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Abstract. Erosive rainfall varies pronouncedly in time and
space. Severe events are often restricted to a few square kilo-
meters. Radar rain data with high spatiotemporal resolution
enable this pattern of erosivity to be portrayed with high de-
tail. We used radar data with a spatial resolution of 1 km2

over 452 503 km2 to derive a new erosivity map for Ger-
many and to analyze the seasonal distribution of erosivity.
The expected long-term regional pattern was extracted from
the scattered pattern of events by several steps of smooth-
ing. This included averaging erosivity from 2001 to 2017
and smoothing in time and space. The pattern of the result-
ing map was predominantly shaped by orography. It gener-
ally agrees well with the erosivity map currently used in Ger-
many (Sauerborn map), which is based on regressions using
rain gauge data (mainly from the 1960s to 1980s). In some
regions the patterns of both maps deviate because the regres-
sions of the Sauerborn map were weak. Most importantly,
the new map shows that erosivity is about 66 % larger than
in the Sauerborn map. This increase in erosivity was con-
firmed by long-term data from rain gauge stations that were
used for the Sauerborn map and which are still in operation.
The change was thus not caused by using a different method-
ology but by climate change since the 1970s. Furthermore,
the seasonal distribution of erosivity shows a slight shift to-
wards the winter period when soil cover by plants is usually
poor. This shift in addition to the increase in erosivity may
have caused an increase in erosion for many crops. For ex-
ample, predicted soil erosion for winter wheat is now about
4 times larger than in the 1970s. These highly resolved top-
ical erosivity data will thus have definite consequences for

agricultural advisory services, landscape planning and even
political decisions.

1 Introduction

Soil erosion by heavy rain is regarded as the largest threat
to the soil resource. Rain erosivity is rain’s ability to detach
soil particles and provide transport by runoff and thereby is
one of the factors influencing soil erosion. The most com-
monly used measure of rain erosivity is the R factor of the
Universal Soil Loss Equation (USLE; Wischmeier, 1959;
Wischmeier and Smith, 1958, 1978) or the Revised Universal
Soil Loss Equation (RUSLE; Renard et al., 1991), although
other concepts also exist (Morgan et al., 1999; Schmidt,
1991; Williams and Berndt, 1977). The R factor is given
as the product of a rain event’s kinetic energy and its max-
imum 30 min intensity. Both components are usually derived
from hyetographs recorded by rain gauges. Such rain gauge
data are spatially scarce. For instance, in Germany only one
rain gauge per 2571 km2 was available for the currently used
R map (Sauerborn, 1994; this map will be called “Sauer-
born map” in the following). Hence, point information has to
be spatially interpolated to derive an R map that enables us
to estimate R for any location. Different interpolation tech-
niques have been applied. Most often correlations (transfer
functions) of R with other meteorological data available at
higher spatial density were used (for an overview see Nearing
et al., 2017). The Sauerborn map was based on correlations
between R and normal-period summer rain depth or normal-
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period annual rain depth, which differ between federal states
(Rogler and Schwertmann, 1981; Sauerborn, 1994, and cita-
tions therein).

Recent research has shown that the erosivity of sin-
gle events exhibits strong spatial gradients (Fiener and
Auerswald, 2009; Fischer et al., 2016, 2018b; Krajewski et
al., 2003; Pedersen et al., 2010; Peleg et al., 2016). This is
due to the small spatial extent of convective rain cells, which
is typical for erosive rains. The resulting heterogeneity has
two consequences. First, interpolation of erosivity between
two neighboring rain stations will not be possible for in-
dividual rains because a rain cell in between may be com-
pletely missed. Second, even long records of rain gauge data
may miss the largest events that occurred in close proximity
to a rain gauge and thus underestimate rain erosivity. This
is illustrated nicely by the data of Fischer et al. (2018b).
They showed that the largest event erosivity, which was
recorded by contiguous measurements over only 2 months,
was more than twice as large as the largest erosivity recorded
by 115 rain gauges over 16 years and the same area. Fur-
thermore, this single event contributed about 20 times as
much erosivity as the expected long-term average. Even in
a 100-year record this single event would thus still change
the long-term average erosivity. The large variability of ero-
sivity in space and time then directly translates to soil loss.
This may be illustrated by soil loss measurements in vine-
yards in Germany. Emde (1992) found a mean soil loss of
151 t ha−1 yr−1 averaged over 10 plot years while Richter
(1991) only measured 0.2 t ha−1 yr−1, averaged over 144 plot
years. The difference is due to the largest event during the
study by Emde (1992), which obviously had too much in-
fluence on the mean compared to the size of his data set.
Such an event was missing entirely in Richter’s (1991) much
larger data set. The inclusion of rare events when measured
by chance by a rain gauge leads to statistical problems due
to their extraordinary magnitude. They cause outliers in re-
gression analysis and thus strongly affect transfer functions.
To avoid an effect by single events to the transfer func-
tion, Rogler and Schwertmann (1981) excluded all events for
which the estimated return period was more than 30 years
(assuming that event erosivities followed a Gumbel distribu-
tion). In consequence, the largest event was replaced by zero
erosivity and, in turn, soil erosion was underestimated.

The demand for contiguous rain data to create R factor
maps was only recently met by satellite data (Vrieling et
al., 2010, 2014) and by radar rain data with considerably
larger spatial (presently up to 9-fold) and temporal reso-
lution (presently up to 36-fold) (Fischer et al., 2016). Put
simply, the measurements are based on the principle that
radar beams are reflected by hydrometeors (Bringi and Chan-
drasekar, 2001; Meischner et al., 1997). The intensity of the
reflection depends on rain intensity and the travel time of
the reflected radar beam depends on the distance between
the emitting and receiving radar tower and the hydromete-
ors within the measurement volume. Radars usually measure

with a resolution of approx. 1◦ azimuth and 125 to 250 m in
the direction of beam propagation. The data are then typically
transformed to grids of square pixels of 1 km2 (Bartels et al.,
2004; Fairman et al., 2015), 4 km2 (Koistinen and Michel-
son, 2002; Michelson et al., 2010) or 16 km2 (Hardegree et
al., 2008) after many refinement steps.

An R factor (map) can serve two purposes with contrast-
ing requirements. First, it can be used in combination with
measured soil loss or reported damages (e.g., Mutchler and
Carter, 1983; Vaezi et al., 2017; Fischer et al., 2018a). In this
hindcast case, the highest possible spatial and temporal reso-
lution is recommended. The second application of the R fac-
tor is for forecasting erosion, which is required, e.g., for field
use planning (Wischmeier and Smith, 1978). In this case, the
long-term expectation is of interest rather than the trueR fac-
tor of the (near) past that was influenced by the stochastic
location of individual rain cells. Thus, for future modeling,
smoothing of the stochastic noise is necessary.

