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1 Introduction

The discovery of Hawking radiation [1] and its consequences have clearly demonstrated

that there are very deep relations between quantum theory and thermodynamics. It is

now well known that there can be very different but complementary descriptions on the

same physical processes near a horizon [2–4]. For instance, a vacuum state viewed from an

inertial observer in a flat Minkowski spacetime appears to be a thermal state to a uniformly

accelerated observer (Rindler observer) [2, 3]. The Rindler observer is associated with a

local causal horizon called the Rindler horizon. When applied to black hole event horizons,

the complementary descriptions have in particular been incorporated into the axioms of

black hole complementarity (BHC) [4]. For example, a possible virtual baryon-number-

violating process of a falling proton viewed from the comoving falling observers can be a

real thermally assisted process viewed from the external static observers.

While various local processes have been examined to satisfy BHC via thought exper-

iments [5], non-local processes such as bubble nucleation around the whole event horizon

have been overlooked. Imagine, from the point of view of the freely falling observers, there

is a bubble nucleation around a black hole induced by a quantum vacuum transition.1 How

would this process be described by the static observers? According to BHC, one plausible

possibility is that this process corresponds to a thermal transition2 viewed by the external

static observers. In this paper, we shall show that this is true up to an unexpected point;

in order for the external static observers and the freely falling observers to have the same

transition probability, the tunneling interpretation must be given in the extended Kruskal-

Szekeres spacetime. Moreover, we will show that there is always a correspondence between

1In this paper, “quantum transition” and “quantum tunneling” are used to denote exclusively the cor-

responding processes at zero temperature.
2We shall note that, however, by “thermal transition” we refer to vacuum transition at finite temperature

for a quantum statistical system. That is, it is assumed that there are no contributions from classical

thermodynamic fluctuations in calculating the transition rate.
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thermal and quantum vacuum transitions whenever the bubble is nucleated around a hori-

zon. From this point of view, the thermal derivation in ref. [6] of the Coleman-De Luccia

tunneling rate [7] is a natural consequence of this correspondence.

On the other hand, recently there are comparable revised interests on bubble nucleation

seeded by black holes for its phenomenological values in studying the electroweak vacuum

metastability with gravity effects [8–16]. The measured 125 GeV Higgs boson [17, 18] and

the 173 GeV top-quark [19], suggests that the Higgs potential in the Standard Model (SM)

develops a lower minimum due to the renormalization running of the Higgs self-interaction

coupling. Without gravity, the lifetime of the electroweak vacuum in the SM is much

longer than the age of the Universe [20–24]. However, it was shown that the false vacuum

decay catalyzed by microscopic black holes could have a much bigger decay rate and for

some parameter space of the coefficients of higher dimensional operators in the Higgs

potential, the lifetime of the electroweak vacuum can be dramatically reduced [9–11]. Such

microscopic black holes can be generated via the evaporation of primordial black holes.

Since our Universe in the electroweak vacuum has enjoyed a very long safe time, the recent

results imply that either the Higgs parameters are out of the relevant range or there must be

very severe constraints on such microscopic black holes in the observable Universe. Further,

since such relevant primordial black holes can be produced at the post-inflationary matter

dominated stage, the absence of such objects would put severe constraints on inflation [13].

The process of bubble nucleation around black holes can be described by a static bounce

solution in the Euclidean Schwarzschild spacetime [8, 10] (the meaning of “static” will be

explained in section 3). A query, however, was raised in refs. [13, 15] that whether one shall

interpret this bounce as describing a bubble nucleation in vacuum or in thermal plasma.

Due to the periodicity of the Euclidean Schwarzschild time, it was conjectured that the

bounce solution may actually describe bubble nucleation around a black hole surrounded

by a thermal plasma. It was argued in ref. [13] that since the realistic evaporating black

holes are in vacuum, the enhancement of the decay rate is doubted. In this paper, we shall

show that this worry is not necessary since these two pictures, quantum tunneling and

thermal transition, are dual with each other. We will derive this correspondence between

thermal and quantum vacuum transitions in the particularly clear perturbative regime

where the back-reactions to the background spacetime can be neglected. This is sufficient

to clarify the following general aspect: the periodicity of the Euclidean Schwarzschild

time appears because of the thermal nature of the state observed by the external static

observers; and there is no necessity to fill the universe with extra plasma aside from the

existing Hawking radiation in order to interpret the bounce solution. In particular, the

probability calculated from the static bounce solution used in refs. [8–11] gives exactly

the thermal transition probability that measured by the external static observers. On the

contrary, if one interprets the bounce solution as describing a quantum tunneling, one must

extend the Schwarzschild spacetime to the Kruskal-Szekeres spacetime. This point leads to

a theoretical paradox related to black holes as we will discuss in section 5. It is clear that

the near-horizon spacetime of a black hole is approximately a Rindler spacetime and can be

most conveniently modeled in a 1 + 1-dimensional setting. We therefore first demonstrate

this correspondence for the false vacuum decay in the 1 + 1-dimensional flat spacetime
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and then move to the Schwarzschild spacetime. The thermal transition is described by the

imaginary-time formalism of thermal field theory which is only valid for equilibrium states.

Hence, as long as the non-equilibrium effects do not cause a big deviation at the very late

evaporation stage when the enhancement on the vacuum transition probability becomes

significant, the calculations in refs. [8–11] should be taken as reliable.

This paper is organized as follows. In section 2, we will show the correspondence

between quantum and thermal transitions of vacuum in the 1+1-dimensional flat spacetime.

