
sensors

Article

SemanticDepth: Fusing Semantic Segmentation and
Monocular Depth Estimation for Enabling
Autonomous Driving in Roads without Lane Lines

Pablo R. Palafox * , Johannes Betz , Felix Nobis , Konstantin Riedl
and Markus Lienkamp

Institute of Automotive Technology, Technical University of Munich, Boltzmannstr. 15,
85748 Garching bei München, Germany
* Correspondence: pablo.rodriguez-palafox@tum.de

Received: 12 June 2019; Accepted: 18 July 2019; Published: 22 July 2019
����������
�������

Abstract: Typically, lane departure warning systems rely on lane lines being present on the road.
However, in many scenarios, e.g., secondary roads or some streets in cities, lane lines are either
not present or not sufficiently well signaled. In this work, we present a vision-based method to
locate a vehicle within the road when no lane lines are present using only RGB images as input.
To this end, we propose to fuse together the outputs of a semantic segmentation and a monocular
depth estimation architecture to reconstruct locally a semantic 3D point cloud of the viewed scene.
We only retain points belonging to the road and, additionally, to any kind of fences or walls that
might be present right at the sides of the road. We then compute the width of the road at a certain
point on the planned trajectory and, additionally, what we denote as the fence-to-fence distance.
Our system is suited to any kind of motoring scenario and is especially useful when lane lines are
not present on the road or do not signal the path correctly. The additional fence-to-fence distance
computation is complementary to the road’s width estimation. We quantitatively test our method
on a set of images featuring streets of the city of Munich that contain a road-fence structure, so as
to compare our two proposed variants, namely the road’s width and the fence-to-fence distance
computation. In addition, we also validate our system qualitatively on the Stuttgart sequence of the
publicly available Cityscapes dataset, where no fences or walls are present at the sides of the road,
thus demonstrating that our system can be deployed in a standard city-like environment. For the
benefit of the community, we make our software open source.

Keywords: autonomous driving; scene understanding; Advanced Driver Assistance Systems (ADAS);
fusion architecture; deep learning; computer vision; semantic segmentation; monocular depth
estimation; situational awareness

1. Introduction

Research in the field of self-driving cars has largely increased in the last few years. One of the
key modules in an Autonomous Vehicle (AV) is perception. Indeed, understanding the world through
sensory inputs is crucial. Current AVs mainly rely on a combination of Light Detection and Ranging
(LiDAR), radar, and camera sensors to build a (semantic) 3D map of the scene. Such a sensor suite is
still too expensive to be integrated on a large scale in mass production of vehicles. On the contrary,
reduced versions of such a suite are already common in current Advanced Driver Assistance Systems
(ADAS). A notable example are Lane Departure Warning Systems (LDWSs), which warn the driver if
the vehicle drifts outside the current lane. For such a system to work, lane lines must be present on the
road. However, in many scenarios, e.g., secondary roads or some streets in cities, lane markings are
either not present or not sufficiently well signaled (e.g., see Figure 1a).

Sensors 2019, 19, 3224; doi:10.3390/s19143224 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5944-0938
https://orcid.org/0000-0001-9197-2849
https://orcid.org/0000-0001-6939-7315
https://orcid.org/0000-0001-6646-0585
https://orcid.org/0000-0002-9263-5323
http://www.mdpi.com/1424-8220/19/14/3224?type=check_update&version=1
http://dx.doi.org/10.3390/s19143224
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 3224 2 of 20

In this work, we present SemanticDepth, a vision-based method to locate a vehicle within the
road when no lane lines are present using only RGB images as the input. To this end, we propose to
fuse together the outputs of a semantic segmentation and a monocular depth estimation architecture to
reconstruct locally a semantic 3D point cloud of the viewed scene. We only retain points belonging to
the road and, additionally, to any kind of fences or walls that might be present right at the road’s edges.
We then compute the width of the road at a certain point on the planned trajectory and, additionally,
the fence-to-fence distance, which further informs about the drivable area in environments where
fences or walls exist. Figure 1b visualizes an exemplary output of our method.

(a) (b)

Figure 1. Our method locates the vehicle within the road in scenarios where no lane lines are available.
To do so, we reconstruct a local, semantic 3D point cloud of the viewed scene and then propose two
complementary computations: (1) extracting the width of the road by employing only the road’s
3D point cloud and (2) additionally leveraging fences/walls to the sides of the road to compute the
fence-to-fence distance. Our system can work in any kind of motoring scenario. (a) Original image.
(b) Computation of the road’s width and the fence-to-fence distance.

Our system is suited to any kind of motoring scenario and especially useful when lane lines are
not present on the road or do not signal the path correctly. The additional fence-to-fence distance
computation is complementary to the road’s width estimation. We quantitatively test our method
on a set of images featuring streets of the city of Munich that contain a road-fence structure, so as
to compare our two proposed variants, namely the road’s width and the fence-to-fence distance
computation. In addition, we also validate our system qualitatively on the Stuttgart sequence from
the publicly available Cityscapes dataset, where no fences/walls are present at the sides of the road,
thus demonstrating that our system can be deployed in a standard city-like environment.

Even though our system can be deployed in any kind of road scenario, the initial motivation for
this work was the recent Roborace [1], a motorsport competition for AVs that takes place on Formula E
racetracks, such as those shown in Figure 2. In [2], it is shown how the Roborace provides the perfect
environment for developing autonomous driving functions. In such an environment, lane lines are
either not present on the road (Figure 2a) or not visible enough (Figure 2b) to only rely on traditional
lane detection systems. This is also the case in other non-racetrack scenarios such as minor streets in
cities or secondary roads.

Overall, our contributions are the following:

• fusing together the outputs from a semantic segmentation and a monocular depth estimation
architecture in order to reconstruct a local, semantic 3D point cloud of the viewed scene,

• a set of simple, but effective post-processing tools to deal with the semantic 3D point cloud in
order to compute relevant information about the structure of the road ahead of the AV,

• a labeled dataset of images featuring Roborace [1] racetracks on which to train semantic
segmentation networks to discern specifically between road and fence/wall,

• a quantitative evaluation on a set of images featuring streets in the city of Munich recorded with a
hand-held camera,

Sensors 2019, 19, 3224 3 of 20

• and a qualitative evaluation on the Stuttgart sequence of the publicly available Cityscapes dataset,
thus demonstrating that our system can be deployed in a standard city-like environment.

