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Abstract

In recent years, endovascular aneurysm repair (EVAR) has established itself as the treatment of
choice for abdominal aortic aneurysms. However, non-negligible postinterventional complica-
tion rates, as well as a complex and partially experience-based preinterventional planning process
remain great challenges of EVAR. Since the long-term success of EVAR depends largely on the
preinterventional planning, clinicians are striving for suitable predictive tools. Patient-specific
in-silico (computational) models are perhaps one of the most promising approaches to improve
this preinterventional planning process. Toward the use of such in-silico models in clinical prac-
tice, three major objectives are addressed in this thesis: (i) model development, (ii) validation and
(111) application of an in-silico EVAR model which predicts the postinterventional state of stent-
graft (SG) and abdominal aortic aneurysm (AAA).

In the first part of this thesis, a novel in-silico EVAR model is developed. The entire formu-
lation of the model is geometrically nonlinear. Therefore, it allows for the simulation of large
deformations and can accurately reproduce kinking and buckling processes. To this end, an elas-
tically deformable, patient-specific vessel model is presented, which incorporates several dif-
ferent vessel constituents such as the vessel wall, intraluminal thrombus and calcifications. To
the best of the author’s knowledge, this vessel model is one of the most realistic among the
available in-silico EVAR studies. Further, a fully resolved, realistic and elastically deformable
SG model of bifurcated, commercial SG devices is used. It includes a newly developed stent
predeformation methodology to account for residual strains and stresses that arise from the real-
world SG manufacturing process. A novel in-silico SG placement and deployment methodology
is proposed, which utilizes a centerline-based morphing algorithm to apply suitable deformation
constraints to the SG model during the in-silico SG placement. A SG parameter continuation
approach is suggested for the first time as a valuable SG sizing tool in which different SG sizes
can be investigated within a single EVAR simulation. It is based on a continuous change of the
SG size via alteration of the stress-free reference configuration of the SG. In this way, very effi-
cient parameter and sensitivity studies of important design variables, such as the SG oversizing,
are possible. Furthermore, based on a large literature study, several mechanical and geometrical
parameters are defined to evaluate the quality of the in-silico EVAR outcome from an engineer-
ing perspective. This represents an essential postprocessing step that provides the link between
in-silico EVAR models and the assessment of the predicted postinterventional configuration with
respect to EVAR related complication likelihoods.

In the second part of this thesis, the in-silico EVAR model is validated against real-world
patient-specific postinterventional measurements. The qualitative and quantitative comparison
between predicted stent configurations by the simulation and stent configurations extracted from
postinterventional CT data showed very good agreement. As a first step toward a patient-specific,
predictive tool in the preinterventional planning process, various potential applications of the
validated in-silico EVAR model are suggested. Four patient-specific cases of AAAs and bifur-
cated SGs are used in illustrative examples, including the patient-specific prediction of EVAR
related complication likelihoods. Moreover, the impact of certain AAA and SG parameters on
the successful application of EVAR is highlighted in a large parameter study of fully parame-
terized AAA and SG models. Finally, in a numerical proof of concept the advantage of highly
customized SGs is demonstrated for patients with challenging vessel morphologies. These cus-
tomized SGs have the same morphology as the luminal vessel surface.



In conclusion, this thesis contains significant steps toward the use of in-silico EVAR models
in clinical practice. The good predictive quality makes the in-silico EVAR model very promising
for future use with potentially a multitude of possible applications.
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Zusammenfassung

Die endovaskuldre Aneurysmenreparatur (EVAR) hat sich in den letzten Jahren als bevorzugte
Behandlungsmethode von abdominalen Aortenaneurysmen etabliert. Nicht zu vernachlédssigende
methodenassoziierte Komplikationsraten sowie ein komplexer und teilweise erfahrungsbasierter
praoperativer Planungsprozess bleiben jedoch gro3e Herausforderungen der EVAR. Da der lang-
fristige Erfolg von EVAR wesentlich von der prioperativen Planung abhingt, suchen Arzte nach
geeigneten Prognosewerkzeugen. Patientenspezifische in-silico Modelle (Simulations-
modelle) sind wohl eine der vielversprechendsten Ansitze zur Verbesserung dieses praoper-
ativen Planungsprozesses. Im Hinblick auf die Verwendung solcher in-silico Modelle in der
klinischen Praxis werden in dieser Arbeit drei Hauptziele behandelt: (i) Die Modellentwicklung,
(i1) die Validierung und (iii) die Anwendung eines in-silico EVAR Modells, das die postoperative
Konfiguration von Stentgraft (SG) und abdominalem Aortenaneurysma (AAA) vorhersagt.

Im ersten Teil dieser Arbeit wird ein neues in-silico EVAR Modell entwickelt. Die gesamte
Formulierung des Modells ist geometrisch nichtlinear. Daher konnen grofe Verformungen
simuliert und Knick- und Beulvorginge prizise reproduziert werden. Zu diesem Zweck wird ein
elastisches, patientenspezifisches Arterienmodell vorgestellt, das zahlreiche unterschiedliche Ar-
terienbestandteile wie die Arterienwand, intraluminaler Thrombus und Kalkablagerungen
beriicksichtigt. Dieses Arterienmodell ist nach Kenntnis des Autors eines der realistischsten
unter den verfiigbaren Studien zu in-silico EVAR. Ferner wird ein detailgetreues und elastisch
verformbares Modell kommerzieller SGs mit Bifurkation prisentiert. Dieses verwendet eine neu
entwickelte Methode um Eigenspannungen und -dehnungen zu beriicksichtigen, die sich aus
dem realen Herstellungsprozess von SGs ergeben. Auflerdem wird eine neuartige in-silico SG-
Platzierungs- und SG-Deploymentmethodik vorgeschlagen. Diese verwendet einen mit-
telachsenbasierten Morphing-Algorithmus um geeignete Deformationsbedingungen auf das SG-
Modell wihrend der in-silico SG-Platzierung aufzubringen. Weiterhin wird ein in-silico Ansatz
vorgestellt, welcher es erlaubt mehrere unterschiedliche SG-Gr6Ben in einer EVAR Simula-
tion zu untersuchen. Der Ansatz basiert auf einer kontinuierlichen Anderung der SG-GroRe
durch Anderung der spannungsfreien Referenzkonfiguration des SG. Auf diese Weise sind sehr
effiziente Parameter- und Sensitivitdtsstudien wichtiger Designvariablen, wie z.B. dem SG-
Oversizing, moglich. Dariiber hinaus werden auf Grundlage einer umfangreichen Literatur-
recherche verschiedene mechanische und geometrische Parameter definiert, um die Qualitit
des in-silico EVAR Ergebnisses aus technischer Sicht zu bewerten. Dies ist ein wesentlicher
Postprocessingschritt, der das Bindeglied zwischen in-silico EVAR Modellen und der Bew-
ertung der vorhergesagten postoperativen Konfiguration in Bezug auf EVAR Komplikations-
wahrscheinlichkeiten darstellt.

Im zweiten Teil dieser Arbeit wird das in-silico EVAR Modell unter Verwendung von
patientenspezifischen postoperativen Messungen validiert. Der qualitative und quantitative Ver-
gleich zwischen berechneten Stentkonfigurationen durch das in-silico EVAR Modell und aus
postoperativen CT-Daten extrahierten Stentkonfigurationen zeigt eine sehr gute Ubereinstim-
mung. Als erste Schritte auf dem Weg zu einem patientenspezifischen, pradiktiven Werkzeug des
prdoperativen Planungsprozesses, werden mogliche Anwendungen des in-silico EVAR
Modells vorgeschlagen. In anschaulichen Beispielen, wie der patientenspezifischen Vorhersage
von methodenassoziierten Komplikationswahrscheinlichkeiten, werden vier patienten-
spezifische Fille betrachtet. Des Weiteren wird in einer umfangreichen Parameterstudie mit
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vollstidndig parametrisierten AAA- und SG-Modellen der Einfluss bestimmter AAA- und SG-
Parameter auf die erfolgreiche Anwendung von EVAR aufgezeigt. Abschlieend wird in einem
numerischen Konzeptnachweis der Vorteil hochgradig individualisierter SGs in Patienten mit
anspruchsvollen Aortenmorphologien demonstriert. Diese individualisierten SGs besitzen die-
selbe Morphologie wie die luminale Oberfldche der Aorta.

In Summe enthilt diese Arbeit wichtige Schritte auf dem Weg zur Verwendung von in-silico
EVAR Modellen im klinischen Alltag. Die gute Vorhersagequalitidt macht das in-silico EVAR
Modell sehr vielversprechend fiir die zukiinftige Verwendung mit moglicherweise einer Vielzahl
von Anwendungsmoglichkeiten.
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AAA Abdominal aortic aneurysm
ACE French: “Anévrysme de I’aorte abdominale: Chirurgie versus Endoprothese”
ANS Assumed natural strain
BVP Boundary value problem
CFD Computational fluid dynamics
CHEVAR Chimney endovascular aneurysm repair
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DREAM Dutch randomised endovascular aneurysm management
DOFs Degrees of freedom
EAS Enhanced assumed strain
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EVAR Endovascular aneurysm repair, endovascular aortic repair
FEM Finite element method
FEVAR Fenestrated endovascular aneurysm repair
FF Frenet frame
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GMRES Generalized minimal residual method
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ement technology
IFU Instructions for use
ILT Intraluminal thrombus
KKT Karush-Kuhn-Tucker
ME-SG SG model imitating Medtronic Endurant™ II SGs
MULF Modified updated Lagrangian formulation
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A stent-graft is the combination of a stabilizing wire mesh (stent) and an
artificial blood vessel made of polymeric material (graft). SGs are used
in particular to exclude aneurysms from the bloodstream.

SGs to treat AAAs consist of multiple modular components. In standard
EVAR, SGs consist of a main body component and one or two iliac leg
components that are docked to the main component.

For evaluation and validation purpose, the bifurcated SGs are separated
into three parts: proximal part, left iliac part and right iliac part.

The most proximal/distal part of the SG which is directly attached to the
luminal vessel surface and which is responsible for a leak-proof seal and
fixation of the SG. For infrarenal AAAs, the potential proximal landing
zone is defined by the region from the most inferior renal artery to the be-
ginning of the vessel dilatation of the AAA. In all patient-specific cases
considered in this thesis the distal landing zones are in the common iliac
arteries.

Stents generally are produced with a diameter that is larger than the as-
sociated graft. During the assembling process of SGs, stents are radially
compressed and are fixed on the graft in this compressed state. This cir-
cumstance, which results in an assembled SG with residual strains and
stresses, is denoted as stent predeformation.

SG oversize describes the ratio of outer nominal SG diameter to inner
preinterventional vessel wall diameter in the landing zone of the SG.
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SG and vessel. The in-silico EVAR model is subject to simplifications
and assumptions associated with the vessel model, the SG model and the
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1. Introduction

The abdominal aortic aneurysm (AAA) is a pathological dilatation of the abdominal aorta ex-
hibiting a maximum diameter larger than 3 cm. To prevent AAA rupture, which has a high mor-
tality rate of more than 80% [69], elective AAA repair is carried out. Established techniques of
elective AAA repair are the conventional open repair (OR) and the minimally invasive endovas-
cular aneurysm repair (EVAR), where nowadays EVAR is the preferred choice of treatment
and constitutes around 70% of all AAA repairs in Germany [144]. However, despite significant
technical improvements of EVAR in recent decades, it is still subject to severe shortcomings
including an elevated likelihood of EVAR related complications.

In-silico approaches can provide a valuable predictive tool to improve the preinterventional
planning of EVAR and to reduce EVAR related complication rates. Hence, in this thesis an
in-silico (computational) EVAR model is developed to predict the deployed stent-graft (SG)
configuration in an AAA. Toward the application as patient-specific tool in clinical practice,
several applications of this in-silico EVAR model are presented.

At the beginning of this chapter, the medical fundamentals of EVAR are provided in Sec-
tion 1.1, followed by medical challenges associated with EVAR and motivations to use in-silico
EVAR in Section 1.2. A comprehensive literature overview of in-silico EVAR models is given
in Section 1.3. Subsequently, the objectives and the outline of this thesis are presented in Sec-
tion 1.4 and 1.5.

The content of this thesis is largely based on work previously published by the author, namely
[106—110]. This chapter is partly taken from [106, 107, 109] with permission.

1.1. Medical background

The aneurysm is one of the most frequent diseases of the aorta [71] with the aortic aneurysm
being located primarily in the abdominal region. The underlying medical background of AAA
especially concerning the treatment with EVAR is provided in the following sections.

1.1.1. Abdominal aortic aneurysm

An abdominal aortic aneurysm is a local dilatation of the abdominal aorta which is exposed to
the immanent risk of rupture. Among persons over the age of 65, the prevalence of an AAA
with a maximum diameter of 3 cm or larger lies between 4% and 8% in men and between 0.5%
and 1.5% in women [69]. Risk factors for AAA development are: male sex, high age, smoking,
familial predisposition, obesity and hypertension [92, 144]. However, the exact pathogenesis of
AAAs has not yet been fully understood. Among other factors, the mechanism of AAA devel-
opment is thought to be associated with a decreased elastin content and structural degeneration
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of the AAA wall [37]. Most AAAs are asymptomatic and the diagnosis mostly is an inciden-
tal finding, although ultrasound screening programs are becoming increasingly common among
people above 65 years [69]. Dependent on the AAA location relative to the branch-offs into the
renal arteries, AAAs are classified according to:

o Infrarenal AAA: Complete AAA is located distal to the branch-offs into the renal arteries
(more than 90% of all AAAs [105]).

o Juxtarenal AAA: AAA starts proximal and ends distal to the branch-offs into the renal
arteries.

e Suprarenal AAA: Complete AAA is located proximal to the branch-offs into the renal
arteries.

When to intervene

Since only some AAAs rupture while others remain stable for the remaining lifetime of the
patient, the question of the best time of elective repair of non-ruptured AAAs arises. Based on the
law of Laplace, in clinical practice the question of when to intervene is most commonly answered
using the maximum diameter criterion. This criterion states that above a certain threshold of the
AAA diameter (typically 5.0 — 5.5 cm) the AAA should be treated by elective repair. Indices
other than the maximum diameter criterion, such as AAA wall stress-strength based [163, 208]
and AAA morphology based [77, 137] rupture risk assessment, are current area of research.

How to intervene

Once the patient is selected for elective AAA repair, the clinician must decide between a con-
ventional OR and an EVAR. OR is a highly invasive technique in which transabdominal access
is used to reach the AAA. Subsequently, the AAA is replaced by a vascular graft, that is sutured
to the “healthy” part of the aorta. In contrast, in the minimally invasive intervention of EVAR,
AAA rupture prevention is achieved by the deployment of a SG inside the AAA to exclude the
aneurysm sac from the main blood flow and remove the load of the pulsatile blood pressure from
the aneurysm wall.

Similar to the first question of when to intervene, the second question of how to intervene is
subject of discussions. Several clinical trials comparing EVAR to OR for elective AAA repair
have been performed since the launch of EVAR. EVAR trial 1 was the first and largest clinical
trial for which 1252 patients, who were physically fit enough to undergo either EVAR or OR,
were randomly assigned to either EVAR or OR between 1999 and 2004 at 37 hospitals in the
United Kingdom. The results of EVAR trial 1 were published as 30-day postinterventional results
[95], mid-term results [96], long-term follow-up results over 8 years [98] and late follow-up re-
sults of up to 15 years [200]. Other, large clinical trials are the Dutch DREAM trial [54, 213], the
OVER trial in the USA [150, 151] and the ACE trial in France [19]. A meta-analysis combining
these trials is provided in the work of Patel et al. [201].

Among all these clinical trials the following advantages and drawbacks of EVAR compared
to OR could be identified. Since EVAR is less invasive, it enables AAA repair of patients who
are physically ineligible for OR. The sister trial of the EVAR trial 1, the EVAR trial 2 [125],
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compares the aneurysm-related mortality rate between EVAR and no intervention of patients
with AAA of diameter > 5.5 cm that are ineligible for OR. According to EVAR trial 2, the 8
year cumulative aneurysm-related mortality is significantly lower for patients who underwent
EVAR (14%) than for patients who had no intervention at all (36%).

The avoidance of cross-clamping of the aorta in EVAR removes the risk of cardiac decom-
pensation during and briefly after the intervention. Therefore, the 30-day operative mortality rate
is significantly lower for EVAR (approximately 1.8%, EVAR trial 1) compared to OR (approxi-
mately 4.4%, EVAR trial 1) [98].

Apart from these positive characteristics, EVAR is also subject to several drawbacks. It is not
applicable to all patients. Especially in case of an unfavorable vessel anatomy, EVAR might fail
or require secondary interventions. Hence, device manufacturers formulate the limits of applica-
bility of EVAR in their instructions for use (IFU), which state, for instance, that the aortic neck
should not exceed a certain angle and that the neck requires a certain minimum length for the
fixation of the SG.

Further, EVAR might not have the same longevity as OR. After OR, the vascular graft usually
serves the patient’s remaining lifetime, while SG related complications and reinterventions are
higher with EVAR [54, 98] (cf. Figure 1.1).

Figure 1.1 Kaplan-Meier estimates of time to first reintervention in the EVAR and OR groups
during 15 years of follow-up (EVAR trial 1). Reproduced with permission from [200], copyright
Elsevier Ltd.

OR allows an in-situ assessment of the anatomical conditions and potential adaptions of the
preinterventional plan during surgery. In contrast, EVAR has to rely on impeccable preinter-
ventional planning based on computed tomography (CT) data and imaging software. Besides
reliable preinterventional EVAR planning tools this also requires an experienced clinician. Nu-
merous studies point out the correlation between the clinician’s experience and the successful
application of EVAR (e.g., [78, 170, 252]). Related to the required experience, the preinterven-
tional planning of EVAR is strongly affected by the subjective choices of the clinician.
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Due to relatively high SG related long-term complication rates, regular follow-up checks
are needed. Follow-up recommendations advocate screening (mostly CT) in regular intervals
(mostly at 1, 6, and 12 months after the intervention, and annually thereafter [44, 176]). Al-
though CT screening can be partly replaced by less harmful control methods, such as duplex
ultrasound, the large amount of cumulative radiation exposure during EVAR and in follow-up
checks remains a problem [179, 199].

1.1.2. Endovascular aneurysm repair

Minimally invasive endovascular aneurysm repair, also known as endovascular aortic repair,
was first performed in 1990 by the vascular surgeon Juan Parodi in Buenos Aires, Argentina
[198]. This AAA treatment method was initially designed for patients who are physically ineli-
gible for treatment with OR. Over the last decades both the EVAR procedure as well as the SG
prosthesis have been further developed and the outcomes of EVAR could be drastically improved
[262]. Nowadays, EVAR is the treatment of choice for the majority of AAA patients [246]. Also
patients that are physically eligible for OR are frequently treated by EVAR. But only around
70% of patients with AAA have suitable AAA anatomies for standard EVAR [134, 272].

In the minimally invasive treatment of infrarenal AAAs by EVAR, a bifurcated SG prosthesis
with two iliac legs is deployed inside the AAA to exclude the aneurysm sac from the main
blood flow, remove the load of the pulsatile blood pressure from the aneurysm wall, stop the
aneurysm from ongoing aneurysm growth and consequently prevent the aneurysm from rupture.
After a successful EVAR, thrombosis of the aneurysm sac as well as shrinkage of the AAA
sac can be observed in follow-up studies [70, 97]. Standard EVAR is applicable to infrarenal
AAAs when certain anatomical requirements are fulfilled as described in Section 1.1.2.3. Among
other requirements, an adequate length of the potential landing zone is required. The proximal
landing zone describes the most proximal part of the SG and the distal landing zones describe
the most distal parts of the SG which are directly attached to the luminal vessel surface in the
deployed state. These landing zones have a crucial impact on the success of EVAR since they are
responsible for the leak-proof seal and the fixation of the SG. For infrarenal AAAs, the proximal
landing zone of the vessel is defined by the region from the most inferior renal artery to the
beginning of the vessel dilatation of the AAA. This region is also denoted as proximal neck of
the AAA. In all patient-specific cases considered in this thesis the distal landing zones are in the
common iliac arteries.

Complex aneurysm geometries such as juxtarenal AAAs preclude standard EVAR as feasible
treatment option. In these cases, fenestrated endovascular aneurysm repair (FEVAR) [261] and
chimney endovascular aneurysm repair (CHEVAR) [31] are alternatives to OR. In FEVAR, a
semi-customized SG is deployed such that it covers the branch-offs into the renal arteries. Fen-
estrations in the SG at the location of the renal arteries allow for blood flow through the SG
into the renal arteries. Instead of fenestrations, the CHEVAR uses additional tubular SGs that
are deployed inside the renal arteries. The proximal parts of these additional tubular SGs must
extend above the proximal ends of the main SG such that blood flow from the aorta into the renal
arteries is possible.

Although EVAR is also used for the treatment of ruptured AAAs [218], in this thesis it is
only considered as treatment option of elective AAA repair. A similar procedure is also used
for thoracic aortic aneurysms. In this case, the endovascular procedure is denoted as thoracic
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endovascular aortic repair (TEVAR). However, in this thesis focus lies on infrarenal AAAs and
EVAR.

1.1.2.1. Procedure of EVAR

I 11
111 v
\Y VI

Figure 1.2 Illustration of an AAA and the procedure of EVAR described by the steps I-VI. Mod-
ified figure reproduced with permission from [97], copyright Massachusetts Medical Society.

Depending on the SG device and the SG manufacturer, the EVAR procedure slightly differs. In
this section, an overview over the procedure of standard EVAR with a modular SG combination
of a main body SG and one iliac leg SG is given without mimicking the procedure of one specific
SG device. EVAR is a minimal invasive procedure which is performed under continuous blood
flow. It only requires either small incisions in the groins or can even be performed just using
percutaneous access. EVAR is carried out under intrainterventional use of fluoroscopy imaging to
be able to precisely position the SG in the AAA. It can be performed under general or even local
anesthesia. As visualized in Figure 1.2, the standard EVAR procedure consists of the following
steps:

I. Insertion of a stiff guidewire into the abdominal aorta through the access of one femoral
artery. The purpose of the guidewire is to straighten the occasionally very tortuous iliac
arteries and to provide guidance for the introduction of further medical devices [87].

II. The SG delivery sheath, which contains the main body SG in a strongly crimped state, is
pushed along the guidewire and positioned using fluoroscopy imaging.
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III. Having reached the correct position slightly distal to the renal arteries, the SG delivery
sheath is successively withdrawn and the self-expandable SG is deployed starting from
the proximal end.

IV. A second guidewire is introduced through the contralateral iliac artery into the short limb
of the main body SG.

V. A second delivery sheath containing the iliac leg SG component is pushed along the second
guidewire and deployed inside the short limb of the main body SG with an overlap length
to guarantee seal and fixation between the two modular SG components.

VI. After the deployment of the total iliac leg SG component, all devices other than the SG are
removed.

All considered SG devices in this thesis are self-expandable SGs, i.e., the SGs expand on their
own after the removal of the delivery sheath. Nevertheless, a molding balloon is used to improve
the expansion of the SG and improve the SG-vessel attachment in the SG landing zones. After
having established a leak-proof seal between SG and vessel at the proximal and distal landing
zones, blood flows only through the SG (cf. Figure 1.2VI). As a consequence, the pulsatile load
of blood flow and pressure is removed from the aneurysm wall.

1.1.2.2. Stent-grafts

Since the first EVAR in 1990, SG design has drastically improved over the last decades with
the goal of decreasing SG related complication rates and the number of required secondary
interventions. Nowadays, many different commercial SG devices exist. Most SGs are composed
of a wire mesh (stent) which is attached to a polymeric fabric (graft) as shown in Figure 1.3.

Remark. In the medical context, often the total prosthesis is denoted as “stent” or as “graft”.
In this thesis, the total prosthesis is denoted as “stent-graft” and the terms “stent” and “graft”
only denote the single components of the SG.

The graft serves as a conduit for the blood flow and excludes the arterial blood pressure from
the aneurysm sac. The stent provides radial compression stiffness while not reducing the bending
flexibility of the SG which is required in tortuous vessels [58]. Woven polyethylene terephtha-
late (PET) and expanded polytetrafluoroethylene (ePTFE) are common materials of grafts of
commercial SG devices, whereas stent material is either stainless steel or nitinol which is a
nickel-titanium alloy. Depending on whether the stent is attached on the outer graft surface or
at the inner graft surface, the stent is denoted as exterior and interior, respectively. To be able to
better determine the orientation of the SG on fluoroscopy images during EVAR and for better
positioning of the SG, radiopaque markers are attached on the graft.

The stress-free stent diameters of many commercial SG devices are larger than the associated
stress-free graft diameter. During the assembling process of SGs, stents are radially compressed
and are fixed on the graft in this compressed state which leads to residual strains and stresses
in the assembled SG. This predeformation has a positive effect on the buckling and kinking
behavior of the SG. In the technical and computational context, this effect is named stent prede-
formation [106] or stent preload [228].
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Figure 1.3 Commercial SG devices for treatment of AAAs: (I) Cook Zenith Flex/Spiral-Z® SG,
figure reproduced with permission from [107]; (II) Medtronic Endurant™ II SG.

Standard SGs for EVAR are bifurcated, modular off-the-shelf SGs consisting of a main body
SG that includes the bifurcation into the iliac limbs. Depending on the SG manufacturer, i.e.,
depending on the SG device, either one or two iliac leg SGs are used as iliac extension to the main
body SG. All SG components, i.e., main body SG and iliac leg SGs, are mainly tubular shaped
and SG manufacturers provide these products as off-the-shelf products in various different sizes.
This modularity of commercial SGs allows to combine many different SG components to a semi-
personalized product and even aortoiliac aneurysms can be treated by extension of the standard
SG components by a branched iliac SG component [67].

In addition to the passive fixation of the SG by SG oversizing with respect to the vessel di-
ameter, most commercial SG devices use active fixation by barbs. Depending on the location
of barbs, one distinguishes between suprarenal and infrarenal active SG fixation [178]. In case
of suprarenal fixation, the most proximal stent limb including barbs is not covered by a graft.
Hence, this stent limb can be positioned at the branch-offs into the renal arteries without cutting
off the renal arteries from blood supply.

The selection of the ideal SG is governed by patient-specific needs such as anatomic properties
of the AAA and the proximal neck. This leads to the fact that there is no general “best” commer-
cial SG. In the following only two of the most used commercial SG devices are briefly described.
A more detailed overview of commercial SG devices is given for instance in [22, 49, 60, 68].

Cook Zenith Flex/Spiral-Z®

This modular Cook SG system (Cook Medical, Bloomington, Indiana, USA), cf. Figure 1.31, is
a combination of a bifurcated main body SG of type Cook Zenith Flex® and two iliac leg SG
components of type Cook Zenith Spiral-Z®. The graft of Cook Zenith Flex® and Cook Zenith
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Spiral-Z® SGs is made of woven PET. The Cook Zenith Flex® SG consists of several stainless
steel stent rings, whereas the Cook Zenith Spiral-Z® SG consists of two stainless steel stent rings
and one intermediate nitinol spiral shaped stent limb. The stent limbs are sutured to the fabric
graft in a combination of interior and exterior stents. The most proximal stent ring of the Cook
Zenith Flex® SG is not covered by the graft and includes barbs for suprarenal active fixation of
the SG.

Medtronic Endurant™ I

The Medtronic Endurant™ II SG system (Medtronic Cardiovascular, Santa Rosa, California,
USA), cf. Figure 1.3II, is a modular combination of one bifurcated main body SG and one
docking iliac leg SG. Several nitinol stent rings are sutured on the outer graft surface of the
woven PET graft. The most proximal stent ring of the main body SG is a bare stent ring, i.e., is
not covered by the graft, and includes barbs for suprarenal active fixation.

1.1.2.3. Instructions for use and stent-graft sizing guidelines

Suitable anatomic properties of the aneurysm, the proximal neck and the iliac arteries are a pre-
requisite for successful application of EVAR. A hostile neck, i.e., a proximal neck with poor
anatomic properties, is often associated with an increased likelihood of EVAR related complica-
tions. Short, angulated and conical proximal necks are frequently mentioned characteristics of a
hostile neck [2, 8, 129, 134]. Moreover, the degree of proximal neck calcification and the degree
of proximal neck thrombus are sometimes related to hostile necks [3, 194, 231, 275].

SG manufacturers express the limits of applicability of EVAR in corresponding IFU, which
state anatomic limits for instance with respect to the aortic neck angle and neck length. The
patient-specific anatomic properties are evaluated based on preinterventional CT data. Although
the IFU are formulated in terms of hard, quantitative limits (e.g., a neck angle smaller than 60°),
the evaluation of the applicability of EVAR is strongly affected by subjective interpretations of
the clinician. Even intentional treatment outside of the IFU is performed by many clinicians
with reported positive outcomes (e.g., [40, 124, 152, 238, 268]). Hence, the question whether
the formulation of the IFU should be weakened is an ongoing debate [124, 152, 268].

Correct sizing of SGs is one of the most challenging preinterventional tasks that requires
an experienced clinician. The clinician has to determine the correct length and diameter of the
modular SG components based on measurements using the preinterventional patient-specific CT
data. Exceedingly long SGs might erroneously cover aortic side branches such as the internal
iliac artery, whereas too short SGs might not be able to seal the aneurysm such that it is leak-
proof.

To achieve a proper fixation of the SG and a leak-proof seal between SG and vessel in the land-
ing zones, the SG is oversized with respect to the vessel diameter. The degree of SG oversizing o
is defined by

DSG
0="Fx L (1.1)
where DSC is the diameter of the SG and D*° is the preinterventional diameter of the vessel
at the location of the potential landing zone. The definition of the degree of SG oversizing is
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Undersizing Excessive oversizing

Figure 1.4 Visualization of the effects of SG undersizing and excessive SG oversizing for a SG
segment of a Cook Zenith Flex® SG.

not unique in literature [257]. For instance, the IFU of Cook Zenith Flex/Spiral-Z® SGs request
the measurement of the vessel diameter outer wall to outer wall, whereas the IFU of Medtronic
Endurant™ II SGs demand an inner wall to inner wall measurement of the vessel diameter.
Further, since the resolution of the preinterventional CT data is generally in the range of the
vessel wall thickness, a clear distinction between inner wall to inner wall measurements and
outer wall to outer wall measurements is not possible in clinical practice. Bearing in mind that
the thickness of abdominal aortic walls and iliac artery walls is approximately 1 — 2 mm [219],
this inconsistency can have a major impact on the degree of SG oversizing and therefore should
be considered in any study related to the degree of SG oversizing [257]. Deterministic in-silico
models have an unambiguous vessel wall thickness, i.e., outer wall to outer wall or inner wall
to inner wall diameters can be measured precisely. Therefore, to be consistent, in this thesis the
inner wall to inner wall diameter is used, i.e., D*° in Equation (1.1) denotes the preinterventional
inner vessel wall diameter.

Contact pressure between the oversized SG and the aorta in combination with friction results
in passive fixation of the SG. Some oversizing of the SG with respect to the vessel diameter is
necessary to obtain an adequate seal and fixation of the SG in the proximal and distal landing
zones [245, 257]. However, excessive SG oversizing might also lead to negative results such as
excessive graft buckling and incomplete SG expansion [122, 136, 159] with poor sealing proper-
ties. Moreover, high stresses in the surrounding tissue associated with long-term complications
of EVAR [197, 241] as described in detail in Section 1.1.2.4 are frequently mentioned negative
results. Figure 1.4 visualizes the effects of a SG with insufficient SG oversizing (undersizing)
and excessive SG oversizing with severe graft buckling. Consequently, the degree of SG over-
sizing is a major design variable of SGs that essentially contributes to the likelihood of EVAR
related complications. The IFU of commercial SGs generally suggest an oversizing of 10 —20%.
However, there is no consensus with regard to the optimal degree of SG oversizing and even
SG oversizing above 30% is practically used [182, 245, 257]. While Mohan et al. [182] report
a significant decrease in EVAR related complications with increasing degree of SG oversizing,
Sternbergh et al. [245] state that SG oversizing above 30% is associated with poor long-term
SG fixation. Sincos et al. [241] strengthen these findings by studying histologic changes in the
aortic wall of experimental porcine models after SG deployment of several SGs with different
degree of SG oversizing. The study revealed structural disarrangements of the aortic wall as well
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as a reduction of the supporting force by the aortic wall which was more pronounced for a large
degree of SG oversizing.

1.1.2.4. Stent-graft related complications after EVAR

In this thesis, only SG device related complications are considered. These complications can be
seen as of mechanical origin. They are the consequence of the complex mechanical interaction
between vessel, SG, blood flow and pressure. Other procedure related complications are beyond
the scope of this thesis.

The total likelihood of EVAR related complications is reported to be 46% after 8 years (EVAR
trial 1, [30]). Only few of them are imminently life-threatening. Thus, not every SG related com-
plication requires immediate reintervention. Most of them are related to the failure of proper
AAA protection by the SG, which generally goes hand in hand with the reenlargement of the
AAA, ongoing aneurysm growth and the reemergence of the AAA rupture risk. Depending on
the complication type, EVAR related complications are treated by endovascular techniques, con-
version to open repair or other techniques. In the following the most frequently reported EVAR
related complications are briefly described.

Endoleak

An endoleak is the most frequently mentioned reason for secondary interventions after EVAR.
In general, an endoleak is defined as the persistent perfusion of the aneurysm sac after EVAR.
General discussions on endoleaks and their treatment are provided for instance in [71, 93, 97,
111]. According to the location and type of leakage, endoleaks have been classified into four
different endoleak types:

o Type I endoleak [194, 231]: Type I endoleaks occur when a gap between SG and vessel in
the proximal landing zone (type Ia) or the distal landing zone (type Ib) allows blood to flow
into the aneurysm sac. Type I endoleaks can have many reasons. Among others, frequently
stated reasons are unsuitable vessel geometry, migration of the SG, SG infolding or a
change of the sealing zone due to growth and remodeling of the vessel.

o Type Il endoleak [171, 239]: Type II endoleaks correspond to perfusion of the AAA sac
by retrograde blood flow from small arterial side branches within the aneurysm such as
in most cases the lumbar arteries or inferior mesenteric arteries, but also in rare cases the
sacral, gonadal or accessory renal artery. There is only poor understanding of predictive
factors of the formation of type II endoleaks [171]. It is the most common endoleak type
[239], but it only requires intervention, when associated with aneurysm sac growth.

o Type Il endoleak [29, 169]: Type Il endoleaks describe the leakage between modular SG
components or through defects of fractured SGs.

o Type IV endoleak [48]: A type IV endoleak is a leakage through the graft due to graft
porosity. Type IV endoleaks were primarily seen in first-generation SGs. In modern SGs
with enhanced graft material, type IV endoleaks are extremely rare.
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In addition to the four endoleak types, continued AAA expansion without identifiable leakage
sometimes is denoted as type V endoleak or endotension. Type I and III endoleaks are the most
dangerous ones, because they are expected to apply a high pressure on the aneurysm sac and
hence enlarge the rupture risk tremendously, whereas Type II endoleaks have only a small impact
on the aneurysm sac [269].

Stent-graft migration

Pulsatile blood flow and pressure exerts a permanent displacement force onto the deployed SG.
In combination with poor fixation of the SG, this may lead to movement of the SG called SG
migration [47, 215, 251, 277]. By introduction of fixation barbs in modern SG devices, the risk
of SG migration has been strongly reduced [33].

Aortic neck dilatation

Aortic neck dilatation defines the enlargement of the aorta in the proximal landing zone after
EVAR. Dilatation of the aortic neck affects the SG fixation and the sealing between SG and
aorta and therefore can trigger SG migration or an endoleak type Ia. Two phenomena must be
differentiated: (1) immediate postimplant dilatation [232], which is an instant enlargement of the
aortic neck due to the radial force exerted by the oversized SG and (ii) aortic neck enlargement
due to long-term changes of the aortic neck such as growth and remodeling. In the context of this
thesis, the term aortic neck dilatation is referred to the long-term enlargement of the aortic neck
which is explained by two different phenomena. First, Palombo et al. [197] and Simon-Kupilik et
al. [240] concluded that aortic neck dilatation is the result of a growth and remodeling process of
the originally “healthy” abdominal aortic wall which is driven by changes of the aortic tissue in
the SG landing zone such as increased wall stresses. Second, other researchers claim that aortic
neck dilatation is the result of the continuation of the aneurysm disease process [62, 234]. Both,
phenomena are widely discussed in the literature but without full agreement regarding the major
source of aortic neck dilatation [47, 142, 256, 257].

Stent-graft fracture

Both stent fracture [127, 246] and fabric tear [38, 127] have been widely reported as SG defects
associated with subsequent SG migration or type III endoleak. Mostly, the SG fracture is the
result of fatigue loading due to pulsatile blood flow and pressure in combination with high strains
and stresses in the SG due to the large deformation of the SG in the deployed state [47].

Stent-graft kinking

Insufficient flexibility of the SG can lead to SG kinking [43, 167, 168] especially within tortuous
iliac arteries which in turn may cause limb occlusion associated with ischemic complications.
Moreover, SG kinking induces irregular blood flow and can induce local thrombosis forma-
tion [47].

11
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Ischemic complications

Occlusion of aortic side branches after EVAR can include colonic, renal, and pelvic ischemia
[168]. Renal ischemia mostly arises immediately after EVAR or even during the intervention as
a result of SG misplacement leading to coverage of one or both renal arteries [26, 104]. Pelvic
ischemia immediately after EVAR mostly is associated with wrong sizing of the length of a iliac
SG limb and/or SG misplacement of the iliac SG limb such that the SG covers the bifurcation
of the common iliac artery into the external and internal iliac arteries [168]. Several years after
EVAR, ischemic complications can arise as a result of SG kinking and graft thrombosis forma-
tion or as a result of SG migration and subsequent coverage of aortic side branches [43, 167].

Aortic compliance mismatch

Arterial compliance is defined as the ratio of change in arterial blood volume to change in arterial
blood pressure. It is well known that the insertion of a SG reduces the local compliance in the re-
gion of the SG generally denoted as aortic compliance mismatch. This may have negative effects
such as increased pressure wave reflection, decreased distal perfusion and increased pulsatile
stresses and vessel distension of the vessel at the interface between the native, compliant vessel
and the SG with reduced compliance [64, 240, 242, 255]. The latter effect of increased pulsatile
vessel stresses and vessel distension is mentioned as main initiator of aortic neck dilatation by
some studies [64, 240]. Although the effect of aortic compliance mismatch on the cardiovascu-
lar system may be much smaller in case of EVAR than in case of TEVAR, aortic compliance
mismatch induced by abdominal aortic SGs is also a current area of research [130, 248, 255].

The likelihood of the single complications slightly varies between the clinical trials such as
the EVAR trial 1 and the DREAM trial (cf. Section 1.1.1). According to the EVAR trial 1 [30],
eight years after the intervention the most frequent complication was type II endoleak (25% of
all EVAR patients), followed by type I endoleak (9.9%). Further, it has to be noted that in clinical
practice the reason of reintervention often is a combination of many of the above listed EVAR
related complications. For example, severe SG migration goes mostly hand in hand with a type I
endoleak.

1.2. Medical challenges and motivation of in-silico
EVAR

The complication-free use of EVAR requires an individual adaptation of the preinterventional
planning to the patient-specific needs such as the selection of a SG device that perfectly suits
the vessel geometry. The currently available preinterventional planning tools are limited to the
IFU of SG manufacturers as well as measuring tools of medical imaging software. The use
of patient-specific computational models or 3D-printed ex-vivo models is still the exception in
clinical practice. To improve the patient-specific, preinterventional planning phase on the way
toward a more personalized medicine, in-silico EVAR can be applied as objective, predictive
tool in five respects:
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e Assessment of EVAR complication likelihoods

The prediction of the complication likelihood based solely on currently available preinter-
ventional planning tools is very challenging. In-silico EVAR can predict the postinterven-
tional state of SG and patient-specific vessel under physiological conditions. It provides
mechanical insight into the deployed configuration, such as vessel and SG stresses as well
as contact tractions between SG and vessel. Thus, it can number the potential likelihood of
SG related complications and assist the clinician in the decision whether EVAR is suitable
or not.

e Assistance in SG device selection
The risk of SG related complications is affected by the device choice [206, 251, 264]
as not all commercial SGs fit to a specific vessel geometry to the same extent. In-silico
EVAR models can be used to predict the outcome for several different commercial SG
devices for the same patient, allowing a comparison of predicted outcomes. Hence, in-
silico EVAR models could assist the clinician in the choice of the SG from a large portfolio
of commercially available SG devices from different SG manufacturers.

e Assistance in SG sizing

Correct sizing of the SG (length and diameter) is a challenging preinterventional task.
Since the “ideal” amount of SG oversizing for a patient-specific case depends on various
factors, such as the shape of the vessel and the degree of vessel calcification, it is difficult to
estimate only from information obtained from preinterventional CT data. In-silico EVAR
models can provide a predictive comparison of different SG sizes for the same patient and
compare the quality of the outcome. Thus, the use of in-silico EVAR can improve the SG
sizing process in the preinterventional planning phase, both with respect to SG length as
well as SG diameter.

e What-if predictions
The medical EVAR intervention is subject to certain intrainterventional uncertainties such
as the accuracy of SG positioning due to limited resolution of intrainterventional medical
imaging and pulsatile forces acting on the SG resulting from the blood flow. Already in
the preinterventional planning phase, in-silico EVAR could be used to assess the outcome
if such an adverse event like SG misplacement occurs during EVAR.

e Predictive comparison of specific types of EVAR
Especially in complex vessel geometries, predictive in-silico EVAR can be used to com-
pare different types of EVAR, such as FEVAR and CHEVAR, with respect to their feasi-
bility and long-term performance.

Besides the main objective of minimizing the complication likelihood by patient-specific in-
silico predictions, in-silico EVAR models can further contribute to the advancement of EVAR as
a tool for education [180, 259, 260]. Furthermore, the additional mechanical information of SG
and vessel obtained by in-silico EVAR can help to clarify the occurrence of some complications
after EVAR that are not yet fully understood, such as aortic neck dilatation. An ongoing area
of research is the permanent improvement of SGs. In-silico EVAR can be a valuable tool in the
development of optimized SG designs that are able to reduce the complication likelihood after
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EVAR and that are able to expand the applicability of EVAR to patients with very challenging
anatomy of the abdominal aorta.

1.3. Existing in-silico and experimental studies related
to EVAR

In-silico EVAR model

Vessel model

In-silico SG P&D methodology
(SG placement + deployment) -

e virtual catheter method

e virtual shell method
Stent-graft model |

Figure 1.5 Visualization of the three modeling aspects of in-silico EVAR models: vessel model,
SG model and in-silico SG P&D methodology. Portions of the figure are taken with permission
from [107].

In this thesis, the in-silico EVAR model is defined as computational model to predict the postin-
terventional configuration (cf. Definition of terms on page xxi). It is not designed to extensively
reproduce all steps of the EVAR procedure as stated in Section 1.1.2.1, but only the results of
the postinterventional configuration are of elevated interest. Therefore, the considered in-silico
EVAR models cannot be applied to obtain intrainterventional results.

The in-silico EVAR model incorporates three different modeling aspects (cf. Figure 1.5):
(1) the vessel model, (ii) the SG model and (ii1) the in-silico SG placement and deployment (P&D)
methodology which defines all virtual steps from a given SG model and a given vessel model to
the final postinterventional configuration. Hence, the in-silico EVAR model is subject to simpli-
fications and assumptions associated with the vessel model, the SG model and the in-silico SG
P&D methodology.
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The vessel model defines the abstraction of a patient-specific computational model from prein-
terventional CT data. In the context of this thesis, the term vessel is used as collective term, which
includes parts of the “healthy”” abdominal aorta, the “aneurysmatic” dilated part of the abdominal
aorta, intraluminal thrombus (ILT) and calcifications. The SG model is a computational model
to approximate the mechanical behavior of different commercial SG devices.

The virtual steps of the in-silico SG P&D methodology classically include the steps in-silico
SG placement and in-silico SG deployment. In-silico SG placement defines the virtual step of
positioning the SG within the vessel. In-silico SG deployment defines all virtual steps subsequent
to the in-silico SG placement, i.e., the processes that let the SG freely deform within the vessel.

The following literature overview is subdivided into the three modeling aspects as visualized
in Figure 1.5. In Section 1.3.1, an overview of existing vessel models of infrarenal AAAs is
given. Section 1.3.2 provides an overview of existing experimental and in-silico studies on SG
mechanics. Existing in-silico SG P&D methodologies are reviewed in Section 1.3.3. Finally, in
Section 1.3.4, applications of in-silico EVAR models are stated and their results are summarized.
An overview of all three modeling aspects and applications of in-silico EVAR models can also
be found in the review by Roy et al. [227] as well as in the theses by Perrin [204] and De Bock
[49].

1.3.1. Vessel modeling

Several studies have already been conducted in the field of patient-specific AAA modeling to
assess the rupture risk based on AAA wall stress and strength. Since the first finite element
based studies of AAA rupture risk assessment [76, 126, 217], model complexity has drastically
increased. In more recent studies, calcifications and ILT had been included into the AAA model
and a significant impact on AAA wall stresses could be shown [17, 162, 208, 221]. Vessel pre-
stressing methodologies (e.g., [83, 160]) that reconstruct non-stress-free vessel configurations of
patient-specific in-vivo medical imaging further improved the rupture risk assessment of AAAs.

The vessel models for AAA rupture risk assessment mainly focus on the mechanical behavior
of the AAA. The “healthy” vessel parts, i.e., the proximal neck and the iliac arteries, are either
not part of the model [154, 217] or are modeled by the same material model and model param-
eters for the vessel wall as the AAA wall [76, 162]. In the context of in-silico EVAR, besides
sophisticated modeling of the AAA, also realistic modeling of the “healthy” vessel parts is of
major importance since many EVAR related complications are associated with these parts of the
vessel. Using one equivalent material model for the “healthy” and the “aneurysmatic” vessel wall
leads to wrong estimations of the vessel deformation and vessel wall stresses since substantial
differences in the material behavior of “healthy” aortic walls and AAA walls can be identified
[192].

However, to reduce complexity most in-silico EVAR studies use either rigid wall assumptions
[9, 224, 225] or use simplified linearized material models [53, 205, 207]. None of the available
in-silico EVAR studies uses vessel wall models that incorporate state of the art models of the
“healthy” vessel wall [80, 102, 118] and state of the art models of the AAA wall [192, 219].
Furthermore, calcifications, ILT, vessel prestressing and the application of physiological blood
pressure states are mainly neglected.
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Remark. The location of interest includes “aneurysmatic” parts as well as “healthy” parts
of the blood vessels. Hence, throughout this thesis, it is distinguished between the terms “AAA
(model)” and “vessel (model)”. The term “AAA (model)” only refers to the “aneurysmatic”,
dilated part of the abdominal aorta whereas the term “vessel (model)” defines all parts of the
blood vessel in the location of interest, i.e., “aneurysmatic” and “healthy” parts of the blood
vessel as well as ILT and calcifications.

The in-silico EVAR study with the most elaborated vessel model was presented in the thesis by
De Bock [49]. Similar to recent studies investigating the AAA rupture risk, ILT and calcifications
were considered in addition to the vessel wall. This pioneering study highlighted the mechanical
impact of stiff calcifications on the deployment of the SG. However, this study was limited to
only one patient-specific case. Disregard of vessel prestressing and the blood pressure state are
further limitations of this study, which make reasonable stress measurements in the vessel tissue
impossible.

Constitutive modeling of vessel constituents has made enormous progress during the last
decades. Present constitutive models of the “healthy” aortic wall are the so-called two-fiber
[80, 116, 118] and four-fiber models [74, 222], which consider the hyperelastic and anisotropic
mechanical behavior. In AAA walls, anisotropy is less pronounced and isotropy is a widely used
model assumption [87, 163, 217]. Several experimental and numerical studies on the mechani-
cal behavior of ILT and vessel calcifications were published. Mostly, hyperelastic and isotropic
mechanical behavior of ILT is assumed in the constitutive models [81, 258, 270]. Isotropic and
almost linear material behavior mostly is stated for vessel calcifications (e.g., [162, 172]). For
a detailed summary of the state of the art modeling approaches of AAAs in the context of rup-
ture risk assessment and an extensive overview on constitutive models of vessel constituents of
AAA:s, the interested reader is referred to the thesis by Maier [164].

1.3.2. Stent-graft modeling

For the sake of simplicity, homogenous SG models (e.g., [75, 120, 156, 187, 189]) were used
as a first approach in a large number of in-silico studies. These homogenous SG models do not
differentiate between stent and graft, but rather model the SG as simple tubular structure with
one identical material. Since the metallic stent and the membranous graft are geometrically and
mechanically very different components, these homogenous SG models cannot reproduce the
realistic mechanical behavior of SGs [60].