In section 3, we study this correspondence for bubble nucleation around Schwarzschild black

holes. We consider the perturbative regime where the back-reactions to the background

spacetime are neglected. The discussion is then extended to bubble nucleation around

AdS black holes in section 4. In section 5, we raise a paradox from this correspondence.

Discussions and conclusions are given in section 6. Throughout of this paper, we take

~ = c = kB = 1.

2 Vacuum transition in 1 + 1-dimensional flat spacetime

The studies on the decay of a metastable vacuum state have been developed in the seminal

works by Langer [25, 26], and by Coleman and Callan [27–29]. The descriptions on false

vacuum decay at finite temperature have been given by Affleck [30] and Linde [31, 32]. In

this section, we build the correspondence between thermal and quantum vacuum transitions

in the 1 + 1-dimensional flat spacetime. We will first review the standard description on

false vacuum decay given by Callan and Coleman [28]. We emphasize that this picture

of quantum tunneling should be taken by the inertial observers. The same result of the

decay rate can be obtained from a thermal description when a Rindler frame is employed.

If the spatial dimension is higher than one, the spacetime can not be foliated in a way

such that we have Rindler wedges while still respect the symmetry of the bubble. Only

in the 1 + 1-dimensional case, this trouble disappears. But the 1 + 1-dimensional Rindler

spacetime shares the characters of the spacetime near an event horizon and captures the

crucial elements to perform the correspondence.

2.1 Quantum transition for inertial observers

Let us consider a scalar field theory with the following action

SM [Φ] =

∫
d2x
√
−η
[

1

2
ηµν(∂µΦ)∂νΦ− V (Φ)

]
, (2.1)

where η is the determinant of ηµν . In an inertial frame {x0, x1} ≡ {T,X}, the Minkowski

metric ηµν = diag(1,−1). We leave t to denote the time coordinate in the Rindler frame.

For clarification, we use Φ to denote the quantum field and use ϕ to denote the background

field. The potential V (Φ) possesses two minima: one local ϕ+ and one global ϕ−, as shown

in figure 1. The local and global minima are called the false vacuum and the true vacuum,

respectively. In the classical theory, the local minimum ϕ+ is stable. However, in the

quantum theory, it will decay to the global minimum through quantum tunneling, leading
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φ+φ-

Φ

V(Φ)

Figure 1. The classical potential V (Φ) for a theory with a false vacuum.

a bubble of true vacuum nucleated in the false vacuum. In order to describe such a tunneling

process, Callan and Coleman consider the following Euclidean transition amplitude

〈ϕ+|e−HT|ϕ+〉, (2.2)

where T is the amount of the Euclidean time during the transition. Inserting a complete

set of energy eigenstates and taking T→∞, one obtains

|〈ϕ+|0〉|2 e−E0T =

∫
DΦ e−SE [Φ] ≡ ZE [0], (2.3)

where

SE [Φ] =

∫
dT dX

[
1

2
(∂T Φ)2 +

1

2
(∂XΦ)2 + V (Φ)

]
(2.4)

is the Euclidean action. We have used T to denote the Euclidean time in the inertial frame

and leave τ to denote the Euclidean time in the Rindler frame. By calculating the path inte-

gral in eq. (2.3), one could extract the wave function of the lowest-lying state and its energy.

One can perform the path integral using the method of steepest descent. For the

boundary conditions of interest (ϕ(T → ±∞) = ϕ+), we can find several saddle points3

among which is a bounce solution ϕB. Pictorially, the bounce solution corresponds a

“particle” initially at ϕ+ rolling through the valley in −V (Φ), reaching a turning point

close to ϕ− and then rolling back to ϕ+ — hence the name bounce. The bounce solution

is responsible for the tunneling process. It was found by Callan and Coleman that the

quadratic fluctuation operator, −∂2
T −∂2

X +V ′′(ϕ), when evaluated at the saddle point ϕB,

possesses a negative mode. Therefore, performing naively the Gaussian functional integral

in the saddle-point expansion gives us a divergent result. This trouble reflects the fact that

the state |0〉 calculated is actually metastable (cf. eq. (2.3)). The extraction of a physical

result relies on a careful treatment of the analytical continuation of the path integral from a

theory with only a stable vacuum to the one of interest. With this analytical continuation,

3In the strict limit T→∞, there are three saddle points: the trivial false vacuum saddle point ϕF (x) =

ϕ+, the bounce ϕB and another one ϕS which is called the shot in ref. [33].
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one finally obtains an imaginary part in E0. This imaginary part then gives the decay rate

through [28]4

Γtunn =
2

T
Im(lnZE [0]). (2.5)

Here we would like to comment that the formula for the decay rate appears in different

forms in the literature. The formula (2.5) was used in ref. [33]. While in refs. [34, 35]

there is not the logarithm. When there is the logarithm, one needs to take all possible

multi-bounce configurations — which go back and forth from the false vacuum N times,

for arbitrary N — as (approximate) saddle points and sum over them. These multi-bounce

configurations exponentiate and give the decay rate formula without the logarithm where

one shall consider only the one-bounce configuration (and the trivial fasle vacuum) in

evaluating the partition function [28, 36]. A study of the tunneling process in the real-time

Minkowski path integral will be given in ref. [37].

Except for the particular negative mode, the quadratic fluctuation operator evaluated

at the bounce also has zero modes, originating from the spontaneous symmetry breaking

of the spacetime translation symmetries caused by the bounce solution. Integrating over

these zero modes also gives a divergent result. The integration over these zero modes,

however, can be traded for that over the collective coordinates of the bounce, giving a

factor (V T)(B/2π) where B = SE [ϕB] − SE [ϕ+] and V here denotes the spatial volume.

