner model. The Suri et al. model is used for controller
design in the cost/privacy co-optimization of a residential EES with PV in Chapter 5.

2.2.3 Model selection

In the following, we summarize the Millner model [104] and the Suri et al. model [140] and
shortly discuss their commonalities and differences.
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Millner model

The Millner model [104] is a widely-adopted SOH model, which describes electrochemical
degradation processes by physical crack propagation mechanisms over cycling and time. Stress
parameters are the cell temperature θB, the SOC swing σ, and average SOC S, where the latter
two along with the time interval Tm are equivalent descriptions of the charge/discharge current.
The original Millner model considers single charge and discharge cycles of an identical pattern.

To derive the average SOC S within the m-th interval of duration Tm, we calculate

S =

(∫
Tm

S(t)dt

)
/T , (2.1)

where T is the duration of the time interval. The normalized SOC swing σ within the time
interval m is calculated by

σ = 2

√
3

∫
Tm

(S(t)− S)2dt/T . (2.2)

As the cycle interval Tm may start and end at arbitrary SOC states, the effective number of
throughput cycles

NTP =

∫
Tm

|i(t)|dt
2Qnom

, (2.3)

needs to be calculated, where i(t) is the charge- or discharge-current, Qnom is the nominal
amount of charge that can be stored in the battery and m denotes the m-th time the cell is
discharged and recharged between arbitrary SOCs.

A first degradation parameter accounts for the damage in mid-centered cycles

D1 = KcoNTPexp
(

(σ − 1)
θref + 273

Kex(θB + 273)

)
+ 0.2

Tcycle
Tlife

, (2.4)

whereKco is a normalization coefficient forNTP andKex is a constant exponent for SOC swing.
θref is the reference battery temperature of 25 ◦C. θB is the battery temperature. The duration of
one cycle is denoted by Tcycle and Tlife is the shelf life at 25 ◦C and 50 % SOC until EOL, which
we set to 10 years.

Adjustment of the average SOC S is done in the second degradation parameter

D2 = D1exp
(
4Ksoc(S − 0.5)

)
(1−D(Tm−1)) , (2.5)

using a constant Ksoc to account for the average SOC. Finally, the total increase in the degrada-
tion parameter D is given by

D(Tm) = D2exp
(
Kt(θB − θref)

θref + 273

θB + 273

)
, (2.6)

whereKt accounts for a doubling of the decay rate for each 10 ◦C rise in temperature. Summing
up the damage done by each cycle, one can derive the remaining life of the battery. Table 2.1
shows the values for the constants from [104].
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Table 2.1: Aging parameters [104]
parameter value parameter value parameter value
Kco 3.66 e-5 Kt 0.0693 θref 25 ◦C
Kex 0.717 Ksoc 0.916 Tlife 10 years

Suri et al. model

In the Suri et al. model [140], the cycle life degradation is determined in terms of an empirically
fitted severity factor map, as depicted in Figure 2.2. The severity factor ζfunct describes the
amount of damage done to a battery by its current SOC, the applied C-rate, and the temperature.
This cycle life model was particularly developed for control applications as the computational
effort is comparably low and no iterative dependencies exist. The model is derived for Li-Ion
batteries, which are commonly used in hybrid electric vehicles but also stationary storages.
The framework can be easily adapted to other cell chemistries by using a similar data fitting
approach as in [15].

We will reproduce some of the relevant formulae from [140]. Usually, the EOL of a battery
is assumed to be reached at 80 % of its initial capacity. Battery aging in general has two occur-
rences: Capacity fading and resistance growth. From an economic perspective, the dominating
problem is the capacity loss in percent Qloss,% and therefore it is the only aging type considered
in this model:

Qloss,% = ζfunctQ
Kpl

tp,Ah. (2.7)

Qtp,Ah is the accumulated throughput in and out of the battery in ampere-hours and Kpl is
a power-law exponent retrieved from measurement data. The severity factor function ζfunct de-
scribes the dependence on the three main factors that contribute to aging: C-rate ιC , temperature
θB and SOC S:

ζfunct = (KaS +Kb) exp

(
−Ea +KcιC

Rgas(273.15 + θB)

)
. (2.8)

The variables Ka and Kb model the SOC dependence, Ea is the activation energy and Rgas is
the universal gas constant. The variable Kc describes the dependence on the C-rate ιC , where
the C-rate is the ratio of current and battery capacity.

2.3 Related work on battery health management techniques
In this section, we survey related works on battery health management approaches. The related
work targets control parameters and techniques, such as hybrid storages, thermal management,
charge patterns, multi-objective optimization goals, etc. In the following, we discuss the pro-
posed techniques and highlight the addressed abstraction layers and cross-level dependencies.

Management of multi-cell and hybrid energy storages

Multi-cell and hybrid energy storages provide the opportunity to distribute loads among the
storage elements and thereby create less detrimental conditions for the individual battery cells.
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Figure 2.2: Severity factor map for 25 ◦C

In hybrid energy storages, the Li-Ion batteries are used in combination with other storage types
that can compensate for the aging characteristics of Li-Ion batteries. For example, supercapaci-
tors age at a slower rate compared to a Li-Ion battery cell. Therefore, they can be used to satisfy
detrimental peak currents. Cell balancing architectures and reconfigurable systems can be used
to distribute the load among battery cells with varying initial SOH. In Chapter 3, we present an
SOH-aware cell balancing strategy in combination with a cell balancing architecture. Bouch-
ima et al. [16] apply a strategy on reconfigurable systems that stresses healthier cells more than
weaker cells, which is the same strategy, we apply for the SOH-aware cell balancing technique
in Chapter 3. They confirm our findings that such a strategy results in the decreased spread of
the available capacity and increased battery cycle life as well as better usability in second-life
applications.

By using such balancing or reconfigurable systems on module-level, the cell-level bound-
aries are adjusted during runtime. Information from cell-level, such as the current SOH can
similarly be used on module-level to refine strategies. For example, the optimal scheduling of
multi-cell batteries in mobile devices needs to consider the SOH of all cells to correctly esti-
mate and exploit the recovery effect and rate capacity effect [4]. Thereby, the performance and
single-cycle runtime are increased.

Hybrid storages can be used to compensate for Li-Ion battery aging factors by combin-
ing them with other storage types with different aging characteristics, e.g., supercapacitors. A
charge management policy is required for such Hybrid Electrical Energy Storages (HEESs) to
optimize towards single cycle runtime as well as cycle life. A possible strategy is to satisfy the
baseload using the battery, while the spiky part of the load is satisfied by the supercapacitor. Ad-
ditionally, the SOC swing and average SOC of the battery should be minimized [158]. Previous
work show improvements in cycle life of up to six times if HEESs are used with SOH-aware
strategies [153].

Kim et al. [83] show how hybrid energy storages successfully solve the problem of under-
dimensioned laptop chargers. Nowadays, laptop chargers come at a small size and weight,
which seems to be advantageous for the user. However, such under-dimensioned chargers can-
not always fulfill the power demand from the device-level and the battery is used additionally.
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Therefore, the battery is unnecessarily exposed to additional discharge currents and SOC swing,
which increases aging. The use of a supercapacitor on module-level to satisfy the additional
charge requirement reduces stress on the battery by adjusting cell-level usage and mitigates
aging.

Thermal management

The thermal system and thermal management can help to mitigate aging on the module-level.
Commonly, higher temperatures increase battery aging. On the other hand, very low temper-
atures can also damage the battery. Some EVs are equipped with battery preheating systems
to prevent damaging operating conditions [119]. Through this measure, thermal conditions for
cells are improved, resulting in extended cycle life.

Similarly, one would also like to optimize the energy output and keep the battery at a tem-
perature, where most energy can be obtained while causing as little damage as possible. One
possibility to improve positioning dependent cell aging could be to have a reciprocating cooling
airflow instead of a unidirectional one [95].

Battery health-aware charge patterns

In Chapter 4, we will discuss that delayed charging and reduced target SOC significantly mit-
igates the aging of a smartphone. Similarly, the aging of EVs can be mitigated by adjusting
the charge strategy. Hoke et al. [61] present a charge strategy that not only delays charging but
additionally uses a reduced charge current. As a consequence, the temperature rise is reduced
and the average SOC decreases, thereby reducing the battery aging. This strategy makes use of
device-level information on the usage times of the EV and adjusts cell parameters to operate in
an aging friendly range for most of the time.

Such intelligent charging strategies can be extended to include multiple devices from distinct
types. For example, if an EV, laptop computer, tablet, and smartphone share a calendar from
which an algorithm can conclude unplug times and required charge of the individual devices,
the charge schedule of all devices could be concluded and optimized.

The cost and battery health optimal charge patterns determined by Bashash et al. [8] achieve
the least battery health degradation by keeping the SOC at a low level all time and hence the
battery should not be charged. However, this strategy cannot be practically applied in most
cases. A trade-off tending towards battery health-friendly behavior is to charge the battery
shortly before the trip starts to avoid high storage SOCs. However, the filling level depends
on the current energy price and also health considerations. On the other hand, a trade-off with
a higher focus on financial cost results in making use of off-peak charging prices and only
delaying charging if prices are low. The fill levels can be below 100% SOC as lower SOC is
less detrimental for battery health. Finally, a purely financial cost-optimal strategy is to fully
charge the Plug-In Hybrid Electric Vehicle (PHEV) before the trip at off-peak times when low
prices are available. These strategies not only use device-level information of EV usage times
but additionally operate on system-level and co-optimize the charge pattern with the financial
cost.
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Battery health-aware load patterns

Just as the charge pattern, the discharge pattern can be optimized towards battery health im-
provement by adjusting load patterns based on device-level usage information. Valentini et
al. [149] optimize the transmission times and power consumption on battery-powered wireless
sensor nodes towards increased cycle life. In the case of PHEVs, Serrao et al. [135] find that
the fuel consumption should be co-optimized with battery behavior and in particular the battery
degradation.

In EVs, the Heating, Ventilation and Air Conditioning (HVAC) have a huge impact on power
consumption and therefore, battery cycle life. A co-optimization to control the HVAC consider-
ing the driving range and cycle life has been presented by Vatanparvar et al. [150]. The HVAC
is the second-highest power consumer in a vehicle after the electrical motor. In the presented
work, the HVAC power consumption is controlled such that the SOC deviation is minimized
and hence the SOH degradation is reduced. In other words, the HVAC consumption is reduced
at times when the electrical motor consumption is very high. The authors achieve an improve-
ment of SOH degradation of up to 14 % compared to conventional approaches. At the same
time, the overall power consumption is reduced. Therefore, both driving range, as well as bat-
tery cycle life, are increased. Similarly, the HVAC control in a residential home or office can
be designed to co-optimized the objectives and constraints from stationary battery storage, PV,
and the preferred temperature levels in different rooms within a building [30].

Battery health co-optimization problems

On system-level, battery health should be co-optimized with the actual system objectives. In
Chapter 5, we will present a cost/privacy co-optimization for joint PV and EES installations.
Privacy is just one of many metrics that may be considered in the joint EES and PV scenario.
Li et al. [89] compare different charge/discharge strategies such as cost optimality, maximizing
self-consumption, or maximizing cycle life for such a system. They find that cycle life optimal
strategies start charging the residential EES only in the afternoon to avoid long periods of high
SOC and hence, reduce average SOC. On the other hand, they also find that multi-objective
strategies achieve similar cycle life improvements but are accompanied by a significantly better
financial gain from saving and selling grid electricity.

Scheduling the charging of batteries in a fleet of delivery drones has been discussed by Park
et al. [113]. The problem is formulated as a multi-objective optimization problem which not
only minimizes the overall SOH degradation of all battery packs within the fleet of drones but
also the waiting times of the delivery tasks. The charging of individual batteries is scheduled
such that idle times at high SOC are reduced and average SOC is minimized. Hence, battery
aging is mitigated.

Further EV design aspects are discussed by Chang et al. [21]. They find that controllers in
EVs need to be redesigned once the processor ages and the battery has degraded to maintain
quality of control. When a processor ages, the delay of the critical path gets longer. As a result,
the sampling period increases, and the quality of control gets deteriorated, which is highly
undesired in safety-critical applications such as the control of the electric motor in an EV. As
a remedy, re-optimization is proposed. Once the processor has aged, autonomous frequency
scaling can be applied to ensure that signals are completely transmitted within one clock cycle.
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Operating the aged processor at a higher frequency and shorter sampling period potentially
results in a better quality of control but comes at the cost of higher battery usage. Higher
battery usage is disadvantageous in terms of less available capacity during the current cycle
due to the rate capacity effect and also higher battery aging in the long term due to increased
C-rates. Therefore, multi-stage controller design and re-optimization should be applied.
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3
SOH-aware active cell balancing strategy for

high power battery packs

Short driving range due to limited battery capacity and high battery depreciation costs persist to
be the main deterrents to the wide adoption of EVs. High power battery packs consisting of a
large number of battery cells require extensive management, such as SOC balancing and thermal
management, to keep the operating conditions within a safe and efficient range. In this chapter,
we propose a novel SOH-aware active cell balancing technique, which is capable of extending
the cycle life of the whole battery pack. In contrast to the state-of-the-art active cell balancing
techniques, the proposed technique reduces the load current of cells with low SOH using the
active cell balancing architecture. Based on the observation that assigning the smallest possible
load current to cells with lower SOH extends cycle life, the technique identifies the most bene-
ficial charge transfers. We find that with our proposed scheme, aging could be mitigated by up
to 23.5 % over passive cell balancing and 17.6 % over active SOC cell balancing.
Chapter outline: Chapter 3 is organized as follows. Section 3.1 introduces the idea of the SOH-
aware balancing algorithm and summarizes the contributions of this chapter. In Section 3.2, the
required background on SOH degradation in EVs, active cell balancing architectures, and online
SOH measurement techniques is provided. Next, in Section 3.3, the observation that active cell
balancing reduces stress on less healthy cells and extends cycle life is investigated and an outline
on how this effect can be further exploited to increase cycle life is given. The used models of
the battery pack and cell balancing infrastructure are summarized in Section 3.4. The proposed
SOH-aware active cell balancing technique that adapts load currents to further mitigate aging
is explained in Section 3.5. The experimental results in Section 3.6 compare the approach to
passive and conventional active balancing. The chapter concludes with Section 3.7.

The following text and figures are quoted mostly verbatim from [122]. Small adjustments
have been made to ensure good readability and layout of the full thesis. ©2018 IEEE. Reprinted,
with permission, from [122].
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3.1 Introduction

This section provides the introduction to SOH-aware cell balancing. After a brief description
of the general problem of imbalanced cell capacities and the solution provided by conventional
balancing approaches, the overall idea and contributions of SOH-aware cell balancing are pre-
sented.

3.1.1 Motivation

EVs are seen as one of the promising alternatives to combustion engine vehicles as they have a
very low cost per mile and less environmental impacts. The market share of EVs is still small,
but signs of a transition towards a fully electrified powertrain are evident. Despite the optimistic
forecasts, major shortcomings of EVs persist, such as i) the range anxiety due to limited battery
capacity and ii) high battery depreciation costs due to SOH degradation. Even though battery
prices are expected to drop soon, either manufacturers or EV owners bear the costs for a battery
which will eventually become unusable within the EV and therefore be disposed of due to
capacity loss. This is undesirable from both the economic and the environmental perspective.
If implemented, our method can help in saving several thousands of dollars.

Typically, Li-Ion cells are preferred for such high power applications due to their high en-
ergy and power densities compared to other rechargeable battery chemistries. As shown in
Figure 3.1, a high power battery pack is formed by connecting multiple Li-Ion cells in parallel
to increase the capacity and connecting these parallel cell modules in series for achieving the re-
quired high operating voltage. To ensure safe and efficient operation, Li-Ion cells demand tight
control over their operating conditions. Operation outside their defined set of safe thresholds
will reduce their cycle life and probably damage them, causing fire or explosion due to thermal
runaway.

The capacity fading rate of Li-Ion cells depends on various factors, such as operating tem-
perature, average SOC, and SOC swing and it is generally known that high average SOC, high
temperature, and large SOC swing are detrimental for battery health [104]. While the SOH
of each cell degrades, the usable capacity of the series-connected cells is determined by the
cell with the lowest SOH. With repeated charge/discharge cycles, the SOH of all cells tends
to diverge due to manufacturing inhomogeneities and varying temperature distribution. This
also contributes to early disposal of the battery pack from the vehicle, since current regulations
demand replacement of the entire EV battery pack if any cell in the pack reaches 70 % of its
SOH value.

Conventional balancing approaches are passive, where the excess charge of cells with higher
SOC is dissipated as heat across a resistor, resulting in reduced energy efficiency. By contrast,
active cell balancing approaches increase the energy output of the battery pack by transferring
the excess charge between cells instead of dissipating it as heat. However, existing active cell
balancing approaches only focus on equalizing the SOC at all times and inherently partially
contribute to increased cycle life [136]. By optimizing the load current assignment, the cycle
life can be significantly improved further.
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Figure 3.1: A battery pack consisting of NP parallel electrically indistinguishable cells and NS

series-connected cells varying in SOH. CU is the unusable capacity due to capacity fading. The
required charge is Qreq = IDTP. Using an active cell balancing architecture, the amount of
charge transferred is Qbal = IB,maxTP. The effective discharge of a cell is Qcyc. The nominal
capacity of a cell is denoted by CN.

3.1.2 Contributions

In this chapter, we focus on the fact that the EV batteries are not always used to their full capac-
ity in every drive cycle, and hence, it is not necessary to keep the SOC equalized at all times.
For instance, a typical usage profile of an EV is shown in Figure 3.1 where the pack follows
a driving pattern that consists of five small commuting trips during weekdays followed by two
longer trips on the weekends. It is not mandatory to always maintain an equal SOC among all
cells when the entire battery capacity will not be used within a single cycle. Existing methods
of remaining range estimation [62] help to estimate the available SOC margin. Estimating the
required charge to reach a predefined destination is crucial to enable autonomous driving and
further advances are expected to be made in this domain. We propose to leverage this headroom
for mitigating battery SOH degradation using a state-of-the-art active cell balancing architec-
ture [110] by reducing the load current of the less healthy cells.

In particular, we propose the following contributions.

• Active cell balancing reduces stress on less healthy cells and extends cycle life. We
show that this effect can be further exploited and cycle life is significantly extended (Sec-
tion 3.3).

• We propose a novel SOH-aware active cell balancing technique that adapts load currents
to further mitigate aging (Sections 3.4 and 3.5).
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• Compared to passive and conventional active balancing, experimental results show that
our technique improves cycle life by 23.5 % and 17.6 %, respectively (Section 3.6).

3.2 Related work

In the following, related works in the field of SOH mitigation for EVs using other control knobs
than active cell balancing are presented. Then, as our work is based on and extends active cell
balancing strategies, available architectures and strategies are briefly explained. Finally, as the
SOH-aware balancing algorithm relies on online SOH measurement, related work on suitable
techniques is summarized.

3.2.1 SOH degradation mitigation in electric vehicles

There are various approaches to mitigate the SOH degradation of EV batteries. An often-used
method for aging reduction is the charge pattern. A cost and SOH-degradation optimized charge
pattern can be achieved by charging slowly and charging shortly before the trip starts, which
reduces temperature rise, and lowers the average SOC, respectively [61]. Instead of the charging
pattern, the authors of [150] control the EV’s heating, ventilation, and air conditioning system
to extend battery runtime and cycle life. Besides, battery pack reconfiguration techniques can
also be used to improve the SOH. The work in [58] proposes to connect cells with similar SOH
levels to increase available capacity in one cycle. However, such reconfigurable systems have
significant efficiency limitations due to the on-resistance of reconfiguration switches. The work
in [136] shows that compared to passive balancing, active SOC balancing narrows the capacity
distribution among cells in the long term and increases cycle life. Our work overlays on this
finding by proposing a methodology to even further increase this effect.

3.2.2 Active cell balancing

A comprehensive overview of different cell balancing architectures is provided in [18]. Typi-
cally, the existing active cell balancing approaches are classified into capacitor-based, inductor-
based, and transformer-based, depending upon the type of energy storage element used for
charge transfer [50]. Among them, the inductor-based approaches are more preferable since
they provide a higher energy efficiency compared to the capacitor-based architectures and also
occupy a smaller installation volume when compared to the transformer-based counterparts. In
addition to the electrical architectures, several equalization strategies are proposed in the lit-
erature that determine the optimal charge transfer direction between the cells to equalize the
SOC of the battery pack. For instance, four different request-driven equalization strategies are
proposed in [138]. However, existing works in the domain of active cell balancing only focus
on equalizing the SOC of all cells in the pack and do not consider SOH, which we do in this
work for the first time.
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3.2.3 Online SOH measurement
The proposed SOH-aware cell balancing technique requires an online SOH measurement that
can be implemented in the BMS. An overview of existing methods is provided in [10]. Coulomb
counting is a relatively simple online SOH estimation method, which integrates the amount of
charge flowing in and out of the battery pack. However, it does not consider the temperature ef-
fects and the self-discharge current of the battery pack and therefore does not provide accurate
results. On the other hand, electrochemical impedance spectroscopy techniques that directly
measure the battery internal impedance are more accurate. However, due to their requirement
of high accuracy measurements and complex signal processing tasks, they are typically per-
formed offline in a laboratory. Recently, the work of [34] suggests a real-time electrochemical
impedance spectroscopy technique, paving the way for high accuracy SOH estimation at the
BMS level. SOH estimation is continuously improving. Moreover, SOH estimation techniques
have been discussed in Chapter 2.1.3. Note that our proposed SOH-aware balancing methodol-
ogy can be implemented in conjunction with any of the existing SOH estimation techniques in
the literature.

3.3 Observations for active cell balancing
In this section, we first explain the operating principle of a state-of-the-art inductor-based active
cell balancing architecture, upon which the proposed technique is built. Then, we provide some
key observations, which form the groundwork for the strategies introduced in this chapter.

3.3.1 Active cell balancing operating principle
A state-of-the-art inductor-based active cell balancing architecture, as proposed in [86], is
shown in Figure 3.2a. Each cell is associated with a balancing module that consists of two
power Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) switches (M i

a and M i
b)

and an energy storage element, inductor Li. Charge transfer between cells takes places in two
phases, charging (Φ1) and discharging (Φ2) that are controlled by two high-frequency control
signals ρ1 and ρ2, respectively. During the charging phase Φ1, MOSFET M1

b is actuated with ρ1

and the excess charge in cell B1 is stored in inductor L1. During the discharging phase, M1
b is

turned OFF and M2
a is actuated with ρ2 transferring the stored energy in the inductor L1 to cell

B2. Short free-wheeling phases during which the inductor current flows through the body diode
of the respective power MOSFETs are necessary to avoid short-circuit conditions between the
cells. The balancing current ranges from 0 A to a maximum value IB,max and is modified by
adjusting the length of the Pulse Width Modulated (PWM) signal generated with ρ1 and ρ2.

