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Abstract

We use deep autoencoder neural networks to draw a chart of the heterotic Z6-II orbifold landscape. Even 
though the autoencoder is trained without knowing the phenomenological properties of the Z6-II orbifold 
models, it identifies fertile islands in this chart where phenomenologically promising models cluster. Then, 
we apply a decision tree to our chart in order to extract the defining properties of the fertile islands. Based 
on this information we propose a new search strategy for phenomenologically promising string models.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is widely assumed that string theory, being a unique and UV-complete theory of gravity, can 
incorporate the Standard Model (SM) of particle physics. However, strings are conveniently de-
fined to live in ten-dimensional space-time. Thus, six spatial dimensions have to be hidden from 
observation. This process is called compactification. By choosing a specific compactification, 
the properties of the resulting effective four-dimensional (4D) string model are fully specified: 
all symmetries, the particle spectrum and all interactions are fixed by the choice of compactifica-
tion. However, in most cases these models are strikingly different from the SM. In addition, the 
choice of compactification and thus the resulting 4D string model is far from being unique. This 
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freedom yields a huge number of 4D string models that is called the string landscape. Indeed, 
soon after the dawn of string theory the number of inequivalent 4D string models was quoted to 
be at least of the order 101500, a huge but finite number [1], see also [2].

There have been many attempts to identify those 4D string models that come as close as possi-
ble to (Minimal Supersymmetric extensions of) the SM (MSSM), see e.g. [3–16] and references 
therein. The motivation for such searches has several aspects: First of all, in the most optimistic 
case an existence proof of a 4D string model that is in agreement with all current experimen-
tal and observational data would clearly be a milestone in the study of string theory. Even if 
the SM or the MSSM is not found in the near future by searching the string landscape (as one 
might expect due to the enormous size of the string landscape) finding MSSM-like models could 
be beneficial to high energy particle physics: For example, one might uncover common prop-
erties of (MSSM-like) string models, like the absence of certain quantum field theory models, 
or one might identify new mechanisms to address theoretical shortcomings of the SM or of the 
MSSM.

Yet, searches in the string landscape mainly focus on the gauge symmetry of the MSSM and 
on the representation content suitable for three generations of quarks and leptons plus (at least) 
one Higgs-pair. In addition, due to the enormous number of inequivalent 4D string models these 
searches have to be restricted to small corners of the entire string landscape. Thus, exhaustive 
classifications of 4D string models are typically out of reach. Instead random scans for inequiv-
alent MSSM-like models in small corners of the string landscape are state-of-the-art, for other 
approaches see e.g. [17,18].

Typically, a 4D string model is specified by O(100) compactification parameters that specify, 
for example, the geometry of the six-dimensional compactification space, fluxes or world-sheet 
parameters. These parameters have to satisfy certain consistency conditions, e.g. quantization 
conditions, Bianchi identities or world-sheet modular invariance of the one-loop partition func-
tion. Hence, a (random) scan in the string landscape is often performed as follows: first, one 
chooses the O(100) compactification parameters (maybe randomly). Then, one checks that the 
consistency conditions are satisfied. Finally, if the parameters are consistent one computes the 
gauge group and the matter spectrum of the resulting 4D string model and compares this to 
the MSSM. While it is possible to find MSSM-like models in this way, it remains in general 
unclear whether some classes of compactification parameters are more likely to yield MSSM-
like models than others, the reason for this being that in string theory the relation between the 
compactification parameters and the resulting particle spectrum is in general highly non-trivial 
and, additionally, computationally intensive. Moreover, this strategy suffers from the fact that a 
huge parameter space needs to be searched in order to find only a relatively small number of 
MSSM-like models.

In this paper we propose and demonstrate a new search strategy for MSSM-like models us-
ing techniques from machine learning.1 As in the standard approach, we concentrate on one 
corner of the entire string landscape and start with a random scan in the corresponding param-
eter space of O(100) compactification parameters. However, we do not aim at an exhaustive 
random scan but stop searching after a rather small fraction of inequivalent 4D string models 
has been constructed. Furthermore, we keep all inequivalent 4D string models that we find and 
not only the MSSM-like models. By doing so, we obtain a coarse sample of this corner of the 
string landscape. Now, the hope is that one can identify islands in this coarse sample where 

1 See e.g. [19–25] for different approaches to study the string landscape using machine learning.
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promising MSSM-like models accumulate. To uncover such islands we use a deep autoencoder 
neural network [26] – a concept from unsupervised machine learning. This way, we can ob-
tain an approximate, lower-dimensional (e.g. two-dimensional) non-linear parametrization of the 
O(100)-dimensional parameter space. Thus, we are able to draw two-dimensional charts of one 
corner of the string landscape. Indeed, it turns out that MSSM-like models cluster in islands 
within such two-dimensional charts of the string landscape – even though the autoencoder neural 
network had no information of a model being MSSM-like or not. Having identified these islands, 
the next step would be to perform finer scans (or even classifications) in these regions of the pa-
rameter space and, consequently, obtain a huge sample of MSSM-like models. Obviously, using 
this strategy it is by no means guaranteed that all promising models can be uncovered, and we 
comment on possible extensions of our search strategy to address this issue. In the following we 
exemplify our proposal at the landscape of heterotic Z6-II orbifolds.