Evaluating eq. (2.5) within the first quantum corrections then gives the tunneling rate per

unit volume [28]

Γtunn/V = A e−B, (2.6)

where the prefactor A takes the form [28]

A =

(
B

2π

) ∣∣∣∣det′[−� + V ′′(ϕB)]

det[−� + V ′′(ϕ+)]

∣∣∣∣−1/2

. (2.7)

Here � = ∂2
T +∂2

X and det′ implies that the zero eigenvalues of the operator −�+V ′′(ϕB)

are to be omitted when computing the determinant. Note the difference in the power

of B/2π from the 3 + 1-dimensional case because we only have two zero modes in the

1 + 1-dimensional case.

The bounce solution has an O(2) symmetry and satisfies the equation of motion

−d2ϕ

dr2
− 1

r

dϕ

dr
+ V ′(ϕ) = 0, (2.8)

where r =
√
X2 + T 2. The boundary conditions become ϕ|r→∞ = ϕ+ and dϕ/dr|r=0 = 0.

When the energy difference ε ≡ V (ϕ+) − V (ϕ−) is much smaller than the barrier height,

we have the so-called thin-wall bounce solution. The thin-wall bounce solution takes the

value ϕ− for r smaller than a critical radius rc and the value ϕ+ for r bigger than rc,

with a rapid varying region around rc shown in figure 2a. The bounce solution not only

gives the decay rate but also gives the data of the nucleated bubble5 configuration after

4There is a sign ambiguity in extracting the imaginary part; the extraction should proceed in a way such

that Γtunn > 0.
5In the 1 + 1-dimensional case, the nucleated object is a kink-anti-kink pair, but we still call it bubble

with a slight abuse of language.
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X



rc

(a)

X

T

rc

(b)

Figure 2. On the left panel is the bounce in the thin-wall approximation. The solid circle represents

the “bubble wall” in the Euclidean spacetime, separating the true vacuum (inside) from the false

vacuum (outside); the dashed lines represent a foliation of the Euclidean spacetime. On the right

panel is the motion of the bubble wall (solid half-hyperboloid pair) in the Minkowski spacetime

after the nucleation (T ≥ 0); the dashed line is the light cone or the Rindler horizon viewed from

the comoving observers with the bubble wall; the lower half-plane is continued to the Euclidean

space which can be viewed as to provide the initial state at T = 0 [38, 39].

the tunneling: ϕbubble(T = 0, X) = ϕB(T = 0, X). The evolution of the field after the

nucleation can be immediately obtained by analytically continuing the bounce solution:

ϕbubble(T ≥ 0, X) = ϕB(T → iT,X). See figure 2b for the motion of the bubble wall. The

bounce is symmetric under T → −T . And one always cuts the bounce into two halves and

analytically continues it to the Minkowski evolution at the cutting line. Such a cutting

rule for the bounce is reminiscent of the optical theorem. Indeed an optical-theorem-like

description of false vacuum decay will be given in ref. [37].

In the Callan-Coleman formalism, the bubble nucleation corresponds to a quantum

tunneling process and the Euclidean time T is open. In this case, the bounce describes the

dominant path for the transition from ϕ+ at far past to ϕ+ at far future in the Euclidean

space. The intermediate configurations at Ti are given by ϕB(Ti, X) and are apparently

time-dependent, as shown by the dashed lines in figure 2a. It is, however, possible to

do the foliation in another way as shown in figure 3. In this foliation, the spatial slices

are the rays. The Euclidean time is given by the angular coordinate. Apparently, now

the intermediate configurations are time-independent. This reminds us of the thermal

transition at finite temperature. The observers in the Euclidean spacetime are represented

by the circles which can be parameterized as X = r cos(τ), T = r sin(τ). If one performs

an inverse Wick rotation τ → it, the circles are mapped to the hyperboloids, corresponding

to uniformly accelerated observers in the Minkowski spacetime. This is in agreement with

the continuation of the bubble wall trajectory.

Now one finds that the Euclidean time τ has a natural periodicity of 2π and therefore

the Euclidean field theory using τ as the Euclidean time can be identified as describing a

thermal state. This thermal state is the well-known Unruh effect [2] felt by a uniformly

– 6 –
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X
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X

T
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Figure 3. On the left panel is a different way to do the foliation of the Euclidean spacetime;

the solid circle can represent a typical worldline of an observer in this foliation; the dashed lines

(the rays) represent the intermediate spatial slices and configurations. On the right panel is the

corresponding foliation in the Minkowski spacetime.

accelerated observer. It should be emphasized that this thermal field theory describes

only the right Rinder wedge (X > 0,−X < T < X; R-wedge in short) (see figure 3b)

or the left Rindler wedge (X < 0, X < T < −X; L-wedge in short) but not both. Such

kind of identification is due to thermofield dynamics [40]. Thermofield dynamics describes a

thermal field system by augmenting the physical Fock space by a fictitious, dual Fock space.

In so doing, one can define a pure state in the doubled Fock space with the expectation

value of any physical operator agreeing its statistical average in the thermal ensemble.

That is to say, we can choose, for example, the R-wedge as the physical thermal system

and view the L-wedge as a fictitious copy of the R-wedge. The L-wedge helps us to model

the thermal state on the R-wedge from a pure state on the combination of the R- and

L-wedges. The R-wedge (or the L-wedge) is quite similar to the static region outside of a

black hole. We call such kind of a static region a static patch.

In conclusion, we identify two different, complementary interpretations of the Eu-

clidean field theory in the 1 + 1-dimensional flat spacetime:

(I) From the viewpoint of the inertial observers, it is a quantum field theory analytically

continued from the Minkowski quantum field theory formulated in the inertial frame

via the Wick rotation T → −iT .