The first study on realistic multi-material SG models, which considered stent and graft as sepa-
rate components, was performed by Kleinstreuer et al. [139]. Kleinstreuer et al. investigated stent
stresses of a SG with a diamond shaped nitinol stent under cyclic loading. This pioneering study
was limited by the fact that only straight SG configurations subjected to internal pressure load-
ing were investigated and that the used SG models did not mimic specific commercial devices.
The first large in-silico studies of several commercial SG devices were provided by Demanget et
al. [57-60]. Demanget et al. used elaborated multi-material SG models to compare the bending
behavior of eight different commercial SGs. They were the first who performed extensive ex-
perimental and numerical testings on graft samples of commercial abdominal SGs and proposed
an in-plane orthotropic elastic model for woven PET grafts. More recently, Roy et al. [228] ex-
perimentally and numerically investigated the behavior of Cook Zenith Flex® SGs and fitted the
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graft material behavior of this specific SG device to the same constitutive model. Despite the
inherent anisotropic material behavior of woven PET, isotropic material models are frequently
applied with reasonable results [9, 139, 225]. A frequently used material model of nitinol in
stent models, that considers the phase transformation between the austenitic and the martensitic
phase associated with this type of alloy, is provided by Auricchio et al. in a series of publications
[10-12]. This model was applied to a large number of SG models (e.g., [9, 139, 205]). For a
more extensive review of the mechanical properties of nitinol as a shape memory alloy and its
modeling approaches, the reader is referred to the book of Lagoudas [146]. Recently, Perrin et al.
[204, 207] stated that nitinol remains in its austenitic phase during SG deployment simulations
which do not model the full crimping process of the SG inside its delivery sheath. Hence, to
reduce complexity, the constitutive behavior of nitinol was modeled by a purely elastic model
without phase transformation. The fixation of the stent on the graft (mostly by suture) generally
is modeled by tie constraints [58, 228], which neglect the slight slippage that mostly is possible
between stent and graft. Since multi-material SG models can be computationally very expensive,
reduced SG models that are still able to reproduce realistic mechanical behavior of the SG, are
the focus of current research [4].

In early stages of multi-material SG models, stent predeformation was rarely considered. In
recent years, some computational approaches to consider stent predeformation were proposed.
In a SG assembly simulation, Demanget et al. [59] applied an artificial pressure on the internal
graft surface to increase the graft diameter to the larger diameter of the stent rings. A contact
constraint between stent and graft prevented penetration of those two components. Once stent
and graft were in contact, a tie constraint was applied between stent and graft and the artificial
pressure was removed. Drawback of this very practical approach to stent predeformation is that
this approach requires an additional assembly simulation prior to the actual EVAR simulation.
In another study [60], Demanget et al. developed a mechanically sophisticated SG assembling
strategy for Anaconda™ SGs (Vascutek, Inchinnan, UK) which considered the predeformed
stent configuration of this specific type of commercial SG. Roy et al. [228] developed a rule
of thumb for the consideration of stent predeformation of Cook Zenith Flex® SGs. In their
study, the Young’s modulus of the stent was augmented by a factor of 2 to consider the effect
of stent predeformation. This rule of thumb required mechanical tests for calibration and was
based on the assumption of a linear relationship between radial force and diameter reduction
of stents. More recently, an assembly simulation of stent and graft was used to consider stent
predeformation in a customized SG of the aortic arch [61]. In this SG assembly simulation, the
oversized stent rings were radially compressed by a rigid cylinder until they are in contact with
the graft. In this configuration, tied contact was assigned between stent and graft. Afterwards,
static mechanical equilibrium of the assembled SG model was sought.

Besides in-silico studies, mechanics of SGs have been investigated in numerous experimental
studies with very different objectives. The radial force of thoracic [173] and abdominal aortic
SGs [52] during SG compression was measured using radial force testing machines. Other exper-
imental studies investigated the pull-out force of SGs [82, 143, 177], i.e., the axial force that is
required to dislocate the SG from the landing zone. For instance, Kratzberg et al. [143] concluded
that SG oversizing above 30% leads to a reduced pull-out force due to an increased likelihood of
stent collapse!. This means that SG oversizing above 30% is associated with worse SG fixation

Tn the medical context, stent collapse often is denoted as SG infolding [135, 247].

17



1. Introduction

according to their experimental study. The SG drag force, i.e., the force that is exerted onto the
SG by the blood flow and pressure and which tends to dislocate the SG, was experimentally
studied for a bifurcated SG by Corbett et al. [45]. In [226], Roos et al. experimentally analyzed
the SG drag force under pulsatile blood flow. They concluded that the SG drag force increases
with rising blood pressure and rising SG angulation. Using imaging and mechanical testing, Lin
et al. [159] investigated the folding behavior of abdominal aortic SGs with respect to the degree
of SG oversizing and the shape of the proximal barbs. Lin et al. concluded that excessive SG
oversizing of more than 30% is very likely associated with adverse results such as SG infolding
and a reduced seal quality.

1.3.3. In-silico SG P&D methodologies

Since the results of intrainterventional steps are not of interest for the considered type of in-
silico EVAR studies, the intrainterventional steps can be simplified as long as the final postin-
terventional configuration of SG and vessel is not substantially influenced by these simplifica-
tions. Consequently, the following in-silico SG P&D methodologies do not aim at representing
the real-world intrainterventional steps of EVAR. Instead, in-silico SG P&D methodologies are
computational approaches to efficiently place and deploy the SG model in the vessel model. As
a further simplification, these in-silico SG P&D methodologies neglect blood flow, but treat the
EVAR procedure as purely solid mechanical problem. The existing in-silico SG P&D method-
ologies can be roughly subdivided into two different methodologies, which in the context of this
thesis are denoted as the virtual catheter method and the virtual shell method.

Virtual catheter method

Several in-silico deployment studies of self-expandable pure stents (i.e., without graft) have
been published within the last decade (e.g., [13, 50, 117, 121, 122, 188, 191]). These can be
seen as pioneering work for in-silico SG P&D methodologies. The computational consideration
of SG deployment is much more complex than the deployment of a pure stent mainly due to
the challenging modeling of the membranous graft that is subjected to severe buckling during
the SG placement and deployment. Nevertheless, since the medical procedures of pure stent
deployment and EVAR are very similar, many in-silico EVAR studies [9, 51, 53, 206, 225]
have adopted the in-silico SG P&D methodology from pure stent deployment simulations. This
methodology was first applied to SGs for aneurysm repair by Auricchio et al. [9]. It is denoted
as virtual catheter method in the context of this thesis and is visualized in Figure 1.6 for the
treatment of an ascending aortic pseudoaneurysm by an endovascular SG. In addition to the
vessel model and the SG model, this in-silico SG P&D methodology requires modeling of a
cylindrical delivery catheter (white sheath in Figure 1.6), which is mostly modeled by 2D surface
elements and whose deformation is fully prescribed. The virtual catheter is used to radially
crimp and position the SG onto the preinterventional vessel centerline. During this SG placement
step, contact constraints between the virtual catheter and the SG force the SG to remain inside
the virtual catheter. Afterwards, additional contact constraints between SG and luminal vessel
surface are activated. The diameter of the virtual catheter is gradually enlarged until the SG is
not in contact with the virtual catheter anymore but solely in contact with the vessel (see SG
deployment in Figure 1.6).
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Figure 1.6 In-silico EVAR based on the virtual catheter method applied to a patient-specific
ascending aortic pseudoaneurysm. Virtual catheter (white) and pseudoaneurysm (red). The SG
1s not visible in this figure. Reproduced with permission from [9], copyright Elsevier.

In [49] and [224], the virtual catheter method was extended by consideration of the deploy-
ment direction of the SG, i.e., the enlargement of the virtual catheter is started at the proximal
side and ends at the distal side. In addition, in the thesis by De Bock [49], the virtual catheter
method was extended for a bifurcated AAA SG, necessitating multiple virtual catheters.

A major challenge of the virtual catheter method is the numerical complexity arising from the
high degree of SG buckling during radial crimping in the SG placement process, i.e., during a
process whose results are not of interest for the considered in-silico EVAR studies. The numerical
complexity of radial crimping is less pronounced for pure stents, for which the methodology was
initially intended, since in these simulations no complex graft buckling exists. Hence, the virtual
catheter method has proven itself as a robust and efficient methodology for the placement and
deployment of pure stents. However, when applied to EVAR it may not be the most elegant
method.

Virtual shell method

Perrin et al. [204, 205] developed a different in-silico SG P&D methodology in which a clear
separation between SG placement and deployment is difficult. The in-silico SG P&D methodol-
ogy is denoted as virtual shell method in the context of this thesis and is visualized in Figure 1.7.
In this methodology, a virtual tubular shell, whose diameter is slightly larger than the diameter
of the SG, is placed around the SG. Using proper prescribed displacement constraints on the
nodes of the virtual shell, it is mapped onto the luminal vessel wall surface of the patient’s prein-
terventional vessel geometry. Frictional contact constraints force the SG to remain inside the
virtual shell during this deformation process of the virtual shell and gradually deform the SG.
Until this step, the virtual shell does not represent any mechanical behavior, but is solely used
as a prescribed geometrical constraint. Afterwards, vessel wall material properties are assigned
to the virtual shell, which from this step on acts as vessel wall, allowing the vessel wall to de-
form elastically until static mechanical equilibrium is reached. The virtual shell method requires
a robust morphing algorithm [94, 204] that governs the deformation of the virtual shell. This
morphing algorithm will be reviewed in Section 3.2.1. The virtual shell method has been suc-
cessfully applied to bifurcated SGs to treat AAAs [205, 207]. Recently, this in-silico SG P&D
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Prescribed Application of
deformation vessel material
of virtual shell to virtual shell

Figure 1.7 In-silico EVAR based on the virtual shell method applied to a patient-specific AAA.
The virtual shell (red) is smoothly morphed from the cylindrical shape to the shape of the patient-
specific preinterventional vessel. Modified figure reproduced with permission from [205], copy-
right Elsevier.

methodology was extended to the deployment of a double branched SG for the treatment of an
aortic arch aneurysm [61].

Although the virtual shell method circumvents the numerical complexity arising from the ra-
dial crimping process of the SG, during the deformation of the virtual shell the SG still undergoes
a complex deformation process with severe buckling and complex contact interaction between
SG and vessel.

Other in-silico SG P&D methodologies

The only in-silico SG P&D methodology that avoids the high degree of complexity encountered
during crimping and placement of the SG was published by Prasad et al. [212]. In this in-silico
SG P&D methodology, first the SG model is moved to the vessel centerline without deforming
the straight SG model. Afterwards, the vessel is inflated by an unphysiological pressure increase
to make room for the SG. As soon as the SG is fully inside the vessel, contact constraints between
vessel and SG are activated and the artificial pressure is removed again. This computationally
very simple approach is however restricted to simple vessel geometries and not applicable to
patient-specific cases with diverse geometric characteristics.

1.3.4. Applications of in-silico EVAR models

Many studies have already been published using in-silico EVAR models to approximate the final
deployed SG configuration in idealized vessel geometries (e.g., [51, 53, 206, 212]). However,
only few patient-specific in-silico EVAR studies exist [9, 61, 205, 207, 224, 225] most of which
are restricted to strong simplifications with respect to the vessel model (cf. Section 1.3.1). In
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1.3. Existing in-silico and experimental studies related to EVAR

the following, different applications of in-silico EVAR models in idealized and patient-specific
vessel geometries are reviewed.

In [9, 61, 205, 207], patient-specific cases were considered and the comparison between sim-
ulation results and real-world postinterventional CT data was used as validation of the computa-
tional models. In a simple but pioneering study, Auricchio et al. [9] were the first who validated
an in-silico EVAR model by postinterventional CT data. The most comprehensive validation
study was performed by Perrin et al. for three patient-specific cases of Medtronic Endurant™ II
SGs [205] and three Anaconda™ SGs [207]. A complex model of the SG, but a relatively sim-
ple model of the patient-specific vessel led to good agreement between simulation results and
real-world postinterventional CT data in these studies. A more detailed review of validation
methodologies and validation studies of in-silico EVAR models will be provided in Chapter 4.

In [206], Perrin et al. studied the mechanical performance of five commercial iliac leg SG
components in idealized vessel geometries. Their numerical study highlighted the difference in
the outcomes among the five commercial devices. While for some commercial devices large gaps
between SG and vessel wall in the landing zone could be identified, other SG devices showed
good SG-vessel attachment even for highly angulated vessels.

Altnji et al. [6, 7] performed a small parameter study in a thoracic aneurysm geometry with
respect to the likelihood of SG migration. They concluded that the neck angle, the length of the
landing zone and the degree of SG oversizing have the most crucial impact on SG migration.
However, rather strong simplifications were used in the studies by Altnji et al. [6, 7], such as
neglecting the graft.

De Bock et al. [53] performed a parameter study, where they varied vessel parameters, SG
position and the degree of SG oversizing in an idealized tube-shaped vessel geometry. Assess-
ment of the deployed SG configuration confirmed the impact of the vessel stiffness on the SG
expansion. In stiffer vessels (e.g., due to vessel calcifications) the deployed SG lead to less di-
ameter increase under the radial forces of the stent, which implies that the effective degree of
SG oversizing in the deployed state is larger when considering the deformed vessel diameter.
Further results of this comprehensive parameter study are the increased risk of SG kinking and
the beneficial effect of high SG oversizing in highly angulated vessel geometries. This finding
is in accordance with the study by Prasad et al. [212], where a combined framework of purely
solid mechanical SG deployment and computational fluid dynamics (CFD) to consider realistic
in-vivo loading conditions was used. Prasad et al. [212] showed that an increase in the degree
of SG oversizing can improve the positional stability of the SG. Senf et al. [237] numerically
investigated the impact of the degree of SG oversizing on the fixation force between SG and
vessel under consideration of different blood pressures as well as different material properties
of vessel, plaque and stent. This parameter study was performed considering the deployment of
one stent ring of an Anaconda™ SG without modeling of the graft in a straight hyperelastic
vessel. Despite this very simplified numerical setting, Senf et al. [237] could show that besides
the degree of SG oversizing, the vessel material properties as well as the presence of plaque have
an influence on the fixation force between stent and vessel. A difference of 29% in the fixation
force was obtained when opposing a hyperelastic and a linear elastic vessel model. Furthermore,
the study by Senf et al. [237] showed that the fixation force increases when raising the degree of
SG oversizing. The maximum fixation force for the Anaconda™ stent ring was obtained for a
SG oversizing in the range 20% — 24%.
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One step further toward the application of in-silico EVAR models in clinical practice was
presented by von Sachsen et al. [264]. They proposed a medical visualization and planning tool
to assess the SG fixation force. However, von Sachsen et al. [264] rather focused on developing
an interface that is easily understandable by clinicians than on precise modeling of the mechanics
of SG and vessel as well as their interaction. Despite of strong model assumptions, such as
negligence of the graft and the use of a rigid vessel wall, this study showed how a clinical
software could be designed to assist clinicians in the preinterventional planning of EVAR.

Recently, Romarowski et al. [224] demonstrated how in-silico EVAR models can improve the
SG device selection in clinical practice. To this end, they qualitatively compared the in-silico
EVAR outcome of two commercial tube SGs and one customized tube SG deployed in a patient-
specific ascending aortic pseudoaneurysm. Further, by comparison of the commercial off-the-
shelf SGs to the customized SG device, this study encourages the development of customized
SG devices for challenging vessel geometries where off-the-shelf SG devices cannot be used.

For the sake of completeness, other objectives of in-silico approaches in the field of EVAR
than predicting the postinterventional state are mentioned in the following. Another area of re-
search related to EVAR where in-silico approaches are used, is the determination of vessel defor-
mations due to the insertion of stiff guidewires prior to the SG deployment [66, 87, 88, 131, 181].
The investigation of changes in postinterventional blood flow is another area of research that
is worth mentioning. These studies utilize CFD simulations [14, 75, 120, 190, 225] or fluid-
structure-interaction (FSI) simulations [79, 128, 148, 157, 187] to simulate postinterventional
blood flow through the AAA with SG. Apart from investigations of the blood flow, these studies
mostly come to the conclusion that blood pressure related tractions are magnitudes larger than
blood flow related tractions [120, 157]. Therefore, purely solid approaches, which neglect the
blood flow, but consider the blood pressure, may be sufficient for the majority of investigations.

1.4. Objectives

This thesis provides essential steps toward the use of in-silico EVAR models to assist clinicians
in clinical practice. In particular, based on medical needs stated in Section 1.2 and available
studies reviewed in Section 1.3, this thesis focuses on the following three major objectives:

¢ Development of a predictive, patient-specific in-silico EVAR model

In-silico EVAR models, as defined in the context of this thesis, aim at predicting the fi-
nal postinterventional configuration of SG and vessel rather than accurately reproducing
all steps of the EVAR procedure. These models can improve the preinterventional plan-
ning of EVAR for patient-specific cases and serve as valuable tool in clinical research and
clinical education. However, most of the available in-silico EVAR models are restricted to
severe simplifications especially with respect to the vessel model that limit the scope of
application.

A major objective of this thesis is to improve available in-silico EVAR models with respect
to the vessel model. To this end, a patient-specific vessel model is proposed, which incor-
porates nonlinear state of the art material models of ILT, calcifications, “healthy” aortic
wall and AAA wall. Further, the proposed model takes vessel prestressing and physiolog-
ically meaningful blood pressure states into account. Moreover, a newly developed stent
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predeformation methodology is used for fully resolved SG models of bifurcated, com-
mercial SG devices. This methodology accounts for residual strains and stresses that arise
from the SG assembly process and which exist in most commercial SG devices. A novel in-
silico SG P&D methodology is proposed, that is applicable to bifurcated, patient-specific
SG and vessel models. It is based on the consistent reduction in computational complexity
of modeling the intrainterventional steps of EVAR without substantially changing the re-
sults of the final deployed configuration. The proposed in-silico EVAR model incorporates
only preinterventional data such that it can be used as predictive tool. Further, focus lies
on the development of a computationally efficient in-silico SG sizing tool that can be used
to evaluate several different SG sizes within a single EVAR simulation.

Validation of the in-silico EVAR model

In-silico EVAR models are a simplification of the real-world EVAR procedure that incor-
porate several assumptions. Hence, the proposed approximation of the postinterventional
configuration by in-silico EVAR models requires qualitative and quantitative validation.

A major goal of this thesis is to develop and apply a validation methodology that quali-
tatively and quantitatively compares the predicted patient-specific stent configuration pro-
duced by in-silico EVAR to the stent configuration extracted from postinterventional CT
data for realistic clinical cases.

Application of the in-silico EVAR model

Many potential applications of in-silico EVAR models are stated in literature such as the
predictive assessment of the complication likelihood. However, publications on these po-
tential applications mostly lack specific and suitable examples. Furthermore, specific de-
scriptions of how to assess the in-silico EVAR outcome with respect to EVAR complica-
tion likelihoods (e.g., endoleaks and SG migration) are rarely mentioned.

To this end, a main contribution of this thesis is the definition of a set of mechanical and
geometrical parameters to assess the quality of the in-silico EVAR outcome with respect
to EVAR complication likelihoods from an engineering perspective. Toward the use of
in-silico EVAR as predictive tool in clinical practice, a major goal of this thesis is the
demonstrative application of the in-silico EVAR model to realistic patient-specific cases.
Focus lies on the illustrative presentation of how the computational model can be used
to optimize the preinterventional planning process. Besides patient-specific cases, fully
parameterized synthetic, but realistic, SG and vessel geometries are developed. These pa-
rameterized geometries are used to investigate the influence of the SG and vessel geometry
on EVAR outcomes in a statistical analysis.

1.5. Outline

The first objective, the development of a novel patient-specific in-silico EVAR model, is ad-
dressed in Part I of this thesis. The second and third objective, i.e., the validation and application
of the in-silico EVAR model, are presented in Part II of this thesis.

Accordingly, the remainder of this work is organized as follows: in Chapter 2, fundamentals
of computational solid mechanics are presented which include the basic governing equations
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of nonlinear multibody continuum mechanics with frictional contact as well as their numerical
approximation by the finite element method (FEM).

In Chapter 3, the in-silico EVAR model is developed. This includes the presentation of patient-
specific vessel and SG models as well as a novel in-silico SG P&D methodology. Subsequently,
a parameter continuation approach to model various different sizes of SGs within a single EVAR
simulation is proposed. Finally, in this chapter, mechanical and geometrical parameters to assess
the quality of the in-silico EVAR outcome are defined.

Chapter 4 focuses on the qualitative and quantitative validation of the in-silico EVAR model.
The deployed SG configuration of patient-specific cases is predicted solely using preinterven-
tional data. Subsequently, in-silico EVAR is validated by comparison of the in-silico EVAR
results to postinterventional real-world CT data.

Afterwards, in Chapter 5, illustrative examples are presented how in-silico EVAR can optimize
the preinterventional planning process of EVAR. Four patient-specific cases of infrarenal AAAs
treated by commercial SG devices of two different manufacturers are considered. The illustrative
examples include the assessment of EVAR complication likelihoods, the assistance in the SG
device selection as well as the assessment of the influence of SG misplacement at patient-specific
examples of infrarenal AAAs using in-silico EVAR.

In Chapter 6, fully parameterized synthetic SG and vessel geometries with AAA are devel-
oped. In-silico EVAR is applied to a large cohort of these parameterized vessel and SG geome-
tries and the quality of the in-silico EVAR outcome is evaluated with respect to EVAR compli-
cation likelihoods. Conclusions concerning the impact on the EVAR outcome of certain SG and
vessel parameters, such as the neck angle or the neck length, are drawn at the end of this chapter.

Chapter 7 provides a numerical proof of concept that the use of highly customized SGs can
substantially improve EVAR outcomes with respect to reduced complication likelihoods. For this
purpose, in-silico EVAR is used to compare the deployed configuration of highly customized
SGs, which have the same morphology as the luminal vessel surface, to off-the-shelf SGs in
several different aortic neck morphologies.

Finally, Chapter 8 provides a summary of this thesis and an outlook on potential future re-
search.
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Part I.

In-silico EVAR modeling
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2. Fundamentals of computational
solid mechanics

In this chapter, the basic governing equations of nonlinear continuum mechanics including fric-
tional contact mechanics are presented in Section 2.1. Subsequently, the basic concepts to ap-
proximate the resulting nonlinear boundary value problem (BVP) using the FEM are provided
in Section 2.2.

2.1. Nonlinear solid mechanics

In this section, only the very fundamental governing equations of nonlinear solid mechanics in-
cluding frictional contact mechanics are stated. For a more comprehensive review on nonlinear
continuum mechanics, the reader is referred for instance to Holzapfel [114]. A detailed descrip-
tion of frictional contact mechanics can be found in the work by Wriggers [274].

2.1.1. Kinematics

Figure 2.1 Reference configuration )y and current configuration 2 of a continuum body.

Given a continuum body (cf. Figure 2.1) in the reference configuration (2 that is described by
the reference coordinates X € (), the current configuration ) that is described by the current
coordinates x € () can be tracked by the diffeomorphic mapping

Q Q
@;{ o T 2.1
X - =
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2. Fundamentals of computational solid mechanics

The definition of the diffeomorphic map allows for the notations = ®(X) and X = & !(x).
Consequently, the displacement vector field w is given by

uX)=2(X)- X =x - X. (2.2)
The deformation gradient F' defined by

oz ou

F=ox = 'tox

=1+ Vou (2.3)
is a fundamental kinematic variable that is used as basis for the definition of many strain mea-
sures in the context of finite deformation solid mechanics. The deformation gradient F' and its
determinant

J = det(F) > 0 (2.4)

relate an infinitesimal line element d X, an infinitesimal surface element d A and an infinitesimal
volume element dV in the reference configuration into their current configuration. Mathemati-
cally, the quantities of the reference configuration d X, dA = NdA and dV are mapped to the
quantities in the current configuration da, da = nda and dv by

de = FdX, (2.5)
da = JF~TdA, (2.6)
dv = JdV, .7)

where IV and n denote unit outward surface normal vectors of the area element in the reference
and current configuration, respectively. Based on the definition of the deformation gradient the
right Cauchy-Green deformation tensor

C=F'F (2.8)
and the left Cauchy-Green deformation tensor
b=FF" (2.9)

are frequently used deformation measures. Two strain measures that are relevant for the present
thesis are the Green-Lagrange strain tensor

E = %(FTF —1)= %(C —1) (2.10)

and the Euler-Almansi strain tensor

e= %(1—F‘TF‘1) = %(1—17—1). (2.11)
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2.1. Nonlinear solid mechanics

Constitutive laws are frequently formulated in terms of principal invariants of the right Cauchy-
Green deformation tensor C' and the left Cauchy-Green deformation tensor b according to

I, = ,(C) = I,(b) = tr(C), (2.12)
I, = I,(C) = I,(b) = % (tr(C)* — tx(C?)), (2.13)
I; = I3(C) = I3(b) = det(C). (2.14)

2.1.2. Kinetics and constitutive relations

Given an infinitesimal force resultant vector d f acting on an infinitesimal surface element da in
the current configuration with da = ||dal|, the traction vector ¢ is defined by

_df
da’

t (2.15)
Cauchy’s stress theorem relates the traction vector ¢ in the current configuration to the second-
order Cauchy stress tensor o by

t=on, (2.16)

where m is the unit surface outward normal vector on da. Analogously, the traction vector can
be expressed with respect to the reference configuration according to

47

t pu—
0 dAa

(2.17)
where t, denotes the so-called first Piola-Kirchhoff traction vector and where the surface element
becomes dA = NdA = J ' F"da. The first Piola-Kirchhoff stress tensor P is related to the
first Piola-Kirchhoff traction vector ¢, by

to = PN, (2.18)

where IV is the unit surface outward normal vector on dA. Another frequently used stress mea-
sure that is relevant for this thesis is the second Piola-Kirchhoff stress tensor

S=F'P=JF '¢cF " (2.19)

Having introduced the essential kinematic and kinetic quantities of nonlinear solid mechan-
ics, constitutive relations provide the missing link between those quantities. Elastic material
behavior of solids under large deformation can be characterized in terms of an elastic energetic
potential W, which is called strain energy function (SEF). The SEF has to obey certain important
properties, such as the requirement of objectivity, that are not further discussed in the scope of
this thesis. The interested reader is referred for instance to Holzapfel [114]. Given W, the stress
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state can be calculated by differentiation of W according to

ov oV

2.1.3. Balance of linear momentum

The static balance of linear momentum of a body described in the current configuration reads

/ bdv + /fida =0, (2.21)
Q Y

where £ is an external traction load on the boundary ~ of the body and b is an external body force.
After incorporation of (2.16) and application of Gauss’ divergence theorem, the static balance of
linear momentum is given by

/(V .o+ b)dv = 0. (2.22)
Q
Similarly, (2.22) can be expressed with respect to the reference configuration according to
/ (Vo - (F8) 4 by)dV = 0. (2.23)
Qo

Under consideration that the balance of linear momentum has to hold for any infinitesimal small
subregion of the body, the local forms of (2.22) and (2.23) can be stated by

V.-o+b=0 inQcR? (2.24)
and
Vo (FS)+by=0 inQyC R (2.25)

respectively.

2.1.4. Boundary value problem of nonlinear elastostatics

After introduction of the basic equations of nonlinear continuum mechanics in Sections 2.1.1-
2.1.3, the BVP of nonlinear elastostatics reads

Vo (FS)+by=0 in Oy C R?, (2.26)
FSN =t onTy, (2.27)
u=1u onl', (2.28)

where (2.26) is the static balance of linear momentum in the reference configuration, (2.27) is
a Neumann boundary condition and (2.28) is a Dirichlet boundary condition. At the Neumann
boundary I',, the first Piola-Kirchhoff traction ¢, is prescribed and at the Dirichlet boundary I,
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2.1. Nonlinear solid mechanics

the displacement vector u is given. Neumann and Dirichlet boundaries have to be disjoint sets,
ie.,

r=r,ul,, L,NT,=0, (2.29)

where [' denotes the total boundary of the body in the reference configuration. Completion of the
BVP is provided by the constitutive relations as introduced in Section 2.1.2. These constitutive
relations will be further concretized for SGs and vessel constituents in Chapter 3.

2.1.5. Frictional contact mechanics

) dM
u /\
F((:l) Vo
F(al) x (1)
r <O
c ey FSTQ) 71(12)
S s

Figure 2.2 Notation for the contact description of two deformable continuum bodies.

The concepts of frictional contact mechanics and their computational realization as used in
this thesis are based on the work by Popp [209] and Gitterle [89]. Figure 2.2 illustrates two
deformable continuum bodies in the reference configuration Q[()H) and the current configura-
tion QU with IT € {1,2} which undergo potential contact. Both bodies obey the BVP as
presented in Section 2.1.4. Since contact interaction of the two bodies occurs in the current con-
figuration at the contact boundaries vén), the contact boundaries I'"”) in the reference configura-
tion are a priori unknown. This circumstance introduces an additional source of nonlinearity to
the given problem.

The fundamental quantity to describe the kinematics of the potential contact between the two
bodies is given by the gap vector

g=2"—&? (2.30)
and its projection in normal direction

Jn = —N¢- g, (2.31)
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where n. is the unit outward normal vector on the contact boundary vél) at point (1. The

corresponding contact point of (V) is 2 € ~4{*, which is the result of a smooth interface
mapping of 2! onto 70(2) along mn, as defined in [211]. The fundamental kinematic variable for

frictional sliding of the two bodies is the tangential slip rate
Vv = (1= nc@m) - (8 — &), (2.32)

where (1) and & are the velocities of material point X ") and X, respectively. It has to be
pointed out that this representation of v, .. does not consider a change of the contact point X3,
i.e., it does not include a change of the projection of point (") onto 752). This representation of
Ve does not fulfill the fundamental requirement of objectivity as shown for instance in [89].
In the current work, an appropriate algorithmic modification of the discretized representation of

V- rel 18 used to guarantee frame indifference as presented in [89].

In order to satisfy the balance of linear momentum on the contact interface,

t = ¢ (2.33)

C C

has to hold, where ) is the traction vector on 751) and ¢! is the traction vector on %(2). The
contact traction £." can be split into normal and tangential components according to

tél) =1, +t =panc + L, (2.34)

where p, is the normal contact traction (pressure) and ¢ is the tangential traction vector.

The set of non-adhesive, frictional contact constraints is then given by

In >0, pn <0, pngn=0, (2.35)
A=t ]| =Flpul <0, vy +(t, =0, (>0, AC=0, (2.36)

where (2.35) represents normal contact constraints and (2.36) are tangential contact constraints.
The normal contact constraints (2.35) are formulated as a classical set of Karush-Kuhn-Tucker
(KKT) conditions, where the first KKT condition enforces non-penetration of the contact bod-
ies, the second KKT condition entails non-adhesive contact and the third KKT condition is a
complementarity condition. In this thesis, the mathematical model of friction is restricted to dry
friction with the friction coefficient § classically described by Coulomb’s law. In the tangential
contact constraints (2.36), A defines the slip condition and ( is a complementarity parameter. In
case of A < 0 (i.e., ¢ = 0), the second condition in (2.36) implies that no tangential slip occurs
(vrrel = 0). This state is denoted as stick state. In contrast, A = 0 defines the slip state.

2.2. Numerical approximation

The FEM approximation of the strong form of the BVP defined in Equations (2.26)-(2.28) re-
quires the expression of the BVP in the weak form. Using the principle of virtual work, the weak
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2.2. Numerical approximation

form of the BVP reads
W= [ S:6EAV — | by-oudV — | & oudd=0, Yéu, (2.37)
Qo Qo T
where
veld={uec[H Q) |u=aonl,}, (2.38)
dueV={0ue[H () |du=00nT,}. (2.39)

In (2.37)-(2.39), du are the virtual displacements and 0E = 1[(Vo(0u))"F + FTV,(0u)] is
the virtual strain tensor. Further, / is the solution space and ) is the weighting space for the
displacements, where H'(£2y) denotes the usual Sobolev space on ).

In this thesis, only the very basic idea of FEM is stated. For more detailed information on
FEM, the reader is referred for instance to Zienkiewicz et al. [281]. For the FEM approximation,
(2 is divided into a finite number of sub-domains Q(()e) that are called finite elements. The dis-
placement field 'u,}(f) (€) on element e with the parameter space £ € R? is then approximated by
local interpolation functions N*(¢)(£), so-called shape functions. Accordingly, the discretized
displacement field of element e is given by
(e)

node

ul?(€) = Y N (&)u). (2.40)
=1

n

Similarly, the element geometry in the reference configuration is

(e)

node

X\9(€) =Y NHIE) XM, (2.41)
=1

n

Here, all spatially discretized quantities are indicated by (e),. The number of nodes that are
associated with element e is nff[,)de and u®(©) as well as X*(©) are nodal displacements and
nodal reference coordinates, respectively. A Bubnov-Galerkin approach is applied where the
same shape functions are used for the interpolation of the virtual displacements 5u}(f) and the
displacements ul(f) . After inserting the approximations uff) and 5u§f) into (2.37), element-wise
numerical integration and assembly into global vectors, the spatially discrete static balance of

linear momentum reads
fint(u> - fext =0. (2.42)

In (2.42), u is the global vector comprising all nodal displacements, f;,;(u) is the nonlinear
internal force vector referred to the first integral in (2.37) and f.,; is the external force vector
referred to the last two integrals in (2.37).

Remark. In Chapter 3, a nonlinearity will also be introduced for the external force. Hence,
fext - fext(u)-
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To circumvent volumetric locking of nearly incompressible vessel tissue, finite elements with
F-bar technology [55] are considered. The F-bar element entails an isochoric-volumetric split
of the deformation gradient, where the volumetric part of the deformation gradient is evaluated
at the element’s centroid to prevent the emergence of parasitic stresses associated with spurious
volumetric locking phenomena. The SG undergoes severe bending and buckling during in-silico
EVAR. It would be subjected to severe geometric locking phenomena, such as shear locking,
if standard lower order displacement-based finite elements were used. Therefore, in this thesis,
two different anti-locking technologies are utilized in the SG discretization. First, the assumed
natural strain (ANS) technology which uses special collocation points to evaluate the strain state
of the displacement based element. At these collocation points, spurious strains vanish which are
responsible for the geometric locking phenomena. Second, the enhanced assumed strain (EAS)
technology relies on the three-field variational Hu-Washizu principle and utilizes an enhanced
strain field as balance to the spurious strains that are responsible for locking phenomena. The spe-
cific element formulation enables the condensation of the additional degrees of freedom related
to the enhanced strain field such that no additional degrees of freedom need to be solved com-
pared to the standard displacement-based element without EAS technology. Besides geometric
locking phenomena, the EAS technology is also able to reduce volumetric locking phenomena
which depending on the compressibility of the stent and the graft material can be essential. For
a more detailed review of the EAS and the ANS technology, the interested reader is referred to
the thesis by Koschnick [141], where an extensive overview of both anti-locking technologies is
provided.

Mortar-based discretization methods [210, 211] are used in this thesis for mesh tying and con-
tact interfaces. Mesh tying, also denoted as tied contact, is a special case of the aforementioned
contact interaction (cf. Section 2.1.5), where the two bodies are “tied” together at the common
interface in the reference configuration. Hence, the gap vector g as defined in Equation (2.30)
has to vanish in this case, i.e., g = 0. Mortar discretization methods provide a more precise
evaluation of the contact interface compared to other contact discretization methods (e.g., the
node-to-segment discretization) which often lack essential accuracy requirements. For more de-
tailed information on mortar methods in the context of contact mechanics, the reader is referred
to the theses by Popp [209], Gitterle [89] and Farah [72]. In this thesis, the enforcement of the
contact constraints (2.35)-(2.36) is based on a penalty regularization which represents a good
compromise between accuracy and efficiency.

For the given problems of this thesis, a dynamic relaxation technique (see e.g., [16, 193])
has proven to be a more robust solution scheme for the resulting set of nonlinear equations
than other available purely static nonlinear solution schemes. In the dynamic relaxation tech-
nique, the static solution is achieved as steady-state response to a dynamic analysis. Hence,
the static balance of linear momentum (2.42) is enhanced by an inertia term and an artificial
damping term. Consequently, the adapted spatially discrete balance of linear momentum reads
Mii + Cu + fi(u) — fory = 0, where u1 and 1 are the global vectors containing nodal values of
the velocities and the accelerations. The global mass matrix M is based on the physical density
of the body and the global damping matrix C is based on the Rayleigh model for viscous damp-
ing. The purely phenomenological Rayleigh model reads C = c¢\yM + cx K, where ¢y as well
as ck are damping coefficients and K| is the reference tangent system matrix. Since according to
the dynamic relaxation technique, the transient part of the solution is not of interest, but only the
steady-state response, the implicit backward Euler scheme with considerable numerical damp-
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ing is used as temporal discretization scheme. The resulting set of nonlinear equations is solved
using a semi-smooth Newton approach with consistent linearization [90]. In the current work,
it is switched from the classical Newton method to a more stable pseudo-transient continuation
scheme [86] whenever necessary. The large system of linearized equations is solved every New-
ton step by a parallel iterative GMRES method [229] preconditioned using algebraic multigrid
[85].
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3. Computational tools for in-silico
EVAR

The process of SG placement and deployment is highly nonlinear mainly due to the occurrence
of complex contact between SG and vessel, buckling of the very thin graft as well as nonlin-
ear material behavior. Thus, computational modeling of these processes is challenging and the
methodology how the SG is placed and deployed within the vessel is essential for the accuracy,
efficiency and robustness of the approach. Stent predeformation as well as in-vivo non-stress-
free vessel geometries from medical imaging require special computational techniques which
have to be consistently integrated into the mechanical framework. High complexity of vessel
and SG shapes and their large interpatient variability are further challenges of in-silico EVAR
models [106].

As improvement of available in-silico EVAR models (cf. Section 1.3), in this chapter special
attention is paid to detailed modeling of all vessel and aneurysm constituents as they can have
a distinct impact on the outcome of EVAR [231, 273, 275]. This means that the vessel model
differentiates between “healthy” and “aneurysmatic” vessel wall. This is essential as in general
the landing zone of the SG is in the region of “healthy” vessel tissue and not in the “aneurys-
matic” part [97]. Nevertheless, since the reduction of wall stresses in the “aneurysmatic” part
of the vessel is a major goal of EVAR, the sophisticated modeling of this part of the vessel is
also essential. Furthermore, ILT as well as calcifications are considered in the vessel model and
a vessel prestressing technique [84] is incorporated to consider in-vivo non-stress-free vessel
geometries extracted from in-vivo CT images.

Additionally, in this chapter a novel in-silico SG P&D methodology is developed which avoids
extremely complex steps during placement of the SG but nevertheless provides a high level of
accuracy of the deployed SG in the patient-specific vessel. This in-silico SG P&D methodology
is related to the virtual catheter method, however avoids additional modeling of virtual catheters
as well as the computationally very complex radial crimping process of the SG. Instead, during
the entire in-silico SG placement, the deformation of the SG is prescribed by displacement con-
straints resulting from a newly developed 3D morphing algorithm. Therefore, during the entire
in-silico SG placement, buckling of the SG is prevented, the degrees of freedom (DOFs) of the
SG do not need to be solved and the contact interaction between SG and vessel reduces to a
computationally relatively simple Signorini contact problem of one rigid (SG) and one elasti-
cally deformable body (vessel). Nevertheless, after the SG deployment of the presented in-silico
SG P&D methodology, both SG and vessel are elastically deformable bodies that are considered
at static, but physiologically meaningful blood pressure states. Investigations on the influence of
the dynamics of the pulsatory blood flow are not part of this thesis.

Additionally, the novel 3D morphing algorithm is utilized in a stent predeformation method-
ology to consider residual strains and stresses in the SG model arising from the real-world as-
sembling process of SGs. The stent predeformation methodology is based on the alteration of the
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3. Computational tools for in-silico EVAR

stress-free reference configuration of the stent after SG assembly. This methodology is flexible
and is consistently integrated into the framework of nonlinear continuum mechanics.

One further advantage of direct application of the morphing algorithm to the SG, instead
of the application to a virtual catheter, is used in the development of an efficient in-silico SG
sizing tool. Using the morphing algorithm and parameter continuation, the SG diameter can be
continuously changed via alteration of the stress-free reference configuration of the SG, which
allows to evaluate several different degrees of SG oversizing within a single EVAR simulation.
This approach results in a substantial saving of simulation time compared to other approaches,
where different degrees of SG oversizing are investigated in separate simulations [53, 212].

All developed models are applicable to synthetic and patient-specific cases. Both will be re-
quired in Part II of this thesis, where the application of the in-silico model is demonstrated.
Therefore, both patient-specific cases (with bifurcation into the iliac arteries) as well as syn-
thetic cases (without bifurcation into the iliac arteries) are considered for the development of the
models in this thesis.

The presented methods utilize the FEM and mortar-based frictional penalty contact as pre-
sented in Chapter 2. The newly developed algorithms are implemented in an in-house C++ based
parallel nonlinear finite element code. High performance computing resources are provided by
the Leibniz Rechenzentrum Miinchen of the Bavarian Academy of Sciences.

The outline of this chapter is as follows: first, the BVP of the in-silico EVAR model is defined
in Section 3.1. Subsequently, in Section 3.2, a 3D morphing algorithm is presented, which will
subsequently be used in the in-silico SG P&D methodology, the stent predeformation methodol-
ogy as well as in the parameter continuation approach for SG sizing. Patient-specific vessel mod-
els and SG models are presented in Section 3.3 and 3.4. Given the vessel as well as the SG model
in the preinterventional configuration, in Section 3.5, the integration of vessel prestressing and
stent predeformation into the in-silico EVAR model, the in-silico SG P&D methodology as well
as the parameter continuation approach as in-silico SG sizing tool are presented. In Section 3.6,
so-called EVAR quality parameters are proposed to geometrically and mechanically assess the
quality of the in-silico EVAR outcome with respect to EVAR related complication likelihoods.
Since the in-silico EVAR model incorporates several assumptions, a detailed overview of the
major assumptions is provided in Section 3.7. Finally, a short summary of this chapter is given
in Section 3.8.

This chapter is primarily based on three previous publications by the author of this thesis,
which are used here with permission. Sections 3.1-3.7 are partly taken from [106, 107] and
Section 3.6 is taken from [107, 109].

3.1. Definition of the boundary value problem of
in-silico EVAR

In this section the BVP of nonlinear elastostatics including frictional contact as presented in
Chapter 2 is concretized for the in-silico EVAR problem (cf. Figure 3.1). The BVP describing
the in-silico EVAR model reads
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3.1. Definition of the boundary value problem of in-silico EVAR

Vo (FIDS) 1 plM — ¢ in Q" c R?, 3.1)
FD gD N — {1 on D, (3.2)
FUD U N — 410 on I, (3.3)

u’ = u® on Ty, (3.4)
FACGAONAC — L qh0 on TA°, (3.5)
FA°SANAC — L g on T'A° (3.6)

for the three bodies /1 € {Ao, G, S} and with the frictional contact constraints (cf. Section 2.1.5)

Gn > O; Pn < 0; Pngn = 07
A = ||t7'|| - g‘pn| S 07 UT,rel + th— - 0, C Z 07 AC =0 on ’}/(H) (37)

C

Equation (3.1) represents the static balance of linear momentum of the three involved bod-
ies I1 € {Ao,G,S}. Here, “Ao” denotes the vessel, “S” the stent and “G” the graft (cf. Fig-

ure 3.1). Body forces are neglected, i.e., l;(()n) =0.

I 11 11T v
A —
FAO Fioo ’YIAI?
ox / el /
G ’yex 'YIG
/Fex \ \
G Ao
1 4 WI,C\\
— T S_~
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Ao~ Y = Ym UMNe
Fio

Figure 3.1 Simplified scheme of domains and boundaries of the vessel Qéo (D), the graft QOG I)
and the stent QS (W) in the reference configuration and in the current configuration (IV). (@)
denotes the exterior boundaries of the vessel ['A°, the graft I'C and the stent I'S . (o), describes
the luminal boundaries of the vessel covered by the graft 71‘?00 and not covered by the graft vfno
as well as the luminal boundary of the graft 4. I'A° denotes the boundary at the in- and outlet

of the vessel segment. Modified figure reproduced with permission from [107].

A nonlinear traction load t/")(u")) # 0 is applied on the Neumann boundaries 7° U 7{A°
in the current configuration, where ~* is the luminal surface of the graft and 7} = ~+** \ 7\

is the luminal vessel surface not covered by the SG. The nonlinear traction load ¢/ (u) is a
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3. Computational tools for in-silico EVAR

so-called follower load. In the current configuration it is formulated by
tD = —pntD on - U fyﬁf, (3.8)

where p is the hydrostatic blood pressure and n(/") is the unit outward surface normal in the cur-
rent configuration. To be in accordance with the remaining equations of the BVP, the Neumann
boundary condition in Equation (3.2) is formulated with respect to the reference configuration.
Accordingly, the first Piola-Kirchhoff traction vector reads

féﬂ) = —pJUD(FUDY=T N UD on FIGUFfr?. (3.9)

On the luminal vessel surface Vﬁo covered by the SG, i.e., the luminal surface of the vessel
between the most proximal SG attachment and the most distal SG attachment, a zero traction
load (¢) = 0) is assumed as the hydrostatic blood pressure is carried by the SG.

Equation (3.3) relates the contact tractions acting on the potential contact surfaces: the slave
surface (the outer graft surface Fg() and the master surface (the luminal vessel surface FlAO).
A friction coefficient of § = 0.4 [205, 253] between SG and vessel is assumed throughout
this thesis. Fixation between stent and graft is realized by a tied contact constraint on the com-
mon boundary T, between the luminal graft surface I'C and the outer stent surface 'S, i.e.,
[Ww=TFNTS.

Remark. SG models of this thesis are restricted to interior stent limbs. Hence, the outer stent
surface is attached to the luminal (inner) graft surface.

The spring boundary conditions of Equations (3.5) and (3.6) on the abluminal surface of the
vessel I'2° and on the in- and outlet of the vessel I'::° model the surrounding tissue of the vessel.
Spring stiffnesses l%ex and /2:10 are defined per unit reference area and IN° is the unit outward
surface normal of the reference configuration. Throughout this thesis, kox = 2.0kPa/mm and
ki, = 2.0kPa/mm are assumed [184].

Completion of the BVP is provided by the constitutive relations of the vessel as well as the
stent and the graft. Note that this definition of the BVP defines the final deployed state of vessel
and SG. However, during the in-silico SG P&D methodology, some modifications of this BVP
are required. For instance, to place the SG within the vessel, the contact constraints between the
outer graft surface 7 and the luminal vessel surface 7;*° are omitted. These modifications will
be stated in Section 3.5, where the in-silico SG P&D methodology is described.

3.2. Morphing algorithms for in-silico EVAR

Morphing (metamorphosis) is the process of continuously and smoothly transforming one ob-
ject into another originally developed for image processing (cf. for instance [21, 149, 153]). In
this section, first the morphing algorithms of existing in-silico SG P&D methodologies are re-
viewed in Section 3.2.1. Afterwards, in Section 3.2.2, a newly developed morphing algorithm is
presented that is used for the novel in-silico SG P&D methodology.
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3.2. Morphing algorithms for in-silico EVAR

3.2.1. Morphing algorithms of existing in-silico SG P&D
methodologies

In Section 1.3.3, the most used in-silico SG P&D methodologies, the virtual catheter method
and the virtual shell method, were reviewed. Both in-silico SG P&D methodologies use suitable
morphing algorithms for the in-silico SG placement and deployment. In this section, the basic
concepts of morphing algorithms of those two in-silico SG P&D methodologies are presented.

Morphing algorithm of the virtual catheter method

In the virtual catheter method [9], a morphing algorithm is used to prescribe the deformation of
the cylindrical virtual catheter during in-silico SG placement. Algorithmic aspects that govern
the deformation process of the virtual catheter are rarely described in full detail.

A possible way to describe this deformation process is by generating the initial and the target
configurations of the catheter and computing the difference between those two configurations.
The initial configuration is a straight cylinder and the target configuration is the tubular structure
resulting from sweeping a circular cross section along the preinterventional vessel centerline.
As long as the initial and the target configuration of the virtual catheter are discretized con-
sistently, no special morphing algorithms are required to trace the deformation process of the
virtual catheter during in-silico SG placement. Instead, the virtual catheter is deformed along
the trajectories given by the vector differences between the nodal positions of the catheter in the
initial and the target configuration. However, this deformation process based on direct node cor-
respondence requires proper alignment of the initial straight catheter configuration with respect
to the vessel and may lead to non-smooth deformations with potential self-intersections of the
catheter in case of highly tortuous vessel geometries.