2. Parameter space of heterotic ZZZ6-II orbifolds

To be specific, we choose a promising corner in the string landscape: the so-called Z6-II orb-
ifold compactification of the E8 × E8 heterotic string [27,28]. This corner is chosen as there 
have been successful scans for MSSM-like Z6-II models, known in the literature as the Z6-II 
Mini-Landscape [9,10]. In particular, the search for MSSM-like orbifold models in the Z6-II 
Mini-Landscape was not performed as a completely random scan but it was based on a physi-
cal principle (i.e. the existence of local GUTs with complete matter representations) to identify 
particularly promising patches in the Z6-II parameter space. Our approach is in some sense com-
plementary: we do not impose any physical principle but use a neural network and expect to 
identify those physical principles that yield MSSM-like orbifold models. By doing so in the 
Z6-II case, we can compare our findings with known results.

Z6-II models are parametrized by four 16-dimensional vectors (that describe boundary con-
ditions on the world-sheet of closed strings): the so-called shift vector V and three Wilson lines 
W3, W2 and W ′

2. Hence, 4 × 16 = 64 compactification parameters fully specify a single Z6-II 
model in this construction. We use the orbifolder [29] to randomly construct a coarse sample 
of inequivalent Z6-II models, i.e. to randomly generate consistent (i.e. quantized and modular in-
variant) sets of shifts and Wilson lines and to check for inequivalence of their gauge symmetries 
and massless matter spectra. Our coarse sample consists of O(700, 000) models, i.e. less than 
10% of the expected number of all Z6-II models [10].

However, at this point the compactification parameters are not yet ready for our machine 
learning purposes as it is strongly basis dependent. Therefore, we have to preprocess our 64 
compactification parameters for each Z6-II model next: we map these 64 parameters to 26 so-
called features, denoted by a vector X of integers such that two feature vectors X(1) and X(2) of 
the dataset cannot yield the same physical Z6-II model, unless X(1) = X(2) – a fact that would 
not be given for shifts and Wilson lines, cf. [30]. In this way we render our input data of the 
neural network “invariant”, i.e. basis independent. For details we refer to Appendix A. Now, we 
can use the autoencoder neural network on the dataset of 26-dimensional feature vectors {X}.

3. Machine learning in the ZZZ6-II landscape

In this section, we give a detailed description of each step of our machine learning workflow. 
The overall idea is to identify patterns in the compactification parameters of Z6-II models that 
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lead to fertile islands in the string landscape, i.e. to patches in the parameter space of Z6-II 
models where the number of MSSM-like models is above average.

Let us start with an overview of the main points of the following discussion. We start with 
the preprocessing of our data, where we transform each Z6-II model into a suitable, machine-
readable representation of 26 parameters X, also known as features. Then, we utilize a neural 
network to project each Z6-II model to a point in a two-dimensional image, yielding a “chart” of 
the Z6-II landscape. This is done such that the reconstruction error (i.e. the error when we map 
each point of the two-dimensional chart back to a feature vector X) is as small as possible. In 
this chart of the Z6-II landscape we can easily identify fertile islands where MSSM-like models 
appear to cluster – even though the neural network had no information of a model being MSSM-
like or not during training. Afterwards, a decision tree is used to investigate these fertile islands, 
i.e. to find conditions on the 26 features X of a Z6-II model, such that one can directly decide 
if a given Z6-II model is located on a fertile island of the landscape or not. Finally, we discuss 
the performance of this procedure: we analyze how many MSSM-like models can be found if we 
restrict ourselves to search for MSSM-like models only on the fertile islands.

3.1. Data preprocessing

We start our machine learning workflow with the most basic, but crucial step: to define our 
training and validation sets. The training set is used in the machine learning algorithms to actu-
ally tune the weights and biases in the neurons, while the validation set is used to estimate the 
generalization properties of our machine learning model and can be exploited for hyperparameter 
search, e.g. to adjust the architecture of the neural network. Both of these sets contribute to the 
structure of the machine learning model.

In our case, we have a coarse sample of O(700, 000) Z6-II models. This dataset is used to 
build our machine learning algorithm and is divided into 60% training and 40% validation data, 
all in a random procedure.