3.3.2 Observations with two cells
We provide the key observations using a simple two-cell example. Two cells are discharged
by a discharge current ID. The balancing current IB,max, which is limited by hardware com-
ponent constraints and costs, can now either increase or decrease the load current experienced
by individual cells. When one cell B1 transfers charge to another cell B2 through IB,max, B1
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Figure 3.2: (a) Operating principle of an inductor-based active cell balancing architecture pro-
posed in [86]. (b) A higher current (ID + IB,max) is discharged from healthier cell B1 whereas
cell B2 sees a reduced current (ID − IB,max).

effectively has a higher load current IC,1 = ID + IB,max and B2, which receives the charge,
has effectively a lower load current IC,2 = ID − IB,max as shown in Figure 3.2. In this section,
we ignore the transfer efficiency γ for the sake of simplicity. However, it will be considered in
Section 3.5. We exploit the following observations for our SOH-aware balancing scheme.

Observation 1. Battery aging depends on the average SOC and also the SOC swing.

Therefore, avoiding high SOC levels helps to mitigate battery aging. Lower SOC swing
means less severe capacity fading [56, 133] and is therefore preferable over higher variances in
SOC levels. The effects are reflected in the used aging model [104].

Observation 2. Cells in a pack degrade at different speeds.

Temperature is the main contributor to this aging speed divergence [133]. In high power bat-
tery packs, cooling is usually not homogeneous. Especially in automotive applications, where
the pack volume needs to be minimized, a trade-off exists between achievable temperature ho-
mogeneity and the overhead introduced by the cooling system hardware. Even the most efficient
state-of-the-art cooling approaches still expose the batteries to temperature stress when being
charged or discharged at high rates [66]. Manufacturing variations, while depending on the
cell size and quality of the manufacturing process, are another significant contributor to cell
inhomogeneity which eventually promotes different aging behavior between cells [5,37]. Also,
the aging-speed slightly reduces with decreased SOH [127, 133]. Due to permanent equal-
ization currents, parallel cells can be assumed to be electrically indistinguishable. While serial
cells built up a variation in capacity because of manufacturing inhomogeneities and temperature
variations.

Observation 3. Resting the less healthy cells mitigates the EOL.

With active cell balancing, the individual cell current, and hence the average SOC and also
SOC swing, can be adjusted. The work in [136] confirms that stressing the healthier cell more

38



3. SOH-aware active cell balancing strategy for high power battery packs

ID + 0 ID + IB,max

base

better

Balancing current increases

Active SOC
balancing

SOH-aware balancing with state-of-
the-art cell balancing current limit

Cell current of healthier cell IC,1

A
ve

ra
ge

SO
H

af
te

ro
ne

cy
cl

e
(κ

1
+
κ
2
)/

2

Im
pr

ov
ed

cy
cl

e
lif

e

Figure 3.3: Average SOH of two series-connected cells after one charge/discharge cycle. Trans-
ferring charge from the healthier cell to the less healthy cell is beneficial in the long term and
increases cycle life beyond SOC balancing.

than the less healthy cells reduces the SOH gap between the healthiest and the least healthy
cell and prolongs cycle life. We observe the same behavior for two cells using the aging model
from [104]. Figure 3.3 illustrates the effect of obtaining increased cycle life for higher balancing
currents. In the long term, this preserves the less healthy cells as the EOL is determined by the
least healthy cell reaching a predefined SOH value. Note that the gain achieved in a single cycle
is small, but in the long term, the effect significantly contributes to increased cycle life as will
be shown in Section 3.6. We propose a strategy that intensifies this effect by further optimizing
the load current assignment. I.e., we use the maximum available balancing current, which is
only limited by component constraints of the balancing architecture.

Based on the above observations, we develop an SOH-aware balancing strategy that in-
creases the number of cycles of a battery pack until EOL in Section 3.5.

3.4 System modeling
In this section, we shortly explain the models used for battery behavior and aging simulation.
We define the term aging speed and explain how cell balancing efficiency is considered in the
simulations.

3.4.1 Battery aging model
Using the correct aging model is crucial for evaluating the proposed cell balancing technique.
Hence, we employ a widely-adopted SOH model, the Millner model, which describes electro-
chemical degradation processes by physical crack propagation mechanisms over cycling and
time [104]. The model has been summarized in Chapter 2.2.3. Further experimental evalua-
tion in [136] supports the model behavior. Stress parameters are the cell temperature θB, SOC
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swing σ, and average SOC S, where the latter two along with the time interval Tm depict the
charge/discharge current. We combine this with the equivalent electrical circuit model from [24]
to account for short-term battery behaviors.

Besides the model, we define the aging-speed as degradation per cycle:

va =
∆κ

cycle
. (3.1)

We specify the unit to be points per million and cycle: 1×10−6

cycle = 1 ppmc. I.e., a cell with an
aging-speed of 50 ppmc will have lost 5% of its initial capacity after 1000 cycles.

3.4.2 Cell balancing efficiency

We use the existing analytical model from [77], which is derived for inductor-based active
cell balancing architectures, to calculate the energy efficiency of the charge transfer process.
We allow direct charge transfers only between neighboring cells. The energy efficiency of the
charge transfer process is calculated as

γ = 1− Ediss

Etx

, (3.2)

where Ediss and Etx is the energy dissipated and the energy transferred, respectively. The two
major sources of energy dissipation in the cell balancing process are the conduction energy
dissipation Ecd, due to the parasitic resistances of the circuit components and the switching
energy dissipation Esw, due to the non-zero ON and OFF times of the MOSFET switch. The
conduction energy dissipation in a single charge transfer cycle is calculated as:

Ecd
cyc = Qtx · VB1 −Qrx · VB2 , (3.3)

where Qtx is the charge transferred by the source cell and Qrx is the charge received by the
destination cell in a single switching cycle. VB1 and VB2 are the voltages of the source and
destination cells respectively. The energy dissipation due to the switching activity of MOSFETs
in each charge transfer cycle is calculated as

Esw
cyc =

1

2
Ipeak{tOFF · VB1 + tON · VB2}+

1

2
COSS{V 2

B1 + V 2
B2}, (3.4)

where Ipeak is the final inductor current during the charging phase, tON and tOFF are the turn-
ON and turn-OFF times of the MOSFET switch and COSS is the parasitic output capacitance of
the MOSFET.

However, as we propose a high-level cell balancing strategy and simulate the long-term
effects of batteries, it is impractical to consider circuit-level details. In the following sections,
we use the average balancing current IB,max = 1/4 × Ipeak. Also, based on our circuit-level
simulations, we find that it is safe to assume a constant efficiency of 96% for typical VB values
and balancing currents.
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Algorithm 1 SOH-aware cell balancing algorithm. //Call this function at the start of each trip

Input: destination, C(k)
i , TP

Output: I(k,k+1)
b ∀k ∈ 1...NS − 1

1: Qreq = getQreq(destination, TP);
2: ID = getID(Qreq);
3: κ

(k)
i = updateSOH(C

(k)
i );

4: [healthList, i] = sortCellsAscendingSOH(κ
(k)
i );

5: for all cells in healthList do
6: [η(k−1,k−2), η(k−1,k), η(k,k−1), η(k,k+1), η(k+1,k), η(k+1,k+2)] = getEta(C

(k)
i ); // Table 3.1

7: end for
8: for cell k = 1...(NS − 1) do
9: [I

(k,k+1)
b ] = getBalancingCurrent(ID, η(k,k+1), C

(k)
i , Ck+1

i ); // Table 3.2
10: end for

3.5 SOH-aware active cell balancing
In the following, the algorithm for the SOH-aware cell balancing is presented. First, the al-
gorithm is summarized. Then details on determination of the charge transfer direction and the
amount of charge to be transferred are provided.

3.5.1 Overview

The basic idea of the SOH-aware cell balancing algorithm is to compensate the amount of
charge that is discharged from cells with a lower SOH by transferring charge from neighboring
cells with a relatively higher SOH. We assume that the battery management system is capable
of reliably measuring the capacity of cells. The transfer is done using the active cell balancing
architecture from Figure 3.2. We assume that the decision for the transfer direction and the
amount of the cell balancing current is made at the beginning of each trip and remains fixed.
This is sufficient as battery aging is a comparatively slow process. The algorithm is shown in
Algorithm 1. We assume that the accumulated charge required from the battery pack Qreq is
known at the beginning of each trip. In a real-world implementation, this could be determined
by, e.g., the destination entered in the navigation system (Algorithm 1, line 1). For the remainder
of this chapter, we consider a constant discharge current ID = Qreq

TP
for our discussion of the

algorithm (Algorithm 1, line 2), where TP is the duration of a trip. This is safe to assume
because using average ID is sufficient for determining I(k,k+1)

b in the algorithm. However, using
a time-series of ID values is possible without modifications.

The SOH κ
(k)
i =

C
(k)
i

CN
of each cell is the ratio of available capacity C(k)

i and the nominal
capacityCN (Algorithm 1, line 3). The latter is the same for all cells. The superscript k indicates
the physical location of the cell within the series connection, i.e., cell k is left of cell k+ 1. The
subscript i denotes the position of the cell within the ordered list of cell SOHs, where C(m)

i ≤
C

(n)
i+1 (Algorithm 1, line 4). We assume that cells in parallel are electrically indistinguishable

while cells in series vary in SOC. The discharge current of a cell I(k)C (and hence the SOC
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Figure 3.4: The left cell k is aged less than cell k + 1. This is shown by indices i > j. The
efficiency of the charge transfer is denoted by γ.

variation of cell k) depends on ID but it is influenced by the balancing current I(k,k+1)
b flowing

between two cells k and k + 1. The efficiency of the transfer is denoted by γ. Figure 3.4 shows
a cell k being discharged by IDTP + I

(k,k+1)
b TP amount of charge while cell k+ 1 receives only

γI
(k,k+1)
b TP. The algorithm calculates this under the assumption that the voltage difference

among cells is not drastic as we discussed in Section 3.4.2. Accordingly, the current seen by
cell k consists of ID along with the current received by or transmitted to neighboring cells:

I
(k)
C = ID + η(k,k−1)I

(k−1,k)
b + η(k,k+1)I

(k,k+1)
b , (3.5)

where η(m,n) ∈ {−γ, 0, 1} indicates the charge transfer direction and loss. I
(m,n)
b = I

(n,m)
b

is independent of the direction. If η(m,n) = 1 then m transmits and n receives charge. If
η(m,n) = −γ then m receives and n transmits charge.

3.5.2 Charge transfer direction
The charge transfers between cells happen concurrently. However, a cell can only transfer
charge to one neighboring cell at one time, not to both:

η(k,k−1) 6= 0⇒ η(k,k+1) = 0 (3.6)

η(k,k+1) 6= 0⇒ η(k−1,k) = 0. (3.7)

As aging is a very slow process, the SOH values are updated at a low rate, and transfer direc-
tions η(k,k−1) and η(k,k+1) are not adjusted during a trip but only at the beginning. The algorithm
iterates through the cells sorted according to their C(k)

i , denoted by subscript i (health list) (Al-
gorithm 1, line 5). It marks the healthier neighbor as charge provider unless this neighbor is
already grouped with another cell (Algorithm 1, line 6).

We illustrate the rules for cell groupings in the example in Figure 3.5. The formal formula-
tion of the rules is given in Table 3.1. Due to space constraints, the special cases of cells k = 1
and k = NS are omitted but can be easily derived.

In Iteration 1), the least healthy cell C(3)
1 is grouped with its right neighbor C(4)

6 as this is
healthier than the left neighbor (i = 6 > 2 > 1). Accordingly, η(3,4) = −γ as the cell C(3)

1

receives charge and η(4,3) = 1 as cell C(4)
6 transfers charge. Due to this grouping, cell C(2)

2

cannot be grouped with cell C(3)
1 and therefore, η(3,2) = 0 and η(2,3) = 0. Equally, cell C(4)

6

cannot be grouped with cell C(5)
3 and thus, η(4,5) = 0 (Table 3.1, line 4).
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Figure 3.5: Finding the concurrent charge transfers. The grouping of cells is done by iterat-
ing through the ordered health list starting with the least healthy cell and grouping it with the
healthier neighboring cell.

In Iteration 2), a grouping partner for the second least healthy cell C(2)
2 is required and the

healthier neighbor C(1)
5 is selected (Table 3.1, line 6).

Finally in Iteration 3), the low health of cell C(5)
3 should be compensated. The healthier

neighborC(4)
6 is already grouped, which is indicated by η(4,5) = 0. Therefore, the right neighbor

C
(6)
4 , which is also healthier than cell C(5)

3 is selected and the η(m,n) is updated accordingly
(Table 3.1, line 1+5).

3.5.3 Balancing currents

Next the balancing currents I(k,k+1)
b are calculated (Algorithm 1, line 9). In general, the non-zero

balancing currents should be set to the maximum balancing current allowed by the architecture,
i.e., IB,max, to relieve the less healthy cell most as explained in Section 3.3, Observation 3).

I
(ν)
b = IB,max. (3.8)

The variable ν is used as a placeholder for the cell pairs grouped, where

η(k,k−1) 6= 0 ⇒ ν = (k − 1, k) and (3.9)

η(k,k+1) 6= 0 ⇒ ν = (k, k + 1). (3.10)
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Table 3.1: Get the η(m,n) values depending on the already given η values and the available
charge of the two neighbors of cell C(k): C(k+1) and C(k−1). A dash - means that the parameter
remains unchanged.

η(k−1,k−2)/ η(k,k−1)/ η(k+1,k)/if C(k+1)

η(k−1,k) η(k,k+1) η(k+1,k+2)

1: η(k−1,k) = 0 - -/- 0/- -/-
2: η(k+1,k) = 0 - -/- -/0 -/-

η(k,k−1) = undef.
3:

η(k,k+1) = undef. > C(k−1) -/0 0/−γ 1/0

η(k,k−1) = undef.
4:

η(k,k+1) = undef. ≤ C(k−1) 0/1 −γ/0 -/-

η(k,k−1) = 0
5:

η(k,k+1) = undef.
-/- -/−γ 1/-

η(k,k−1) = 0
6:

η(k,k+1) = undef.
-/1 −γ/- -/-

If both η(k,k−1) = 0 and η(k,k+1) = 0, then the balancing currents I(k−1,k)b and I(k,k+1)
b are also

zero. However, we need to consider two special cases. Firstly, if the current IB,max applied over
TP would prematurely deplete the healthier cell, we need to apply a reduced current.

I
(ν)
b =

Ch

TP
− ID. (3.11)

Secondly, if the balancing current IB,max is high and the discharge current ID is small enough,
the less healthy cell could rest and

I
(ν)
b =

1

γ
ID. (3.12)

The decision criteria are depicted in Table 3.2. It takes into consideration the capacity of
the healthier cell Ch and the less healthy cell Cl. Assuming that the I(ν)b are calculated while
iterating through the health list (i subscripts) (Algorithm 1, line 8), the following conditions
apply:

η(k,k−1) = −γ ⇒ Ch = C(k−1) (3.13)

η(k,k+1) = −γ ⇒ Ch = C(k+1) (3.14)

Cl = C(k) (3.15)

The case of η(m,n) = 1 is similar.

3.6 Simulation results
We compare the SOH-aware cell balancing algorithm proposed in Section 3.5 with an active
SOC balancing scheme and passive cell balancing. The active SOC balancing scheme equalizes

44



3. SOH-aware active cell balancing strategy for high power battery packs

Table 3.2: The balancing current I(ν)b depends on the available charge in the two neighboring
cells.

Charge Level Check
IB,max relation

Ch/TP Cl/TP
I
(ν)
b

1: ID > IB,max > ID + IB,max > ID − γIB,max Eq. 3.8

2: ID > IB,max < ID + IB,max > ID − γ
(
Ch

TP
− ID

)
Eq. 3.11

3: ID < IB,max > ID

(
1 + 1

γ

)
Eq. 3.12

4: ID < IB,max < ID

(
1 + 1

γ

)
> ID − γ

(
Ch

TP
− ID

)
Eq. 3.11

only the SOC of all cells making use of the same cell balancing architecture for fair compari-
son [86]. We transfer charge between neighboring cells which have the larger SOC difference.
But instead of applying the maximum IB,max, we equalize the SOC as much as possible. If
that equalization should not be possible in TP then Equation 3.11 and 3.12 are applied. We be-
lieve this baseline is reasonable enough, given the fact that most of the real-world battery packs
utilize passive cell balancing, and active cell balancing is still a field of active research.

In passive cell balancing, no balancing happens during discharge. But when charging, all
cells are charged to full SOC. Cells that reach full charge earlier are discharged by resistors.
This scheme has the advantage that the architecture is simple and cheap. However, its energy
efficiency is low as the excess charge is dissipated as heat. Furthermore, the usable capacity
of the pack is smaller and requires that there are no outliers in cell parameters for acceptable
system efficiency. However, SOH optimization cannot be performed with passive balancing.

We simulate a battery pack with an architecture similar to the one of the Nissan Leaf 24 kW h
battery pack which features 96 cells in series and 2 in parallel (96s2p) enhanced with the active
cell balancing architecture from Section 3.3. We simulate the battery pack in MATLAB. Our
model includes the aging model from Section 3.4.1. The cells connected in series vary in
SOH and aging-speed. We assume the cells’ initial SOHs to be uniformly distributed in the
interval [0.9, 1] and an aging-speed range of [54.352, 55.264] ppmc. This is a resemblance of the
temperature inhomogeneity in a pack and the cells’ manufacturing variations. If not mentioned
otherwise, we assume a maximum balancing current IB,max of 5 A. We assume the period TP to
be 3600 s. The simulation runtime of one charge-/discharge cycle is approximately 0.06 s.

In the following, we investigate the dependency of our heuristics on (i) the balancing current,
(ii) the aging-speed range, and (iii) the initial aging distribution. For the first two tests, we
initialize the cells with a fixed initial age distribution. The EOL is reached when the SOH of
the least healthy cell reaches 0.7. We compare three different user profiles: light, medium, and
heavy. All three users repeat a pattern similar to the one shown in Figure 3.1. For all three
users, the repeated pack SOC pattern starts from Shigh = [1; 1; 1; 1; 1; 1; 1] and discharges to
Slow = [S2;S2;S2;S2;S2; 0.3; 0.3] with S2 being 0.8, 0.6 and 0.3 for light, medium and heavy
user, respectively. As the capacity fades, Slow is adjusted.
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Figure 3.6: Comparison of balancing schemes with varying balancing current IB,max. The
aging-speed is 54.674 ppmc.

3.6.1 Dependency on balancing current

The gain of the balancing schemes strongly depends on the balancing current. For the given
initial SOH distribution, Figure 3.6 shows that for low balancing currents, the SOH-aware cell
balancing performs very similar to SOC cell balancing. For balancing currents IB,max greater
than 1 A, 2 A, or 3 A the SOH-aware cell balancing clearly outperforms conventional SOC bal-
ancing. This is the case for all three user profiles, the heavy, medium, or light user profile. For
approximately IB,max =7 A, the SOH-aware scheme stabilizes at a gain of up to 23.5 % over the
passive cell balancing. The gain is similar for all profiles. The results clearly suggest that the
balancing architecture is an important design decision. Investing in a stronger balancing infras-
tructure can be rewarded by the increased cycle life of the battery pack. The main difference
between user profiles is the total number of cycles until EOL, where, as expected, the battery
pack of the heavy user ages much faster compared to the pack of the light user.

3.6.2 Dependency on aging-speed

Next, we investigate the impact of aging-speed variations induced by temperature inhomo-
geneities by increasing the interval from zero variation (all cells have an identical aging-speed)
to a doubling of the aging-speed (the least healthy cell ages twice as fast as the slowest aging
cell). The x-axis in Figure 3.7 shows the maximum aging-speed among a pack, normalized
to a minimum aging-speed of va,min = 54.352 ppmc. For example, a variation of 1.6 denotes
a normalized aging speed distribution from 1 to 1.6. The balancing current equals 5 A. As
expected, the number of cycles decreases with increasing aging-speed. Additionally, the gap
between SOH-aware and passive cell balancing is almost constant at a gain of up to 14.7 %,
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Figure 3.7: Comparison of balancing schemes with varying normalized aging-speed, where 1
means that all cells age at the same speed.

16.4 %, 17.2 % for heavy, medium, and light users, respectively. The gain of SOC balancing
over passive cell balancing reaches up to 11.7 %, 8.2 %, 7.7 % for heavy, medium and light user,
respectively.

3.6.3 Dependency on initial aging distribution

As we investigate the neighbor-only balancing techniques, the initial SOH distribution strongly
influences the cycle life of the pack. In the following, we fix the balancing current to 5 A,
which is a typical current achieved by state-of-the-art architectures, and the aging-speed va to
54.674 ppmc, randomly generate 20 uniform SOH distributions and calculate the mean cycle
life. The performance in terms of cycle life of the proposed algorithm as well as passive and
SOC balancing strongly depends on the initial distribution of differently aged cells within a
pack. On average, the SOH-aware cell balancing outperforms the passive cell balancing by
approximately 12.5 % for the heavy user, 13.3 % for both the medium and light user while the
SOC balancing yields gains of approximately 4.4 %, 3.8 %, 3.4 % over passive cell balancing
on average for heavy, medium and light user, respectively (Figure 3.8). The results suggest that
the arrangement of cells varying in SOH and aging-speed within a pack is an important criterion
to be considered.

3.7 Concluding remarks

Cell balancing architectures in large battery packs equalize SOC differences between cells stem-
ming from manufacturing variances and temperature distribution within the pack to increase the
usable capacity within a single cycle. We show that conventional active SOC balancing algo-
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Figure 3.8: Mean number of cycles until EOL for 20 random initial distributions of aged cells
for light, medium, and heavy users, respectively.

rithms do not make use of the full potential of the balancing architecture in terms of increasing
cycle life. We propose a novel SOH-aware balancing scheme that increases the cycle life of the
battery pack by up to 23 % by reducing the load current on cells with lower SOH. Considering
the high prices for battery packs this leads to a massive benefit.

At the time of writing, no clear distinction of the impact of the cooling system and manu-
facturing inhomogeneities on SOH degradation can be made. Therefore, once advances have
been made it would be interesting to refine the modeling. Moreover, in addition to balancing
currents, the cooling flow could be optimized to further mitigate the aging of individual cells.
Furthermore, the monetary cost aspects need to be discussed. Balancing architectures that allow
higher maximum balancing currents are more expensive. A trade-off with the cooling capability
of the thermal system needs to be discussed.