Morphing algorithm of the virtual shell method

The virtual shell method proposed by Perrin et al. [204, 205] requires a robust morphing algo-
rithm that governs the deformation of the virtual shell from the initial straight configuration to the
patient-specific preinterventional vessel geometry. This morphing algorithm originally described
in [94, 204] is briefly reviewed in the following.

In contrast to the in-silico SG P&D methodology where the tubular shell is mapped onto the
patient’s preinterventional vessel geometry, the actual morphing algorithm works in reverse, i.e.,
the meshed preinterventional vessel geometry is first morphed to a straight tubular shell (cf.
Figure 3.2). Once this morphing process from the patient’s preinterventional vessel geometry
to the tubular shell is established, the deformation maps are stored and can be applied in the
in-silico SG P&D methodology in reverse manner to gradually transform the meshed tubular
shell to the meshed preinterventional vessel geometry. This reverse approach has the benefit that
the quality of the meshed preinterventional vessel geometry is not affected by the morphing
algorithm. Only the mesh quality of the shell in the tubular configuration and all intermediate
configurations between the tubular shell and the vessel geometry are affected by the morphing
algorithm. However, in these configurations the mesh quality is not of particular importance for
the in-silico SG P&D methodology.
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3. Computational tools for in-silico EVAR

Required inputs of the morphing algorithm are the meshed preinterventional vessel geome-

try, the centerline of the preinterventional vessel geometry as well as B-splines that describe the
contour of the luminal vessel surface in a plane orthogonal to the vessel centerline. Each of these
contour splines is described by ten points which serve as control points during mesh morph-
ing. The mesh morphing process of the preinterventional vessel geometry onto the tubular shell
consists of the following steps which are illustratively presented for a non-bifurcated vessel (cf.
Figure 3.2):

1. Generation of straightened centerline and circular contour splines orthogonal to the

straightened centerline.

. Projection of the nodes of the patient’s preinterventional vessel geometry onto the straight

tubular shell. The projection method is based on a radial basis function regression that is
constrained by the point correspondence between the control points (points of the contour
splines) of the vessel geometry and the tubular shell. Each control point corresponds to
the center of a radial basis function. Accordingly, the motion of each node of the mesh
is governed by the motion of the control points weighted by the inverse distance between
control point and node.

. The result of step 2 does not yield the perfect tubular shape since the projection is based

on a finite number of control points. Therefore, subsequent radial projection of the nodes
is used to improve the recovery of the tubular shape.

. Finally, Laplacian smoothing is used to improve element shapes of the meshed tubular

shell.

T point correspondence

\_r_/

NN control point
: rthogonal to

@:' centerline

[
| contour spline
B mesh of the
! vessel geometry
|
|

——

tubular shell vessel geometry

Figure 3.2 Visualization of the mesh morphing algorithm used to generate the mesh of the
tubular shell of the virtual shell method. Figure is based on the work in [204].
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3.2. Morphing algorithms for in-silico EVAR

3.2.2. 3D morphing algorithm based on control curves

The in-silico SG P&D methodology proposed in this thesis is based on a morphing algorithm that
is directly applied to the SG. In contrast, existing methodologies either apply the morphing algo-
rithm to a virtual catheter (virtual catheter method) or to the vessel model (virtual shell method).
Therefore, in this section, a 3D morphing algorithm is developed to morph tubular objects like
SGs. Similar to the morphing algorithms of the virtual catheter method and the virtual shell
method, the centerline of the straight, undeformed SG and the centerline of the preinterventional
vessel centerline play a decisive role. These centerlines serve as so-called control curves.

The newly developed morphing algorithm is based on a dimensional reduction from the 3D
morphing object to 1D control curves, where the definition of rotation minimizing frames pro-
vides a unique mapping between the 1D control curves and the 3D morphing object at any stage
of the morphing process. For a simplified representation, the basic theoretical aspects of the
morphing algorithm are presented for one control curve which is able to morph non-bifurcated
SGs. However, the extension to multiple control curves is straight forward and will be introduced
when the in-silico SG P&D methodology of bifurcated SGs is presented in Section 3.5.2. In addi-
tion to the in-silico SG P&D methodology, the 3D morphing algorithm developed in this section
will be utilized for the stent predeformation methodology in Section 3.4.3 and an in-silico SG
sizing tool in Section 3.5.3. In this section, the theoretical aspects of the morphing algorithm
first will be described in an abstract manner, i.e., independent of the underlying in-silico EVAR
model. Afterwards, the morphing algorithm is concretized and applied to in-silico EVAR.

From a mechanical perspective the morphing process describes a gradual transition of a
body QP(t) ¢ R? from its initial configuration QP = QP(¢;) C R? into the target configura-
tion Q% = QB(tT) C R3. In the context of this thesis, the morphing algorithm is restricted to
discretized bodies described by nP . nodes with the coordinates & € QP and &, € QF,
respectively, with ¢ = 1,2,...,n2 . . The objective is to find all intermediate configurations
QB(t) € R? x T\ {t1, tr} with the nodal coordinates &(t) € QP(t) and T = [t, t1] satisfying
the following conditions:

e Mechanical compatibility: Maintain the proper history of mechanical quantities with
regard to the stress-free reference configuration.

e Smoothness: The transition from QIB to Q% has to be smooth in space and in pseudo-time ¢.

The notation (e) is used to indicate that the morphing algorithm is a pure geometrical problem.
Nevertheless, for a consistent embedding into the mechanical framework of the BVP (cf. Sec-
tion 3.1), the first of the above conditions is required. To satisfy the second condition, morphing
algorithms generally deal with two main issues:

e Point correspondence: Establishing a correspondence of each point (or node) of QIB toa
point (or node) of 2.

e Path interpolation: Creating an interpolation along a pseudo-time ¢ between all corre-
sponding points.

2 According to [21] who introduced the term “control primitives”.
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In particular, the point correspondence problem can be challenging in general 3D problems.
Thus, a common way is to reduce the dimensionality of the problem during the morphing process
to 2D [132], 1D [21] or even 0D [36]. This approach called “field morphing™ or “feature-based
metamorphosis” was first introduced by Beier et al. [21] for morphing problems in 2D. The
presented morphing algorithm strongly follows the idea of Beier et al. [21] and Lerios et al.
[153] who reduced a multidimensional morphing object to 1D curves.

The subsequent presentation of the 3D morphing algorithm is structured as follows: First, the
mapping between the 3D morphing object and the 1D control curve as well as the definition of
local rotation minimizing frames is given in Section 3.2.2.1. Subsequently, point correspondence
and path interpolation techniques are presented in Section 3.2.2.2. Accuracy and robustness of
the morphing algorithm are tested for a straight tube demonstrator in Section 3.2.2.3 and the
link toward the application of the morphing algorithm to in-silico EVAR is provided in Sec-
tion 3.2.2.4.

3.2.2.1. Mapping between morphing object and control curve

Given a piecewise linear approximation C(t) C R® x T to a 1D curve described by n¢ discrete
points in its initial configuration C; = C(t;) C R3, :Eé,l € Cr and in its target configuration
Cr = C(tr) C R3, i‘éT € Cr with j = 1,2, ..., ng, it is possible to define a unique deforma-
tion path of the 3D body from QP to Q% based on the deformation of the curve from C; to Cr (cf.
Figure 3.31). In doing so, the dimensionality of the problem is reduced from general 3D mor-
phing objects QB to 1D curves C. Hence, the two main issues of the morphing algorithm, point
correspondence and path interpolation, only have to be established for 1D curves. In contrast, to
classical morphing algorithms, the target configuration of the morphing object Q% is unknown.
Only the initial configuration of the morphing object QP, the initial configuration of the curve C;
and the target configuration of the curve Ct are given (cf. Figure 3.3).

Obviously, at any pseudo-time ¢ a map between the 1D curve C, in the following called control
curve, and the 3D body QB is required. Accordingly, the map

OBl - c@)
“"'{:ﬁ(t) o E(@ ) 10

and its inverse

B1) @ (@h) G

ol {c<t> - 0°()
are defined.
The mapping is based on the definition of n¢ local, orthonormal coordinate frames (tnb)’ (1)
at each point of the control curve tangentially aligned to the curve at any pseudo-time ¢ € T,
where #/(t) is the unit tangent vector, n/ (¢) the unit normal vector and b’ (t) the unit binormal
vector (cf. Figure 3.4).
The resulting description must be independent of the orientation of the control curve C()
in R3. This means the local coordinate frames (¢nb)’(t) have to be uniquely defined for any
configuration C(t) of the control curve at any pseudo-time ¢ € 7. The base vectors t/(t), n’(t)
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Figure 3.3 Schematic overview (I) and algorithmic overview (II) of the proposed morphing
algorithm based on control curves consisting of three main steps: (1) initialization, i.e., mapping
from QF to Cy; (2) path interpolation; (3) inverse mapping from C(t) to QB(t). Solid lines indicate
the given configurations QF, C; and Cr. Dashed lines refer to unknown configurations of QP and
C. Reproduced with permission from [107].

and b’ (t) change over pseudo-time ¢, but for reasons of clarity the pseudo-time ¢ is not explicitly
written as function parameter in the following. Unless specified differently, the variables are
valid for any pseudo-time ¢t € T .

c/j
el ‘
the first derivative of the curve at point j, the definition of n/ and &’ in general is not unique.
The so-called Frenet frame (FF) is the most common definition of ./ and &’ since it can be

analytically calculated by

Whereas the definition of the unit tangent vector / = is straight forward with C ' being

. C . cixcl . 4 .
J = —F, bJ = —r ’I’L] :bj Xt'] s \V/ >:172,...,7’L s 312
FF ¢ FF 1C7 x| FF rr X tpp J C (3.12)

where C" is the first derivative and C'” is the second derivative of the curve at point j. However,
Frenet frames are not applicable to a wide range of general curves in 3D due to their drawback
of not being defined at points where the curvature of the curve vanishes, i.e., at points where
C7=0.Asa consequence, at straight sections of a curve and at inflection points, the normal
vector can reverse direction leading to an inappropriate rotation of the Frenet frames around
the tangent vector of the curve as extensively demonstrated for instance by Wang et al. [271].
Therefore, Frenet frames are not applied in this thesis.

A frame that does not rotate around the tangent vector when moving along the curve is called a
rotation minimizing frame (RMF) [271]. In the present algorithm, a discrete form of a RMF def-
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Figure 3.4 Illustration of the local cylindrical coordinate system and the bounding box (red)
around point j of the control curve C;. Reproduced with permission from [107].

inition [99, 140, 271] is used. Such a set of ng local frames (¢nb)’ is called rotation minimized
if

. 2 1 g+1 ~] 1

t = ¢ §< T g 1) , (3.13)
1€ I (& il

nl = argml (Z kd HC/jH) ) (3.14)

n’ -t/ =0, (3.15)

V=t xn/, Vj=1,2 .. nc (3.16)

holds. Equation (3.14) states that for RMFs the total angle of rotation of the normal vectors n/
around curve C has to be minimal where the torsion

= —nl b’ (3.17)

is a measure of the speed of rotation of the normal vector around the control curve at point j
[73, 271] with b7 being the first derivative of the binormal vector at point j. Equations (3.15)
and (3.16) preserve the orthogonality property of the triads (tnb)’. Accordingly, the triad (¢nb)’
at any point j is given by the solution of an initial-value problem [140], where n! and b' at
point j = 1 can be chosen arbitrarily>.

3Obviously the orthogonality property of the triad according to Equations (3.15) and (3.16) has to be preserved.
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A number of powerful methods to approximate the given problem are available [24, 140,
271]. In this thesis, the approximation in Bloomenthal [24] is applied which allows an explicit
computation of all n¢ local frames starting from a given frame spanned by the unit vectors ¢!,
n! and b' at point j = 1. Accordingly, the triad at point j is defined by

,_ ¢ W@ - &l
B (3.18)
1c7 I3@E — &5 )|
, b1l xt
S 3.19
™ ) G19
, t/ x nd
 — _ - s
b = 8 < ni| Vij=23 ..nc. (3.20)

In Section 3.2.2.3, it is demonstrated that this is an approximation of the exact initial-value
problem of RMFs, which is largely sufficient for the presented application and also represents
an exact solution of the RMFs for the trivial case of straight segments of curves (77 = 0).

As initialization of the morphing algorithm, at each point j of the control curve in the initial
configuration with 5:%,1 € (C;, a semi-infinite bounding box B C R? spanned by two infinite
planes in the local (nb)’(t1)-plane with a search distance of  is used to assign the nodes i of the
morphing object with &} € QIB to one point on the control curve C; (cf. Figure 3.4). Accordingly,
the semi-infinite bounding box B’ is infinite in radial direction but finite in tangential direction.
All nodes i of the morphing object QF with 53} € B’ are assigned to point j of the control curve C;

and are put into the subset A{ C A; = {1,2,....,n"2 , } where
nc
A = A, (3.21)
=1
ANAF =0, VE#3,j=1,2,...n0c, k=1,2,...,n¢ (3.22)

holds. According to Equation (3.21), all nodes i = 1,2, ...,n . of the morphing object QB are
assigned to a point j = 1,2, ..., n¢ of the control curve CI Further Equatlon (3.22) states that all
subsets Al are pairwise disjoint sets, i.e., every node i = 1,2, ...,n2 ,_ of the morphing object Q}
is assigned to exactly one point j = 1,2, ..., n¢ of the control curve Cy. Within this section, it is
restricted to a generic description of the morphing algorithm in which the subsets A’ are constant
during the total morphing process, i.e.,

AN=AN Vji=12 . nc. (3.23)

However, in Section 3.2.2.4, a different definition of A’ will be used for the application of the
morphing algorithm to in-silico EVAR.

The primary objective of the described morphing algorithm is to morph tube-like structures
such as SGs which are rotationally symmetric about the longitudinal axis. Hence, the posi-
tion vectors Z'(t) of the morphing object are described in local cylindrical coordinate systems
(e,epe:)™(t) (cf. Figure 3.4). The relation between the previously introduced local
frames (tnb)’(t) and the local cylindrical coordinate systems (e,ege:)™ (t) with the base vec-
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tors % (t), e’ () and € (t) is given by

el (t) = n(t) cos(6") + b (t) sin(6), (3.24)
ey’ (t) = —nd (t)sin(0") + b’ (t) cos(6"), (3.25)
elt)y=t(t), 0 cl0,2n], VieA, j=1,2 . ,nc. (3.26)

Hence, the position vectors of the object QB to be morphed can be expressed by
&'(t) = @L(t) + 9 (t) = &L(t) + et (t) + 2el(t), VieN, j=1,2,..,nc. (3.27)

Consequently, the position &' of all nodes i € A’ of the morphing object QB assigned to point j
of the control curve are described in the local cylindrical coordinate systems (e,.eqe;)™ (t) ac-
cording to Equations (3.24)-(3.27), cf. Figure 3.4. Within this section, it is restricted to constant
local cylindrical coordinates, i.e.,

=l =20 =0, Yi=12...n5,.. (3.28)

This means during the total morphing process, the local cylindrical coordinates r¢, 2° and 6° are
equal to the local cylindrical coordinates 7, 2¢ and 6} that correspond to the initial configuration
of the morphing object 2F. However, as the cylindrical base vectors ei(t), e;’(t) and €%’ (t)
are aligned to the control curve C at any pseudo-time ¢ € T, the base vectors el (t), ez’ (t)
and e’ (t) change during the morphing process. The change in the base vectors e (t), e;” (t)
and e’ (t) leads to a transformation of the morphing object QB () from QP to O based on the
transformation of the control curve C(t) from C; to Ct (cf. Figure 3.3). The transformation of the
control curve C(t) over the pseudo-time ¢ will be further specified in Section 3.2.2.2. In Section
3.2.2.4, a different definition of Equations (3.28) will be introduced in order to change the radius
of the SG during morphing operations.

3.2.2.2. Point correspondence and path interpolation

In the previous section, the dimensionality of the problem was reduced from general 3D morph-
ing objects (2 to a 1D control curve C. Thus, point correspondence and path interpolation are
only an issue of the 1D control curve. The point correspondence

@l o &by, Vji=12,..,nc (3.29)

is used between the two known configurations C; and Ct of the control curve, i.e., the first
point of configuration C; corresponds to the first point of configuration Cr, the second point of
configuration C; corresponds to the second point of configuration Ct and so on. Addressing the
path interpolation problem, a map ) (t) is required that generates the intermediate configuration
C(t) at any pseudo-time t € T \ {t1, ¢} of the two known configurations C; and Cr, i.e.,

e {CI’CT - ) (3.30)

~J 5 J ~J 4
TonTor o ot Ten Tor)-
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3.2. Morphing algorithms for in-silico EVAR

In this thesis, a simple linear path interpolation is applied despite some known shortcomings
of linear interpolation between the initial configuration C; and the target configuration Ct as
described in detail in [5, 91]. The linear path interpolation is defined by

t—11
tr — 1

t—t
V&L + ——&l ., Vi=1,2,..nc, (3.31)
’ tT —tI ’

&L(t) :=(1 —

To prevent the morphing object QP from spurious torsion between two different configura-
tions QB (t) and QP (¢ + At), the same explicit RMF scheme of Equations (3.18)-(3.20) is ap-
plied not only in space but also in pseudo-time . The RMF computation in pseudo-time ¢ is
done only for the local coordinate system of the first point (j = 1) of the control curve C as
all other RMFs for 5 > 1 are explicitly computed by the RMF scheme in space as defined in
Equations (3.18)-(3.20). Hence, from arbitrarily chosen base vectors n!(#;) and b'(#;) at point
j = 1 of Cy, all other RMFs at point j = 1 of C(¢) with ¢ € T \ {1} can be computed explicitly
according to

. _Ct+Apt
£+ A1) = o R (3.32)
1 1
it 4 A = 2D XE(+AD (3.33)

~||BL(t) x ti(t + Ab)||
th(t + At) x nt(t + At)

) ot
b (t+ At) = [|[E1(t + At) x ni(t + At)||’

(3.34)

where C'! is the first spatial derivative of the control curve at point j = 1 and At is the pseudo-
time step size.

Morphing algorithms may induce self-intersections leading to unphysical configurations of
QB. In particular, local self-intersections have to be prevented. Local self-intersections arise if
the radius of curvature 77 of the control curve is smaller than the local radius r* of the morphing
object at this point. Hence, during the whole morphing operation

‘ i (t 1 . ;
fg(t) =max ( Kr(z )) = max (W) > €, VieA (335)

has to be guaranteed, where €, > 1 is a user-defined tolerance and rf; 18 the radius of curvature of
the control curve at point ;. In the limit case of a straight control curve, the radius of curvature 7
of the control curve is infinity at any point 7 = 1,2, ..., n¢ and the condition of Equation (3.35)
is satisfied for any radius 7* of the morphing object.

As condition (3.35) would restrict the algorithm to relatively straight control curves, local
smoothing of the curve is used which locally increases the radius of curvature 77 of the control
curve such that condition (3.35) is satisfied. In the presented approach, local, iterative Laplacian
smoothing according to

. V=12 ... nc (3.36)
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is applied at locations where condition (3.35) is violated. The number of required smoothing
iterations depends on the shape of the control curve. Laplacian smoothing induced shrinkage is
removed by edge length scaling of all subsequent points of point j

L) =2 () + As't, V>34, i=1,2,..,nc, (3.37)

where As’ is the mean edge length of the two adjacent edges of point j. Due to the inherent
map ¢~ ! of Equation (3.11) any smoothing of the control curve C results in a smoothed morphing
object QP as well.

In summary, the proposed morphing algorithm computes all configurations QP c R3 x (t1, tr]
of the morphing object from the given initial configuration of the morphing object OB, the initial
configuration of the control curve C; and the target configuration of the control curve Cr (cf.
Figure 3.3). The morphing algorithm is the solution to a purely geometric problem, i.e., the
BVP stated in Section 3.1 does not have to be solved to obtain the deformation of the morphing
object)B.

3.2.2.3. Numerical example of a straight tube demonstrator

In this section, an exemplary straight tube demonstrator is morphed to show the accuracy and
robustness of the morphing algorithm based on control curves with RMF. The discretized tube
demonstrator and its centerline (control curve C;) are given at pseudo-time ¢ = ¢; = 0.0. Using
the proposed morphing algorithm, the straight tube demonstrator is morphed to a highly bend
configuration at ¢ = ¢t = 1.0 which is defined by the given control curve Ct att =t = 1.0
(cf. Figure 3.5I+I1). The control curve Cr in the target configuration (¢t = ¢t = 1.0) is arbitrarily
orientated in the global coordinate system to show the general applicability of the morphing algo-
rithm in 3D. The resulting morphing process has to be smooth in pseudo-
time ¢ € [ty, tr] = [0.0, 1.0] and space s € [0.0,1.0] where s is the arc length parameter of the
control curve of constant length 1. The deformation of the tube demonstrator is fully described
by morphing constraints, i.e., the given problem is a pure geometrical problem and the BVP of
Section 3.1 does not have to be solved. The RMF property according to Equations (3.18)-(3.20)
and (3.32)-(3.34) of the local coordinate frames aligned to the control curve is investigated in
detail as this property is essential to obtain a smooth morphing process.

All intermediate configurations of the control curve C(t) with ¢ € (¢1,t1) are determined
as interpolation between the given initial configuration C(t;) = C; and the given target con-
figuration C(t1) = Cr according to Equation (3.31). The inherent mapping according to Equa-
tion (3.11) between 1D control curve and 3D morphing object (i.e., the tube demonstrator) is
based on local RMFs defined at each point of the control curve at any time ¢ € [ty, t].

The RMF property in pseudo-time ¢ is qualitatively visualized in Figure 3.51. Red color mark-
ers on the bottom of the tube at ¢ = 0.0 indicate the direction of the normal vectors of the locally
defined coordinate frames. The red color markers transform smoothly in time without undesired
torsion around the centerline of the tube. Without specification of the RMF in pseudo-time ¢, the
tube would exhibit spurious rotations around its centerline when transforming in pseudo-time ¢.

The RMF property in space is additionally visualized in Figure 3.51I where the arrows are the
normal vectors i (t) of the local coordinate frames aligned to the control curve at any pseudo-
time ¢. The normal vectors n’(t) indicate the orientation of the local coordinate frames. Due
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Figure 3.5 Morphing of an exemplary straight tube demonstrator to a highly bend tube. Red
markers indicate the direction of normal vectors of the locally defined coordinate frames (I).
Visualization of normal vectors of the locally defined coordinate frames according to the RMF
definition (II). Local (IIT) and accumulated (IV) convergence behavior of the RMF approxima-
tion for refinement of the control curve. In (IV), the curve for ¢ = 0.0 is not visible in the
logarithmic scale as 7' = 0 for the perfectly straight curve. Reproduced with permission from
[106].

to the RMF property in space s € [0.0,1.0], the orientation of the normal vector n/(t) varies
smoothly along the spatial coordinate s. Any non-smooth variation of the orientation of the
normal vectors along s would result in an undesirable torsion 77 of the morphing object.

In Figure 3.51II and 3.5IV, the convergence behavior of the suggested RMF approximation
according to Equations (3.18)-(3.20) is investigated for different discretizations of the control
curve discretized by n¢ points. By refinement of the control curve (nc — 00), the local torsion
converges to 7/ = 0 (cf. Figure 3.51I1, plotted for ¢ = 1.0). The configuration Cr = C(t = 1.0)
of the control curve consists of five straight segments arbitrarily oriented in space (e.g., in the
middle of the tube: s = [0.47,0.53]). At these straight segments the RMF approximation scheme
even leads to the exact solution of 77 = 0 independent of the discretization of the curve with
exception of nc = 40 which discretization is too coarse to geometrically capture the straight
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segments. This property is essential for morphing SGs as SGs in the undeformed configuration
naturally are straight.

Figure 3.51V illustrates the convergence behavior of the accumulated torsion
T=> |7]Ic (3.38)
j=1

which is a measure of the total angle of rotation of the normal vectors n’(¢) around curve C. In
Equation (3.38), 77 is the torsion at point j and C"7 is the first derivative of the control curve C
at point j. The convergence behavior is of first order independent of the considered pseudo-time
step t. For t = 1.0 coarse discretizations are not able to capture the full geometry of the curve as
was already discussed for the local convergence behavior in Figure 3.51II1. The curve for ¢ = 0.0
is not visible in the logarithmic scale of Figure 3.51V as 1" = 0 for the perfectly straight curve.

3.2.2.4. Toward the application to in-silico EVAR

In this section, abstract definitions of morphing maps are introduced to provide the transition
from pure geometrical morphing to the application to in-silico EVAR. In contrast to the previ-
ous sections, now the morphing operations are applied to physical bodies (e.g., stent and graft)
underlying the BVP of Equations (3.1)-(3.7). Nevertheless, morphing operations, as introduced
in this thesis, are purely geometric operations, i.e., by the application of a morphing operation
to a physical body, the physical body will be subject to certain geometric morphing constraints.
Thus, morphing maps will be expressed with (e) in this thesis. In the presented in-silico EVAR
model, morphing maps will be applied to change both the current configuration (2 of a body
as well as to change the reference configuration (), of a body. To clearly distinguish between a
change in the current configuration and a change in the reference configuration, any morphing
map that changes the current configuration is denoted by a small letter m and any morphing
map that changes the reference configuration by a capital letter M.

In Section 3.2.2.2, the pseudo-time ¢ € [t1,tr] was introduced, which describes the inter-
polation between the two known configurations of the control curve C; and Ct according to
Equation (3.31). This means the pseudo-time ¢ describes the deformation of the morphing object
according to the evolution of the control curve C(t). This control curve induced deformation of
the morphing object according to the pseudo-time ¢ is used in the in-silico SG placement. Inde-
pendently of the control curve induced deformation of the morphing object, a prescribed change
in the radius of the morphing object and a prescribed release of the morphing constraints are
used in the proposed in-silico EVAR model.

A prescribed change in the radius of the morphing object by the factor Ar is induced by
redefining Equation (3.28) such that the local radius r* of the morphing object is given by

rr=ri+ Ar, Vi=1,2,.,n8 4, (3.39)
where r! are the local radii of the morphing object in the initial state corresponding to the initial
configuration C; of the control curve and n® ,_is the number of nodes of the morphing object.
This prescribed change in the radius is used in the in-silico SG placement to apply radial crimp-
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ing to the SG. Moreover, this prescribed change in the radius of the morphing object will be used
in a novel stent predeformation methodology.

A prescribed release of the morphing constraints is induced by the redefinition of the morphing
sets A7 with j = 1,2, ..., n¢ according to Equation (3.23). If the deformation of a node of the
morphing object is prescribed by the morphing induced deformation or not, depends on whether
this node is part of the total set of morphed nodes

ngc
A=| A (3.40)
j=1

i.e., whether this nodes is assigned to any of the points of the control curve C, cf. Equation (3.21).
This means that by emptying the sets A’ a prescribed release of the morphing constraints is possi-
ble. A prescribed release of the morphing constraints will be used in the in-silico SG deployment.

As the three morphing operations, control curve induced deformation, radius change of the
morphing object and release of the morphing constraints shall be independent of each other, a
second pseudo-time £ € [0, 1] is introduced which defines the progress of the applied morph-
ing maps M (£) and 7 (€). Hence, #(€) defining the control curve induced deformation, Ar(€)
defining the radius change of the morphing object and A’ (€) defining the release of the morphing
constraints are functions of the pseudo-time &, i.e., they depend on the progress of the applied
morphing map. Although, the morphing algorithm as introduced in previous sections operates on
discretized bodies, the following morphing maps are formulated with respect to the continuous
representations of X € {2y and x € (), respectively. Hence, the continuous coordinates X and
x are used instead of the nodal coordinates X* and x! which are related by the finite element
discretization as introduced in Section 2.2.

Accordingly, the change in the reference configuration from | ¢—o 1O Qo| ¢—1 Dy a geometri-
cally prescribed morphing process is defined by the diffeomorphic morphing map

- . Qoleey = Qoley
M (t(£),Ar(€), A (€)) : : (3.41)
Xy = Xl

where €| e=0> X \520 € Qo ¢—o describes the stress-free reference configuration at the beginning
of the morphing process ((®) |._,), i.e., at § = 0. At the end of the morphing process ((e) [_,).
the reference configuration is given by Qol,_,, X/|._; € Qol._,. In-between, i.e., for { € (0, 1),
the reference configuration is determined by an interpolation between the configurations €| =0
and [,_, which is driven by ¢(£), Ar(£) and A7 (¢).

Analogously, the change in the current configuration from Q|g:o to Q| ¢—1 Dy a geometrically
prescribed morphing process is defined by the diffeomorphic morphing map

| Ay = Y
m(t(),Ar(€), A () : { " o (3.42)

w’g:o = 33|§=1

where Q._, @|._, € ., describes the current configuration at the beginning of the morphing
process ((®) |._o). At the end of the morphing process ((e) |_,), the current configuration is
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determined by Q|._,, z[,_, € Q.. In-between, i.e., for { € (0, 1), the current configuration
is determined by a t(&)-Ar(£)-A (£)-driven interpolation between the configurations Q|._, and
Ql ey

These abstract definitions of M (€) changing a reference configuration and m (&) changing a
current configuration will be further specified when applied to the in-silico EVAR model.

3.3. Vessel modeling

In the following, first the semi-automatic model generation process of patient-specific vessels
including vessel wall, ILT and calcifications is described in Section 3.3.1. This includes the
segmentation, the 3D reconstruction as well as the discretization of the vessel. Afterwards, con-
stitutive models for the different vessel constituents are presented in Section 3.3.2. Finally, the
vessel prestressing methodology is described in Section 3.3.3.

3.3.1. Patient-specific vessel segmentation, model construction
and discretization

Figure 3.6 provides an overview of major steps of the vessel model generation such as vessel
segmentation, vessel discretization and mapping of patient-specific quantities.
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Figure 3.6 Vessel segmentation and 3D reconstruction (I), vessel discretization (II) and mapping
of patient-specific quantities onto the discretized vessel model (I1I).
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These three major steps, (i) vessel segmentation, (ii) vessel discretization and (iii) mapping of
patient-specific quantities, are described in the following.

Vessel segmentation

Patient-specific vessel geometries including ILT are segmented from preinterventional CT data
in a semi-automatic fashion using the segmentation software Mimics 12.1 (Materialise, Leuven,
Belgium). The region of interest is limited to the abdominal aorta including AAA and iliac
arteries. Vessel geometries are cut approximately 20 mm above the branching of the renal arteries
and distally approximately 20 mm below the branching of the common iliac arteries into the
internal and external iliac arteries. Renal arteries and internal iliac arteries are not part of the
model. Thus, the renal arteries and internal iliac arteries are cut prior to the 3D reconstruction of
the vessel (cf. Figure 3.61).

To obtain comparable results, the operator-dependency on the segmentation result of the semi-
automatic segmentation process should be kept to a minimum. Hence, the segmentation process
of all patients, that are considered in this thesis, is based on the segmentation protocol for the
3D geometry reconstruction of AAAs from CT data by Maier [164]. This segmentation process
consists of the following main steps:

1. Segmentation of the lumen in the region of interest mainly by the use of a threshold filter
with respect to the voxel Hounsfield unit (HU). 3D reconstruction of the segmented lumen
mask and extraction of the centerline of the lumen.

2. Segmentation of the complete vessel in the region of interest (including lumen and ILT).
Since contrast between ILT and surrounding tissue is very small, i.e., the HU values are
very similar, automated segmentation of ILT is very challenging and requires substantial
manual interaction. 3D reconstruction of the segmented mask of the total geometry and
extraction of the centerline of the total vessel geometry.

3. Laplacian smoothing [263] in combination with advanced volume preserving algorithms
[249] is applied to the 3D reconstructions of the lumen (from step 1) and the total geometry
(from step 2).

4. To obtain the 3D reconstruction of the pure ILT, the smoothed 3D reconstruction of the
lumen is subtracted from the smoothed 3D reconstruction of the total geometry by the use
of a Boolean subtraction.

Since the resolution of the available preinterventional CT data is close to the dimensions of
the vessel wall thickness, the segmentation of the vessel wall with reliable wall thickness recon-
struction is impossible [28, 220]. Therefore, the vessel wall is not considered in the segmentation
process, but will be added later during the discretization of the vessel. In general, vessel calci-
fications can be easily detected in CT images due to relatively high HU values. However, since
calcifications can have a very irregular shape and since they can be located at a large number
of separated spots, modeling and discretization of calcifications as separate constituents is not
practicable. Thus, vessel calcifications are not segmented explicitly, but are considered implicitly
within the domains of ILT and aortic wall as described in Section 3.3.2.3.
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Vessel discretization

A fully automated mesh generation (cf. Figure 3.61I) is used based on the commercial software
Trelis 15.1 (Csimsoft, Utah, USA). Input for the generation of the discretized vessel model is
the 3D reconstruction of the pure ILT geometry, i.e., without lumen. The main steps of the fully
automated vessel discretization using a Trelis-Python script are stated below:

1. Discretization of the abluminal surface of the ILT geometry by quadrilateral elements.

2. Generation of the discretized vessel wall by extrusion of the meshed abluminal ILT surface
in outward normal direction which results in hexahedral elements for the vessel wall. The
number of element layers over the wall thickness as well as the wall thickness can be
specified in the input of the automated meshing script. In the context of this thesis, a
constant wall thickness of 1.5 mm [219] is assumed distributed over two layers of elements
if not specified differently.

3. Discretization of the total ILT volume by tetrahedral elements. Pyramid elements are uti-
lized to guarantee conforming meshes between ILT and the vessel wall.

Linear, tetrahedral and pyramid elements in the domain of the ILT and linear, hexahedral
elements with F-bar based element technology (cf. Section 2.2) in the domain of the vessel
wall are applied. Unless stated differently, in the context of this thesis, a mean edge length of
hA° = 1 mm is used both for the vessel wall discretization and the ILT discretization.

Mapping of patient-specific quantities

As a prerequisite for the constitutive models of the vessel, three patient-specific quantities need
to be mapped to the discretized vessel geometry (cf. Figure 3.6111):

e HU values: Based on the preinterventional CT data, the voxel HU values are mapped onto
the elements of the discretized vessel geometry. Constant HU values are assigned to each
element where the value corresponds to the interpolated voxel HU value at the location of
the element’s centroid. The local HU values will be used in Section 3.3.2.3 to implicitly
consider calcifications, which correspond to locally high HU values, in the constitutive
models of the vessel.

e Local radial, axial and circumferential coordinate systems: Using the centerline of the
total vessel geometry, the local radial, axial and circumferential directions of the vessel
are calculated at each element’s centroid of the vessel wall according to [56], where the
axial direction is assumed to be the direction of the tangent to the centerline at the point
of the centerline that is closest to the element’s centroid. The local circumferential, axial
and radial bases are required for the definition of the anisotropic constitutive model of the
vessel wall that will be introduced in Section 3.3.2.1.

e Local vessel wall radius: Using the centerline of the lumen, the local radius of each
element’s centroid of the vessel wall is approximated by the distance to the closest point
on the centerline. The local vessel wall radius is used to smoothly blend between “healthy”
vessel wall and AAA wall material as will be described in Section 3.3.2.1.
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Y X
#DOF's: #DOF's: #DOFs: #DOFs:
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S 205,266 >.: 282,207 S 189,828 > 225,381

Figure 3.7 Patient-specific vessel models of patient 1-4 as listed in Appendix A.1: vessel wall
(dark red), ILT (light pink) and calcifications (white). Modified figure reproduced with permis-
sion from [107].

The vessel models of all four patient-specific cases that are considered in this thesis are vi-
sualized in Figure 3.7. Both the geometry as well as the degree of calcification (white spots in
Figure 3.7) vary among the four patient-specific vessels.

3.3.2. Constitutive modeling

In the following sections, the constitutive models of the vessel wall (Section 3.3.2.1), the ILT
(Section 3.3.2.2) and calcifications (Section 3.3.2.3) are introduced. Model parameters of the
proposed constitutive models are summarized in Table 3.1. Although patient-specific vessel ge-
ometries are studied, throughout this thesis population averaged mean values are used for con-
stitutive models and model parameters, i.e., neither interpatient nor intrapatient variability in the
constitutive models and model parameters is considered.

Since arterial tissue is almost incompressible [35], an additive split of the corresponding
SEF W(®) of all vessel constituents () into a volumetric and an isochoric part is used according
to

v = w2 (C) + wE)(), (3.43)

150
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where J = det(F) and C = J ~3C is the modified right Cauchy-Green deformation tensor.
Similarly, the modified invariants are given by

L=J3L, L=J3L, I=det(C)=1. (3.44)

The isochoric-volumetric split enables the penalization of volumetric changes to sustain the al-
most incompressibility of the material. An Ogden volumetric SEF [65, 195] of type

(o) K(®

(J) = 1 (J* —2InJ — 1), (3.45)

where K (*) is the volumetric bulk modulus, is applied to all vessel constituents () considered in
the model, i.e., for the SEF of “healthy” vessel wall (AA), “aneurysmatic” vessel wall (AAA),
intraluminal thrombus (ILT) and calcifications (calc).

3.3.2.1. Vessel wall

From a modeling perspective, the abdominal aortic wall as well as the wall of iliac arteries can
be seen as fibrous composites that consist of a ground matrix and embedded families of collagen
fibers. The isotropic ground matrix is associated with mechanically relevant, non-collagenous
tissue components, such as elastin and smooth muscle cells [80, 115]. While this general frame-
work of most anisotropic models of vessel walls is the same, both two-fiber models (e.g., [102])
and four fiber-models (e.g., [222]) have been applied extensively in the recent two decades. In
recent years, the dispersed orientation of these fibers, which has a significant effect on the me-
chanical response of the vessel wall, has been included into the model [119].

AAA progression is often associated with a loss of elastin [103, 230] and substantial structural
changes of the complex network of elastin and collagen [103, 192] in the AAA wall. Hence, in
the AAA wall, the collagen fibers generally are more dispersed such that isotropic models are
widely used (e.g., [163, 217]).

In the context of in-silico EVAR, the vessel model should include both the AAA as well as
the “healthy” parts of the vessel proximal and distal of the AAA since the SG landing zones are
generally located in the “healthy” parts of the vessel. Therefore, the vessel model should include
both a sophisticated model of the “healthy” vessel wall and the AAA wall.

Recently, Holzapfel et al. [118] published an arterial wall model with non-symmetric collagen
fiber dispersion which is an extension to available two-fiber models without fiber dispersion
[115] and available two-fiber models with rotationally symmetric collagen fiber dispersion [80].
This model is of elevated interest for this thesis since this model can be fitted to data of “healthy”
aortic walls as well as to AAA walls [192], i.e., both the constitutive relation of the “healthy”
vessel wall as well as the constitutive relation of the AAA wall can be expressed by the same
SEF. However, so far experimental fitting of the material parameters of this model as proposed
in [192] was based only on a small cohort (n = 11 AAAs and n = 17 “healthy” abdominal
aortas). Hence, a different approach is followed in this thesis. However, the model of Holzapfel
et al. [118] may be a useful alternative as soon as larger studies on the experimental fitting of the
material model parameters are available in literature.

In this thesis, a modular approach is employed that is able to combine any sophisticated model
of the “healthy” vessel wall with any sophisticated model of the AAA wall. The SEF of the
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Figure 3.8 Cut view of the vessel model of patient 1 and visualization of the different vessel
constituents: “healthy” vessel wall, AAA wall, ILT and calcifications (I). Transversal CT image
(IT) with contour lines of blood lumen (blue), abluminal ILT surface (red) and calcifications
(green). Reproduced with permission from [107].

vessel wall using this modular approach incorporates a convex combination of two SEF, which
was originally proposed by Thon et al. [250], where this approach was used to combine the SEF
of aortic tissue and foam cells in the context of atherosclerosis. Accordingly, the SEF of the
vessel wall reads

Pl — (1 — A(r)) T 4 \(r) TAAA, (3.46)

where A\(r) € [0,1] is a geometrical parameter that blends smoothly between the SEF W44 of
the “healthy” vessel wall and the SEF WAAA of the AAA wall (cf. Figure 3.81). The geometrical
parameter A(r) is defined by

0, r < ro,
Ar) =13 (1 — cos (wrﬁiTq?O)) , o <<, (3.47)
1, >,

where r is the local preinterventional vessel wall radius that is mapped onto the patient-specific
discretized vessel model as described in Section 3.3.1. In this thesis, the bounds ry and 7 are
chosen heuristically as 79 = 1.2r** and r; = 1.57** with *# being the subrenal radius of the
preinterventional vessel which is assumed to be in “healthy” state. Accordingly, regions of the
vessel with a local radius r smaller than r( are fully described by the SEF W44 of a “healthy”
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vessel wall whereas regions with a local radius r larger than r; are fully described by the SEF
WAAA of an “aneurysmatic” vessel wall. In-between a smooth transition zone of partly “aneurys-
matic” vessel material arises as shown in Figure 3.8I. It should be noted that (3.46) is a purely
heuristic distinction between “healthy” vessel wall and the AAA wall parts according to the
preinterventional local vessel radius 7. It does not incorporate any biomechanical or biochemical
law generally associated with the disease progression. In a same fashion as in (3.46), the material
model could be extended to smoothly blend between iliac and abdominal aortic wall material.
However, since the focus of this thesis is mainly on the proximal landing zone of the SG, the
same material model and model parameters are used for the “healthy” abdominal aortic wall and
the “healthy” iliac arteries, i.e., no blend between those two regions is incorporated.

In this thesis, the “healthy” vessel wall is described by the anisotropic, hyperelastic two-fiber
model proposed by Gasser et al. [80]. The isochoric component of the SEF is a superposition of
an isotropic ground substance WA and an anisotropic part 44 considering the collagen fibers

180

of the vessel wall. The total SEF of the “healthy” vessel wall reads

UANL, I, I, J) = WA (1) + WaA (14, Ig) + Wi ()

iso vol

- k 7 i1
_ CAA<[1 . 3) + i Z <€k2[nll+(173/€)1¢fﬂ — 1) + \I}é(;?(J)7 (3.48)
2i=16

where c*# is the isotropic shear modulus and &, as well as k, are fiber-specific stiffness param-

eters. The transversely isotropic dispersion parameter x € [0, 1/3] accounts for the dispersion
of the collagen fiber orientation and I, refers to the first modified invariant of the right Cauchy-
Green deformation tensor as given in Equation (3.44). I, as well as I refer to the squares of the
stretches in fiber direction according to

In (3.49), A; = [0,sin(6;), cos(6;)]" defines the mean fiber direction of the two fibers in the local
radial, axial and circumferential coordinate system of the preinterventional vessel as described in
Section 3.3.1. The two angles 64 and 6 are material constants. For a dispersion parameter x = 0,
the SEF in (3.48) reduces to the original two-fiber model without dispersion of the collagen fiber
orientation [115] and for x = 1/3, the SEF in (3.48) reduces to a purely isotropic SEF.

In the AAA wall, the collagen fibers are more dispersed. Thus, the well established isotropic
model by Raghavan and Vorp [217] is employed for the “aneurysmatic” part of the vessel wall.
Accordingly, the SEF for the AAA wall reads

UAM(L, J) = UML) + UM () = a(l — 3) + b(1; — 3)* + WaLA (), (3.50)

iso vol vol

where a and ) are material parameters according to [217].

3.3.2.2. Intraluminal thrombus

ILT is a fibrin structure incorporated with blood cells and proteins, platelets and cellular debris
[270] whose formation follows a complex physico-biochemical process and which adheres to
the arterial wall. The existence and the shape of ILT are very irregular and depend on various
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factors such as the hemodynamic conditions [18]. While in some patients the ILT deposit in the
AAA sac is very thick, inducing a narrowing of the blood lumen, other patients show only thin
layers of ILT. It is well accepted that ILT has a significant impact on the biomechanics of AAAs
[81], such as on the stress sate in the AAA wall. Most studies assume a mechanically protective
behavior of ILT on the AAA wall that is based on two main reasons. First, although ILT is much
softer than the tissue of the AAA wall, it can have a certain load bearing effect [164]. Second,
ILT leads to a narrowing of the lumen and hence to a reduction in the luminal surface on which
the blood pressure acts [112]. However, no consensus view is given on this point in literature.
For instance, the study by Schurink et al. [235] indicates that ILT within an aortic aneurysm
does not reduce the blood pressure on the aneurysmal wall. Besides the effect of ILT on AAA
wall stresses, the existence of ILT can have an important role on the shape of the deployed SG.
Therefore, considering ILT in the vessel model can improve the predictive quality of the in-silico
EVAR model.
In this thesis, the isotropic SEF

V(L I, J) = WS, ) + W () = (17— 21, — 3) + UiET () (3.51)
proposed by Gasser et al. [81] is utilized to model the mechanical properties of ILT. The constitu-
tive model resolves the material properties of three different ILT layers with decreasing stiffness
T Tuminal ¢f“L) medial ¢!™T, and abluminal c!'I. The material parameter ¢! is piecewise
linearly interpolated between these distinct ILT layers from the luminal to the abluminal surface
of the ILT.

3.3.2.3. Calcifications

Calcifications are a product of the degenerative process of the vessel wall in the late stage of
the inflammatory disease atherosclerosis mainly proceeding at the innermost layer of the vessel
wall, the intima.

As described in Section 3.3.1, calcifications are not segmented and modeled explicitly. Instead,
calcifications are considered implicitly within the domains of ILT and vessel wall. This method
to consider calcifications is adjusted from [164]. To implicitly consider calcifications within
the domains of the ILT and the vessel wall, the SEF representing the mechanical behavior of
calcifications is superimposed to the SEF of ILT

\i]ILT _ \I]ILT + \chalc (352)
and the vessel wall
\i,wall _ \ijall + \chalc’ (353)

respectively. The SEF W< is a function of the local HU value of the vessel which are extracted
from CT images as stated in Section 3.3.1. The almost linear material behavior of calcifications
is modeled by a neo-Hookean material for the isochoric component of the SEF as proposed in
[162]. Accordingly, the SEF W reads

\I,calc(jh J) — \I,t_:alc(j1> + \I,calc(J) — Ccalc(jl o 3) + \I/calc(J)7 (354)

iso vol vol
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calc

where c“*¢ is the additional stiffness of the calcified regions that is added to the base material
of ILT and vessel wall, respectively. As stated for instance in [162], “pure calcifications” and
“calcified tissue” have to be distinguished, the latter one meaning a compound of vessel tissue
and dispersed calcifications. This motivates the definition of ¢°!° as a smooth transition from
“noncalcified” to “pure calcification” with

O, h < ho, 1 h—h
Ccalc(h) — fcalc<h), hO S h S hl, 7 fcalc(h) — 5@0&10 (1 — COS (Trh — ho )> , (355)
écalc’ h > hO ! °

where h is the local HU value, hg is the HU value at which the transition from noncalcified vessel
tissue to calcified tissue starts, /1, is the HU value above which the material is considered as pure
calcification.

Table 3.1 Constitutive model parameters of the vessel.

Parameter Description Dimension Value Reference

A Blend parameter [-] Eq. (3.47) | Eq. (3.47)
k1 Fiber stiffness [kPa] 4070 [102]
_ ko Exponential parameter of fibers [-] 165.6 [102]
§ AL Stiffness of aortic ground material [kPa] 100.9 [102]
S K Dispersion parameter [-] 0.16 [102]
§ 0, Orientation angle of first fiber [°] 48.4 [102]
Os Orientation angle of second fiber [°] -48.4 [102]
a Stiffness parameter of AAA wall [kPa] 174.0 [217]
b Stiffness parameter of AAA wall [kPa] 1881 [217]
citt ILT stiffness (luminal layer) [kPa] 2.62 [81]
; T ILT stiffness (medial layer) [kPa] 1.98 [81]
cer ILT stiffness (abluminal layer) [kPa] 1.73 [81]

% ceale Stiffness of calcified tissue [kPa] Eq. (3.55) | Eq. (3.55)
@ geale Stiffness of pure calcifications [kPa] 8929 [162]

3.3.3. Vessel prestressing

Patient-specific vessel geometries generally are reconstructed from in-vivo medical imaging such
as CT scans and therefore involve an initial geometric configuration that is not stress-free. In
order to initialize (“prestress*) the vessel model to the in-vivo stressed configuration, a com-
putational prestressing methodology needs to be considered. This is of elevated importance if
the stress state of the vessel model is of particular interest. Further, if the model parameters
of a nonlinear constitutive model are based on experiments, where ex-vivo tissue samples are
tested, consideration of the “prestressed” state is essential. Disregarding the “prestressed” state
would result in the evaluation of the stress-strain relation at the wrong stress level associated
with unreasonable deformations of the geometry.
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In this thesis, a modified updated Lagrangian formulation (MULF) proposed by Gee et al.
[84] is applied to prestress the vessel model to the stress state that corresponds to the quasi-
static blood pressure state at time of medical imaging. The MULF strategy has been proofed
to effectively approximate the “prestressed” state of patient-specific AAA geometries [83]. By
analogy, the embedding tissue, i.e., the spring boundary conditions according to Equations (3.5)
and (3.6), are prestressed according to the methodology described in [113].