ExistingRmaps have also undergone a number of smooth-
ing steps, although this is not explicitly stated in the cor-
responding reports. Most R maps use regressions between
long-term averages of erosivity and long-term meteorolog-
ical parameters, e.g., annual rain depth. For long-term av-
erages, periods of more than 20 years are accepted (Chow,
1953; Wischmeier and Smith, 1978) to remove the stochas-
ticity of individual events and leave the general pattern.
In consequence, a temporal smoothing follows from using
long-term averages, and a spatial smoothing follows from
the transfer functions and their application to rainfall maps.
These rainfall maps include a third step of smoothing be-
cause the meteorological recommendation is to use normal-
period rainfall (30-year) data, and point data (meteorologi-
cal stations) have to be extended to create a map. For ex-
ample for the R map in Germany (Rogler and Schwertmann,
1981), the precipitation map of 1931 to 1960 was used, which
was the last available normal period although rain erosivi-
ties were derived mainly from measurements in the 1960s
and 1970s. This precipitation map was mainly based on edu-
cated guesses of the best meteorologists at that time as geo-
statistical tools were only developed later (Matheron, 1970).
With the large increase in data availability by radar mea-
surements and the development of (geostatistical) smooth-
ing tools, this uncontrolled smoothing can be replaced by
accepted statistical methods of smoothing. The general rec-
ommendation is to apply smoothing until the pattern that
is intended to be shown can be seen (O’Haver, 2018; Si-
monoff, 1996; Quantitative Decisions, 2004) by using sev-
eral smoothing steps in sequence (O’Haver, 2018; Wedin et
al., 2008).

In this study, we used the new RW product from the
radar climatology RADKLIM (RADar KLIMatologie) from
the German Meteorological Service (Deutscher Wetterdienst,
DWD). RW data provide gauge-adjusted and further refined
precipitation for a pixel size of 1 km× 1 km (Winterrath et
al., 2017, 2018). RW data of 17 years (2001–2017) were
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available as a contiguous source of rain information. Us-
ing these data to establish a new R factor map for Germany
should be a major step forward compared to the Sauerborn
map, which was derived from an inconsistent set of data com-
piled by different researchers (e.g., some had winter precip-
itation data available and used them while others did not;
see Sauerborn, 1994) and with equations developed inde-
pendently for 16 federal states. Our data set is much larger
(by a factor of 2571 regarding locations) and, because of the
contiguous data source, it does not require interpolation with
transfer functions. Our first hypothesis was that there will
be considerable changes in the pattern of erosivity due to
the removal of transfer-function weaknesses. Our second hy-
pothesis was that the R factor map will exhibit larger values
than the Sauerborn map, for two reasons. Very large and rare
events will no longer be missed, as occurred previously due
to the large distances between meteorological stations, and
there is no longer any need to remove these events to arrive at
robust transfer functions. The second reason for larger R fac-
tors is due to global climate change, as Rogler and Schwert-
mann (1981) and Sauerborn (1994) mostly used data from
the 1960s, 1970s and 1980s. Global climate change is ex-
pected to increase rain erosivity (Burt et al., 2016).

2 Material and methods

2.1 Radar-derived precipitation data

DWD runs a Germany-wide network of presently 17 C-band
Doppler radar systems (Fig. 1). This network underwent
several upgrades during the analysis period. At the start of
the time period considered, five single-polarization systems
(DWSR-88C, AeroBase Group Inc., Manassas, USA) were
operated without a Doppler filter, the latter being added be-
tween 2001 and 2004. Between 2009 and 2017, DWD re-
placed the network of C-band single-polarization systems of
the types METEOR 360 AC (Gematronik, Neuss, Germany)
and DWSR-2501 (Enterprise Electronics Corporation, Enter-
prise, USA) with modern dual-polarization C-band systems
of the type DWSR-5001C/SDP-CE (Enterprise Electronics
Corporation), all equipped with Doppler filters. During this
period, a portable interim radar system of the type DWSR-
5001C was installed at some sites.

The radar systems permanently scan the atmosphere to de-
tect precipitation signals. Every 5 min, the radars perform
a precipitation scan, each with terrain-following elevation
angle to measure precipitation near the ground. The result-
ing local reflectivity information over a range of currently
150 km in real time and a constant 128 km in the climate
approach is combined to form a Germany-wide mosaic of
about 1100 km in the north–south direction and 900 km in the
west–east direction. The reflectivity information is converted
to precipitation rates applying a reflectivity–rain rate (ZR) re-
lationship (Bartels et al., 2004). An operational quality con-

Figure 1. Coverage (blue circles) of the 17 German weather radars
for a range (utilized radius) of 128 km and the tower locations
in 2017 (locations of some radar towers have changed over time).
Black lines denote federal states; the federal states of Bavaria
(cross-hatched), Lower Saxony (hatched) and selected mountain
ranges (light brown) are mentioned in the text. Axis ticks repre-
sent distances of 100 km. A detailed topographic map can be found
in Fig. S1.

trol system screens the radar data. To further improve the
quantitative precipitation estimates, the radar-derived precip-
itation rates are summed to hourly totals and immediately ad-
justed to gauge data from more than 1000 meteorological sta-
tions resulting in RADOLAN (RADar OnLine ANeichung,
i.e., online-adjusted, radar-derived precipitation), which pro-
vides precipitation data in real time, mainly for applications
in flood forecasting and flood protection (Bartels et al., 2004;
Winterrath et al., 2012).

Based on RADOLAN, the climate version RADKLIM is
derived. Compared to the real-time approach, the data are
additionally offline-adjusted to daily gauge data, combining
a total of more than 4400 rain gauges measuring hourly and
daily (equivalent to 1 rain gauge per 80 km2). The data are
then reprocessed by new climatological correction methods,
e.g., for spokes, clutter or short data gaps. Spokes result from
permanent obstacles blocking the radar beam, while clutter
is introduced by non-meteorological targets like windmills
or birds. The final product (called RW data) has a tempo-
ral resolution of 1 h and a spatial resolution of 1 km× 1 km
in polar stereographic projection. For more detailed infor-
mation on RADKLIM the reader is referred to Winterrath
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et al. (2017). The RW data, restricted to the German terri-
tory, are freely available (Winterrath et al., 2018). For the
first time, the RADKLIM data set provides contiguous pre-
cipitation data with high temporal and spatial resolution. It
includes local heavy or violent precipitation events (for clas-
sification of heavy and violent see UK Met Office, 2007)
that are partly missed by point measurements alone. Thus,
it particularly improves the analysis of extreme precipitation
events.