(II) From the viewpoint of the Rindler observers, it is a thermal field theory6 for the R-

wedge (or another) analytically continued from the Minkowski quantum field theory

formulated in the Rindler frame via the Wick rotation t→ −iτ .

In the next subsection, we will derive the decay rate using interpretation (II).

6Of course, by “thermal field theory” we actually mean thermal quantum field theory. With a slight

ambiguity of the terminology, it is nevertheless clear for the differences in the two field theories interpreted

in the inertial frame and the Rindler frame. The former describes a zero temperature field system while

the latter describes a finite temperature one.
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2.2 Thermal transition for Rindler observers

From the relation T = r sinh t, X = r cosh t (hence we choose the R-wedge as our physical

thermal system), one has the metric in the coordinates {t, r} as

ds2 = r2dt2 − dr2. (2.9)

The action (2.1) is then expressed as

SM [Φ] =

∫
dt

∫ ∞
0

dr r

[
1

2r2
(∂tΦ)2 − 1

2
(∂rΦ)2 − V (Φ)

]
. (2.10)

The equation of motion is

1

r2

∂2ϕ

∂t2
− ∂2ϕ

∂r2
− 1

r

∂ϕ

∂r
+ V ′(ϕ) = 0. (2.11)

By a canonical transformation, we can immediately obtain the Hamiltonian in the Rindler

coordinates

H =

∫ ∞
0

dr r

[
1

2r2
(∂tΦ)2 +

1

2
(∂rΦ)2 + V (Φ)

]
. (2.12)

Taking the Wick rotation t→ −iτ and iSM → −SE , we get

SE [Φ] =

∫ β=2π

0
dτ

∫ ∞
0

dr r

[
1

2r2
(∂τΦ)2+

1

2
(∂rΦ)2+V (Φ)

]
, (2.13)

where we have identified the periodicity of τ . For convenience, we use the global Rindler

temperature TR = 1/2π rather than the proper temperature TP = 1/(2πr) measured by

the local observers.

The partition function for the thermal ensemble at temperature 1/β is given as

Z[β] = Tr[e−βH ]

=

∫
Φ(0,r)=Φ(β,r)

DΦ e
−

∫ β
0 dτ

∫∞
0 dr r

[
1

2r2
(∂τΦ)2+ 1

2
(∂rΦ)2+V (Φ)

]
. (2.14)

As explained in the last subsection, we identify eq. (2.14) as the thermal field theory for the

R-wedge. In this paper, we employ the following formula for the thermal transition rate

Γtherm = −2 ImF, (2.15)

where F is the free energy defined as F = −(lnZ[β])/β.

According to Linde [31, 32], the thermal transition can be described by a time-

independent configuration in the Euclidean spacetime which is simply the solution to

eq. (2.11) subject to the static condition ∂ϕ/∂t = 0 and the boundary conditions ϕ|r→∞ =

ϕ+, dϕ/dr|r=0 = 0. The false vacuum ϕ+ is a trivial solution. We denote the nontrivial

one as ϕb. Note that the equation of motion for this time-independent configuration ϕb is

exactly the one for the bounce (see eq. (2.8)). This is not surprising since the equations

of motion are related by a coordinate transformation and the static condition is equivalent

– 8 –
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to the O(2) symmetry of the bounce. Thus we have ϕb(r) = ϕB(r). One can evaluate

the partition functional Z[β] by expanding Φ around the saddle points ϕ+ and ϕb. The

semiclassical result will give us an exponential of −B. To take the quadratic fluctuations

into account, we rewrite the action (2.13) as

SE [Φ] =

∫ β=2π

0
dτ

∫ ∞
0

dr

[
−Φ

(
1

2r
∂2
τ

)
Φ− Φ

(
r

2
∂2
r +

1

2
∂r

)
Φ + V (Φ)

]
, (2.16)

where the integration by parts has been used. The quadratic fluctuations at a saddle point

ϕ then give us the following eigenvalue problem[
− ∂2

∂r2
− 1

r

∂

∂r
− 1

r2

∂2

∂τ2
+ V ′′(ϕ)

]
Φ̂λ(τ, r) = λ Φ̂λ(τ, r). (2.17)

One can separate the Matsubara modes as

Φ̂λ(τ, r) =

n=∞∑
n=−∞

φλ,n(r)eiωnτ . (2.18)

Then we get [
− ∂2

∂r2
− 1

r

∂

∂r
+
ω2
n

r2
+ V ′′(ϕ)

]
φλ,n(r) = λφλ,n(r). (2.19)

The periodic τ (recall τ = τ+2π) constrains ωn to be integers. One can of course recognize

eq. (2.19) as the radial eigenvalue equation of the operator −�+V ′′(ϕ) appearing in eq. (2.7)

and view eq. (2.18) as the circular harmonic decomposition. Therefore the full fluctuation

spectrum in the thermal field theory Z[β] is identical to the one in the quantum field theory

ZE [0] (cf. eq. (2.3)). It shall be straightforward to show that doing the Gaussian functional

integral in Z[β] will give us the identical result as in the quantum tunneling case.