3.4. Stent-graft modeling

Models of two different commercial SG devices for the treatment of infrarenal AAAs are con-
sidered in this thesis. To clearly indicate that the presented SG models are only aligned to the
real-world commercial devices, but do not exactly coincide with the them with respect to ge-
ometry and material behavior, the following two terms are introduced: CZ-SG and ME-SG. The
CZ-SG model imitates the commercial Cook Zenith Flex/Spiral-Z® SG device and the ME-SG
model is aligned to the characteristics of the commercial Medtronic Endurant™ II SG device,
which were both described in Section 1.1.2.2. In the following, first the SG model construction
and discretization processes are described in Section 3.4.1. Afterwards, constitutive models of
stent and graft are presented in Section 3.4.2. Finally, it is focused on stent predeformation and
its consideration in the SG model in Section 3.4.3.

3.4.1. Stent-graft model construction and discretization

Models of both commercial SG devices are generated by fully automated scripts using the com-
mercial software Trelis 15.1 and its Python interface. The SG generation and meshing process
are based on the following major steps which are the same for CZ-SG and ME-SG models:

1. Generation of the curve that describes the shape of the stent (cf. Figure 3.91).
2. Generation and meshing of the stent cross-section (cf. Figure 3.91I).

3. Sweeping of the discretized stent cross-section along the curve that describes the shape
of the stent. Adaptive element edge length of the hexahedral stent elements with mesh
refinement in the curved parts for the stent is used (cf. Figure 3.9111).

4. Generation and meshing of the graft (cf. Figure 3.10I1II).

This configuration of the SG that results from this model construction and discretization process
is denoted as initial configuration of stent QISD, X7 e OF and graft Qf), X[ € QE’O indicated
by the subscript (e);.

Commercial SGs for infrarenal AAAs are modular devices that consist of a main body com-
ponent and one (Medtronic Endurant™ II SG) or two (Cook Zenith FleX/Spiral—Z® SG) iliac leg
components that are docked to the main SG component (cf. Section 1.1.2.2). Here, preassem-
bled SG models are considered with a predefined prosthesis overlap length (cf. Figure 3.10). The
exact overlap length for all four considered patient-specific cases is provided in Appendix A.1.
This simplification of preassembled SG models has the drawback of not being able to assess the
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Figure 3.9 Illustration of the model generation of a ring-shaped stent limb with Z-profile (Ia) a
spiral-shaped stent limb with Z-profile (Ib) and a ring-shaped stent limb with M-profile (Ic+d).
Stent cross section (II) and meshing (III). Modified figure reproduced with permission from
[107].

quality of the connection between the main SG component and the iliac leg components. This
means these preassembled SG models are not able to make predictions on the occurrence of
type III endoleaks (cf. Section 1.1.2.4). However, the impact on other areas of interest, such as
the proximal and distal landing zones of the total SG, is small.

In both commercial SG devices, Cook Zenith Flex/Spiral-Z® SGs and Medtronic
Endurant™ 1II SGs, the stent limbs are sutured on the graft. In the SG model, any elasticity
of these sutures and any slippage between stent limbs and graft are neglected. Instead, stent and
graft are rigidly tied which is a frequently used model assumption [49, 58, 212, 228]. Hence,
mortar based mesh tying constraints according to Equation (3.4) between the outer stent sur-
face 'S, and the inner graft surface I'{* are used to rigidly tie the two nonconforming meshes of
stent and graft. Most commercial SG devices consist of interior and exterior stent limbs. Interior
stent limbs are sewn on the inner surface of the graft, whereas exterior stent limbs are sewn on the
outer surface of the graft. In order to restrict the complexity of the contact interaction between
SG and vessel, all stent limbs are modeled as interior stent limbs with respect to the graft. There-
fore, only potential contact between graft and vessel has to be considered, but contact between
stent and vessel is not possible in the in-silico EVAR model.

Remark. Since only interior stents are considered in the SG models of this thesis, the graft
diameter DS determines the nominal diameter DSC of the total SG, i.e., D36 = DG,

To ensure hexahedral meshing of the stent and to provide proper surfaces for the mortar-based
mesh tying between stent and graft, circularly shaped cross sections of the stent struts are mod-
eled as quadratic cross sections with equivalent bending stiffness, i.e., d® = /(3/16)x(d5)4,
where d° is the diameter of the circular stent wire as provided in Table 3.2 and d8 is the edge
length of the quadratic stent strut cross-section as visualized in Figure 3.911.

The bare proximal stents with barbs (cf. Figure 3.10I) are not modeled explicitly in a geometri-
cal sense. In order to account for the axial fixation of the SG by the proximal barbs, mortar-based
frictional contact in pure stick (no tangential sliding) is applied between SG and luminal vessel
surface in the most proximal region of the SG of 5 mm length. This means, in this region a fric-
tion coefficient of § — oo is used instead of the physical friction coefficient § = 0.4 between
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Figure 3.10 Image of a Cook Zenith Flex® main component SG (I), image of a Cook Zenith
Spiral-Z® iliac leg SG (II) and the preassembled, meshed CZ-SG model (III). Modified figure
reproduced with permission from [107].

SG and vessel. In some other studies the bare proximal stents are modeled [53, 205], however
without modeling the anchoring of the barbs into the vessel tissue.

Although the stress-free stent diameter of most commercial SGs is substantially larger than
the nominal diameter D% of the SG, in this thesis, the SG geometry initially is generated with
D} = Df — 2t% = DSG — 2¢% where t© is the graft thickness.* Stent predeformation will be
applied afterwards in a computational approach where the stress-free stent diameter before the
assembly of the SG is considered.

Three different stent shapes are considered in this thesis: ring-shaped stent limbs with Z-
profile, spiral-shaped stent limbs with Z-profile and ring-shaped stent limbs with M-profile (cf.
Figure 3.91). Ring-shaped stent limbs with Z-profile are used in the CZ-SG model and the ME-
SG model. Spiral-shaped stent limbs with Z-profile are applied to the iliac parts of the CZ-SG
model. Ring-shaped stent limbs with M-profile are used in the proximal part of the ME-SG
model.

Ring-shaped stent limbs with Z-profile are approximated by

DS_CZS

L—cos(yp)
Xiz=| ZLsin(g) |, ¢elo2n), (3.56)

hS .
B2 sin(pphy)

“To ease the notation, in the following the graft thickness ¢ is not explicitly written, since it is very small com-
pared to the nominal diameter DSC of the SG. Hence, in the following Df = DS = D€ is used instead.
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which defines the position vector X3, of the centers of the stent cross sections. The stent wire
thickness d°, the height of the stent limb h%, and the number of sinusoidal periods of the stent
limb p3, are visualized in Figure 3.91a.

The generation of spiral-shaped stent limbs with Z-profile is governed by the position vec-
tors X§, of the centers of the stent cross sections that are given by

S_ s

= cos(p)

X5, = D%‘Q—Js sin(p) . €1]0,2mng,), (3.57)

hS . S S
—52 sin(ppsy) + I, 5=

where hg, is the height of the stent limb and pg; is the number of sinusoidal periods per turn
of the stent limb. The lead of the stent limb 5, and the number of turns per spiral-shaped stent
limb n3,, are highlighted in Figure 3.91b.

Ring-shaped stent limbs with M-profile are approximated by a Fourier series expansion that
is truncated after the second component according to
DS_&S
5 cos(p)

g DS—d8 .
X5, = 7—sin() . pelo,2n]. (3.58)

2

2
a; cos(ipppar) + 2 bi sin(ippRy)
1=1 i=1

In (3.58), X PS{M is the position vector of the centers of the stent cross sections, pgz 18 the number
of periods of the stent limb and a; as well as b; are Fourier coefficients. The proximal part of the
ME-SG model consists of two different ring-shaped stent limbs with M-profile. The Fourier coef-
ficients of the most proximal covered stent limb are a; = 2.2 mm, b; = 0.0 mm, a; = —2.4 mm
and by, = 0.0 mm (cf. Figure 3.91c). For all other stent limbs with M-profile of the proximal
part of the ME-SG model, the coefficients are a; = 2.2 mm, by = 0.0 mm, as; = 0.0 mm
and b, = —2.4 mm (cf. Figure 3.91d). These coefficients were extracted from a Medtronic
Endurant™ II main body SG with a nominal diameter of D5¢ = 32 mm by image processing of
the uncoiled stent limb and subsequent Fourier analysis using MATLAB (The MathWorks Inc.,
Natick, Massachusetts, USA).

Precise descriptions of the stent shapes of commercial SGs mostly are not published in liter-
ature to safeguard company secrets. Using high resolution X-ray microtomography [51, 59] is
one way to nevertheless obtain very accurate approximations of the stent shape. In this thesis,
graft thickness and stent wire diameters are considered according to Table 3.2.

The geometrical parameters h$,, 5, h3y, PSy, 155, N3, and py strongly vary within one SG
and among different SG sizes. These parameters depend on the location of the specific stent limb
and the nominal size of the SG. They are extracted from the Cook Zenith® manual [44] and the
Medtronic Endurant™ II manual [176] as well as from own measurements of one Cook Zenith
Flex® SG and one Medtronic Endurant™ II main body SG.
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Table 3.2 Graft thickness and stent wire thickness of the CZ-SG model and the ME-SG model

according to [60].

CZ-SG ME-SG
Stent:
Wire diameter [mm] | 0.28 (0.40)* 0.40
Graft:
Thickness [mm)] 0.08 0.08

& Spiral-shaped stent limbs with Z-profile

The most distal stent limb of the proximal part of the CZ-SG model and the ME-SG model

are slightly elliptical with a maximum to minimum diameter ratio of 1.2. SG models of all four

patient-specific cases in the respective SG size are visualized in Figure 3.11.

Patient 1 Patient 2 Patient 3 Patient 4
CZ-SG CZ-SG CZ-SG ME-SG
#DOFs: #DOFs: #DOFs: #DOFs:
Stent: 140,766 Stent: 175,602 Stent: 155,130 Stent: 89,964
Graft: 535,740 Graft: 537,306 Graft: 516,816 Graft: 546,078
> 676,506 > 712,908 > 671,946 636,042

Figure 3.11 Patient-specific SG models of patient 1-4 as listed in Appendix A.1. Modified figure
reproduced with permission from [107].

Stents are discretized by linear, hexahedral elements with EAS technology whereas the graft
is meshed by hexahedral solid-shell elements [266] with EAS and ANS technology (cf. Sec-
tion 2.2). An overview and comparison of other discretization techniques for modeling stent
expansion is provided in [100].
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3.4.2. Constitutive modeling

In this section, the constitutive models of stent (Section 3.4.2.1) and graft (Section 3.4.2.2) ma-
terials of the SGs that are investigated in this thesis are introduced. The model parameters of the
proposed constitutive models are summarized in Table 3.3.

3.4.2.1. Stent

The stent limbs of the CZ-SG model consist of 316L stainless steel with exception of the spiral-
shaped stent limbs of the iliac parts (cf. Figure 3.9Ib and Figure 3.10), which consist of nitinol.
All stent limbs of ME-SG model are made of nitinol.

Nitinol is a so-called shape memory alloy of nickel and titanium. The alloy has two stable
solid phases with different crystal structures and material properties: the austenitic phase and
the martensitic phase. Transformations from one phase into another under stress or temperature
loading are the basis of two special mechanical properties of nitinol. First, nitinol can be de-
formed at low temperatures but fully recovers to its original “memorized” shape when being
heated. This effect is denoted as shape memory effect. Second, due to the phase transformation
between austinite and martensite, nitinol is able to undergo large deformations without inducing
plastic strains, i.e., without permanent deformations. This property is denoted as superelasticity.

Material models representing the superelasticity or the shape memory effect require return
mapping or similar algorithms to model the associated phase transformation. These models are
very similar to material models representing elastoplastic behavior. These specific models are
reviewed in detail in the book of Lagoudas [146] but are not further considered in this thesis.
Information given in literature [207] as well as own experiments have revealed that in the de-
ployed state of the SG, nitinol almost fully remains in its austenitic phase. Hence, as long as
the in-silico SG P&D methodology does not aim at explicitly modeling the crimping of the SG
inside its delivery sheath, the material model of nitinol does not necessarily need to be able to
model the phase transformation. Therefore to reduce complexity of the given problem in a rea-
sonable range, in this thesis, the material behavior of nitinol is modeled by a purely elastic model
without phase transformation as proposed in [191, 207] and material parameters corresponding
to the austenitic phase of nitinol are used.

The pure elastic regime can be assumed for self-expandable SGs as reported for instance in
[207, 228] since any plastic deformation would hamper the self-expansion of the SG. Thus, both
nitinol and stainless steel stents are treated as hyperelastic materials and are modeled by the SEF

®)
5®

where (o) stands either for “S” or “N” indicating stainless steel and nitinol, respectively.

®)

(o) E®)
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p(®) —

(3.59)

3.4.2.2. Graft

Grafts of endovascular SGs generally consist of polymeric materials. Most of the commercial
SGs use either woven PET or ePTFE as graft material. Both of the considered commercial SG
devices in this thesis use fabrics of woven PET (cf. Figure 3.12).
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Figure 3.12 Visualization of the microscopic structure of a woven PET graft of a Medtronic
Endurant™ II SG using scanning electron microscope.

Despite the inherent anisotropic material behavior of woven PET, following [9, 139, 225], an
elastic and isotropic constitutive model is used in this thesis. Hence, the graft material of the
CZ-SG and the ME-SG is modeled by the compressible neo-Hookean model

G G G EG
=:55(J‘%ﬁ-—1)+-7;(h-—3h BY = = (3.60)

- 209 4(1 + vS)
The graft fabric usually exhibits very little bending stiffness such that it sometimes even is
modeled by membrane elements without bending stiffness [9]. However, Demanget [57] showed
in his thesis that full disregard of the bending stiffness of the graft does not mimic the bend-

ing behavior of SGs correctly. Therefore, Demanget [57] used another approach. Based on the

bending stiffness of plates %, a reduced bending stiffness of the graft was enforced by

reducing the graft thickness t© by a constant factor. To retain the membrane stiffness of the
graft, the Young’s modulus £ was increased by the same factor. This approach, was adopted
by several studies [49, 52, 228]. In this thesis, similar to [228], the graft thickness is reduced by
a factor of 10 and E€ is increased by a factor of 10.

\IJG

Table 3.3 Constitutive model parameters of the SG.

Parameter Description Dimension | Value | Reference
T = ES Young’s modulus of stainless steel [GPa] 210 [60]
% 2 VS Poisson’s ratio of stainless steel [-] 0.3 [60]

E = EN Young’s modulus of nitinol (austinite) [GPa] 40 [60, 139]
‘E g N Poisson’s ratio of nitinol (austinite) [-] 0.46 | [60, 139]
= ES Young’s modulus of graft fabric [MPa] 1652 [228]
G, V& Poisson’s ratio of graft fabric [-] 0.42 [228]

® Young’s modulus in circumferential direction from Roy et al. [228]
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3.4.3. Stent predeformation

Most commercial SGs are manufactured with a stent diameter DY _ larger than the associated
graft diameter. During the assembling process of stent and graft, the stent rings are radially
compressed resulting in an assembled SG with residual strains and stresses. This effect, known
as stent predeformation [106] or stent preload [228], has to be considered in an EVAR simulation
since it can have a major impact on the mechanical behavior of the SG. In particular, the stress
states of the stent and the graft as well as contact tractions between SG and vessel in the deployed
configuration may be affected by the degree of stent predeformation. For most commercial SGs,
stent predeformation is a purely radial compression of the stent rings. However, few commercial
SGs also use other stent predeformation shapes. For instance, Anaconda™ SGs utilize stent
predeformation in longitudinal direction to predeform the initially circular stent shape to a saddle
shape [207]. In this thesis, stent predeformation is restricted to a purely radial compression. Thus,
the degree of stent predeformation w is defined as the ratio of the stress-free diameter D3 of
the stent, i.e., the diameter of the stent before the assembly of stent and graft, and the nominal
diameter D¢ of the SG according to

S
w = DPre

— 1. (3.61)
The degree of stent predeformation w depends on the SG device and size. Own measurements of
commercial SG devices have shown that the degree of stent predeformation mostly is in the range
between 5-20%. In the iliac leg docking zones of the main SG component, the highest degree of
stent predeformation of up to 100% could be identified. This high degree of stent predeformation
results in higher radial stiffness of the SG in the docking zones of the main SG component. This
is required to provide enough support for the iliac leg SG components, which are deployed in
the interior of the main SG component with an overlap length.

Most of the computational approaches of stent predeformation (cf. Section 1.3.2) are either
very specific for one SG device [59, 60] or are based on a rule of thumb [228] which addition-
ally requires experimental calibration. Therefore, in this section, a novel computational stent
predeformation methodology is developed, which fulfills the following conditions: (i) mechan-
ical compatibility with the BVP presented in Section 3.1, (ii) general applicability to all SG
devices of different manufacturers and (iii) usage without additional assembly simulation with
models of artificial assembly devices.

Novel computational stent predeformation methodology

The proposed stent predeformation methodology works in the reverse order compared to the
real-world assembly process of SGs. In the real-world assembly process of SGs, the oversized
stent rings are radially compressed from an initially stress-free configuration to a predeformed
configuration (which is not stress-free) in which they are sewn to the graft. In the proposed
computational methodology of stent predeformation, the SG model is already generated in the
assembled state (cf. Section 3.4.1). Afterwards the stress-free reference configuration of the stent
rings (not the graft) is changed from the initial configuration Qf , X7 € Qf to the “real” stress-
free configuration le)re,(]’ X3, € lepre’o of the stent that corresponds to the stent diameter D} .
Due to the mesh tying constraint between stent and graft, this change of the stent reference
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configuration induces residual strains and stresses within stent and graft. It consequently leads
to the assembled SG model with stent predeformation.

Accordingly, the SG geometry initially is generated with D} = DF = D¢ ie., stent and
graft diameter are equivalent to the nominal diameter D5 of the SG. The subscript (); is used
to indicate that these diameters belong to the initial configurations Q% o and QE’O as described in
Section 3.4.1. In reality, the diameter of the stress-free graft is slightly smaller than the nominal
diameter DS of the assembled SG, such that after assembly of the predeformed stent and the
graft the total SG diameter is D5C. However, since the membrane stiffness of the graft is very
high, the diameter increase of the graft after assembly is very small. Accordingly, very precise
measurements of the stress-free graft diameter would be required which could not be found in
literature. Hence, in this thesis DI = D% is used. However, the presented stent predeformation
methodology is by no means limited to this simplification.

Since Df = DSC, initially the degree of stent predeformation of the SG model is w = 0%. In
this state, the stent is attached to the graft by applying mortar based mesh tying on the common
interface I'y, = 'S N T of stent and graft according to Equation (3.4). Subsequently, using
morphing maps, stent predeformation w > 0 will be induced on the assembled SG model. In
Section 3.2.2.4, morphing maps were introduced in a very general way. In this section, the stent
is the morphing object and a specific morphing map that changes the reference configuration of
the stent is utilized as introduced in Equation (3.41). Application of the inverse morphing map
M, changes the reference configuration of the stent limb (not the graft) from 0P, X7 € OF

S S S 1
0 05, 0s Xpre € Qpye o Where My is defined as

~ 1 . QIS,O}gzo — le:’re,O}gzl
M, (tpre(€), Arpre(€), Apye(€)) - . . : (3.62)
XI |§:0 = XPre =1
tpre(§) = 11, (3.63)
1
Arpre(€) = 5€(Dpye = DY), (3.64)
AL () =AY, Vj=12 . nc. (3.65)

The morphing induced deformation is a pure change in the radius of the reference configuration
of the stent limb from D} /2 = DS%/2 to D3 /2 according to Equations (3.39) and (3.64)
such that after the application of the map Mgrt the new reference coordinates of the stent are
given by X5 € leare,o- The superscript ()% in AIS 7 in Equation (3.65) indicates that AIS J
holds only nodes of the stent, i.e., only the stent (not the graft) is morphed. This means that the
reference configuration of the graft remains unchanged during this step, i.e., X5, = X{ and

G _ 0OG
QP’rc,O - QLO'

Before the stent predeformation, i.e., before application of the morphing map M}, the cur-
rent configuration of the SG is related to the reference configuration via the deformation map @1,
1.e.,

& (X5 = £ (3.66)
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In contrast to Chapter 2, where the deformation map ® was introduced, now more than one
deformation map ® exists. Hence, the subscript (e); is introduced to indicate that ®; relates
the current configuration to the reference configuration at the initial stage, i.e., before the stent
predeformation. As the morphing map Mp_ri changes the reference configuration from QIS70 to
Q%re,ﬂ’ this morphing map also affects the deformation map ® according to

Bp,. = B; 0 Mp,,. (3.67)

Irl Equation (3.67), Mpre is the inverse of the diffeqmorphic map Mgr}e, 1.e.,
Mp,, : QISDre,O — le,o- After application of the morphing map Mp_ri, i.e., after application of
the stent predeformation, the current configuration of the SG is related to the reference configu-

ration via the deformation map
Do X ) = apns (3.68)

where Ql{gf}, wésrf} € QESY;G} are the current configurations of stent and graft after the stent
predeformation.

To be mathematically correct, the mesh tying constraint between stent and graft according to
Equation (3.4) needs to be written more precisely, i.e., mortar based mesh tying between stent
and graft induces the constraint

S G S G
u |q>1 =u’|y  only NI, (3.69)

where u(®)

® = <I>I(XI(')) - XI(°) is the displacement of stent (“‘S”’) and graft (“G”) with respect

to the initial stress-free reference configurations QIS,0 and QEO, respectively. «(*)| _ is not the

P

same as u(*) defined in Equation (2.2), which is the displacement with respect to the underlying
stress-free reference configuration at the respective stage of in-silico EVAR, since the stress-free
reference configuration of the stent has changed during stent predeformation.

This methodology for stent predeformation is valid for exterior and interior stents and for all
sizes of SGs. Furthermore, no additional models of artificial assembly devices and no additional
SG assembly simulation to assemble stent and graft is required since the SG is initially already
assembled. Stent predeformation can be accounted for at any stage of in-silico EVAR. Even after
the SG deployment, the degree of stent predeformation can be changed.

For a detailed examination of the effect of stent predeformation on residual strains and stresses
in the assembled SG, the interested reader is referred to Appendix A.2, where the stress and strain
states of the assembled SG are illustratively investigated for the CZ-SG model.

Remark. This stent predeformation methodology could also be applied to SGs, where the stent
predeformation is not a purely radial compression (e.g., Anaconda™ SGs). Then Equations
(3.62)-(3.65) need to be adapted such that in addition to the change in the radius also other
deformations of the stent can be prescribed.
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3.5. In-silico EVAR and stent-graft parameter
continuation

A procedural overview of the computational approaches of this section is visualized in Fig-
ure 3.13. The objective of the proposed in-silico EVAR model is to find the final deployed SG

Required inputs:

plreinterventional_> Section 3.5.1/3.5.2
vessel model in-silico EVAR
preinterventional

vessel centerline —>||| vessel prestressing in-silico SG P&D methodology

—» [| SG placement |—»| SG deployment

SG model — stent predeformation

SG centerline —»

SG sizing

continuation

1
1
1
i| SG parameter
1
1
1

Section 3.5.3

Figure 3.13 Procedural overview of the in-silico EVAR and subsequent SG sizing by SG param-
eter continuation.

configuration within the elastically deformable vessel under physiologically meaningful condi-
tions, where nonetheless a pseudo-stationary problem is assumed. Required inputs to approxi-
mate the deployed configuration by in-silico EVAR are the vessel model and the SG model in
the preinterventional configuration as well as their centerlines. In this section, first, the in-silico
EVAR model is described for a tube SG in detail (Section 3.5.1). Afterwards, in Section 3.5.2, re-
quired extensions of the in-silico EVAR model of bifurcated SGs are elaborated. In Section 3.5.3,
SG parameter continuation is used to continuously change the SG diameter starting from an al-
ready deployed SG configuration, which can be a valuable tool when investigating the issue of
SG sizing.

These computational approaches strongly depend on the morphing algorithm based on control
curves C as described in Section 3.2.2. From now on, Cj is the centerline of the initial configu-
ration of the SG Q;%’G} and Cr is the luminal centerline of the initial, preinterventional configu-
ration of the vessel Qﬁg. Both, C; and Cr are control curves described by n¢ points. In in-silico
EVAR and the SG sizing by parameter continuation, a change in the reference configuration
is applied, i.e., the initial configuration not necessarily has to be equivalent to the stress-free
reference configuration. Depending on the particular stage, the stress-free state is defined by a
different reference configuration.

Six distinct configurations of the SG are defined where the configurations visualized in Fig-
ure 3.14I-IIT describe reference configurations and the configurations visualized in
Figure 3.14IV-VI describe current configurations. All reference configurations are denoted by
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Figure 3.14 Overview of configurations of the SG Q({lsr,)c,} with 1 € {I, Pre, P1, De, PC} of
the in-silico EVAR model (initial state (I), stent predeformation (Pre), SG placement (P1), SG
deployment (De) and SG parameter continuation (PC)). Diffeomorphic morphing maps M and
m as well as deformation maps ®;, ®p,. and Ppc define the relation between the different
configurations of the SG. Initial configuration C; and target configuration Cr of the control curve
(green). Modified figure reproduced with permission from [106].

the subscript (), whereas all other configurations are current configurations. Further, the sub-
script (®)p,. denotes the stent predeformation, (e)p; denotes the SG placement and (e®)p, the SG
deployment. The subscript (e )pc describes the parameter continuation approach which is used to
change the diameter of the SG, i.e., the degree of SG oversizing. Accordingly, Ql{psr’e%} describes
the stress-free reference configurations of stent (superscript (¢)%) and graft (superscript ()¢)
after the stent predeformation has been applied to the SG. QI{D?’G} are the current configurations

of stent and graft after the in-silico SG placement has been performed and Q]{DSQ’G} are the current

configurations of stent and graft after the in-silico SG deployment has been done. Q%,Sé%} are the

stress-free reference configurations of stent and graft and Ql{gséG} are the current configurations of
stent and graft after the SG diameter has been changed by the parameter continuation approach
(cf. Figure3.14).
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Remark. Vessel prestressing as described in Section 3.3.3 does induce a change in the refer-
ence configuration of the vessel. Hence, to be precise another reference configuration should be
introduced in Figure 3.14. However, since in this thesis vessel prestressing is only applied but
not further investigated, this additional reference configuration due to vessel prestressing is not
further outlined.

The initial reference configurations of stent and graft Q{S < ,1.e., the discretized stent and graft
configurations obtained from the SG model generation process as described in Section 3.4.1, are
visualized in Figure 3.141I1. The final deployed configurations of stent and graft Q]{DSG’G}, i.e., the
result of the in-silico EVAR without SG parameter continuation, are visualized in Figure 3.14V.
The position vector of a reference configuration is described by the capital letter X and the
position vector of a current configuration is described by the small letter . At any stage of
the in-silico EVAR and the SG parameter continuation, the current configurations QE%) with
II € {Ao,G,S}and T € {I, Pre, P1, De, PC} are related to the corresponding stress-free refer-
ence configurations Q(T) o Vvia the mapping ® (cf. Section 2.1.1) based on the BVP of in-silico
EVAR according to Equations (3.1)-(3.7). However, as the stress-free reference configurations
of stent and graft are modified during progression of in-silico EVAR (e.g., during stent prede-
formation as described in Section 3.4.3), the subscripts (), ()p,. and (e)pc are introduced.
®, initially relates the current configurations to the corresponding stress-free reference configu-
rations, i.e., before any change of the stress-free reference configuration has been applied. ®p,,
relates the current configurations to the corresponding stress-free reference configurations after
the stent predeformation has been applied. ®p¢ relates the current configurations to the corre-
sponding stress-free reference configurations after the parameter continuation has been applied
(cf. Figure 3.14).

3.5.1. In-silico EVAR with tube stent-grafts

In this section, a simplified scenario of tube SGs and synthetic vessels without bifurcation into
the iliac arteries is considered to describe theoretical aspects of the in-silico EVAR model. The
presented in-silico EVAR approach is subdivided into three major steps (cf. Figure 3.13), where
all three steps depend on morphing maps M and m as introduced in Section 3.2.2.4. First,
the vessel and SG model are preconditioned (Section 3.5.1.1), i.e., the vessel is prestressed and
stent predeformation is applied to the SG. Afterwards, the SG is placed inside the vessel (Sec-
tion 3.5.1.2). Finally, the SG is deployed (Section 3.5.1.3).

3.5.1.1. Vessel and stent-graft preconditioning

The vessel prestressing as well as the stent predeformation methodology were already discussed
in Section 3.3.3 and 3.4.3, where the vessel and the SG model were introduced. Here, the two
vessel and SG preconditioning steps are only restated for the sake of completeness of the in-
silico EVAR model and to state specific parameters associated with vessel prestressing and stent
predeformation.

Throughout this thesis, the vessel and the embedding tissue, i.e., the surrounding spring
boundary conditions according to Equations (3.5) and (3.6), are prestressed to an assumed di-
astolic pressure level of pdias* = 80 mmHg (cf. Figure 3.15I). The degree of stent predeforma-
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Figure 3.15 Vessel prestressing (I) and stent predeformation (II). Modified figure reproduced
with permission from [106].

tion significantly varies among SG devices and sizes and even varies among the different stent
limbs of one SG. For simplicity and due to the limited availability of data, in this thesis con-
stant stent predeformation of w = 15% (cf. Figure 3.151I1) for each stent limb is used if not
stated differently. It is important to note, that the stent predeformation methodology, described
in Section 3.4.3, changes the stress-free reference configuration of the stent from QEO to Q%re’o,
whereas the stress-free reference configuration of the graft remains unchanged, i.e., QOF,. , = Qr}
(cf. Figure 3.1411). Hence, after stent predeformation, the current configuration of the SG is re-
lated to the reference configuration via the deformation map <I>pre(X1£§éG}) = ml{if}, where
Pp,. = P 0 Mpre as stated in Equations (3.67) and (3.68).

3.5.1.2. Stent-graft placement

The maximum length of the proximal landing zone is proximally limited by the branch-offs into
the renal arteries which must not be occluded by the covered part of the SG after the deployment.
The proximal landing zone of the SG is assumed to be as long as possible. Thus, the SG is
positioned slightly distal to the branches to the renal arteries according to the preinterventional
CT data. The distal landing zones are not a priori determined but evolve from the deployment
process.

The in-silico SG placement is a sequence of two steps (cf. Figure 3.161+II). The first step is
a transformation of the SG from the initial, straight configuration Qi{S’G} onto the vessel cen-
terline with a reduced SG diameter of Dp; such that the SG entirely fits into the vessel (cf.
Figure 3.16I). No contact constraints between vessel and SG are considered in this step. A
subsequent reenlargement of the SG to the nominal diameter DS establishes potential con-
tact between SG and vessel (cf. Figure 3.16II) which is modeled by the frictional contact con-
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Figure 3.16 In-silico SG placement: radial crimping and morphing of the SG (I); radial reen-
largement of the SG (II). Intermediate SG configuration in (I) is only shown for better visualiza-
tion. This intermediate configuration is not required for computation. Modified figure reproduced
with permission from [106].

straints stated in (3.7). Both steps of the in-silico SG placement are described by the morphing
map mp; which changes the current configuration (cf. Section 3.2.2.4) of stent and graft from
QI{S’G}, wi{S’G} € Q}{S’G} (cf. Figure 3.141I1I) to Q;SI’G}, a:g’G} € QI{D?’G} (cf. Figure 3.141V) ac-
cording to

afo| o g
=0

7 J .

mp (tpi(€), Arpi(€), ALy (€)) - m{S’G}‘ . w{S,G}) : (3.70)

! §=0 Pl =1

a2t —t), <3

tp(§) = {tT, €51 (3.71)

—&£(DPC — Dpy), E<t
A = 2 3.72
rmile) {(5 ~1)(D%C — Dpy), €24 (372
AL =N, Vji=12 . nc. (3.73)

Equation (3.71) triggers a control curve induced deformation of the current configuration of
the SG from the initial configuration of the control curve C; (centerline of the SG configura-
tion Qi{%G}) to the target configuration of the control curve Cr (centerline of the vessel config-

uration Qf{)’) for £ < % For £ > % no further control curve induced deformation takes place.
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Figure 3.17 In-silico SG deployment: release of morphing constraints (I) and final deployed
configuration (II). Reproduced with permission from [106].

The configuration of the control curve C(¢(£)) for £ > 3 is equal to the target configuration Cr
of the control curve. Equation (3.72) states a change in the radius of stent and graft from D5¢ /2
to Dp;/2 for £ < % and a change in the radius from Dp,/2 to D3¢ /2 for £ > %

According to Equation (3.73) all nodes of the SG are morphed for any £ € [0, 1]. Hence, during
the total in-silico SG placement step, the current configuration of the entire SG is prescribed
by the morphing map mp(§). Therefore, buckling of the SG is prevented during the whole
placement process. Moreover, since the deformation of the entire SG is prescribed, the contact
between SG and vessel reduces to a computationally simple Signorini contact problem. Still, the
BVP of Equation (3.1)-(3.7) has to be solved for the vessel QOAO. Those aspects make the in-silico
placement computationally very efficient and robust.

It is important to note that only the initial and the target configuration of the control curve
as well as the initial configurations of the vessel and the SG (the morphing object) are required.
Based on these inputs, the target configuration of the SG in the interior of the vessel is computed,
where no intermediate configurations of the control curve and the SG need to be computed.

3.5.1.3. Stent-graft deployment

Before the SG is deployed, the systolic pressure state £2° = & = —p™n on (vﬁf UqC) is ap-
plied with p** = 130 mmHg and the internal vessel pressure on the luminal vessel surface wfco
covered by the SG is removed, i.e., £2° = 0 on fyﬁ\co (cf. Equation (3.8)). During the SG deploy-
ment, the morphing constraints on the SG are gradually removed starting from the proximal end
(cf. Figure 3.17I) by application of the map

S,G S,G
| e .
Mpe (tpe(€), Arpe(), A (€)) : ; (3.74)
(5,G} {5,G}
Tp| ):0 = Tpe ’51
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tpe(§) = tr, (3.75)

Arpe(€) = 0, (3.76)
. Al g

A{De(f) = {@I’ g i ni ) vj = 1727 - e, (377)

where QS’G}, ml{DSI’G} € QI{D?’G} (cf. Figure 3.141V) are the current configurations of stent and
graft before the in-silico SG deployment (§ = 0) and ngse’G}, :vl{jse’G} € Q]{:,SG;G} (cf. Figure 3.14V)
are the current configurations of stent and graft after the in-silico deployment (¢ = 1). Equa-
tion (3.77) induces a gradual release of the morphing constraints from the nodes of the SG by
gradual emptying of the morphing sets A{De(é ). Only nodes that are part of the total morphing
set Ap. are prescribed by morphing constraints, cf. Equation (3.40). As

Ane(€ =1) = [JAp (6 =1) =0 (3.78)
j=1

for ¢ = 1, in the deployed state all morphing constraints are removed. Consequently, the current
configurations Qg? in the deployed state are related to the corresponding stress-free reference
configurations Q;IQO solely by means of the deformation map

Bp,o (X)) = (@10 Mpye) (XP)) = 20 (3.79)

(cf. Figure 3.14) with IT € {Ao, G, S} based on the BVP of in-silico EVAR (cf. Section (3.1).
This means that the SG can elastically deform within the elastically deformable vessel. A pre-
scribed decay of the damping coefficients ¢y and ck is applied in the dynamic relaxation scheme
(cf. Section 2.2) used in this thesis. Hence, high damping coefficients of ¢yy = 0.5 ms™! and
ck = 0.5 ms are used at the beginning of the release of the morphing constraints and when the
system approaches toward the steady-state, the coefficients tend toward zero, i.e., ¢y — 0 ms™!
and cx — 0 ms. The final state of SG and vessel after the in-silico SG deployment is visualized
in Figure 3.1711.

3.5.2. In-silico EVAR with bifurcated stent-grafts

This section provides relevant aspects for the extension of in-silico EVAR proposed in Sec-
tion 3.5.1 to patient-specific cases with bifurcated SGs. Bifurcated SGs as introduced in Sec-
tion 3.4 are a modular composition of three tube-shaped parts: the proximal SG part and two iliac
parts. In-silico EVAR with bifurcated SGs functions equally than in-silico EVAR with tube SGs.
The only difference is that the presented algorithms have to be applied to all three tube-shaped
parts of the bifurcated SG. Hence, in the following it is distinguished between the proximal SG
part (blue), the left iliac SG part (orange) and the right iliac SG part (green), cf. Figure 3.18I1lc.

Further, in-silico EVAR with bifurcated SGs demands three control curves: one control curve
of the proximal part C¥, one control curve of the left iliac part C* and one control curve of the
right iliac part C® of the SG. Each of the three control curves has to be given in the initial CI(@) and
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Figure 3.18 In-silico EVAR with bifurcated stent-grafts applied to patient 1: stent predeforma-
tion (I), vessel prestressing (II), SG placement (Illa-c) and final deployed state under static con-
ditions (IV). Overview of the control curves C of the proximal part (e), the left iliac part (e)"
and the right iliac part (e)® in the initial (e); and the target configuration (e)y (Illa). Colors
of the SG indicate affiliation to the proximal control curve (blue), the left iliac control curve
(orange) and the right iliac control curve (green) (IIlc). Reproduced with permission from [107].

the target configuration C%e) with © € {P, L, R} (cf. Figure 3.18IIla). The initial configurations
of the control curves CI(Q) are the centerlines of the three SG parts in the initial undeformed con-
figuration. These three centerlines are known from the SG model generation process described

in Section 3.4. The target configurations of the control curves Cée) correspond to the luminal
centerlines of the vessel in the preinterventional imaged configuration which are known from
the segmentation process (cf. Section 3.3).
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For bifurcated SGs, the in-silico EVAR steps based on morphing maps 1m and M (Sec-
tion 3.2.2.4) are combinations of three morphing maps, i.e.,

(VERE) ™ ((MVEE,) 7, (M)~ (V) )+ 08 = 95 (3.80)
mpl (g, mg, mg) - O - (3.81)
M (i, b, mi,) « O — QR (3.82)

In Equations (3.80)-(3.82), the superscript (e)" denotes the total morphing map of the bifur-
cated SG which is a superposition of the local morphing maps of the three tube-shaped parts of
the SG (the proximal part (e)¥, the left iliac part (e)" and the right iliac part (e)®), where the
local morphing maps function exactly like defined in Equations (3.62)-(3.65), (3.70)-(3.73) and
(3.74)-(3.77), respectively. Each local morphing map (e)(©) with © € {P,L, R} is only associ-
ated with its given control curve in the initial configuration CI(@) and target configuration Cé@).

Since stent predeformation is only applied to the stent limbs (not to the graft), which are not
interconnected, no special treatment between the local morphing maps (Mffre)*l, (Mg;re)*l and
(M R )71 is required. Each local morphing map governs the stent predeformation process of the
stent limbs of the respective parts. A bifurcated CZ-SG after stent predeformation is visualized
in Figure 3.181.

The SG placement, which is governed by the morphing map mbil according to Equation (3.81),
is a transformation of the SG from the undeformed SG configuration into the vessel geometry
according to the evolution of the control curves CI(@) from their initial configuration into their

target configuration C(TQ) with © € {P L, R} (cf. Figure 3.18III). During the SG placement
step, the deformation of the SG is completely prescribed by the morphing algorithm based on
control curves, where each SG part (proximal part, left iliac part, right iliac part) is morphed
individually by the respective local morphing map b, mp, and mpy,, respectively. The local
morphing maps fn;?) with © € {P, L, R} of the single tube-shaped SG parts function equally as
defined in Equations (3.70)-(3.73). This means, the deformation of the proximal SG part (blue)
is fully described by the evolution of the control curve C¥ from CF to Ct and independent of the
evolution of the control curves C* and C®. Similar independencies are given for the left iliac SG
part and the right iliac SG part, respectively (cf. Figure 3.18III). To ensure continuity between
the three SG parts © € {P,L, R} during the entire SG placement, the following conditions be-
tween the initial configurations CI(@) and the target configurations Cée) of the control curves have
to be satisfied (cf. Figure 3.18IlIb):

e The distal end of the control curve CI and the proximal ends of the control curves CF
and C} have to be piecewise parallel and have to be in one plane. Same holds for the target
configurations of the control curves CE, C% and CY.

e The longitudinal overlap [, of the three control curves as well as the transverse distance [y,
between the three control curves has to be the same in the initial configurations CI(@) and
the target configurations Cé@).

During the in-silico SG placement, the deformation of the SG is fully prescribed by morphing
constraints. After the placement of the SG in the interior of the vessel, the morphing constraints
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of the SG are gradually removed starting at the proximal end of the SG. This process is gov-
erned by the map mP!, where first the proximal part of the SG is released by mb . After the
full removal of all morphing constraints of the proximal SG part, the release of the morphing
constraints of both iliac SG parts starts simultaneously from the proximal end governed by the
maps ¥, and m¥_, respectively. After the in-silico SG deployment, i.e., after the release of all
morphing constraints of all three SG parts, the SG can elastically deform within the elastically
deformable vessel. Additional frictional contact is considered between the two iliac parts of the
SG with a friction coefficient of § = 0.4. The final state of SG and vessel after the in-silico SG

deployment of patient 1 is visualized in Figure 3.18IV.

3.5.3. Stent-graft parameter continuation

As stated in the introduction of this thesis in Section 1.2, correct sizing of the SG in diameter
and length is one of the major challenges in the preinterventional planning phase of EVAR. In
this thesis, SG sizing is restricted to SG sizing with respect to the SG diameter, i.e., with respect
to the degree of SG oversizing (cf. Section 1.1.2.3). In classical in-silico studies investigating the
issue of SG sizing [53, 212], for each considered SG diameter a separate EVAR simulation was
required. This can be computationally very expensive if many different SG diameters are studied.
Therefore, in this section a parameter continuation approach to model different SG diameters
within one simulation is proposed which can be used as a computationally very efficient SG
sizing tool. This approach requires only one “computationally expensive” in-silico placement
and deployment of a SG of a specific size. Afterwards, this deployed state is used as initial guess
and the SG diameter is continuously changed by changing the stress-free reference configuration
of the SG. As aresult, one obtains the deployed state of several different SG sizes without having
to perform again an in-silico SG placement and deployment. In Figure 3.19, the procedure of SG
parameter continuation is visualized for a SG with initial degree of SG oversizing of 0 = 5%.
This means initially, the SG with o = 5% is placed and deployed within the vessel and afterwards
parameter continuation is used to continuously change the SG diameter to the diameter that
corresponds to o = 35%.

In the following the theoretical aspects of the SG parameter continuation approach, which
incorporates the use of the morphing algorithm proposed in Section 3.2.2, are stated. After the
in-silico deployment of a SG with the nominal diameter D5¢ = DP¢, the nominal diameter
of the SG can be modified continuously from D¢ (¢ = 0 in Figure 3.19) to D3¢ (¢ = 1 in

SG SG

Figure 3.19). Hence, all degrees of SG oversizing in the range [o; = % —1,0pc = gig — 1]
can be investigated where D is the inner vessel wall diameter in the landing zone.

The continuous change in the nominal diameter of the SG is realized by alteration the ref-

erence configuration of the SG from QS;}%}, Xéff} € Ql{:,srﬁ)} (cf. Figure 3.141I) to Ql{:%%} ,
X IE%G} € QI{DSC’%} (cf. Figure 3.141) according to the morphing map
S,G s,G
~ ' I{Z‘re,O} £=0 - QI{Z’C,O} =1
M6 (tpe (&), Arpo(8), Ao (€), Abo(€)) - . (383
X{SﬂG} — X{SvG}
Pre €0 PC =1
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teo(€) = t1, (3.84)
1

Arpe(§) = 58(Dbc = Dive), (3.85)
1

Argo(§) = €(Dfe = D), (3.86)

The morphing map My is a pure change in the diameter of the stent from D§ _ to D3, (cf.
Equation (3.85)) and the diameter of the graft from DISG to DSC (cf. Equation (3.86)). The di-
ameter D3, of the stent reference configuration 9153070 after the parameter continuation is chosen
such that the degree of stent predeformation

DIS)I‘G

W =

S
~ DSG
Dy

—1=ZEC
DRé

(3.88)

is kept constant during the entire parameter continuation.

After the change in the nominal diameter of the SG from D{% to D¢, the relation between the
stress-free reference configuration Qésd%} (cf. Figure 3.14I) and the current configuration QES(EG}

(cf. Figure 3.14V]) is determined by the deformation map ®p¢, where
®pc = Pp, 0 Mpe = ®; 0 Mp,. 0 Mp. (3.89)

In Equation (3.89), Mpe is the inverse of the diffeomorphic map MP_CI, 1e.,
My : Q%c,o — lez,rep. Consequently,

Bpo (X)) = (810 Mp,e 0 Mpo)(X50)) = zog) (3.90)

with IT € {Ao, G, S} (cf. Figure 3.14).

As the given problem is nonlinear, the results may be path-dependent. Especially, the param-
eter continuation approach has to be validated carefully with respect to this issue. Therefore,
in Appendix A.4 it is shown at one example that the influence of the path-dependency on the
outcome using the parameter continuation approach is small.

Similar to in-silico EVAR for bifurcated SGs (Section 3.5.2), the SG parameter continuation
approach can be extended to bifurcated SGs by using three control curves: one for the proximal
SG part CF, one for the left iliac SG part C* and one for the right iliac SG part C®. Analogously
to Equations (3.80)-(3.82), the morphing map for SG parameter continuation of a bifurcated SG
is a combination of three single morphing maps

(M) (M) ™, (M) ™, (M) ™) oY — ol (3.91)
where (Mb) !, (M%)~ and (MJ,)~" are the morphing maps of the three tube-shaped parts
of the SG: the proximal, the left iliac part and the right iliac part. SG parameter continuation of

bifurcated SGs can also be applied only to selected parts of the SG such as only the proximal
part whereas the diameters of the iliac parts of the SG remain unchanged.
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- 1
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- pc(§) .=
o=5% o= 15% o= 25% o= 35%

-
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SG h =
Dy DSC(¢) € [D§C; DG D}g

E=0 » (=1

Figure 3.19 Procedure of the continuous change of the degree of SG oversizing o using the SG
parameter continuation approach.

3.6. Postprocessing of the in-silico EVAR outcome

Based on the predicted postinterventional configuration of SG and vessel by the in-silico EVAR
model, in this section some postprocessing steps are presented to assess the in-silico EVAR
outcome and estimate the potential complication likelihood from an engineering perspective.
First, some fundamental equations to evaluate the shape of the deployed SG configuration are
derived in Section 3.6.1. Afterwards, in Section 3.6.2, mechanical and geometrical parameters
are proposed to assess the in-silico EVAR outcome with respect to the quality of EVAR and the
likelihood of potential EVAR related complications.
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3.6.1. Shape of the deployed stent-graft configuration

According to the morphing algorithm based on control curves (cf. Section 3.2.2), which is used
for in-silico SG placement and deployment, all nodes with the reference coordinates
X ©)i ¢ Q{S’G}’(Q) = (Qi’o(@) U QIG (’)(@)) of the SG model in its undeformed configuration with

= 1,2,. nSG:(©) are grouped into subsets A%Q)’j according to Equations (3.21)-(3.22).

3 Mode

QISO(@) C Q ro and Q C QSO are the undeformed configurations of stent and graft of SG
part © € {P,L,R}. To ease the notation, in the following, the superscript (e)(®) is omitted.
Unless specified differently, the variables are valid for any of the three tube-shaped parts of the
SG © € {P,L,R}. Obviously, the derived quantities are equally valid for non-bifurcated SGs.