Two additional data sets were used to verify the validity of
the approach and to examine effects of methodological de-
tails (see below). These data sets are erosivities derived from
radar data at 5 min resolution taken from Fischer et al. (2016)
and erosivities derived from rain gauge data of 115 stations in
Germany from 2001 to 2016, which were taken from Fischer
et al. (2018b).

2.2 Erosivity calculation procedure

According to Wischmeier (Wischmeier, 1959; Wischmeier
and Smith, 1958, 1978), the erosivity of a single rain event
(Re in N h−1) is the product of the maximum 30 min rain
intensity (Imax30 in mm h−1) and the total kinetic energy per
unit area (Ekin in kJ m−2).

Re = Imax30 ·Ekin (1)

An erosive rain event is defined to have at least a total pre-
cipitation amount (P in mm) of 12.7 mm or an Imax30 of
more than 12.7 mm h−1 that is separated from the next rain
by at least 6 h. In order to scan and fulfil the 6 h criterion,
we did not separate between days but used a continuous 17-
year data stream. Specific kinetic energy ekin,i per millimeter
rain depth (in kJ m−2 mm−1) is given for intervals i of con-
stant rain intensity I (in SI units according to Rogler and
Schwertmann, 1981).
For 0.05 mm h−1

≤ I < 76.2 mm h−1,

ekin,i =
(
11.89+ 8.73 · log10I

)
× 10−3. (2)

For I < 0.05 mm h−1,

ekin,i = 0. (3)

For I ≥ 76.2 mm h−1,

ekin,i = 28.33× 10−3. (4)

We used the equation by Wischmeier and Smith (1978) to
calculate specific kinetic energy although several others have
also been proposed (van Dijk et al., 2002) with none being
superior (Wilken et al., 2018). Our choice retained compa-
rability with the Sauerborn map. Furthermore van Dijk et
al. (2002) had shown that kinetic energy as obtained by the
Wischmeier and Smith equation did not deviate from mea-
sured kinetic energy in Belgium neighboring Germany.

For all intervals i, ekin,i is multiplied with the rain amount
of this interval and then summed to yield Ekin for the en-
tire event. The annual erosivity of a specific year is the sum
of Re of all erosive events within this year. The average an-
nual erosivity (R) is then the average of all annual erosivities
during the study period (17 years in this case). While in the
USA and other countries the unit MJ mm ha−1 h−1 is often
used for Re, we use N h−1 because it is the unit most often
used in Europe and because of its simplicity. Both units can
be easily converted by multiplying the values in N h−1 with a
factor of 10 to yield MJ mm ha−1 h−1. The unit for R is then
N h−1 yr−1.

Rain erosivity strongly depends on intensity peaks. Fischer
et al. (2018b) have shown that these peaks increasingly disap-
pear the lower the spatial and temporal resolution becomes.
This can be accounted for by scaling factors but these scal-
ing factors can only adjust to an average behavior, while the
factors may either be too large or too small for a specific
event. A high spatiotemporal resolution should be used to
determine Re for individual events. This is not required to
determine the long-term average pattern like an R factor map
for planning and prediction purposes. In that case, data with
lower resolution and the application of appropriate scaling
factors are advantageous because this will reduce the noise
introduced by large events of small spatial extent that would
not be leveled out by averaging alone. We will use data in 1 h
time increments as those are adjusted to rain gauge measure-
ments and the number of data is reduced by a factor of 12
compared to 5 min increments. This is especially important
when all calculations, including identification of rain breaks
> 6 h and periods of Imax30, have to be carried out for many
years and many locations. In our case, roughly 7× 1010 1 h
increments had to be processed.

According to Fischer et al. (2018b), the following mod-
ifications in the calculation of Re had to be made to ac-
count for the temporal resolution of 1 h, the spatial resolu-
tion of 1 km2 and the method of measuring rain by radar:
(i) Imax30 was replaced by the maximum 1 h rain intensity
and the threshold for Imax30 was lowered to 5.8 mm h−1,
while the total precipitation threshold remained at 12.7 mm.
(ii) Five or more subsequent 1 h intervals without rain sepa-
rated events, which assumed that rain events begin on aver-
age in the middle of the first nonzero rain interval and end
again in the middle of the last nonzero rain interval, yielding
a total rain break of at least 6 h. (iii) The temporal scaling fac-
tor was 1.9 and the spatial scaling factor was 1.13, to which
0.35 had to be added to account for the radar measurement
instead of the rain gauge measurement. The total scaling fac-
tor [(1.13+ 0.35)× 1.9] was then 2.81.

Gaps in the time series were considered when calculating
annual sums of erosivity by scaling the total sum of erosiv-
ity over the whole time series to 365.25 days. If the effective
number of missing values exceeded 2 months per year, the
respective year was excluded from the calculation for that
pixel. If the effective number of excluded years was larger
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than one, the respective pixel was excluded. This was the
case for 0.6 % of all pixels.

2.3 Steps to generate an R factor map

The reduction of noise by using 1 h increments and a 17-
year mean was still not sufficient to level out the most ex-
treme events. Two further smoothing steps were therefore
applied. The first step was to winsorize the annual erosiv-
ities of the 17 years for each individual pixel by replacing
the lowest value with the second-lowest value and the high-
est value with the second-highest value (Dixon and Yuen,
1974). Winsorizing is an appropriate measure for calculat-
ing a robust estimator of the mean in symmetrically dis-
tributed data, but it is biased for long-tailed variables like
rain erosivity. Thus, the country-wide mean of all winsorized
data (94 N h−1 yr−1) was smaller than the mean of the orig-
inal data (96 N h−1 yr−1). In order to remove this bias, we
binned all data in 26 bins of 20 N h−1 yr−1 width and calcu-
lated the mean R before and after winsorizing. For bins with
R < 180 N h−1 yr−1, comprising 95 % of all pixels, the bias
increased linearly with R (r2

= 0.92; n= 8) and amounted
to 2.3 % of R. Above 180 N h−1 yr−1 there was no further
increase in the bias (r2

= 0.01, n= 18), which was, on aver-
age, 3.4 N h−1 yr−1. We removed the bias by adding 2.3 % to
all values < 180 N h−1 yr−1 and 3.4 N h−1 yr−1 to all values
above.