Next, the algorithm could be extended to non-neighbor architectures. Non-neighbor ar-
chitectures allow charge transfers to non-neighboring cells with higher efficiency compared to
multi-hop charge transfers. An optimization problem needs to be formulated that maximizes
the pack SOH while complying with concurrency constraints.

Another interesting implication that can be made is the correlation between aging speed and
pack quality. The current practice is to sort cells and include only cells of similar quality into a
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pack. Pack costs can be lowered if cells of different quality are assembled into the same pack.
Due to varying aging speeds among cells, the SOH spread of such a mixed quality pack will
increase even faster compared to a pack consisting of cells with the same quality. However,
with an active cell balancing architecture, a suitable maximum balancing current, and an SOH-
aware strategy, these higher initial SOH deviations can be acceptable. The associated costs for
sorting cells to only include cells of similar quality in a pack need to be studied. Based on this,
a trade-off of sorting costs and cell balancing costs could be formulated.

49



3.7. CONCLUDING REMARKS

50



4
Smart2: Smart charging for smart phones

In this chapter, we present Smart2, an advanced smartphone charger that mitigates the capacity
fading of the battery, which until now has usually been ignored. Smart2 exploits the fact that
many users charge their phones overnight. Since the overnight charging duration is unneces-
sarily long, the battery is subjected to a high average SOC, which accelerates battery aging.
Therefore, we delay the charging adaptively to be done shortly before the phone is unplugged.
With this scheme, when averaged over the duration of the night, the average SOC is lower,
and hence aging is reduced. Indicators are a set alarm clock and/or statistics of the previous
usage. Similarly, we lower the maximum target SOC. To enable this, the main challenges are
firstly, to find a solution that does not negatively influence the usability and secondly, to quantify
the achieved savings in terms of aging mitigation. Towards this, we propose a novel charging
scheme which can be implemented in the smartphone’s firmware. Furthermore, we propose a
modified battery charging device that can be used with almost all existing smartphone models.
Using our proposed techniques, the average battery cycle life can be nearly doubled from 3.7 to
6.6 years.
Chapter outline: Chapter 4 is organized as follows. In Section 4.1, we outline typical smart-
phone usage scenarios to motivate this work and then summarize the contributions made in
this chapter. In Section 4.2, we present related work including previously known aging aware
charging systems. Next, in Section 4.3, we present our proposed system and describe multiple
implementation possibilities. Then, in Section 4.4, we give details on the three predictors. To
demonstrate the smart charger’s effectiveness, we evaluate its impact on the battery aging in
Section 4.5. After having presented the smart charger user study, we discuss the topic of intelli-
gent chargers for mobile devices on a broader scale in Section 4.6 and point out open issues to
be addressed in the future. Finally, we conclude this chapter in Section 4.7.

The following text and figures in Sections 4.1 to 4.5 and partly Section 4.7 are quoted mostly
verbatim from [121]. Small adjustments have been made to ensure good readability and layout
of the full thesis. ©2015 IEEE. Reprinted, with permission, from [121].
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4.1. INTRODUCTION

4.1 Introduction
One of the most important limitations of smartphones is their battery runtime. Even though
batteries have evolved during the last years and despite the high-capacity Li-Ion cells that
smartphones are equipped with nowadays, smartphones usually have to be recharged every day.
Whereas the available runtime might be sufficient shortly after the purchase of the device, the
capacity fading effect reduces the available capacity over time until after 2-3 years only 80 %
of the initial capacity might be available and the battery gets empty before the user usually
recharges it.

4.1.1 Motivation
Battery aging usually means power and capacity fading. In this work, we are interested in the
latter and use the terms aging and capacity fading interchangeably. Battery aging is influenced
by the battery temperature, average SOC, SOC swing, and charge-/discharge current. While the
battery’s capacity decreases even when not in use, the reduction of remaining available capacity
increases whenever the battery is cycled, in other words, when it is charged or discharged.

As a result of capacity fading, either larger batteries are built into the phone that will last
for a whole day even when aged or the battery needs to be replaced, which imposes a signif-
icant cost. Moreover, there are many phones which have batteries that cannot be replaced by
the user. If the battery runtime decreases below an acceptable value, the whole device usually
is replaced. In addition to the additional expenses, the high amount of electrical waste is of
concern. Considering a decreasing innovation rate on the smartphone’s hardware and result-
ing longer usage time, a fast-aging battery remains the bottleneck in smartphone disposal and
resulting environmental issues.

Hence, battery aging needs to be mitigated. We propose a novel aging aware charging
scheme that mitigates the capacity fading by reducing the average SOC because a high aver-
age SOC is one of the factors that increase capacity fading. Intelligent software components
already exist in other device classes such as laptop computers that manage the charging process
to increase the cycle life of the battery. For example, the Lenovo Battery Manager [88] allows
one to select a maximum SOC. For smartphones, simply reducing the maximum SOC would
reduce the battery aging, but in some cases, it would artificially shorten the battery runtime
below the acceptable level. However, the detailed personal data available on smartphones, viz.,
a detailed history of the phone usage and recharging behavior can be exploited to make predic-
tions to optimize the charging procedure towards reducing the battery aging without impairing
the usability of the device.

4.1.2 Contributions
In this chapter, we for the first time present a novel context-aware scheme for aging aware
battery charging that achieves the reduction of the average SOC and hence contributes to the
mitigation of the battery’s capacity fading. This is done by shifting the start of the charging
process in time and by lowering the maximum SOC. Since smartphones are usually charged
during the night, batteries usually reach 100 % of their maximum SOC a long time before their
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Figure 4.1: Intelligent smartphone charger. Charging is adapted to the use pattern to reduce
battery degradation.

chargers are unplugged. During this time, the SOC remains at its maximum level thereby ac-
celerating battery aging. By shifting the charging process to be done shortly before the phone
is unplugged, the phone remains at a much lower SOC for most hours of the night. The average
SOC is lower without harming the user experience. To address an unexpected need for phone
energy overnight, we propose a two-stage charging process. When the charger is plugged-in,
the battery is charged to a lower SOC first (e.g., 50 %) and the remaining charge is provided in
a second charging process that finishes shortly before the phone is unplugged from the charger.
The unplugging time is estimated based on the alarm clock a user has configured in his/her
mobile phone (see Figure 4.1) as well as statistical usage data. Besides, the charge which is
consumed during the day is predicted to allow for an adaptive reduction of the maximum SOC
while still providing enough charge to keep the phone operative during the whole day. Combin-
ing both, shifting the charging in time and lowering the maximum target SOC, the battery cycle
life can be almost doubled from 3.7 to 6.6 years, as shown in Section 4.5.

Using our scheme allows for building batteries with smaller capacity into phones that due to
less aging, will be usable for a longer time. Another advantage of these batteries is their smaller
size and lower weight. Furthermore, the amount of electronic waste can be reduced.

In this work, we make the following contributions:

• We present a novel context-aware charging scheme that uses a combination of shifting the
charging process in time and adaptively lowering the maximum charging SOC according
to the required amount of charge needed per day. Hereby, the average SOC is reduced,
which results in the mitigation of the battery’s capacity fading.

• Towards this, we compare three predictors that exploit the available usage data and the
regularity of usage patterns on smartphones to adaptively adjust the charging process. We
compare an SMA, an EMA, and a probabilistic predictor.

• We describe two different implementations of this system. One has been realized as a
pure software solution running as an application on an Android smartphone, the other
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one is an external charger that works independently of the specific charger chip of the
smartphone for all Android devices.

• We evaluate our proposed scheme using real-world measurements combined with a bat-
tery aging simulation model and estimate the impact of our system on the battery aging.

• Finally, we conduct a user study to support our assumptions on usage patterns and test
the usability of our smart charger.

4.2 Related work and background

In this section, we present previous work on battery aging and derived models that are used to
evaluate the aging mitigation of our approach. Also, we summarize other aging aware appli-
cations for laptops and smartphones. Finally, we give an overview of works that analyze and
predict battery usage patterns of smartphone users.

4.2.1 Battery aging in smartphones

As described in Section 2.1.1, battery aging of Li-Ion batteries means either loss of power
capability due to the increase of the internal resistance, or capacity fading. Our work aims at
the mitigation of the latter.

Measurements on cycle aging of a 900 mA h LCO battery at 25 ◦C, which are presented
in [28], show that a lower upper charging voltage limit, lower charging and discharging rates,
and also shorter durations of top-up charging decrease the capacity fading. This part of the
charging protocol compensates for the self-discharge of a fully charged battery and maintains
a full charge level as long as the battery is still connected to the charger. The cell voltage
limit corresponds to the battery SOC limits, where a lower voltage or a lower maximum SOC
is preferable [91, 141]. In this chapter, we aim at several of these factors that can be targeted
during the charging period to reduce battery aging. The proposed smart charger not only delays
charging to reduce idle times at a high SOC but also stops charging at a lower maximum SOC
where applicable.

In this work, an aging model is used for quantifying the amount of battery degradation with
and without our proposed scheme. We select the Millner aging model [104], which uses average
SOC, SOC deviation, and temperature as inputs and simulates the capacity fading over time.
The model is summarized in Section 2.2.3. The parameter fitting in this model is done for an
LFP cell, while the typical cell chemistry used in portable devices is LCO. Most available and
already fitted battery aging models do use other cell chemistries than LCO and instead take
data of batteries developed for use in EVs that are optimized for high power and slower aging.
According to [127], the cycle life of LFP cells is more than two times higher than the one of
LCO. Therefore, our results on battery aging presented in Section 4.5 can be seen as an upper
bound, while the real cycle life is likely to be even shorter and hence the beneficial impact of our
proposed charging technique is expected to be even higher. Also, from a consumer perspective,
building batteries with improved degradation profiles into portable devices would be desirable.
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A sign that battery aging awareness also is of concern to manufacturers is a patent filed by Apple
Inc. that describes a tracking procedure for capacity fading in portable devices [101].

4.2.2 Battery management applications

From the studies and models described above, it is clear that lowering the maximum SOC would
help to reduce the battery aging. For notebook computers, programs already exist that stop the
charging after a predefined maximum SOC has been reached. This maximum SOC can be
chosen manually by the user. Examples for such notebook applications are the Lenovo Power
Manager [88] and the Samsung Battery Life Extender [129], which work only on notebooks
of the respective manufacturers. Hence for laptops as well as smartphones, the battery control
possibilities also depend on the specific device. Our application uses the concept of limiting
the maximum SOC and expands it by adaptively doing so as well as by adaptively setting
the start time of the charging process based on the usage pattern. Both concepts reduce the
overall average SOC. Lowering the target SOC avoids the disadvantageous, high voltages while
delaying the charging process only reduces the time spent at the high voltages. The typically
more distinct regularity of smartphone usage patterns compared to the ones of laptops facilitates
an adaptive implementation on smartphones.

In the case of smartphones, the application Battery Doctor [23] claims to prolong battery
life by a three-stage charging method. As the source code of this application is not publicly
available, it is unclear whether the application’s developers control the charging current, which
however seems unlikely as Android does not provide access to charging control functionalities
on unrooted devices. It seems that the application mainly encourages the user to develop a
battery-friendly charging behavior by notifying the user on, e.g., when to unplug the phone.

4.2.3 Smartphone usage predictors

As already mentioned, we suggest adaptively delaying the point in time when the SOC is
charged to its target value to lower the average SOC. Hence, we need to estimate the unplug
time of the phone by either evaluating the alarm clock time or predicting the unplug time, based
on statistics of the previous user behavior to adjust the starting time of the charging process.
The assumption that most people charge their phones overnight has been confirmed by [112]
and [45]. Users that mainly charge overnight have a longer average plug duration than users
that also charge during the day, which means that keeping one’s phone plugged overnight [112]
leads to an unnecessary high average SOC. In [45] it is shown that in 77 % of the cases the
smartphone is plugged-in for longer than 30 min after the full charge level has been reached.
Therefore, the charging start time can be delayed to decrease the average SOC.

Besides, predicting the SOC drain between two charging sessions helps to adjust the cut-
off SOC (or voltage) when charging. Often different power sources, such as USB and AC,
go along with different plug durations. The usage frequency of these different sources varies
among users [74]. Also, the start of charge and end of charge level depends on patterns de-
termined by the individual use [74]. According to [45], the average lowest SOC level before
recharging determined among multiple users is at 30 %. Accordingly, a great number of users
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Figure 4.2: Comparison of charging schedules with and without smart charging. Curve (a) is the
conventional charging scheme, curve (d) shifts the charging in time, and curve (f) additionally
has a lower maximum target SOC. Curves (b), (c), and (e) are the respective average SOCs.

could discharge their phones to a lower SOC while still having enough energy left in their
batteries before the next recharge.

Several predictors of future battery levels have been presented in the literature [74,112]. We
need to estimate times of unplugging events and energy consumption until the next plug event.
This requires similar methods as the ones on predicting the battery level that are presented in
the literature.

4.3 Aging-aware charging
In the following, we explain our aging aware charging concept and discuss challenges and
design options when realizing our approach on different target platforms.

4.3.1 Aging mitigation by delayed charging
As stated before, one of the factors that increase the battery aging is a high average SOC. By
lowering the average SOC of a smartphone battery, its degradation can be decreased. This
is done by shifting the start of the charging process in time and by adaptively reducing the
maximum SOC. Figure 4.2 illustrates this charging scheme. The left graph shows a typical
profile (a), where the SOC stays at 100 % overnight with an average SOC of 77.5 % (b). In the
right graph, our proposed optimizations are applied. The average SOC is lowered to 62.5 % (c)
by delaying the charging process to be done in the morning (d). In the lower graph on the right,
the average SOC is further reduced to 32.5 % (e) by lowering the charging target SOC (f).

The delay of the charging process is either set manually by the user, gathered automatically
by reading the alarm clock, or predicted from the user’s statistical usage pattern. Similarly,
the target SOC can be either selected by the user or can be learned by the system based on
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the average daily usage including a safety margin. As a wrong assumption on the unplug time
causes great inconvenience for the user, i.e., the battery is still uncharged when unplugged,
we suggest to immediately charge to a medium SOC and delay the charging only after this
medium SOC has been reached (see Section 4.3.4), which however results in a less efficient
aging mitigation.

An obvious objection towards this scheme is that charging overnight with a reduced charging
current might also have an improving effect on battery degradation. Hence the question arises
which of the two schemes should be used. First of all, no definitive answer can be provided
as this question needs further investigation in future work. There already exists a patent [100]
for charge rate reduction which argues that a reduced charging current has a positive impact on
the battery lifespan in terms of reducing the capacity fading. Unfortunately, no measurement
or simulation results are provided. However, one has to keep in mind that the charging of
the smartphone is likely to have an impact on the temperature of the smartphone, which has a
strong effect on battery aging. Therefore it cannot be said without further discussion, whether
a reduced charging current has a better effect than a delayed one. We revisit this question in
Section 4.6 where we discuss advances made in the meantime.

In the following, we describe two realization options of the proposed system: A software
implementation in terms of a smartphone application and a dedicated charging device. We then
introduce an algorithm that relies either on values manually entered by the user or uses the alarm
clock and predictors to calculate delay and target SOC.

4.3.2 Smart charger Android application

The above-described solution can be implemented either directly on the smartphone or an ex-
ternal charging device. To later understand the drawbacks of the direct implementation, we
first need to explain the dependencies of the Android OS and the smartphone hardware with its
respective drivers.

Figure 4.3 shows the abstraction layers of the hardware and the software. On the hardware
layer, three main components are involved in charging the smartphone battery. The power
Integrated Circuit (IC) manages power sources and the power distribution to the system. Among
other tasks, it is responsible for voltage regulation, voltage scaling, power source selection, and
charging functions. The charger controls the charging process of the battery and one of its tasks
is to ensure a safe charging process. The fuel gauge monitors the battery and provides SOC,
SOH, state of connection, capacity, and voltage readings to the system.

On the software level, the application has a registered broadcast receiver for the power
connector state. A broadcast receiver receives a notification if a system or application event
occurs, i.e., when a charger is connected or disconnected. If the application is notified about a
plug event and the desired charging time is in the future, the charging has to be disabled. Hereby,
the virtual file system sysfs is used to exchange information between the power management
chip and the user space, i.e., writing to the corresponding sysfs file can enable or disable the
charging process.

Due to different power-ICs with different drivers, not all smartphone models provide the
same charging control functionalities. At the time of writing, the sysfs charging control varies.
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Figure 4.3: System abstraction layers in Android

For example, for the Nexus 4 phone, a switch variable enables or disables charging, whereas, in
the Nexus 5 phone, a parameter is provided to reduce the charging current.

As the sysfs is located in the kernel space and no standardized Application Programming In-
terface (API) is provided by the Android system, it is currently not possible to write a universal
application that works for all Android smartphones. When writing an application for a specific
smartphone, root access is required to access the sysfs interface. However, a solution that can
be used for almost all current smartphones is to implement our smart charging scheme into the
charger device. Such smart charger hardware is described next.

4.3.3 Smart charger hardware

As explained above, no standardized implementation from the smart charger as a pure Android
application is currently possible. Therefore, we develop a second solution that is based on
hardware and hence works independently of the smartphone model. The attractiveness of this
hardware solution arises from its independence of the smartphone power IC and a less profound
intervention in the OS. A switch is inserted in the supply lines of the USB cable used for
charging to interrupt the current supply if needed. The switch is controlled by a microcontroller
which also is used as a USB host controller to receive SOC data and the alarm clock information
from the smartphone.

4.3.4 Alarm clock based charging delay

The battery health-aware charging algorithm can be implemented either on the external micro-
controller or directly on the smartphone. To reduce the average SOC, we adjust two parameters:
We adaptively delay the start time of the charging process and we lower the target SOC Star.
Algorithm 2 determines the reserve amount of charge Smed, target SOC Star and the unplug
time tup. These are then used to manage the charging scheme.
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Algorithm 2 Smart charging
Require: mode

1: if mode == manual then
2: Smed = GetReserveChargeFromSettings()
3: Star = GetTargetSocFromSettings()
4: tup = GetUnplugTimeFromSettings()
5: else
6: if mode == alarm then
7: tup = GetUnplugTimeFromAlarmTime()
8: else
9: tup = GetUnplugTimeFromPredictor()

10: end if
11: Smed = SetReserveChargeToConstantValue()
12: Star = GetTargetSocFromPredictor()
13: end if
14: EnableCharging(Smed)
15: DisableCharging(tup - Tchg)
16: EnableCharging(Star)

The mode variable allows switching between three operation scenarios: manual, alarm, and
predictor. If mode is set to manual the target SOC Star, reserve amount of charge Smed and
unplug time tup are set manually by the user in the preferences settings menu. To retrieve this
data, we determine three functions:

• GetReserveChargeFromSettings()
Gets the manually set value for the reserve amount of charge Smed.

• GetTargetSocFromSettings()
Gets the manually set value for the target SOC Star.

• GetUnplugTimeFromSettings()
Gets the manually set value for the unplug time tup.

Alternatively, the unplug time is set to either the value of the alarm clock if it is set or else it
is predicted based on unplugging statistics as indicated by the mode variable being set to alarm
or predictor, respectively.

• GetUnplugTimeFromAlarmTime()
In case the alarm clock is set, the unplug time tup is determined from its set value. We use
the alarm clock application that comes pre-installed with Android and is used by most
users.

• GetUnplugTimeFromPredictor()
In case no alarm clock is set, a predictor is used to determine the unplug time tup.

The reserve amount of charge and the target SOC are obtained in the same way for both
modes alarm and predictor.
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• GetTargetSocFromPredictor()
Another predictor determines the target SOC Star.

• SetReserveChargeToConstantValue()
The medium SOC Smed is set to a predefined, preferably low value.

Once the smartphone is plugged-in, it charges to the medium SOC Smed to have a safety
margin in case the smartphone is unplugged earlier than expected. After charging to the reserve
SOC Smed, charging is disabled until the charging time is reached. The charging time is derived
from the difference between the determined unplug time and the estimated duration: (tup−Tchg).
The charge duration Tchg describes the time it takes to charge the phone to the target SOC Star.
For the sake of simplicity of presentation, in our implementation, we set this duration to a
constant value because the variation among phones is small. Nevertheless, this duration could
also be estimated from previous charging cycles which might be included in future versions.
Two functions control the charging:

• EnableCharging(S)
This function charges the battery until a certain SOC S value has been reached.

• DisableCharging(t)
This function disables the charging until a given time t.

4.4 Plug duration model
Three predictors that model the plug duration have been developed and will be compared in the
following: An SMA predictor, an EMA predictor, and a probabilistic predictor.

As discussed in Section 4.2, the best results in lowering the average battery SOC, and hence
the battery aging, are expected when delaying the night time charging. Previous studies [112]
as well as our sample data in Figures 4.4a and 4.4b show that plug durations tend to be longer
when the plug event occurs at night time.

As expected, the charging behavior varies among users, see Figure 4.5. The x-axis shows
the charging duration rounded to full hours. The number of events per a certain duration is
counted. User 2 has many short charges. Both users have an increased number of samples for
charge durations of 8 h to 9 h which is likely to be the charging overnight. Due to the differences
among users, adaptive predictors are of advantage.

4.4.1 Simple moving average predictor
If the manual mode is not active, two predictors take action. In case the alarm clock is not
available, a first predictor estimates the time the phone will be unplugged from the power source
(AC, USB). To further lower the SOC, a second predictor computes a target SOC Star below
100%. A moving average can be used for a simple implementation. However, more elaborate
models exist in literature.

To predict the duration the phone usually remains plugged Tplg, we sort the last plug dura-
tions Tm,n into multiple bins n according to the plug time. We use one bin per hour of the day,
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Figure 4.4: Plug duration vs. plug time for User 1 and 2. If plugged during the day the charging
durations tend to be shorter. Longer charging durations occur when plugged at night times.
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Figure 4.5: Number of charging events for given charge duration
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hence the total number of bins is Nbins = 24. Once a plug event is detected, the moving average
in bin n over the last NPE = 5 events (the number compromises between smoothing over the
last numbers and forgetting the past fast enough when the user’s behavior changes) is calculated
by

Tplug,n =
1

NPE

NE,n∑
m=NE,n−(NPE−1)

Tm,n, (4.1)

whereNE,n is the total number of entries into one specific bin and Tm,n is the stored duration
in bin n and counter m.

The time when charging should be enabled tstart is determined by

tstart = tnow + Tplg − Tchg − Tbuf , (4.2)

where Tchg is the duration it takes to charge the battery to the target SOC Star and Tbuf is an
additional safety time to account for possible wrong predictions.