(a) (b)

Figure 2. Example views of Roborace racetracks. The main elements are the road and the fences.
(a) Frame from New York’s racetrack. (b) Frame from Montreal’s racetrack.

2. Related Work

Lane Departure Warning Systems (LDWS) have been largely refined and implemented in
commercially available cars. However, traditional lane detection systems, either camera-based [3–7] or
LiDAR-based [8], fail when lane lines are not present on the road. For such scenarios, in order to locate
the vehicle within the road’s width, we propose to use semantic and depth cues. In the following,
we revise the state of the art in the tasks of semantic segmentation and depth estimation.

2.1. Semantic Segmentation

Semantic segmentation is the task of segmenting an image at the pixel level, i.e., assigning a
semantic class to each pixel in the input image. A semantic segmentation network must not only
determine the existence of an object car or of an object road in an image, but also the boundaries of each
object and their location on the image plane. In contrast to classification tasks [9,10], it is therefore
necessary to obtain dense pixel-wise predictions.

Before Deep Learning (DL) became mainstream in computer vision, different approaches were
used for semantic segmentation. Ensembles of decision trees that acted directly on image pixels,
such as TextonForest [11], were the state-of-the-art approaches in semantic segmentation.

Convolutional Neural Networks (CNNs) [9], which have had huge success in the task of image
classification, also started being leveraged for the task of semantic segmentation. Ciresan et al. [12]
presented a path classification approach where the label of each pixel was predicted from raw pixel
values of a square window centered on it. The intuition behind using patches was that classification
networks have fully-connected layers and, therefore, they require fixed-size images.

Later on, Long et al. [13] presented their Fully Convolutional Networks (FCNs), which popularized
CNN architectures for dense predictions without any fully-connected layers. This approach allowed
segmentation maps to be generated for images of any size and was significantly faster compared to the
previous patch-classification approach in [12]. More precisely, the FCN-8s implementation [13] achieved
a 20% relative improvement compared to the previous 62.2% mean Inference-over-Union (IoU) on the
Pascal VOC2012 dataset [14].

An FCN architecture is comprised of an encoder followed by a decoder, as visualized in
Figure 3. The encoder is typically a pre-trained classification architecture like VGG [15] or ResNet [16],
whose goal is, broadly, to extract features from the image. The decoder’s task is to project semantically
the discriminative low-resolution features learned by the encoder back into the original resolution of

Sensors 2019, 19, 3224 4 of 20

the input image, thus producing a dense classification and effectively up-scaling the output of the
encoder such that it matches the dimensions of the original image. This results in the segmentation or
prediction of a class for each individual pixel in the input frame.

Skip connections

Encoder Decoder

1x1 convolution

Figure 3. Typical scheme of a fully-convolutional network [13].

The great majority of the state-of-the-art semantic segmentation architectures are based on this
encoder-decoder structure. Their differences usually reside in the decoder part. Approaches like
DeepLabv3 [17] or PSPNet [18] achieve high IoU, but forward-pass time for these architectures is
usually too high to employ them in real-time systems. In the recent ENet [19], on the contrary,
efficiency was the ultimate goal, but many important sacrifices were made in the network layers at the
expense of a lower classification performance, compared to other approaches.

An architecture that sits in the middle, aiming at the best possible trade-off between accuracy and
efficiency, without neglecting any of them independently, is the recent ERFNet [20] . This architecture,
based on a novel residual block that uses factorized convolutions, can run at several frames per second
(fps) on a modern GPU, even on embedded devices, which can be mounted on a vehicle.

In this work, we employ a simple FCN-8s architecture [13], given that our focus is not on the
semantic segmentation task itself, but rather on leveraging semantic information to produce a semantic
3D point cloud of the viewed scene.

2.2. Monocular Depth Estimation

Extracting depth information is key in autonomous driving. Outdoors, this task is commonly
tackled through the use of LiDAR and radar systems, which are active sensors. Compared to passive
sensors, such as RGB cameras, the former do not require the scene to be illuminated, but their high cost
and sparse output give a clear advantage to inexpensive passive camera sensors. On the downside,
a monocular camera only provides 2D information and does not directly measure distances. There is
a broad range of different approaches tackling the problem of depth estimation, either using image
pairs [21], several overlapping images taken from various viewpoints [22], temporal sequences [23],
or assuming a fixed camera, static scene, and changing lighting [24].

Whereas these approaches need to have more than one input image of the view of interest, learned
monocular depth estimation only requires a single image as input. In this work, we leverage the
recently proposed monodepth architecture developed by Godard et al. [25] in order to estimate depth
from a monocular RGB camera.

In essence, Godard proposes a fully-convolutional DNN loosely inspired by the supervised
DispNet architecture presented in [26]. By posing monocular depth estimation as an image
reconstruction problem, Godard et al. [25] solve for the disparity map without requiring ground
truth depth. However, only minimizing a photometric loss (Godard’s first approach was to only
use the left image to reconstruct the right image) can result in good quality image reconstructions
but poor quality depth. They overcame this limitation by including a left-right consistency check in
their fully differentiable training loss, which improved the quality of their synthesized depth images.
Note that this type of consistency check is commonly used as a post-processing step in many stereo

Sensors 2019, 19, 3224 5 of 20

methods, e.g., [27], but Godard incorporates it directly into the network. In our work, we leverage this
architecture to produce a disparity map from an input RGB image.

2.3. Fusing Semantic Segmentation and Monocular Depth Estimation

Several works propose DNNs that leverage semantic information to boost the performance of
a monocular depth estimation architecture [28,29]. The opposite, i.e., incorporating complementary
depth information into semantic segmentation frameworks, has also been studied in [30]. In [31],
the authors designed a hybrid CNN that jointly estimates depth and semantic labels from a single
RGB image. In our work, we do not aim at presenting a new DNN architecture for either the joint
estimation of depth and semantic information [31], or for monocular depth estimation using semantic
cues [28,29]. On the contrary, we propose a method to locate a vehicle within the road (therefore, also
computing the road’s width) when no lane lines are present in the scene. Such an environment poses
a problem for current systems that only rely on lane line detection to position the vehicle within the
road. This is especially common in Formula E racetrack scenarios temporarily built on city streets, but
also typical for secondary roads, minor streets in cities, or roads under construction.