The last smoothing step applied geostatistical methods.
A semivariogram (over a range of 50 km) was calculated
and ordinary kriging was applied. Geostatistical analysis
was done using the program R (version 3.5.0; R Core
Team, 2018) and gstat (Gräler et al., 2016). A block size of
10 km× 10 km was chosen to remove noise and to fill the
pixels with data gaps, while the spatial resolution remained
at 1 km. The missing information was obtained from neigh-
boring pixels. The radar data outreached the German borders.
In total, 452 503 pixels were used to ensure small kriging
variances near borders or on islands, while the final map was
restricted to the German land surface (357 779 pixels).

Using 1 h data instead of 5 min data reduced the effect of
single extreme events at certain locations. Winsorizing re-
duced the effect of extreme years at a location, in addition
to the effect of averaging 17 years. Finally, kriging used
the information from neighboring pixels to reduce the ef-
fect of the extremes. This smooths among near neighbors
(distance< 20 km) but does not affect the regional pattern
(> 20 km). To evaluate whether this was the case and to
quantify the effect of all smoothing steps, we used the data
from Fischer et al. (2016). They had calculated rain erosivity
from 5 min resolution radar data for 2 years (2011 and 2012)
and an area of 14 358 km2 (yielding a total of 28 770 pixel
years), which is called “test region” in the following. Using
these data we calculated semivariograms from annual to bi-
ennial erosivities based on 5 min and 1 h resolution. These
semivariograms were compared to those from 17-year aver-

age erosivities, 17-year winsorized average erosivities, and
17-year winsorized and kriged erosivities for the test region
and for the entire area of Germany. Smoothing should re-
duce the influence of individual violent thunderstorm cells
and reveal the regional pattern. In geostatistical analysis this
decreases the sill of the semivariogram while the range in-
creases as it changes from being dominated by thunderstorm
cells to being dominated by the regional pattern. The regional
trend was calculated as the difference between the square
root of semivariances at distances of 40 and 20 km divided
by the difference in distance of 20 km to examine whether it
was influenced by the individual smoothing steps. The effect
of violent rain cells was calculated as the square root of the
semivariance at a distance of 20 km divided by the difference
in distance of 20 km minus the regional trend.

2.4 Annual erosivity return periods

Rain erosivity usually follows long-tailed distributions. This
leads to the question of how frequent years of extraordinarily
large erosivity are. To answer this question, the development
of cumulative distribution curves (for basic concepts see Ste-
dinger et al., 1993) is required. A period of 17 years is not
sufficient to reliably estimate a cumulative distribution curve
for every pixel. Therefore, we combined all annual erosivi-
ties of the total data set (452 503 pixels and 17 years) after
expressing each of them relative to the corresponding win-
sorized and bias-corrected mean of the pixel (in %). This
enabled the cumulative distribution curves to be calculated
from a large data set (n= 7.7 million). The expected maxi-
mum relative annual erosivity for a given return period could
then be estimated from the complementary cumulative distri-
bution curve (exceedance). This was also done for the rela-
tive annual erosivities of the test region, calculated from 1 h
rain data, to examine whether the general cumulative distri-
bution curve also applies to smaller regions.

The erosivities, when calculated from 1 h rain data, are al-
ready smoothed and do not adequately reflect the extremes
that result from data that are better resolved, such as the 5 min
rain data. The cumulative distribution curve for the test re-
gion was also calculated using the 5 min rain data. Given that
the cumulative distribution curves of the entire study area
and the test region agree for the relative erosivities calculated
from 1 h data, we expect that the relative erosivities calcu-
lated from 5 min rain data of the test region can serve as a
first estimate for the entire study region. The cumulative dis-
tribution curve for the test region calculated from 5 min data
will then be a fair estimate of the return periods anywhere in
the entire research area.

2.5 Seasonal distribution of erosivity

The seasonal distribution of erosivity, calculated as the rel-
ative contribution of each day to total annual erosivity,
is called the erosion index distribution or EI distribution
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(Wischmeier and Smith, 1978). It is required in erosion mod-
eling to determine the influence of seasonally varying soil
cover due to crop development. The convolution of the sea-
sonal effect of soil cover with the seasonal EI distribution
results in the so-called crop and cover factor (C factor) of
the USLE. The EI distribution was calculated for each pixel
and averaged over all 452 503 pixels. Seventeen years of data
still did not suffice to show similar amounts of erosivity on
subsequent days, despite the large number of pixels. There
was still considerable scatter that required smoothing to il-
lustrate the seasonal distribution. Smoothing between indi-
vidual days during the year involved three steps (for details
of the methods see Tukey, 1977): first a 13-day centered me-
dian was calculated for each day. A centered median smooths
but preserves the common trend signal (Gallagher and Wise,
1981), which is also true for the two subsequent steps. A 3-
day skip mean (leaving out the second day) was calculated
from the results, followed by a 25-day centered Hanning
mean (weighted mean with linearly decreasing weights). To
account for the periodic nature of the EI distribution and to
allow the smoothing methods to be applied at the start and
the end of the year, the year was replicated and shifted by
plus or minus 1 year.

Radar measurements tend to have larger errors during win-
tertime with snowfall. The reduced reflectivity of snow par-
ticles may lead to an underestimation of the precipitation
rate, while the increased reflectivity of melting particles in
the bright band may cause an overestimation. Moreover, the
lower boundary layer promotes a potential overshooting of
the radar beam with regard to the precipitating cloud (Holle-
man et al., 2008; Wagner et al., 2012). Such measurement
problems, if relevant, should especially influence the EI dis-
tribution during winter months and cause a deviation from
measurements at meteorological stations. Therefore, we also
calculated the EI distribution using data from 115 rain gauges
distributed throughout Germany and covering 2001 to 2016.
These data were taken from Fischer et al. (2018b). This data
set will also be used in the discussion for comparison of re-
cent radar-derived erosivities with recent rain-gauge-derived
erosivities and with historic rain-gauge-derived erosivities
taken from the literature.