We need a second predictor that determines the target SOC Star for our evaluation. It uses
the same number of bins n = 0...23 and calculates the moving average over the last NSOC = 5
events in the respective bin n:

∆Sn =
1

NSOC

NE,n∑
m=NE,n−(NSOC−1)

∆Sm,n, (4.3)

where ∆S = S(tupprev)−S(tplg) with S(tupprev) being the SOC when the phone was previously
unplugged and S(tplg) being the SOC when the phone was plugged. The target SOC Star is then
calculated by

Star = ∆Sn + Sbuf , (4.4)

with Sbuf being a safety margin to account for longer usage. Also, note that the bin nS is
determined by the time the phone was last unplugged tupprev instead of using the plug time tplg
as for the plug duration Tplg. Algorithm 3 shows the sequence of calculations. If a plug event
occurs, first the history of ∆S values is updated in the respective bin (Algorithm 3, line 2).

Next, the unplug time tup and the target SOC Star are predicted (Algorithm 3, lines 3 and 4)
based on the current hour. When the phone is unplugged, the plug duration is stored in the
respective bin (Algorithm 3, line 7).

4.4.2 Exponential smoothing
As a comparison, we use exponential smoothing. We simply replace Equation 4.1 and calculate
the EMA recursively by the previous plug durations. We start with the plug duration and the
counter m = 1: Tplug,1,1. The estimated plug durations are then:

Tplug,n,1 = T1,n, for m = 1 (4.5)
Tplug,n,m = αTm,n + (1− α)Tplug,n,m−1, for m > 1, (4.6)

where the smoothing factor α is set to 0.2 in our example.
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Algorithm 3 Predictor
1: if PlugEvent then
2: HS ← UpdateSocHistory (∆Snow)
3: CalculateUnplugTime(HP )
4: CalculateTargetSoc(HS)
5: end if
6: if UnplugEvent then
7: HP ← UpdatePlugDurationHistory(Tnow)
8: end if
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Figure 4.6: Fitting a bimodal log-normal probability density function to the statistical data

4.4.3 Probabilistic predictor

Our third predictor fits the data to log-normal distributions, similar to the one suggested by [36]
for stay durations at a given location. Given a certain plug time tplg, we can fit the conditional
probability density function f(Tplg|tplg) to the statistical data. We use discrete hourly bins
tplg = 0...23. As can be seen from Figure 4.5, the plug duration is either very short or lies in
the range of 8 h to 9 h. Furthermore, the duration cannot take negative values. Hence, we model
the probability density function of the charging delay as a bimodal log-normal distribution. We
fit the data to a mixture of log-normal functions:

f(Tplg|tplg) =
wplug

Tplgξ1
√

2π
exp

(
−(lnTplg − µ1)

2

2ξ21

)
+

1− wplug

Tplgξ2
√

2π
exp

(
−(lnTplg − µ2)

2

2ξ22

)
,

(4.7)

where Tplg is the plug duration, ξ1 and ξ2 are the variances of the log-normal functions, µ1 and
µ2 are the mean values of the two functions and wplug is a weight applied to the two probability
density functions. The data is fitted using a maximum likelihood estimator. Figure 4.6 gives an
example of a resulting curve compared to the measured data.
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Figure 4.7: Statistical data fitted to a unimodal log-normal function

Apart from the additional information that is provided by the mixture of log-normal distri-
butions, such as variance, expected value, and the respective weights, we can also determine a
value that gives us a prediction on the duration.

One drawback of this predictor, which fits the statistical data to a probability density func-
tion, is that in case the sample size is very low, fitting is impossible or very inaccurate. Hence,
our implementation deals with the following cases. If no samples are available, the delay is set
to zero, and charging starts immediately. If there are only one or two data samples, the mean
value of theses samples is calculated. In the case of three samples or if the bimodal predictor
fails to fit the data and degrades, a unimodal predictor is used:

f(Tplg|tplg) =
1

Tplgξ
√

2π
exp

(
−(lnTplg − µ)2

2ξ2

)
. (4.8)

Figure 4.7 shows data fitted to a unimodal log-normal function. For four samples and more, the
bimodal log-normal predictor is used.

4.5 Evaluation
In this section, we show the amount of battery aging that can be mitigated by delaying the
charging and lowering the target SOC. We first evaluate our smart charger application, which
delays charging based on the alarm clock, in a real user test. We then compare the results
of an optimal predictor to the ones achieved by the predictor that determines its decisions on
statistical usage patterns.

4.5.1 Smartphone application evaluation
Our first experiment shows how charging is delayed merely based on the alarm clock in a real
usage scenario. A user runs our smart charger application on his smartphone for two weeks
and the charging is delayed according to his alarm clock settings. As can be seen in Figure 4.8,
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Figure 4.8: Battery profile for a user that runs the smart charger application. Charging is delayed
according to a set alarm. The red triangles indicate the plug times.

the target SOC is adjusted according to user preferences on the maximum SOC in the morning
and minimum SOC in the evening and a linear interpolation when charged during the day.
Therefore, the SOC usually varies between 95 % and 50 %. The estimated cycle life for this
usage is 6.6 years. When comparing Tuesday and Thursday in week 1 to Wednesday in week 2,
one can see that the minimum SOC was set from 50 % to 40 % during the test period. The
profile does not have long periods of being at a high SOC and starts discharging shortly after
being unplugged (the only exception is the second Friday when no alarm was set). It can be
seen that having reached the target value when charging the smartphone triggers drawing a
rather high discharge current, with a gradient that is even higher than the discharge current
while in use. We assume that this is due to some background processes remaining active in
the assumption that the phone is powered by AC since it is plugged-in even though charging
is disabled. Currently, we counteract by frequently recharging to the target value. However, a
better solution would be to schedule the background processes differently.

4.5.2 Smart charging with optimal predictor
Next, we would like to quantify the separate as well as joint effects on the aging of shifting the
charging process in time and adjusting the target SOC. Towards this, we derive the battery aging
for the unmanaged curve and compare it with three scenarios: Delaying the charging, lowering
the target SOC and the combination of both. We first calculate the aging for the three scenarios
by optimally delaying the charging with an optimal predictor. In Section 4.5.3, we determine
the aging for the same three scenarios but instead of optimal adjustments, we simulate the use
of a predictor instead. We collect real user data using the Android application Battery Log [67]
for a duration of two weeks. The average SOCs per profile vary between 54.4 % and 78.5 %.
The accumulated hours spent at 100 % SOC during the recording period are between 16 h and
120 h.

Using these profiles, we simulate a smart charging behavior and determine the correspond-
ing amount of battery aging using the aging model from [104] implemented in MATLAB. The
MATLAB model takes the SOC profile and temperature data as an input. The model provides a
bound on the cycle life and real aging is likely to be even faster than our numbers suggest as has
been explained in Section 4.2. We use an optimal predictor, therefore the battery reaches full
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Profiles 1 2 3 4 5 6 7 8 9
Original 2.6 2.5 3.3 4.2 3.7 3.1 5.6 3.3 4.6
Optimal predictor for
Delay charge time 3.4 3.6 6.0 5.2 4.3 5.1 6.3 3.8 5.2
Star = 90% 3.8 3.6 4.8 6.0 5.4 4.6 8.1 4.8 6.7
Delay and Star 4.8 4.9 7.6 7.2 6.1 6.7 8.9 5.7 7.5
SMA predictor for
Delay charge time 3.2 3.0 5.2 4.3 4.7 3.8 6.2 4.0 6.0
Star 3.3 3.4 3.7 6.7 5.8 4.1 7.1 3.7 5.9
Delay and Star 4.4 4.4 5.8 7.2 6.7 6.4 7.9 4.5 8.3

Table 4.1: Estimated cycle life in years for recorded user data. We use an optimal predictor and
SMA prediction of delayed charging, lowered target SOC, and a combination of both.
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Predict delay and SOC

Predict Reduced SOC

Predict delay

Delay and SOC

Reduced SOC

Delay

Original
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Figure 4.9: Lifetime comparison. Average cycle life estimation over 9 users from Table 4.1 and
range from minimum to maximum estimation.

charge precisely at the moment when it is unplugged. To not leave the user with no charge in
case he unexpectedly has to unplug the phone earlier, the battery is charged to an SOC of 50 %
immediately when plugged. After that, charging is delayed.

As can be seen in Table 4.1 and Figure 4.9, considering the original unmanaged profile, most
batteries last for about three to four years, with some exception that would last up to almost six
years for normal charging behavior. If the batteries would be charged smartly, the expected
cycle life would have an average above six years. Hence, delaying the charge time increases the
cycle life, i.e., the duration until the battery capacity has faded to 80 % of its initial value, by
factor 1.1 (profiles 7 and 9) to 1.8 (profile 3). The average of all profiles is 1.3.

Next, we lower the target SOC to a fixed value of 90 %. The effect on aging mitigation lies
within a similar range as delaying the charging start time. The battery cycle life is increased by
a factor of 1.5 on average for our examples.

It should be noted that sometimes simulations of lowering the target SOC result in a full
drain of the battery before the plug event in the recorded data set. Also lowering the target SOC
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potentially effects the user behavior, e.g., the user might decide to plug-in his phone earlier.
This kind of psychological effect can of course not be captured in the simulation. Delaying the
charging process usually does not result in similarly negative simulation effects.

A combination of both, delay of the charging process and lower target SOC, yields the most
benefit. Here, the achieved increase in lifetime has a factor of 1.6 up to 2.2 compared to the
battery cycle life without any SOC management. The average is 1.8. Figure 4.10 (a)-(d) shows
the recorded and simulated battery profiles for User 4.

4.5.3 Smart charging with predictor

Now the same comparison as in the previous section is done for the SMA predictor that esti-
mates the delay time and the target SOC. The predictor shows good results performing only a
little worse than the results of the optimal predictor, see Table 4.1. On average, the improvement
factor, which is the predicted cycle life divided by the original cycle life, is decreased by 0.1 for
each of the three prediction combinations (predict delay, predict target SOC, joint prediction).
For the joint SMA prediction of delayed charging and decreased target SOC, the gain of lifetime
over the original cycle life yields factor 1.7, while a factor of 1.8 was achieved with the optimal
predictor results.

A problem that occurs when using a predictor is that the battery is sometimes drained down
to 0 % of SOC due to a wrong prediction of the charging delay or wrong prediction of the target
SOC and remains at its empty state for some time. This lowers the average SOC and therefore
increases the cycle life, however, it is not the desired behavior as the smartphone cannot be used
during this time. Such happenings can partly be seen from the data provided in Table 4.1 in case
the predicted cycle life for the delay predictor is larger than the simulated cycle life. Making the
user recharge during the day is not a desired behavior of the predictor but infrequent occasions
may be considered acceptable in terms of battery aging.

Further, it should be noted that the predicted target SOC is not allowed to be below 70 % and
hence lies within the range of 70 % to 100 %. Therefore in some cases, the target SOC predictor
may perform better than the fixed value simulation because the predicted target SOC may be
lower than the one fixed at 90 %. In Figure 4.10 (e)-(f), the charge plots for User 4 are shown.
To sum up, even the relatively simple SMA predictor helps to reduce aging. However, further
means of improvement are the optimized choice of bin size and buffer terms. Also, the SOC
predictor should be replaced by more elaborate suggestions from the literature that incorporate
further data. Alternatives for the plug duration predictor are discussed in the following.

As explained earlier, a major drawback of the use of the predictor is that in case of the wrong
prediction and earlier unplug time, the user will be left with an empty battery. We suggest two
measures to deal with this drawback. Firstly, when plugged-in, the phone should immediately
charge to a medium SOC to provide a reserve amount of charge in case of an earlier unplug time
at the cost of slightly less efficient aging mitigation. Secondly, the predicted unplug time should
be displayed in a user interface to provide the user the opportunity to immediately charge the
phone or to manually set an earlier unplug time.
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Figure 4.10: Charging plot of User 4 with recorded data (a), an optimal predictor for delayed
charging (b), lowered target SOC Star = 90% (c), and a combination of both (d). As well
as SMA prediction of delayed charging (e), predicted lowered Star (f), and a combination of
both (g).
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Figure 4.11: Sample sizes per plug time bin for the two data sets. The two users favor different
plug times.

4.5.4 Comparison of predictors

In Section 4.4, we discuss three predictors for estimating the plug duration: An SMA predictor,
an EMA predictor, and a probabilistic predictor. For evaluating these predictors, we use two
data sets of two different users that contain data for several weeks. In future work, further
evaluation with bigger data sets containing more users is planned.

As can be seen from Figure 4.11, the two users show distinct patterns. The number of
samples per bin (plug times rounded to hours of the day) varies. All three predictors have
difficulties with outliers, independent of the data set (User 1 or User 2), see Figures 4.12a and
4.12b. The peaks of increased error are either real outliers or represent the first entry within a
bin for which no previous knowledge can be used.

A comparison of the predictors is done by calculating the mean squared error per sample
and computing the average of all errors. The results are shown in Figure 4.13. It can be seen
that the EMA predictor is slightly better than the one using an SMA predictor. The probabilistic
predictor is more accurate for both data sets.

Figure 4.14 shows a comparison of mean squared errors within a single bin. Outliers occur
also at later points in time and all three predictors have similar difficulties in dealing with them.

In summary, the advantage of the probabilistic predictor is that it is more accurate. How-
ever, the SMA predictor and the EMA predictor are easier to implement. Using a probabilistic
predictor can bring the efficiency of aging mitigation from the previous experiment even closer
to their optimum.

4.6 Discussion and open issues towards intelligent charging
Having presented the use case of the smart charger, in the following, we discuss further mea-
sures for the intelligent charging of mobile devices in general. Since the openly available solu-

69



4.6. DISCUSSION AND OPEN ISSUES TOWARDS INTELLIGENT CHARGING

−10 0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

1

2

3

·105

Sample

M
ea

n
sq

ua
re

d
er

ro
r[

m
in

]

EMA
SMA

Probabilistic

(a) User 1

0 50 100 150 200 250 300 350
0

2

4

·105

Sample

M
ea

n
sq

ua
re

d
er

ro
r[

m
in

]

EMA
SMA

Probabilistic

(b) User 2

Figure 4.12: Mean squared error per sample for User 1 and 2. The outliers are likely to represent
empty bins. All predictors have similar difficulties with outliers.
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Figure 4.13: Comparison of the mean squared error over all samples using the SMA predictor,
the EMA, and the probabilistic predictor.
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Figure 4.14: Comparison of errors within a single bin. Outliers occur also at later points in time
and all three predictors have difficulties.

tions do not make full use of the potential strategies, we show the open issues in implementation
as well as open research questions. We extend our discussion to not only include smartphones
but also tablets and laptops.

The following text and figures contain excerpts from an early version of [120], which are
quoted mostly verbatim. Adjustments have been made to ensure good readability and layout
of the full thesis. ©2020 IEEE. Excerpts, with permission, from [120]. It is enhanced by
perspectives from [83], which are rephrased cited separately.

Several works have dealt with health-aware charging [14, 26, 59, 83, 121]. However, com-
mercial solutions are not mature and further improvement of intelligent chargers that mitigate
battery aging is needed. First, we propose further extensions to the smart charger presented
in this chapter and outline the properties of an intelligent charging protocol. Then, we discuss
hardware extensions to under-dimensioned charge adapters. It had been found that the small
form factor of laptop chargers leads to insufficient power supply when connected to a charger.
Peak power demands cannot be met in high load conditions and the battery is used instead. This
results in increased aging. A possible solution is to use a hybrid energy storage consisting of
a battery with a capacitor, where the capacitor is used to meet additional load demands during
charging situations where the charger cannot fulfill the overall demand. Finally, we discuss open
issues and give suggestions on how to proceed with the development of intelligent chargers.

4.6.1 Intelligent charging protocol

We have seen in this chapter that many users charge their phones overnight. What makes sense
from the user perspective, however significantly increases the time a battery spends at high
charge level, thereby increasing battery aging. Intelligent chargers should avoid such situations
by adjusting the charging protocol and delaying the time until the battery reaches full charge
without compromising on the usage comfort.
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Figure 4.15: The intelligent charging protocol includes delay times, adjusts the charge current
during the CC charging, and adapts the length of the voltage relaxation phase during the CV
charging phase.

Present chargers follow the so-called CC-CV protocol as shown in Figure 4.15. First, the
device is charged with Constant Current (CC) to a certain threshold voltage, then the voltage
is kept constant during the Constant Voltage (CV) phase, where the current is slowly reduced
until full charge is reached. If the device remains plugged after a full charge is reached, the
self-discharge is compensated by occasionally topping charge.

The goal of an intelligent charger is to mitigate battery aging during the charging process.
The charging protocol could be modified not only by delayed charging as shown in this chapter
but also in combination with reduced charging current [14, 26] and voltage relaxation periods
[59] as has been shown in the literature. Compared to the traditional charging protocol, in
an optimized protocol, the CC and CV phases are still present, but their duration and timing
need to be varied. To the best of our knowledge, so far a joint optimization of delay length,
charge current, charge duration and voltage relaxation phase length has not been discussed in
the literature.

Cycle life gains reported for the above-mentioned works are up to 46.2 % [14] for optimal
charging current and delay, and adjusted voltage relaxation, on average 36 % percent [59]. If the
charge delay is combined with adjusted SOC the cycle life could almost be doubled as has been
shown in this chapter. These gains are significant and given the huge environmental impact that
could be achieved, we need to equip mobile devices with intelligent chargers.

The potential for positive environmental impact but also economic benefits for consumers
is immense. In 2018, the number of smartphones sold to end-users worldwide has reached
1.55 billion [51], all of them equipped with a Li-Ion battery. The smartphone user prevalence
worldwide is expected to reach 37 % in 2019 and will further grow in the next years [41]. All
these smartphones are used for a relatively short time. The average replacement lifespan for
smartphones in the US is estimated to be 2.9 years for consumers and 2.57 years for enterprise
[32]. These discarded phones will ultimately be disposed of.

Design challenges

To implement an intelligent charging protocol, the unplug time and required SOC need to be
known by the system. Modeling of the charge phase can be easily done by feature extraction
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Figure 4.16: Possible charge delay implementation using remote-controlled switches

from data sheets [13]. Predictors can estimate such values or else the user provides such in-
formation when plugging-in the phone, laptop, or tablet. In the latter case, the user has full
control but might opt for more conservative choices lacking the understanding of battery aging
factors. The challenge is to develop accurate predictors that significantly improve aging while
maintaining the usage comfort.

Different strategies to address the problem of too low SOC when unplugging the phone have
been proposed in related works: Either the mobile device could be charged to a minimum SOC
before the delay starts (as we propose in this chapter) or the delay is reduced and a minimum
charging current is applied while maintaining a good quality of service, which is defined as the
required SOC being reached at the time of unplugging [26]. Intelligent chargers should achieve
good user acceptance while mitigating aging.

Designing such a protocol in theory and solving optimization problems is only part of the
challenge. Common phone manufacturers and operating systems designers do not provide a
sufficiently accessible and standardized interface to delay charge, change the charge current,
and target SOC. Also, a wide range of different charger chips has been built into phones, all
with different interfaces. Remotely controlled power outlets are a possible implementation, see
Figure 4.16, with the advantage of being independent of the phone type.

The required length of charge delays can be determined by predictors or by reading set alarm
clocks, in particular, if the user charges overnight. The gains in the lifetime from introducing
charge delays and lower charging SOC have been shown in Figure 4.9. Notably, all measures
significantly improve cycle life, and also the predictors are close to ideal performance.

Existing solutions and apps

Solutions for battery health-aware charging range from mere battery health monitoring apps to
joint hardware and software solutions.

Existing apps show remaining charge capacity and cycle count [137] or even remind users
through alarms to unplug their phones, thereby avoiding charge topping once the full charge has
been reached [164]. However as discussed above, intelligent chargers should consist of more,
namely lower SOC, delayed charging, appropriate voltage relaxation time, and adjusted charge
time.
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For Android devices, an app exists that encourages the user to charge to lower SOCs [33].
As it is not possible to stop charging in Android from user or kernel space, the user is alarmed
by the app to unplug the phone once the desired charge level is reached. While some people
might be willing to take this extra effort, the common user most likely prefers more comfort.

Some manufacturers realize that a growing number of users cares about the sustainability
of their devices. For example, Apple announced to include battery cycle life-enhancing features
into its new operating system release [3]. They claim to learn from past charging routines and
delay the last 20 % of charge to complete charging just in time when the user unplugs the phone.
We could observe that a similar strategy is implemented in some Sony phones. In case the user
deviates from past routines, he/she will be left with 80 % SOC which should be sufficient almost
always. Yet, this strategy does not exploit the full potential of intelligent charging. In particular,
new phones most likely have a higher headroom than 20 % and adjustments of charge current
and voltage relaxation periods are not mentioned.

Additional to charge delays and lower target SOC, the charge rate could be reduced. High
charging currents are even more detrimental than high discharge currents and boost charging has
a particularly negative impact [79]. Manufacturers hold patents for adaptive charge rate methods
[97]. However, we could not find any such approaches being promoted by manufacturers at the
moment.

A promising approach towards health-aware charging comes from the startup company
Qnovo. They sell joint hardware and software solutions to manufacturers [125] that imple-
ment EIS on mobile platforms to measure battery health in real-time. Based on the results they
claim to adjust the charging parameters. However, they do not give any details on which kind
of parameters are adjusted, let alone their algorithm. Concluding from one of their patents, the
adjustment of charging current and voltage relaxation times is part of the method [96]. This
seems to be a promising direction towards intelligent chargers.

Based on these examples, we find that intelligent charging requires access to the charger
chip, which is usually not available to independent developers. In particular, no app solutions
that work for all devices of the same operating system are feasible at the moment. Hence, cus-
tomers need to rely on manufacturers to provide intelligent charging. Even though we observe
some promising approaches, the current version of intelligent chargers is not mature, and better
and faster solutions need to be found. Not only customer awareness needs to be raised but also
standardized charging interfaces need to be provided to app developers. To become independent
of manufacturers, dedicated devices for intelligent charging need to be developed that at least
adapt target SOC and delays such as proposed in this chapter.