To this end, we propose to create a local, semantic 3D point cloud of the viewed scene by means
of fusing the output of a monocular depth estimation network with that of a semantic segmentation
network. None of the works mentioned above propose such a system. They only focus on obtaining
semantic and depth information from the viewed scene, but do not attempt to translate such cues into
meaningful data that can then be used by a control algorithm to keep the vehicle within the road.

3. Approach

We present a novel vision-based method (Figure 4) to locate a vehicle within the road when no lane
lines are present, thus naturally complementing traditional LDWSs which only rely on the existence
of road markings. Our approach is designed to only require as input an RGB image featuring a road
and, only optionally, two fences (or walls) on each side of the road, thus being suited to any kind of
motoring scenario. By fusing together the outputs from both a semantic segmentation and a monocular
depth estimation DNN, our proposed method is able to obtain a local, semantic 3D point cloud of the
viewed scene and then extract the road’s width and the fence-to-fence distance at a certain point ahead
of the camera. Note that computing the width of the road is always equivalent to locating the vehicle
within the road’s width, whilst the fence-to-fence distance only informs about the real drivable limits
in environments where a fence or wall is present right at the edges of the road. Both computations can
help increase the vehicle’s situational awareness, generating information that can be potentially fed to
the path planning and the low-level control algorithms of an autonomous vehicle.

The intuition behind this approach is the following. On the one hand, presenting a semantic
segmentation architecture with an RGB image produces 2D masks of the classes the network was
trained to classify. In our case, we wanted to classify each pixel as either road, fence, or background.
On the other hand, a monocular depth estimation network is able to generate the disparity map
corresponding to the input RGB image. By overlaying the obtained 2D masks onto the disparity map,
we can selectively back-project certain regions of the disparity map (road and fences) back to 3D,
implicitly obtaining a 3D segmentation of the scene. We can then remove outliers present in the 3D
point clouds and, finally, compute any relevant information or geometric distances in the scene.

As previously mentioned, we identified two approaches for relevant distance calculation: on the
one hand, the road’s width at a certain point ahead of the vehicle; on the other hand, the fence-to-fence
distance. The latter is the result of first fitting planes to the 3D point clouds of the road and fences,
looking then for the intersection of these planes with each other (road with left fence and road with
right fence), and finally, computing the distance between the two intersected lines at a certain depth
ahead of the car.

Sensors 2019, 19, 3224 6 of 20

Semantic
Segmentation

Classify every
pixel into either
road, fence or
background

2D
masks

Monocular depth
estimation

Compute disparity
map

Input
256 x 512

3D Point Cloud
(PC) generation

3D
Point
Cloud

Disparity
map

3D Point Cloud
selection

Use road and fence
masks to obtain
semantic Point Cloud

+

Denoising

Denoise Point Clouds

Denoised
PCs

Road PC
Fence PC

Using estimated
depth, compute
Point Cloud

Find furthest left and
right points in road
PC ahead of camera

Road’s
width

Compute fence-to-
fence distance

Fence to
fence

distance

Compute
road´s width

Fit planes to road
and fences, find
intersecting lines

Input
256 x 512

Figure 4. Pipeline describing our proposed approach.

In the following, we present in detail the modules that make up our proposed method. We begin
by describing our strategy for semantic segmentation, then briefly outline the monocular depth
estimation step, and finally, we show how the output of these first two modules can be fused together
to compute a semantic 3D point cloud from which relevant information about the viewed scene can
be extracted.

3.1. Semantic Segmentation Architecture

The range of semantic segmentation architectures to choose from is large, as discussed in
Section 2.1. In this work, we leverage the FCN-8s architecture [13]. We acknowledge that more
advanced options exist. However, our focus is not on the semantic segmentation task itself, but rather
on leveraging semantic information to produce a semantic 3D point cloud of the viewed scene.

3.1.1. Creation of Our Own Dataset for Semantic Segmentation

In semantic segmentation, creating a new dataset from scratch is not common. However,
after training our FCN-8s implementation on the Cityscapes dataset [32] on roads and fences
(and building walls) for 100 epochs and running inference on Roborace images, we noticed there was
a huge margin for improvement (Figure 5a,b), especially in the classification of the fences. Therefore,
we decided to build a semantic segmentation dataset of Roborace images, since they offered a larger
number of fence/wall examples than Cityscapes.

The Roborace competition provides video sequences to its participants that are recorded by the
vehicle’s frontal cameras in different cities. We selected those from the Formula E events in Berlin,
Montreal, and New York. Out of the available video sequences of each city, we picked one out of every
four frames and collected a total of 250 frames for every city, thus obtaining the roborace750 dataset.

Table 1 shows the distribution of frames of the roborace750 dataset, which comprises a training,
a validation, and a test set. Note that the validation and the test set contained visually different frames
from the Berlin racetrack.

By training on roborace750 for 100 epochs, we clearly managed to outperform the model trained
on Cityscapes, as can be seen qualitatively in Figure 5c,d. The creation of our own labeled dataset
of Roborace frames was therefore justified by the notable improvement in the segmentation results.
Note that this is not due to overfitting to Roborace frames, since in Section 4.1 we demonstrate how

Sensors 2019, 19, 3224 7 of 20

this same model (trained on Roborace images) generalizes to different environments, such as streets in
the city of Munich, thus allowing our system to be deployed in any motoring scenario.

Table 1. Distribution of images in the roborace750 dataset.

Set Roborace750

training set 500 (250 (Montreal) + 250 (New York))
validation set 125 (Berlin)

test set 125 (Berlin)

(a) Segmentation of Roborace frame
berlin_00127 by a Cityscapes-trained model.

(b) Segmentation of Roborace frame
berlin_00234 by a Cityscapes-trained model.

(c) Segmentation of Roborace frame
berlin_00127 by a Roborace-trained model.

(d) Segmentation of Roborace frame
berlin_00234 by a Roborace-trained model.