In order for the autoencoder to handle the data, we need a suitable numerical representation 
of the data. In our case, there exists a natural representation: the 26-dimensional feature vector of 
integers X, see Appendix A. However, it turns out that this representation does not perform well 
on the autoencoder. In fact, a more abstract representation, a so-called one-hot encoding, leads to 
a much better result. One-hot encoding is an approach for data that has no internal order like the 
values “green”, “red”, “blue”. It generates a vector with n components where n equals the total 
number of possible values. Hence, in the example of three colors we have n = 3 and “green”, 
“red” and “blue” have a one-hot encoding (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively. In our 
case of Z6-II models, each feature Xk of X can take 37 different values (i.e. there are in total 37 
different breaking patterns for each E8 factor). Thus, each component Xk of the 26-dimensional 
feature vector X is represented by a 37-dimensional vector. This 37-dimensional vector is zero 
except for the component, which corresponds to the given value of Xk. This component equals 1. 
Therefore, we obtain for each Z6-II model a (26 ×37 = 962)-dimensional feature vector Xone-hot

as input to our neural network.

3.2. The autoencoder

The main effect of an autoencoder neural network is that redundancies in the feature vec-
tor Xone-hot (such as irrelevant features) can be detected and reduced. Thus, an autoencoder 
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Fig. 1. Architecture of our autoencoder: For each Z6-II model the encoder takes 962 input features Xone-hot (in a one-hot 
encoding of X) and reduces the number of features successively to 100, 26, 13 and finally to 2 – the so-called latent layer 
which is read out to draw a point in a two-dimensional chart of the landscape. The decoder is a mirrored version of the 
encoder with 962 output features. Now, the neural network is trained on O(400, 000) Z6-II models such that the input 
features Xone-hot match the output features.

yields a lower-dimensional, “compressed” representation of the feature vector Xone-hot. In or-
der to achieve this, autoencoders are built as follows: starting from the input layer, the data is 
encoded through a number of hidden layers to the so-called latent layer. The latent layer is an 
information bottleneck: the number of neurons in this layer is much lower than the number of 
input nodes. Then, the encoding process is inverted in the second half of the network, the so-
called decoder. The decoder leads to the output layer that has the same number of neurons as the 
input layer. Now, this network is trained such that the output features match the input features 
Xone-hot. This way, one ensures that the low-dimensional representation given in the latent layer 
is a compressed but valid representation of the high-dimensional feature vector Xone-hot, at least 
to an acceptable accuracy.

For our purposes, we implemented the autoencoder using TensorFlow [31]. By varying the 
architecture of the autoencoder we identify the following best setup: we use a fully connected 
autoencoder neural network with seven hidden layers and dimensionalities as indicated in Fig. 1. 
We choose the following activation functions: The latent layer uses the identity activation func-
tion, while we choose the selu activation function [32] for all other hidden layers, because 
it automatically accounts for batch normalization and hence makes the training process faster. 
Furthermore, we compute the L2 loss and backpropagate the errors through the network.

Then, the autoencoder is trained on the training set of O(400, 000) Z6-II models until the L2

loss converges. Afterwards, the autoencoder is applied to the validation set. There, starting from 
the two-dimensional latent layer the decoder can reproduce on average 16.3 out of 26 features 
X, which corresponds to a L2 loss of 0.013. This is a remarkable fact, since the information 
bottleneck was only two-dimensional and hence extremely narrow. Finally, we apply the encoder 
to all O(700, 000) Z6-II models of the training and validation sets to obtain their two-dimensional 
parametrizations from the latent layer.
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Fig. 2. The landscape of O(700, 000) Z6-II models extracted from the autoencoder: Each point corresponds to a Z6-II 
model and MSSM-like models are highlighted as red triangles. It turns out that MSSM-like models populate eleven 
separated islands. We color these islands in green and label them by R1, . . . , R11. In addition, all Z6-II models outside 
these islands are colored in blue and defined to live in the region R0. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

3.3. A chart of Z6-II models and cluster selection

The result of the autoencoder is depicted in Fig. 2. It represents a chart of the landscape of 
O(700, 000) Z6-II models of the training and validation sets, where the two-dimensional coordi-
nates of each Z6-II model are extracted from the two-dimensional latent layer of the autoencoder.

The landscape turns out to be separated into various islands. We identify 18 MSSM-like 
models among the O(700, 000) Z6-II models and highlight them as red triangles in Fig. 2. In-
terestingly, one can see that the MSSM-like Z6-II models cluster on a few islands and are not 
distributed over the entire chart. Note that during training, the autoencoder neural network had 
no information about a model being MSSM-like or not. Still, the MSSM-like Z6-II models are 
clustered. Hence, it seems that the autoencoder was able to identify common properties among 
the models and has grouped the models accordingly.
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Next, we select those islands in Fig. 2 that contain MSSM-like Z6-II models (i.e. eleven is-
lands) and highlight them. These eleven islands can act as a starting point for a refined search 
strategy for MSSM-like Z6-II models as we discuss in the next section. As a remark, we have 
verified that the clustering of MSSM-like Z6-II models on these islands is stable under a re-
training of the autoencoder neural network with slightly different initial conditions.2 Thus, we 
are confident that the autoencoder has identified some hidden patterns in the Z6-II landscape.