4.6.2 Under-dimensioned chargers

Not only the charging protocol shows deficits, but also the charger capacity often does not suf-
ficiently satisfy the peak power demands of the device [83]. With laptops having become more
lightweight, also laptop chargers have decreased in size. The disadvantage of such chargers is
that their power capability is also reduced. The common laptop usage happens in the office and
at home. Hence, laptops are mostly used while they are plugged-in to an AC-outlet. The re-
duced power of chargers leads to an additional current drain from the battery, thereby increasing
its aging.
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Table 4.2: Power gap between consumers and adapter power [83]
Model T530-2359-A44 MacBook Pro 2013
Component Specification Power Specification Power
CPU i7-3610QM 45 W i7-3840QM 45 W
LCD 15.4" W 6 W 15.4" 6.2 W
VGA NVS5400M 35 W GT650M 45 W
HDD 7200rpm 5.5 W 7200rpm 5.5 W
RAM DDR3 8G 2.5 W DDR3 8G 2.5 W
Total design power 94 W 104 W
Adapter 90 W 85 W
Gap 4 W 19 W

Power
converter

Electronics 
circuits

Built-in
battery

Reduced-
capacity
power 
supply

Notebook computer

DC bus

DC-DC
converters

Figure 4.17: Hybrid charger with supercapacitor [83].

A comparison [83] of total design power and charger power for two laptop computers is
shown in Table 4.2. A power gap exists for all models. When the device is operated while
plugged to a power supply, the battery is exposed to detrimental additional discharge currents
at peak loads as the charger does not provide enough power. The reduced capacity power
supply is incapable to satisfy the peak power requirement and battery aging progresses, which
is unexpected by the common user.

As a remedy, a hybrid energy storage consisting of a supercapacitor and a battery can be
used [83]. The supercapacitor, which has a much better cycle life, supplies the additional en-
ergy while connected to a power supply and the battery can rest, see Figure 4.17. Experimen-
tal results confirmed that benchmark performance increased when using the reduced capacity
power supply in combination with the supercapacitor. The hybrid energy storage in this sce-
nario is also very cost-effective as the capacitor needs to be of small size and comes at low cost,
while a battery replacement is very expensive in relation as shown in Figure 4.18. As such a
supercapacitor buffer reduces aging by up to 69 % [83], it helps to significantly delay the battery
replacement which is the reason for the high cost savings.

This hybrid energy storage solution has particular importance during the top-up charging
phase, while the previously discussed intelligent charging strategies have focused on the CC
and CV phase of the charging protocol.
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Figure 4.18: A small capacitor costs USD 2 and significantly extends the cycle life while each
battery replacement costs USD 140 [83].

Additionally, when operated unplugged, the supercapacitor can be used for peak shaving
and in conjunction with the rate capacity effect will result in longer runtime for the device as
the Li-Ion battery will be exposed to lower current rates and therefore delivers more energy.
Co-optimization with thermal management strategies can further improve cycle life while a
trade-off with runtime is required as higher fan speeds result in higher power consumption. Us-
ing the right thermal strategy, cycle life is improved [159]. When the supercapacitor performs
peak shaving then more output power is available due to the rate capacity effect and also the
temperature of the battery increases less because the ohmic resistance of the battery is propor-
tional to the square of the discharge current. The challenge is to find the right trade-off between
fan speed and battery degradation. With lower fan speed more tasks can finish but higher battery
degradation occurs. While with high fan speed, system performance will be lower but the aging
is less.

The advantage of supercapacitors is their lower aging rate. Of course, hybrid energy stor-
ages could also be built from multiple battery cells and joint charge and discharge strategies.
Such charging control strategies for heterogeneous battery cells should be based on the avail-
able charging current, available charge time, cell temperatures, aging constraints, and other
contextual information [46].

4.6.3 Open issues

While we have discussed only two use cases, we believe that a lot of potential for innovation
exists and commercial solutions are not yet mature in this domain.

First of all, the implementability of intelligent charging strategies remains a big issue due
to the high variability of operating systems, charger chips, and missing common interfaces.
This could be solved if phone and operating system manufacturers would agree on standardized
interfaces to control charging. Current efforts have been negligible and do not have broad
visibility.

Implementation of intelligent charging without the help of manufacturers is possible but
more cumbersome as additional hardware is required which is less user friendly. Also, alarms
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and notifications to encourage battery health-friendly behavior are mostly considered inconve-
nient. User acceptance itself is a crucial point for better battery health. Intelligent chargers
need to maintain convenient usability. Users need to contribute by either manually providing
plug times and required SOC levels. Otherwise, predictors can be applied. Raised user aware-
ness would also increase the pressure on manufacturers as the demand for sustainable battery
health-friendly devices would grow.

Furthermore, prediction of charging opportunities based on user location, such as proposed
in [126], and estimated future energy consumption may also help to lower the SOC swing and
to further reduce battery sizes.

Finally, the charging protocol design needs to be refined. The appropriate length of CC
and CV phases as well as the amount of charge current and required voltage relaxation times
may depend on the specific battery. More experimentally verified research that does not only
rely on models is required. Such information could also be provided by battery manufacturers,
however, usually is not extensively included in datasheets. Online measurement and according
adjustments are an alternative but this requires costly additional hardware to be built into every
device. Furthermore, the necessity and impact on battery degradation of fast charging need
to be further explored. Fast charging may be of less importance to users if they know that it
degrades battery health. Finally, the joint optimization of charge current, charge delay, and
voltage relaxation periods needs to be investigated. Such parameters might change with the age
of the battery, which also remains an open question.

4.7 Concluding remarks

The concept of an intelligent smartphone battery charger has been presented. The charger makes
use of typical smartphone usage profiles, i.e., most smartphones are charged overnight. The
charger delays charging and hence lowers the time spent at a high SOC, which is one of the
factors that increase battery degradation. We presented Smart2 a context-aware charging device
that determines the possible charging delay by either manually applied settings, reading an
alarm, or using a predictor. Simulation of the battery aging showed, that the battery cycle life
could be extended by a factor of 1.8 on average when delaying charging and lowering the target
SOC. A probabilistic predictor for plug duration estimation shows the most accurate results
compared to an SMA and an EMA predictor.

Further, the necessity of intelligent chargers to increase the cycle life of our mobile devices
has been highlighted. Current charging strategies of mobile devices bear a huge potential for
significantly extending the useful life of devices. Existing strategies such as adaptive charge
current, charge delays, and adaptive voltage relaxation times have been discussed. Previous
studies reveal the great potential of these strategies in significantly increasing cycle life, while
their availability in present commercially available devices is negligible. Also, the potential of
hybrid energy storages during plug times to shave power peaks and save the battery from detri-
mental cycling has been discussed. Using supercapacitors to overcome the power cap stemming
from undersized charge adapters, financial longterm costs can be reduced significantly.

However, several open issues remain. Particularly manufacturers are in charge to provide
intelligent charging capabilities and to open interfaces for longer cycle life and higher sustain-
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ability of products. For example, charge delays and adaptive charge current should be integrated
into all devices. Besides, providing access to the charging interface in the user or kernel space
would help developers to integrate more intelligent charging solutions. With this in mind, we
encourage more research on optimal charging strategies. Ideally, for any battery, the interde-
pendence of charge delays, charging current, and voltage relaxation periods should be provided
in the datasheet. Finally, the customer awareness of battery health-aware charging is required
to raise demand for battery health improvements in their mobile devices.
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5
Cost/privacy co-optimization

in smart energy grids

The smart energy grid features real-time monitoring of electricity usage such that it can control
the generation and distribution of electricity as well as utilize dynamic pricing in response to the
demands. For this purpose, smart metering systems continuously monitor the electricity usage
of customers and report it back to the UP. This raises privacy concerns regarding the undesired
exposure of human activity and the time of use of home appliances. PV and residential EES
have proven to be effective in mitigating privacy concerns. However, this comes at several
costs: Installation of PV and EES, their subsequent aging, and the possibly increased electricity
cost. We quantify the trade-off between privacy exposure and financial costs by formulating
a stochastic dynamic programming problem. Our analysis shows that i) there is a quantifiable
trade-off between the financial cost and privacy leakage, ii) proper control of the system is
crucial for both metrics, iii) a strategy solely focusing on privacy results in high financial costs,
and iv) that for a typical residential setting, the costs for a trade-off solution lie in the range of
USD 600-1700. As the load flattening has a peak shaving effect desirable for UPs, increasing
privacy is mutually beneficial for both, customers and UPs.

Chapter outline: Chapter 5 is organized as follows. Section 5.1 motivates the problem of
privacy leakage in smart energy systems. A brief overview of related works is presented and
the contributions of the chapter are summarized. A motivational example and problem formu-
lation are shown in Section 5.2. System modeling and controller derivation are presented in
Sections 5.3 and 5.4, respectively. Simulation results are discussed in Section 5.5. The chapter
concludes in Section 5.6.

The following text and figures are quoted mostly verbatim from [123]. Small adjustments
have been made to ensure good readability and layout of the full thesis. ©2019 IEEE. Reprinted,
with permission, from [123].
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5.1 Introduction
Smart grids promise more efficient, reliable, and sustainable electricity generation and distribu-
tion thanks to the use of information and communication technologies. Dynamic energy pricing
motivates the users to shift loads and perform demand-side management increasing the energy
efficiency of the grid. All this is enabled by the use of smart meters, which continuously mon-
itor the load and communicate the data to the UP. The UP can then set electricity prices to
encourage customers to voluntarily shift the load out of the peak hours. At the grid-scale, the
avoidance of peak loads increases load predictability and reduces the need for costly fossil-fuel
reserve generators, which enhances energy efficiency and reduces the carbon dioxide emission.

5.1.1 Motivation and related works

The load profiles gathered by smart meters convey private information [102, 106]. While con-
ventional electricity meters only record the accumulated electricity usage over a month, smart
meters allow the UP to access real-time and fine-grained usage data. In the worst case, if ac-
cessed by an unauthorized third party, the data can be used to extract information on residential
activities. For example, Non-Intrusive Load Monitoring (NILM) could be used to identify indi-
vidual appliances and respective usage profiles [57].

Prior works

Prior works have aimed at reducing privacy leakage by using battery storage to modify and
hide the usage pattern of certain appliances and human activities [53, 73, 90, 161]. Other works
propose distributed load shifting [93]. Also, the impact of additional renewable energies on
the privacy leakage rate has been investigated [53]. Generally, the proposed algorithms either
flatten [73,161] or randomize the load [93]. Interestingly, these works overlooked an important
advantage of load flattening: Its peak shaving effect is very much desirable for the UP’s demand-
side management by increasing the predictability of grid power and hence reducing reserve
power. Thus, load flattening is mutually beneficial for customers as well as UPs.

While the effectiveness of the approaches in privacy protection has been well studied, there
has been limited research on the cost of privacy enhancement. There have been approaches
to reduce battery energy losses [73], electricity cost of a dynamic pricing policy [161], and
maintenance cost in terms of battery cycle life [73, 161]. However, the latter is one of the most
important factors and has not been considered properly, mainly due to the complexity of the
battery aging models. Previous work calculates the battery degradation based on cycle counting
[161], which is very inaccurate unless very simplistic battery usage profiles are assumed. Other
works consider the effect of DOD on battery aging, but neglect other important factors such as
average SOC and C-rate [73], where C-rate is defined as the battery current relative to the battery
capacity. However, it is widely known that the battery aging not only depends on the number
of charge/discharge cycles or DOD but also on several other factors such as average SOC,
temperature, and C-rate. As such works intend to develop sophisticated battery management
policies resulting in complex battery usage profiles, cycle life estimation will be inaccurate
without considering such factors, and proper analysis of the relationship between the privacy
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Figure 5.1: The original profile seen at the smart meter can be modified through a water filling
strategy using EES and PV to increase privacy at an increased cost. We propose a cost/privacy
trade-off.

enhancement and entailing costs cannot be made. Today, battery costs are significant and they
have to be properly estimated to evaluate the cost of privacy protection.

The trade-off between privacy and cost

The general setup is shown in Figure 5.1: An EES and PV jointly modify the power profile
such that less residential activity information can be extracted. The power generated by the
PV could be either used directly to satisfy any household appliances or it could be stored in
the EES for later use. Similarly, electricity could be drawn from the grid, stored in the EES,
and consumed at a later point in time. An example strategy for privacy protection would be
the water filling policy [73], which completely flattens the load profile and leaks no privacy
information, see Figure 5.1. This particular strategy has the additional advantage of also being
beneficial for the UP’s demand-side management through its peak shaving effect, a synergy
that should be exploited. On the other hand, costs arise from PV and EES installation and
maintenance and possibly increased electricity bills. For example, larger EES sizes provide
more flexibility for privacy protection but come at a higher installation cost. Larger PV sizes
in general provide financial benefit by reducing the use of electricity from the grid, but their
usefulness in protecting privacy should be carefully evaluated as, if too large, they might saturate
the EES and reduce its capability of flattening out the load profile. Apart from those sizes, EES
degradation depends very much on the usage pattern, i.e., the chosen control actions. In general,
higher EES usage increases the aging rate.
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5.1.2 Contributions
In this chapter, we, perform a novel, comprehensive analysis of the trade-off between the privacy
enhancement with concurrent peak shaving and the associated financial overhead. To the best
of our knowledge, this is the first work to present a control strategy that not only minimizes the
privacy leakage and performs peak shaving but also minimizes the financial cost with realistic
battery aging models. To jointly consider the reduction of privacy leakage and financial costs,
we synthesize an optimal controller for a given EES and PV setup. We model a whole residen-
tial system as a Markov Decision Process (MDP), formulate an average reward maximization
problem, and derive the optimal controller using a relative value iteration algorithm.

The contributions of this chapter are summarized as follows.

• We propose a control strategy for a system consisting of EES and PV that minimizes both
financial cost, i.e., the sum of battery and PV depreciation and grid electricity costs, as
well as the privacy enhancement, that simultaneously results in peak shaving.

• We quantify the trade-off of privacy enhancement with peak shaving and financial over-
head under privacy and financial cost optimal control strategies. Using our framework,
we identify the Pareto-optimal solutions.

• We achieve increased accuracy in our solution and analysis by using an elaborate battery
model in our framework that is more precise compared to models in previous works and
considers SOC, C-rate, and temperature.

• We identify balanced strategies that trade-off privacy and financial cost. Towards this,
we show that, while full privacy can be achieved at acceptable but non-negligible costs, a
controlled cost/privacy trade-off based on our methodology reduces these costs by more
than half.

• Due to the correlation of privacy enhancement and peak shaving, which mutually benefit
consumers and UP, we propose cost splitting of trade-off-strategies, potentially creating
a new business model.

5.2 Motivational example and problem statement
Several algorithms exist for extracting privacy information from an electricity usage trace.
Among them, NILM algorithms are capable of identifying when individual appliances are
turned on and off [142], and of distinguishing different instances of light bulbs using cluster
analysis [165]. This sort of information could be exploited by malicious attackers to find times
in which the residents are routinely out of the house or to undesirably disclose the behaviors of
the residents.

Motivational example

One possibility for full privacy protection would be a water filling strategy such as the one
shown in Figure 5.1 using EES and PV. The EES is used in a way to hide the residential load
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Figure 5.2: Grid power of privacy-focused water filling wp = 1 vs. grid cost-focused strategy
wg = 1. The mutual information for the privacy and grid cost-focused strategy is 10.733 and
11.28, respectively. Data: EES 3 and PV 1, June 4-10, 2015.

completely such that the power usage seen from the grid is almost constant and maintained
around a target line. On the downside, such a strategy would extensively use the EES and not
optimize towards time-of-use prices resulting in accelerated EES degradation in addition to in-
creased electricity cost. In Figure 5.2, we show two grid power profiles of a home equipped with
PV and EES resulting from a financial cost-focused strategy and a privacy-focused strategy. In
our results, we find that the total system cost of privacy leakage reduction and peak shaving
sums up to around USD 1300 to 1600 per year, while a conventional, financial cost-optimal
set-up reduces the electricity bill and costs around USD 600 per year. This high discrepancy,
which is dominated by battery aging costs, confirms the need for an improved cost analysis
in particular by using a more accurate battery aging model compared to the ones in previous
works [73, 161]. In reality, a resident who wants a certain degree of privacy protection would
desire a policy that balances cost and privacy. Our optimization objective, therefore, is to min-
imize privacy leakage, battery degradation, and grid cost at the same time. A bilateral profit
originates from load profile flattening also being known as peak shaving, which benefits the
UPs’ demand-side management and motivates cost splitting among the involved parties.

Problem statement

We propose to solve this multi-objective optimization problem by formulating a single-objective
weighted sum problem. The weighted objective consists of the cost associated with buying and
selling electricity to and from the grid λg, the battery degradation cost λh, and the privacy cost
λp, here determined by the deviation of the grid power from the average household load power.
We want to find the EES current IEES(t) that minimizes the sum of the aforementioned costs
over the total lifetime of the system:

min
IEES

lim
T→∞

T∑
t=0

wgλg(t, IEES) + whλh(t, IEES) + wpλp(t, IEES), (5.1)
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with wg, wh, and wp being the associated weights. We need a decision at each time instance t
and reformulate the objective:

∀t : min
IEES

wgλg(t, IEES) + whλh(t, IEES) + wpλp(t, IEES) (5.2)

5.3 System models

In this section, we present the models required in the MDP optimization framework: An elabo-
rate battery cycle life model, which is crucial for correctly assessing the financial cost, a stochas-
tic residential load model, a PV power generation model, a dynamic energy pricing policy, and
a privacy metric.

5.3.1 Battery cycle life and associated cost

We model the Li-Ion battery behavior according to the equivalent circuit model and respective
parameterization in [24] and derive its cycle life degradation in terms of an empirically fitted
severity factor map using the Suri et al. model [140]. The model has been summarized in
Chapter 2.2.3. The severity factor ζfunct describes the amount of damage done to a battery by
its current SOC, the applied C-rate, and the temperature as shown in Figure 2.2. This cycle life
model is particularly developed for control applications as the computational effort is compa-
rably low and no iterative dependencies exist. The model is derived for Li-Ion batteries, which
are commonly used in hybrid electric vehicles but also stationary storages. The framework can
be easily adapted to other cell chemistries by using a similar data fitting approach as in [15].

We use the severity factor ζfunct for the controller design and determine the actual financial
loss due to EES degradation. Assuming that a new storage is purchased at some cost of ΛEES

in USD and that an EES that has reached its EOL ε% (in percent), i.e., when 80% of the initial
capacity is left, is worth USD 0.00, we calculate the cost in USD depending on the capacity loss
in percent Qloss,%:

ΛSOH =
1

1− ε%
ΛEESQloss,% (5.3)

5.3.2 Residential load model

We use the publicly available UMass Smart* Home Data Set [147] to model a residential load.
The data set monitors several appliances in a home with three residents. The accumulated
load power of Home A in 2014 is used for model training and to show the effectiveness of
the method, other data than the training data is used for the evaluation, i.e., Home A data from
2015. Most times, the residential load data is in the range of 0 kW to 2 kW. Rarely, higher values
occur, and in a preprocessing step, these data points are removed to reduce the state space of
our model and simulation time. We use six equally spaced power states whose probabilities
are shown in Figure 5.3. We compute the transition probability matrix MLd from the transition
histogram for Home A in 2014.
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Figure 5.3: Load probability distribution

5.3.3 PV power generation model and PV cost
The PV power generation depends on the location and orientation of the PV cells as well as
the solar irradiance, which varies according to the cloud cover. If more clouds occlude the
sky, the irradiance is less, and therefore less PV power is produced. The UMass Smart* Home
Data Set [147], we used for the load model, also contains cloud cover data. Similar to the
load transition probabilities, we calculate the cloud cover transition probability matrix. We use
the model from [40] to derive the solar irradiance from the cloud cover. The model requires
the latitude and longitude associated with the cloud cover data. Due to data protection, the
exact location is not conveyed in the data set, but the rough location is known to be in Western
Massachusetts [6]. As any location within that region suits our purposes, we choose the latitude
42.45◦ and longitude -73.2458333◦ of Pittsfield. The solar irradiance is then integrated into a
PV model [134]. We choose the dominant PV characteristics, however, refining of the model
might be possible by considering further factors, such as series-parallel connections of panels,
shading, bypass diodes, and hardware choice of microinverters.

PV cost

Additionally to the gain from PV power selling (Section 5.3.4), the costs of installation and
degradation of the PV need to be considered. We assume a cost of USD/W 1.37 in 2011 [44].
Then, the overall installation cost, that considers also other factors such as the inverter, sums up
to USD/W 3.43 for rooftop use. The PV degradation rate can be estimated by 0.8 % per year
[70]. The EOL is reached when the PV has degraded by 80 %. We assume a linear degradation
over the resulting lifetime of 25 years.

5.3.4 Dynamic energy pricing
Modern grid energy price policies vary the prices depending on the time of the day. We use the
pricing schemes offered by the Los Angeles Department of Water and Power [94] on weekdays
in June 2017. The prices are in USD per kW h.

ΛUSD(t) =


USD 0.13967 for 00:00 - 09:59, 20:00 - 23:59

USD 0.16411 for 10:00 - 12:59, 17:00 - 19:59

USD 0.24328 for 13:00 - 16:59

(5.4)
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Selling energy comes at a gain of USD 0.145 per kW h [94].

5.3.5 Mutual information
We need a metric to quantify privacy exposure and use mutual information as in many prior
works [53,90]. Mutual information IMI(X ;Y) is an information-theoretic quantification metric
that describes the amount of information that one random variableX = {x1, x2, ..., xn} contains
about another random variable Y = {y1, y2, ..., yn}. It is defined as

IMI(X ;Y) = H(X ) +H(Y)−H(X ,Y)

=
∑
x∈X

∑
y∈Y

p(x, y) log2

p(x, y)

p(x)p(y)
.

(5.5)

The average amount of information contained in one random variable is expressed by its en-
tropy, H(X ) and H(Y), and H(X ,Y) denotes the joint entropy. Mutual information can also
be expressed in terms of the joint probability mass function p(x, y) and the probability mass
functions p(x) and p(y). In our problem setup, the two random variables are the original res-
idential grid power consumption and the new grid power draw after the original residential
load profile has been modified using EES and PV. We use mutual information to evaluate and
compare the performance of our control strategies.

5.4 Financial cost and privacy optimization
To solve the optimization problem stated in Section 5.2, we formulate an MDP average reward
maximization problem based on the component models from the previous section. The goal is to
minimize the weighted sum of electricity cost, battery depreciation cost, and privacy exposure.
We provide the Transition Probability Matrix (TPM), Transition Reward Matrix (TRM), and
synthesize a controller.