Figure 5. Segmentation of Roborace frames berlin_00127 (left) and berlin_00234 (right) into the classes
road (purple) and fence (blue) by a model trained on Cityscapes (a,b) and by a model trained on
Roborace images (c,d).

In this section, we described the semantic segmentation task, one of the main building blocks of
our proposed method for road width computation in scenarios where road markings are not present.

3.2. Monocular Depth Estimation

For the task of monocular depth estimation we leveraged the work by Godard [25]. In essence,
the novelty of this monocular depth estimation architecture lies in that it poses monocular depth
estimation as an image reconstruction problem, solving for the disparity map without requiring ground
truth depth. For a more detailed explanation, refer to Section 2.2.

Sensors 2019, 19, 3224 8 of 20

A monodepth model pre-trained on Cityscapes produced relatively good results when presented
with Cityscapes images. Using this same model on different images produced less optimal results, as we
found in a set of preliminary experiments. Still, in the remainder of this work, this Cityscapes-trained
model is used for the task of monocular depth estimation.

3.3. Proposed Approach

The system we propose (Figure 4) locates a vehicle within the road relative to the road’s edges in
scenarios where lane lines are not present. The pipeline can be summarized in the following steps:

1. Read the input RGB image and re-size it to 512 × 256.
2. Apply a semantic segmentation model to make inference on the input frame and generate both a

road mask and a fence mask.
3. Produce a disparity map using a monocular depth estimation network.
4. Generate a 3D point cloud from the disparity map using stereo vision theory [33].
5. Use the previously computed 2D masks and obtain semantic 3D point cloud of the scene.
6. Remove noise from the 3D point clouds.
7. Compute the road’s width and the fence-to-fence distance at a certain point ahead of the vehicle.

3.3.1. Obtaining 2D Masks of the Road and the Fences from the Input Image

After re-sizing the input image to 512 × 256 we apply our semantic segmentation model
pre-trained on Roborace in order to classify every pixel into three different classes (road, fence,
or background). This step outputs a 2D mask for both the road and the fences in the scene (Figure 6).

(a) (b)

(c) (d)

Figure 6. Semantic segmentation step in our method’s pipeline. (a) Original image. (b) Segmented
image. (c) Road mask. (d) Fence mask.

3.3.2. Obtaining a Disparity Map from the Input Image

Next, we computed the disparity map of the input image by using a monodepth model pre-trained
on Cityscapes by Godard [25]. Figure 7 shows the exemplary results of such a model when applied to
a Cityscapes image.

Sensors 2019, 19, 3224 9 of 20

(a) (b)

Figure 7. Disparity map obtained from a single image using monodepth [25]. (a) Original image.
(b) Disparity map.

3.3.3. Generating a 3D Point Cloud from the Disparity Map Generated by Monodepth

In this step, we convert the disparity map obtained in the previous step into a 3D point cloud.
To back-project to 3D the image plane coordinates (u, v)T of a pixel with disparity d, we can use the
inverse of the standard pinhole camera model, and in particular the matrix form as presented in [34]:

X′

Y′

Z′

W

 = Q

u
v
d
1

 , where Q =

1 0 0 −cx

0 −1 0 cy

0 0 0 − f
0 0 1/b 0

 , (1)

where (X′, Y′, Z′, W)T are the homogeneous coordinates of the 3D point, b the baseline or distance
between left and right cameras in a hypothetical stereo camera, and f the focal length of the cameras;
cx and cy are the 2D coordinates of the principle point. Note that we apply a rotation of 180◦ around the
x axis to matrix Q so that the y axis points upwards, the x axis to the right and the z axis correspondingly
following a right-handed coordinate system. Dividing by W finally produces the 3D coordinates of the
back-projected point in the camera frame:X

Y
Z

 =
1

W

X′

Y′

Z′

 . (2)

On the one hand, dealing with images from the same dataset the monodepth [25] model was
trained on is straightforward in theory: we simply need to use the correct baseline and intrinsic camera
parameters (focal length and principle point) of the image with which we want to work. In practice,
however, the generated 3D point cloud is not correctly scaled, and we have found that further tweaking
of the baseline and focal length is necessary. However, the reconstructed geometry represents to some
extent the underlying scene. This behavior was already reported by Godard et al. in their work [25].

On the other hand, applying a monodepth model to images with a focal length and aspect ratio
different from those of the dataset the model was trained on does not produce meaningful results.
Therefore, in order to apply a monodepth model pre-trained on Cityscapes on images recorded with a
camera setup with a different focal length and aspect ratio than those from Cityscapes, we proceed in
the following manner. First, we scale the disparity map produced by monodepth with the original
width of the input image. Second, we set a virtual baseline of 1 m. Finally, we use the intrinsic
parameters, i.e., focal length, f , and principal point, (cx, cy), of the camera that took the image and use
those parameters to back-project the point to 3D by using Equations (1) and (2). In practice, we still
need to tweak manually both the baseline b and the focal length f to estimate a correct scale for the
generated 3D point cloud, but this is expected, as reported in [25].

Sensors 2019, 19, 3224 10 of 20

3.3.4. Overlaying the 2D Masks onto the 3D Point Clouds

Using the previously obtained 2D masks of the road and the fences we can select the pixels
corresponding to these classes and back-project them to 3D as explained in the previous step.
Figure 8 shows several views of the resulting semantic 3D point cloud featuring only the road and the
fences (or building walls, in this particular case). Note that there is a significant amount of noise, which
must be dealt with in order to be able to then compute relevant distances within the 3D point cloud.

(a) (b)

(c) (d)

Figure 8. 3D point clouds featuring points belonging to classes road and fence. (a) Front view. (b) Top
view. (c) Left view. (d) Right view.

3.3.5. Denoising the 3D Point Clouds

We have created a small library to deal with point clouds that fits our particular needs.
Among other tools, this library offers a function to compute the median absolute deviation of a given 3D
point cloud along one of the three dimensions (set by the user as a parameter), then computes a penalty
for each point, and finally, removes all points whose penalty value is higher than a given threshold.