Based on the valid assumption that the relative deformation of the SG tangentially to its cen-
terline is small, the centerline Cp, of the deployed SG can be computed. The points of the cen-
terline Cp, are the centers of gravity of the SG nodes ¢ in the sets A{ according to

Tl pe = 7 Z xh, = Zelmge, Vji=1,2,..,nc, (3.92)
ic AJ i€A) ZEAJ

where n¢ is the number of points of the centerline C; of the SG in the undeformed configu-
ration, a5, are the current coordinates of all nodes i in the set A in the deployed state and
0" = 1(6™! — 6""1) is the mean angular distance between two adjacent nodes in set A{. The
nodes ¢ in the sets A{ are ordered counterclockwise according to the local angular coordinate 6
of the local cylindrical coordinate systems tangentially aligned to the centerline C; (cf. Fig-
ure 3.4). Hence, the nodes i and i + 1 are adjacent nodes. The mean angular distance & is used as
weighting to account for irregularly distributed nodes in the set A{ . In case of a regular SG mesh,
the mean angular distance 6’ between two adjacent nodes in the set A{ is ' = for each

"hode

node ¢ where nﬁode is the number of nodes in the set A{ . Therefore, the calculation of the center
of gravity of all nodes 7 in the set A{ according to Equation (3.92) reduces to the arithmetic mean

, 1 o
T pe = %Ze%e = ZmDe, Vji=1,2, .. nc. (3.93)
icA] HOdezeAJ
Further, the arc length parameterization is introduced
: - ‘ - . .
Sf)e:S{De +ijC,De_wJC,DeH7 vj :2737"'7nC7 SDe:O?

where mjclije is the position vector of point j of the centerline Cp, according to Equation (3.92)
and nc is the total number of points j = 1,2, ..., n¢ that describe the piecewise linear center-
line Cp, of the SG in the deployed state. Consequently, s{)e are discrete values of the arc length
of the centerline Cp, with

{5110 < s}, < L3S Vj =1,2,...,nc}, (3.94)

where L3¢ is the total arc length of the centerline Cp., which corresponds to the arc length of
the SG in the deployed state. Using the local cylindrical coordinates 6}, and rf,, (cf. Figure 3.4),
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the average diameter of each set A{ can be calculated. In contrast to Figure 3.4 where the local
cylindrical coordinate systems are aligned to the centerline C; of the undeformed SG, the local
coordinates 6}, and r},, correspond to the local coordinate systems that are tangentially aligned
to the centerline Cp, of the deployed SG which is given by Equation (3.92).

The average SG diameter of all nodes in the set A , j.e., the average SG diameter in an orthog-
onal slice 7% (sp.) to the centerline Cp, at location si,_, is given by

R 1 , .
#=d(sl,) = %Zzem L= ZeDe e, Vi=1,2,..nc, (3.95)

ieA] zeAJ

where 0%, = $(05'—05.!) is the mean angular distance between two adjacent nodes in the set A/
according to the local cylindrical coordinate systems tangentially aligned to the centerline Cp,
of the deployed SG (cf. Figure 3.4).

At this point, it is important to clearly distinguish between 7}, and d’.The radius 7%, is the
local radius of node : in set A{ according to the local cylindrical coordinate system that is
tangentially aligned to the centerline Cp.. In contrast, & is the average diameter of all nodes
belonging to one common set A7. The term average refers to the average of the diameters 21
of a all nodes i in the set A].

Further, the average diameters of the pure stent d>7 and the pure graft d% can be calculated
by

o1
(ZS’]:_ 981 S .
T Z DerDe7 vj 1727 y C (3 96)
ieA]d
and
.1 _
A% == N7 9SS =12, .. .
WZ‘DJDE, Vi =1,2,..,nc, (3.97)
ieA

respectively. In Equation (3.96) and (3.97), the superscripts (8)° and (e)“ indicate variables
of the stent and the graft, respectively. In contrast to A, As’j and AG only hold nodes of the
stent and the graft, respectively. Since the number of discrete locations s{,, at which the average
diameters d(s1,.) are measured is very high, the diameter measure is called pseudo-continuous
diameter measure. Hence, the average diameters (J(sﬁe) are given almost continuously along
the total length L3S of the deployed SG. Therefore, in the following, sp. € [0, L3C] is used
as the abbreviated continuous representation of (3.94). Variables with superscript ()’ denote
discrete variables and variables without superscript ()7 denote variables that are given pseudo-
continuously along sp, € [0, L3¢].

Similarly to Equation (3.95), the minimum and maximum radius within the set A®)J, ie.,
within the orthogonal slice 7% (sp, ), can be determined by

r(..)’j = 4min AT](D.e?’Z‘u Vj = 1, 2, . No (398)
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and

)i Wi=1,2, ... nc, (3.99)

r®)J = max r .

max .
icA(®),J

where (e) denotes either the stent “S” or the graft “G”.

3.6.2. EVAR quality parameters

Currently, in clinical practice, preinterventional EVAR planning tools are limited to 3D visual-
izations and measurement functions, but mechanical and geometrical assessment of the predicted
postinterventional state is not used. In-silico EVAR, as presented in Section 3.5, is able to make
predictions of the deployed state under realistic conditions. However, the major question of how
to evaluate the in-silico EVAR results with respect to the quality of the EVAR outcome still is
largely unsolved. This aspect raises the need for the definition of a set of mechanical and geo-
metrical parameters (e.g., SG drag force [75, 157, 186], SG fixation force [177], tissue stresses
[6, 139] and the quality of seal [7, 224]) to assess the quality of the in-silico EVAR outcome
and their validation of being able to indicate EVAR related complications (cf. Section 1.1.2.4),
such as endoleaks, stress induced aortic neck dilatation and SG fracture. This bridging of the gap
between predictive in-silico EVAR outcome and interpretation of the potential success of EVAR
is an important step toward the usage of in-silico EVAR in clinical practice.

In this section, mechanical and geometrical parameters are defined to estimate the quality of
the EVAR outcome. Medical, biological or other parameters that also may have an influence on
the quality of the EVAR outcome are not considered. The proposed parameters will be denoted
as EVAR quality parameters. The selection and definition of these EVAR quality parameters is
based on a detailed literature study. The EVAR quality parameters have to satisfy the following
basic demands:

e Ability to provide indications of potential EVAR related complications
e Quantifiability from in-silico EVAR outcomes
e Applicability to patient-specific cases

The EVAR quality parameters must be able to provide indications of the following major EVAR
related complications which were discussed in detail in Section 1.1.2.4:

e Type I endoleak e SG fatigue
e SG migration e SG kinking
e Aortic neck dilatation e Aortic compliance mismatch

The in-silico EVAR outcome, i.e., the deployed state of SG and vessel, is postprocessed ac-
cording to the EVAR quality parameters. The focus is on quantifiable parameters to enable quan-
titative and statistical investigations. The EVAR quality parameters assess the complication like-
lihood and thus estimate the potential success of the EVAR outcome. EVAR is considered to
be successful if the patient is free of EVAR related complications for several years after the in-
tervention. Nevertheless, all EVAR quality parameters are quantities measured directly after the
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in-silico SG deployment, i.e., they are postinterventional quantities. No growth and remodeling
of the aortic tissue is considered which could be used to trace the change of the EVAR qual-
ity parameters over time. It is assumed that the EVAR quality parameters as postinterventional
quantities already can give hints on potential complications that will occur after several years.
For the sake of clarity, in the following the subscripts (e)p,, and (®)p, are not explicitly stated
for the configurations and boundaries of SG and vessel. Any reference configur-
ation X1 ¢ Q(()H) and its boundaries T'!) denotes the stress-free reference configuration at

time of the deployed SG, which is Qé@re. Similarly, any current configuration /") € QU7 and

its boundaries v/ denotes the current configuration at time of the deployed SG, which is Q](DIZ)
as described in Section 3.5.

Many EVAR quality parameters are related to the landing zones, where in this section it is not
distinguished between the proximal or the distal landing zone. Accordingly, L, is denoted as the
length of the landing zone (proximal or distal) in the following. Further, the area of the landing
zone of the cylindrical SG in the preinterventional configuration is given by

A, = 7D L. (3.100)

The area of the landing zone of the SG in the current configuration Q5% (i.e., in the deployed
state) can be calculated using Nanson’s formula according to

o= [ du= [ IIOE) TN A4, (3.101)
FG

’Yex,lz ex,lz

where day, is the differential area element of the outer graft surface in the current configuration,
N¢ is the unit outward surface normal on the differential area element dA,, of the outer graft
surface in the reference configuration, F'© is the deformation gradient and J¢ = det(F€) is
the determinant of the deformation gradient. The boundaries %(:i,lz and FS{JZ are the outer graft
surfaces of the landing zone in the current and in the reference configuration, respectively.

In the following, it is distinguished between vessel and stent-graft stresses and tractions (Sec-
tion 3.6.2.1), fixation and drag forces (Section 3.6.2.2), parameters to evaluate the quality of seal
(Section 3.6.2.3), geometrical parameters of the deployed SG (Section 3.6.2.4) and parameters
depending on the pulsatile blood pressure (Section 3.6.2.5). In Section 3.6.2.6, a summary of all
proposed EVAR quality parameters with references to available studies in literature as well as

indications of their potential impact on EVAR related complications is given.

3.6.2.1. Vessel and stent-graft stresses and tractions

In this thesis, the Cauchy von Mises equivalent stress measure, denoted by o, is applied which
describes the stress state after the SG deployment. The Cauchy von Mises equivalent stress mea-
sure is frequently used to asses the stress state in vessels [139, 163, 212] and SGs [139, 175].
Instead of considering maximum values of stresses, stress percentiles are used which had been
proven to be more suitable in the evaluation of vessel stresses [163, 165, 244]. Accordingly, agvga“
denotes the 99-percentile Cauchy von Mises vessel wall stress which is the stress such that in
99% of the domain 2}!! the Cauchy von Mises stress is smaller than o3!!, A precise mathemat-

ical definition of the proposed quantiles is given in Appendix A.5. Although the 99-percentile
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and 1-percentile are used for stresses and tractions in this thesis, these quantities are denoted as
“maximum” and “minimum” stresses and tractions in the following for simplicity.

Aortic neck dilatation (cf. Section 1.1.2.4) is a frequently stated complication after EVAR
which is associated with an enlargement of the vessel in the proximal landing zone and sub-
sequent SG migration or endoleak type Ia. Among other reasons, the additional vessel stress
induced by the oversized SG is often named as source of aortic neck dilatation [47, 197]. Hence,
the vessel wall overstress

7" X) = 0(X) — ope(X), VX € Qg (3.102)

is defined to measure the additional vessel stress induced by the oversized SG, where e (X)
are the von Mises Cauchy stresses before EVAR and o(X) are the von Mises Cauchy stresses
after EVAR (cf. Figure 3.201). Here, 0,,,.(X ) and o (X ) both are Cauchy stress measures of the
current configuration evaluated at the same material point X € Q2. Accordingly, g3l is the
99-percentile vessel wall overstress of all material points of the vessel wall X € Q¥ where
Quall . Qf° defines the vessel wall. A second possible explanation of aortic neck dilatation
is the continuation of the aneurysm disease process [62, 234]. Actually the SG should protect
the diseased vessel by removing the pulsatile blood pressure from the vessel and stopping the
disease process. However, if the SG fixation zone is in a region with partly “aneurysmatic” vessel
material, the diseased vessel may not be properly protected. On the contrary, the additional vessel
stress induced by the oversized SG may even increase the progression of the disease process in
this region since besides biochemical processes vessel stress is considered as one of the triggers
of aneurysm growth [27, 279]. Hence, the aneurysmatic vessel wall overstress

oM (X) = A(r(X)) (0(X) = opre( X)) = A(r(X)) 6™ (X), VX € ™ (3.103)

is explicitly defined, where A(r(X)) € [0,1] is the blend parameter to distinguish between
“healthy” (A = 0) and “aneurysmatic” (A = 1) vessel wall material as defined in Equation (3.47).
Accordingly, 6é\§wan denotes the 99-percentile aneurysmatic vessel wall overstress, which de-
scribes the “maximum” additional stress in the “aneurysmatic” vessel wall material compared to
the preinterventional vessel wall stresses.

Major goal of EVAR is the reduction of the blood pressure and the reduction of vessel wall

. . e =Awall .

stresses in the aneurysm sac. Thus, also the maximum relief |7""*"| of the stresses in the
. . . _\,wall .

“aneurysmatic” vessel wall material is quantified, where 6, denotes the 1-percentile aneurys-

matic vessel wall overstress.

It clearly has to be pointed out that the definition of the “aneurysmatic” region by \(r(X))
is purely heuristic according to the preinterventional local vessel radius (X ). Hence, the stress
measure 5V ( X) is affected by this heuristic decision that vessel wall material with an abnor-
mally large local vessel radius is considered to be in an “aneurysmatic” state.

The 99-percentile stent stresses o3, of the stent in the deployed state are considered to esti-
mate the tendency of SG fatigue. The permanent interaction of vessel and SG with high contact
pressures may induce local remodeling of the surrounding tissue or even may lead to erosion of
the vessel wall often associated with the emergence of aortoenteric fistula [101, 166]. Thus, the
99-percentile value p, g9 of the normal contact pressure between SG and vessel is considered.
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Figure 3.20 Qualitative visualization of the EVAR quality parameters: vessel and stent-graft
stresses and tractions (I), drag and fixation forces (II), quality of seal (III), geometrical param-

eters of the deployed SG (IV) and parameters depending on the pulsatile blood pressure (V).
Modified figure reproduced with permission from [109].

90



3.6. Postprocessing of the in-silico EVAR outcome

3.6.2.2. Drag and fixation forces

In the deployed state of the SG, the SG has to sustain the permanent and pulsatile load of the
blood flow and pressure. This force resulting from the load by the blood is denoted as SG drag
force. In this thesis, inertial effects and shear tractions acting on the luminal graft surface are
neglected since their contribution to the SG drag force is assumed to be negligibly small com-
pared to the hydrostatic blood pressure [120, 128, 154, 157, 158]. Hence, the SG drag force is
approximated by

Fyoy = / t¢ dat = —p / n® da’, (3.104)
e o
where £ is the nonlinear hydrostatic traction load of the blood on the luminal graft surface e,
n® is the unit outward surface normal on the differential area element da{* of the luminal graft
surface in the current configuration and p is the hydrostatic blood pressure.

In order to resist the SG drag force Fy.,, and prevent the SG from migrating, SGs generally
are designed with an oversize with respect to the vessel diameter as defined in Equation (1.1).
The SG oversizing results in a passive fixation force

B, = / 1ta]| day,, (3.105)
G

/Yex,lz

where (o), denotes either the proximal landing zone (), or the distal landing zone (®)q;s; (cf.
Figure 3.201II). In (3.105), day, is the differential area element of the luminal graft surface ’ygm
and t,, is the normal contact traction at the contact interface between SG and luminal surface of
the vessel.

3.6.2.3. Quality of seal

To obtain an optimal seal between SG and vessel in the landing zones, the fixation areas in the
landing zones of the SG should be as large as possible. The fixation area is defined by

ap = | (1= Ig,50)day, (3.106)
'Yecjc,lz

where g, is the normal projection of the gap function between the potential contact surfaces in
the current configuration as defined in Equation (2.31) and /(,4,~¢) is the indicator function as
defined in Appendix A.5. According to the Karush-Kuhn-Tucker conditions of unilateral contact
(cf. Section 2.1.5), the normal projection of the gap function is g, > 0 and consequently for
points being in contact, (4, ~0) is zero and for points not being in contact /4 ¢y is one. In
contrast to the area ay, of the landing zone, the fixation area af§al is only the portion of ay, that is
in contact with the vessel (cf. Figure 3.2011I). From a mechanical perspective, a{* should be as
large as possible, such that SG fixation forces are distributed over a larger area and therefore the

fixation is more uniform and stable against SG migration.
Type I endoleaks occur when a gap between SG and vessel in the landing zones allows blood

to flow into the aneurysm sac. Thus, to further assess the quality of seal, the closest point dis-
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tance z9* of each point % € ~ ., of the outer graft surface in the landing zone on the luminal
vessel surface with £° € 7{** as well as the closest point distance z°* of each point «° € ~f .,
of the outer stent surface in the landing zone are determined and their maximum values are
evaluated by

288 — max 2%%(z%) = max (nAO(dzAO’G) (2 — :BAO’G)) (3.107)
wGe’ySﬂfﬁX wGefylcz;r,ex
and
228 = max 5 (2%) = max (nAO(:EAO’S) (x5 — .’EAO’S)) , (3.108)
TIET], ox aSery o

respectively. The definition of the outward surface normal n*° on 7{*° in the current configura-
tion is visualized in Figure 3.20III, detail Z. In (3.107), :i:AOvG(wG) is the point on the luminal
vessel surface 7{*° that is closest to the point ¢ € ylgiex, Le.,

#4°%(2%) = argmin||z® — 2*°||. (3.109)
onevﬁo

Analogously, £2°5(z%) in (3.108) is determined by

&2°5(x%) = argmin||z® — 2*°||. (3.110)
onewﬁo

In the following, 232 and 22 are denoted as the maximum stent-vessel gap and the maximum
graft-vessel gap, respectively. It is important to note, that the occurrence of type I endoleaks
strongly depends on the sealing pattern of the deployed SG. As long as a complete circumfer-
ential seal of sufficient length exists in the landing of the SG, large graft-vessel gaps do not

necessarily lead to a type I endoleak.

3.6.2.4. Geometrical parameters of the deployed stent-graft

In this section, only the geometrical shape of the stent is evaluated since the geometrical shape
of the graft is dominated by its buckling pattern and does not represent the effects that shall be
investigated in this section.

Accordingly, the degree of stent expansion (cf. Figure 3.201V) is defined by

S(s )—M v 0, LSC 3.111
De) — DSG ) SDe€[7 De]a ( )

where DS% is the nominal diameter of the SG and d>(sp.) is the average diameter of the stent
in the plane 7% (sp.) as defined in Equation (3.96). The stent expansion expresses the degree of
expansion of the stent rings and hence may have an influence on the fatigue behavior of the SG.
The minimum stent expansion

S = min_ e5(spe) (3.112)

min
SDe€ [O)LSDC;}
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3.6. Postprocessing of the in-silico EVAR outcome

is primarily found in the landing zones where the full expansion of the stent is restricted by the
surrounding vessel. Furthermore, the effective degree of SG oversizing at a specific location sp,
can be calculated by

D3¢ 1

= Bl LT Sind)

In contrast to the nominal degree of SG oversizing o as defined in Equation (1.1), the effective
degree of SG oversizing oz expresses the degree of SG oversizing in the deployed state of
the SG. Since the vessel is elastically deformable, the insertion of a SG generally induces an
enlargement of the vessel diameter in the landing zones. Hence, if the SG is perfectly aligned to
the luminal vessel surface, the effective degree of SG oversizing o generally is smaller than the
nominal value of SG oversizing o in an elastically deformable vessel. For a rigid vessel, nominal
and effective degree of SG oversizing would be identical in this case. The mean value of the
effective degree of SG oversizing in the landing zone is denoted by

eff( —1, Vspe €[0,LC]. (3.113)

0" (Spe)

1 le
oy = / 0°™(spe)dspes (3.114)
le 0

where L, is the length of the landing zone.

The best seal and the most uniform fixation of the SG between a cylindrical SG and a cylin-
drical vessel can be assumed for a perfectly cylindrical shape of the SG in the deployed state.
Any asymmetric shape of the SG in the deployed state may have negative effects on the seal and
the fixation of the SG [32, 273]. Moreover, the fatigue behavior of the SG may be affected since
asymmetric stent shapes go hand in hand with nonuniform loading of the SG with local stress
hot spots. The in-plane stent asymmetry ° and its maximum value are defined by

Ymax S
spe€[0,L5C] 50e€l0,L3¢] \ Tpmin (SDe)

S
5 .= max 1 °(sp.) = max (rmax—(SDCJ_l)' (3.115)

This means that y5(sp.) is a measure of the ovalization of the stent which is zero in the case of a
perfectly circular shape and °(sp.) > 0 for any elliptic shape of the stent (cf. Figure 3.20IV). If
the SG is forced in a conical shape, this can also lead to negative effects on the fixation and the
fatigue behavior of the SG [174, 273]. The conical shape of a stent limb i € [1,7°] is defined as

max d>(spe)
S = DEST 1, (3.116)
iy, Plone)
where n® is the number of stent limbs of the SG and S; is the interval of the arc length sp, of the
centerline Cp, that corresponds to the position of stent limb . For a perfectly cylindrical stent
limb ¢ is zero and ¢ > 0 for any stent limb of conical shape (cf. Figure 3.20IV). The stent limb
with the maximum conical shape is denoted as

5 o = Mmax c;. (3.117)
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3. Computational tools for in-silico EVAR

Besides negative effects on the nonuniform loading of the SG, strongly asymmetric and conical
stent shapes may also be an indicator of local SG kinking.

3.6.2.5. Parameters depending on the pulsatile blood pressure

The SG is subjected to the permanent pulsatile nature of blood flow with the relative displace-
ment

uP(X) = u(X) — uB™(X), VX € 0, (3.118)

where u®*( X)) is the displacement of material point X at the systolic pressure state and u%#s*( X))
is the displacement of the same material point X at the diastolic pressure state according to the
solution of the elastostatic BVP of Section 3.1.

Quantitatively, the maximum movement of the stent ©.5;""! and the graft u
beat are determined by

G,pul
max

during one heart

uS P = max ||uP™(X)]| (3.119)
Xe§
and
udPY = max | |uP (X)), (3.120)
Xef

respectively (cf. Figure 3.20V). Obviously, large permanent movements of a material point X
together with high strains and stresses at this point may increase the risk of SG fatigue dramati-
cally.

As stated in the introduction of this thesis in Section 1.1.2.4, the reduced compliance of the SG
compared to the native aorta may affect the sensitive cardiovascular system. Instead of measuring
the volume change mostly the change in diameter or the change in cross section is used to
determine arterial compliance [156, 190, 265, 276]. Analogously, the compliance of the graft in
the deployed state is calculated by

<a?sys,G(SDe)_Jdiast,G(SDe))
Jdiast,G(S e)
Cloe) = peYs — p;iast , VYspe €0, LSDEL (3.121)

where pi#st is the diastolic blood pressure, p*¥* is the systolic blood pressure and sp, € [0, LE¢]

is the arc length of the SG centerline in the deployed state. Further, d4#%G (sp, ) and d*¥>© (sp,)
are the average graft diameters in orthogonal slices 7% (sp,) at the diastolic and the systolic
blood pressure state according to Equation (3.97). Only the average diameters of the graft
d42s:G(sp.) and d¥*%(sp,), but not the average diameters of the stent, are considered since
the domain of the lumen is fully described by the graft. Obviously, in the landing zones the com-
pliance C'(sp,) is smaller than in the aneurysm sac, since in the landing zones the compliance
is a combination of the compliance of the SG and the surrounding vessel. In the aneurysm sac,
where generally there is only partial contact between SG and vessel, the compliance C'(sp.) is
dominated solely by the compliance of the SG. Hence, depending on the position sp, € [0, LES],
the compliance C'(sp.) is either a combination of the compliance of SG and vessel or the com-
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pliance of the SG only (cf. Figure 3.20V). Quantitatively, only the mean diametric compliance
C' is considered which is given by

1 [Lde

C(spe)ds. (3.122)

3.6.2.6. Summary of the EVAR quality parameters

In Figure 3.20, a visualization of the EVAR quality parameters for a synthetic SG and vessel
is provided. To indicate quantities of the proximal and quantities of the distal landing zone,
the subscripts (')prox and (e)g;s; are used instead of (e);,. The EVAR quality parameters can
similarly be used for assessment of the in-silico EVAR outcome of patient-specific cases as will
be shown in Chapter 5.

In Table 3.4, all EVAR quality parameters are summarized, their potential impact on the qual-
ity of the EVAR outcome is indicated and their related complications are named. In practice,
single EVAR complications cannot clearly be separated. For instance, SG migration mostly goes
hand in hand with a type I endoleak. However, in Table 3.4 the intention is to state the relation
of the EVAR quality parameter to the EVAR complication it has initiated. It is important to note,
that this is only a proposal of parameters that may be able to estimate the likelihood of certain
EVAR related complications from an engineering perspective. However, the clear correlation be-
tween the proposed EVAR quality parameters and EVAR related complications still needs to be
proven in a future study of patient-specific cases of appropriate cohort size. Many different nam-
ings of the single EVAR quality parameters are available in literature and often slightly different
definitions are used. In Table 3.4, available studies related to the single EVAR quality parameters
are stated.

3.7. Summary of assumptions

In this section, the major assumption that are incorporated in the proposed approach of in-silico
EVAR are summarized. The assumptions are separated into assumptions of the vessel model, the
SG model, the in-silico SG P&D methodology and assumptions of the EVAR quality parameters.

Assumptions of the vessel model

e Inter- and intrapatient variability of vessel wall material parameters and vessel wall thick-
ness are neglected. Instead, population-averaged mean values are used. A constant vessel
wall thickness of 1.5 mm [219] is assumed.

e Same material models and model parameters are used for iliac arteries and the abdominal
aorta.

e Residual sac pressure after EVAR [41, 145] is not considered. Instead, zero sac pressure
after the insertion of the SG is assumed.

e The model does not include any tissue growth and remodeling after EVAR which often is
observed in reality [142, 245, 267].
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3. Computational tools for in-silico EVAR

Table 3.4 Summary of all EVAR quality parameters. Reproduced with permission from [107].

EVAR quality Symbol Equa- Potential | Associated
Reference . . . . b .
parameter [dimension] tion influence complication
Max. vessel stress [6, 138, 139, oyl [kPa] - 1
187]
2 Max. vessel overstress ool [kPa] | (3.102) 1
2 | Max. vessel relief® 5" [kPa] | (3.103) 4 Aortic neck
2 M neurvsmati i dilatation
2 ax. a el; yS atic 5_3{,)Wall [kPa] (3103) \l/
1) overstress
Q
<
& Max. normal contact (6.7, 138] Pugo [kPa] ) !
pressure
Max. stent stress [6, 7, 139] agg [GPa] - J SG fatigue
. . [237,264] [7, -
- § Passive fixation force 143, 177, 216]¢ F, [N] (3.105) T
g2 SG migration
,E %0 Drag force [45, 75, 133, 186] Fyrap [N] (3.104) l
eS|
Fixation area [7,236] alszeal [mm?] (3.106) 0
>\‘ p—
K M fi 1 GA mm] | (3.107) ype |
2 ax. graft-vessel gaj z mm .
5 = g gap [53. 206, 224] max endoleak
Max. stent-vessel gap 234 [mm] | (3.108)
. Type I en-
Effectlve SG over- [257]¢ ottt [%] (3.114) — doleak, SG
o sizing .
g migration
5]
g Min. stent expansion [53, 138]¢ e, [%] (3.112) 1
g, p S SG fatigue,
> Max. stent asymmetry [32, 39, 53] Ymax -] (3.115) | SG kinking
%) .
Max. conical stent [174, 2731+ S 1 (3.117) !
shape
Max. graft movement® uSP [mm] | (3.119) 1 )
. - SG fatigue
o 8 | Max. stent movement® uSP [mm] | (3.120) 1
= ©
S E _ Aortic
‘1‘) e . .
Z 5 Mean .dlametrlc graft [128, 139, 190, C (3.122) _ compliance
compliance 276] [%/100mmHg] mismatch

2newly introduced EVAR quality parameter; no other publications about this or a closely related parameter is avail-
able (to the best of the author’s knowledge)

b expected or reported influence of the parameter on the quality of EVAR; 1: high value has positive influence on
quality of EVAR; |: high value has negative influence on quality of EVAR; —: no unambiguous influence reported
¢ only qualitative assessment/discussion of the EVAR quality parameters but no quantitative considerations of the
parameters

4 consideration of closely related parameters
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Assumptions of the stent-graft model

The geometry of commercial SGs is approximated based on own measurements and data
given in literature [44, 60, 176].

The three SG components are modeled as one pre-assembled SG with fixed overlap lengths
between the main, the left iliac and the right iliac component.

The uncovered proximal stents with barbs are not modeled explicitly in a geometrical
sense. In order to account for the axial fixation of the SG by the proximal barbs, mortar
based frictional contact in pure stick (no tangential sliding) is applied between SG and
luminal vessel surface in the most proximal region of the SG of 5 mm length.

Any elasticity of the sutures and any slippage between stent limbs and graft are neglected.
Instead, rigid connection by mortar based mesh tying is applied to model the suture be-
tween stent and graft.

Commercial SG devices consist of interior and exterior stent limbs. In the proposed SG
models, all stent limbs are modeled as interior stent limbs with respect to the graft.

Circularly shaped cross sections of the stent struts are modeled as quadratic cross sections
with equivalent bending stiffness to ensure hexahedral meshing of the stent and to provide
proper surfaces for the mortar based mesh tying between stent and graft.

Woven PET grafts are modeled as isotropic material.

Superelasticity of nitinol stents is neglected.

Assumptions of the in-silico SG P&D methodology

Compared to the real-world medical intervention, the in-silico SG P&D methodology is a
strongly simplified process. The final deployed state of SG and vessel under steady-state
conditions is the only point of interest. Any intrainterventional results cannot be obtained
by this in-silico SG P&D methodology. No medical tools, other than the SG itself are
considered. Hence, it is assumed that the simplified intrainterventional steps only have a
minor influence on the final deployed SG configuration.

The in-vivo deployed SG configuration may depend on clinician-specific factors that are
not considered in the in-silico SG P&D methodology such as the speed of SG deployment
and the application of a molding angioplasty to further unfold the SG.

Treatment as purely solid mechanics problem. Fluid dynamics of the blood flow is ne-
glected. A quasi-static blood pressure state is considered.

Friction between SG and vessel is modeled as dry friction using Coulomb’s law. Lubrica-
tion is neglected.
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3. Computational tools for in-silico EVAR

Assumptions of the EVAR quality parameters

e The EVAR quality parameters are proposed parameters to assess the likelihood of certain
EVAR related complications from an engineering perspective. However, the clear link
between the proposed EVAR quality parameters and EVAR related complications still
needs to be proven.

e Mechanical and geometrical EVAR quality parameters may give indications of poten-
tial EVAR related complications. However, the EVAR related complication and its con-
sequences are not modeled. For instance, modeling of a type I endoleak would require
modeling of blood flow.

e The proposed EVAR quality parameters assess the EVAR outcome from a purely engineer-
ing perspective. Medical, biological or other parameters that also may have an influence
on the occurrence of EVAR related complications are not evaluated.

e The proposed EVAR quality parameters are intended to provide likelihoods of potential
EVAR related complications, but they are not a sure sign of these complications. For in-
stance, a large graft-vessel gap in the landing zone may increase the risk of a type I en-
doleak. However, as long as there is a full circumferential seal, large graft-vessel gaps do
not necessarily lead to a type I endoleak.

e All EVAR quality parameters are quantities taken directly after the SG deployment. This
means it is assumed that these postinterventional parameters may give indications of po-
tential EVAR related complications that arise several years after EVAR. The model would
need to include growth and remodeling of vessel tissue to be able to consider the develop-
ment of the EVAR quality parameters over several years.

e Ranges of acceptable values of the EVAR quality parameters are not provided in this thesis
but would need to be determined in a future study of patient-specific cases of appropriate
cohort size.

3.8. Summary

In this chapter, an in-silico EVAR model has been presented that is based solely on preinterven-
tional data and which predicts the final postinterventional configuration of the deployed SG and
the vessel. The in-silico EVAR model can be applied to patient-specific cases and provides a high
level of detail of the postinterventional state of SG and vessel. It incorporates patient-specific
vessel models, models of commercial SG devices and an in-silico SG P&D methodology to
place and deploy the SG model in the vessel model. The vessel model considers several different
vessel constituents such as the “healthy” vessel wall, the AAA wall, ILT and calcifications. SG
models of two commercial SG devices as well as a novel stent predeformation methodology for
the SG assembly has been proposed. The newly developed in-silico SG P&D methodology uses
a suitable morphing algorithm that is directly applied to the SG model. This novel morphing
algorithm is based on RMFs along the control curves that govern the deformation of the morph-
ing object, i.e., the deformation of the SG model. Furthermore, SG parameter continuation has
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been proposed for the assessment of several different SG sizes within a single EVAR simulation.
Based on the predicted configuration of SG and vessel, several mechanical and geometrical pa-
rameters have been proposed to assess the in-silico EVAR outcome with respect to EVAR related
complication likelihoods from an engineering perspective.

This continuous process chain of the vessel and SG model generation, the in-silico prediction
of the final postinterventional configuration and the assessment of the in-silico EVAR outcome
can be a promising tool in the preinterventional planning of EVAR. The validation of the in-
silico EVAR model and the versatile application of this process chain will be presented in the
subsequent chapters.
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4. Validation of the in-silico EVAR
model

In the previous chapter, all computational tools for in-silico EVAR were presented. In-silico
EVAR is an idealization of the real-world medical EVAR procedure which incorporates several
assumptions (cf. Section 3.7). Hence, the proposed approximation of the EVAR outcome by
in-silico methods requires careful validation.

Some studies used in-vitro validation of their in-silico EVAR models [51, 122]. However, most
in-silico EVAR results are validated by qualitative or quantitative comparison to in-vivo imaging
data [9, 122, 188, 205, 207]. In-silico EVAR as defined in this thesis uses only preinterventional
information, such as the patient-specific vessel geometry from preinterventional CT data. Thus,
an appropriate validation can be obtained by comparison of the deployed state obtained from
in-silico EVAR and the deployed state extracted from postinterventional CT data of the same
patient. On postinterventional patient-specific CT data, the stent as metallic object is visible
whereas the thin graft as plastic object is not visible. Hence, the comparison of in-silico results
and postinterventional CT data is mostly restricted to the comparison of the stent configuration.
A validation methodology that uses the postinterventional stent configuration extracted from CT
data has to cope with distracting artifacts that frequently occur when imaging metallic objects
such as stents by CT [25, 49, 161, 214].

Quantitative validation methodologies that compare the deployed stent configuration from
postinterventional CT data and from in-silico EVAR have been proposed by [9, 205, 207]. Au-
ricchio et al. [9] used the mean stent diameter in three distinct slices orthogonal to the postin-
terventional vessel centerline to compare in-silico EVAR results with in-vivo data of one patient
with an ascending aortic pseudo aneurysm treated by a tube SG. Measuring the diameter of the
stent from postinterventional CT data at distinct locations can be sensitive to small variations
of the location due to local distracting artifacts in the postinterventional CT data. Therefore, the
validation result may be strongly dependent on the subjective choice of the location where the
stent diameter is measured. By far a more objective and more elaborated validation methodol-
ogy was used by Perrin et al. for the validation of in-silico EVAR of patient-specific cases of
three Medtronic Endurant™ II SGs [205] and three Anaconda™ SGs [207]. Perrin et al. used
one average diameter per stent limb in their quantitative validation methodology. In addition to
the diameter comparison, Perrin et al. compared the position of each stent limb quantitatively
between in-silico EVAR results and the stent extracted from postinterventional CT data. Cal-
culating only one mean diameter for each stent limb is less susceptible to local artifacts in the
postinterventional CT data. However, this method is not able to capture nonuniform stent shapes
such as a conical shape. But particularly in the landing zones of the SG, nonuniform vessel
shapes and consequently nonuniform stent shapes can have a major impact on the applicability
and the success of EVAR [42, 185]. Hence, a validation methodology should also be able to
assess how well such nonuniform stent shapes are represented.
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In this chapter, a novel qualitative and quantitative validation methodology, that is based on
a comparison between in-silico EVAR results and postinterventional CT data, is presented. The
validation methodology compares average stent diameters in slices orthogonal to the postinter-
ventional SG centerline pseudo-continuously along the total length of the deployed SG. This
validation methodology is used to validate the in-silico EVAR model presented in Chapter 3 by
considering three patient-specific cases (patient 1-3, Appendix A.1).

The outline of this chapter is as follows: first, the validation methodology using postinterven-
tional CT data is described in Section 4.1. Afterwards, in Section 4.2, this validation methodol-
ogy is used for qualitative and quantitative validation of the in-silico EVAR model considering
three patient-specific cases. Results of this validation process are discussed in Section 4.3. Fi-
nally, limitations and conclusions are stated in Section 4.4 and 4.5, respectively.

This chapter is primarily based on the previous publication [107] by the author of this thesis,
which is reused here with permission.

4.1. Validation methodology using postinterventional
CT data

In this section, the validation methodology of in-silico EVAR is described. The validation is a
qualitative and quantitative comparison of the final configuration of the stent after the in-silico
SG deployment with the configuration of the stent extracted from postinterventional CT data.
Thus, first in-silico EVAR is applied to the real clinical cases of patient 1-3 with the clinical
characteristics as stated in Appendix A.l. Perfect placement of the SG slightly distal to the
branches to the renal arteries according to the preinterventional CT data is assumed in the in-
silico EVAR model. The distal landing zones evolve from the deployment process.

The comparison of the stent configuration after in-silico EVAR with the stent configuration
extracted from real-world postinterventional CT data requires the assumption that within the
time period between the EVAR intervention and the day of the postinterventional CT scan, no
growth and remodeling and other reasons have changed the configurations of vessel and SG. Due
to the short time period (patient 1: 2 days, patient 2: 5 days, patient 3: 2 days) between the EVAR
intervention and the day of the postinterventional CT scan as well as relatively slow growth and
remodeling rates of vessel tissue, this assumption seems reliable.

In the quantitative validation, the diameters of the stent from in-silico EVAR are compared
to the diameters of the stent from postinterventional CT data. The single steps of the proposed
validation methodology are discussed in the following and are summarized in Figure 4.1.

In-silico EVAR is based on the vessel geometry of preinterventional CT data which in general
is aligned in a different coordinate system than the postinterventional CT data. Hence, after
the segmentation of the stent from postinterventional CT data, a rigid registration based on a
minimal point distance filter of the stent from postinterventional CT data onto the stent from
in-silico EVAR is used to align both stent configurations in the same coordinate system (cf.
Figure 4.11I). Next, the three parts of the stent © € {P, L., R} (proximal part, left iliac part and
right iliac part) are considered separately (cf. Figure 4.111I).

In Section 3.6.1, a postprocessing methodology to measure the stent diameter after in-silico
EVAR pseudo-continuously along the total SG length in the deployed state was presented. This
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Figure 4.1 Validation methodology using postinterventional CT data visualized for patient 3.
Stent from simulation and segmented stent from postinterventional CT data (I). Rigid regis-
tration of stents from simulation and postinterventional CT data (II). Cut of stents into three
SG parts (prox1mal part left iliac part and right iliac part) (III). Exemplary illustration of one

set AP v and AT of the proximal stent part (IV) and exemplary comparison of the stent di-

I,postl I snn

sS1m

ameter d>,_(s;,”) from smlulatlon and the stent diameter d .y +(sp7) from postinterventional
CT data at the same arc length SD (V) Reproduced with permission from [107].

methodology consists of the following two major steps. Using Equation (3.92), the center-
lines C](D? of the three SG parts © € {P,L,R} in the deployed state are determined. After-
wards, according to Equation (3.96), the average diameter d>(®)7 of all nodes in the morphing
set AIS’(@)’j (cf. Figure 4.11V) is determined which corresponds to the average diameter of the
stent in an orthogonal slice at the location of point j of the centerline Cg?. The superscript (o)’

indicates that the average diameter d>(©)7 = CZS(S](:)@e) J ) is measured at the discrete location of

point 7 described by the arc length s(@)’].

In the following, the same methods are applied to evaluate the deployed stent configuration
extracted from postinterventional CT data with a resolution of 0.75 x 0.75 x 1.0 mm?® for pa-
tient 1, 0.79 x 0.79 x 1.0 mm? for patient 2 and 0.76 x 0.76 x 1.0 mm? for patient 3. The same
centerlines C](a? and the same methods as for the simulated SG are used to evaluate the average
diameters d>(®)7 of the stent segmented from postinterventional CT data (cf. Figure 4.2). The
subscripts (@), and (e),.strv are introduced to distinguish between variables of the simulation
and variables of the postinterventional CT data.

Measuring the diameter of the stent from postinterventional CT data at distinct locations sg? 7,

i.e., measuring the average diameter of distinct sets A; éos)ﬂv, can be sensitive to small variations

of the location due to local artifacts in the postinterventional CT data. The main source of these
artifacts is given by the well known problem of imaging metallic objects by CT [25, 161, 214].
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Figure 4.2 Visualization of the average stent diameters dfi’él@)

stent diameters di;gl)v from postinterventional CT data for the proximal SG part (I), the left iliac

SG part (II) and the right iliac SG part (III) of patient 3. Reproduced with permission from [107].

from simulation and the average

Due to these metal-related artifacts, stent struts appear to be thicker than they are and a clear
segmentation process of the stent is more difficult. Additionally, calcifications often cannot be
separated clearly from stents. Hence, in the validation methodology with the objective to mea-
sure the stent diameter pseudo-continuously along the total SG length, an outlier detection by a
moving average filter is applied to reduce the variance of the measured average stent diameters
from postinterventional CT data due to the presence of local artifacts. This filtering process is
described in Appendix A.6. Filtered data is indicated by the subscript (e); in the following. A
quality estimation of the segmented data from postinterventional CT scans, i.e., an estimation to
which extent the stent diameter measurement from postinterventional CT data is influenced by
the vagueness in the segmentation process, is provided in Appendix A.7.

The quantitative comparison of the simulation results with the postinterventional CT data is

done by comparing the average stent diameters ng(sg@g’j ) = in’f)’j from simulation with the

average stent diameters Jgosﬂvjf(sl()@e)’j ) = diéﬁfvjf from postinterventional CT data (cf. Fig-

ure 4.1V) at same arc length {sg?’jm < sg?’j < L]SDS”(@),Vj = 1,2, ...,né@)}, where s](i)’j
are discrete values of the arc length of the centerline c]g? of SG part © € {P,L,R} as de-
scribed in Section 3.6.1. As the exact blood pressure state of the patients in the postinterven-
tional CT data is unknown, the simulation results at an assumed diastolic blood pressure state
of pdiast = 80 mmHg are used as lower bound and the simulation results at an assumed systolic
blood pressure state of p** = 130 mmHg are used as upper bound for the validation. Thus,
the postinterventional CT data is compared to the in-silico EVAR results at the internal dias-
tolic pressure state and at the internal systolic pressure state. The relative error £(!) (31(396) J ) of the

in-silico EVAR model at the discrete location sg?’j and at the respective pressure state is

S, (A), (O),) = 0).,j
(A)((O)dy _ dsirgl )(S](De)j) - dlsaostIV,f(sl()e)j)
eV (spe ) — oy 4.1)
R (8( )J)
postIV,f\“De

with A € {diast, sys}. The mean error ¢ at the discrete location s]g@e)’j out of the error at the
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diast

diastolic pressure state £ and the error at the systolic pressure state £*° is given by

1, , -
5@}(}2%]) = <5dlaSt(S]()(?J) + 6Sys(81(3@e)7j)> ] 4.2)

In the following, the patient specific cases = € {1,2,3} (cf. Appendix A.1) are used for

validation. The mean error ,ug):) and standard deviation 029()5) for each SG part © € {P,L,R}

and each patient = € {1, 2, 3} over all discrete locations 51(3@(3){1:) are calculated according to

e _ 1 (©),j
He(z) = o) > el (4.3)

NH =
C,(2) j:1,2,...,n(09(>5)

and

© _ 1 (©).j © \?
O3 = ©) Z <5<3De,(J5)) - UE,(E)) . 4.4)

n -
C,(2) j:1,27,,_7n(09(>5)

{S]g@e?é)lo < s]gi)’Jﬁ) < LSDC;’((S)), Vi=1,2,.., né@()g)} The discrete values of the arc length s]g@e)’j

(5 ()
describe the discrete locations at which the average diameters Jssim(sg)é)) = df i’f()é]) as well as
Jlsaostl\/(S]()@e?é)) = cif) 2)(;?1)\7;,(5) and consequently the relative errors E(S]g?é)) = ggg’j are mea-

sured. ”(c (=) is the total number of these discrete locations and L]SDB’(E) is the total arc length of
the centerline Cg@e,)(z) of patient = € {1,2,3} and SG part © € {P,L, R} in the deployed state.

Accordingly, for instance, /Lf’l denotes the mean error of the proximal SG part of patient 1.

The number of discrete locations sg?élg) at which the average diameters Js(s]g@e)ij )) are mea-

sured is very high. Hence, as stated in Section 3.6, the diameter measure is denoted as pseudo-
continuous diameter measure. Accordingly, variables with superscript ()’ feature discrete vari-
ables and variables without superscript ()’ feature variables that are given pseudo-continuously

along 31()?(5) € [0, L]SD(::((S)) ]

In (4.3) and (4.4), 31(3? &j_) are discrete values of the arc length of the centerline C](D?(E) with

4.2. Results

The in-silico EVAR model is validated by qualitative (Section 4.2.1) and quantitative (Sec-
tion 4.2.2) comparison between the simulation results and postinterventional CT data for pa-
tient 1-3.

4.2.1. Qualitative validation

In Figure 4.3, the simulated stent configurations of patient 1-3 at an internal pressure state of
80 mmHg are superimposed to the stent configuration segmented from postinterventional CT
data. Qualitatively, the simulated and real-world postinterventional stent shapes are almost iden-
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4. Validation of the in-silico EVAR model

tical by visual comparison. Even specific SG deformations, such as the conical stent shape of
the most proximal stent limb of patient 3 or the highly curved SG part of the left iliac part of
patient 1 are properly predicted by the in-silico EVAR model as can be seen in Figure 4.3. Only
slight mismatches in the relative position of the right iliac SG parts of all three patients exist,
whereas for the proximal and the left iliac SG part no significant position mismatches are visible.

Patient 1 Patient 2 Patient 3
sy St

S3- 83

Figure 4.3 Qualitative validation of the patient-specific cases 1-3. Comparison of the average
diameters of the stent from in-silico EVAR and the stent from postinterventional CT data. Re-
produced with permission from [107].

For each patient four slices are considered qualitatively: one slice through the first stent limb
of the proximal part (slice S%E)), one slice through the second stent limb of the proximal part
(slice S%E)), one slice through the last stent limb of the left iliac part (slice S?E)) and one slice
through the last stent limb of the right iliac part (slice S?E)), where = € {1,2,3} denotes the
number of the patient. The slices S%E), S?E) and S‘(‘E) are of elevated relevance as they are within
the proximal and the distal landing zones that are involved in several EVAR related complications
such as endoleaks type 1a and 1b (cf. Section 1.1.2.4).

The deployed stent diameters in the slices S{, S and S!, which define slices through the
proximal landing zone, are well predicted. Slight discrepancies in slice S} of patient 2 can be
observed where the simulated stent diameter is slightly larger than the stent diameter extracted
from postinterventional CT data. In the slices S? and S% some mismatches in the predicted stent
expansion can be identified, whereas the prediction of the stent expansion in slice S3 is almost
perfect.

The diameter of the simulated stents and the diameter of the stents from postinterventional CT
data in the slices S3, Sg and S3, which are slices through the landing zone of the left iliac part, are
almost identical from a qualitative perspective. The slices S{, S3 and S} through the landing zone
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of the right iliac part highlight the previously mentioned relative position error of the simulated
right iliac SG part compared to the postinterventional CT data. The prediction of the diameter
expansion is relatively good. The largest discrepancies by visual comparison can be identified
for patient 2 (slice S3) where the simulated stent diameter is too large.

4.2.2. Quantitative validation

In Table 4.1, the average stent diameters and relative errors of the distinct slices are shown. These
distinct slices were qualitatively evaluated in Section 4.2.1 and are visualized in Figure 4.3. The
in-silico EVAR results are quantitatively evaluated at the assumed diastolic pressure state of
pdiast = 80 mmHg and at the assumed systolic pressure state of p*¥* = 130 mmHg.

Table 4.1 Measured average diameters from in-silico EVAR dfi;ﬁf) and from postinterventional

CT data d3 v ¢ as well as relative errors (V) at the assumed diastolic pressure state (e)d2s*
(80 mmHg) and at the assumed systolic pressure state (e)®* (130 mmHg) according to Equa-
tion (4.1) in the exemplary four slices per patient visualized in Figure 4.3. Reproduced with
permission from [107].

Patient 1 Patient 2 Patient 3

Slice sl s g s | sl s s3 st | sl s s g
dsi’iia“ [mm] | 219 253 104 10.8 | 255 28.6 205 169|233 300 109 114
&Si,;ys [mm] 223 259 10.8 11.1 |26.0 287 209 17.1|240 304 11.1 116
dgosthi [mm] | 21.1 243 10.7 102|233 289 195 145|222 28.6 119 11.0
gdiast [gp) 38 41 -28 59|94 -10 51 166| 50 49 -84 36

e [%] 57 66 09 88 116 -07 72 179| 81 63 -67 55

In Figure 4.4, the average stent diameters of in-silico EVAR at 80 mmHg
(d ’d‘aSt(s](D?(E))) and at 130 mmHg (d) ’Sys(s](i)(a))) as well as the filtered average

sim sim
(©)

diameters Jgosﬂvjf(sD&(E)) of the stent from postinterventional CT data are plotted pseudo-

continuously along the arc length 3](386)(5) € [0, LSDS’((EQ))] for all three SG parts © € {P,L,R} and

all three patients = € {1, 2, 3}. Each asterisk corresponds to a discrete average diameter d>©)

sim,(Z)°

df) ;)(S%)\’f’f,(g) measured in a distinct set Ai S(li)é) and AIS7 }Ei)t}jv,(a)’ respectively (cf. Section 3.6.1).

Additionally, the relative error g(s]g@e?(g)) between in-silico EVAR and the postinterventional CT
data according to Equation (4.2) is visualized in Figure 4.4 (right scale).