5.4.1 States, actions and reward
An MDP enhances Markov chains by actions and rewards. The latter ones motivate state tran-
sitions as the goal is to maximize the reward. Actions and random variables influence the
transitions between states. Additionally, the states are influenced by random variables. In our
problem, a state b ∈ B is defined by the tuple (u, z, l, S) consisting of the present cloud cover
u ∈ U at a given time-of-day z ∈ Z , resulting in a certain PV power, the load power l ∈ L,
and the EES SOC S ∈ S. A change in any of the four variables results in a state transition.
Changes in time-of-day are deterministic as the next time-of-day state depends on the previous
one. The action a ∈ A, that should be determined, is the charge or discharge current applied
to the EES. A non-zero EES current will automatically result in a state change. The reward
R(b, b′) for transitioning from one state b to another state b′ takes values in r ∈ R. The overall
reward is the weighted sum of privacy leakage, the EES aging cost, and the cost from buying or
selling electricity to or from the grid. It also depends on the time-of-day z due to the time-of-use
pricing scheme.
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5.4.2 Transition probability matrix
The TPM contains the probability for a transition from state b to state b′ if action a is taken.
Assuming that the cloud cover and load are independent processes, we can simply multiply the
respective probabilities:

Pra(b, b
′) = Pru(ub, u

′
b)Prz(zb, z

′
b)Prl(lb, l

′
b)PrS,a(Sb, S

′
b) (5.6)

The sequence of states should be aligned with time. Hence, the probability of moving from
one time-of-day to the subsequent one is Prz(zb, z

′
b) = 1, while all other transitions of z have

probability 0. Contrary to the probabilities of cloud cover state transition Pru(ub, u
′
b) and load

power transitions Prl(lb, l
′
b), the SOC transition probabilities PrS,a(Sb, S

′
b) depend on the ac-

tion a. The SOC change is largely deterministic, but the accuracy of runtime estimation of SOC
is known to be limited, and hence, we probabilistically model the transition. We assume that the
probability of the actual SOC is uniformly distributed around the estimate Sb from Sb − Su/2
to Sb + Su/2, where Su is the SOC granularity. As a result, the probability of the actual SOC
after ∆t would be uniformly distributed in a window of length Su around Sb + ιC(a)∆t/3600
where ιC(a) is the C-rate corresponding to a. We omit the exact equation for PrS,a(Sb, S

′
b) due

to space constraints.

5.4.3 Transition reward matrix
The objective of the problem is to find a policy π(b) that defines an action a to be taken when
in state b. The average reward over an infinite time window should be maximized:

lim
TO→∞

E
[ TO∑
t=0

Ra(bt)
]
, (5.7)

where Ra(bt) is the instantaneous reward for state bt at time t, and a is the action to be taken
when in bt. In our work, the instantaneous reward Ra(b, b

′) when transitioning from state b to b′

is the weighted sum of the inverse normalized costs for battery depreciation λh,norm, grid-related
expenses from buying or selling electricity λg,norm and action a induced privacy leakage λp,norm:

Ra(b, b
′) =wg(1− λg,norm(b, b′)) + wh(1− λh,norm(b, b′))

+ wp(1− λp,norm(b, b′)),
(5.8)

where the wg, wh, and wp are the respective weights. Due to normalization, we let the sum of
the weights equal 1.

5.4.4 Battery aging, grid and privacy cost
Let us now see how the individual costs are calculated. The health or cycle life cost is deter-
mined by the severity factor for the given SOC Sb, the C-rate stemming from action a, and the
temperature θEES. Assuming a perfect cooling, the latter is constant.

λh(b, b′) = f(Sb, a) = ζfunct(Sb, ιC(a), θEES) (5.9)
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Table 5.1: Maximum and minimum costs
j λj,max

h ζfunct(1, ιC,max, θEES) 100% SOC, highest possible C-rate
g Pg,max∆tΛUSD,peak maximum grid power Pg,max at peak hours
p |Pg,max − Ptarget|. maximum grid power
j λj,min

h ζfunct(0, 0, θEES) 0% SOC, zero discharge current
g −Pg,max∆tΛUSD,peak maximum grid selling of PV and EES power
p λp,max = 0. no diversion from target value

The grid cost is determined by the amount of power drawn from the grid Pg, which can
easily be derived from the required load power, the cloud cover dependent PV generation, and
the EES power using the following relation: PEES = Pload−PPV−Pg. The grid electricity cost
at a particular time-of-day is applied for period ∆t.

λg(b, b
′) = f(a, u, z, l) = Pg(a, u, l)∆tΛUSD(z) (5.10)

Finally, we model the privacy cost as the diversion of the grid power Pg from a defined
target value Ptarget. From an information-theoretic perspective, such flattening of the power
profile effectively reduces mutual information and simultaneously achieves peak shaving.

λp(b, b′) = f(a, u, z, l) = |Pg(a, u, l, z)− Ptarget| (5.11)

The target value Ptarget equals the average load power reduced by the average PV generation.
The average load power can be estimated from past values, i.e., the average load over a year.
Even though the PV generation is subject to high seasonal as well as daily variations, in a real
system, the PV generation for a particular day can be estimated from weather forecasts. We
synthesize different controllers for discretized levels of PV generation. The above costs are
normalized using the maximum and minimum cost from Table 5.1:

λj,norm(b, b′) =
λj(b, b

′)− λj,min

|λj,max − λj,min|
, j ∈ {g, h, p} (5.12)

5.4.5 Solution
The solution of the MDP is a policy that defines an action a for each state that maximizes the
long term expected reward. The MDPToolbox from [20], which is used to solve our optimization
problem in MATLAB, implements a relative value iteration algorithm to find the controller
which maximizes the long term average reward. The interested reader may refer to [124] to get
more information on the algorithm.

5.5 Simulation results
In this section, we provide the simulation and evaluation results of the controllers derived above.
The evaluation is done on a custom developed simulator in MATLAB. Additionally to the mod-
els, we consider converter efficiencies for connecting EES and PV to the grid. We compare
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Table 5.2: Parametrization for EES and PV sizes
parameter EES1 EES2 EES3
nominal size 6.75 kW h 13.5 kW h 27 kW h
purchase cost USD 5k USD 8k USD 15.4k
PESS,min,PESS,max ±2.3 kW ±4.59 kW ±9.18 kW
Pg,max 4.3 kW 6.59 kW 11.18 kW
# actions a 51 126 251

parameter PV1 PV2 PV3
PPV,out 1 kW 3 kW 5 kW
purchase cost USD 3430 USD 10290 USD 17150

three EES and three PV sizes, as shown in Table 5.2, and vary the weights of the cost function.
The sizes of EES 2 and EES 3 are the two smallest commercially available Tesla Powerwall
storages [143]. EES 1 has half the capacity of EES 2. The sampling time ∆t = 1800 s is the
same as the one used in the load data set and is also typical for smart meters. The number of dis-
crete states for EES SOC S, cloud cover U and load power L is 21, 9, and 6, respectively. The
number of discrete actions, i.e., the number of discrete EES current levels, depends on the EES
size and is 51, 126, and 251 for EES 1, EES 2, and EES 3, respectively. The EES is maintained
at θEES =25 ◦C, the initial SOC is Sinit = 0.5, and the EOL ε = 0.8. We find that the grid power
target level Ptarget should vary depending on the predicted PV power generation on a particular
day. It changes based on the weather prediction and has a discretization granularity of 0.25 kW
steps. The predictor does not need to be perfect as the error could easily be compensated.

5.5.1 Privacy-cost trade-off

We are interested in the Pareto-optimal settings in terms of EES size, PV size, and weights. Fig-
ure 5.4 shows the financial cost versus privacy leakage, which is equivalent to the degree of peak
shaving. Different data points within a data group, defined by PV and EES size combinations,
denote results for different weight values. As expected, higher weights for a particular reward
come with better performance for the reward, but a worse one for other rewards. Strategies with
high grid weight generally show lower cost but higher privacy leakage. Strategies with high pri-
vacy weight generally result in higher cost but lower privacy leakage. However, the gain in one
domain is not always linear with the loss in another domain and hence a DSE approach is ap-
plied to ensure the best quality of control achieved at the lowest financial cost. The Pareto-front
is depicted as a dashed line. We can observe a trade-off relationship between the financial cost
and privacy leakage. The spread of mutual information may seem small at first glance. But the
grid power profiles of this seemingly low difference differ very much. As shown in Figure 5.2,
the grid power profile for a privacy-optimal strategy, wp = 1, with mutual information 10.733
is relatively flat, while the profile for a grid cost-optimal strategy, wg = 1, with mutual informa-
tion 11.28 has much higher variation. The controllers synthesized with a particular combination
of weight values, namely the ones whose results are part of the Pareto-front, perform better even
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Figure 5.4: DSE: Trade-off between privacy (low mutual information) and the total cost of
ownership for EES and PV combinations and different strategies. The selected node labels link
to the indices in Table 5.3.

though the EES and PV sizes are the same. This shows the significance of our approach: The
quality of control is crucial in achieving these Pareto-fronts.

5.5.2 Dimensioning of PV
In Figures 5.4 and 5.6, we can study the impact of varying PV and EES sizes on mutual infor-
mation and financial cost. We find that all points at the Pareto-front use the smallest PV size,
PV 1. Larger PV sizes do not reduce the mutual information as the EES loses flexibility in
storing grid power to flatten the grid profile. From the information-theoretic perspective on the
similarity of two random processes, more mutual information exists between a profile selling
PV power to the grid and the original profile than a flatter profile and the original profile. In
future work, instead of either storing or selling the PV power, a third option could be to not use
excess PV power. From Figure 5.4, we also observe that no clear impact of PV sizes on the
financial cost is visible. With larger PV sizes, more energy can be sold to the grid, but the cost
of purchasing the PV is also higher.

5.5.3 Dimensioning of electrical energy storage and quantification of costs
We find that, if the best control is performed, all EES and PV sizes achieve good financial costs
while larger EESs result in better (lower) mutual information values as more energy can be
stored and hence, a flattening of the grid power is easier to achieve. We find that combinations
of PV 1 with EES 1 and EES 2 achieve good trade-offs when an appropriate controller is used.
The annual costs for the Pareto results of PV 1 with EES 2, as shown in Table 5.3, are about
USD 600 (data point 12) for a financial cost-focused strategy, and USD 1700 (data point 13)
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Table 5.3: DSE selected results - PV 1, EES 2
idx EES [kWh] PV [kW] wg wh wp Financial Cost [USD] mutual Info
11 13.5 1 1

3
1
3

1
3

1009.30 11.029
12 13.5 1 1 0 0 637.05 11.195
13 13.5 1 0 0 1 1692.00 10.730
14 13.5 1 0 1 0 641.72 11.229
15 13.5 1 0.5 0 0.5 1540.70 10.733
16 13.5 1 0.5 0.5 0 641.72 11.229
17 13.5 1 0 0.5 0.5 1407.60 11.006
18 13.5 1 0.4 0.2 0.4 1377.00 10.908
19 13.5 1 0.4 0.4 0.2 641.10 11.230
20 13.5 1 0.2 0.4 0.4 1260.70 10.969
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Figure 5.5: Cost breakdown EES 2, PV 1: Aging cost varies most.

for a privacy-focused strategy. The costs of trade-off strategies naturally lie in between. For
example, the more balanced scheme of data point 11 results in much lower costs of USD 1000.
Note that the cost for the smallest EES 1 is lowest for a purely aging-focused strategy if PV 1
and PV 2 are installed. This means that the EES cost cannot be compensated by grid gains. For
all other cases, the lowest total cost occurs for a grid price-focused strategy.

Let us now analyze the contribution of the grid, PV, and aging cost to the overall financial
cost. Figure 5.5 shows a cost breakdown for EES 2 and PV 1. As expected, the PV cost
is the same for all controllers as it only depends on the PV size. The EES aging cost strongly
depends on the respective controller, where the high aging cost comes with a reduction in mutual
information and higher grid cost. The accumulated grid cost from buying and selling to the grid
varies less in comparison to the EES aging cost. Given the high impact of aging on the overall
cost, it may be tempting to assign a high battery health weight to wh. However, purely battery
health optimal strategies, wh = 1, are not advisable for real employment as they result in
keeping the EES at a low SOC without charging or discharging. Adding some aging-awareness
will however result in increased cycle life and hence minimal long-term financial losses.
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Figure 5.6: Cost overhead: total ownership cost reduced by grid strategy cost. Max. privacy
for existing EES and PV costs a) USD 750 and b) USD 900. The node labels in (b) link to the
indices in Table 5.3.

5.5.4 Cost overhead for existing installations

Assuming that several owners of already existing EES and PV systems may desire to switch
from a purely grid optimal strategy to a strategy that improves their privacy, the cost overhead
for EES 1 and EES 2 with PV 1 is shown in Figure 5.6. The cost overhead is determined
by the total cost of ownership (aging + grid + PV cost) reduced by the cost that arises for a
grid cost-optimal strategy (wg = 1). Note that in a few cases, the aging optimal strategy may
be cheaper than the grid optimal strategy resulting in a negative cost overhead. However, a
purely aging-focused strategy would mean not to use the EES which can be considered as being
poorly dimensioned EES and PV combinations and the respective data points may be ignored.
Again, the trade-offs between privacy and financial cost are achieved by selecting appropriate
controllers.

5.5.5 Cost splitting

Another interesting analysis our framework provides is whether UPs could come up with a
specialized contract to encourage load flattening for users with EES and PV. This is beneficial
for the UPs in that they could better provision and manage the electricity grid, and also for the
users whose privacy is preserved. However, as indicated by our results, the high battery aging
costs result in high costs of flattening. Nevertheless, load flattening could be subsidized by the
UP by providing lower rates. Consider the example in Table 5.3: The yearly EES, grid and PV
costs for a flat profile are approximately USD 1692, USD 682, and USD 137, respectively (data
point 13). On the other hand, a financial cost-focused strategy entails EES, grid and PV costs
of USD 70, USD 430, and again USD 137, respectively (data point 12). Hence, the cost of
flattening the profile entails an additional aging cost of USD 1055 from the consumer side. This
value is much larger compared to the grid cost, which makes it impractical for the UP to come
up with a reasonable full compensation scheme. However, in the future, when the battery price
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is expected to drop continuously, the UP could introduce specialized contracts, which motivate
the consumers to perform load shaving and concurrently protect their privacy.

5.6 Concluding remarks
Privacy leakage is a serious concern of smart metering systems and discourages some users
from taking advantage of them. However, the installation of EES and renewable energy sources
can improve privacy while preserving the benefits of smart grids. We present a framework,
which allows us to investigate the privacy-cost trade-off. It is based on accurate system models,
and hence, provides the most realistic estimations so far. We show how EES and PV size,
and also the weights of the cost function impact the privacy leakage, grid cost, and aging cost.
As for designing the controller, sensitive data such as PV location and load power histograms
are required, future work should also investigate the controller performance under more generic
assumptions and the applicability of machine learning. While finding the Pareto-optimal points,
we observe that i) proper control of the system is crucial for performance, ii) a strategy solely
focusing on privacy results in high financial costs, iii) significant privacy enhancement for a
three-residents home comes at acceptable but not negligible cost, and iv) when the user increases
privacy, the UP benefits from peak shaving and should partially compensate costs.

Further research in this field should investigate the visibility of certain devices. With NILM
algorithms, single devices can be determined from the power signal, where some information
might be more critical than others. Evaluation of the EES charge/discharge strategy to determine
the number and category of detected devices, as well as the occupancy and number of present
persons, is left for future work.
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6
Battery health-aware multi-scale

design and management

The number of battery-powered applications ranging from mobile phones and laptops to electric
vehicles and stationary energy storages is constantly growing. Prolonging the device lifetimes
by mitigating battery aging is imperative from both environmental and economical perspectives.
In this chapter, we introduce the holistic view of multi-scale battery health management along
with a framework for designing battery health-aware systems and operational strategies. Bat-
tery health management is performed on multiple abstraction levels: cell-, module-, device- and
system-level. Our modular framework allows rapid analysis of health management techniques
at these abstraction levels. On the cell-level, we propose battery healthy operational limits. On
the module-level, component choices and corresponding control strategies are proposed, e.g.,
active cell balancing and thermal management systems. By leveraging application-specific us-
age patterns, we introduce cycle life-improving operating strategies on the device-level. Finally,
on the system-level, we suggest intelligent algorithms that trade-off the overall battery degrada-
tion with system performance and cost. We show the impact of individual as well as cross-scale
battery health management techniques on cycle life in extensive case studies.

Chapter outline: We provide an overview of the multiple levels on which battery health man-
agement is performed in Section 6.1. Next, we introduce a selection of techniques and strategies
in Section 6.2, that is suitable for battery aging mitigation and are applicable for a wide range
of applications. Further, we introduce a framework that can be used for the evaluation of such
strategies. Then, in Section 6.3, we revisit the EV pack scenario from Chapter 3 and discuss
health management strategies on several levels and also cross-scale observations. Finally, we
conclude this chapter in Section 6.4.
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6.1 Introduction
Many devices that we surround ourselves with are powered by batteries. These range from
low-power devices such as smartphones, tablets, and laptops to high-power applications such
as EVs, PHEVs, and stationary EESs. Run time is one of the biggest concerns in all of these
devices. We have reached a state where a depleted smartphone battery can leave us in a state
of big helplessness. An aspect that is not so visible as it creeps in slowly over time, is battery
aging, that comes in the form of capacity and power fading. Even though battery aging happens
at a relatively slow speed, it is nevertheless highly undesired from multiple points of view. The
device with an aged battery often becomes unusable and instead of just replacing the battery
which itself is annoying, we often see ourselves forced to replace the whole device. This has
a serious impact on the environment and also results in a huge financial overhead. Therefore,
mitigating battery aging is an important aspect considered not only from the electrochemical
perspective but also from the circuit designers and system-level algorithm developers.

Battery health management focuses on mitigating the aging process of the battery and it can
be classified into different abstraction levels such as cell-level, module-level, device-level, and
system-level. Multiple health management techniques have been proposed at each abstraction
level as summarized below.

1. Cell-Level: On the cell-level, setting limits for the operational parameters such as min-
imum and maximum operating cell voltage and maximum charge or discharge current
play an important role in minimizing battery degradation and premature damage.

2. Module-Level: On module-level, where multiple cells are connected in series to obtain
high voltage, for example in the case of EVs, the aging of each cell varies due to man-
ufacturing and operating temperature differences. Here, techniques such as active cell
balancing that equalizes the charge levels of individual cells based on their aging rate and
aging-aware thermal management minimize battery degradation and improve their useful
life.

3. Device-Level: By leveraging the application-specific usage patterns, many health man-
agement techniques have been proposed on the device-level abstraction layer. Typically,
these techniques have a trade-off in terms of battery health improvement and the perfor-
mance or usability of the device itself.

4. System-Level: Finally, in an environment consisting of multiple battery-powered de-
vices or energy sources, aging mitigation can be achieved by intelligently controlling the
interaction between the individual devices. This can be achieved by formulating multi-
objective optimization problems to satisfy the requirements of the individual devices.

While several health management techniques have been proposed in the literature so far,
no analysis of the interactions of different health management techniques proposed at multi-
ple abstraction levels has been conducted to the best of our knowledge. Existing approaches
only show the improvement in the battery life obtained with a particular health management
solution. However, the improvement in battery lifetime achieved by the combination of health
management techniques from multiple abstraction levels has not been sufficiently studied in the
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Figure 6.1: Concept of the multi-scale health management framework

literature so far. For instance, it is not possible to calculate what will be the impact of limiting
the charging/discharging currents at the cell-level to the battery health-aware active cell balanc-
ing strategies on the module-level. Towards this, we propose a lightweight framework for rapid
development and evaluation of health management strategies and system components.

Multi-scale battery health management

In this chapter, we perform a detailed analysis of the benefits of different battery health man-
agement techniques proposed at multiple abstraction levels as explained earlier. We introduce
a novel perspective of battery aging mitigation multi-scale battery health management, that
combines the individual health management approaches proposed at different abstraction lev-
els. Towards this, we propose a modular simulation framework that enables rapid analysis of
different aging mitigation techniques. Figure 6.1 provides an overview of our proposed multi-
scale health management framework highlighting the different health management approaches
proposed at each level. While battery aging is considered a relatively slow process, happening
over a long period, our proposed framework is capable of rapidly estimating the gain achieved
in terms of the number of charge/discharge cycles considering the control circuit components,
management strategies, and external environmental impacts. Moreover, using our proposed
simulation framework, we can accurately calculate the combined benefits of different health
management techniques proposed at each abstraction level. The modular design of the frame-
work allows flexible updates of any particular block such as new battery aging models or new
health management strategies proposed at any abstraction level. Such a framework enables a
battery system designer to develop battery health-aware operating strategies, design control cir-
cuits (i.e., active cell balancing) that minimize the aging, and also to perform fast design space
exploration for evaluating different kinds of system components (such as thermal management
systems) that will improve the cycle life of the battery pack at a minimum overall system cost.

Our specific contributions in this chapter are organized as follows:
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• We introduce the novel concept of multi-scale battery health management in Section 6.2.
While existing approaches have only focused on a particular battery aging mitigation
solution at any one of the abstraction levels explained earlier, our proposed multi-scale
health management approach combines the individual aging mitigation techniques to fur-
ther improve the lifetime of the battery.

• To evaluate the combined benefits of the individual health management techniques on
battery lifetime, we develop a modular simulation framework that allows us to rapidly
simulate the slow battery aging process. Our proposed framework enables us to combine
the individual health management techniques at different abstraction levels and to evalu-
ate the battery cycle life improvement achieved by all the health management techniques
together. Moreover, the modular architecture of the framework allows us to flexibly up-
date the individual blocks including the circuit components, models (battery and circuits),
and operational strategies.

• Using our proposed simulation framework, we perform a multitude of case studies in
Section 6.3 showing the benefits of individual health management techniques and the gain
in the cycle time of the battery pack with the combination of the several aging mitigation
techniques at each abstraction level.

6.2 Multi-scale health management techniques
In this section, we present health management techniques on each abstraction level that extend
battery cycle life. Most of the presented techniques are already included in our framework.
As discussed previously, the main factors contributing to battery aging are the average SOC,
SOC swing, and cell temperature. As the SOC swing over time is related to C-rate, the battery
charge and discharge current is also a useful control knob. Generally, low SOC swing or battery
current, medium average SOC, and medium temperatures are most beneficial to the battery. All
techniques presented in the following, aim at modifying the load profile and controlling the
periphery in a way that achieves less detrimental SOC and temperature values over time while
maintaining the usability of the device.