3 Results

3.1 The effects of smoothing

The effects of smoothing on the appearance of the maps
were negligible (compare Fig. 2 with Figs. S3 and S4) be-
cause smoothing had only removed the extraordinarily large
variability that exists on small temporal and spatial scales.
However, the high data density revealed that even long-term
averages were insufficient to remove all influence of erratic
cells of violent rain, and further attenuating steps had to fol-
low. Annual sums of rain erosivity from 5 min data for the

Figure 2. Annual average R factor (N h−1 yr−1) map of Germany
from 17 years of radar rain data. The axes’ ticks represent distances
of 100 km. Color classes from yellow to dark blue comprise ap-
proximately 10 %, 20 %, 20 %, 25 %, 15 %, 4 %, 3 % and 3 % of
the area, respectively. For a comparison with the Sauerborn (1994)
map see Fig. S2 in the Supplement. For comparison with the map
before winsorizing and before kriging see Figs. S3 and S4. Average
R factors for the 401 local authority areas (average area 893 km2)
are given in Table S1.

test region varied most due to the dominance of individual
cells of violent rain that did not overlap or fill the entire
area (semivariogam I in Fig. 3a). This was indicated by the
short range (20 km) and high semivariance for that range
(2749 N2 h−2 yr−2) (Table 1). The standard deviation (SD)
of two pixels separated by 20 km thus was 52 N h−1 yr−1

(square root of 2749 N2 h−2 yr−2), which is more than half
of the average annual erosivity in Germany. After averaging
both years (2011 and 2012), the semivariance for a distance
of 20 km was only reduced to 1569 N2 h−2 yr−2 and the range
stayed the same at approximately 20 km (semivariogam III
in Fig. 3a). Both findings indicated that, even after averag-
ing 2 years, the individual cells of violent rain were still fully
detectable and had not merged to form a larger pattern. In
consequence, the regional trend, albeit detectable, appeared
minor (Table 1).

The effect when using data with a resolution of 1 h was al-
most as strong as when 2 years were averaged. Semivariance
at a distance of 20 km was only 1667 N2 h−2 yr−2 for an-
nual values (semivariogam II in Fig. 3a) and 953 N2 h−2 yr−2

for biennial averages (semivariogam IV in Fig. 3a). Even
more important, the regional trend became more visible due
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Table 1. Influence of temporal resolution of rain data (5 min and 1 h), averaging (1, 2, and 17 years), winsorizing and kriging on the
semivariance (γ ) at three distances h. For complete semivariograms see Fig. 3a.

Variable (number in Fig. 3) γ at γ at γ at Regional trend1 Effect of violent
h= 10 km h= 20 km h= 40 km (N h−1 yr−1 km−1) rain cells2

(N2 h−2 yr−2) (N2 h−2 yr−2) (N2 h−2 yr−2) (N h−1 yr−1 km−1)

5 min annual erosivity (I) 1925 2749 3136 0.2 2.4
5 min biennial erosivity (II) 1111 1569 1755 0.1 1.9
1 h annual erosivity (III) 1413 1667 2147 0.3 1.8
1 h biennial erosivity (IV) 782 953 1259 0.2 1.3
1 h 17-year mean erosivity (V) 144 197 315 0.2 0.5
1 h winsorized 17-year mean erosivity (VIII) 139 190 309 0.2 0.5
1 h kriged 17-year erosivity (VI) 60 121 239 0.2 0.3

1 The regional trend was calculated as the difference between the square roots of γ at distances of 40 and 20 km divided by the difference in distance of 20 km. 2 The effect of violent rain
cells was calculated as the square root of γ at a distance of 20 km divided by the difference in distance of 20 km minus the regional trend.

Figure 3. (a) Experimental semivariograms of annual erosivity of
the test region for different temporal resolutions of rain data (5 min
and 1 h), different averaging (1 year, 2011+ 2012; 2 years, mean
of 2011 and 2012; 17 years, 2001 to 2017), winsorizing and kriging
(for selected distance classes see Table 1). The line through semivar-
iogram VI is a linear regression through the origin (r2

= 0.9889).
(b) Comparison of semivariances for the 1 h, 17-year and win-
sorized data before kriging for the test region and for the whole
of Germany.

to smoothing of the extreme events by using 1 h instead of
5 min data. This regional trend is evident from the gradual
increase in semivariance over the entire distance of 50 km
shown in Fig. 3. Importantly, smoothing by using 1 h data
did not change average erosivity because the difference was
adequately compensated for by the temporal scaling factor.
The biennial average for the test region was 115 N h−1 yr−1

when calculated from 5 min data and 114 N h−1 yr−1 when
calculated from 1 h data.

Averaging annual erosivities of the test region over
17 years further reduced variability (semivariogram V in

Fig. 3a). Semivariance strongly decreased to 197 N2 h−2 yr−2

and the influence of individual cells of violent rain became
small relative to the regional trend. This led to an almost
linear increase in semivariance over distance. The influ-
ence of extreme years in individual pixels was further re-
duced by winsorizing, which slightly reduced semivariance
at 20 km distance to 190 N2 h−2 yr−2 (semivariogram VIII in
Fig 3b). For all of Germany, winsorizing reduced the stan-
dard deviation of a pixel over time from, on average, 49 to
39 N h−1 yr−1, while bias correction left the mean of ero-
sivity over all pixels unchanged at 96 N h−1 yr−1. The effect
on the appearance of the map was small (compare Figs. S3
and S4) because only small erratic patches of extraordinarily
high or low erosivity disappeared.

Finally, kriging reduced semivariance at 20 km distance to
121 N2 h−2 yr−2, leaving mainly the regional trend (semivar-
iogram VI in Fig. 3a). Thus, the step from 5 min to 1 h res-
olution reduced semivariance at 20 km distance by a factor
of 1.6 while averaging 17 years reduced semivariance by a
factor of 8.5. Winsorizing contributed a factor of 1.04 and
kriging a factor of 1.6. In total, semivariance was reduced
by a factor of 23, indicating a pronounced patchiness of ero-
sive rains on the annual scale that could not be leveled out
by averaging 17 years alone. The effect of each smooth-
ing step decreased with increasing distance. For a distance
of 10 km, the combined factor was 32 while it was only
13 for a distance of 30 km. This was due to the decreas-
ing importance of thunderstorm cells relative to the regional
trend. Independent of the degree of smoothing, the regional
trend, extracted from the change in semivariance between
distances of 20 and 40 km, remained practically unchanged
at 0.2 N h−1 yr−1 km−1 (Table 1). In contrast, the effect of vi-
olent rain cells decreased greatly using the smoothing steps
from 2.4 to 0.3 N h−1 yr−1 km−1. The effect on the appear-
ance of the map was again small (compare Fig. S4 and Fig. 2)
because only large contrasts between close neighbors disap-
peared, which are hardly visible due to the small pixel size.
The main visible effect was the filling of the few gaps.
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After winsorizing and kriging, the semivariances for the
test region followed a linear regression through the origin al-
most perfectly (r2

= 0.9889, n= 50; line through semivari-
ogram VI in Fig. 3a). This indicated that the variation in ero-
sivity over a distance of 50 km followed linear trends with-
out any noise (nugget) or short-range structures that could
be attributed to individual cells of violent rain. The semi-
variances, when calculated for the whole of Germany, were
considerably larger (twice as large at a distance of 50 km;
Fig. 3b, semivariogam VII) and close to a linear trend only
for short distances (e.g., a linear regression through the ori-
gin for the first 15 km yielded r2

= 0.9905). For longer dis-
tances, the semivariogram followed an exponential model
(nugget 4 N2 h−2 yr−2, partial sill 970 N2 h−2 yr−2, effective
range 123 km). The larger semivariance and the exponential
model were both caused by the inclusion of mountain areas
with large erosivities and steep erosivity gradients that were
missing in the test region.