Our proposed approach first applies the function described above to the 3D point cloud of the
road, both in the x and y axes. By doing so, we manage to remove most of the existing noise. In the z
axis (perpendicular to the image plane of the camera), we apply a function to remove all points that
are too close to the camera, since in the first meters, there is always a certain level of distortion in the
disparity map produced by monodepth.

We can further remove noise by fitting a plane to the road and then removing all points whose
distance to the computed plane is greater than a given threshold. Levering the statistical denoising
functions available in the recent Open3D [35] further helps to remove outlier points completely.

With regards to the fences, the denoising process is similar. Before that, however, we need to
separate the original point cloud containing both fences into two different point clouds. To this end,
we compute the mean of all points belonging to the original point cloud containing the fences (left and
right together), whose x coordinate will typically be close to zero. Then, we extract all points to the left
of the mean point, i.e., points whose x coordinate is smaller than that of the mean point, into a left
fence point cloud and conversely for the right fence.

Sensors 2019, 19, 3224 11 of 20

What remains now is extracting any kind of valuable information from the denoised 3D point
clouds we obtain. One relevant measure that can help increase the vehicle’s situational awareness is
the width of the road. The fence-to-fence distance can also provide insightful information about the
structure of the road ahead in certain scenarios where fences/walls are present.

3.3.6. Road’s Width Computation

In this first approach, we only use the point cloud corresponding to the road. In order to compute
the road’s width, we try to find the distance between the right-most point and left-most point of the
road’s 3D point cloud at a given distance ahead of the camera along its z axis, which is perpendicular
to the image plane.

Essentially, this consists in iterating over all points situated at a certain z coordinate, looking then
for the two points with the highest positive and negative x coordinates (the x axis roughly goes along
the width of the road in most cases), and, finally, computing the euclidean 3D distance between these
two points. Figure 9 exemplifies the result of this computation.

(a) (b)

Figure 9. Exemplary computation of the road’s width. (a) Top view. (b) Right view.

Note that repeating this same procedure for several distances may also be of interest, though it
simply depends on what kind of information the control algorithms need.

This approach could suffer from poor road segmentation. To overcome this limitation, we need
a more robust approach where we not only rely on the segmentation of the road, but also use the
information given by the fences.

3.3.7. Fence-to-Fence Distance Computation

In this approach, we not only fit a plane to the road’s point cloud, but also to that of the left and
right fences. Then, we can easily compute the intersection lines between the road’s plane and the two
fences’ planes, thus obtaining the equations for both intersection lines. Finally, we can compute the
distance between these two lines at a given point ahead of the camera. Figure 10 exemplifies the result
of this computation.

Note that by looking for the intersection of the road’s plane with the corresponding fence’s plane
we ensure that computing the road’s width does not require a 100% accurate segmentation of the road,
only one good enough so that a plane can be fitted to the road.

Sensors 2019, 19, 3224 12 of 20

(a) (b)

Figure 10. Exemplary computation of the fence-to-fence distance. The light green line represents the
fence-to-fence distance, while the red line represents the road’s width. (a) Top view. (b) Right view.

3.4. Datasets Used for the Evaluation

We tested our method on a series of images featuring streets of the city of Munich (Figure 11),
which we will refer to as the Munich test set . Note that the scenes viewed by these images do not
contain lane markings on the road. Moreover, walls or fences very close to each side of the road are
present in three of the five test frames. Both these facts allowed us to test our proposed method in its
two variants.

Note that we manually recovered the ground truth width of the road 10 m ahead of the camera
for each frame, thus allowing us to quantitatively test the performance of our method.

(a) (b)

(c) (d) (e)

Figure 11. Munich test set, on which we quantitatively tested the performance of the proposed system.
(a) Munich-1. (b) Munich-2. (c) Munich-3. (d) Munich-4. (e) Munich-5.

4. Results

In this section, we present quantitative results obtained after running our system on the Munich
test set (Section 3.4) and qualitative results on the Stuttgart sequence from the publicly available
Cityscapes [32] dataset.

Sensors 2019, 19, 3224 13 of 20

4.1. Results on the Munich Test Set

We used our best Roborace-trained semantic segmentation model (Section 3.1.1). As for the
monocular depth estimation model, we employed a monodepth model pre-trained on the Cityscapes
stereo dataset by the authors of [25]. As discussed in Section 3.3.3, recall that it is unclear how a
monodepth model behaves on images taken by cameras with a different focal length and aspect ratio
than those from the images on which the model was trained.

The Munich test set was recorded with the rear camera of an iPhone 8, which has a focal length of
3.99 mm and a sensor size of 1.22 µm, and produces 4032 × 3024 images. The theoretical focal length
can be computed through the following equations, which transforms the camera’s focal length from
mm to pixels through the sensors’ size [33]:

f =
F

sensor_size_per_pixel
, (3)

where f is the focal length in pixels, F is the focal length in mm and sensor_size_per_pixel is the
width per pixel measured in mm/pixel of one of the tiny sensors that integrate the whole camera.
By substituting the corresponding values for the iPhone’s rear camera, we can obtain:

f =
3.99 mm

1.2× 10−3 mm/pixel
= 3270.5 pixels. (4)

Given that the input images (of size 4032× 3024) are re-sized to 512× 256, we must also scale the
focal lengths accordingly in both x and y directions:

fx = 512 pixel · 3270.5 pixel
4032 pixel

= 415.3 pixel, (5)

fy = 256 pixel · 3270.5 pixel
3024 pixel

= 276.9 pixel. (6)

In practice, by manually calibrating the camera, i.e., by using OpenCV’s calibration function on a
series of already re-sized images (256× 512) featuring a chessboard, we obtained:

fx = 480.088 pixel, (7)

fy = 322.316 pixel, (8)

which are in the same order of magnitude as the theoretical values obtained in Equations (5) and (6).
Therefore, a good estimate for the focal length f in Equation (1) should be within these values.

Note that due to the iPhone’s camera auto-focus, all five images from the Munich test set were
taken with slightly different focal lengths. To discover the correct focal length for every image in the
Munich test set we tried out different values of f and analyzed the difference between the predicted and
the ground truth width of the road. We found that the system performed better on frames Munich-1
and Munich-5 when using a focal length of 380 pixels; on the other hand, fixing f to 580 pixels
produced better results on the rest of the frames. Table 2 shows the results obtained when applying
our system 10 m ahead of the camera on the Munich test set using the correct focal lengths for each
sample frame.