At the bifurcations of the SG, the stent diameters of the postinterventional CT data could
not be measured properly as the proximal part and the iliac parts of the stent are slightly over-
lapping. Further, in the range sy, , € [34 mm, 65 mm| of the left iliac part of patient 2, the
quality of the segmented stent from postinterventional CT data is inappropriate to be able to
measure stent diameters. Those regions, in which the average stent diameters of the postinter-
ventional CT data could not be measured, are highlighted by orange color in the plots of Fig-

ure 4.4 and are neglected in the calculation of the relative errors 5(51()?(5))~ Table 4.2 provides

a summary of the mean ,ug)g) and the standard deviation Ué(?)z) of the relative errors 8(81(366)(5))
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4. Validation of the in-silico EVAR model

according to Equation (4.3) and (4.4) over all SG parts © € {P,L, R} and all patient-specific
cases = € {1,2,3}.

Table 4.2 Mean and standard deviation of the relative errors 5(51(396)(5)) according to Equa-

tion (4.3) and (4.4) over all SG parts © € {P, L, R} and all patient-specific cases = € {1, 2, 3}.
Reproduced with permission from [107].

Patient 1 Patient 2 Patient 3
i £ oL 1% = — 1) & — 2 = — 3) Total
Proximal part ((9 =P) 6.0£1.6 5.8+ 5.0 7.2+1.9 6.4+34
Left iliac part (© = L) —-34+£7.6 7.6 +£6.0 2.0£+10.2 2.14+9.3
Right iliac part (© = R) 124+£7.9 42+93 4.7+£9.9 6.6 £9.8
Total 6.7 £ 8.7 55+ 74 5.0+ 8.2 5.6 £8.1

Referring to Figure 4.4, in the proximal parts of the three patients, average stent diameters
of in-silico EVAR at 80 mmHg (blue curve) and at 130 mmHg (red curve) are very close to
the average stent diameters JﬁOStIVi(sge’(g)) of the postinterventional CT data (black curve).
Largest discrepancies between in-silico EVAR and postinterventional CT data can be observed

in the proximal SG part of patient 2. The relative error is \5(5% =))| < 12% for any of the

three patients with sge’( = € e [0, L]SDG (P )] where L ( ) is the length of the proximal SG part of

patient = € {1,2,3} in the deployed state. The good prediction of the average stent diameters
of the proximal SG part results in a mean relative error of u = 6.4% and a small standard
deviation of of’ = 3.4% (cf. Table 4.2). !’ and 0¥ denote the mean and standard deviation of the
error € for the proximal SG part over all three patients according to Equation (4.3) and (4.4). It
is also worth mentioning that the in-silico EVAR model is able to reproduce the conical shapes
of the stent in the proximal landing zone (indicated by green color in Figure 4.4). Whereas the
most proximal stent limb of patient 1 is only slightly conical, the most proximal stent limbs of
patient 2 and 3 are strongly conical with a smaller average diameter at the proximal end and a
larger average diameter at the distal end.

The SGs of all three patients are strongly compressed in the proximal landing zone, i.e., the
measured average stent diameters (blue, red and black curve in Figure 4.4) are significantly
smaller than the nominal diameter DSG(SE& (5)) (cyan curve in Figure 4.4). In the aneurysm sac
(SEGV(E) 2 30 mm), the SG fully expands to its nominal diameter DSG(sEe’(E)) with exception
of patient 1. Due to a pronounced ILT layer, patient 1 has a relatively small luminal diameter
in the aneurysm sac of the preinterventional vessel. The SG cannot fully expand to its nominal
diameter in this region.

Very similar behavior of the left and right iliac SG parts can be observed in Figure 4.4. A
relative error in the left iliac SG parts of ’5(5136 )] < 20% and a relative error in the right iliac

SG parts of |e (SDO ))| < 25% is found for any SDC( = € [0, LSG( | and sDC = € [0, LSDE(R )
respectively. Here, L]SDCS (=) 4 and LSDe (5) denote the length of the left and the right SG part in the

deployed state of patient = € {1,2,3}. The mean error and the standard deviation of the iliac
parts are given by ut 4+ ok =2.1+9. 3% for the left iliac part and uf* + o = 6.6 4+ 9.8% for the
right iliac part (cf. Table 4.2). L and o0& denote the mean and standard deviation of the relative
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4. Validation of the in-silico EVAR model

error ¢ for the left iliac SG part over all three patients. 2 and oF is the mean and standard
deviation of the relative error ¢ for the right iliac SG part over all three patients according to
Equation (4.3) and (4.4). In contrast to the proximal SG parts, where the simulated average
diameters dsiﬁlmt are slightly larger than the average diameters Jgosﬂv,f from postinterventional
CT data for the total length of the SG part SEe,(E) € [0, LSDS,’(PE)], in the iliac SG parts there
are regions where the simulated stent diameters are too large and regions where the simulated
stent diameters are too small. This is the reason for the relatively small mean relative errors but
higher standard deviations for the iliac SG parts as provided in Table 4.2. The prediction of the
stent expansion diameters in the landing zones of the iliac SG parts (indicated by green color
in Figure 4.4) is relatively good with exception of the landing zone of the right iliac SG part
of patient 2. In the landing zone of the right iliac SG part of patient 2, the predicted average
stent diameters by in-silico EVAR are too large compared to the postinterventional CT data
with relative errors up to 25%. The average stent diameters of the deployed SG (blue, red and
black curve) in the iliac SG parts are close to the nominal diameter (cyan curve) with exception
of the regions of the distal landing zones (indicated by green color) where the SG is strongly
compressed.

In summary, the mean and the standard deviation of the relative error € are very similar for all
three patients with pi. 1 +0.1 = 6.7+8.7%, peoto. 9 = 5.5+£7.4% and p. 3to. 3 = 5.0£8.2%.
He (=) and o, (=) are the mean and the standard deviation of the relative error € of all three SG
parts of patient = € {1, 2, 3} according to Equation (4.3) and (4.4). The total relative error over
all patients and all SG parts is p. + 0. = 5.6 & 8.1% (cf. Table 4.2).

Considering the change of the average stent diameters induced by the blood pressure change,

the average diameters of the stent at 80 mmHg (dsi’imt(s](i)(g))) (blue curve in Figure 4.4) are
only slightly smaller than the average diameters of the stent at 130 mmHg (&fiﬁlys(s]g?(g))) (red

curve in Figure 4.4).

4.3. Discussion

In this chapter, it was shown that the in-silico EVAR model is applicable to patient-specific ge-
ometries with bifurcated SGs. The qualitative comparison of the deployed stent configuration of
in-silico EVAR and the deployed stent extracted from postinterventional CT data showed very
good agreement despite the fact that certain model parameters, such as constitutive vessel pa-
rameters and the vessel wall thickness, are uncertain. Instead of fully patient-specific parameters,
cohort-averaged and literature-based values had to be used.

Since the exact blood pressure state of the patients at time of the postinterventional CT scans is
unknown, the average diameters of the deployed stent from in-silico EVAR at the assumed dias-
tolic blood pressure of 80 mmHg and at the assumed systolic blood pressure of 130 mmHg were
computed. The in-silico results at the systolic blood pressure can be seen as upper bound and
the in-silico results at the diastolic blood pressure as lower bound when comparing to postinter-
ventional CT data. However, the difference of the deployed stent diameters induced by the blood
pressure change of 50 mmHg is rather small (mean £ std = 2.0+ 1.2% at the proximal SG parts
and mean =+ std = 0.7 + 0.8% at the iliac SG parts).
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The newly developed quantitative validation methodology allowed to plot the average diame-
ters of the stents from in-silico EVAR and the stents extracted from postinterventional CT data
pseudo-continuously along the total length of the SG in the deployed state. The quantitative
comparison of the average stent diameters of the deployed SG from in-silico EVAR and the
average stent diameters from postinterventional CT data showed very good agreement for the
proximal SG parts with the maximum error smaller than 12% and pf +0F = 6.4 +3.4% over all
three patient-specific cases. The comparison of the iliac SG components showed good agreement
with L + o = 2.1 £ 9.3% for the left iliac parts and ¥ + o = 6.6 + 9.8% for the right iliac
parts. In total, the prediction of the stent diameters by the in-silico EVAR model led to slightly
too large diameters compared to the stents extracted from postinterventional CT data. It was also
shown that the in-silico EVAR model is able to properly reproduce nonuniform stent shapes such
as a conical shape in the proximal landing zone. A conical stent shape means that the expansion
diameter of the stent is not constant, i.e., the stent compression is larger at the location of smaller
stent diameter than at the location of larger stent diameter. Mechanically, this results in higher
contact tractions between SG and vessel as well as higher stresses in the stent at the location of
large stent compression. In contrast to [205], only the comparison of stent diameters was used
for validation of the in-silico EVAR model. The position of the stent limbs was not compared
since pre- and postinterventional CT data generally are aligned in different coordinate systems.
Hence, the results of the position comparison strongly depend on the quality of the registration
between pre- and postinterventional CT data. As the order of the position comparison should
be in the range of a few millimeters, this effect would dominate the results. In contrast to the
position comparison, the diameter comparison is independent of the global position of the stent.

Although the preinterventional vessel diameters and the degree of SG oversizing in the prox-
imal landing zone are in the same range for all three considered patients (0 = 17 — 20%, Ap-
pendix A.1), the deployed SG configurations of the three patient-specific cases are very different
in the proximal landing zone. The SG diameter in the deployed state in the proximal landing
zone of patient 1 with a mean diameter of 22.9 mm is significantly smaller than the correspond-
ing SG diameters of patient 2 with a mean diameter of 25.9 mm and patient 3 with a mean
diameter of 24.5 mm. Here, the mean diameter corresponds to the in-silico EVAR results in the
proximal landing zones at 130 mmHg blood pressure. One possible explanation is the highest
degree of calcification of patient 1 compared to the other two patient-specific vessels. Calcifica-
tions are very stiff vessel constituents which reduce the widening of the vessel by the oversized
SG. Thus, the deployed SG diameter is smaller. These different characteristics of the deployed
SGs in the landing zones of potentially similar clinical cases (similar with respect to the SG de-
vice, the preinterventional proximal vessel diameter and the degree of SG oversizing) raise the
need for patient-specific simulations which consider the patient-specific geometry of the ves-
sel and which incorporate ILT and calcifications as additional vessel constituents. However, as
in this study only three clinical cases were considered, these results do not allow for general
conclusions.

4.4. Limitations

Apart from the basic model assumptions of the vessel model, the SG model and the in-silico
SG P&D methodology stated in Section 3.7, this study is affected by the following limitations.
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4. Validation of the in-silico EVAR model

First, the resolution of patient-specific CT scans both of the preinterventional and postinterven-
tional data limits the accuracy of both the prediction by in-silico EVAR and the validation using
postinterventional CT data.

Second, the blood pressure at time of imaging had not been recorded. Hence, the blood pres-
sure corresponding to the stent configuration segmented from postinterventional CT data is un-
known. Instead, diastolic and systolic blood pressures are considered in in-silico EVAR and were
used as lower and upper bound in the comparison between in-silico results and postinterventional
CT data.

Third, the quantitative comparison of in-silico results and postinterventional CT data was
based on average diameters only. In future work, the cross-sectional shape, such as the ovaliza-
tion of stents, could be compared as well.

Finally, the validation study is only a comparison of the deployed stent configurations, i.e.,
a pure validation of the kinematic behavior. However, other important quantities such as ves-
sel stresses or contact tractions between SG and vessel could not be directly validated by this
validation methodology.

4.5. Conclusions

In this chapter, a qualitative and quantitative validation methodology has been developed, which
is based on a comparison of average stent diameters between in-silico results and postinterven-
tional CT data. The validation methodology measures average stent diameters
pseudo-continuously along the total length of the deployed SG and is applicable to any SG
device.

The validation of the in-silico EVAR model was performed for three patient-specific cases
treated by Cook Zenith Flex/Spiral-Z® SGs. The good agreement between in-silico results and
real-world postinterventional CT data with a total relative error in the prediction of the SG ex-
pansion diameter over all patients of mean + std = 5.6 + 8.1% makes the use of the in-silico
EVAR model very promising.
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5. Application to patient-specific
cases: toward a predictive tool

EVAR as standard method of treating AAAs requires a complex preinterventional planning pro-
cess which must be individually adapted to the patient-specific case. As the only patient-specific
information for assessment of the applicability of EVAR, the SG selection and the SG sizing
is the data obtained from medical imaging, this assessment is a great challenge, requires a lot
of experience and is to a certain extent the subjective choice of the clinician (cf. Section 1.2).
Due to the good predictive quality of in-silico EVAR, as demonstrated in Chapter 4, it can be a
promising planning tool in the preinterventional planning phase of EVAR with versatile applica-
tions.

Available patient-specific in-silico EVAR studies are mostly restricted to the prediction of the
deployed state of the SG and investigations directly associated to the predicted deployed state
(cf. Section 1.3.4). However, the bridge to an advanced clinical application with a multivariate
assessment of the in-silico EVAR outcome by several EVAR quality parameters, as proposed in
Section 3.6.2, is rarely given. In this chapter, possible approaches for how the use of in-silico
EVAR as objective tool can optimize the preinterventional planning process and hence reduce
EVAR complication rates are investigated. The following three applications are illustratively
demonstrated in this chapter to indicate the potential benefit of using in-silico EVAR in the
preinterventional planning process of EVAR:

e Predictive assessment of the likelihood of EVAR related complications based on a subset
of mechanical and geometric parameters as proposed in Section 3.6.2.

e Optimization of the SG selection from the portfolio of common commercial SG devices.

e Assessment of SG misplacement, i.e., assessment of the outcome if the SG is not perfectly
placed at a location slightly distal to the branch-offs into the renal arteries.

This list of demonstrated applications of in-silico EVAR as predictive tool is by far not complete
(cf. Section 1.2). Rather, the intention of this chapter is to show illustratively some major po-
tential applications than provide a full overview. While the first two points test the applicability
of EVAR and are aimed at giving the best possible outcome for the patient-specific case, the
third point investigates the impact of potential non-ideal performance of the clinician during the
EVAR intervention.

This chapter is structured as follows: in Section 5.1, the process chain to use in-silico EVAR
as predictive tool is summarized. Afterwards in Section 5.2, the aforementioned applications of
in-silico EVAR are illustratively shown. The results of Section 5.2 are discussed in Section 5.3.
Finally, limitations and conclusions of this study regarding the application of in-silico EVAR as
predictive tool for clinical cases are stated in Section 5.4 and Section 5.5, respectively.
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The content of this chapter is largely based on work previously published by the author of the
present thesis, namely [107, 108].

5.1. Methods

To use in-silico EVAR as predictive tool for clinical cases, a continuous and largely fully auto-
mated process chain is utilized, which is shown in Figure 5.1. The methodologies of the single
steps of this process chain were stated in Chapter 3. In this section, only the sequence of the
sequential steps of the process chain are summarized.

graft-vessel gap [mm)]
3.0

2.1
14
0.7
0.0

Medical imaging Model generation Simulation Postprocessing
(In-silico SG P&D methodology)

Figure 5.1 Process chain for the predictive use of in-silico EVAR in the preinterventional plan-
ning phase. Modified figure reproduced with permission from [108].

First, the patient-specific vessel geometry is semi-automatically segmented from preinterven-
tional CT data using commercial segmentation software. Subsequently, a realistic vessel simula-
tion model is fully automatically created from the segmented vessel geometry (cf. Section 3.3).
The vessel model includes ILT and calcification and considers a physiological blood pressure
state. Throughout this chapter, the systolic blood pressure state is considered which is assumed
to be p¥*° = 130 mmHg. In addition, a SG model is generated fully automatically by specifying a
SG device and a SG size (cf. Section 3.4). Afterwards, using the in-silico SG P&D methodology
proposed in Section 3.5, the postinterventional vessel and SG configuration is predicted.

Based on the predicted postinterventional vessel and SG configuration, the complication like-
lihood after EVAR is estimated. For this purpose, geometric and mechanical parameters, such as
SG induced tissue overstresses and the graft-vessel gap, are used (cf. Section 3.6). SG induced
tissue overstresses are characterized by an overloading of the surrounding arterial wall. The gap
between graft and the luminal vessel surface is a measure of the quality of seal between the SG
and vessel in the SG landing zones. A large gap between SG and vessel in the landing zones
increases the likelihood of type I endoleaks.
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Four clinical cases are considered in this study with patient characteristics provided in Ap-
pendix A.1. The overview of the respective vessel and SG models is provided in Section 3.3 (cf.
Figure 3.7) and Section 3.4 (cf. Figure 3.11), respectively.

Throughout this chapter, it is assumed that the most proximal 20 mm of the SG serve as prox-
imal SG landing zone. Hence, in the calculation of EVAR quality parameters (cf. Section 3.6) re-
lated to the proximal landing zone, a length of L ,..x = 20 mm is assumed for all patient-specific
cases to obtain comparable results. For improved visualization of the results that correspond to
the proximal landing zone, a projection of the results into the flat auxiliary XZ -plane is used in
the presentation of the results. The auxiliary Xz -plane represents the uncoiled lateral surface of
a virtual cylinder with radius R = 15 mm (cf. Appendix A.8), where X describes the circum-
ferential direction of the SG and Z describes the axial direction of the SG with positive values
of Z pointing in proximal direction of the SG.

5.2. lllustrative applications and selected results

In this section, three different applications of in-silico EVAR as patient-specific, predictive tool
are presented. First, in Section 5.2.1, the complication likelihood is estimated by considering
four patient-specific cases. Then, in Section 5.2.2, it is demonstrated how in-silico EVAR can be
used to assist the clinician in the selection of the most suitable SG device during the preinter-
ventional planning process. Finally, the influence of a potential SG misplacement in the medical
intervention is assessed for one patient-specific case in Section 5.2.3.

5.2.1. Assessment of EVAR complication likelihoods

For the sake of clarity, in the following only the results with regard to some EVAR quality
parameters are presented. Since this section is supposed to demonstrate the idea of how in-silico
EVAR can be used to predict the patient-specific complication likelihood, it is not essential to
evaluate the four patient-specific cases with respect to all EVAR quality parameters proposed in
Section 3.6.2. First, in Section 5.2.1.1, the in-silico EVAR outcome is assessed with respect to
the postinterventional configuration of SG and vessel. Then, SG induced tissue overstresses are
considered in Section 5.2.1.2. Finally, it is focused on some EVAR quality parameters related to
the SG landing zone in Section 5.2.1.3.

5.2.1.1. Postinterventional configuration of stent-graft and vessel

In Figure 5.2, the postinterventional configuration of the elastically deformable vessel and SG
model based on in-silico EVAR are presented for an internal blood pressure of
p¥* = 130 mmHg. For patient 2, 3 and 4, radial graft buckling is only apparent in the proxi-
mal and distal landing zones and longitudinal graft buckling in the curved iliac parts. In contrast,
for patient 1 radial graft buckling is apparent across almost the entire SG since the SG is in con-
tact with the ILT even in the aneurysm sac. Additionally, patient 1 possesses the highest degree
of calcification, i.e., additional stiffening of the vessel, which may reduce the widening of the
vessel by the SG and may lead to increased buckling of the SG. The SG almost fully adapts to the
vessel geometry in all four cases, i.e., straightening of the vessel is insignificantly small even in
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Patient 1 Patient 2

l || Frag|| = 4.7 N / | Faragl| = 3.5 N

Patient 3 Patient 4

\ /

|| Farag|| = 3.9 N

1 Farasl| = 96 N

Figure 5.2 Postinterventional SG and vessel configurations as well as SG drag force F;,, of the
four patient-specific cases for an internal blood pressure of p*** = 130 mmHg.

the strongly angulated iliac arteries. In case of patient 4, slight SG kinking at the bifurcation into
the iliac arteries is visible due to high angulation of the iliac arteries and a luminal narrowing at
this location.

The SG drag force, as defined in Equation (3.104), is directly related to the deployed SG
configuration since it is the integration of the spatially constant hydrostatic blood pressure over
the luminal surface of the SG in the deployed state. Substantial differences in the magnitude of
the SG drag force are visible in Figure 5.2. While patient 2 reveals the smallest SG drag force
(|| Farag|| = 3.5 N), patient 4 shows a relatively large SG drag force (|| Fyrag|| = 9.6 N) that may
indicate an increased likelihood of SG migration. This is mainly due to the high angulation of
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the iliac arteries of patient 4 with respect to the proximal part of the vessel. While the magnitude
of the SG drag force is substantially different among the four patient-specific cases, the direction
of the SG drag force is orientated in anterior (negative Y -direction) and distal direction (negative
Z-direction) in all four patient-specific cases.

5.2.1.2. Tissue overstress after EVAR

Patient 1 Patient 2
preinterventional postinterventional difference preinterventional postinterventional difference
Patient 3 Patient 4
preinterventional postinterventional difference preinterventional postinterventional difference
v. Mises Cauchy stress [kPa] v. Mises overstress 6° [kPa]
0.0 70.0 140.0 210.0 300.0 —100.0 —50.0 0.0  50.0 100.0
H\‘\ \HH‘\ \HH‘\ “

Figure 5.3 Preinterventional and postinterventional vessel stresses as well as SG induced vessel
overstresses 6*°. Modified figure reproduced with permission from [107].

In Figure 5.3, preinterventional and postinterventional vessel stresses at the systolic blood
pressure state of p*% = 130 mmHg are shown. Furthermore, vessel overstresses 54° being the
difference between the post- and preinterventional stresses, as defined in Section 3.6.2.1, are vi-
sualized. Positive overstresses characterize regions of the arterial wall in which the postinterven-
tional tissue stresses are larger than the preinterventional tissue stresses. Negative overstresses
indicate regions in which the tissue stresses before EVAR are larger than the tissue stresses after
EVAR.

The insertion of the SG yields vessel stresses above 300 kPa in the proximal and distal landing
zones in the model of all four patient-specific cases as well as in the highly curved iliac parts
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of patient 1. In all four patient-specific cases local tissue overstresses 6*° of up to 100 kPa
exist mainly in the proximal and distal landing zones where passive fixation by SG oversizing is
desired. The insertion of the SG reduces the wall stresses in the aneurysm sac in case 2, 3 and 4.
In case of patient 2 and 4, the SG is not in contact with the ILT in the aneurysm sac. Hence, the
load on the vessel wall is fully removed resulting in zero vessel stresses in the aneurysm sac. In
case of patient 1 the luminal diameter in the aneurysm sac is relatively small due to a relatively
thick ILT layer. This means the SG is almost fully in contact with the ILT in the aneurysm sac.
Therefore, the wall stresses in the aneurysm sac do not decrease in the model.

5.2.1.3. A focus on the landing zone

In Figure 5.4, geometrical and mechanical characteristics of the proximal SG landing zone in the
deployed state are visualized for the four patient-specific cases. The graft-vessel gap z$2 and
the sealing pattern as introduced in Section 3.6.2.3 are shown to investigate the quality of seal
in the proximal landing of the four patient-specific cases. Further, the normal contact pressure is

considered to assess how uniformly the SG is pressed against the vessel.

All four models of the patient-specific cases have in common that the SG is mainly attached
to the luminal vessel surface at the locations where the stent rings are attached to the graft.
This results from the radial buckling of the graft whose buckling pattern is mainly driven by the
shape of the stent rings. At locations of the graft where the stent rings are attached, the relatively
stiff stent wires prevent the graft from buckling. Hence, if radially compressed the graft buckles
mainly in-between the stent wires. While patient 3 and 4 show a very uniform attachment of the
SG to the luminal vessel surface for the total lateral surface of the SG in the proximal landing
zone with no severe graft-vessel gaps, the SG-vessel attachment in case of patient 1 and 2 is
much more nonuniform.

The in-silico deployment of the SG model in the vessel geometry of patient 1 reveals one
region of relatively large graft-vessel gaps of up to z$2 = 5 mm in which the likelihood of a
type I endoleak may be increased. In this region, the stent ring is not able to fully attach to the
luminal vessel surface inducing relatively large gaps between SG and vessel.

Without showing large graft-vessel gaps, the SG-vessel attachment of patient 2 is nonuniform.
At one side ()u( > 0) the SG is almost fully in contact with the luminal vessel surface, i.e., only
very little graft buckling is present. This means that at this side, graft-vessel gaps are mainly
zero. In total, this leads to the largest SG fixation area a>® in the proximal landing zone of all

prox

four patient-specific cases. The SG fixation area a;‘ﬂx as introduced in Equation (3.106) defines

the area of the outer graft surface in the SG landing zone that is in contact with the luminal vessel
surface. However, the normal contact pressure p,, between SG and luminal vessel surface is rel-
atively small on this side (X > 0) as well. This means that although the SG fixation area a%ﬁ%ﬂ( is
relatively large, the force transmission between SG and vessel, which is required for the passive
fixation of the SG in the landing zone, is small. Consequently, although patient 2 has the largest

fixation area a;‘ﬁ( = 790 mm in the proximal landing zone, the SG fixation force [},;ox = 51.0 N
as defined in Equation (3.105) is the smallest of all four patient-specific cases. If the SG simulta-
neously is subjected to large drag forces (cf. Figure 5.2), this circumstance may be an indicator

that patient 2 is subject to an increased likelihood of SG migration.
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Figure 5.4 EVAR quality parameters in the proximal SG landing zone: graft-vessel gap, sealing
pattern and normal contact pressure between SG and luminal vessel surface. Representation in
3D and in the auxiliary X Z-plane (cf. Appendix A.8).
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5.2.2. Assistance in stent-graft device selection

The clinician usually has to choose the SG from a large portfolio of different SG manufacturers
and different SG sizes, where the final choice of the SG is to a large extent the subjective decision
of the clinician. How in-silico EVAR can make this SG selection more objective and optimized
is demonstrated in Figure 5.5 by comparing the in-silico EVAR outcome of two different SG de-
vices (stent-graft A and B) in the same patient-specific vessel geometry of patient 1. To represent
a realistic setting, SG models of two different manufacturers are compared, where the SG sizing
is based on the manufacturer’s IFU. Based on the IFU of manufacturer A, a SG with a proximal
diameter of D5 = 30 mm is used for patient 1. Based on the IFU of manufacturer B, a SG with
a proximal diameter of D5¢ = 32 mm is recommended for the same patient-specific vessel. The
clinician now has to decide which of the two SGs represents the better solution for patient 1.

Remark. In this section, the comparison is restricted to the comparison between two different
SG devices of different SG manufacturers. However, in a similar manner the in-silico assistance
in the SG device selection could be extended by comparing different SG sizes, such as different
SG diameters or different SG lengths. Since the influence of SG sizing is extensively studied in
Chapter 6 and in order to not repeat results in this thesis, the comparison of different SG sizes is
skipped here.

In the following comparison, only selected EVAR quality parameters are considered. In Fig-
ure 5.5, the quality of seal in the proximal landing zone of the two SG devices is compared.
While stent-graft A results in a slight stent collapse in the proximal landing zone, stent-graft B
provides a very good and uniform seal. The stent collapse of stent-graft A results in a region in
the proximal landing zone where the SG is incapable of properly attaching to the luminal vessel
surface. The occurrence of stent collapse depends on many factors such as the degree of SG
oversizing, the SG design and the morphology of the vessel in the landing zone. While in gen-
eral SGs with large SG oversizing are rather prone to stent collapse [135, 247], in this example,
the SG with a smaller SG oversizing (stent-graft A) is associated with stent collapse. Due to the
larger stent height of stent-graft A compared to stent-graft B, stent-graft A rather tends towards
a stent collapse in the vessel geometry of patient 1. Based on the results of the quality of seal in
the proximal landing zone of patient 1, the likelihood of a type I endoleak could be higher using
stent-graft A than with stent-graft B.

The stent ring height of stent-graft B is smaller. Therefore, in case of stent-graft B two stent
rings are attached to the graft in the region of the proximal landing zone of assumed length of
20 mm. In contrast, in case of stent-graft A only one stent ring of larger stent height is attached
to the graft in the region of the proximal landing zone. Additionally, stent-graft B leads to sub-
stantially larger normal contact tractions between SG and luminal vessel surface, which may be
associated with both the additional stent ring in the proximal landing zone and the larger degree
of SG oversizing of stent-graft B compared to stent-graft A. The substantially larger normal con-
tact tractions of stent-graft B induce an approximately twofold greater SG fixation force Fprox
in the proximal landing zone compared to stent-graft A. Since the SG drag force F;,, does not
substantially vary between the two SG devices, the likelihood of SG migration may be higher
using stent-graft A than using stent-graft B for patient 1.
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Figure 5.5 Comparison of the performance in the proximal landing zone of two different SG
devices deployed in the patient-specific vessel of patient 1. Representation in 3D and in the
auxiliary X Z-plane (cf. Appendix A.8). Modified figure reproduced with permission from [108].

5.2.3. Assessment of stent-graft misplacement

The proximal landing zone is proximally limited by the branch-offs into the renal arteries that
must not be occluded by the covered part of the SG. Since a sufficiently long SG landing zone
is a prerequisite for a proper seal and fixation of the SG, in an ideal medical EVAR intervention
the SG should be placed directly distal to the most inferior renal artery to achieve the maximum
possible length of the proximal landing zone. The medical EVAR procedure is performed under
permanent pulsatile blood flow. Further, fluoroscopy imaging is used to be able to position the
SG. Both limited resolution of intrainterventional medical imaging and the pulsatile forces on
the SG resulting from the blood flow hamper the exact placement of the SG directly distal to the
most inferior renal artery. Since occlusion of the renal arteries by the covered part of the SG is a
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severe complication that requires secondary interventions [26, 104], the clinician rather tends to
place the SG a bit more distally to ensure that the renal arteries are not covered. However, such
a conservative placement of the SG leaves certain portions of the valuable potential length of the
proximal landing zone unused. How this shortened length of the proximal landing zone influ-
ences the quality of the EVAR outcome is illustratively demonstrated in this section considering
the vessel geometry of patient 2.

In Figure 5.6, the impact of SG misplacement in distal direction is visualized for patient 2.
The SG misplacement of z,;s is measured from the most inferior renal artery as visualized in
Figure 5.6, detail Z. The renal arteries visualized in Figure 5.6 are not part of the vessel model but
are only used for better visualization of the SG misplacement measure x,,;s. The in-silico EVAR
results of a SG placed perfectly distal to the most inferior renal artery, i.e., T, = 0 mm (blue),
a SG placed x,,;s = 5 mm distal of the perfect position (green) and a SG placed x,;s = 10 mm
distal of the perfect position (red) are opposed.

Remark. Using a SG misplacement x.,;s > 0, actually, the overlap lengths of the three SG
components should be increased so as not to cover the bifurcation into the internal iliac arteries
by the distal ends of the iliac SG legs. However, since the focus of this example is only on the
evaluation of the proximal landing zone, the overlap lengths of the three SG components is kept
constant independent of the SG misplacement x ;.

In Figure 5.6, a clear impact of the SG misplacement x,,;s on the in-silico EVAR outcome is
visible, both qualitatively and quantitatively. Qualitatively, the sealing pattern of the three cases
Tmis = 0 mm, T = 5 mm and x,,;s = 10 mm are compared for the most proximal 20 mm
of the SG model. While in the case of z,;; = 0 mm, i.e., perfect placement of the SG, seal
is given almost over the full assumed axial length L. = 20 mm of the proximal landing
zone, the sealing is clearly reduced in the case of a SG misplacement of z,,;; = 5 mm and
Tmis = 10 mm (sealing pattern in Figure 5.6). For a SG misplacement of z,,;s = 10 mm, only
the most proximal 5 mm of the SG provide seal which may not be sufficient. Since in case of
Tmis > 0, the considered most proximal 20 mm of the SG are placed already in the dilated part of
the aorta, i.e., at the proximal shoulder of the AAA, the SG is not fully in contact with the aorta.
This impact of SG misplacement on patient 2 is also visible when comparing quantitatively the
proximal fixation area aff;ilx, 1.e., the area of the SG that is in contact with the vessel in this
proximal region of L., = 20 mm length (black area in the sealing pattern of Figure 5.6).
While for a perfect placement (2,,;s = 0 mm), a fixation area of a*®! = 790 mm? is given, for

ZTmis = 10 mm the fixation area reduces to a;‘iﬁ{ = 640 mm? (cf. Fipgure 5.6).

The impact of the SG misplacement for patient 2 is even more severe if the normal con-
tact pressure p, and the fixation force Fprox are considered in the proximal landing zone of the
deployed SGs. The reduced fixation area a;‘ﬁ( in combination with reduced normal contact pres-
sures p,, potentially resulting from the reduced degree of SG oversizing in the dilated part of
the aorta, results in a substantially smaller SG fixation force ﬁprox for z,;s > 0. While the per-
fectly placed SG (x5 = 0 mm) results in a proximal fixation force of Fpmx = 51 N, the SG
with misplacement of x,,;; = 10 mm results only in a SG fixation force of Fprox = 25 N (cf.
Figure 5.6).

Consequently, a substantially reduced quality of seal and reduced SG fixation are given for

patient 2 in the case of a certain SG misplacement. Hence, such a predictive assessment of the
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Figure 5.6 Comparison of the in-silico EVAR outcome in the proximal landing zone of patient 2
for SG misplacement of z,;; = 0 mm, x,;s = 5 mm and z,;s = 10 mm in distal direction. The
SG misplacement x,,,;s is measured from the most inferior renal artery. Representation in 3D and
in the auxiliary X Z-plane (cf. Appendix A.8).
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impact of SG misplacement by in-silico EVAR can indicate already in the preinterventional
planning phase that the clinician should focus especially on achieving exact placement of the
SG. Otherwise the EVAR related complication likelihood of for instance type I endoleaks or SG
migration may be substantially increased.

5.3. Discussion

In this chapter, potential applications of in-silico EVAR as predictive tool in the preinterventional
planning phase were illustratively demonstrated. Application of the EVAR quality parameters,
that were introduced in Section 3.6.2, to four patient-specific cases showed substantial differ-
ences in the SG drag force resulting from the internal blood pressure. In all four patient-specific
cases, the drag force is mainly pointing in the anterior and distal directions. This finding is sim-
ilar to most CFD and FSI studies on SG drag forces (e.g., [75, 187]), which in contrast to this
study also considered shear forces acting on the SG.

Using in-silico EVAR, it was shown that the insertion of the SG reduced the vessel stresses
in the aneurysm sac and led to instant shrinkage of the sac diameter in three of four cases.
Shrinkage of the sac diameter is often considered as evidence of clinical success [70, 243] as
this is an indicator that the luminal pressure is removed from the AAA wall. However, local
tissue overstresses of up to 100 kPa could be observed in the SG landing zones, which can lead
to negative effects such as tissue remodeling and aortic neck dilatation [142, 245, 267].

A focus on the landing zone revealed insights into the sealing pattern and gaps between graft
and vessel in the deployed state of the four patient-specific cases. However, it is important to
note, that large gaps between graft and vessel do not necessarily mean that this is a source of
a type I endoleak. It only indicates that in this case the likelihood of developing an endoleak
may be increased. In the landing zone, the SG is usually oversized with respect to the luminal
vessel diameter, which induces radial buckling of the graft. Since graft buckling can also lead to
relatively large graft-vessel gaps of a few millimeters, which may not be severe for the detection
of endoleaks, the stent-vessel gap as introduced in Equation (3.108) may be a better measure for
the detection of stent collapse and the associated increased risks of type I endoleaks.

The comparison of two commercial SGs in the same patient-specific vessel geometry was
presented and it was indicated how this comparison with respect to EVAR quality parameters
can support the clinician in the SG selection during the preinterventional planning process. In
this illustrative example, only two SG devices were compared. However, in a clinical setting this
process is even more complex and multivariate comparison, where not only the SG device but
also the SG size must be considered.

Misplacement of the SG during the medical EVAR intervention is discussed in the literature
mainly with respect to misplacement in proximal direction, i.e., coverage of renal arteries and re-
sulting renal ischemia [26, 168]. However, the influence of SG misplacement in distal direction,
where parts of the potential proximal landing zone remain unused, is insufficiently discussed in
the literature. For the studied patient-specific case, SG misplacement in distal direction showed
a crucial impact on the quality of the in-silico EVAR outcome. A SG misplacement in distal di-
rection of 10 mm lead to a substantial decrease in the fixation area and the proximal SG fixation
force for the considered patient-specific case. The main reason for this finding is that the most
proximal parts of the SG, that are supposed to build the sealing zone, are partly positioned in the
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dilated part of the vessel. Hence, only a small portion of the SG is in contact with the vessel in
the potential landing zone. Further, the degree of SG oversizing is much smaller in the dilated
part of the vessel which usually induces smaller SG fixation forces. The relation between SG
oversizing and SG fixation forces will be studied in detail in Chapter 6. However,the extent to
which the quality of seal and the SG fixation are reduced by SG misplacement in distal direc-
tion strongly depends on the vessel geometry of the patient-specific case and should be assessed
individually in the preinterventional planning phase. Especially in the case of a short proximal
neck length, the impact of SG misplacement in distal direction may be essential.

5.4. Limitations

Besides the basic assumptions stated in Section 3.7, this illustrative study on the application of
in-silico EVAR as predictive tool is subject to the following limitations. First, the in-silico EVAR
model used to predict the postinterventional SG and vessel geometry so far was only validated
with respect to the postinterventional stent configuration (cf. Chapter 4), i.e., with respect to its
kinematic behavior. However, direct validation of the mechanical and geometrical EVAR quality
parameters that were used to assess the quality of the EVAR outcome has not yet been performed.
Validation of these mechanical and geometrical parameters is technically impossible or at least
extremely challenging with respect to the development of suitable experiments for validation.

Second, in this chapter, the EVAR quality parameters were considered separately. However,
for the assessment of the overall likelihood of EVAR related complications, these parameters
need to be considered in combination with one another. For instance, large SG drag forces do not
necessarily mean that the likelihood of SG migration is large so long as the SG fixation forces are
large enough to resist these SG drag forces. However, a valid metric using these EVAR quality
parameters in combination first needs to be developed in future studies. The metric combining
these mechanical and geometrical parameters should group the in-silico EVAR results in the
range between “high risk of complications” and “no risk of complications” and thus make the
in-silico EVAR outcome easily interpretable by a clinician.

Finally, setting up the computational model is a largely automated process. Nevertheless, the
semi-automated segmentation process of the patient-specific vessel geometry required approx-
imately 3 h per patient and should be further automated for clinical applicability. Running the
simulations required approximately 36 h per patient on 112 cores (Intel Haswell nodes, Super-
MUC, Leibniz Supercomputing Centre). Algorithmic optimizations and model reduction tech-
niques [4] should be considered in future studies to use in-silico EVAR as predictive tool in
clinical practice.

5.5. Conclusions

As a first step toward a patient-specific, predictive tool, in-silico EVAR was applied to four
clinical cases with bifurcated SGs and sophisticated models of the vessel that include ILT, cal-
cifications and an anisotropic, hyperelastic material model for the vessel wall. Patient-specific
AAAs have extreme variance in their geometric characteristics. Since the optimal treatment of
the AAA depends strongly on the vessel geometry, preinterventional planning of EVAR requires
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personalized medicine where decisions regarding the treatment process need to be adapted to the
patient-specific case. This study provided basic ideas of how in-silico EVAR can improve these
individual decisions and hence reduce EVAR related complication rates.
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6. In-silico EVAR study of
parameterized vessel and
stent-graft models

EVAR requires SG devices that interact perfectly with the vessel such that the aneurysm sac
is permanently excluded from the main blood flow and the AAA is prevented from rupture.
Especially in case of unfavorable vessel geometries, EVAR may fail or lead to possible secondary
interventions. In contrast, EVAR is considered to be successful if the aneurysm stays excluded
and has no expansion for several years after the intervention. Reasons for immediate or long-
term failure of EVAR are difficult to identify, but both wrong SG sizing [46, 143, 245, 257] and
inappropriate vessel geometries [63, 233, 275] are frequent explanations in literature.

The objective of this chapter is to investigate the influence of the vessel and SG geometry on
EVAR outcomes from an engineering perspective. A large parameter study of parameterized ves-
sels and SGs may help to give answers to open question such as the best value for SG oversizing
[34, 257] depending on the vessel geometry. It may provide clarification on specific questions,
such as whether excessive SG oversizing can compensate the drawbacks of EVAR in unfavorable
aortic morphologies. This hypothesis is presumed by van Keulen et al. [256] whereas Canaud et
al. [34] report adverse effects of excessive SG oversizing especially in unfavorable aortic mor-
phologies such as large neck angles.

Some studies (e.g., [6, 7, 53, 206, 212]) have already been conducted to evaluate the influ-
ence of vessel and SG parameters on EVAR outcomes based on in-silico approaches (cf. Sec-
tion 1.3.4). However, most of these studies used only a very limited number of EVAR quality
parameters and a very limited number of variations of the vessel and SG geometry. De Bock et
al. [53] varied the neck angle, the SG position and the degree of SG oversizing in a full factorial
analysis of in total 72 simulations in an angulated tube-shaped vessel with linear elastic material
properties and without consideration of ILT and calcifications. To asses the quality of the EVAR
outcome, they defined four EVAR quality parameters.

In this chapter, a full parameterization of an AAA by 16 parameters is proposed. Furthermore,
a full parameterization of a SG by seven parameters is used. The deployed state of the elastically
deformable SG in a hyperelastic, anisotropic vessel with consideration of ILT and calcifications
is approximated by the in-silico SG P&D methodology presented in Chapter 3. The in-silico
EVAR outcome is investigated at the diastolic as well as at the systolic blood pressure state by
consideration of several mechanical and geometrical parameters to assess the quality of the in-
silico EVAR outcome with respect to EVAR complication likelihoods. These mechanical and
geometrical parameters have been introduced in Section 3.6.2 and are denoted as EVAR quality
parameters. In total, 146 EVAR simulations of 146 different realizations of the parameters of
the vessel and the SG are performed. For each of these EVAR simulations, SG parameter con-

129



6. In-silico EVAR study of parameterized vessel and stent-graft models

tinuation (Section 3.5.3) is used to investigate SG oversizing between 5% to 40% in a computa-
tionally efficient way. A large statistical analysis of the influence of vessel and SG parameters,
inlcuding the degree of SG oversizing, on the EVAR quality parameters is given in this chapter.
Furthermore, the impacts of specific parameters, such as the influence of patient-specific vessel
uncertainties [23], the influence of aortic neck calcification and the influence of the aortic blood
pressure state on the quality of the in-silico EVAR outcome are investigated in this chapter.

This chapter is structured as follows: in Section 6.1, a full parameterization of vessel and SG
is defined and the framework of the proposed parameter study is described. In Section 6.2, the
results of the parameter study are evaluated statistically, quantitatively and qualitatively. The
discussion of these findings is done in Section 6.3. Finally, limitations and conclusions of this
study are provided in Section 6.4 and 6.5, respectively.

This chapter is a revised version of the previously published work by the author of this thesis,
namely [109].

6.1. Methods

In the following, first a full parameterization of the vessel (Section 6.1.1) by 16 parameters and a
full parameterization of a tube SG (Section 6.1.2) by 7 parameters are presented. Subsequently,
the framework of the proposed parameter study is outlined in Section 6.1.3.

6.1.1. Vessel parameterization

Although most EVAR related complications are associated with inappropriate conditions at the
aortic neck, a realistic representation of the total AAA is used due to two main reasons. First,
some EVAR quality parameters, such as the SG drag force and the mean diametric graft compli-
ance, require the consideration of the total aorta covered by the SG and not only the neck region
(cf. Section 3.6.2). Second, all results presented in this study shall be transferable to real, patient-
specific cases. Nevertheless, this study is restricted to an AAA and a SG without bifurcation into
the iliac arteries to reduce the complexity of the vessel and SG parameterizations.

The proposed parameterized vessel is rotationally symmetric around the plane and smooth
curve CAO(S) C R?, which is a higher order spline (Trelis 15.1, Csimsoft, Utah) in the global
XY -plane through the five points E,, S;,, O, Sq, E4 according to Figure 6.11. The locations of
the five points are defined by the seven parameters: proximal neck angle o, distal neck angle a4,
proximal neck length [,,, distal neck length [4, proximal eccentricity e,,, distal eccentricity eq and
aneurysm length [a . Further, the three-dimensional representation of the vessel is defined by
the six parameters: proximal neck diameter d,,, distal neck diameter d4, AAA diameter daaa,
proximal shoulder length [y, distal shoulder length [y, vessel wall thickness ¢, and maximum
ILT thickness tii;r. The proximal shoulder length [, and the distal shoulder length /4 define the
length of the transition zone between the diameter of the “aneurysmatic” vessel and the “healthy”
vessel in the neck and the distal part, respectively.

The luminal region is rotationally symmetric around the plane curve CA°(3) C R? through
the five points E,, S,, O, S4, Eq according to Figure 6.111 where the point O is shifted by
the eccentricity e; with respect to the point O. The eccentricity e; of the luminal centerline is
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Figure 6.1 Definition of the curve C*°(s) through the five points E,, S,, O, Sq and E4 ().
Definition of the curve éAO(é) through the five points E,, S, O, Sq and Eq and 3D geometry of
the parameterized vessel (II); renal arteries are not part of the computational model. Geometry
of the parameterized SG and visualization of the proximal and distal landing zones (blue) of
length Ly,ox and Ly, respectively (II). Placed SG distal to the branch-offs into the renal arteries
(IV). Reproduced with permission from [109].

implicitly given by
er = laaa (sgn (ap)kp — sgn (aq)ka) (6.1)

where sgn(e) is the sign function and , = [|C*"(s = S,)|| as well as rq = ||CA" (s = Sq)||
are the curvatures of the curve C° at the points S, and Sy, respectively. The heuristic definition
of e; in Equation (6.1) is motivated by the fact, that the ILT thickness generally is larger at the
flow averted side than at the flow faced side.

Spots of calcified tissue are considered in the domain of the vessel {25° according to Sec-
tion 3.3. In this chapter, calcifications spots are predominantly located in the proximal landing
zone. To assess the degree of calcification, the percentage circumferential proximal neck calcifi-
cation E;?})CX is introduced which is the ratio of the luminal surface in the proximal landing zone of
the vessel covered by calcifications and the total luminal vessel surface of the proximal landing
zone. Vessel uncertainties [23] (e.g., the vessel wall thickness ¢, and the vessel wall stiffness)
are quantities of the vessel model that are usually not easy to obtain and which are mostly incor-
porated in terms of population-averaged quantities. To investigate the impact of the vessel wall
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stiffness in a strongly simplified manner, the scaled SEF of the vessel wall
\ijall ,V\ijall (62)

is defined, where -y is a scalar-valued scaling parameter. The parameter ~y is spatially constant
for any X € Q¥ i.e., intrapatient variability of y is not considered.
In total, the set QAO = {O_/p, oyq, lp, ld, €p; €d;s ZAAA, dp, dd, dAAA, lspa lsda tw, tiir, E?LCX, ’7} of 16

parameters ¢*° € GA° uniquely describes the vessel model with an AAA as visualized in Fig-
ure 6.11+I1.

6.1.2. Stent-graft parameterization

In clinical practice, the length of a SG generally is chosen as long as possible to obtain relatively
long landing zones at the proximal and distal ends where the maximum length in the given
problem is limited by the renal arteries at the proximal end. For simplicity, an AAA without
bifurcation into the iliac arteries is considered. Further, the renal arteries are not part of the
computational model. However, the points E,, and E4 define the locations of the renal arteries
and the bifurcation of the iliac arteries, respectively (cf. Figure 6.111+1V). Therefore, in the
model the location of the two points E;, and Ey define the maximal possible coverage length of
the SG (cf. Figure 6.11V). The aorta proximal of the point E;, and distal of the point E4 must
not be covered by the SG as this would occlude the renal arteries and parts of the iliac arteries,
respectively. Under the assumption that the maximal possible coverage length of the SG is used,
the length L5C of the SG is implicitly given by the length of the luminal vessel centerline CA°
between the two points E, and Eq (cf. Figure 6.11I) according to

Ye dX,
56 — / ds = / d\/ dYCA° d}/éAo, 6.3)
cAo

where X ;5. and Y4, are the coordinates of the curve CA° in the X Y -plane.
Given the degree of SG oversizing o as defined in Equation (1.1), the nominal diameter of the
SG is implicitly given by

D¢ = (04 1)D*° = (0 + 1)d,, (6.4)

where DA° = d,, is the inner wall diameter of the parameterized vessel in the proximal landing
zone. Sinusoidally shaped stent limbs according to Equation (3.56) are considered, where h° is
the height of the stent limb and p° is the number of sinusoidal periods per stent limb. All n®
stent limbs are equally distributed along the graft length and are predeformed by w according
to Equation (3.61). Graft thickness of ¢ = 0.05 mm and thickness of d° = 0.33 mm of the
stent wires with quadratic cross section are chosen to be in the range of commercial SGs [60]
and are not modified in this chapter. Constitutive SG parameters are chosen to be in the range of
commercial SGs with stainless steel stent and ePTFE graft (ES = 210 GPa [60], v = 0.3 [60],
ES = 55.2 MPa [139], & = 0.46 [139], cf. Section 3.4.2).