3.4. Towards a refined search strategy using a decision tree

Of course, drawing a chart that displays islands in the landscape containing MSSM-like orb-
ifold models does not carry much insight by itself. Our aim is to learn something about the 
landscape of orbifold models. Hence, if one could understand the reason why a given orbifold 
model is located on a certain island in the landscape things would look different. This is precisely 
the next step which we take using a decision tree.

The decision tree works as follows: each Z6-II model (specified by 26 features X) is labeled 
according to which region Ri in the landscape it belongs to: either to one of the fertile islands 
or to the rest of the landscape R0. Then, the decision tree is trained such that it splits the dataset 
according to whether or not a certain feature Xk is above or below a certain threshold value. As 
a result of the split, the data is then divided into two subsets. The feature Xk and its threshold are 
chosen such as to minimize the impurity in the two subsets that emerge as a consequence of the 
split. Each node is associated with the region Ri that is most dominant in this node. To measure 
the impurity of a node containing the dataset D, the Gini index H(D) is a common choice. It is 
defined as

H (D) =
∑

i

pi(D)(1 − pi(D)) , (1)

where pi(D) is the percentage of points in D with label i and i sums over all labels, i.e. i =
0, . . . , 11 in our case. In the end, one has a trained decision tree that can predict to which region Ri

a given Z6-II model belongs to, using only simple True-or-False decisions like Xk < Xk, threshold.
For the decision tree we use the software scikit-learn [33]. To train the decision tree we split 

our set of O(700, 000) Z6-II models again to a training and a validation set, where this time we 
assign 33% to the validation set. Additionally, to improve the performance of the decision tree 
on our fertile islands, we balance the dataset. In more detail, we weight the data points according 
to their regions Ri , such that the pure numerical superiority of the blue region R0 does not bias 
the decision tree.

The whole decision tree consists of 1,887 nodes. As an illustration, Fig. 3 shows an example 
node of our decision tree. The performance of the decision tree on the validation set estimates 
how well the rules found by the decision tree generalize to the whole Z6-II landscape. Having 
trained the decision tree, we therefore check its performance next. This is done by applying the 
decision tree to the validation set and counting how many MSSM-like Z6-II models are mapped 
to their correct regions. As a result, we obtain the so-called confusion matrix, cf. Table 1. We 
find that the decision tree performs extremely well, i.e. for most MSSM-like Z6-II models the 
region predicted by the decision tree agrees with the actual region.

2 We thank Robert Helling for raising this question.
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Fig. 3. Example of a decision node. Each node (containing the subset D of the training set) is labeled by a threshold, the 
Gini index H(D), and the weighted percentages pi(D) (labeled by “value”) of Z6-II models in this node that belong to 
the regions Ri for i = 0, . . . , 11. The upper green node is the result from a previous decision. Now, this node enforces 
a threshold condition X25 ≤ 10.5 on the Z6-II models that are part of this node. Z6-II models that do not fulfill this 
condition are directed to the orange node. This node has a Gini index 0.0 and a value 1.0 for the region R0. Hence, no 
further splitting is necessary and we arrive at a so-called leaf node. On the other hand, if a given Z6-II model satisfies the 
threshold condition, it is directed to the lower green node. From here further splitting is necessary to separate the models 
in this node which belong to either region R0 or R4. After training the decision tree maps each Z6-II model to a leaf 
node and thus gives a prediction for its region Ri using the majority vote obtained from the training set.

Table 1
The confusion matrix of our decision tree evaluated for the validation set. The entries give the number of cases for a 
certain combination of the region predicted by the decision tree vs. true region that a given Z6-II model belongs to. For 
example, there are 11 cases where the decision tree predicted a model to be in region R0, while the true region was R1. 
As the numbers on the diagonal of the confusion matrix are by far larger than the off-diagonal entries, we see that our 
decision tree works very well.

Predicted region

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

R0 198,994 10 39 10 24 1 7 17 3 16 4 13

T
ru

e
re

gi
on

R1 11 3,107 1 2 0 0 0 0 0 0 0 0
R2 19 3 9,667 2 1 0 0 0 0 0 0 0
R3 24 2 1 5,256 3 0 0 0 0 0 0 0
R4 31 2 4 1 6,430 0 0 0 0 0 0 0
R5 0 0 0 0 0 3,138 0 0 0 0 0 0
R6 3 0 0 0 0 0 994 0 0 0 0 0
R7 15 0 0 0 0 0 0 848 0 0 0 0
R8 0 0 0 0 0 0 0 0 1,139 0 0 0
R9 10 0 0 0 0 0 0 0 0 1,491 0 0
R10 2 0 0 0 0 0 0 0 0 0 3,333 0
R11 10 0 0 0 0 0 0 0 0 0 0 984

4. Evaluation of our results

In the previous section, we described our machine learning workflow and the performance 
of our algorithm on the validation set. This section is dedicated to determining how well our 
approach generalizes to the whole Z6-II landscape. In particular, we are interested in answering 
the following question: Do the MSSM-like models from the whole Z6-II landscape also cluster 
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Table 2
Number of MSSM-like Z6-II models from either the coarse 
sample or from the evaluation set within the various regions Ri

of the Z6-II landscape, as predicted by our decision tree.