One may still wonder how to correctly get the factor B/2π induced by the zero modes

which are not so obvious now. To see explicitly the zero modes, we define the following

two independent operators

PX = cos τ
∂

∂r
− 1

r
sin τ

∂

∂τ
; (2.20a)

PT = sin τ
∂

∂r
+

1

r
cos τ

∂

∂τ
. (2.20b)

Acting on the equation of motion for ϕb with these operators, one has[
− ∂2

∂r2
− 1

r

∂

∂r
+

1

r2
+ V ′′(ϕ)

]
(PX,T ϕb) = 0. (2.21)

Thus we have two zero modes B−1/2PX,T ϕb with ω2
n = 1 where we have included the

normalization factor. These zero modes can be traded for the collective coordinates, giving(
B

2π

)∫
dX

∫
dT =

(
B

2π

)∫
dτ

∫
dr r =

(
B

2π

)
βṼ , (2.22)
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where we have defined the effective volume Ṽ for the Rindler observers when we use the

dimensionless time τ .

Combining all the above analyses, we readily conclude that

Γtunn/V = Γtherm/Ṽ . (2.23)

Dividing Γtherm by Ṽ is related to the fact that the Rindler horizon is not globally unique.

One can have an infinite number of Rindler horizons with the light cone apex translated

in the X- and T -directions. Mathematically, the result (2.23) is quite natural since the

partition function Z[β] is related to ZE [0] simply by a coordinate transformation. Con-

ceptually, this is nontrivial. On the l.h.s. we describe quantum tunneling observed by the

inertial observers while on the r.h.s. we study thermal transition for Rindler observers in a

Rindler wedge. For the former case, the nucleated bubble wall is represented by the paired

half-hyperboloids. While for the latter case, the bubble wall is only the half-hyperboloid

in the R-wedge; the other one in the L-wedge is completely fictitious. As we will se later,

thermofield dynamics will have the half-hyperboloid in the L-wedge directed oppositely in

time. Now we have understood that the Matsubara modes in the thermal field theory are

just the circular harmonic modes in the quantum field theory. And only when we sum over

all the Matsubara modes can we have agreement on the exact results on both sides.

For general thermal vacuum transitions, the thermal transition rate at any loop order

should follow from evaluating eq. (2.15). In refs. [31, 32], the one-loop vacuum decay rate

at finite temperature was constructed by analogy with that at zero temperature. Such con-

structed one-loop formula contains functional determinants of spatial fluctuation operators,

for example, the quadratic operator in eq. (2.17), with the classical potential replaced by

the finite temperature effective potential. Although this is definitely quantitatively cor-

rect, it has a double counting problem. The finite temperature effective potential itself

comes from integrating out the thermal and quantum fluctuations while one again has the

one-loop functional determinants for the spatial fluctuation operators in the formula given

in refs. [31, 32]. If we insist to have those functional determinants in the one-loop decay

formula, the normal finite temperature effective potential should be replaced by one which

is obtained by integrating out only the Matsubara modes but leave the spatial fluctuations

intact to avoid the double counting. We will derive such kind of effective potential in

future work.

In our discussion, we evaluate eq. (2.15) by expanding around a classical static bounce

ϕb. This is not possible when the finite temperature effective potential differs significantly

from the classical potential such that the quantum and thermal corrected bounce can be

non-perturbatively far away from the classical bounce. In this case, one must use in the

expansion the quantum and thermal corrected bounce, which is obtained by solving the

Schwinger-Dyson equation for the one-point function. One may then wonder whether the

correspondence between thermal and quantum vacuum transitions is still valid. The answer

is positive since the correspondence is really built on the map between the thermal partition

function (2.14) and Euclidean partition function (2.3) via a coordinate transformation in

the Euclidean spacetime. In particular, in the case that we worried about, we shall also

evaluate ZE [0] by expanding around the quantum corrected bounce.
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3 Vacuum transition in Schwarzschild spacetime

Let us now study vacuum transition in the Schwarzschild spacetime. We will only con-

sider the perturbative regime where the back-reactions to the spacetime background can

be ignored.7 When the background spacetime suffers a dramatic change after the bubble

nucleation, the correspondence between thermal and quantum vacuum transitions has con-

ceptual difficulties. In such a case, the remnant black hole and the original black hole can

have different masses, and even worse there may not be a remnant black hole [8]. Therefore

it is not clear how to define the external static observers through the bubble nucleation

process in such a non-perturbative regime. Such kind of problems, however, are not exclu-

sive for our particular correspondence between thermal and quantum vacuum transitions

but are general for correspondences involved in BHC.

We consider the following action

SM =

∫
d4x
√
−g
[

1

2
gµν(∂µΦ)∂νΦ− V (Φ)

]
, (3.1)

where the metric gµν is given as

ds2 =

(
1− 2GM

r

)
dt2 −

(
1− 2GM

r

)−1

dr2 − r2dΩ2
2, (3.2)

with dΩ2
2 ≡ dθ2 + sin2 θdφ2 being the metric for the unit two-sphere.

We will first consider the thermal description of vacuum transitions given by the ex-

ternal static observers. Denoting the spatial metric as hij = −gij and

f(r) ≡
(

1− 2GM

r

)
, (3.3)

we can rewrite the action as

SM =

∫
dt

∫
d3x
√
h

[
1

2
√
f(r)

(
dΦ

dt

)2

− 1

2

√
f(r)hij(∂iΦ)∂jΦ−

√
f(r)V (Φ)

]
, (3.4)

where h = det(hij).