In total, the set G356 = {hS,p5,nS w, 1%, d5} uniquely defines (uniquely with exception
of its diameter DSF) the geometry of the SG in the preinterventional configuration
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Q({)S’G} = Q8 U QF by six parameters g5¢ € G5€ (cf. Figure 6.111I). In contrast to the discrete pa-
rameters g € G = G2° U G5, the degree of SG oversizing o(D3%), which implicitly defines the
nominal diameter of the SG, is treated as continuous parameter by a SG parameter continuation
approach as described in Section 3.5.3.

6.1.3. Framework of the parameter study

In the following, variations of vessel parameters ¢*° € G*° and SG parameters ¢°¢ € G5

around the basic vessel and SG with the parameters ¢ (cf. Table 6.2) are considered and their
influence on the EVAR quality parameters is investigated. In total, 20 EVAR quality parameters
are considered quantitatively to assess the quality of the in-silico EVAR outcome with respect
to EVAR complication likelihoods. Accordingly, the set of EVAR quality parameters Q with the
single parameters ¢ € Q is introduced. A summary of the considered EVAR quality parame-
ters is provided in Table 6.1. For the definitions of these parameters, the reader is referred to
Section 3.6.2.

Several EVAR quality parameters are related to the landing zones, i.e., to the sealing and
fixation quality in the landing zones. In Section 3.6.2, the EVAR quality parameters were de-
fined without specifying the location of the landing zone. In this chapter, the passive SG fixation
force FIZ is evaluated in the proximal landing zone Fprox and the distal landing zone Fdist. All
other parameters related to the landing zone are only evaluated in the proximal landing zone.
Further, the SG drag force Fi;,, is divided into a lateral component Fj,,, « and an axial compo-
nent Fypag y-

The lengths and areas of the proximal and distal landing zones of the parameterized vessel
and SG model in the preinterventional configuration are given by (cf. Figure 6.1)

SP
Aprox = TDC Ly = 7D / ds =~ 7D, (6.5)
EP
Eq
Agist = 7D Lgiyy = mDS¢ / ds ~ 7D5Cl,. (6.6)
Sa

The area of the proximal (distal) landing zone of the SG in the current configuration, i.e., in the
deployed state, is given by (cf. Equation (3.101))

prox = / [|JE(F)"TNC|dAprox, (6.7)
G "OX

Qs = / IS (FC) TN dAgs. (6.8)
FG

ex,dist

Using the 22 geometrical parameters ¢ € G = GA° U G5¢ and the degree of SG oversiz-
ing o, the vessel and the SG are uniquely defined in their preinterventional configuration Q4°
and 3¢, respectively (cf. Figure 6.1). Since a full factorial analysis for the given number of
parameters g € G and the number of parameter variations is not achievable, a basic vessel and
SG geometry with the parameters ¢ (cf. Table 6.2) is used from which single parameters g € G
are modified while all others are kept constant. For each realization of the parameters g € G,
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Table 6.1 Summary of the considered EVAR quality parameters ¢ € Q. The definitions of these
parameters have been introduced in Section 3.6.2.

Symbol | Description Symbol | Description
ol Max. vessel stress ase Proximal fixation area
o Max. vessel overstress 2G8 Max. graft-vessel gap
a1 | Max. vessel relief Z5A Max. stent-vessel gap
6é\éwau Max. aneurysmatic overstress 63?0)( Effective SG oversizing
Pn,99 Max. normal contact pressure | €. Min. stent expansion
059 Max. stent stress yrsnax Max. stent asymmetry
Fprox Proximal passive fixation force | ¢ Max. conical stent shape
Fliee Distal passive fixation force uSPul | Max. graft movement
Firagx | Lateral drag force uSpul Max. stent movement
Faragy | Axial drag force C Mean diametric graft compliance

the deployed SG configuration is evaluated at the hydrostatic, diastolic blood pressure level of
piast = 80 mmHg and at the hydrostatic, systolic blood pressure level of p* = 130 mmHg
since some EVAR quality parameters may be critical in the diastolic state, others in the systolic
state. 73 different realizations of the parameters g € G (cf. Table 6.2) are considered which
together with the two considered blood pressure states result in n = 73 - 2 = 146 required sim-
ulations. This includes n*° = 120 and n°® = 26 different realizations of the vessel parameters
and the SG parameters, respectively.

Figure 6.2 provides an overview of the proposed framework to assess relations between the
vessel as well as SG parameters ¢ € G and the EVAR quality parameters ¢ € Q. For each
realization of the parameters g € G, the in-silico SG P&D methodology proposed in Sec-
tion 3.5.1 is used to deploy the SG with a degree of oversizing of o = 5%. Subsequently,
the degrees of SG oversizing in the range between o = 5% to opc = 40% are investigated
in a computationally efficient way by using SG parameter continuation (cf. Section 3.5.3). Us-
ing parameter continuation, it is possible to model all degrees of SG oversizing in the range

SG SG
0 € [o1,0pc| = [%p -1, Ddﬂp — 1] within a single EVAR simulation.

Starting from the results of an EVAR simulation, i.e. the postinterventional state of SG and
vessel, with a SG of diameter DISG the stress-free reference configuration of the SG is contin-
uously changed to the larger diameter DSE, which corresponds to the degree of SG oversizing
of opc (cf. Figure 6.211I). The stress-free reference configurations of stent and graft are modified
such that the degree of stent predeformation w remains constant during SG parameter continua-
tion.

Such a study would be computationally extremely expensive if SG parameter continuation is
not used since for each considered degree of SG oversize, a separate EVAR simulation would be
required. Assuming that the degree of SG oversizing should be investigated in increments of 5%
in the range from 5% to 40%, such a study would require eight EVAR simulations per considered
parameter realization. Together with the large amount of considered realizations of the parame-
ters g € G in this study, this would result in 8 - 146 = 1168 required EVAR simulations which
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Table 6.2 Overview of vessel and SG parameters: basic parameters ¢ that describe the basic
vessel and SG configuration, range [gumin, max] as well as number of variations #g; of the pa-
rameters used in the parameter study. Parameters highlighted in gray are varied in the parameter
study. Reproduced with permission from [109].

Vessel parameters g4° € GA©

ap | o | Ip la | d* | e | laaa | dana | 1% | ka | tw | tur | 7 | Eh9S

] | [°] | (mm] | (mm] | [mm] | [mm] | [mm] | (mm] | [mm] | [mm] | [mm] | (mm] | [] | [%]
g 50 0 25 15 24 5 60 45 20 20 1.5 10 1 0
Gmin | -80 0 5 15 16 0 40 45 10 20 0.68 0 0.125 0
gmax| 80 0 30 15 32 12 100 45 40 20 2.6 28 8 70
#g: | 13 1 6 1 5 6 4 1 8 1 7 6 7 7

SG parameters g5¢ € GSG @ same vessel diameters d = dp = dq are used in the proximal and distal neck
hS S nS w ds tG b same neck eccentricities e = ep = eq are used

[mm)] [-] [-] [%] [mm] [mm)] ¢ use of shortened neck length [, = 5 mm to increase potential influence of Isp
g 16 10 5 5 0.33 0.05 d 4 variations of lsp at aup = 0° and 4 variations of lsp, at ap = 50°
Gmin 8 4 3)f 0 0.33 0.05 € variation of percentage circumferential proximal neck calcification @?};X and
Gmax 28 14 | 5)f 25 0.33 0.05 location of the calcification spots
#9i 6 4 DOf 6 1 1 f'nS adapted to SG length LSS gap between stent limbs is kept constant

is not achievable with a reasonable amount of computational power. Further, SG parameter con-
tinuation not only provides results of discrete degrees of SG oversizing but provides the results
continuously over different degrees of SG oversizing within the provided range o € [or, opc]-

Each deployed SG configuration with o € [0y, opc] is postprocessed according to the EVAR
quality parameters ¢ € Q (Section 3.6) to assess the quality of the EVAR outcome with respect to
EVAR complication likelihoods (cf. Figure 6.2IV). Hence, as a result of the proposed parameter
study, the EVAR quality parameters ¢(g*°, g°¢, o) are given as a function of g*°, ¢°¢ and o where
g*° and ¢5C are discrete function parameters and o is a continuously given function parameter.

For the purpose of a statistical analysis, the coefficient of variation is considered, which is
defined as

CVq(o) = 0q(0), Vg € Q, (6.9)
ﬂq(0>
where
fy(0) = iiﬁlgannqi(o), Vg e Q (6.10)
is the mean value and
o,(0) = izlsgd nqi(o), Vg e Q (6.11)

is the standard deviation. ¢; is the value of EVAR quality parameter ¢ € Q for the specific
realization ¢ = 1,2, ..., n that is described by the vessel and SG parameters g;. Coefficients of
variation CV¢(0), mean values 1i,(0) and standard deviations o, (o) are continuously given for
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Figure 6.2 Framework of the parameter study: vessel and SG parameter selection (I); vessel and
SG model generation with an initial degree of SG oversizing of o; = 5% (II); SG parameter
continuation from oy = 5% to opc = 40% (III); evaluation of EVAR quality parameters ¢ € Q
for o € [or, opc] (IV). Modified figure reproduced with permission from [109].

all considered degrees of SG oversizing o € [5%, 40%)] since the EVAR quality parameters ¢;(0)
are evaluated continuously in this range of SG oversizing.

Furthermore, in order to investigate correlations, the degree of SG oversizing is not considered
as continuous but also as discrete design variable. This leads to n = n - n, = 146n, realizations
at which the EVAR quality parameters ¢ € Q are given by discrete values g; where n, is the
number of discrete evaluations of the continuously given degree of SG oversizing o. The Pearson
product-moment correlation coefficient between the EVAR quality parameter ¢ € Q and the
nominal degree of SG oversizing o is given by

)(0; — 0)

¢§ ¢ — q) ¢Z ; — 0)

where g and 0 = 22.5% are the mean values over all 7 realizations of the EVAR quality param-
eter ¢ € Q and the degree of SG oversizing o, respectively. The correlation between two EVAR
quality parameters ¢ € Q and ¢ € Q is given by

1 M:

\V/q € Qa S [017 OPC]) (612)

136



6.2. Results

o i=1 . Y§,§€Q, (6.13)

where ¢ and ¢ are the mean values of the EVAR quality parameter ¢ € Q and the EVAR quality
parameter ¢ € Q, respectively.

6.2. Results

Due to the large amount of data, only the most interesting findings are shown in this section. The
interested reader is referred to Appendix A.9 for a more detailed summary of the simulation re-
sults. This section is organized as follows: first, statistical studies on the total cohort of n = 146
realizations are performed with respect to the influence of vessel and SG parameters as well as
the degree of SG oversizing on the EVAR quality parameters (Section 6.2.1). Afterwards more
specific quantitative and qualitative results are presented for variations of the degree of SG over-
sizing (Section6.2.2), variations of the vessel (Section 6.2.3), variations of the SG (Section 6.2.4)
and variations of the arterial blood pressure state (Section 6.2.5).

6.2.1. Overall impact of vessel and stent-graft parameters

correlation coefficient 7y, [-]

Figure 6.3 Correlation coefficients r, , between EVAR quality parameters ¢ € Q and the degree
of SG oversizing o as defined in Equation (6.12). Reproduced with permission from [109].

Strong positive correlation with correlation coefficients 7, , > 0.75 is given between the de-
gree of SG oversizing o and the following EVAR quality parameters (cf. Figure 6.3): maxi-
mum vessel overstress ¢!, maximum aneurysmatic overstress ggg" , maximum normal con-
tact pressure p, g9, maximum stent stress o5, and the effective degree of SG oversizing 63?0)(.
No correlation is given between the nominal degree of SG oversizing o and the SG drag force
Fiag (140 = —0.05) as well as between the nominal degree of SG oversizing o and the proxi-

mal fixation area af)‘f%lx (rq,0 = 0.04). The last point indicates that a larger area A, that results
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correlation coefficient r4 4 -]
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) 1.0

Max. vessel stress

Max. vessel overstress

Max. vessel relief

Max. aneurysmatic overstress
Max. normal contact pressure
Max. stent stress
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Max. graft movement

Max. stent movement

Mean diametric graft compliance

Figure 6.4 Correlation coefficients r; ; between EVAR quality parameters ¢ and ¢ (II) as defined
in Equation (6.13). Reproduced with permission from [109].

from a larger SG diameter DS does not necessarily lead to a larger proximal fixation area a;iilx
since buckling of the graft reduces the graft-vessel attachment in case of larger degrees of SG
oversizing o.

According to Figure 6.4, strong correlation between the maximum aneurysmatic

A, wall .
overstress gy and the maximum normal contact pressure p, o9 (55 = 0.81), between the

. . _\,wall :
maximum aneurysmatic overstress oo and the maximum stent stress o5, (r; ; = 0.76) as well
as between the normal contact pressure p,g99 and the maximum = stent

stress 05, (rz; = 0.75) is given. Further, the effective degree of SG oversizing 0% strongly

prox
. . . _\,wall .
correlates with the maximum aneurysmatic overstress g (g4 = 0.76), the maximum nor-

mal contact pressure p, g9 (155 = 0.78) and the maximum stent stresses 05 (r;45 = 0.75).
Strong, but less surprising correlations are given between the maximum vessel stress og!! and
the maximum vessel overstress o3a (154 = 0.94), the maximum vessel overstress 3¢ and the
maximum aneurysmatic overstress Gog"" (rg, = 0.85) as well as between the maximum graft
movement u$ P and the maximum stent movement uSP" (7, ; = 0.89).

In Figure 6.5, the coefficient of variation CVgq is considered for all EVAR quality parame-
ters ¢ € Q at the nominal degree of SG oversizing of o = 15%. In Appendix A.9, the co-

efficient of variation CVygq is continuously given over all degrees of SG oversizing in the range
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Ao,diast

Figure 6.5 Coefficient of variation CVq according to Equation (6.9) over all n realizations
with different vessel geometries (blue bars) as well as over all n5%4i8s¢ realizations with different
SG geometries (yellow bars) at the diastolic pressure level of p = 80 mmHg. Reproduced
with permission from [109].

diast

o € [5%,40%). The coefficients of variation CV¢q over all nA>41* = 61 realizations of the vessel
parameters ¢*° € GA° and over all n5%42st — 13 realizations of the SG parameters ¢°¢ € G5¢
are considered separately at the diastolic blood pressure state p9®* = 80 mmHg. Hence, the
coefficient of variation CVq over all nA>di2st — 60 realizations (blue bars in Figure 6.5) indi-
cates by how much the EVAR quality parameters ¢ € Q are influenced by the vessel parameters
g*° € GA° and the coefficient of variation CV¢q over all n5%diast — 13 realizations (yellow bars
in Figure 6.5) indicates by how much the EVAR quality parameters ¢ € Q are influenced by the
SG parameters ¢°¢ € G56,

According to Figure 6.5, the following EVAR quality parameters are strongly influenced by
the vessel parameters g*° € G*° with coefficients of variation CVq > 0.35 (blue bars in Fig-
ure 6.5): the maximum vessel relief \6?’““ |, the SG drag force Fi,,s, the maximum stent-vessel
gap 252 and the maximum stent movement u>:*"!, Further, the following EVAR quality param-
eters are strongly influenced by the SG parameters ¢°¢ € G5¢ with coefficients of variation
CVgq > 0.35 (yellow bars in Figure 6.5): the maximum normal contact pressure p,, g9, the max-
imum stent-vessel gap 254 , the maximum conical stent shape ¢, the maximum graft move-

max? max?

ment &P and the maximum stent movement u5;P%,

6.2.2. Influence of the degree of stent-graft oversizing

SG fixation forces increase almost linearly with increasing degree of SG oversizing. However,
above a critical degree of SG oversizing o, the SG fixation force does not further increase (cf.
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Figure 6.6). The value of the critical degree of SG oversizing, i.e., the degree of SG oversizing
above which the fixation force does not further increase, depends amongst other parameters on
the geometry of the landing zone and the blood pressure state. For the distal landing zone of the
vessel geometry visualized in Figure 6.6, the critical degrees of SG oversizing are 02185t ~ 15%
at the diastolic blood pressure state p9** = 80 mmHg and 07 ~ 20% at the systolic blood
pressure state p*¥* = 130 mmHg.

o]
o
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o

distal fixation force
3

o0 op
T
E g
£ g
o
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Figure 6.6 Distal fixation force Fdist as a function of the degree of SG oversizing o. Reproduced
with permission from [108].

Increased radial graft buckling and associated negative effects on the force transmission be-
tween SG and vessel is a potential reason for the plateau in SG fixation forces above the critical
degree of SG oversizing o.,;;. Below the critical degree of SG oversizing (0 < 0git), the SG is
almost perfectly attached to the vessel in the relatively straight distal landing zone of the vessel
geometry visualized in Figure 6.6. Above the critical degree of SG oversizing (0 > 0.,it), the de-
gree of radial graft buckling increases drastically with increasing degree of SG oversizing. The
SG fixation force of a SG in the deployed state is a superposition of the force resulting from the
oversized SG plus the force resulting from the internal blood pressure p which presses the SG
against the luminal vessel surface. The internal blood pressure p results in a nonlinear traction
load t¢ = —p - nS on the luminal graft surface ¢ as stated in Equation (3.8). If the SG is
well attached to the vessel in the landing zone, the majority of the traction load £ is in radial
direction. Thus, it is transmitted from the SG to the vessel and results in a SG fixation force. In
case of graft buckling, a large portion of the traction load € is not in radial direction. Hence, a
large portion of the traction load & does not contribute to the SG fixation force leading to the
plateau of SG fixation force above oyt .

Since graft buckling is more pronounced in the diastolic than in the systolic pressure state,
odiast jg smaller than 0]}, For landing zones in angulated vessels, the plateau in SG fixation
force is less pronounced since in angulated vessels, longitudinal graft buckling dominates radial
graft buckling induced by excessive SG oversizing.
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Figure 6.7 Visualization of the vessel overstress 5! (I) and the magnitude of the graft move-
ment ||[u®Pu|| (IT) for different degrees of SG oversizing o at the systolic pressure level of
p¥* = 130 mmHg. Reproduced with permission from [109].

In Figure 6.71, the impact of the degree of SG oversizing o on the vessel overstresses 7"a!!
is highlighted. The vessel overstresses 7" increase with increasing degree of SG oversizing o.
Furthermore, increased radial buckling associated with large local graft movements u% P4 of the
resulting folds can be identified for large degrees of SG oversizing in Figure 6.711, black arrow.

6.2.3. Influence of vessel parameters

In Figure 6.8, some EVAR quality parameters are exemplarily shown for the variation of the
proximal neck angle «y, (cf. Figure 6.81), the variation of the proximal neck length [, (cf. Fig-
ure 6.81I) and the proximal neck diameter dj, (cf. Figure 6.8III).

Larger neck angles «, lead both to a larger in-plane asymmetry y5 . of the stent rings in the
curved region of the vessel and to a substantially increase in the SG drag force Fy,., (cf. Fig-
ure 6.8]). Qualitative investigations of those two findings are provided in Figure 6.9 for proximal
neck angles in the range o, € [0°, 80°]. Additionally, in Figure 6.91, stent collapse is visible for
the deployed SG in vessels with a neck angle of a, > 70°.

A short neck length [, causes a small fixation area a;‘i?)lx

(cf. Figure 6.811) associated with a
relatively poor quality of seal as well as a small fixation force Fprox (cf. Figure 6.10). Increasing
the degree of SG oversizing o may be one potential way of improving the quality of seal and
the SG fixation force in a vessel with short neck length [,,. The downside of this approach is
visualized in Figure 6.10 by comparing the results of a SG oversized by 0 = 5% and a SG

oversized by o = 35% in the vessel with short neck length [, = 5 mm. A larger degree of
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Figure 6.8 Influence of the proximal neck angle oy, (I), the proximal neck length [, (II) and
the proximal neck diameter d,, (III) on selected EVAR quality parameters ¢ € Q for different
degrees of SG oversizing o as well as different blood pressure states pdi®* = 80 mmHg and
p¥*® = 130 mmHg. Reproduced with permission from [109].

SG oversizing improves the quality of seal and the proximal fixation force of the SG. However,
this is at the expense of increased aneurysmatic vessel overstresses in the AAA shoulder region
which may trigger negative effects such as ongoing AAA growth in this region. Thus, it is at the
expense of the potential long-term durability.

The magnitude of the SG drag force || Fi,.g|| increases approximately linearly with increasing
neck diameter d,, since the luminal area on which the blood pressure acts increases approximately
linearly with increasing neck diameter d,, (cf. Figure 6.81II). Although the sealing area between
SG and vessel increases as well with increasing neck diameter d,,, the fixation force Fprox does
not substantially increase with increasing d, since simultaneously the normal contact pressure
between SG and vessel decreases (cf. Figure 6.8III). Thus, vessels with a larger neck diameter
d,, may be rather prone to SG migration since the drag-fixation ratio of the SG is worse.

The following vessel uncertainties are investigated in this study: the vessel wall thickness ¢,
(cf. Figure 6.111) and the vessel wall stiffness ~y (cf. Figure 6.111I) according to Equation (6.2).
In Figure 6.111+1l, the effective degree of SG oversizing égffox is plotted against the nominal
degree of SG oversizing o for vessel walls of different thickness t,, and vessel walls of different
stifftness ~y. The softer and the thinner the vessel wall, the larger is the immediate postimplant
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Figure 6.9 Visualization of the in-plane stent asymmetry 3° (I) and the SG drag force Fjy,g (I1)
for different proximal neck angles «, with a nominal SG oversizing of o = 15% at the systolic
pressure level of p*¥* = 130 mmHg. Reproduced with permission from [109].
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Figure 6.10 Qualitative comparison of the sealing pattern and the aneurysmatic vessel over-
stress (I) as well as quantitative comparison of the proximal SG fixation force ﬁprOX and the
aneurysmatic vessel overstress 6&3”“ (IT) of a vessel with short proximal neck length [, = 5 mm.
Red bars indicate the degree of SG oversizing o = 5% and o = 35% as well as the diastolic blood
pressure state p4it = 80 mmHg at which the qualitative results are evaluated. Reproduced with

permission from [109].
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Figure 6.11 Investigation of vessel uncertainties at p®* = 130 mmHg: influence of the vessel
wall thickness t,, (I) and the vessel wall stiffness v (II) on the effective degree of SG oversiz-
ing 61?,?0)( for different degrees of SG oversizing o. Dashed line indicates reference of o = 5;?0)(.
Reproduced with permission from [109].

vessel dilatation and therefore the larger is the difference between nominal and effective degree
of SG oversizing. In the case of the very stiff vessel (7 = 8, red curve in Figure 6.111I), the SG
induced vessel deformation is very small. Thus, the local stent expansion diameter d>(sp.) is
approximately equivalent to the preinterventional vessel diameter d,,. Consequently, the nominal
and the effective degree of SG oversizing are approximately the same (cf. Equations (1.1) and
(3.113)):

DSG L~ DSG
CZS(SDC) - dp

off ( —1=o0 (6.14)

0™ (8pe) =

In contrast to the stiff vessel, the soft vessel (y = 1/8, cyan curve in Figure 6.111I) exhibits
enormous immediate postimplant SG induced vessel dilatation such that the stent almost fully
expands and the local stent expansion diameter d°(sp,) is close to the nominal diameter D5 of
the SG. Thus,

DSG DSG

eff A RPN
0 ( dS(SDe) DSG

SDe) 1=0. (6.15)

In Figure 6.12, the influence of vessel calcifications in the proximal landing zone is inves-
tigated. The difference in the vessel deformation between a non-calcified vessel and a highly
calcified vessel (cf. Figure 6.12, detail Z) seems to be small. However, considering the effective
degree of SG oversizing affox, this difference may be very essential. Having in mind that in clin-
ical practice a nominal degree of SG oversizing of approximately o € [10%), 20%] is aspired, a
difference in 3.7 % effective SG oversizing o between the highly calcified (¢, = 70 %) and

prox

the non-calcified aortic neck (¢ = 0 %) is substantial (cf. Figure 6.121V, o = 15%).

prox
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Figure 6.12 Influence of vessel calcifications in the proximal landing zone. Visualization of
the calcification spots of the vessel with two calcified spots (Ia) and the vessel with four cal-
cification spots (Ila). Visualization of the vessel von Mises Euler-Almansi strains for a vessel
with two calcification spots (Ib) and a vessel with four calcification spots (I1Ib). Effective degree
of SG oversizing 0¥ (sg_g) at location of slice S-S for different degrees of percentage circum-
ferential proximal neck calcification EE)?L‘; and different nominal degrees of SG oversizing o at

p¥* = 130 mmHg (III). Modified figure reproduced with permission from [109].

6.2.4. Influence of stent-graft parameters

In this chapter, in the variation of the stent height hS, the number of stent limbs n° of the SG
is adapted to keep the total SG length L5% and the length of the gap between stent limbs con-
stant over all considered variations of the stent height 5. SGs with many short stent limbs are
radially stiffer than SGs with few long stent limbs. Hence, the mean diametric graft compliance
C increases with increasing stent height h° (cf. Figure 6.131 and Figure 6.141). Moreover, SGs
with shorter stent limbs, i.e., smaller 45, are more flexible and can better adapt to the curved
vessel geometry. Thus, SGs with stent limbs of large height ~° have an increased tendency to SG
kinking with its associated negative effects in tortuous vessels. However, whether there will be
SG kinking or not also strongly depends on the position of the single stent limbs in the curved
regions of the vessel. For the given vessel geometry, a SG with h® = 24 mm shows considerable
SG kinking whereas a SG with A% = 28 mm does not show any SG kinking (cf. Figure 6.141I).
Increased in-plane stent asymmetry > is a side effect of the increased tendency to SG kinking.
SG kinking occurs at the gaps between stent limbs. The deformation of the adjacent stent limbs
is large in case of SG kinking leading to an ovalization of the stent limbs, i.e., to large in-plane
stent asymmetries 3> (cf. Figure 6.131).

SGs with stent limbs that have a larger number of periods p° per stent limb behave radially
stiffer. Thus, increasing the number of periods p° per stent limb leads to a reduction of the mean
diametric compliance C of the SG (cf. Figure 6.131I). Further, a larger number of periods p° per
stent limb causes higher contact pressures p, 99 and fixation forces Fpmx between SG and vessel.
This effect is likewise for all considered degrees of SG oversizing o (cf. Figure 6.131I).

Stent predeformation w has positive effects on the radial buckling of the graft and the SG
fixation. However, in Figure 6.13II1, some downsides of stent predeformation are shown. Larger
degrees of stent predeformation w result in higher vessel overstresses . Moreover, especially
in combination with large degrees of SG oversizing o, large degrees of stent predeformation w

induce very high stent stresses o°.
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Figure 6.13 Influence of the stent height 1° (I), the number stent limb periods p°(II) and the stent
predeformation w (III) on selected EVAR quality parameters ¢ € Q for different degrees of SG
oversizing o as well as different blood pressure states p9®** = 80 mmHg and p® = 130 mmHg.
Reproduced with permission from [109].
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Figure 6.14 Visualization of the graft compliance C' (I) and the deployed stent configuration (II)
for different stent heights h° for a SG oversized by 0 = 15% at the systolic pressure level of
¥$ = 130 mmHg. Reproduced with permission from [109].
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6.2.5. Influence of the arterial blood pressure

In Figure 6.15, the influence of the blood pressure state on the EVAR quality parameters ¢ € Q
is investigated where the relative change of the EVAR quality parameter is given by

o = B0 =0
M;ﬁast <0> )

Vge Q (6.16)

In Equation (6.16), 1;>* is the mean value of the EVAR quality parameter g at the systolic blood
pressure state of p*° = 130 mmHg and ugia“ is the mean value of the EVAR quality parameter at
the diastolic blood pressure state of pd#* = 80 mmHg. The calculation of the mean values was
introduced in Equation (6.10). Besides the general influence of the blood pressure state on the
EVAR quality parameters, this consideration gives some insight whether the diastolic or whether

the systolic blood pressure state is more crucial for the EVAR quality parameter ¢ € Q.

In Figure 6.15, the influence of the arterial blood pressure state Agq is plotted for a degree of SG
oversizing of o = 15%. In Appendix A.9, the influence of the arterial blood pressure state Ag(0)
is continuously given over all degrees of SG oversizing in the range o € [5%, 40%)]. Figure 6.15
highlights that some EVAR quality parameters are larger at the systolic blood pressure state
(Aq > 0) while others are larger at the diastolic blood pressure state (Aq < 0). The following
EVAR quality parameters are strongly influenced by the blood pressure state with |Ag| > 50%:
the maximum vessel relief |57*!!| and the magnitude of the SG drag force || Fy,agl|-

Having a closer look on the results visualized in Figure 6.15, several interesting impacts of
the blood pressure state can be observed. It is plausible that the vessel relief |51'#!|, which de-
scribes the reduction of the vessel wall stresses in the “aneurysmatic” region, is much larger in
the systolic than in the diastolic blood pressure state since the preinterventional vessel stresses in
the aneurysm sac are larger in systolic pressure state. Thus, the difference between the preinter-
ventional vessel stresses and the postinterventional vessel stresses in the aneurysm sac are larger
having in mind that the postinterventional vessel stresses in the aneurysm sac are close to zero
for most of the considered n = 146 realizations independent of the blood pressure state. Both,
SG fixation forces Fprox and Fj, as well as the magnitude of the SG drag force || Fi,g|| are
larger at the systolic blood pressure state (Ag > 0). Since the influence of the blood pressure
on the drag force Fy,,, is much larger than on the fixation forces Fprox and Fdist, the risk of SG
migration may be higher at the systolic pressure state.

Furthermore, maximum stent stresses oy, are around 10% larger in the diastolic than in the
systolic blood pressure state (Ag ~ —10%) since the SG in the deployed state in the landing
zones, i.e., in the regions where mostly the largest stent stresses occur, is under compression.
Hence, an increase of arterial blood pressure relaxes the SG in the landing zones. The proximal
fixation area a;f;f‘)lx is larger at the systolic blood pressure state (Ag > 0) whereas the maximum
graft-vessel gap 2S2 and the maximum stent-vessel gap 252 in the proximal landing zone are
larger in the diastolic blood pressure state (Ag < 0). The main reason for this finding is that the
larger the blood pressure, the more the SG is pressed against the vessel. Thus, the fixation area
ase increases whereas the graft-vessel gap zJ% and the stent-vessel gap zya, decrease with

increasing blood pressure. As a consequence, the risk of leakage may be higher at the diastolic
blood pressure state.
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Figure 6.15 Influence of the arterial blood pressure state Aq according to Equation (6.16) on
EVAR quality parameter ¢ at a degree of SG oversizing of o = 15%. A value of Ag > 0 indicates
that the EVAR quality parameter ¢ is larger in the systolic blood pressure state p™* = 130 mmHg
whereas a value of Ag < 0 indicates that the EVAR quality parameter ¢ is larger in the diastolic
blood pressure state p¥as* = 80 mmHg. Reproduced with permission from [109].

6.3. Summary of the results and discussion

In this chapter, a fully parameterized AAA and SG geometry was developed. A parameter study
was performed on in total n = 146 different realizations of the vessel and SG parameters by
using in-silico EVAR. In the parameter study, the degree of SG oversizing was treated as contin-
uous variable between 5% and 40% oversizing by using a SG parameter continuation approach.
20 EVAR quality parameters were used to assess the outcome of in-silico EVAR with respect to
complication likelihoods such as SG migration, endoleaks or aortic neck dilatation.

The following impacts of SG oversizing could be identified:

e SG fixation forces and maximum normal contact pressures between SG and vessel increase
with increasing degree of SG oversizing. However, due to increased radial graft buckling
and associated negative effects on the force transmission above a critical degree of SG
oversizing, the SG fixation force does not further increase, i.e., a plateau in SG fixation
force is given. In relatively straight landing zones, the plateau in SG fixation force starts
above a degree of SG oversizing in the range 15%-25%, whereas for landing zones in
angulated vessels, the plateau in SG fixation force is less pronounced.

e Vessel and stent stresses increase with increasing degree of SG oversizing.

e SG drag force is not substantially affected by the degree of SG oversizing.
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For large degrees of SG oversizing the effective SG oversizing is clearly smaller than
the nominal SG oversizing since the SG induced immediate postimplant vessel dilatation
[232] reduces the effective degree of SG oversizing.

Increased SG oversizing leads to increased radial buckling of the SG. Locally large relative
movements of the resulting folds are possible every heart beat which can have negative
effects on the fatigue behavior of the graft.

It is important to note that the plateau in SG fixation force, which is stated in the first point, is
not a result of the superelastic behavior of nitinol stents since linear elastic stainless steel stents
were used in the study of this chapter. The plateau in SG fixation force could also be detected by
Senf et al. [237]. According to Senf et al. [237], the maximum fixation force for Anaconda™
SGs in a straight elastic vessel is given for SG oversized in the range 20% — 24% which is close
to the findings of this study.

There are numerous different stent designs of marketed SGs. In this parameter study, the im-
pact of stent design parameters on the EVAR outcome was investigated. This led to the following
findings:

A large number of periods per stent limb, i.e., a large number of loops of the sinusoidally
shaped stent limb, induces radially stiffer SGs with reduced SG compliance.

SGs with shorter stent limbs are more flexible and lead to a better SG-vessel attachment
with reduced risk of SG kinking.

Excessive stent predeformation can result in high stent stresses. Especially, if used in com-
bination with a large degree of SG oversizing.

None of the investigated SG designs showed significant aortic compliance mismatch. The
mean diametric graft compliance was largely in the range of reported values of healthy
abdominal aortas (3.7 — 6.8 % /100 mmHg) [147].

Variations of vessel parameters showed the following major impacts of the vessel geometry
on the EVAR outcome:

Vessel uncertainties [23], such as the vessel wall thickness and vessel wall stiffness, have
a substantial impact on the effective degree of SG oversizing.

The local stiffening of the vessel by calcifications leads to reduced SG expansion and a
higher degree of effective SG oversizing.

The neck angle has a very large impact on the SG drag force as often stated in literature
[63, 157].

Short neck length has the most negative impact on SG fixation as also stated for instance
by [6, 278].

The magnitude of the SG drag force increases almost linearly with increasing neck di-
ameter since the luminal area on which the blood pressure acts increases approximately
linearly with increasing neck diameter.
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The last point is in accordance with several studies that mention an increase in SG drag forces and
an increased risk of SG migration for patients with large vessel diameters [156, 183, 189, 203].
In contrast to the SG drag force, the SG fixation force is little affected by the neck diameter. This
observation however is limited by the fact that in the current parameter study, the number of
periods per stent limb was kept constant when increasing the SG diameter. However, SGs with
larger diameter may require a larger number of periods per stent limb which would increase the
radial stiffness of the SG.

The problematic nature of hostile necks [2, 8, 129], such as high angulation and short neck
length, could clearly be shown in the parameter study. Higher degrees of SG oversizing in the
case of hostile necks have proved to be a possibility to counteract small fixation areas and small
SG fixation forces as suggested in some medical and experimental studies [34, 256, 257].

Even if the diameter of the deployed SG is little affected by the blood pressure state, investiga-
tions of the EVAR outcome at the diastolic blood pressure state of 80 mmHg and at the systolic
pressure state of 130 mmHg have shown that it is important to consider both blood pressure
states to assess the quality of the EVAR outcome. Some EVAR quality parameters are critical
in the diastolic state while others are critical in the systolic state. The major findings of this
parameter study with respect to the blood pressure state are:

e Maximum vessel overstresses, i.e., the difference in vessel stresses before and after EVAR,
are larger in the diastolic blood pressure state.

e Maximum stent stresses are around 10% larger in the diastolic than in the systolic pressure
state since a larger blood pressure reduces the compression of the stent in the landing zone
and thus relaxes the stent.

e In the diastolic blood pressure state, the gap between SG and vessel is larger which in-
creases the risk of leakage.

e The SG drag force is approximately 80% larger in the systolic blood pressure state which
is in accordance with the frequently stated increased risk of SG migration in case of hy-
pertension [157, 183, 189].

Furthermore, the increase of the SG drag force magnitude of approximately 80% is larger than
the assumed systolic-diastolic pressure ratio of % —1 = 62.5% which indicates nonlinear
effects on the evaluation of the SG drag force. Assuming rigid SGs and rigid vessels, as done
in many studies investigating the SG drag force [75, 120, 183], would lead to a 62.5% larger
drag force in the systolic state than in the diastolic state as long as shear tractions are neglected
in the computation of the SG drag force. This is because in case of a rigid SG and rigid vessel
the integration area of the luminal graft surface does not change between diastolic and systolic
pressure state. Thus, the SG drag force is only scaled by the internal pressure state p as described
in Equation (3.104). Considering an elastic SG and vessel, as done in this study, a pressure
increase also induces an increase of the integration area of the luminal graft surface 7. Hence,
the SG drag force increase is larger than the assumed systolic-diastolic pressure ratio of 62.5%.
Consequently, such a frequently used rigidity assumption potentially underestimates the SG drag
force.
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6.4. Limitations

Apart from the simplifications stated in Section 3.7, the study of this chapter is affected by the
following limitations.

Although the definition of a successful EVAR intervention was defined as being complication-
free for several years after the intervention, growth and remodeling of vessel tissue was not
considered. However, it would be required to consider the development of the EVAR quality
parameters over several years.

Furthermore, a simplified approach to investigate patient-specific uncertainties was used which
did not consider intrapatient variability of vessel wall thickness and vessel wall stiffness but used
spatially constant parameters. The major intention was to show the potential impact of these
patient-specific uncertainties on the EVAR outcome.

To get a full understanding of the influence of the geometrical vessel and SG parameters
and their potential interplay on the EVAR outcome a full factorial parameter study would be
necessary. However, a full factorial analysis for the given number of parameters and number
of parameter variations is computationally not achievable. Therefore, a basic vessel and SG
geometry was used from which single parameters were modified while all others were kept
constant. Choosing a different basic vessel and SG geometry might slightly change the outcome.

In the present study, the focus was put on quantitative evaluation of the EVAR outcome. How-
ever, a pure quantitative assessment might lead to misinterpretations in certain cases. For in-
stance, a high value of the proximal fixation area does not necessarily mean that this is a leak-
proof seal. Instead, the SG could be well attached just on one side, but an endoleak occurs on
the averted side.

The parameter study of the synthetic vessel and SG revealed mean values, standard deviations
and expectable ranges of the single EVAR quality parameters that can be used for comparisons.
However, no statement about ranges in which the parameters are acceptable or not could be
made. To determine these ranges of the EVAR quality parameters in which the EVAR outcome
is acceptable, i.e., the EVAR outcome is free of complications, a large cohort of patient-specific
cases has to be evaluated and statistically investigated with respect to EVAR complications.
Having achieved such a clear link between EVAR complications and EVAR quality parameters
with ranges of acceptable values for the EVAR quality parameters, the IFU could be formulated
in terms of mechanical and geometrical EVAR quality parameters that are based on the predicted
deployed SG configuration. Such IFU based on mechanical and geometrical parameters of the
predicted deployed SG configuration should outline the limits of the applicability of EVAR much
better than the current IFU that are based on the preinterventional vessel geometry.

6.5. Conclusions

In this chapter, a fully parameterized AAA and a fully parameterized SG model have been devel-
oped and utilized in a large parameter study of 146 different parameter realizations. The in-silico
EVAR outcome was evaluated with respect to 20 mechanical and geometrical parameters that
assess the quality of the in-silico EVAR outcome with respect to EVAR related complication
likelihoods.
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This study confirmed the hypothesis that the outcome of EVAR is strongly dependent on vessel
and SG parameters. Candidates with high risk of postinterventional complications are in partic-
ular patients with a large neck angle, a large vessel diameter, a short neck length as wells as soft
and thin vessel walls. It was shown that the degree of SG oversizing has a decisive role on the
EVAR outcome and hence may have a big impact on the likelihood of postinterventional com-
plications. A comparison of the EVAR outcome at the diastolic and the systolic blood pressure
state showed the importance of considering both blood pressure states to assess the quality and
complication likelihood of the EVAR outcome. While some parameters, such as the maximum
stent stresses, are larger at the diastolic blood pressure state other parameters, such as the SG
drag force, are crucial at the systolic blood pressure state.
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7. Customized stent-grafts for EVAR
with challenging necks: a numerical
proof of concept

In clinical practice, SGs are cylindrical off-the-shelf devices. This means in the preinterven-
tional planning, length and diameter of the SG are determined based on preinterventional CT
data, but the patient-specific vessel morphology is not considered. EVAR requires a proper seal
and fixation of the SG in the SG landing zones, to keep the aneurysm permanently excluded
from the main blood flow. However, especially in the case of challenging aneurysm neck mor-
phologies, i.e., challenging vessel morphologies in the region of the proximal landing zone, the
morphological discrepancy between the cylindrical off-the-shelf SG and the vessel may lead to
negative effects and possible secondary interventions [242, 280]. Frequent negative effects af-
ter EVAR that are directly related to the conditions in the SG landing zone are, among others,
type I endoleaks and SG migration (cf. Section 1.1.2.4). Most frequently mentioned challeng-
ing neck morphologies are highly angulated and short necks [129, 233, 275]. But also conically
shaped, barrel shaped, hourglass shaped or elliptic necks are frequently associated with negative
effects in the SG landing zones [174, 273] since these nonuniform neck morphologies induce
nonuniform SG expansion, reduced seal and reduced fixation of the SG.

Most of the existing SGs are of cylindrical shape that are unable to meet the vessel morphology
of different patients. Nonuniform vessel morphologies require customized SG morphologies.
This raises the need of a more personalized therapy where customized SGs [224, 242, 280] can
be the next generation SGs for EVAR. By considering the vessel morphology in the region of
the landing zone, the SG performance and the SG-vessel interaction should be improved leading
to better long-term EVAR outcomes and a reduced number of EVAR related complications and
secondary interventions. Besides reduced complication rates after EVAR in challenging necks,
customized SGs could further increase the range of applicability of EVAR far beyond the IFUs of
current SG manufacturers. Advanced manufacturing technologies, like additive manufacturing
or electrospinning, have proved to be able to meet the demands of personalized medicine in wide
ranges of medical applications [202, 223]. However, the use of these advanced manufacturing
technologies in the development of highly customized SGs for EVAR is still current area of
research [280] and the benefit of highly customized SGs over off-the-shelf SGs could not yet
be proved. To qualitatively and quantitatively show the benefit of customized SGs compared
to off-the-shelf SGs (cf. Figure 7.1), in-silico EVAR models are a valuable tool. Furthermore,
numerical investigations can provide information on specific SG design aspects for advanced
development of highly customized SGs.

The objective of this study is to show the added value of customized SGs, that have the same
morphology as the luminal vessel surface, in a numerical proof of concept. Therefore, the in-
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Figure 7.1 Sketch of a straight, cylindrical off-the-shelf SG as well as a first level and a second
level customized SG. Reproduced with permission from [110].

silico EVAR model, which predicts the postinterventional state of SG and vessel, is used to
compare customized SGs and off-the-shelf SGs. By comparison of the in-silico EVAR outcome
of off-the-shelf SGs and customized SGs, the performance differences of the two SG devices is
assessed in terms of mechanical and geometrical EVAR quality parameters (cf. Section 3.6.2)
which indicate the potential complication likelihood after EVAR. In this chapter, the focus of
these mechanical and geometrical parameters is on parameters which define the quality of the
EVAR outcome in the landing zone of the SG.

In order to represent different aspects of noncylindrical geometries encountered in patient-
specific anatomies, in this chapter general vessel morphologies, such as curved, conical, barrel
shaped or hourglass shaped vessel morphologies are used in a numerical proof of concept. Al-
though idealized vessels are studied, a realistic state of the deployed SG is considered which
takes stent predeformation, vessel prestressing and physiological blood pressure states into ac-
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count. The applied methods are shown for the abdominal region of the aorta. Nevertheless, the
results are also applicable to endovascular repair of other regions of the aorta such as thoracic
endovascular aortic repair.

Common medical practice is the customization of fenestrated SGs [196, 261] where the lo-
cation of the fenestration is done in a patient-specific manner. Apart from this type of SG cus-
tomization of advanced EVAR techniques, in this chapter, the classification of customized SGs
into two different levels of customization is proposed (cf. Figure 7.1). The first level of SG cus-
tomization describes an individual arrangement of stent rings on a classical graft to better meet
the requirements of a patient-specific vessel. However, similar to off-the-shelf SGs the morphol-
ogy of first level customized SGs is cylindrical and straight in the undeformed state. Romarowski
et al. [224] numerically showed the advantage of such first level customized SGs compared to
two off-the-shelf SGs.

In contrast to first level customized SGs, second level customized SGs are not cylindrical and
straight, but are of the same morphology as the patient-specific luminal vessel surface and hence
can even better meet the requirements of patient-specific vessels. To the best of the authors
knowledge, the work by Zhang et al. [280] is the only published study on second level cus-
tomized SGs. Zhang et al. [280] proposed a manufacturing technique of customized SGs which
have the same morphology as the patient-specific vessel but did not investigate the advantage of
this type of customized SGs compared to off-the-shelf SGs.

The outline of this chapter is as follows: in section 7.1, the morphological advantages of sec-
ond level customized SGs are investigated theoretically. Afterwards, the basic concept of the
manufacturing process of the presented customized SGs and the framework of the presented
numerical proof of concept are presented. In section 7.2, the in-silico EVAR outcomes of cus-
tomized SGs and off-the-shelf SGs are compared for several different vessel morphologies. The
discussion of these results is presented in section 7.3. Subsequently, limitations and conclusions
are drawn in section 7.4 and 7.5, respectively.

This chapter is a revised version of the published work by Hemmler et al. [110].

7.1. Methods

In the following, first geometrical aspects of second level customized SGs are discussed in Sec-
tion 7.1.1. Afterwards, the basic manufacturing idea of second level customized SGs is provided
in Section 7.1.2 and the framework of the numerical study is given in Section 7.1.3.

7.1.1. Morphology of second level customized stent-grafts

Given a noncylindrical vessel landing zone (e.g., a conical vessel landing zone), correct sizing
of cylindrical off-the-shelf SGs is very challenging. Mostly, the maximum vessel diameter D¢
along the total potential vessel landing zone is chosen as recommended for instance in the IFU
of Cook Zenith® SGs [44]. However, sizing of the SG according to the maximum vessel di-
ameter Df;\l‘;x results in excessive oversizing (0 = opax) at narrow regions of the conical vessel
(cf. Figure 7.2I) which may result in long-term negative effects such as aortic neck dilatation
[257, 267]. Using the minimum vessel diameter D22 for sizing of the cylindrical off-the-shelf

SGs increases the risk of SG undersizing at wide regions of the conical vessel (0 = 0p,;,) With its
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negative consequences such as type I endoleaks. Using second level customized SGs that have
the same morphology as the vessel, this inconsistency in SG sizing is obsolete. A constant de-
gree of SG oversizing (o(s) = const) along the total arc length s of the vessel centerline can be
achieved (cf. Figure 7.2I).
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Figure 7.2 Illustration of SG sizing problems of off-the-shelf SGs in a conical vessel land-
ing zone (I) and an angulated vessel landing zone (II) as well as improvement by second level
customized SGs. Vessel landing zones are visualized in red, SGs in black. Reproduced with
permission from [110].

The length of the landing zone is one of the most important parameters for positive EVAR
outcomes [182, 256]. Hence, the length of the SG generally is chosen such that all of the po-
tential length of the vessel landing zone is used, i.e., is covered by the SG. Given an angulated
vessel landing zone (cf. Figure 7.211), the effective length of the landing zone is smaller at the
inner curvature of the vessel (L, = ﬁﬂ(R — DTAO)) than at the outer curvature of the ves-

sel (Lyax = ﬁW(R + D;\ ° )I[256]. Generally, the vessel centerline is used to determine the SG
length. Accordingly, a straight off-the-shelf SG of length L3¢ = L is not able to use the total
potential length of the vessel landing zone as it is too long at the inner curvature and too short at

the outer curvature by

Ao
AL=L Lo =L L= P
180" 2

(7.1)
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This means that a length of AL of the potential vessel landing zone at the outer curvature of the
vessel remains unused. Excess length of the SG at the inner curvature of the vessel has to be
avoided as well. This leads to longitudinal buckling of the graft at the inner curvature with its
associated negative effects on the EVAR outcome such as disturbance of the blood flow. Being
able to use the total potential length of the vessel landing zone L,,., at the outer curvature of
the vessel while at the same time the SG is not too long at the inner curvature of the vessel can
contribute positively to the sealing and fixation of the SG. Second level customized SGs which
have the same angulation as the vessel landing zone can exploit much better the restricted length
of the important vessel landing zone with different effective lengths at the inner and the outer
curvature (cf. Figure 7.211).