In Table 2 we report: (1) the error distance, e, between what the pipeline considers to be a depth
of 10 m and where a depth of 10 m really is; (2) the ground truth width of the road, gt width, 10 m
ahead; (3) the predicted road’s width, rw; (4) the fence-to-fence distance, f2f; (5) the absolute error
between the ground truth width of the road and the predicted road’s width, AE rw; (6) and the absolute
error between the ground truth road’s width and the fence-to-fence distance, AE f2f. On the last row,

Sensors 2019, 19, 3224 14 of 20

we present the Mean Absolute Error (MAE) across all five images from the Munich test set for both the
predicted road’s width and the fence-to-fence distance.

Table 2. Results of our proposed method on the Munich test set 10 m ahead of the camera.

Focal Length = 380 Pixels

Frame e (m) gt Width (m) rw (m) f2f (m) AE rw (m) AE f2f (m)

Munich-1 ∼0 5.3 6.24 6.81 0.94 1.51
Munich-5 ∼0 4.6 4.73 5.51 0.13 0.91

Focal Length = 580 Pixels

Frame e (m) gt Width (m) rw (m) f2f (m) AE rw (m) AE f2f (m)

Munich-2 ∼0 4.4 4.42 4.04 0.02 0.36
Munich-3 ∼0 5.4 4.40 4.57 0.99 0.82
Munich-4 ∼0 3.1 2.74 4.07 0.35 0.97

Mean Absolute Error

MAE (m) - - - - 0.48 0.91

As a qualitative example, in Figure 12, we applied our proposed system with a focal length of 580
on the frame Munich-3. We display the frame’s segmentation together with the information about the
computed distances on Figure 12b and the post-processed 3D point clouds with the predicted road’s
width and the fence-to-fence distance (red and green lines, respectively) in Figure 12c,d.

(a)

At 10.0 m depth:
3.60 m to left fence Fence2Fence: 4.57 m 0.97 m to right fence
3.42 m to road’s left end Road’s width: 4.41 m 0.98 m to road’s right end

(b)

(c) (d)

Figure 12. Exemplary results of applying our method on frame Munich-3 from the Munich test set.
(a) Original image; (b) Output image displaying the predicted distances on the segmented frame;
(c) Post-processed 3D point cloud, featuring the fitted planes and the computed distances: road’s width
(red line) and fence-to-fence (green line); (d) Initial 3D point cloud, featuring the computed distances:
road’s width (red line) and fence-to-fence (green line).

Sensors 2019, 19, 3224 15 of 20

4.2. Inference Times of the Proposed Approach on the Munich Test Set

Table 3 gathers the inference times (in seconds) of the proposed system on all images from
the Munich test set. We computed the total time per frame, as well as the time per task for eight
different tasks, namely: (1) reading and re-sizing the frame, t_read; (2) segmenting the frame, t_seg;
(3) obtaining the disparity map, t_disp; (4) converting the disparity map into a 3D point cloud,
t_to3D; (5) denoising and fitting a plane to the 3D point cloud of the road, t_road; (6) computing
the road’s width, t_rw; (7) denoising and fitting planes to each of the fences in the scene, t_fences;
and (8) computing the fence-to-fence distance, t_f2f. Additionally, we computed the mean time for
every task, as well as the percentage that it represents in the mean overall inference time. These two
measures are shown on the last two rows of the table.

Table 3. Inference times (in seconds) of our proposed approach on the Munich test set.

Frame t_read t_seg t_disp t_to3D t_road t_rw t_fences t_f2f t_total

1 0.3506 0.1521 0.0233 0.0106 0.1053 0.0013 0.0099 0.0016 0.6551
2 0.3605 0.1498 0.0233 0.0115 0.0952 0.0012 0.0144 0.0014 0.6577
3 0.3252 0.1688 0.0243 0.0110 0.0804 0.0012 0.0113 0.0016 0.6240
4 0.3551 0.1480 0.0221 0.0105 0.0338 0.0012 0.0240 0.0015 0.5965
5 0.3528 0.1456 0.0223 0.0094 0.1080 0.0013 0.0134 0.0014 0.6544

mean 0.3488 0.1528 0.0230 0.0106 0.0845 0.0012 0.0146 0.0015 0.6375
% 54.71% 23.97% 3.61% 1.7% 13.26% 0.19% 2.29% 0.24% -

Note that more than half of the time needed to process a frame completely was dedicated to
reading and re-sizing the frame (54.71%). The second most time-consuming task was segmenting
the image (23.97%), followed by the task of denoising the road and fitting a plane to it. The least
time-consuming tasks were the actual computation of the road’s width and the fence-to-fence distance.
We must bear in mind, however, that denoising and fitting planes to the road and fences are actually
essential parts to the computation of both these measures.

The inference times above were obtained by employing an Nvidia Titan XP GPU.

4.3. Qualitative Results of the Proposed Approach on the Stuttgart Sequence of the Cityscapes Dataset

We tested our system on the Stuttgart sequence of the Cityscapes dataset. In this case, we only
computed the road’s width, given that there are no fences or walls to the sides of the road in this
sequence. Figure 13 visualizes some qualitative results. The complete sequence can be found at
https://youtu.be/0yBb6kJ3mgQ, as well as in the Supplementary Material. For each frame, we also
rendered a frontal and a top view of the 3D point cloud on which we computed the width of the road,
which we placed at the lower left and right corners of the images, respectively. On a gray stripe at the
top of every frame, we printed out the estimated road’s width 10 m ahead, as well as the distance from
the camera frame to the left and right ends of the road.