Region Coarse sample Evaluation set Total

R0 0 65 65
Fe

rt
ile

is
la

nd
s

R1 4 44 48
R2 4 17 21
R3 1 10 11
R4 2 16 18
R5 1 5 6
R6 1 2 3
R7 1 1 2
R8 1 1 2
R9 1 0 1
R10 1 11 12
R11 1 5 6

Total 18 177 195

on fertile islands even though during training the autoencoder neural network had no information 
of models being MSSM-like or not? How many MSSM-like models within the whole Z6-II 
landscape live on the eleven fertile islands and how many models do we lose if we restrict our 
search to the fertile islands only? To this end, we apply our algorithms to data that has not been 
considered before, namely to a dataset containing O(6, 300, 000) Z6-II models, which is hence 
around nine times as big as the dataset used for the autoencoder and the decision tree so far. 
We call this set of Z6-II models the evaluation set. In addition, we also consider a dataset of 
O(30, 000) Z6-II models from the four patches of the Mini-Landscapes [9,10], in order to see 
how our approach compares to the search strategy employed there.

4.1. Evaluating the fertility of our islands

In the evaluation set we have 177 MSSM-like models, compared to only 18 in the training 
and validation sets. The mapping of these models into the chart of the Z6-II landscape is shown 
in Fig. 4. Hence, we see that the majority of MSSM-like models lives inside the fertile islands 
that we identified on the basis of 18 MSSM-like models only. To quantify this statement, we 
apply our trained decision tree to all 177 + 18 = 195 MSSM-like Z6-II models and obtain the 
predictions as listed in Table 2.

There are MSSM-like Z6-II models in the evaluation set that are classified by the decision 
tree to belong to the region R0, i.e. to the blue region in the chart that seemed to contain no 
MSSM-like models when considering the 18 MSSM-like Z6-II models from our coarse sample 
only. Hence, these models would be “lost” in the sense that they would be missed by our assign-
ment of fertile islands in the chart of the Z6-II landscape. However, the decision tree maps 130
of all 195 MSSM-like Z6-II models to the fertile islands. Therefore, having used an extremely 
small set of only 18 MSSM-models, we reach 2/3 of the MSSM-like models. We will comment 
on possible extensions of our approach in order to identify all/more MSSM-like orbifold models 
in the discussion section 5.

The fertile island R1 contains in total 48 MSSM-like Z6-II models, i.e. 25% of all MSSM-like 
models. On the other hand, this island contains only 1.3% of the whole Z6-II landscape. Thus, 
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Fig. 4. Location of all 195 MSSM-like models from the evaluation set and the coarse sample (red triangles) within the 
eleven fertile islands Ri (green) and the whole Z6-II landscape (blue). Obviously, MSSM-like models prefer the fertile 
islands that were identified using our coarse sample only.

when searching on this fertile island only, the probability of finding an MSSM-like Z6-II model 
is 20 times higher than on a generic spot in the Z6-II landscape.

4.2. Location of the Mini-Landscape in the chart of the whole Z6-II landscape

An obvious question is how our approach connects to the Mini-Landscape found in ref. [9,10]. 
In Fig. 5 we observe that the MSSM-like Z6-II models from all four different Mini-Landscapes 
do not spread over the whole chart of the Z6-II landscape, but rather live on those fertile islands 
which we had identified using our coarse sample with only 18 MSSM-like Z6-II models.

Let us also analyze the performance of our decision tree on the MSSM-like Z6-II models of 
the Mini-Landscape. As one can infer from Table 3, almost 2/3 of the MSSM-like Z6-II models 
from the Mini-Landscape populate the fertile islands. It is interesting to observe that the numbers 
seem to indicate an approximate association of the two SO(10) patches of the Mini-Landscape to 
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Fig. 5. Location of the MSSM-like models from the Mini-Landscape (red triangles) within the eleven fertile islands Ri

(green) and the whole Z6-II landscape (blue). As in Fig. 4, the MSSM-like models from the Mini-Landscape clearly 
prefer the fertile islands, especially islands R1, R2 and R3, that were identified using our coarse sample only.

certain regions: in particular, a Z6-II model with shift vector V SO(10),1 is most likely to be found 
on the island R2, while the islands R1 and R3 contain most of the Z6-II models with shift vector 
V SO(10),2.