3.2 R factor map

Erosivity was on average 96 N h−1 yr−1 but varied between
46 and 454 N h−1 yr−1. The regional pattern of erosivity
(Fig. 2) was mainly determined by orography (for a de-
tailed topographic map see Fig. S1 in the Supplement). The
largest values (above 185 N h−1 yr−1) were found in the very
south where the northern chain of the Alps reaches altitudes
of almost 3000 m a.s.l. (above sea level). Lower mountain
ranges are also characterized by larger mean annual erosivi-
ties than in their surrounding area (compare Fig. 1 or Fig. S1
with Fig. 2). For instance, the Bavarian Forest with eleva-
tions of up to 1450 m a.s.l. exhibited annual erosivities of
above 155 N h−1 yr−1. The Ore Mountains with elevations of
up to 1244 m a.s.l., had erosivities mostly between 125 and
155 N h−1 yr−1. Also mountain ranges like the Black For-
est or the Harz mountains clearly shape the erosivity map.
Additionally, upwind–downwind effects were detectable. For
example, the areas west-northwest (upwind) of the Harz
mountains had erosivities of between 70 and 80 N h−1 yr−1,
while the areas east-southeast (downwind) received less than
65 N h−1 yr−1.

3.3 Annual erosivity return periods

The cumulative distribution of the relative annual erosivities
followed a straight line in a probability plot fairly well when
the logarithm was used (Fig. 4). This indicated a log-normal
distribution (log mean 1.96; log SD 0.19). A very similar
cumulative distribution was found for annual erosivities de-
rived from the 1 h data of the test region (log mean 1.97; log
SD 0.18). The distribution based on the less-smoothed 5 min
data was considerably wider (log mean 1.94; log SD 0.22).
The annual expected erosivity was 88 %, 216 % and 273 % of
the respective long-term mean for return periods of 2, 30 and
100 years when the 5 min data were used (Fig. 4). It is im-

Figure 4. Cumulative distribution curve of the annual R factor rel-
ative to the long-term mean R factor of a pixel. Dashed black line
applies for erosivities derived from 1 h data for the whole of Ger-
many and 17 years (n= 7.7 million). Solid green line applies for
erosivities derived from 5 min data for the test region and 2 years
(n= 24770). Straight vertical and horizontal lines indicate return
periods between 2 and 100 years. The y axis is probability scaled;
the x axis is log scaled.

portant to note that these values apply for averages of 1 km2

pixels and include the smoothing that results from the radar
measurement, the radar reprocessing and from using 5 min
rain increments. Even more extreme years are expected to
occur in reality.

3.4 Seasonal distribution of erosivity

There was a pronounced peak in the seasonal distribution of
relative erosivity during summer months (Fig. 5). The daily
erosion index increased rapidly from mid-April to mid-May
and was 0.61 % day−1 on average in June, July and August.
From mid-August to September the daily erosion index de-
clined rapidly. In winter months the daily erosion index was
small (mean of December, January, February and March:
0.08 % day−1). There was no detectable difference in the sea-
sonal variation between different regions in Germany (see
Fig. S5). The cumulative distribution functions of different
regions correlated with at least r2

= 0.998 (n= 365).
Even more striking was the fact that this pattern re-

quired considerable smoothing to yield a continuous sea-
sonal time course. The difference between subsequent days
in the unsmoothed data was enormous (e.g., 1.5 % day−1,
0.4 % day−1 and 0.4 % day−1 on 29, 30 and 31 July). This
was despite the large number of measurements (17 years
and 455 309 pixels) that were averaged for each day. It high-
lights the exceptional strength of some violent rains. Despite
the rather small extent of individual erosivity cells, many of
them occurred in the same day, making a large relative con-
tribution to total erosivity for this day. While particular days
of the year were influenced by heavy precipitation, during
other days no erosive rainfall occurred anywhere within the
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Figure 5. Measured (circles) and smoothed (solid blue line) daily
erosion index derived from radar data. The daily erosion index cal-
culated from measurements between 2001 and 2016 at 115 rain
gauges distributed throughout Germany is given for comparison
(dashed orange line). For C factor calculations the smoothed values
can be taken from Table S2. Comparison of measured daily erosion
indices separated for different regions in Germany and the respec-
tive cumulative distribution curves are depicted in Fig. S5.

research area. A period of 17 years was not sufficient to level
out the contrast between subsequent days. The results of the
smoothing procedure show that even 221 years (17 years
multiplied by a moving-average window of 13 days) were
not sufficient to level out these differences. Two additional
smoothing steps had to be applied to arrive at a smooth
time course. Despite the strong smoothing that was necessary
for the probability density function, the smoothing did not
change the cumulative distribution function (which is used
for calculating C factors). The cumulative distribution func-
tions of the original data and of the smoothed data corre-
lated with r2

= 0.9998 (n= 365; both functions are shown
in Fig. S5).

The distribution of the daily erosion index calculated from
rain gauge data (1840 station years) was very similar to the
distribution calculated from the much larger radar data set
(compare solid and dashed lines in Fig. 5). This was espe-
cially true during winter months, when values derived from
both measurement methods were considerably larger than ex-
pected from previous analysis in the 1980s.