To see that upon the Wick rotation t→ −iτ the Euclidean Schwarzschild time τ should

be periodic, one can move to the Kruskal-Szekeres coordinates through (r ≥ 2GM)

T =
( r

2GM
− 1
)1/2

er/4GM sinh

(
t

4GM

)
, (3.5a)

X =
( r

2GM
− 1
)1/2

er/4GM cosh

(
t

4GM

)
. (3.5b)

Note that X ≥ 0. The metric now reads

ds2 =
32G3M3

r
e−r/2GM (dT 2 − dX2)− r2dΩ2

2, (3.6)

7The application condition for this perturbative regime is given in ref. [7].
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where

T 2 −X2 =
(

1− r

2GM

)
er/2GM . (3.7)

The coordinate transformation (3.5) is analogous to the one from {t, r} to {T,X} in the

1 + 1-dimensional flat spacetime. One can see that, after the Wick rotation t → −iτ , the

Euclidean time τ has a natural periodicity β = 8πGM .

Taking the Wick rotation t→ −iτ ; iSM → −SE and the identification τ = τ+8πGM ,

we have

SE =

∫ β=8πGM

0
dτ

∫
d3x
√
h

[
1

2
√
f(r)

(
dΦ

dτ

)2

+
1

2

√
f(r)hij(∂iΦ)∂jΦ +

√
f(r)V (Φ)

]

=

∫ β=8πGM

0
H[Φ]. (3.8)

We can identify the part of the spatial integral as the Hamiltonian H with τ replaced by

t. The thermal field theory is given by the following partition function

Z[β] = Tr[e−βH ]. (3.9)

Because of the O(3) symmetry of the spacetime, we expect that the time-independent

configuration responsible for the thermal transition has no dependence on θ and φ. Then

the action (3.8) gives the equation of motion

−d2ϕ

dr2
− f ′(r)

f(r)

dΦ

dr
− 2

r

dϕ

dr
+
V ′(ϕ)

f(r)
= 0. (3.10)

To prepare for the construction of the correspondence, we can define a Euclidean

“inertial coordinate system” {T , X} through the transformation

T =
( r

2GM
− 1
)1/2

er/4GM sin
( τ

4GM

)
, (3.11a)

X =
( r

2GM
− 1
)1/2

er/4GM cos
( τ

4GM

)
. (3.11b)

Note that, once we allow τ to take the whole region from 0 to 8πGM , we have extended the

X from X ≥ 0 to the whole real line. But we still view eq. (3.9) as describing the thermal

ensemble on the original static patch outside of the black hole.8 This is of course again due

to thermofield dynamics which doubles the Fock space of the thermal field system. The

Euclidean metric in the coordinates {T , X} is

ds2 =
32G3M3

r
e−r/2GM (dT 2 + dX2) + r2dΩ2

2. (3.12)

8An insignificant point: if the thermal field theory describes the static patch outside of the black hole,

i.e., r > 2GM , we shall subtract the point X = T = 0 in the Euclidean spacetime. But we can include the

horizon r = 2GM into the system to fill this hole.
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III

III

IV

r = 0

r = 0

Figure 4. Penrose diagram of the Kruskal-Szekeres spacetime which is obtained by a conformal

transformation of the metric (3.6). The left and right square regions are two causally uncorrelated

universes. The upper and lower triangle regions are the black hole and white hole, respectively.

The angular directions (θ and φ) are suppressed.

On the other hand, we can from the beginning work in the maximally extended Kruskal-

Szekeres spacetime with the same metric (3.6) and relation (3.7). In this extended space-

time, there is no particular constraint on X except for that r > 0. If one ignores the

unphysical white hole region, one can view this spacetime as describing two black holes

in two causally uncorrelated spatial regions connected by a wormhole (the Einstein-Rosen

bridge [41]); the wormhole is the shared interior of these two black holes, see figure 4. Now

one can study the quantum vacuum transition around the wormhole in such a spacetime.

We shall emphasize that there is nothing singular near the wormhole event horizon and

in particular, the spacetime curvature can be very small for large black holes. Therefore,

the Callan and Coleman’s description on false vacuum decay should be still reliable. Now

we need to perform the Wick rotation T → −iT which gives us the metric (3.12). The

surprising thing is that after this rotation, the relation (3.7) becomes

T 2 +X2 =
( r

2GM
− 1
)
er/2GM ≡ ρ2 ≥ 0. (3.13)

That is, the Euclidean Kruskal-Szekeres spacetime has r ≥ 2GM and coincides completely

with the one where the thermal field theory lives.9 This point also makes the Euclidean

Kruskal-Szekeres spacetime be non-singular in the whole region −∞ < T < ∞;−∞ <

X < ∞ and motivates Hawking to propose the Euclidean Kruskal-Szekeres spacetime as

the simplest gravitational instanton [42].

Using the coordinates {T , X, θ, φ}, one can have a Euclidean field theory with an open

Euclidean time and the partition function

ZE [0] =

∫
DΦ e−SE,T , (3.14)

where we put a subscript T on SE to remind us of the Euclidean time we are using. The

bubble nucleation around the wormhole can be described by a bounce solution centered

9Because of this, there is no difference between the Euclidean Kruskal-Szekeres spacetime and the Eu-

clidean Schwarzschild spacetime (with the Euclidean Schwarzschild time τ taking a full periodicity). Thus

these two terms are used interchangeably in this paper. Without the ajective “Euclidean”, these two

spacetimes are very different.
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at the origin (T = X = 0) in the Euclidean Kruskal-Szekeres spacetime. We would like

to emphasize that the coordinates {T , X} here are quite similar to the one in the 1 + 1-

dimensional Euclidean flat spacetime. In particular, the manifolds described by {T , X}
are both R2 and the metrics possess an O(2) symmetry. This is why the thermal properties

of the event horizon can be understood from the Rindler horizon in 1 + 1 flat spacetime.