5. Discussion

In this work, we have proposed a new search strategy for MSSM-like string models, with the 
goal of finding an alternative to random searches. The main steps of this strategy are summarized 
as follows:

1. Create a coarse, random sample of compactification parameters of the landscape under con-
sideration.
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Table 3
Number of MSSM-like Z6-II models from the four patches of the 
Mini-Landscape dataset (with local GUT shift vectors V SO(10),1, 
V SO(10),2, V E6,1 and V E6,2, see [9]) within the various regions Ri

of the Z6-II landscape as predicted by our decision tree. As before, 
our approach “finds” around 2/3 of the MSSM-like models.

Region V SO(10),1 V SO(10),2 V E6,1 V E6,2

R0 50 37 2 1

Fe
rt

ile
is

la
nd

s

R1 12 16 0 0
R2 60 1 0 0
R3 2 24 2 0
R4 3 8 4 0
R5 10 0 0 0
R6 0 8 0 4
R7 0 0 0 0
R8 0 1 0 1
R9 0 0 0 0
R10 0 0 0 0
R11 0 0 0 0

% found 64% 61% 75% 83%

2. Train an autoencoder neural network on this sample and draw a two-dimensional chart of the 
landscape.

3. Identify MSSM-like string models, locate them on the chart of the landscape and define the 
corresponding fertile islands.

4. Train a decision tree to identify those fertile islands.

This search strategy has been tested successfully at the well-known Mini-Landscape of heterotic 
Z6-II orbifold models and we propose that it should be applied to other regions of the string 
landscape.

In more detail, we have used unsupervised machine learning techniques (i.e. an autoencoder 
neural network) with the aim to drastically reduce the complexity of model-searches in the het-
erotic orbifold landscape. In order to do so, it was crucial to find an invariant representation of 
the compactification parameters given by shifts and Wilson lines. As a result, we were able to 
draw a two-dimensional chart of the Z6-II heterotic orbifold landscape. By examining this chart 
we could verify visually that there are “fertile” islands in the landscape where the density of 
MSSM-like Z6-II models is significantly higher than in the remainder of the landscape.

The existence of fertile patches in the Z6-II landscape was already discovered in the Z6-II 
Mini-Landscape [9,10]. However, the fertile patches in the Z6-II Mini-Landscape were built in 
by hand, motivated by physical considerations (i.e. the existence of local GUTs like SO(10)

or E6 with complete matter representations). Our complementary search strategy is not based 
on such considerations, but identifies the fertile islands with MSSM-like models automatically. 
In particular, the autoencoder neural network was trained without the knowledge of whether a 
model is MSSM-like or not. Comparing our fertile islands to the Mini-Landscape, we observe 
that our most promising islands in the landscape consist to some extent of the SO(10) patches of 
the Mini-Landscapes described in ref. [9,10].

In a second step, we have extracted useful information from the two-dimensional chart of 
the Z6-II landscape. To do so, we have employed supervised machine learning, i.e. a so-called 
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decision tree. This decision tree is trained to predict whether a given Z6-II model belongs to a 
certain fertile island of the Z6-II landscape or not, using easy and fast True-or-False decisions. 
Thus, in some sense the decision tree is trained to predict the result of the autoencoder and we 
have shown that this prediction works with very high precision. The benefit of using the decision 
tree is twofold: Its simple form yields a significant time advantage compared to the autoencoder. 
Furthermore, the decision tree allows for an easier interpretation compared to the neural network 
of the autoencoder. These benefits will be used later in the proposed steps 5.a) and 5.b).

We think that our results can provide a valuable guideline when searching for MSSM-like 
models in the heterotic orbifold landscape: one should first search in the fertile islands that were 
discovered by a coarse sample of models. To be more specific, we propose to extend our search 
strategy for MSSM-like models as follows:

5. a) In the traditional approach, the search for MSSM-like orbifold models using the orb-
ifolder is divided into three steps: i) a consistent set of shift vector(s) and Wilson lines is 
created randomly, ii) the spectrum is computed and iii) it is checked whether a given spec-
trum resembles the MSSM or not. The second and the third steps turn out to be much more 
time consuming compared to the first step. Now, using our decision tree, it is possible to 
decide easily whether or not a given set of shift vector(s) and Wilson lines yields an orbifold 
model inside a fertile island without computing and analyzing the full spectrum. Hence, if an 
orbifold model turns out to be outside the fertile island, it can be disregarded immediately. 
Consequently, this step is supposed to be much faster than the traditional one.

5. b) It is conceivable to use the decision tree together with the orbifolder in order to gen-
erate only consistent sets of shift vector(s) and Wilson lines from the fertile islands in the 
first place. This exploits the fact that orbifold models are generated step-by-step, i.e. first the 
shift vector is generated and then Wilson lines are added one by one. Hence, whenever a new 
shift vector or Wilson line is added, it can be checked quickly whether or not the resulting 
orbifold model can be inside a fertile island. Again, if the orbifold model fails to be inside 
such an island, much time can be saved by not further expanding the search in that direction.