By studying the complete sequence, we observed that predictions were robust against occlusions
of the road, e.g., by pedestrians. Given the nature of the monocular depth estimation method we used,
i.e., monodepth, the correct scale cannot be recovered. Therefore, estimates might not match exactly
the real dimensions of the road. Using a calibrated stereo camera could simplify and improve the
process of obtaining a metrically correct 3D point cloud.

https://youtu.be/0yBb6kJ3mgQ

Sensors 2019, 19, 3224 16 of 20

At 10.0 m depth:
3.15 m to road’s left end 2.96 m to road’s right end

Road’s width: 6.11 m

(a)

At 10.0 m depth:
3.01 m to road’s left end 3.00 m to road’s right end

Road’s width: 6.00 m

(b)

Figure 13. We test our system on the Stuttgart sequence of the Cityscapes dataset. The complete
sequence can be found at https://youtu.be/0yBb6kJ3mgQ, as well as in the Supplementary Material.
(a) Sample Frame 5185 of the Stuttgart sequence. (b) Sample Frame 5209 of the Stuttgart sequence.

5. Discussion

In this section, we further discuss the results obtained by our method on the Munich test set.

5.1. Discussion of the Results on the Munich Test Set

Qualitatively, Figure 12 shows how both the semantic segmentation task and the depth estimation
task achieved a fairly good segmentation of the image and 3D reconstruction of the scene, respectively.

The semantic segmentation model used was that trained on roborace750 (Section 3.1.1) for
100 epochs. Note how this model, despite having been trained on Roborace images, generalized to
environments it had never seen before, such as the city of Munich. Not only that, but the model was
also capable of performing a good segmentation despite the fact that the aspect ratio in the Munich
test set was completely different from that of the roborace750 dataset (4032 × 3024 and 1200 × 1600,
respectively). This justifies again the creation of our own Roborace dataset for the task of road and,
particularly, fence segmentation.

Secondly, with respect to the monodepth model pre-trained on Cityscapes, we can conclude that
it was able to predict reasonable depth information when presented with images that resemble those
from the Cityscapes dataset, despite the fact that neither the focal length, nor the aspect ratio of the
Munich test set match those of Cityscapes. A fairly extensive tweaking of the focal length and baseline
in Equation (1) is however necessary to obtain a correctly scaled 3D point cloud, but this is inherent to
the monodepth model presented in [25].

An important conclusion we can draw from Table 2 is that computing the road’s width is a reliable
method to locate the camera within the road when no lane lines are available, with an overall MAE
of 0.48 m.

Furthermore, in environments where fences of walls are directly at the road’s edges (frames
Munich-2, Munich-3 and Munich-5), computing the fence-to-fence distance provides an exceptional
additional measure of the width of the drivable area ahead, with a MAE of 0.69 m for these three
frames. For frames Munich-1 and Munich-4, the fence-to-fence distance was less informative, but still
provided an extra layer of knowledge about the viewed scene.

Indeed, we considered that jointly computing the road’s width and the fence-to-fence distance
provides a more robust understanding of the scene. Either approach could suffer from a range of
different problems at any time. By considering the output of both approaches, the decisions the vehicle
would ultimately have to make would be better informed.

The hypothetical problems we are referring to are essentially rooted in imperfect segmentation of
the road or sub-optimal depth estimation of the scene geometry. The latter issue could be solved by
directly employing a stereo rig instead of a neural network for the task of depth estimation.

https://youtu.be/0yBb6kJ3mgQ

Sensors 2019, 19, 3224 17 of 20

5.2. Discussion of the Inference Times on the Munich Test Set

On the Munich test set, our method took an average of 0.6375 s to process a single image. Note that
the time required for reading and re-sizing the input image accounted for more than half of the total
inference time. This was to some extent expected, given that images in the Munich test set had to be
re-sized from an initial resolution of 4032 × 3024 to 512 × 256.

When applying our system on Roborace images, this reading and re-sizing time fell to
approximately 0.07 s, which means that the total inference time for Roborace images would be around
0.36 s, or roughly 3 fps. Our system is thus not real time, but we believe that only minor improvements
would be required to achieve online capability.

With regards to the second most time-consuming task, segmentation, a time of 0.1528 s on
512 × 256 images using an FCN-8s [13] architecture was completely expected. Without considering
the time required for reading and re-sizing, segmentation was the bottleneck in the pipeline. Future
work would have to first address this issue, essentially by employing a faster architecture.

The third-most time-consuming task corresponded to denoising and fitting a plane to the raw
3D point cloud of the road, which accounted for roughly 13% of the total inference time. Essentially,
this was due to the large number of points that belonged to the 3D point cloud of the road in comparison
to the number of points that belonged to the left and right fences. For the latter, i.e., the fences, we only
needed an average of 0.0146 s to denoise the point clouds and fit planes to them. Further reducing
these times could be achieved by sub-sampling the point clouds.

All in all, the proposed approach is able to process a 4032 × 3024 image in roughly 0.64 s and a
1200 × 1600 image (Roborace images) in approximately 0.36 s.

6. Outlook

In the semantic segmentation task, the first clear step towards improving results is enlarging
our own semantic segmentation dataset of Roborace images. We also believe it would be of great
interest to train different semantic segmentation architectures on our Roborace dataset (or on a larger
version of it) and compare the results with the ones already obtained in this work by using an FCN-8s
architecture.

With regards to the task of camera-based depth estimation, it would be of interest to explore
the use of stereo pairs instead of DNNs for monocular depth estimation, which would allow directly
obtaining metrically correct 3D point clouds. Given the modularity of our approach, this could be
easily accomplished.

Finally, running segmentation and depth estimation in two separate parallel threads would
increase efficiency; in the current version of our system, we first run semantic segmentation, then depth
estimation, and finally, merge the results from each module. By running both processes simultaneously,
the speed of the pipeline –now around 0.36 s for a 1200× 1600 frame– could be reduced notably.

7. Conclusions

In this work, we presented a vision-based method to estimate the width of the road (thus,
also locating the vehicle within the road) in scenarios where lane lines are either not present or not
visible enough to rely on traditional LDWS. This was accomplished by fusing together the outputs of a
semantic segmentation and a monocular depth estimation architecture to build a local, semantic 3D
point cloud of the viewed scene on which we could then: (1) compute the road’s width by looking
for the right-most and left-most 3D points of the road at a certain point ahead of the vehicle; and
(2) compute the fence-to-fence distance by first fitting planes to the 3D point clouds of the road and
the fences, then finding the intersection between these planes and, finally, computing the distance
between the intersected lines at a certain point ahead.