4 Discussion

4.1 Increase in erosivity

The most striking difference between the Sauerborn map
based on data from the 1960s to 1980s and the radar-derived
map is a pronounced increase in erosivity. A German aver-
age of 58 N h−1 yr−1 was derived from the Sauerborn map
(Auerswald et al., 2009), while the radar-derived map sug-
gests an average of 96 N h−1 yr−1. This increase will come

Figure 6. Comparison of past mean erosivities derived from rain
gauge data of the 1960s to 1980s as reported by Sauerborn (1994)
with recent mean erosivities of the 2000s to 2010s. Recent erosiv-
ities were either determined from rain gauge data at the same me-
teorological stations (mean of 2001 to 2016; taken from Fischer et
al., 2019; n= 33; filled circles) or from radar data (mean of 2001
to 2017 and all radar pixels at a distance of < 1.5 km from the me-
teorological stations; n= 101, open circles). Both axes are square
root scaled to improve resolution at low erosivities. Dashed line de-
notes 1 : 1. Solid lines are regressions through the origin.

along with an equal increase in predicted soil losses by 69 %.
An almost identical increase resulted when the erosivity of
meteorological stations, as reported by Sauerborn (1994),
was compared with the erosivity derived from radar data at
the same locations. This resulted in an increase of 63 % (open
symbols in Fig. 6). Thus, the increase in erosivity is not an
effect of the regression approach that was previously used or
due to better capturing of extreme events by the contiguous
radar data.

Fischer et al. (2018b) calculated erosivity for 33 of
the Sauerborn stations from recent (2001 to 2016) rain
gauge data. A comparison of these data with the Sauerborn
data (1994) also showed a similar increase of 52 % (closed
symbols in Fig. 6). The increase in erosivity between the
Sauerborn map and the new radar-derived map is thus also
not an artifact of using radar data but the result of a true
change in erosivity over time. This is further corroborated by
Fiener et al. (2013), who analyzed long-term records from 10
meteorological stations in western Germany. They found an
increase in erosivity of 63 % between 1973 and 2007. Both
independent findings leave little doubt that the pronouncedly
higher values in the new erosivity map are a result of a
change in weather properties and not a result of the differ-
ence in the applied methodologies, although we did expect
the mean to increase due to the contiguous data set, which is
better at recording rare extremes.

A time series of 17 years is regarded to be too short in me-
teorology for calculating temporal trends. The data in Sauer-
born (1994) were derived from different periods for different
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Figure 7. Average R factor relative to the 17-year mean radar-
derived R factor depending on the mean year of data origin. Data
below year 1990 are calculated from statewide averages determined
from meteorological station records; year is the mean year of sta-
tion records. Data above year 2000 are radar-derived R factors for
all of Germany for individual years. The closed circle denotes the
reference point (present map).

states. If we calculate the statewide mean R factors from her
transfer functions relative to the statewide mean R factors of
the radar-derived map and plot this relative R factor against
the mean year from which the state-specific data originated,
a 23-year-long period can be covered by the means (Fig. 7;
years< 1990; the total time period of individual years covers
an even wider range, mostly about±5 years around the mean
year). During this period there was a slight but insignificant
increase in erosivity with time. This increase smoothly leads
over to the steeper increase in radar-derived Germany-wide
annual R factors if we express them again relative to the 17-
year mean (Fig. 7; years> 2000). Both data sets combined
cover more than 60 years and yield a very highly significant
regression (r2

= 0.7340, n= 27) that indicates an accelerat-
ing increase in erosivity likely due to climate change. Fur-
thermore, Fig. 7 indicates that at the end of the radar time
series (2017) the R factor likely is already 20 % higher than
the values depicted in Fig. 2.

4.2 Change in the regional pattern of erosivity

The regional patterns of the Sauerborn map and of the radar-
derived map generally agree well but with two exceptions.
First, the radar-derived map shows distinctly larger values
southeast of the German Bight of the North Sea where the
air masses coming from the North Sea are channeled by the
Elbe river estuary and its Pleistocene meltwater valley and
then hit the higher areas of the north German moraines. A
large frequency of large rains is not unlikely in this situation.
The reason that this was missed by Sauerborn (1994) using
the data obtained by Hirche (1990) for Lower Saxony might
be mainly due to the small data density and the regression

with long-term rainfall. Only 18 stations were available for
the whole of Lower Saxony and only five of them were in
the area of large erosivity. Using the 18 stations in the state
of Lower Saxony only, and ignoring the difference between
landscapes, resulted in a rather poor regression with long-
term annual rainfall (r2 was only 0.32 for n= 18), and there-
fore a large prediction error and considerable smoothing of
the true erosivity pattern can be expected. For comparison,
in Bavaria the regression with long-term rainfall yielded r2

of 0.92 (for n= 18; Rogler and Schwertmann, 1981).
The second difference in the pattern is that the radar-

derived map reveals more detail than the regression-based
map by Sauerborn (1994). This is especially evident in south-
ern Germany where southwest–northeast-oriented structures
seem to follow tracks of thunderstorm movement. In the
northeast quarter of Germany, where the pattern is not shaped
by mountain ranges, a rather patchy pattern resulted. Al-
though Sauerborn (1994) had already found a patchy pattern
in this area it appears to be patchier now. At present, it is dif-
ficult to decide whether this pattern is random due to large
multicell clusters of rainstorms that will level out in the long
term or whether landscape properties, e.g., the existence of
large forests, cause a stable pattern in an area where other
factors affecting the pattern are missing. More detailed vari-
ation may also be expected in mountainous areas but radar
measurements cannot adequately show this variation. In the
future, using data obtained by commercial microwave links
as an additional source for retrieving precipitation (Chwala
et al., 2012, 2016; Overeem et al., 2013) may improve high-
resolution estimates, particularly in these areas.

4.3 Change in the seasonal distribution of erosivity

The third pronounced difference between past and recent ero-
sivities was found for the erosion index distribution. This
distribution is needed for C factor calculations (Wischmeier
and Smith, 1978). A change in the seasonality of erosivity
was already suggested by Fiener et al. (2013) analyzing an
80-year time series. However, Fiener et al. (2013) used data
from April to October only, and their results therefore can-
not be compared directly with our results that show the most
pronounced changes for the period from December to March.