As we have seen explicitly, it is not guaranteed that all MSSM-like models reside on those fer-
tile islands of the orbifold landscape that were discovered using the coarse sample of models only 
(in our example this coarse sample consists of O(700,000) models compared to O(7,000,000)

models of the full random scan). Hence, one should extend the search algorithm even further. 
There are many ways how one could proceed:

6. a) One possibility could be to repeat steps 1.– 5. however this time not sampling the full 
landscape but only the region R0 outside of the fertile islands. In detail, one creates a new 
(smaller) coarse, random sample of 4D string models outside the fertile islands and analyzes 
this region for new fertile islands using a new autoencoder and a new decision tree. This 
iterative procedure can be repeated until the number of newly identified MSSM-like models 
goes below a limit to be defined.

6. b) Another possibility could be to combine the new search strategy with the traditional one 
as follows: In most cases the new search strategy is used to create and analyze models from 
the fertile islands only. However, in some cases (maybe every hundredth model or so) the 
traditional approach is used and a fully random model is created and analyzed. If this 4D 
string model turns out to be MSSM-like and outside the known fertile islands, the decision 
tree has to be updated (i.e. trained again) such that it includes the newly discovered fertile 
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island. Then, the search for MSSM-like models is continued by scanning all known fertile 
islands.

In summary, we think our new search strategy presented in this work may serve as a new 
paradigm for systematic searches for MSSM-like models in other corners of the string landscape 
as well. In our case, we could identify a fertile island in the Z6-II landscape, where the probabil-
ity of finding an MSSM-like model is 20 times higher than on average. Furthermore, autoencoder 
neural networks have proven to be an extremely powerful tool in analyzing the string landscape. 
They can reduce the number of compactification parameters significantly such that one can even 
draw two-dimensional charts of the string landscape. Surprisingly, MSSM-like models turn out 
to cluster on separated islands in the string landscape – a fact that has been learned by the autoen-
coder itself without knowing the definition of the MSSM. Hence, these charts seem to contain 
a lot of information on the string landscape. However, a full understanding remains an open 
question. Work along these directions is in progress.
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Appendix A. Invariant features of Z6-II orbifold models

The 64 compactification parameters (i.e. one shift vector and three Wilson lines) needed to 
specify a single Z6-II model are not free of ambiguities, i.e. there can be two different sets of 
compactification parameters that yield exactly the same physical Z6-II model. In our case, there 
are two sources for ambiguities: i) There are symmetry transformations acting on the parameters 
(i.e. lattice translations and Weyl reflections acting on the shifts and the Wilson line) and ii) One 
can redefine the origin of the orbifold and permute its fixed points systematically. The fact that 
two seemingly distinct sets of shifts and Wilson lines can yield the same 4D string model can be 
seen as an equivalence relation. The existence of such equivalences in the dataset is a problem 
because the network cannot distinguish whether two given models are truly different or differ 
only up to an equivalence relation. In general, there are two main strategies how to deal with this 
situation:

1. Amend the training set by transformed compactification parameters, such that the network 
“learns” that there can exist more than one set of compactification parameters for one and 
the same 4D string model.

2. Map the compactification parameters of each 4D string model to unique features, i.e. where 
all equivalence relations are modded out.

As the set of transformations acting on our compactification parameters is huge (> O(1019)), 
the first strategy must be discarded, and we have to transform our original 64 compactification 
parameters for each 4D string model to unique features, denoted in our case by a 26-dimensional 
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feature vector X. In this appendix we describe how this can be achieved – however, at the cost 
that in a few cases two distinct Z6-II models are mapped to the same feature vector X.

A.1. Invariance under lattice translations and Weyl reflections

As already indicated, our 64 compactification parameters of a Z6-II model depend on the 
choice of E8 × E8 basis vectors and the addition of arbitrary E8 × E8 lattice vectors [34]. Given 
that the Weyl group for each E8 is of order ≈ 7 · 108, this is a huge ambiguity. That is, two 
Z6-II models with different sets of 64 parameters yield the same 4D string model if their sets 
of parameters are related by such a symmetry transformation, although their 64 parameters may 
look (numerically) very different.

We solve this apparent problem by only feeding quantities in our neural network that are 
manifestly invariant under Weyl transformations and the addition of lattice vectors: from the shift 
V and the Wilson lines W3, W2 and W ′

2 we compute the so-called local shifts Vg and thereby the 
number of surviving roots of E8. This number is invariant.