Considering the additional O(3) symmetry, we expect that the bounce has an O(3)×O(2)

symmetry and thus only depends on the radial distance ρ (cf. eq. (3.13)). Such kind of

bounce is called static and gives the minimal bounce action B [8]. Because there is no

dependence on θ and φ in the static bounce solution, our tunneling problem is analogous

to the one in the 1 + 1-dimensional flat spacetime. For instance, it is completely trivial

to check that the equation of motion for this O(3) × O(2) bounce is exactly the same as

eq. (3.10). And we immediately get the agreement on the semiclassical suppressions in

the thermal interpretation and the tunneling interpretation. The “thin-wall” bounce is

described in figure 2a with the extra O(3) symmetry given by the θ- and φ-independences.

There is one difference compared with the case of 1 + 1-dimensional flat spacetime. In the

Euclidean Kruskal-Szekeres spacetime, we do not have T - and X-translation symmetries

any more. Hence we shall consider the total quantum transition probability instead of the

transition rate. We have

Ptunn = 2 Im(lnZE [0]). (3.15)

Similarly we have the thermal transition probability

Ptherm = 2 Im(lnZ[β]). (3.16)

As before, one can further perform the Gaussian functional integrals in the saddle-

point expansions. Since the action SE,T in the quantum field theory (cf. eq. (3.14)) is

related to the action in the thermal field theory (eq. (3.8)) by a coordinate transformation,

the fluctuation spectra in both theories must match. The Matsubara modes in the thermal

field theory are mapped to the circular harmonic modes (from the O(2) in the O(3)×O(2))

in the quantum field theory. Therefore the thermal transition probability and the quantum

transition probability will have identical results: Ptunn = Ptherm.

One can easily extend this correspondence between thermal and quantum vacuum

transitions to other horizons, e.g., to the de Sitter horizon. The de Sitter spacetime has

two causally uncorrelated static patches which are separated by de Sitter horizons, see

figure 5. See also ref. [43] for more details. Since the de Sitter spacetime is maximally

symmetric, we can always choose one Kruskal (or static) coordinate system such that

the bubble is nucleated around a de Sitter horizon. Viewed from the static observers in

this particular coordinate system, the bubble nucleation is thermal. By using a WKB

approach, Brown and Weinberg [6] showed the agreement on the semiclassical suppression

in the transition rates from a thermal transition description and the Coleman-De Luccia

tunneling prescription [7]. However, by repeating the analysis we have given, one can show

the exact agreement in the transition rates beyond the semiclassical level.
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Figure 5. Penrose diagram of the de Sitter space. The right triangle region is one of the static

patches. The solid curved lines represent static observers. The dashed lines are spatial slices of

constant static time in the static coordinates.

4 Bubble nucleation around AdS black holes

It is well known that a physical system with gravity may be holographically dualized to a

field system on its boundary [44, 45]. This holographic principle is mostly rigorously under-

stood in the AdS/CFT duality [46–48]. Although the constructed correspondence between

thermal and quantum vacuum transitions, as other possible correspondences described by

BHC, is quite general, it is beneficial to look into an example where the AdS/CFT applies.

In this section, we briefly comment on bubble nucleation around eternal AdS-Schwarzschild

black holes.

An eternal black hole has an extended Penrose diagram as shown in figure 6. This

Penrose diagram has two asymptotic AdS exterior regions, denoted as “Left Exterior” and

“Right Exterior”, which are causally uncorrelated. Correspondingly, the conformal field

theory (CFT) that describes this spacetime has two identical uncoupled sectors, L and R.

The eternal black hole is described by the entangled state [39]

|Ψ〉 =
∑
n

e−βEn/2|n〉L ⊗ |n〉R, (4.1)

where |n〉L,R are the energy eigenstates of energy En of the CFT in the left and right

sectors, respectively. β is the inverse temperature of the black hole.

As explained in ref. [49], this state possesses two different interpretations:

(1) Thermofield interpretation of a single black hole. In this interpretation, the L sector

is fictitious and is introduced as a “doubling trick” used in thermofield dynamics.

The evolution of the state is given by the Hamiltonian Htf = HR −HL where HL,R

are the Hamiltonians in the left and right sectors, respectively. The Hamiltonian Htf

generates boosts as explained in figure 7a.

(2) Two black holes in disconnected spaces. In this interpretation, the L sector is also

physical and hence there are two physical black holes. The Hamiltonian is given by

H = HR +HL. The evolution is explained in figure 7b.
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Right
Exterior

Left
Exterior

L R

Figure 6. Penrose diagram for the eternal AdS-Schwarzschild black hole. Note that the two

boundaries, R and L, have topology R× SD−1 where D is the dimension of the bulk spacetime.

(a) (b)

Figure 7. Two different interpretations of the extended AdS-Schwarzschild spacetime. Left:

thermofield description of one single black hole; the boost generated by the Hamiltonian propagates

upward in the Right Exterior and downward in the Left Exterior. The opposite evolution direction

in time implies the fictitious character of the Left Exterior. Right: two black holes in disconnected

spaces with a common time.

Note that, in whichever interpretation, the individual density matrices on either side

are thermal density matrices. Therefore, for a static observer on one side, he/she cannot

distinguish from these two interpretations. With these two interpretations and following

the analysis given in the last section, it shall be straightforward to see a correspondence

between thermal vacuum transitions in the first interpretation and quantum vacuum tran-

sitions in the second interpretation. With the same field system, both kinds of transitions

will be described by the same bounce solution in the same Euclidean AdS-Schwarzschild

spacetime. The growth of the static bubble after the nucleation is explained in figure 8.

Since the eternal AdS-Schwarzschild black hole has a holographic description, the bubble

nucleation around it could also be described by the CFT on the boundary. This may be

left for future work.