At present, the C factors for all of Germany (DIN, 2017)
are based on the erosion index distribution developed for
Bavaria by Rogler and Schwertmann (1981), although un-
published erosion indices are also available for other federal
states (e.g., Hirche, 1990). The index distribution by Rogler
and Schwertmann (1981) is characterized by very low values
during winter months, which in turn causes a sharp increase
during summer months. In contrast, the radar-based index,
although still having a pronounced summer maximum, pre-
dicts a higher percentage of erosivity during winter. Rogler
and Schwertmann (1981) found that only 1.5 % of the annual
erosivity fell from January to March, while Fig. 5 indicates
that these months contributed 6.9 % to annual erosivity. This
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deviation may be caused by a regional variation in the ero-
sion index because the unpublished indices for other federal
states also suggested a larger contribution by winter months
(e.g., January to March contributed 7.5 % in Lower Saxony
according to Hirche, 1990). However, restricting our data set
to Bavaria led to a very similar index during winter months
(e.g., 6.2 % for January to March) to the index for the whole
of Germany, and the discrepancy with Rogler and Schwert-
mann (1981) remained. Furthermore we could not find sig-
nificant differences when calculating the index distribution
separately for different regions (Fig. S5).

A second explanation might be that the Rogler and
Schwertmann (1981) data were too limited to capture enough
erosive rains during periods of infrequent erosive events.
This explanation is corroborated by the large scatter between
individual days that still existed in our data set (Fig. 5), al-
though our data set was more than 50 000 times larger than
the data set used by Rogler and Schwertmann (1981).

A third explanation could again be climate change. In
Germany the number of extreme wet months increased in
winter by 463 % from the first to the second half of the
last century, while summer and autumn remained unchanged
(Schönwiese et al., 2003).

The change in erosion index distribution may be regarded
as being rather unimportant at first glance because erosivity
is still dominated by precipitation in summer. This small in-
crease in erosivity during the winter months, however, could
have important consequences for the C factor of crops that
provide only small soil coverage during winter. As there is
practically no growth during winter, these crops stay suscep-
tible to erosion over a long period. Thus they experience a
considerable amount of erosivity, even though erosivity per
day is small. For example, the C factor for continuous win-
ter wheat increases from 0.04 to 0.10 when using the soil
loss ratios taken from Auerswald et al. (1986) that entered
DIN (2017) and the new erosion indices instead of those from
Rogler and Schwertmann (1981).

4.4 Stochasticity

Soil erosion is characterized by a large temporal variability at
a small spatial scale due to the stochastic character of erosive
rains. About 20 years are necessary, according to Wischmeier
and Smith (1978), until this variability levels out and average
soil loss approaches values predicted with the (R)USLE. Our
data set covered 17 years but significant additional smooth-
ing was still necessary. One of the smoothing steps was to use
hourly data, although 5 min data would have been available.
In one or two decades the data series may be long enough to
remove some of the smoothing steps. In particular, it would
be desirable to use data of 30 min or even 5 min resolution.

This pronounced stochasticity is due to the small size of
convective rain cells. Just recently it has been shown by an-
alyzing the radar-derived rain pattern of the largest rainfall
events that on average the rain amount is halved within a

distance of only 2 km around the central point of a rain cell
(Lochbihler et al., 2017). Given that rain amount is squared
in the calculation of rain erosivity, the R factor decreases to
one fourth within this distance. Larger areas are only cov-
ered if there is movement of the rain cells. This small size of
rain cells questions the use of sparsely distributed rain gauges
to derive rain erosivity. The inconsistent transfer functions
among German states to derive erosivity from rainfall maps
likely originated in the high stochasticity of rain gauge mea-
surements under such conditions. It was only the unintended
but unavoidable smoothing that was inherent in previous ap-
proaches that allowed deriving such maps. Radar technol-
ogy enables us to replace this unintended smoothing using
clearly defined statistical protocols and to quantify the effect
of smoothing.

Another implication of this large variability is that 20 years
will still not be sufficient to level out extraordinary events.
The largest event erosivity that Fischer et al. (2016) found
in 2 years on ∼ 15000 km2 was 622 N h−1. Even for a 20-
year period, this event will add 31 N h−1 yr−1 to the average
annual erosivity at the small location of only a few squared
kilometers (km2) where it occurred. Most studies measuring
soil erosion under natural rain use much shorter intervals that
usually cover only a few years and rarely exceed 10 years
(see Auerswald et al., 2009, for a meta-analysis of German
studies and Cerdan et al., 2010, for European studies). The
interpretation of such short-term studies and the applicability
of the results are limited due to the pronounced variability of
natural rains.

In addition, the erosion index distribution required consid-
erable smoothing to improve representation of the seasonal
variation. Without smoothing, the shift in a certain crop stage
by only 1 day can cause large discrepancies in the resulting
C factor, depending on whether a day of large erosivity in
the past is included or excluded at the bounds of the crop
stage period. Smoothing can prevent this. This is especially
important for short crop stage periods, while the effect be-
comes small for longer periods. For instance, the monthly
sums of the smoothed data correlated closely with the sums
of the unsmoothed data (coefficient of determination: 0.995;
Nash–Sutcliffe efficiency: 0.994).

5 Conclusions

Radar-derived rainfall data enable us to derive highly re-
solved and contiguous maps of erosivity with high spa-
tial detail. This avoids errors in landscapes with insufficient
rain gauge density. The analysis showed that present (2001
to 2017) rain erosivity is considerably higher than erosiv-
ity in the past (1960s to 1980s). Furthermore, the seasonal
distribution of rain erosivity also deviates from that of the
past period. Winter months contribute more to total erosiv-
ity than previously recorded. Considerably more erosion can
be expected for crops that are at a highly susceptible stage
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of development in winter. In consequence, the predicted soil
loss will change pronouncedly by using recent erosivity and
the ranking of crops regarding their erosion potential will
change. This will have definite consequences for agricul-
tural extension and advisory services, landscape planning
and even political decisions.

Data availability. Data can be obtained from two sources: https:
//doi.org/10.5676/DWD/RADKLIM_Rfct_V2017.002 (Fischer et
al., 2019) and https://opendata.dwd.de/climate_environment/CDC/
grids_germany/annual/erosivity/precip_radklim/2017_002/ (Win-
terrath, 2019). The first source provides a shape file containing
R factors of the 16 German states, the 401 German counties, and
the 11 256 German communities as well as the entire map as raster
data with a resolution of 1 km2 in GeoTIFF format. The second
source provides a shape file containing the R factors of the 16 Ger-
man states, the 401 German counties, and the 11 256 German com-
munities based on the unsmoothed maps of all individual years
since 2001. Further information on the data is given in the corre-
sponding README files. Annual maps of future years will rou-
tinely be produced and published within the framework of the an-
nual RADKLIM update after the precipitation data have undergone
all steps of quality control and refinement. Be aware that the an-
nual maps based on 1 h rain data cannot be used to quantify high-
resolution site-specific erosion in a certain year because of the po-
tential smoothing of extreme rain intensities. These maps are only
designed for calculating long-term averages.
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