A multitude of design options both on software as well as on hardware level impacts the bat-
tery health, where battery health is measured in terms of charge and discharge cycles achieved
until the EOL, i.e., 70 % or 80 % remaining from the initial capacity. A conceptional overview
of the framework is shown in Figure 6.1. We group components and operation strategies into
cell-level, module-level, battery device-level, and system-level. While techniques on the cell-
level, aim at improving the operating conditions of single cells, strategies on the module-level
need to consider additional system components such as a balancing architecture or the cooling
system. Component choices and respective operation strategies need to be optimized towards
the longevity of the battery pack. On the device-level, the load comes into consideration. Within
battery-powered devices, such as EVs, smartphones, or laptops, internal loads such as CPUs,
Electronic Control Units (ECUs), displays, etc. draw energy from the battery. Understanding
their load pattern helps to find control parameters for health improving strategies, e.g., appro-
priate SOC levels. Similarly, on system-level, external components can interact with the battery
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device, e.g., a PV whose generated energy is stored in a stationary storage. System-level op-
timization may also consider a group of battery-powered devices, e.g., multiple EVs forming
a fleet. Load pattern optimization or battery scheduling has the potential to significantly im-
prove the cycle life of the battery-powered device. Load estimation and prediction, e.g., using
probabilistic methods, are required to develop operating strategies that adequately modify load
patterns. But also user notifications and encouragement towards a health-aware device usage is
an effective measure for extending the cycle life.

Towards the design of a lightweight battery health simulation framework, we introduce
several abstractions that result in well-scaling simulation times and that can also be used with
limited knowledge of the real usage data. Therefore, we discuss component models and the
required level of detail of strategies in the following. Generally, as aging is a very slow process
and load profiles are often not known in full detail, abstract high-level models are sufficient to
estimate the expected cycle life. In the best case, data traces of current, voltage, and temperature
are available for the expected usage scenario. If existent, they serve as input for the simulation.
However, often such data traces are not available at design time. Therefore, the reduction
of complex system behavior is desired. Such reductions and simplifications result in lower
computational complexity and hence lesser simulation time.

6.2.1 Cell-level

We start by discussing the battery management aspects to be considered on the cell-level to
protect the cell from increased health degradation.

Voltage and SOC limits

Generally, over-charging or under-discharging, and hence exceeding voltage limits, damages
the battery [11]. Too high or low voltages can result in dangerous explosions. Upper and
lower voltage limits for safe operation should therefore be obtained from respective datasheets.
However, the system designer may deliberately choose to further narrow the operation range by
tightening the SOC limits, which is equivalent to a tighter voltage range. As tighter SOC limits
naturally result in lesser available capacity, the trade-off needs to be carefully decided. Some
systems adaptively change the SOC limits to compensate for capacity fading once the battery
ages and give the user the impression that no capacity fading occurs.

Current limits

Higher charging currents result in increased aging [128]. Hence, it is advisable to limit the
charging current. The same holds for discharge currents. In particular, for applications with
high C-rates, the maximum discharge current limit is higher compared to the maximum charge
current limit. The reason is that in many applications, high load power peaks are of relatively
short duration, while a high charging current would be constantly applied over a longer period,
and hence it would have a greater impact on battery aging.
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Temperature limits

Temperature limits for safe operation should be obtained from the respective battery datasheet.
However, additional thermal adjustments may be achieved on the module-level through a ther-
mal management system.

6.2.2 Module-level
On the module-level, we suggest two component choices with associated management for im-
proved health management. Firstly, cell balancing systems not only equalize charge and extend
the driving range but they also improve the cycle life of a battery pack. The impact of charge
balancing on battery health as well as an SOH-aware operational scheme have been discussed
in the literature and this thesis.

Secondly, cooling systems or heating systems for sub-zero degree scenarios help to keep
the temperature of a battery in a less detrimental range. Management of the cooling systems
should ensure the power efficiency of the cooling system while maintaining a suitable battery
temperature. Further measures applicable to module-level are hybrid storages and reconfig-
urable systems with appropriate operational strategies. They are not discussed in detail within
the scope of this work but they have been shown to have a positive impact on battery health.

Active cell balancing

Active cell balancing is commonly used to compensate for the capacity imbalance between
series-connected cells. Charge transfers from higher capacity cells towards cells with lower ca-
pacity compensate for imbalanced battery aging and manufacturing variations and improve the
pack runtime. Previous measurements have shown that compared to passive balancing, active
SOC balancing narrows the capacity imbalance among cells in the long term and increases cy-
cle life [136]. An approach that goes beyond mere charge balancing is to preserve the weakest
cell as much as possible and get most of the required charge from stronger cells using existing
cell balancing architectures as has been presented in Chapter 3.

While a broad variety of different cell balancing architectures exists [18, 107, 114], we
choose a neighbor-only inductor based architecture from [86] for the scope of our framework.
Despite focusing on the neighbor-only balancing architecture, it is noted that the framework also
allows using custom models of other balancing architectures such as non-neighbor balancing as
in [76] or reconfigurable systems as in [58].

Thermal management

With the temperature being one of the driving factors of increased battery aging, proper thermal
management of battery packs is crucial. Towards this, airflow cooling or liquid cooling is
applied in large high-power battery packs as they are used in EVs or stationary storages. The
cooling system can be modeled by setting the average individual cell temperatures. We will
derive our modeling approach, which is based on currently available studies, in the following.
However, we would like to point out that thermal modeling is an active area of research and
more elaborate models can be applied in the future. Similar to [95], we assume that the air
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Figure 6.2: Joint modeling of temperature variations and manufacturing inhomogeneities

stream cools the cells such that all parallel cells experience the same temperature while series-
connected cells have an increased cooling temperature compared to the inlet temperature. This
is due to the heat exchange of cells with the flowing air. This scenario is shown in the left part
of Figure 6.2 with inlet and outlet temperatures being denoted as θin and θout and assuming that
the cell temperatures can be approximated by linear interpolation. The temperature gradient is
then determined by

∆θ = θin − θout. (6.1)

Note that θout is assumed to equal the maximum temperature within the tube. For estimating the
battery aging, we assume constant temperatures over time that level out short term self-heating
of cells and temperature variations from short term thermal control. This is safe to assume if
the gradient over time is small enough.

Manufacturing inhomogeneities are another effect that influences aging speed in addition
to the temperature distribution. Even though it is known that temperature has an impact on
aging speed, the observed cell behavior for a given temperature is commonly not identical. In
modeling, we account for this observation by superposing a random distribution over the cell
temperature.

θcell = rand(θin, θout) (6.2)

An example of random temperature distribution of cells within a tube is shown in Figure 6.2 on
the right-hand side.

Jiang et al. [69] find that for some packs, an aging speed pattern in dependency of the cell lo-
cation can be observed while for other packs such a correlation cannot be made. Campestrini et
al. [17] observed that the capacity distribution correlated with the temperature gradients for the
first half of the total number of cycles, while in the second half, the cell to cell variations from
manufacturing inhomogeneities dominated the SOH evolution. Currently, cells are sorted ac-
cording to their quality and similar cells are placed within a pack. However, this sorting process
is costly and inhomogeneities can be compensated through, e.g., cell balancing architectures.
A final answer to whether sorting or compensation is the financially and energy loss wise more
efficient approach is beyond the scope of this thesis. Therefore, we keep both scenarios in
mind. However, within the scope of this thesis, we assume that manufacturing inhomogeneities
superimpose the cooling system effects and apply a random distribution of cell temperatures.
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Figure 6.3: Charge delay and SOC reduction as a means to mitigate aging. Lower average SOC
leads to lower aging speed.

6.2.3 Device-level
On the device-level, leveraging load patterns, that are influenced by the human user or internal
energy consumers, facilitate health-friendly battery usage. The means of modification strongly
depend on the application. Improved battery performance, however, often needs to be traded-off
with usability or flexibility.

Often, battery devices are charged and remain plugged longer than required for a full charge.
This results in an unnecessarily high SOC. For example, the smart charger in Chapter 4 targets
the human behavior of charging smartphones overnight. Charging a smartphone overnight re-
sults in high SOC, which is kept at a high level over a long period, i.e., the whole night. This
results in faster degradation of the battery. The concept of the smart charger is to delay the
recharge of the smartphone depending on a set alarm clock or predictor. As a result, the av-
erage SOC is lowered and hence battery degradation is mitigated. Similarly, the charge of an
EV could be delayed. Figure 6.3 shows how delaying the charging to be completed exactly at
the unplug time lowers the average SOC. If also SOC levels are lowered on cell-level, such as
proposed in Section 6.2.1, the average SOC decreases further as a result of cross-layer health
management. The required charge can be estimated by exploiting usage patterns. For example,
Chon et al. [29] predict the battery usage of smartphones based on the cell tower Identity (ID).
Further, Falaki et al. [42] determine the expected energy drain based on idle periods and differ-
ent types of busy periods. Using such predictions, the charge level can be lowered accordingly
for battery health management. Such charge and discharge patterns cannot always be modified.
However, if modifications are possible, significant SOH mitigation can be achieved.

Assuming that both unplug time tup and charge duration Tchg can be determined, the advis-
able charge delay Tdel of a device that is unplugged at time tplg can be found by

Tdel = tup − tplg − Tchg. (6.3)

The plug time tplg is equivalent to the current timestamp. The charge time can be estimated
from current SOC, charge current, and expected drain during charging. The expected unplug
time can either be determined by direct user input or by predictions based on the previous usage.

102



6. Battery health-aware multi-scale design and management

6.2.4 System-level
On the system-level, operational strategies that take into account the interplay of multiple gen-
erators, consumers, prosumers, and battery packs or subsets of the before-mentioned system
components need to be found. Such a system could consist of, for example, a stationary bat-
tery storage along with a PV. Another example could be the management of a fleet of EVs.
When designing a battery health-aware operation strategy, often the task is to find battery cur-
rents in(t) at a time t for series-connected cells n ∈ 1 . . . NS such that the overall battery SOH
consisting of individual series-connected cell SOH levels κn(t) is maximized:

find in(t) s.t. max

NS∑
n=1

κn(t) ∀t (6.4)

Sometimes, the reduction of SOH variances among packs is more meaningful:

find in(t) s.t. min

NS−1∑
n=1

(κn(t)− κn+1(t))
2 ∀t (6.5)

Constraints need to be formulated according to the specific application. Solutions can be found
by solving the optimization problem. Depending on the aging model and problem characteris-
tics, finding a solution might not be trivial and heuristics are the preferable option.

The above objective functions can be applied if battery health is the primary objective.
Often, however, battery health conflicts with other objectives, and therefore trade-offs need to
be found. An example of such a trade-off has been presented in Chapter 5. In a smart energy
scenario with stationary energy storage, PV, and a residential home load, the battery current
should be found such that the grid electricity cost and battery aging are minimized while at
the same time load flattening is achieved, which helps the residents to protect their privacy. In
this particular example, we added models for PV, residential load traces, and time-of-use tariffs
to the framework to evaluate the performance of various MDP policies found through relative
value iteration concerning the time achieved until EOL is reached.

6.2.5 Cross-layer health management
Having discussed health management strategies on cell-, module-, device- and system level,
cross-layer management strategies combine these single strategies to further improve the bat-
tery pack health. In the following, we discuss the implications and interdependencies when
combining strategies on several levels. Generally, we expect the gains on all levels to sum up
to result in even increased health gains. We limit our discussion to the techniques presented
above. However, further dependencies might exist when introducing other techniques.

Cell- and module-level

On cell- and module level, the combination of adjusted SOC limits with an active cell balancing
architecture and SOH-aware cell balancing algorithm is investigated. When lowering SOC
target limits per predicted charge requirement, the individual cell limits can additionally be

103



6.2. MULTI-SCALE HEALTH MANAGEMENT TECHNIQUES

adjusted such that weaker cells experience an even lower average SOC. The missing charge is
later transferred by a healthier cell, which therefore is assigned a higher target SOC. Thereby,
the weaker cell ages slower, and the pack aging is mitigated. However, if the SOC imbalance
gets too large, the resulting voltage differences need to be considered for efficiency. Within the
scope of this thesis, we consider these differences to be small enough to be approximated as
negligible.

Cell- and device-level

On cell- and device-level a combination of lowered SOC limits and delayed charging is pro-
posed. If the target SOC is lowered, the delay can be even extended. Towards this, the non-
linearity resulting from the charging protocol needs to be considered. As has been discussed in
Section 4.6, the insertion of voltage relaxation periods should be considered as well. The design
of the optimal charge protocol is still an open question and should be targeted in future work.
The combination of charge delays and lower target SOC has also been considered in Chapter 4
and additional gains in cycle life have been achieved.

Both, determination of target SOC as well as estimation of the charge delay require usage
statistics as an input, namely the predicted plug duration and the charge consumption between
plug events. Furthermore, both strategies lower the average SOC of the battery and hence
mitigate aging. Potential but undesired overestimation of the feasible delay results in too low
final SOC, which is beneficial in terms of aging mitigation but reduces user experience, and
therefore predictors should be chosen with care. In summary, we observe a co-dependence
between strategies on both layers.

Module- and device-level

On module- and device level, the interdependencies of cell balancing and charge delays is in-
vestigated. In general, charge equalization requires long times in the range of hours. Active
cell balancing can be applied during charge or discharge. Depending on the state of SOC im-
balance, the balancing might continue during the charge delay. If the imbalance is very high,
voltage differences might need to be considered. Within the scope of this work, we assume an
operating range where voltage differences can be neglected as explained above.

Cell-, module- and device-level

Finally, the strategies on cell-, module, and device-level are combined, namely, target SOC,
SOH-aware cell balancing, and charge delays. The same limitations and co-dependencies as
discussed above persist. We expect the gains to further grow as the gains on single levels add
up.

6.2.6 Battery health management framework

In the following, we present a lightweight multi-scale simulation framework that can be used
for battery health management design and optimization as a rapid evaluation of the cross-layer
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(a) Aging Simulation tab (b) Parameter settings (c) Thermal visualization

Figure 6.4: MATLAB framework

strategies is not possible with state-of-the-art tools. The proposed modular simulation frame-
work enables the rapid analysis of different aging mitigation techniques. While battery aging
develops over a long period, our framework rapidly estimates the number of charge/discharge
cycles achieved considering the control circuit components, management strategies, and ex-
ternal environmental impacts. Moreover, the calculation of the combined benefits of health
management techniques on each abstraction level can be performed. The modularity of the
framework allows us to flexibly plug-in different models and blocks. Hence, updates of, e.g.,
aging models or operating strategies are easily integrated. We aim to enable the development
of aging-mitigating operating strategies, the design of control circuits (i.e., active cell balanc-
ing), and the realization of fast design space exploration for evaluating different kinds of system
components to improve the cycle life of the battery pack at a minimum overall system cost.

We implement the framework in MATLAB as shown in Figure 6.4. The aging tab (Fig-
ure 6.4a) allows us to set cut-off SOC limits, charge delays, and temperature gradients inside
the pack. Further, an active balancing architecture may be enabled. The pack tab (Figure 6.4b)
allows us to set the cell type, cell capacity, and cell OCV. Furthermore, the number of cells
in series, inlet air temperature, and EOL can be set. EES size and maximum temperature are
derived from the previous parameters. The thermal distribution among cells can either be ran-
domly generated or else a fixed distribution can be loaded using the default button. This is
useful if different strategies need to be compared with the same settings. In case active cell bal-
ancing is used, balancing current and efficiency need to be set. Besides, the DODs of the load
pattern and cycle length are defined. In the thermal tab (Figure 6.4c), the thermal distribution is
visualized for easier debugging.

Based on the described abstractions and models included, we present a lightweight, modular,
and multi-scale simulation framework. It includes the effects of subsystem components and
operation strategies. The framework not only allows the simulation of the effects of single
components but also the interplay of health management techniques. Due to its modularity, the
framework allows flexible updates of components and strategies. The results can be used for
system-level design space explorations and cost calculations. Additionally, the evaluation of
subsystem components and strategies is possible.
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6.3 Results

In this section, we use our framework to evaluate the cross-layer effects of health management
strategies. We revisit the EV pack health management use case from Chapter 3. We com-
bine various health management techniques such as SOH-aware cell balancing as described in
Chapter 3 as well as lower target SOC level and charge delays as introduced in the use case in
Chapter 4. In the following, we investigate the combined effects of such techniques.

6.3.1 Experimental set-up

We consider a similar experimental set-up as in Section 3.6. The architecture of our battery pack
is similar to the one of the Nissan Leaf 24 kW h battery pack which has 96 cells in series and 2 in
parallel (96s2p). The pack comes with the active cell balancing architecture from Section 3.3.
The simulation runs in MATLAB and we use the Millner aging model from Section 2.2.3 to
calculate the battery health degradation. The cells connected in series vary in SOH and aging-
speed, while cells in parallel are considered to be electrically indistinguishable. We assume the
cells’ initial SOHs to be uniformly distributed in the interval [0.9, 1] and an aging-speed range
of [54.352, 55.264] ppmc. This is a resemblance of the temperature inhomogeneity in a pack
and the cells’ manufacturing variations. We model the aging speed inhomogeneities through a
thermal difference of up to 2.7 ◦C and the temperature of the coolest cell being θmin = 25◦C.
We run a simulation where we charge and discharge the pack with a DOD of 0.5 and a cycle
length of 2 h. The efficiency of a charge transfer is 96 %. The EOL is reached when the SOH of
the least healthy cell reaches 0.7.

We run experiments for the combination of maximum SOC limits (named target SOC in the
following) on the cell-level, an SOH-aware cell balancing strategy as well as cooling system
performance on the module-level and charge delays on device-level. We discuss the cross-
layer health management aspects for the combination of (i) cell- and module-level, (ii) cell- and
device-level, (iii) module- and device-level and, (iv) cell-, module- and device-level. Towards
this, we present three experiments. In the first experiment, we investigate the impact of the
length of the charge delay in combination with passive and SOH-aware cell balancing as well
as high and low target SOC limits. The results are shown in Figure 6.5. The balancing current
in this experiment is 7 A.

In a second experiment, we vary the performance of the cooling system. The cooling system
is a highly critical part of battery health-aware system design because a pack without cooling
would either soon reach dangerous temperatures, or the aging of cells would be highly inhomo-
geneous and as a result, the imbalance among cells would increase with the effect of reduced
driving range and shorter cycle life. The cycle life relevant characteristics of cooling systems
are the inlet temperature and the temperature gradient achieved. Intuitively, a cooling system
that achieves lower gradients between inlet and outlet temperature results in higher financial
costs. Therefore, a performance/cost trade-off is advisable. In the following, we use our frame-
work to discuss the loss of cycle life and its dependence on the performance of the cooling
system. At the same time, we investigate compensation mechanisms in terms of charge delays
and lower SOC limits.
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Figure 6.5: The cycle life increases with higher charging delays

As in the first experiment, we simulate cycles with a DOD of 0.5 and a cycle length of 2 h.
The cycles are interleaved with rest periods of 1 h. Depending on whether these rest periods
are inserted before or after charging, we say that delayed charging is off or on, respectively.
Additionally, we vary the upper SOC limit. For practical considerations, having a charge buffer
for spontaneous trips is desirable. We call 100 % target SOC high and 90 % low maximum SOC
in the following. We assume a balancing current of 5 A, which is available in state-of-the-art
architectures. However, it should be noted that this current does not achieve the best possible
results with SOH-aware cell balancing. The results are shown in Figure 6.6.

In the third experiment, we compare the potential for health gains of strategies on cell-,
module-, and device-level. The goal is to determine whether differences in health gains of
different strategies and levels exist. The results are shown in Figure 6.7.

6.3.2 Combination of cell- and module-level

We start by discussing the combined effects on cell- and module-level. On the cell-level, we
adjust the target charge SOC-level and on the module-level, we apply different balancing strate-
gies in the first experiment (Figure 6.5) and different cooling systems in the second experiment
(Figure 6.6). As has been shown in Chapter 3, active balancing with an SOH-aware balancing
strategy exceeds passive balancing approaches. Lowering the maximum SOC to 90 % improves
the cycle life even further. As expected and as shown in Figure 6.6, increased cycle life comes
with better cooling systems.

Generally, we find that the cooling system and respectively achieved temperature gradient
has a strong impact on cycle life as aging is very sensitive to the cell temperature. SOH-aware
cell balancing can be used to compensate for the temperature gradient and respective aging
speed difference. Therefore, even cooling systems with poor temperature gradients can achieve
reasonable cycle life if combined with other aging mitigation techniques. However, the cell
balancing current needs to be large enough and as has been shown in Chapter 3, the balancing
current of state-of-the-art architectures does not yield the best results.

We conclude that substantial improvements in cycle life can be made by applying such
measures. The effectiveness of single measures varies. Nevertheless, the combination of all
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Figure 6.6: Cooling system-dependent temperature gradient and resulting cycle life

methods yields the best results. Economic considerations and predictability of load patterns
help to decide the respective applicability of battery health measures.

6.3.3 Combination of cell- and device-level
Next, we discuss the combined effects of cell- and device-level strategies. On the cell-level,
we adjust the target SOC levels and on the device-level, we alter the charge delays as shown in
Figure 6.5. We find that charge delays have the potential to significantly mitigate battery aging.
In many applications, load patterns incorporate a high amount of idle times. As the SOC-level
during these idle times usually is of lesser importance to the user, it can be modified for health-
awareness. This generally means to avoid very high (and also very low) SOC levels. Idle times
at high SOC commonly occur when a device is charged and not immediately discharged after
having reached the full charge level. By postponing the charging procedure to start just in
time to reach the full charge state when idling is over and discharge starts, the average SOC is
reduced and aging is mitigated. Analysis of typical usage profiles of a class of devices helps
to identify such idle times. Most private-owned EVs park most of the time and hence a high
potential for aging aware charging exists. As shown in Figure 6.5, the cycle life increases as the
charging delay gets extended, which is as expected. We also observe that with lower maximum
SOC on the cell-level, the cycle life can be significantly further improved.

6.3.4 Combination of module- and device-level
On the module- and device-level, we discuss the interplay of SOH-aware balancing strategies
and cooling systems with charge delays. In Figure 6.5, we find that the gains achieved by suffi-
ciently large charge delays outperform cell balancing strategies. However, both techniques can
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be applied independently of each other. When combining cooling systems with charge delays
(Figure 6.6), the high impact on improved cycle life with charge delays is very notable. We
observe that gains achieved using lower SOC limits, charge delays and SOH-aware balancing
are independent of the temperature difference achieved by the cooling system. The results sup-
port our claim that health management should be applied on multiple levels. Combinations of
health management strategies on several levels yield the best results and should be preferred
over single-level solutions.

In the future, other trade-off relationships should also be investigated. For example, the
relation of the monetary investment for a better cooling system and the expected return in terms
of lower battery depreciation costs could be researched.