5 A new paradox from black holes?

The discovery of the black hole evaporation has raised many deepest mysteries such as the

microscopic origin of the black hole entropy [1, 50]. In particular, by theoretically studying

black holes, the information paradox [51] was proposed and remains to be resolved, see
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(a) (b)

Figure 8. Left: a static bubble nucleated around a single AdS eternal black hole. The Left Exterior

and left bubble evolves downward and are unphysical. Right: two bubbles nucleated around two

physical black holes. Or one can say that, one bubble is nucleated around the event horizons of

a wormhole.

ref. [52] for a pedagogical introduction. The information paradox has been formulated in

an extremely sharp version by Almheiri, Marolf, Polchinski and Sully, named as the AMPS

firewall paradox [53]. These paradoxes are intrinsically related to the curious thermal

nature of the state observed by the external static observers outside of the hole.

Here we would like to study a consequence of the correspondence we have constructed

so far which may lead to a new paradox related to black holes. The paradox is based on

the following assumptions:

(i) The local field theory is valid near the black hole horizon. In particular, the state

outside of the horizon is thermal viewed from the external static observers as shown

by Hawking.

(ii) The equivalence principle. In particular, the freely falling observers are in a vacuum

state.

The observation is the following. Suppose we have a field system that permits a

mild vacuum transition. We can in principle do experiments to measure the probability

of bubble nucleation around evaporating Schwarzschild black holes.10 By assumption (i),

the static observers are in a thermal ensemble and would measure a result Ptherm for the

thermal bubble nucleations. However, by assumption (ii) the freely falling observers are in a

vacuum state and thus see tunneling processes of bubble nucleation. Since the experiments

are performed outside of the horizon, the static observers and freely falling observers can

compare their results. The freely falling observers must observe the same probability,

Ptunn = Ptherm. But as we have shown, if the freely falling observers calculate the quantum

tunneling probability, they can get a correct prediction only with assuming that they are in

a Kruskal-Szekeres spacetime. For the single black hole background, the Kruskal-Szekeres

coordinate X needs to be constrained as X ≥ 0, see figure 9. After the wick rotation

T → −iT , we only have half a Euclidean Kruskal-Szekeres spacetime. In this case, we will

have a different bounce action and tunneling probability. Thus the freely falling observers

would get a contradiction between the measured result and the theoretical prediction.

10The constructed paradox applies to the eternal AdS black hole as well.
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I

r = 0

r = 0

Figure 9. Representation of the Schwarzschild spacetime by half of the Kruskal-Szekeres spacetime.

The solid line with arrows represents a light beam propagating into the black hole. For realistic

black holes, the white hole and its event horizon need to be replaced by the collapsing star.

For Rindler and de Sitter horizons, the “freely falling observers” really have another

physical static patch, although it cannot be seen by the “freely falling observers” from the

patch that our thermal field theory describes. Realizing this, the “freely falling observers”

in the Rindler spacetime and the de Sitter spacetime can get a correct prediction for the

quantum transition. For black holes, it is very hard to imagine that any Schwarzschild black

hole is connected with another black hole as described by the Kruskal-Szekeres metric. Note

that in this paradox we do not assume an old black hole (after the Page time [54]) as the

information paradox usually does. As long as the event horizon has been formed, we could

have such a paradox.

This paradox can be summarized as the following query. The thermal nature that

the Rindler and de Sitter horizons present to the static observers on a static patch can be

explained by the entanglement between the static patch (say our R-wedge) with another

(say our L-wedge). While the black hole horizon has a similar local structure and presents

the same thermal nature to the external static observers, what is the origin of such thermal

character globally?

This paradox may be related to the ER=EPR conjecture [49] proposed by Maldacena

and Susskind. ER=EPR conjectures that any Einstein-Podolsky-Rosen [55] correlated

system is connected by some sort of Einstein-Rosen bridge. Thus somehow, the maxi-

mally extended Kruskal-Szekeres spacetime may be indeed realized for any evaporating

Schwarzschild black hole, perhaps in some exotic way.

6 Discussions and conclusions

In this paper, we have clarified the physical meaning of an O(3) × O(2) bounce solution

in the Euclidean Schwarzschild spacetime. We proposed a correspondence between two

different interpretations for such bounce. It can be either interpreted as a thermal tran-

sition of vacuum in the static region outside of a Schwarzschild black hole or a quantum

tunneling in a maximally extended Kruskal-Szekeres spacetime. The thermal and quantum

interpretations are given by the static observers or the freely falling observers, respectively.
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In particular, we found that the Matsubara modes in the thermal interpretation can be

mapped to the circular harmonic modes from the O(2) symmetry (from the O(3)×O(2))

in the tunneling interpretation. The transition probabilities in these two interpretations

are shown to agree with each other. We also showed that this correspondence is general

and can be applied to the Rindler horizon and the de Sitter horizon.

The correspondence for these two interpretations is due to thermofield dynamics which

relates a thermal state to a quantum pure state by doubling the Fock space. Thus the ther-

mal field theory in the static region outside of a Schwarzschild black hole and the (Euclidean

version of the) quantum field theory in the maximally extended Kruskal-Szekeres spacetime

turn out to live in a same Euclidean spacetime. This correspondence, however, brings a

new paradox related to black holes. That is, for freely falling observers, if they calculate

the tunneling probability in a Schwarzschild spacetime background, in contrast with the

maximally extended Kruskal-Szekeres spacetime, they would not get the agreement with

the thermal transition probability obtained by the external static observers. This paradox

is originated from the curious fact that while the black hole horizon shares a similar local

structure with other horizons, it is very different in the global structure.
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