In detail, we consider the 12 fixed points in the θ -twisted sector of a Z6-II orbifold (see 
e.g. [35] for further details). Each fixed point corresponds to a so-called constructing element

ga = (θ, n
(a)
i ei) , a = 1, . . . ,12 , (2)

where summation over i = 1, . . . , 6 is implied and for certain choices of n(a)
i ∈ Z. For each 

constructing element ga we define the corresponding local shift vector

Vga = V + (n
(a)
3 + n

(a)
4 )W3 + n

(a)
5 W2 + n

(a)
6 W ′

2 . (3)

This sixteen-dimensional vector is split into two eight-dimensional vectors Vga = (V
(1)
ga

, V (2)
ga

)

corresponding to the first and second E8 factor. Then, at the fixed point associated to ga we 
compute the gauge group G(α)

a (α = 1, 2), the so-called local GUT [35,36] as follows: A root 
vector p of E8 contributes to the local GUT G(α)

a if

V (α)
ga

· p = 0 mod 1 . (4)

Note that for the first twisted sector of Z6-II orbifolds local GUTs can be computed without 
taking the centralizer of ga into account. For each of these 24 local GUTs, G(α)

a for a = 1, . . . , 12
and α = 1, 2, we count the number of non-zero roots p (e.g. 6 for SU(3) and 240 for E8) and 
store these numbers in a 24-dimensional vector X of integers, one integer for each E8 factor at 
each of the 12 fixed points.

Furthermore, for Z6-II orbifolds the four-dimensional gauge group G4D = G
(1)
4D × G

(2)
4D is 

given by the intersection of the 12 local GUTs. Hence, we append the number of surviving 
roots of the 4D gauge group (i.e. two integers, one integer for each E8) and, finally, obtain a 
26-dimensional feature vector of integers X that is invariant under the addition of E8 × E8 lattice 
vectors and Weyl reflections.

This mapping from 64 compactification parameters to 26 features X does not need to be 
one-to-one (i.e. injective). Hence, it is worthwhile to check how many different feature vectors X
are obtained from all Z6-II models under consideration. It turns out that our transformation works 
very well: out of O(7, 000, 000) Z6-II models, only 0.5% are identified by this transformation.
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A.2. Invariance under geometric redefinitions

The feature vector X, introduced in the previous section, is not yet free from all ambiguities: 
a 4D string model is invariant under i) the exchange of the two E8 gauge groups and ii) under 
certain permutations of the fixed points. This results in certain permutations of the first 24 entries 
of the feature vector X. To be more precise, these permutations are generated as follows (see 
e.g. [35] for a visualization of the fixed points of the Z6-II orbifold): In the Z3 plane, it is possible 
to shift the origin and to redefine the Wilson line W3 in such a way that the three fixed points 
are permuted. The three fixed points in the Z3 plane correspond to three choices of (n3, n4), 
corresponding to n3 + n4 = 0, 1, 2 in eq. (3), and in this basis the allowed permutations are 
generated by the transformations

(0,0)

(1,0)

(1,1)

�→
(1,0)

(1,1)

(0,0)

and
(0,0)

(1,0)

(1,1)

�→
(0,0)

(1,1)

(1,0)

. (5)

This yields the permutation group S3 (of order 6). In the Z2 plane, the situation is more involved: 
here, it is possible to exchange the two Wilson lines W2 ↔ W ′

2, and to shift the origin such 
that the fixed points are exchanged pairwise. Hence, these permutations are generated by the 
following permutations of (n5, n6)

(0,0)

(1,0)

(0,1)

(1,1)

�→
(1,0)

(0,0)

(1,1)

(0,1)

,

(0,0)

(1,0)

(0,1)

(1,1)

�→
(0,1)

(1,1)

(0,0)

(1,0)

, and

(0,0)

(1,0)

(0,1)

(1,1)

�→
(0,0)

(0,1)

(1,0)

(1,1)

. (6)

These transformations can be summarized as (n5, n6) �→ (n5 + 1, n6), (n5, n6) �→ (n5, n6 + 1)

and (n5, n6) �→ (n6, n5) (all modulo 2), respectively. They generate the group D8 (of order 8), 
i.e. only a subgroup of the full permutation group S4 is a symmetry of the generic Z2 plane.

In summary, the combined symmetry group of the twelve fixed points of the θ -twisted sector 
of Z6-II orbifolds is S3 × D8 with 6 × 8 = 48 elements.

Thus, one and the same string model may be represented by different feature vectors X. We 
remove these ambiguities by sorting the feature vector X as follows: First, we decide which E8 is 
the first and which is the second one, by choosing the E8 with the lower breaking patterns as the 
first one. Then, we remove the permutation ambiguity by sorting the 12 local GUTs associated 
to the 12 fixed points, while respecting the S3 ×D8 permutation symmetry of the fixed points, in 
ascending order of the number of surviving roots in the first E8, with the second E8 as tiebreak 
if two values are equal.

Again, this transformation does not need to be one-to-one and (formerly distinct) models can 
get mapped to the same feature vector X. However, we find that the majority of the O(7, 000, 000)

Z6-II models yield distinct feature vectors X, i.e. 84% of the models are mapped to distinct 
feature vectors X.
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