6.3.5 Combination of cell-, module- and device level

We now investigate the combined effects of the cell-, module- and device-level strategies. We
combine the previously presented aging mitigation methods and compare the achieved number
of cycles until EOL with the respective conservative methods. Towards this, we extend the
two previously discussed scenarios. We split the analysis into two parts. The first part in
Figure 6.7 includes cooling systems and considers a limited amount of data for better readability.
In Figure 6.8, we show a large number of data points to include the effects of variations in
the individual control parameters. For example, a range of charge delays, target SOCs, and
balancing currents. We consider two thermal systems, where the more power full one results
in a temperature difference of 2.7 ◦C between the coolest and hottest cell and the less effective
but lower-cost cooling system achieves a temperature difference of 6 ◦C. Furthermore, active
SOH-aware cell balancing is compared with passive cell balancing, maximum SOC levels can
be lowered from 100 % to 90 % and an adaptive charging scheme, that delays charging until the
trip starts, is compared with the scenario of no delay being applied.

In Figure 6.7, we plot the number of partial cycles achieved with aging mitigating measures
as listed above versus the respective conservative approach. When we compare, e.g., charg-
ing delays with no delays, we do that for all combinations with other measures, i.e., passive
balancing and SOH balancing, temperature gradients, and maximum SOC values. This is rep-
resented by multiple dots within one color cluster. The black line denotes the 45° line, where
all dots above that line stand for improvement of cycle life achieved by the respective measure
and higher distances between a point and the 45° line signify a higher gain in cycle life. The
analysis in Figure 6.7 shows that all results lie above the 45° line. Hence, all aging mitigation
measures considered are effective.

We have seen that applying aging mitigation measures comes at a cost. Such cost mostly
is of either financial nature. Additionally, predictability of loads and user behavior potentially
limits the applicability of aging mitigation measures such as target SOC limits and charge de-
lays. Most battery-powered products, such as smartphones and EVs, are in very cost-sensitive
markets, hence low financial cost can be critical for market success. On the other hand, for ex-
ample in the EV market, longer guarantees on cycle-life can be a marketing advantage. Hence,
most manufacturers need to trade-off the higher costs with the longer cycle life. For that, they
need tools to easily estimate the expected lifetimes. In the future with a growing market share of
EVs, the legislative body might even feel the need to regulate the negative environmental impact
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Table 6.1: Multi-scale evaluation results from Figure 6.7
idx Star Tdel [s] ∆θ [◦C] balancing # partial cycles # partial cycles

optimized conservative
1 0.9 2.7 passive 9117 5373
2 0.9 6 passive 7334 4321
3 1 2.7 passive 7884 3705
4 1 6 passive 6363 2983
5 0.9 2.7 SOH-CB 9372 6035
6 0.9 6 SOH-CB 7524 4848
7 1 2.7 SOH-CB 7908 4158
8 1 6 SOH-CB 6377 3344
9 0.9 0 passive 5373 4321

10 0.9 3600 passive 9117 7334
11 1 0 passive 3705 2983
12 1 3600 passive 7884 6363
13 0.9 0 SOH-CB 6035 4848
14 0.9 3600 SOH-CB 9372 7524
15 1 0 SOH-CB 4158 3344
16 1 3600 SOH-CB 7908 6377
17 0.9 0 2.7 6035 5373
18 0.9 0 6 4848 4321
19 0.9 3600 2.7 9372 9117
20 0.9 3600 6 7524 7334
21 1 0 2.7 4158 3705
22 1 0 6 3344 2983
23 1 3600 2.7 7908 7884
24 1 3600 6 6377 6363
25 0 2.7 passive 5373 3705
26 0 6 passive 4321 2983
27 3600 2.7 passive 9117 7884
28 3600 6 passive 7334 6363
29 0 2.7 SOH-CB 6035 4158
30 0 6 SOH-CB 4848 3344
31 3600 2.7 SOH-CB 9372 7908
32 3600 6 SOH-CB 7524 6377
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Figure 6.7: Multi-scale health management results. All aging mitigating measures are effective
as the comparison results lie above the 45° line. The indices are resolved in Table 6.1.

of disposed unusable battery packs, by requiring manufacturers to publish estimated cycle lives
of their vehicles for standardized cycles. Hence, estimating the cycle life at the design stage
and implementing respective countermeasures to extend cycle life is required. From a global,
environmental, and also longterm economic perspective, sustainable product design is needed.

We also see from Figure 6.7 and the detailed results in Table 6.1 that some measures result in
higher cycle life gains than others. For example, charge delays have a relatively higher impact
on cycle life improvement than balancing strategies or temperature gradients. Nevertheless,
we find that the maximum number of cycles can only be achieved with all measures in place
and no single aging mitigation technique outperforms all other techniques. Also, the relative
impact to some extent depends on the particular parameters and assumptions made. We tried
to make realistic assumptions and scenarios and therefore believe that the displayed trends can
be guidelines in aging management. A careful combination of techniques considering also the
trade-off factors such as financial costs and loss in user flexibility will lead to well-designed
battery health management systems.

We extend the study to include variations of charge delays (Figure 6.8a), different target
SOCs (Figure 6.8b), and different balancing currents (Figure 6.8c). The baselines displayed
on the x-axis are a delay of 0 s, 100% target SOC, and passive cell balancing, respectively.
As expected, longer charge delays, lower target SOC, and higher balancing currents extend
the cycle life. However, we also observe that not all aging mitigating measures are similarly
effective both in terms of quantitative as well as in qualitative improvements over the respective
conservative approach. The higher the distance from the 45°-line, the higher the qualitative
improvement. As can be observed from Figure 6.8d, lower target SOCs are highly effective in
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increasing the cycle life. The effectiveness increases the more health management techniques
are combined.

6.4 Concluding remarks
In this chapter, we have introduced our perspective of battery health management taking place
at the cell-, module-, device- and system-level. Towards this, we have presented a framework
for multi-scale battery health simulation. Both, component choices as well as operation strate-
gies impact battery aging. Using our framework, we can analyze the impact of design choices
of, e.g., the cooling systems or cell balancing architectures along with respective control strate-
gies. Additionally, we investigated combinations of different aging mitigation measures and
estimated combined effects. The framework can be used for different application domains,
such as smartphones, EVs, and stationary storages. Due to the modularity of the framework,
new battery models, strategies, and component models can be easily integrated.

We further discussed the results for component design and operational strategy evaluation.
We found that the combination of as many health mitigation techniques as possible results in
the highest cycle life. However, some techniques come at increased costs and others require
high predictability of load patterns as well as user behavior. If the inaccuracy of such predic-
tions is high, the user experience suffers. Furthermore, a manufacturer can now trade-off the
costs for sorting cells with the costs of cell balancing architectures. Sorting cells results in
high-quality packs with high-performance cells while running a battery health-aware balancing
algorithm on a balancing architecture compensates for such imbalances. Using the SOH-aware
balancing strategy allows manufacturers to also use cells of lower quality in EV packs without
endangering the warranty conditions that guarantee a certain useful life of a pack if sufficiently
dimensioned. The safety margin of capacity over-dimensioning, if not removed, can at least be
lowered leading to better utilization of available resources. It is also possible that in the future,
EV manufacturers need to provide information about estimated cycle life for standardized us-
age cycles similar to carbon emission or (fine) particulate matter information for petrol engines
or diesel engines. In such a scenario, analysis from frameworks such as ours helps to identify
reasonable ways for extended cycle life.

We evaluated cross-level strategies and made the following observations. Lower target SOC
on cell-level results in lower delay length on device level. Besides, usage pattern prediction
is required for both, cell- and device-level. Health extending measures on one level can com-
pensate for health degradation from components of lower performance on other levels. The
combination of measures on cell-, module- and device-level results in the most effective health
management. System-level trade-offs, e.g., financial cost comparisons of components and re-
spective effectiveness on aging mitigation, is left for future work.

In summary, further advances in battery health management are expected in the future and
the cross-scale effects and integration of multiple strategies need to be further investigated.
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Figure 6.8: Multi-scale health management results. (a) Varying delays, (b) varying target SOC,
(c) varying balancing current for SOH-aware cell balancing, (d) all results in one plot. All aging
mitigating measures are effective as the comparison results lie above the 45° line. The indices
are resolved in Tables 6.2, 6.3, and 6.4.
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Table 6.2: Multi-scale evaluation results from Figure 6.8 for target SOC variations
idx Tdel [s] IB,max [A] bal # cyc # cyc # cyc # cyc

Star = 1 Star = 0.9 Star = 0.8 Star = 0.7
1 0 10 0 3705 5373 7813 11403
2 1200 10 0 4413 6407 9330 13651
3 2400 10 0 5723 8326 12162 17875
4 3600 10 0 7884 9117 13083 19253
5 0 7 0 3705 5373 7813 11403
6 1200 7 0 4413 6407 9330 13651
7 2400 7 0 5723 8326 12162 17875
8 3600 7 0 7884 9117 13083 19253
9 0 5 0 3705 5373 7813 11403

10 1200 5 0 4413 6407 9330 13651
11 2400 5 0 5723 8326 12162 17875
12 3600 5 0 7884 9117 13083 19253
13 0 1 0 3705 5373 7813 11403
14 1200 1 0 4413 6407 9330 13651
15 2400 1 0 5723 8326 12162 17875
16 3600 1 0 7884 9117 13083 19253
17 0 10 1 4552 6610 9628 14090
18 1200 10 1 5344 7770 11340 16645
19 2400 10 1 6432 9368 13708 20198
20 3600 10 1 7936 9736 14245 20990
21 0 7 1 4356 6324 9209 13471
22 1200 7 1 5046 7333 10695 15682
23 2400 7 1 6211 9043 13225 19472
24 3600 7 1 7919 9502 13885 20460
25 0 5 1 4158 6035 8784 12841
26 1200 5 1 4856 7055 10285 15070
27 2400 5 1 6067 8831 12911 18999
28 3600 5 1 7908 9372 13647 20102
29 0 1 1 3791 5499 7997 11676
30 1200 1 1 4497 6531 9513 13922
31 2400 1 1 5789 8424 12307 18093
32 3600 1 1 7888 9161 13192 19417
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Table 6.3: Multi-scale evaluation results from Figure 6.8 for charge delay variations
idx Star IB,max [A] bal # cyc # cyc # cyc # cyc

del 0 s del 1200 s del 2400 s del 3600 s
33 0.7 10 0 11403 13651 17875 19253
34 0.8 10 0 7813 9330 12162 13083
35 0.9 10 0 5373 6407 8326 9117
36 1 10 0 3705 4413 5723 7884
37 0.7 7 0 11403 13651 17875 19253
38 0.8 7 0 7813 9330 12162 13083
39 0.9 7 0 5373 6407 8326 9117
40 1 7 0 3705 4413 5723 7884
41 0.7 5 0 11403 13651 17875 19253
42 0.8 5 0 7813 9330 12162 13083
43 0.9 5 0 5373 6407 8326 9117
44 1 5 0 3705 4413 5723 7884
45 0.7 1 0 11403 13651 17875 19253
46 0.8 1 0 7813 9330 12162 13083
47 0.9 1 0 5373 6407 8326 9117
48 1 1 0 3705 4413 5723 7884
49 0.7 10 1 14090 16645 20198 20990
50 0.8 10 1 9628 11340 13708 14245
51 0.9 10 1 6610 7770 9368 9736
52 1 10 1 4552 5344 6432 7936
53 0.7 7 1 13471 15682 19472 20460
54 0.8 7 1 9209 10695 13225 13885
55 0.9 7 1 6324 7333 9043 9502
56 1 7 1 4356 5046 6211 7919
57 0.7 5 1 12841 15070 18999 20102
58 0.8 5 1 8784 10285 12911 13647
59 0.9 5 1 6035 7055 8831 9372
60 1 5 1 4158 4856 6067 7908
61 0.7 1 1 11676 13922 18093 19417
62 0.8 1 1 7997 9513 12307 13192
63 0.9 1 1 5499 6531 8424 9161
64 1 1 1 3791 4497 5789 7888
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Table 6.4: Multi-scale evaluation results from Figure 6.8 for SOH-aware balancing current
variations

idx Star Tdel [s] # cyc # cyc # cyc # cyc # cyc
pas SOHCB

1 A
SOHCB
5 A

SOHCB
7 A

SOHCB
10 A

65 0.7 0 11403 11676 12841 13471 14090
66 0.7 1200 13651 13922 15070 15682 16645
67 0.7 2400 17875 18093 18999 19472 20198
68 0.7 3600 19253 19417 20102 20460 20990
69 0.8 0 7813 7997 8784 9209 9628
70 0.8 1200 9330 9513 10285 10695 11340
71 0.8 2400 12162 12307 12911 13225 13708
72 0.8 3600 13083 13192 13647 13885 14245
73 0.9 0 5373 5499 6035 6324 6610
74 0.9 1200 6407 6531 7055 7333 7770
75 0.9 2400 8326 8424 8831 9043 9368
76 0.9 3600 9117 9161 9372 9502 9736
77 1 0 3705 3791 4158 4356 4552
78 1 1200 4413 4497 4856 5046 5344
79 1 2400 5723 5789 6067 6211 6432
80 1 3600 7884 7888 7908 7919 7936
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Concluding remarks

Battery health management takes place on several levels: The cell-, module-, device- and
system-level. Its application areas range from small devices such as smartphones to devices
with large battery packs such as EVs or stationary EESs. Mitigation of battery aging is ben-
eficial in financial as well as environmental terms. In this thesis, we have presented three use
cases that mitigate battery aging. In the first use case, an SOH-aware cell balancing scheme was
introduced, that mitigated aging by putting less stress on already weaker cells. In the second use
case, a smart charging scheme was discussed, that delayed the charging of smartphones based
on alarms and past usage to lower the average SOC, thereby mitigating the aging. In the third
use case, a system consisting of PV and EES within a residential home with smart meters was
discussed. Smart meters potentially leak the privacy of a user, while an EES can be used to
occlude the load profile, thereby protecting privacy. A trade-off control strategy was discussed,
that not only protects privacy but also lowers financial costs for time-of-use prices, and that
additionally mitigates the aging. As the battery nowadays is often the weak point in a battery-
powered device, increasing its cycle life also improves the longevity of the whole device. Still
many open questions and opportunities for further advances in health management exist.

7.1 Summary

The main research goal of this thesis was to design and investigate approaches for multi-scale
battery health management from the perspective of the system-level designer. Towards this,
three case studies for battery health management on different levels have been presented.

The main issue on module-level is the imbalance of cell capacities. Cell balancing archi-
tectures and respective strategies address this issue by balancing the SOC levels. This already
positively impacts the overall cycle life. However, balancing architectures can be used to further
improve the cycle life and pack SOH. We have developed an SOH-aware cell balancing strategy
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that reduces stress on the least healthy cells and instead lets the healthier cells degrade faster.
We found that using this strategy, the EOL of a pack can be significantly delayed. Furthermore,
the architectural components should be chosen carefully, such as to provide a sufficiently high
balancing current to get the most beneficial SOH equalization at a reasonable cost. Also, tem-
perature management and the pre-selection and positioning of cells with varying SOH levels
impact the performance of the algorithm. We have shown that our SOH-aware cell balancing
strategy can improve cycle life by up to 23 %.

The charge pattern is a very effective control parameter to mitigate aging on the device-level.
With the example of a smart charger for smartphones, we demonstrate how delayed charging
reduces the average SOC and results in improved cycle life. Furthermore, by adapting the max-
imum charge level on the cell-level to the expected required charge amount, the average SOC
can be further reduced and cycle life is extended. Towards this, we compare various usage pre-
dictors and evaluate their performance. A probabilistic predictor shows the best performance.
The cycle life could be extended by a factor of up to 1.8 times.

Finally, we have investigated the health management in a system-level scenario consisting
of a stationary, residential EES, a rooftop-mounted PV, and a home equipped with smart meters.
The optimization goal does not only cover aging-related degradation cost of the EES but also
time-of-use dependent energy prices and privacy leakage through smart metering systems. A
suitable controller that solves this multi-objective optimization problem is presented and the
Pareto-results of the cost/privacy co-optimization are calculated. The evaluation shows that
proper control is crucial for such systems and that a trade-off between cost and privacy exists.
However, the privacy reduction approach, namely water-filling, has an additional beneficial
effect for the UP in terms of peak shaving and resulting easier demand-side management which
should be considered in the cost distribution among UPs and EES owners.

We then presented the holistic perspective of multi-scale health management. We discussed
health management techniques on cell-, module-, device- and system-level. On the cell-level,
the operation ranges are set such that usability is ensured at the least possible aging rate. Next,
on module-level, interdependencies of cell conditions may result in increased aging or limita-
tions in available capacity. Strategies on this level try to overcome such limitations and increase
the available capacity in the middle and long term. On the device-level, usage patterns and user
behavior are investigated and the health management system tries to compensate detrimental
behavior while trying not to degrade the user experience. Finally, on the system-level, the in-
terplay of multiple devices of the same or different types is researched and optimized control
strategies are developed such that aging is mitigated in addition to the further system objectives.

The use cases of multi-scale battery health management presented in this thesis have in com-
mon that they adjust cell-level operational limits to mitigate battery aging. In the SOH-aware
cell balancing scenario in Chapter 3, we leveraged the balancing architecture provided in an
EV battery pack on module-level to reduce stress on less healthy cells. Next, in Chapter 4, we
used device-level usage information on a smartphone, such as alarms and predictors, to delay
charge and lower target SOC limits. Thereby, the average SOC was reduced and hence, the
aging was mitigated. Finally, in Chapter 5, we considered a set-up of a PV and an EES in a
residential home with smart metering systems. Smart meters potentially leak private informa-
tion due to their fine-grained data recording if an outside attacker compromises the system. A
water-filling strategy using the EES and PV can protect privacy. We derived a control strategy
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for the EES and presented a strategy that co-optimizes time-of-use electricity prices, battery
aging, and privacy. Aging mitigation is achieved through lower charge/discharge currents.

We observe, that significant aging mitigation is achieved by adaptively adjusting operational
limits on cell-level at cycle runtime. Towards this, module-level infrastructure, e.g., cell bal-
ancing architectures, device-level usage information, i.e., by using predictors can be leveraged.
Similarly, system-level optimization should be adjusted to use strategies that co-optimize aging.
The developed strategies make use of the headroom in operational limits and battery usage as
the battery is rarely fully depleted before being recharged. We also observe that components
on the module-level can help to compensate effects on other levels. For example, the detrimen-
tal effect of under-dimensioned chargers on the device-level can be compensated by a hybrid
energy storage and respective battery health-aware operational strategies. Similarly, the SOH
imbalance on the cell-level can be compensated by using a cell balancing architecture, while
the increase in SOH imbalance can be mitigated with respective strategies.

Summing up, we have shown how system-level battery health management operates on
multiple scales. Our case studies show the feasibility and capability of health management on
multiple levels and its significant impact on improving cycle life. The presented battery health
management techniques resulted in significant aging mitigation. We hope that in the future,
further integration of strategies can achieve even improved results.

7.2 Future work
The proposed multi-scale design and management approaches for battery health optimization
can be further investigated, improved, and extended. Some promising directions for further
research are summarized in the following.

Further integration of levels

Many advances have been made on individual levels of battery health management. However,
the integration of multiple levels and the resulting effectiveness is yet to be investigated. Fur-
ther analysis of cross-layer strategies would be of interest. But also the further investigation
of intelligent exploitation of user behavior or usage patterns is needed. The current perspec-
tive in battery management system design that mainly focuses on runtime extension should
be shifted towards co-optimization with aging mitigation strategies. This can be motivated by
financial gains for the consumer and in some scenarios even related parties, e.g., electricity
providers. But also the environmental perspective must be highlighted. The increasing preva-
lence of batteries leads to a massive increase of highly toxic waste without having sufficient
recycling infrastructure in place. Battery health management cannot solve this problem but it
can contribute to a deceleration.

Improved online SOH estimators

Online SOH estimation for health management systems is beneficial as adaptive algorithms can
react to changes in health conditions. Of course, strategies such as the smart charger for av-
erage SOC reduction will also work without knowing the current SOH, but on the other hand,
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approaches such as the SOH-aware cell balancing rely on sufficiently accurate SOH estima-
tors. Advances in the domain of online SOH estimation will therefore positively impact the
capabilities of health management.

Improved SOH modeling

For evaluation of the effectiveness of health management strategies, reliable SOH models are
required. A comparison of existing models concerning accuracy and sensitivity towards aging
factors would help to better interpret the results and to account for inaccuracies of individual
models. Also, openly available aging data for different kinds of electrode materials would be
helpful to fit these models. With current models, a qualitative assessment of aging mitigation
strategies can be done. But in terms of quantification, the models show some discrepancies.
Hence further research and a common database of aging data from multiple manufacturers
would be helpful.

SOH inhomogeneities

Cells inside a battery pack show inequalities in capacity and health. These inhomogeneities
stem from manufacturing variations and temperature distribution within the pack. However, the
individual impact of these two sources is not yet clear. A better understanding of the sources of
inhomogeneities could help to find more sophisticated placements of cells inside a pack such
that stress factors could be distributed appropriately considering the individual health of a cell.

Investigation of further prediction approaches

Especially on higher levels of the multi-scale health management scheme, predictors of user
behavior and load patterns are used to manage the battery health. Improving these predictors
should therefore lead to better performance of the health management measures. One possi-
bility would be to investigate the usability of machine learning approaches. In scenarios such
as the smart charger, the user behavior concerning plug- and unplug times as well as charge
consumption while the device is powered by the battery could be predicted by machine learn-
ing algorithms. Also in the cost/privacy co-optimization of residential storages in smart energy
grids, machine learning approaches could be combined with the existing algorithms to make
the system less dependent on external input and the impact on control performance should be
investigated.

Impact of inaccuracies

The last point that is partially linked to the above-mentioned future work paths, is the investiga-
tion of the impact of inaccuracies. SOH estimation but also user behavior and load predictions
expose a high degree of uncertainty. Therefore, probabilistic estimations should be developed
and their impact on the accuracy of the health estimation should be estimated. Towards this,
the possible reasons for inaccuracy and uncertainty need to be identified and quantified. Then,
the impact of these probabilities on the overall aging mitigation should be simulated. Inaccu-
racies and uncertainties within the simulation model should be similarly considered. Research
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questions would on the one hand be the robustness of health management strategies towards the
inaccurate prediction of, e.g., user behavior or inaccurate SOH estimation. And, on the other
hand, the quantification of the effectiveness of the approaches could be evaluated. Towards this,
a broad study on battery aging data and user behavior data would be required.

Cross-layer investigations

While having addressed three use cases within the scope of this thesis and also some cross-layer
strategies, further investigation of additional techniques and strategies are needed. In particular,
on the system-level, a multitude of trade-offs exists. Such co-optimization problems can cover
financial aspects but also joint management of multiple battery-powered devices as well as the
alignment with further system objectives.

Batteries are increasingly used as power and energy source for more and more types of
devices. Increased focus on battery health management is required from an economic perspec-
tive and to mitigate the negative environmental impact of prematurely disposed batteries and
devices.
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