7.1.2. Basic manufacturing idea of second level customized
stent-grafts

Even though the focus of the current study is not on manufacturing of customized SGs and its
technical feasibility, but rather on giving a motivation for further research and development of
this kind of SGs, the basic concept of the presented customized SGs is given in this section.
Discussions of specific manufacturing details are not part of this study.

In a first step using 3D printing, a mandrel according to the patient-specific vessel geometry
from CT data is created. The mandrel serves as rotating collector around which the patient-
specific polymeric graft is generated by application of electrospinning. Electrospinning is a
manufacturing technique to form continuous nanofibers around a rotating collector using elec-
trostatic forces. For a detailed overview of the electrospinning manufacturing technique, the
interested reader is referred to the publication by Li and Xia [155]. Using electrospinning, the
customized conductive mandrel is covered by continuous polymeric (polyurethane) fibers that
are almost randomly distributed in plane. Continuous generation of these polymeric fibers forms
a thin polymeric graft that encapsulates nitinol stent rings. No additional fixation of the metallic
stent rings by sutures is required since the stent rings are placed in-between layers of polymeric
fibers. After removal of the mandrel, a customized SG is obtained which in the undeformed state
has the same morphology as the patient-specific luminal vessel geometry.

Manufacturing of various shapes (conical, elliptical, curved and straight) to determine the
limits of electrospinning showed very promising results. Initial experiments have shown that
the described manufacturing process allows to manufacture complex geometry SGs with radial
expansion forces similar to commercial prostheses.

7.1.3. Framework of the study

In the study of this chapter, the focus is on the performance of customized and off-the-shelf SGs
in the SG landing zones. Hence, idealized proximal neck geometries are considered whereas the
aneurysm sac is not part of the model. The anisotropic, hyperelastic two-fiber model that was
introduced in Section 3.3.2.1 is used to model the “healthy” vessel wall in the landing zone,
whereas ILT and vessel calcifications are not considered. The SG is made up of a series of
sinusoidally shaped nitinol stent rings attached to the graft. Although the material properties of
marketed woven grafts and electrospun grafts are slightly different, the same material model is
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applied to commercial and customized SGs to guarantee a fair comparison. Only the benefit of
the customized shape of the SG is subject of the study of this chapter, independent of the slight
differences in the material behavior of woven and electrospun grafts. Further, similar stent shapes
with ten sinusoidally shaped periods, a stent height of 15 mm and a wire thickness of 0.4 mm
as well as the same graft thickness of 0.08 mm are used for the model of the off-the-shelf SG
and the customized SG. Stent predeformation of 15% is assumed for all stent rings. Material
parameters of stent and graft are chosen as provided in Section 3.4.2, Table 3.3. The deployed
configurations of the SGs are considered at a stationary blood pressure state of 130 mmHg.

In a numerical proof of concept, general vessel morphologies (cf. Figure 7.31), that are ideal-
izations of realistic vessel shapes [174], are considered. The objective of this chapter is to show
the advantage of second level customized SGs (cf. Figure 7.31II) that consider the morphology
of the vessel compared to straight off-the-shelf SGs with a circular cross section. A mean in-
ner vessel diameter D*° = 25 mm is used for each of the consider vessel morphologies (cf.
Figure 7.31). In case of the vessel with elliptical cross section, the quadratic mean diameter

B 2 112
Do = /¢ ;b (7.2)

is used where a = 20.5 mm is the length of the minor axis and b = 28.8 mm is the length of the
major axis of the ellipse (cf. Figure 7.31).

I 1T
L 224.0, @240
, 2200 _ | I 1
Z .
D .
< Ly !
S
(?Yo* 'K
230.0 3
236.0 | 2360 | mmememe
71 79
___________ . 22

[
Ni
S
S
288 |
:
34.6

Figure 7.3 Exemplary depiction of vessel morphologies (I) and second level customized SGs(II).
Discretization of the vessel (detail Z1) and SG model (detail Z2). Reproduced with permission
from [110].

A meaningful comparison between the cylindrical off-the-shelf SGs and the second level cus-
tomized SGs is only possible if a similar degree of SG oversizing is used for both types of SGs.
The cylindrical off-the-shelf SG has a constant diameter D5¢ = 30 mm which results in a vari-
able degree of SG oversizing in the noncylindrical vessel. A mean SG oversizing 0 = 20% is
achieved by the constant SG diameter D¢ = 30 mm in the noncylindrical vessels with a mean
inner diameter D*° = 25 mm (cf. Equation (1.1)). The customized SGs, which have the same
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morphology as the vessel, are sized such that they have a constant degree of SG oversizing of
o = 20%. Hence, the local diameter of customized SGs is

D5%(s) = 1.2D%°(s), (7.3)

where s is the arc length of the vessel centerline and D*°(s) is the local inner vessel diameter in
an orthogonal plane to the vessel centerline at location s. The same SG length of 36 mm (72 mm
for the curved SG) is used for the off-the-shelf and the customized SGs.

The consideration of curved vessels is of major importance as the IFU of SG manufacturers
limit the application of EVAR mostly to neck angles below 60° since the likelihood of negative
outcomes of off-the-shelf SGs is higher for larger neck angles. A vessel with an angle of v = 90°
and a radius of curvature of R = 45.8 mm is chosen for the current study (cf. Figure 7.31). The
radius of curvature of R = 45.8 mm is chosen such that the arc length of the centerline of the
curved vessel is 72 mm. In keeping with the straight vessel examples, the curved vessel has a
luminal diameter of D*° = 25 mm. In contrast to the considered SGs of the straight vessels,
the SGs for the curved vessel consist of four stent rings (cf. Figure 7.31I). All other SG related
characteristics are equivalent to the examples of straight vessels and SGs.

In total, seven different straight vessels (cylindrical, conical, elliptical, barrel shaped, hour-
glass shaped and two irregularly shaped vessels) as well as one curved vessel with a cylindrical
cross section are considered. For each of the eight different vessel morphologies, the in-silico
EVAR outcomes of the customized SG and the off-the-shelf SG are compared qualitatively and
quantitatively with respect to the following EVAR quality parameters (cf. Section 3.6): graft-
vessel gap, graft-vessel sealing pattern, SG fixation force, stent stress as well as normal contact
pressure between vessel and SG.

7.2. Results

In the following, the deployed states of the off-the-shelf SG and the customized SG are eval-
uated for all eight vessel morphologies with respect to the graft-vessel gap, the graft-vessel
sealing pattern, the normal contact pressure and the stent stresses in Figure 7.4-7.8 as well
as with respect to the SG fixation force in Figure 7.9. For improved visualization a projec-
tion of the results into the flat auxiliary XZ- -plane is used in Figure 7.4-7.7. The auxiliary
XZ- -plane represents the uncoiled lateral surface of a virtual cylinder with radius R = 15mm
(cf. Appendix A.8).

7.2.1. Reference solution of a straight, cylindrical vessel

First, the in-silico EVAR outcome in a straight, cylindrical vessel is considered as a reference (cf.
Figure 7.4). A straight and cylindrical vessel is considered to be the optimal vessel morphology
for the deployment of a SG [233, 275]. For this setting, the off-the-shelf and the second level
customized SG are identical.

A very uniform deployment and attachment of the cylindrical SG in the cylindrical vessel is
obtained with moderate radial buckling of the graft (cf. Figure 7.41) due to 20% oversizing of the
SG compared to the vessel. The SG is in direct contact with the vessel only at the location of the
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Figure 7.4 In-silico EVAR results of a straight, cylindrical SG deployed in a straight, cylindrical
vessel: deployed state (1), graft-vessel gap (II), graft-vessel sealing pattern (III), normal contact
pressures between SG and vessel (IV) and Cauchy von Mises stent stresses (V). Reproduced
with permission from [110].

stent rings (cf. Figure 7.4111). Minor radial buckling of the graft leads to a maximum gap between
SG and vessel of approximately 1.5 mm (cf. Figure 7.4II). A relatively uniform distribution of
the normal contact pressure of approximately 100 kPa is found between SG and vessel at the
location of the stent rings (cf. Figure 7.4IV). Maximum stent stresses of approximately 200 MPa
occur in the curved parts of the stent rings (cf. Figure 7.4V). The stress distribution is identical
for each stent loop.

7.2.2. Straight, conical vessel

The use of the cylindrical off-the-shelf SG with a constant diameter of 30 mm results in a degree
of SG oversizing of 50% at the narrow end (Z = 18) of the conical vessel and a degree of SG
oversizing of 0% at the wide end (Z = —18) of the conical vessel. In contrast to the off-the-shelf
SG, the conical customized SG has a constant degree of SG oversizing of 20% along the total
length of the SG (cf. Figure 7.5).

A clear difference between the in-silico EVAR outcome of the cylindrical off-the-shelf SG and
the conical customized SG can be seen in Figure 7.5. A full expansion of the off-the-shelf SG
at the wide end (Z = —18) and severe buckling of the graft at the narrow end (Z = 18) can be
identified, which results in larger graft-vessel gaps of up to 2.5 mm at the narrow end (Z = 18).
The off-the-shelf SG exerts high normal contact pressures at the narrow end. At the wide end
(Z = —18) of the conical vessel, the off-the-shelf SG is not even in contact with the vessel.
Unlike the off-the-shelf SG, the conical customized SG is more uniformly attached to the luminal
vessel surface with a uniform distribution of normal contact pressures of approximately 100 kPa
and very small gaps between SG and vessel. Due to the better and more uniform apposition of
the SG to the vessel, the conical customized SG results in an approximately 1.5 times higher SG
fixation force compared to the off-the-shelf SG in the same conical vessel (cf. Figure 7.9). The
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Figure 7.5 In-silico EVAR results of off-the-shelf SGs and customized SGs deployed in a
straight, conical vessel as well as in a straight, elliptical vessel: deployed state (I), graft-vessel
gap (II), graft-vessel sealing pattern (III), normal contact pressures between SG and vessel (IV)
and Cauchy von Mises stent stresses (V). Reproduced with permission from [110].
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deployed state of the customized SG in Figure 7.51 also shows that at the narrow end (Z = —18)
more severe graft buckling is apparent than at the wide end (Z = 18), although constant SG
oversizing of 20% is used along the total SG length. This shows that depending on the vessel
diameter the same degree of SG oversizing can have a different influence on the deployed state.

7.2.3. Straight, elliptical vessel

Only very minor differences between the deployed state of the off-the-shelf SG and the cus-
tomized SG can be identified for the straight, elliptical vessel (cf. Figure 7.5 and Figure 7.9).
The graft-vessel sealing area is slightly larger for the customized SG since the off-the-shelf SG
undergoes more graft buckling. The maximum graft-vessel gap, the distribution of stent stresses,
the distribution of normal contact pressures as well as the SG fixation force of the off-the-shelf
SG and the customized SG are almost identical and very similar to the results obtained for the
straight, cylindrical vessel (Section 7.2.1).

7.2.4. Straight, barrel shaped vessel

The deployed off-the-shelf SG has minimal graft buckling at the wide region of the vessel
(Z = 0) and severe buckling at the narrow regions of the barrel shaped vessel, which leads
to relatively large graft-vessel gaps of up to 2.8 mm (cf. Figure 7.6). In contrast, the customized
SG undergoes uniform graft buckling along the total SG and has a relatively uniform graft-
vessel sealing pattern. The normal contact pressures between SG and vessel are slightly higher
for the customized SG which results in an approximately 1.2 times higher SG fixation force (cf.
Figure 7.9). No discernible differences in stent stresses can be identified between the deployed
off-the-shelf SG and the deployed customized SG.

7.2.5. Straight, hourglass shaped vessel

In the hourglass shaped vessel, the cylindrical off-the-shelf SG exhibits severe buckling of the
graft with graft-vessel gaps of up to 2.0 mm whereas the customized SG almost fully expands
and exhibits only minor buckling (cf. Figure 7.6). The hourglass shaped customized SG in the
hourglass shaped vessel leads to an almost complete seal between graft and vessel. The off-the-
shelf SG produces high normal contact pressures between SG and vessel above 200 kPa at the
narrow region of the vessel (7 = 0). Unlike the off-the-shelf SG, the distribution of normal
contact pressures of the customized SG is very uniform without hotspots at the narrow region of
the vessel (Z = 0). The stent stresses of the deployed customized SG are slightly higher than
the stent stresses of the off-the-shelf SG (cf. Figure 7.6). The use of the customized SG leads
to an approximately 1.5 times higher SG fixation force compared to the off-the-shelf SG (cf.
Figure 7.9).

7.2.6. Straight, irregularly shaped vessels

In this section, the deployed SGs in two straight and irregularly shaped vessels are considered.
The first vessel has a one-sided widening and the second vessel one-sided narrowing (cf. Fig-
ure 7.7).
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Figure 7.6 In-silico EVAR results of off-the-shelf SGs and customized SGs deployed in a
straight, barrel shaped vessel as well as in a straight, hourglass shaped vessel: deployed state (I),
graft-vessel gap (II), graft-vessel sealing pattern (III), normal contact pressures between SG and
vessel (IV) and Cauchy von Mises stent stresses (V). Reproduced with permission from [110].
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Figure 7.7 In-silico EVAR results of off-the-shelf SGs and customized SGs deployed in two
different straight, irregularly shaped vessels: deployed state (I), graft-vessel gap (II), graft-vessel
sealing pattern (I11), normal contact pressures between SG and vessel (IV) and Cauchy von Mises
stent stresses (V). Reproduced with permission from [110].
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The results of the first irregular vessel are very similar to those from the straight, barrel shaped
vessel (cf. Section 7.2.4) and the results of the second irregular vessel are very similar to the
findings of the straight, hourglass shaped vessel (cf. Section 7.2.5). However, the difference
between the off-the-shelf SG and the customized SG is less pronounced. While for the first
irregular vessel model the customized SG results in slightly smaller stent stresses, for the second
irregular vessel the customized SG results in slightly larger stent stresses in the highly curved
parts of the stent rings.

7.2.7. Curved, cylindrical vessel

In the curved vessel (ctf. Figure 7.8), the straight off-the-shelf SG of length 72 mm is longer
than the potential vessel landing zone at the inner curvature and shorter than the potential vessel
landing zone at the outer curvature of the vessel by AL = 19.6 mm as stated in Equation (7.1).
Hence, the off-the-shelf SG is unable to adapt to the curved vessel, which results in severe
longitudinal buckling of the graft at the inner curvature (cf. Figure 7.8I) where the SG is longer
than the corresponding vessel attachment side. In contrast to the off-the-shelf SG, the curved
customized SG can almost perfectly adapt to the curved vessel. Only minor radial graft buckling
exists and no stent collapse occurs.

Strong out-of-plane asymmetry of the first and last stent ring of the straight off-the-shelf SG
with an asymmetry angle « of approximately 20° exists (cf. Figure 7.81). The cross section of the
vessel in a plane defined by the asymmetry angle « is elliptical (cf. Figure 7.81, slice S2). The
circumference of the ellipse, i.e., the coverage length in circumferential direction, is larger than
the circumference of a circular vessel cross section. Hence, asymmetric stent expansion results
in a reduced degree of SG oversizing [256].

It is important to distinguish between the out-of-plane asymmetry and the in-plane asymmetry
which defines an ovalization of the stent in the plane orthogonal to the postinterventional SG
centerline (cf. Section 3.6.2). A purely geometric consideration of out-of-plane asymmetric stent
expansion leads to the reduced degree of SG oversizing (cf. Equation (1.1))

DSG ) DSG ) DSG 2 )
Oasym — =2 — 1 = — 1 = _
Y Dtﬁﬁpse \/(DAO)2+(D2AO/COS(O‘))2 DAe 1+ 1/((308((1))2

= o+ 1)\/1 T 1/<ios(a))2 “li=e 7

where Dé}ﬁpse is the quadratic mean diameter of the ellipse that results from slicing the vessel
in an angle of o with respect to the orthogonal plane to the vessel centerline (cf. Figure 7.8I,
slice S2). Further, in (7.4), DSC is the nominal SG diameter and D”° is the preinterventional
vessel diameter. For the given asymmetric stent expansion of a =~ 20° of the off-the-shelf SG,
the reduced degree of SG oversizing iS O,sym ~ 16.2% compared to the nominal degree of
SG oversizing of o = 20%. Unlike the off-the-shelf SG, the customized SG does not lead to

asymmetric stent expansion in the angulated vessel (a ~ 0°, Figure 7.81), i.e., Oasym ~ 0 = 20%.
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Figure 7.8 In-silico EVAR results of an off-the-shelf SG and a customized SG deployed in
a curved, cylindrical vessel: deployed state (1), graft-vessel gap (II), graft-vessel sealing pat-
tern (IIT), normal contact pressures between SG and vessel (IV) and Cauchy von Mises stent
stresses (V). Modified figure reproduced with permission from [110].
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Stent collapse at the outer curvature of the vessel at the first and last stent ring (cf. Figure 7.8I,
slice S2) with poor attachment between SG and vessel are further negative consequences of the
deployment of the straight off-the-shelf SG in the angulated vessel.

Large gaps between SG and vessel above 3 mm exist at the inner curvature of the vessel in the
case of the off-the-shelf SG whereas the gaps between the customized SG and the curved vessel
are below 1.5 mm (cf. Figure 7.81I). At the critical inner curve of the vessel, the customized SG
is almost fully in contact with the vessel (cf. Figure 7.8I1I). Therefore, in total the graft-vessel
sealing is better in the case of the customized SG.

Due to the nonuniform compression of the straight off-the-shelf SG in the curved vessel,
the stent rings exhibit in-plane asymmetric deformation as defined in Equation (3.115) with
yS = 0.15 (cf. Figure 7.8, slice S1). This oval shape of the stent rings in the deployed state results
in higher normal contact pressures between SG and vessel at the major axis of the elliptical SG
and lower normal contact pressures at the minor axis of the elliptical SG. In contrast to the
straight off-the-shelf SG, the curved customized SG maintains its cylindrical shape even in the
deployed state. Hence, the distribution of normal contact pressure is very uniform in the case of
the customized SG (cf. Figure 7.8IV).

The perfect attachment of the customized SG in the curved vessel as well as the uniform
distribution of normal contact pressure is also reflected in the around 1.5 times higher SG fixation
force compared to the off-the-shelf SG (cf. Figure 7.9).

At the location of the collapsed stent parts of the off-the-shelf SG, high stent stresses of above
500 MPa occur. In contrast, maximum stent stresses of approximately 300 MPa occur only at
the curved parts of the stent rings of the customized SG (cf. Figure 7.8V).
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Figure 7.9 Relative difference of the SG fixation force as defined in Equation (3.105) of cus-
tomized SGs Fcustom and off-the-shelf SGs F’Off in the eight considered vessel morphologies.
Values of ﬁcustom / Foff > 1 illustrate the improvement of customized SGs with respect to the SG
fixation force. Reproduced with permission from [110].
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7.3. Discussion

In the study of this chapter, second level customized SGs with a morphology equivalent to the
morphology of the luminal vessel surface were investigated. The comparison of the in-silico
EVAR outcome of straight, cylindrical off-the-shelf SGs and second level customized SGs has
shown that using customized SGs can lead to considerably better EVAR outcomes. The numer-
ical proof of concept of the benefit of customized SGs compared to off-the-shelf SGs was done
with eight different vessel morphologies: seven straight vessels of different morphologies and
one curved vessel with a circular cross section.

Noncylindrical vessel morphologies result in a variable degree of SG oversizing when cylin-
drical off-the-shelf SGs are used. For instance, in a conical vessel there is always the trade-off
between SG undersizing (i.e., too little SG oversizing) at the wide end of the vessel and excessive
SG oversizing at the narrow end of the vessel. This means there is always a trade-off between
complications associated with SG undersizing [254, 257], such as SG migration and endoleaks,
and complications related to excessive SG oversizing [46, 232], such as aortic neck dilatation. It
was shown that by using second level customized SGs this inconsistency in choosing the degree
of SG oversizing is obsolete. A constant degree of SG oversizing along the total length of the
vessel landing zone can be achieved by using customized SGs that have the same morphology
as the vessel.

Compared to the off-the-shelf SGs, the second level customized SGs led to reduced graft
buckling and larger sealing areas. Furthermore, the maximum gaps between SG and vessel were
smaller for customized SGs. In total, the improved attachment of the customized SG to the vessel
is a clear indicator that second level customized SGs may be able to reduce the likelihood of
type I endoleaks in challenging aortic morphologies. Furthermore, the more uniform attachment
of the customized SG to the vessel led to a more uniform distribution of normal contact pressure.
Whilst off-the-shelf SGs partly showed local hot spots of normal contact pressure with increased
risk of vessel damage, the distribution of normal contact pressure of customized SGs mostly was
very uniform even in nonuniform vessel geometries. Using the same degree of SG oversizing,
the customized SGs exhibited considerably larger passive fixation forces than the off-the-shelf
SGs for all investigated vessel morphologies. Therefore, the fixation of the SG in the landing
zone is improved and the risk of SG migration may be reduced by application of second level
customized SGs. Moreover, a smaller degree of SG oversizing could be used for customized
SGs to obtain the same passive fixation force between SG and vessel and thus reduce potential
negative effects of large SG oversizing [46, 232, 257].

The smallest impact of SG customization was identified for straight and elliptical vessels. It
is explained by the relatively small lateral stiffness of a cylindrical SG. This means that little
deformation energy is required to deform the cylindrical SG into an elliptical one. Hence, the
mechanical behavior of the cylindrical off-the-shelf SG and the elliptical customized SG are
almost identical.

The largest benefit of the customized SG compared to the off-the-shelf prosthesis could be
observed for curved vessels as well as straight, conical vessels and straight, hourglass shaped
vessels which are frequently observed vessel morphologies in clinical practice [174]. Using the
customized SG in a curved vessel with an angle of 90° increased the passive SG fixation force by
approximately 50%. This substantial difference in passive SG fixation force between the straight
off-the-shelf SG and the curved customized SG can be explained by the following points:
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e The exploitation of the restricted length of the vessel landing zone is improved by
second level customized SGs, resulting in a considerably longer attachment length of
the SG. A small SG attachment length is a frequently mentioned reason for insufficient
SG fixation [6, 278]. The effective length of the vessel landing zone is larger at the outer
curvature than at the inner curvature of a curved vessel [256]. The straight off-the-shelf
SG, whose length is sized according to the length of the vessel centerline, is too short to
be able to fully exploit the effective length of the vessel landing zone at the outer curvature
of an angulated vessel.

e Removal of longitudinal buckling at the inner curvature of angulated vessels by using
second level customized SGs which results in larger sealing areas and a more uniform
radial force transmission between SG and vessel. The length of a straight off-the-shelf
SG, which is sized according to the length of the vessel centerline, is longer than the
effective length of the vessel landing zone at the inner curvature of the angulated vessel.
This incompatibility between effective length of the vessel landing zone and the SG length
leads to longitudinal compression of the graft at the inner curvature resulting in severe
longitudinal buckling of the SG.

e Second level customized SGs do not show out-of-plane asymmetric stent expansion
which is associated with the reduction of the degree of SG oversizing [256]. The most
proximal and the most distal stent rings of the investigated off-the-shelf SG showed asym-
metric stent expansion with a reduction of the degree of SG oversizing from a nominal
value of 20% to 16.2%. A smaller degree of SG oversizing is commonly associated with
smaller radial forces between SG and vessel (cf. Chapter 6).

e No ovalization of second level customized SGs. Bending of a straight off-the-shelf SG re-
sults in ovalization of the SG [58]. The SG with elliptic cross section does not fit perfectly
into the vessel with circular cross section. It follows a nonuniform attachment between
off-the-shelf SG and vessel with a nonuniform distribution of contact pressure.

e Second level customized SGs lead to a reduced risk of stent collapse. The straight
off-the-shelf SG showed stent collapse located at the outer curvature of the vessel which
is frequently observed for SGs in aortic necks with large angulation [6, 34, 123]. Stent
collapse is associated with a loss of the SG-vessel attachment and hence a loss of radial
force transmission between SG and vessel.

In addition to reduced SG-vessel attachment and a reduced fixation force, stent collapse of
the off-the-shelf SG lead to locally high stent stresses within the region of the collapsed stent
that may trigger SG fatigue [20, 127]. Second level customized SGs did not show any stent
collapse in the angulated vessel. Thus, maximum stent stresses and the likelihood of SG fatigue
is reduced.

Besides reduced complication likelihoods, these positive results of second level customized
SGs in vessels with large angulation are very promising to increase the range of applicability of
EVAR far beyond the IFU of current SG manufacturers, i.e., far beyond the current restrictions
to vessels with a neck angle below 60°.
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7.4. Limitations

Apart from the simplifications stated in Section 3.7, the study of this chapter is affected by the
use of idealizations of realistic vessel shapes. In future studies, the advantage of customized SGs
in a realistic and patient-specific setting should be investigated. In the presented examples, only
the aortic neck was considered, whereas the aneurysm sac was not part of the model.

Subject of this study was the investigation of the impact of the SG shape of customized SGs.
Hence, the same material model was used for customized and off-the-shelf SGs. Slight differ-
ences in the material behavior of off-the-shelf SGs, that mostly use woven PET grafts, and the
proposed customized electrospun grafts might have an impact on the outcome which should be
investigated in further studies.

Further, the SG morphology of the considered customized SGs was equivalent to the luminal
vessel morphology. In clinical practice, accurate placement of SGs is facilitated by radiopaque
markers and radiographic guidance, but precise placement of the SG remains very challenging.
Therefore, it is questionable if the morphology of the customized SG as an exact copy of the
luminal vessel surface is the best choice taking into account the maximum SG placement accu-
racy. In the study of this chapter, perfect placement of the SG was assumed, i.e., the shape of
the customized SG fit perfectly to the luminal vessel surface. A sensitivity study of the effect of
misplacement of customized SGs on the EVAR outcome should be investigated in future studies.
Furthermore, shape optimization [1, 15] could be used in a more general approach to find the
optimal SG morphology of customized SGs for a specific vessel. Such a shape optimization of
customized SGs should also consider the possible placement accuracy of the SG.

7.5. Conclusions

In clinical practice, the usage of EVAR is limited to relatively friendly aneurysm neck anatomies.
Especially in challenging vessel morphologies, EVAR related complication likelihoods are still
high. Many of these complications are associated with a mismatch between SG and vessel.
Highly customized SGs can considerably improve the quality of EVAR outcomes with reduced
complication likelihoods and can increase the applicability of EVAR to patients with extreme
vessel morphologies.

In this chapter, models of highly customized SGs were presented which have the same mor-
phology as the luminal vessel surface. The advantage of these highly customized SGs compared
to off-the-shelf SGs was shown in a numerical proof of concept in several different vessel mor-
phologies, where the in-silico EVAR outcome was compared with respect to several mechanical
and geometrical EVAR quality parameters. Especially SG fixation forces can be improved dras-
tically by this type of SG customization leading to a better fixation of the deployed SG and
potentially reduced likelihoods of SG migration.

In summary, this numerical proof of concept showed that the presented type of customized
SGs can meet the demand of personalized therapy and can improve the EVAR outcome. The
study motivates further development of highly personalized SGs toward the usage of customized
SGs in clinical practice.
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8. Summary and outlook

In the following, the overall results and conclusions are recapitulated in Section 8.1 and an
outlook on possible future work is given in Section 8.2.

8.1. Overall summary

In this thesis, a novel in-silico EVAR model has been developed, validated against real-world
postinterventional measurements and extensively applied. The validated in-silico EVAR model
is able to predict the postinterventional configuration of SG and vessel for patient-specific cases.
The presented computational approaches go beyond available studies on in-silico EVAR with
respect to the following major points:

e A geometrical and material nonlinear vessel model has been presented, which uses state of
the art constitutive models of aortic wall, AAA wall, ILT and calcifications. Furthermore,
the vessel model based on patient-specific preinterventional CT data considers vessel pre-
stressing and physiological blood pressure states.

e A parameterized realistic and fully resolved SG model of bifurcated, commercial SG de-
vices has been proposed. To this end, a novel stent predeformation methodology has been
developed which is able to recover residual strains and stresses resulting from the real-
world SG manufacturing process.

e A novel in-silico methodology has been presented to place and deploy SG models within
patient-specific vessel models. In comparison to previously published in-silico SG P&D
methodologies, the presented methodology uses a novel morphing algorithm to apply suit-
able deformation constraints directly to the degrees of freedom of the SG model during
the in-silico SG placement. This results in a computationally more robust SG placement.

e SG parameter continuation has been established. Once the SG is deployed in the vessel, the
initial SG diameter can be modified without having to repeat the in-silico SG placement
and deployment. This enables efficient parameter and sensitivity studies with respect to
SG oversizing.

e A novel qualitative and quantitative validation methodology of the in-silico EVAR model
has been developed. It is based on the comparison of stent diameters between in-silico re-
sults and real-world postinterventional CT data pseudo-continuously along the total length
of the deployed SG. Validation considering patient-specific cases revealed high accuracy
of the in-silico EVAR model.
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e Based on an engineering perspective, an assessment of the in-silico EVAR outcome with
respect to EVAR related complication likelihoods by mechanical and geometrical param-
eters has been suggested. These parameters were investigated in realistic scenarios of four
patient-specific cases.

e Fully parameterized models of synthetic, but realistic, SGs and vessels have been gen-
erated. Usage of these synthetic geometries in a large parameter study has revealed the
dependence of the successful EVAR outcome upon vessel and SG parameters. In partic-
ular, patients with a large neck angle, a large vessel diameter and a short neck length are
prone to developing SG related complications.

e A “new generation” SG for AAAs with challenging neck morphology has been presented.
The advantage of these highly customized SGs, which have the same morphology as the
luminal vessel surface, as compared to off-the-shelf SGs has been shown for several dif-
ferent idealized vessel morphologies.

Based on the results of this thesis, the developed and validated in-silico EVAR model is very
promising for the use in clinical practice. This thesis has shown essential steps toward the ap-
plication of such models to assist clinicians in the preinterventional planning of EVAR. The
computational model allows the clinician to perform virtual parameter variations, such as the
SG type and size, and assess the EVAR related complication likelihood before the actual inter-
vention.

8.2. Outlook on future work

The outlook on future work is subdivided into the following two aspects:

Potential model improvements

The following forthcoming model improvements could be considered to further increase the
accuracy and the applicability of the presented in-silico EVAR model.

First, the presented SG model assumes an isotropic graft material. However, PET grafts, as
woven structures exhibit anisotropic material behavior [58, 228]. Hence, an in-plane orthotropic
constitutive model, as proposed by [58], could improve the prediction of the mechanical graft
behavior. Further, the SG model could be improved with respect to geometrical modeling of the
most proximal stent ring that is not covered by the graft. In this thesis, the barbs of this stent ring
were considered implicitly. However, the stent ring itself was not geometrically modeled.

Second, population-averaged mean values are assumed in the proposed vessel model. How-
ever, patient-specific data is associated with inter- and intrapatient variability of various pa-
rameters incorporated into the model [219]. A parameter study has shown that these uncertain
parameters can have a profound impact on the EVAR outcome. Therefore, consideration of the
variability of these parameters of the patient-specific vessel model could further improve the
predictive quality of the in-silico EVAR model.

Third, most of the EVAR related complications are long-term complications that often arise
several years after the intervention. In this time span of several years, growth and remodeling of
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the vessel tissue can substantially change the postinterventional configuration of the vessel and
the SG [142]. Hence, incorporation of the long-term behavior into the vessel model would allow
to trace the development of EVAR related complications over time after the intervention.

Fourth, the deployed SG configuration might depend on clinician-specific factors, such as
intrainterventional device rotation [61] or application of a molding angioplasty to further unfold
the SG. Including clinician-specific factors into the in-silico EVAR model could further increase
the predictive quality of the in-silico EVAR model for individual cases.

Fifth, besides these four model improvements, model reduction techniques [4] could be used
in future to reduce computational costs of the EVAR simulation, thus enabling the application of
in-silico EVAR models in clinical practice.

Large cohort validation and applications of the in-silico EVAR model

The developed in-silico EVAR model provides the basis of a wide range of potential model
extensions and potential future applications. Hence, using the in-silico EVAR model and the
process chain from patient-specific preinterventional medical imaging to the in-silico predicted
postinterventional configurations, the following six possible future studies could be considered.

First, in this thesis, the validation of the in-silico EVAR model was based on only three patient-
specific cases. Therefore, an extension to a cohort of an appropriate size should be considered
in future studies. To this end, the process chain from patient-specific preinterventional medical
imaging to the in-silico predicted postinterventional configuration should be further optimized
toward a fully automated process chain.

Second, the ability of the proposed EVAR quality parameters to predict complication like-
lihoods needs to be validated. To this end, a large cohort of patient-specific cases should be
investigated over several years. Correlation studies between EVAR quality parameters and re-
lated complications of these real-world cases can provide a clear link between the single EVAR
quality parameters (e.g., SG drag force) and the EVAR related complication (e.g., SG migration).
Further, such a correlation study could provide ranges of the EVAR quality parameters in which
the parameters are acceptable and ranges in which a complication is very likely.

Third, advanced manufacturing techniques, such as 3D printing and electrospinning, enable
manufacturing of highly customized SGs. Indeed, the optimal SG design depends on the patient-
specific case and is difficult to estimate. Thus, as a potential step toward further personalization
of the EVAR procedure, the in-silico EVAR model could be used as the basis for an optimization
tool to design and build personalized SGs for challenging patient-specific cases. In Chapter 7, the
benefit of customized SGs over off-the-shelf SGs was shown in a numerical proof of concept.
However, the considered customized SGs were not the result of an optimization process, but
for simplicity the morphology of the preinterventional luminal vessel surface was assumed as
optimal SG design. Using a combination of topology and shape optimization, the performance
of customized SGs could be further improved. Topology optimization could be used to develop
the patient-specific optimal design of the stent rings with respect to fixation forces and uniform
attachment to the vessel. Shape optimization could be a valuable tool to determine the optimal
morphology of the entire SG for patient-specific cases.

Fourth, the in-silico EVAR model could be extended to advanced types of EVAR, such as
FEVAR or CHEVAR. A predictive comparison of these different types of EVAR could be used
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to find the optimal treatment for patient-specific cases already in the preinterventional planning
phase.

Fifth, the demonstrated models and techniques could be directly transferred to related en-
dovascular procedures, such as TEVAR or the endovascular treatment of stenosed or occluded
blood vessels by deployment of self-expandable pure stents (i.e., without graft).

Sixth, stiff guidewires and other medical devices that are introduced into the vessel prior to
the SG deployment can lead to substantial deformations of the vessel which can be the source
of intrainterventional or postinterventional complications [87]. A preliminary study has shown
that the developed framework can also be used for the prediction of guidewire induced vessel
deformations. Such a predictive guidewire simulation could even be used as an extension of the
proposed in-silico EVAR model, i.e., the results of the predicted deformations by the introduced
guidewire could be used as starting point for the subsequent in-silico SG deployment.
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A. Appendix

A.1. Summary of clinical data

Table A.1 Clinical summary of the four patients treated by EVAR that are considered in this
thesis. Reproduced with permission from [107].

Patient 1 Patient 2 Patient 3 Patient 4
Thrombus max. thickness | 27.0 28.0 13.6 24.7
[mm]
Calcification [-] severe moderate moderate moderate
Mean vessel diameters?
(preinterventional) [mm]
AAA sac 49.3 59.2 45.1 54.3
Proximal 25.5 25.6 25.1 254
Left iliac 14.5 19.8 14.3 12.4
Right iliac 14.0 16.6 13.1 15.2
SG manufacturer Cook Cook Cook Medtronic
SG prosthesis [-]
Main body TFFB-30-96- | TFFB-30-96- | TFFB-30-82- | ETBF-32-16-
7T 7T 7T C-166-E
Left iliac ZSLE-16-90- | ZSLE-24-74- | ZSLE-16-74- | ETLW-16-13-
7T 7T 7T C-124-E
Right iliac ZSLE-16-39- | ZSLE-20-56- | ZSLE-16-74- | -°
7T 7T 7T
Prosthesis oversizing [%]
Proximal 18.6 17.2 19.5 26.0
Left iliac 10.3 21.2 11.9 4.8
Right iliac 14.3 20.5 22.1 5.3
Prosthesis overlap [mm]
Main body - leftiliac | 31 35 30 30
Main body - right iliac | 26 47 29 b

® Diameter measured inner wall to inner wall
® In standard use, Medtronic Endurant™ II SGs use only one docking leg

This section is taken from Hemmler et al. [107] with permission for reuse. Four clinical cases
are considered in this thesis with patient characteristics provided in Table A.1. Patients 1-3
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were treated by Cook Zenith Flex/Spiral-Z® SGs, whereas patient 4 was treated by a Medtronic
Endurant™ II SG. The lengths of prosthesis overlaps between the main SG component and the
iliac SG components are chosen such that the distal ends of the SG do not cover the bifurcation
of the common iliac arteries to the external and internal iliac arteries. The prosthesis overlaps
between the main SG component and the iliac components used in the EVAR interventions of
the four patient-specific cases are provided in Table A.1. Based on the preinterventional ves-
sel diameters D*° and the nominal diameter DS of the SG, the degree of SG oversizing (cf.
Equation (1.1)) is provided in Table A.1 for the proximal and distal landing zones.

A.2. In-silico study of stent predeformation
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Figure A.1 Effect of stent predeformation (w = 15%) on the stress and strain states of the CZ-SG
model. Visualization of the SG von Mises Euler-Almansi strains (I) and the von Mises Cauchy
stresses for three different stent limbs (II).

In Figure A.1, the effect of stent predeformation on the stress and strain states of the CZ-
SG model for a spatially constant degree of stent predeformation of w = 15% is considered.
The change in the reference configuration of the stent from Q%O to lejrevo by application of the

morphing map Mp_é according to Equations (3.62)-(3.65) in combination with the mesh tying
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constraint between stent and graft results in residual strains and stresses within the predeformed
SG.

In Figure A.11, the von Mises Euler-Almansi strains of the SG after application of stent prede-
formation of w = 15% are visualized. The residual strains in the graft after the assembly of the
SG with stent predeformation are very local at the regions connected to the stent. In Figure A.11I,
residual stresses in three different stent limbs after the assembly of the SG with stent predefor-
mation are investigated. The residual stresses in all three stent limbs increases approximately
linearly with the degree of stent predeformation w. Highest residual stresses occur at the curved
regions of the stent limbs. The absolute value of the residual stresses also strongly depends on
the shape as well as size of the stent limb and strongly varies among the three examined stent
limbs.

A.3. Mesh convergence study
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Figure A.2 Mesh convergence study: mean stent limb diameters d® of the five stent limbs in
the deployed state for different discretizations with the total number of degrees of freedom 74,¢.
Reproduced with permission from [109].

The following section is taken with permission from Hemmler et al. [109]. The mesh con-
vergence is proven for the SG and vessel described by the basic parameters g € G provided in
Table 6.2. In Figure A.2, the mean stent limb diameters 8 of the five stent limbs in the deployed
state are investigated for different discretizations of vessel and SG. The mean stent limb diameter
B is given by

1 [

ﬁ = hT JS(SDe)dSDe, (Al)
De /' so
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where h_ is the stent limb height in the deployed state, s describes the location of the most
proximal point of the stent limb, s; is the location of the most distal point of the stent limb
and dS(sDe) is the average stent diameter in an orthogonal slice at the location sp, as defined in

Equation (3.95). Accordingly, d® describes the mean diameter of one total stent limb, which is
visualized for each of the five stent limbs in Figure A.2.

A.4. Study of path-dependency of the stent-graft
parameter continuation approach

Direct in-silico EVAR (SG oversize: 30%)
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Figure A.3 Qualitative comparison of the results obtained by in-silico EVAR of a SG with 10%
oversizing and subsequent SG parameter continuation to a SG oversizing of 30% (Ia) with the
results obtained by in-silico EVAR of a SG with 30% oversizing; blue arrow indicates marginal
differences in the graft buckling. Quantitative comparison (II) of the stent diameter of the direct
simulation (Ib) and the simulation based on the SG parameter continuation approach (Ia) plotted
along the arc length sp. of the centerline of the SG in the deployed state. Reproduced with
permission from [106].

This section is reused with permission from Hemmler et al. [106]. As the given problem is
nonlinear, the results might be path-dependent. Especially, the parameter continuation approach
has to be validated carefully with respect to this issue. Hence, to show that the use of the pa-
rameter continuation approach for variable SG oversizing has a negligible influence on the final
deployed state of the SG, the following comparison is made in Figure A.3: the results of the
parameter continuation approach from 10% to 30% SG oversizing are compared to the results
of the direct approach for a SG oversized by 30% and the same synthetic vessel geometry. Ves-
sel and SG parameters of this comparison correspond to the basic parameter set described in
Chapter 6.

Qualitatively only slight differences in the buckling pattern of the graft are visible (cf. Figure
A.31, blue arrow). Quantitatively, the absolute error ¢ = d> d5.. between the resulting stent

cont

diameters of the two simulations are compared, where d5, , and d5; are the average stent di-

ameters in the deployed state after the parameter continuation approach and the direct approach,
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respectively. This investigation shows an error with mean 4 SD of .+, = 0.024+0.21 mm (cf.
Figure A.3II). Hence, the path-dependency can be assumed to be small when the SG parameter
continuation approach is used for the sizing of the SG diameter.

A.5. Calculation of percentiles

The following section is taken with permission from Hemmler et al. [109]. The g-percentile of a
continuously given function f(X) in the domain Q' with X € Q' is defined by

B ngx <f<f< X)—f4) >o>dV L

: =1-— A2
Ja fﬂg‘ dVv 100 (A-2)
where I (¢(x)— £24)>0 is the indicator function defined by
1, (e)>0,
Lio)y>0 := . A3
e {0, (6)<0 (A9

A.6. Filtering of postinterventional CT data

This section is reused with permission from Hemmler et al. [107]. A moving average filter with
a span of

AZCT

N DJ 41 (A4)

lspan 2npostIV ’V
is used to limit the impact of obvious artifacts in the stent diameter measurement from postinter-
ventional CT data. In Equation (A.4), Azct = 1 mm is the slice thickness of the postinterven-
tional CT data, n,.s1v = 3 1s a filtering constant that scales the length of the moving average
filter. Asp, is the mean edge length of SG centerline Cp, in deployed state, i.e., the mean dis-
tance between the centers of gravity of the sets AI ostry defined by Equation (3. 92) The result of
the filtering process 1s Vlsuahzed for patient 3 in Figure A.4. Each asterisk denotes the measured

average diameter dp tIV 7 of one distinct set AIS éoesﬂv of SG part © € {P,L,R}.

A.7. Quality estimation of segmented data from
postinterventional CT scans

This section is taken with permission from Hemmler et al. [107]. The quality of the postinter-
ventional CT data is crucial for the reliability of a quantitative validation of the in-silico EVAR
results, but local artifacts have a non-negligible effect on the segmentation of the stent from
postinterventional CT data. To obtain an estimation of the measurement inaccuracy due to the
vagueness in the segmentation process of the stent from postinterventional CT data, the rela-

tive difference between the measured average diameter CZEO(S%)J and the average diameter of the
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Figure A.4 Difference between measured average stent diameters dpOstIv from postinterven-

tional CT data and filtered average stent diameters dpostw,f as well as visualization of the stan-
dard deviation ot (cf. Appendix A.7) for the proximal SG part (I), the left iliac SG part (II) and
the right iliac SG part (III) of patient 3. Reproduced with permission from [107].

filtered data d Z)(s?l)v 1 18 defined by

3>©)i 150

(@) _ “postlV T “postlV,f - (©)
g = PG . Vi=1,2,...,n:". (A.5)
postIV f
Further, the standard deviation
© _ | 1 ©) _ (6
o=l D <5f — 1y > (A.6)
"¢ il19,..n®
RIS
is calculated, where
© _ 1 ©).
W= DL & (A7)
ng i=12,.0)

is the mean relative difference. n(ce) is the number of points describing the piecewise linear

curve CD which is equivalent to the number of discrete sets A% pz)stIV Equations (A.5)-(A.7), can
be equally applied to all three SG parts © € {P, L, R}. In Figure A 4, the plain stent diameters

75,(0),j . and the standard

postIV 3 the filtered stent diameters ¢

from postinterventional CT data d

deviation 0;9) are opposed for patient 3.

A large standard deviation aj(f@) of the relative difference E;Q)J is an indicator that the measure-

ments are strongly affected by local artifacts of the segmented stent. The standard deviation O'f(e)

is small for the proximal SG parts (0%D < 2.0%) but more significant for the iliac SG parts (cf.
Table A.2) due to two main reasons:

postIV

e The segmentation process of the Cook Zenith Spiral-Z® SGs from postinterventional CT
data is more difficult as those stent limbs are less clearly visible.
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A.8. Auxiliary plane for visualization of the results

° O'f(e) is the standard deviation of the relative difference between the measured average

diameters dpojsﬂv and the filtered average diameters alpoStIVf Hence, local artifacts in the
(©)

postinterventional CT data of equivalent size would have a larger relative impact on o,
in regions of small stent diameters such as in iliac SG parts.

Table A.2 Standard deviation Jf(@ of the relative difference between the measured average di-
ameter dp%ﬂv and the average diameter of the filtered data d | o(s?l)vjf of the postinterventional CT
data in [%] according to Equation (A.6) for patient 1-3 and the three SG parts. Reproduced with

permission from [107].

o¢ [%] | Patient 1 | Patient 2 | Patient 3
Main part 0.8 2.0 1.3
Left iliac part 2.7 3.8 5.1
Right iliac part 3.8 4.8 4.2

A.8. Auxiliary plane for visualization of the results

The following section is taken with permission from Hemmler et al. [110]. For improved visu-
alization of the results in the SG landing zones, a projection of the results into the flat auxiliary
XZ- plane is used. The auxiliary XZ- plane represents the uncoiled lateral surface of a virtual
cylinder with radius R. The coordinates of the flat auxiliary XZ- -plane (Y = () are given by

}? (arctan (
é (arctan (

) +3), Y <0
)=3), Y >0

Z (A.9)

X

(A.8)

Sl el
INIERNSIE]

Z

where X and Y are the reference coordinates of the SG and R is the radius of a virtual cylinder.

A.9. Detailed overview of the parameter study

This section is used with permission from Hemmler et al. [109]. In the Figures A.5-A.10, a
detailed overview of the parameter study of Chapter 6 is given.
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Figure A.5 Mean+std of all EVAR quality parameters ¢ € Q according to Equation (6.10) and
(6.11) depending on the degree of SG oversizing o. The EVAR quality parameters ¢ € Q are
sorted as they had been introduced in Section 3.6.2: vessel and SG stresses and tractions (I), drag
and fixation forces(Il), quality of seal (III), geometrical parameters of the deployed SG (IV) and
parameters depending on the pulsatile blood pressure (V). Reproduced with permission from
[109].
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Figure A.6 Selected EVAR quality parameters plotted over variations of the proximal neck an-
gle oy, (I), the proximal neck length [, (II), the proximal neck diameter d,, (III) and the proximal
AAA shoulder length /s, (IV) for different degrees of SG oversizing o as well as different blood
pressure states p2** = 80 mmHg and p®® = 130 mmHg. Reproduced with permission from
[109].
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Figure A.7 Selected EVAR quality parameters plotted over variations of the aneurysm eccen-
tricity e, = eq (I), the ILT thickness #yrr (II), the vessel wall thickness ¢, (III) and the vessel
wall stiffness v (IV) for different degrees of SG oversizing o as well as different blood pressure
states p1®t = 80 mmHg and p** = 130 mmHg. Reproduced with permission from [109].
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Figure A.8 Selected EVAR quality parameters plotted over variations of the stent limb
height A5(I), the number of periods per stent limb p® (I) and the degree of stent predeforma-
tion w (III) for different degrees of SG oversizing o as well as different blood pressure states

diast

p = 80 mmHg and p¥* = 130 mmHg. Reproduced with permission from [109].
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Figure A.9 Coefficient of variation CVq (cf. Equation (6.9)) over all nA>4is* realizations with

different vessel geometries (I) as well as over all %42t realizations with different SG geome-

tries (II) at the diastolic pressure level of p?** = 80 mmHg as a function of the degree of SG
oversizing 0. CVq is the coefficient of variation of EVAR quality parameter ¢ € Q. For instance,

CVogall is the coefficient of variation of the maximum vessel wall stress oyl Reproduced with

permission from [109].
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Figure A.10 Influence of the arterial blood pressure state Aq according to Equation (6.16) on
EVAR quality parameters ¢ as a function of the degree of SG oversizing o. Aq describes the
relative change of the EVAR quality parameter ¢ € Q by a change of the arterial blood pressure
from the diastolic state p4i®* = 80 mmHg to the systolic state p* = 130 mmHg. For instance,
Acyall is the relative change of the maximum vessel wall stress oge!! induced by the blood
pressure change. Reproduced with permission from [109].
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