Sensors 2019, 19, 3224 18 of 20

We successfully tested our method in its two variants on a series of images featuring streets of
Munich, obtaining robust and accurate predictions close to the ground truth width of the road. We also
evaluated our system qualitatively on the Stuttgart sequence of the Cityscapes dataset.

Minor improvements, mainly targeted towards enabling real-time capability, would allow our
proposed system to be integrated into the autonomy stack of AVs, contributing to increasing their
situational awareness in general and in scenarios where no lane lines are present in particular.

Supplementary Materials: The software presented in this work is available online at https://github.com
/pablorpalafox/semantic-depth. A video demonstrating the system on the Stuttgart sequence from the
Cityscapes dataset can be found at: https://youtu.be/0yBb6kJ3mgQ. This video is also available as part of
the Supplementary Materials. Regarding our labeled dataset of Roborace [1] images, we do not own the original
data (which belongs to the Roborace competition), but nevertheless, we are working towards making the labeled
dataset publicly available.

Author Contributions: P.R.P. as the first author initiated the idea of this paper and contributed essentially to the
overall structure of the software, the methodology of the algorithms, and the validation of the data. J.B. supervised
the work of P.R.P. and contributed to the overall structure of the software and methodology of the algorithms and
of this paper. F.N. and K.R. contributed equally to different parts of this paper and the results of the algorithm.
M.L. made an essential contribution to the conception of the research project. He revised the paper critically for
important intellectual content. He gave final approval of the version to be published and agrees to all aspects of
the work. As a guarantor, he accepts the responsibility for the overall integrity of the paper. Conceptualization,
P.R.P., and J.B.; data curation, P.R.P.; formal analysis, P.R.P., J.B., F.N. and K.R.; funding acquisition, J.B. and M.L.;
investigation, P.R.P., J.B., F.N. and K.R.; methodology, P.R.P.; project administration, J.B. and M.L.; resources, P.R.P.,
J.B. and M.L.; software, P.R.P.; supervision, J.B. and M.L.; validation, P.R.P.; visualization, P.R.P.; writing, original
draft, P.R.P.; writing, review and editing, J.B., F.N., K.R. and M.L.

Funding: We would like to thank the Bayerische Forschungsstifung (AZ-1310-17) for funding us in the research
project rAIcing. We would like to thank Continental Engineering Services and the TÜVSüd for funding us with
research projects. The work described in this paper was also supported by the basic research fund of the Chair
of Automotive Technology from the Technical University of Munich. This work was supported by the German
Research Foundation (DFG) and the Technical University of Munich (TUM) in the framework of the Open Access
Publishing Program.

Acknowledgments: First, we want to thank the Roborace team for giving us the opportunity to work with them
and using their Devbot vehicles for our research. In addition, we want to thank in-tech for supporting us with
the Speedgoat software development, Speedgoat for the sponsoring of a Speedgoat-Mobile Target Machine,
and Nvidia for the sponsoring of an Nvidia Titan XP for the ANN training.

Conflicts of Interest: The authors declare no conflict of interest

Abbreviations

The following abbreviations are used in this manuscript:

2D Two-Dimensional
3D Three-Dimensional
ADAS Advanced Driver Assistant Systems
AV Autonomous Vehicle
CNN Convolutional Neural Network
DL Deep Learning
DNN Deep Neural Network
fps frames per second
fwt forward pass time
IoU Intersection over Union
LiDAR Light Detection and Ranging
LDWS Lane Departure Warning Systems
MAE Mean Absolute Error

https://github.com/pablorpalafox/semantic-depth
https://github.com/pablorpalafox/semantic-depth
https://youtu.be/0yBb6kJ3mgQ

Sensors 2019, 19, 3224 19 of 20

References

1. Roborace. Available online: https://roborace.com/ (accessed on 20 July 2019).
2. Betz, J.; Wischnewski, A.; Heilmeier, A.; Nobis, F.; Stahl, T.; Hermansdorfer, L.; Lienkamp, M. What can

we learn from autonomous level-5 motorsport? In Proceedings of the 9th International Munich Chassis
Symposium, Munich, Germany, 12–13 June 2018. doi:10.1007/978-3-658-22050-1_12. [CrossRef]

3. Kaur, G.; Kumar, D. Lane detection techniques: A review. Int. J. Comput. Appl. 2015, 112, 4–8.
4. Saha, A.; Roy, D.D.; Alam, T.; Deb, K. Automated road lane detection for intelligent vehicles. Glob. J. Comput.

Sci. Technol. 2012, 12. Available online: https://computerresearch.org/index.php/computer/article/view/4
72/472 (accessed on 20 July 2019).

5. Kim, Z. Robust lane detection and tracking in challenging scenarios. IEEE Trans. Intell. Transp. Syst. 2008,
9, 16–26. [CrossRef]

6. Aly, M. Real time detection of lane markers in urban streets. In Proceedings of the 2008 IEEE Intelligent
Vehicles Symposium, Eindhoven, The Netherlands, 4–6 June 2008; pp. 7–12.

7. Haloi, M.; Jayagopi, D.B. A robust lane detection and departure warning system. In Proceedings of the 2015
IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, 28 June–1 July 2015; pp. 126–131.

8. Zhang, W. Lidar-based road and road-edge detection. In Proceedings of the 2010 IEEE Intelligent
Vehicles Symposium, La Jolla, CA, USA, 21–24 June 2010; pp. 845–848.

9. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the Neural Information Processing Systems 2012, Lake Tahoe, NV, USA, 2–8 December
2012; pp. 1097–1105.

10. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

11. Shotton, J.; Johnson, M.; Cipolla, R. Semantic texton forests for image categorization and segmentation.
In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition,
Anchorage, AK, USA, 23–28 June 2008; pp. 1–8.

12. Ciresan, D.; Giusti, A.; Gambardella, L.M.; Schmidhuber, J. Deep neural networks segment neuronal
membranes in electron microscopy images. In Proceedings of the Neural Information Processing Systems
2012, Lake Tahoe, NV, USA, 2–8 December 2012; pp. 2843–2851.

13. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3431–3440.

14. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes
(voc) challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [CrossRef]

15. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014,
arXiv:1409.1556.

16. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

17. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic
image segmentation. arXiv 2017, arXiv:1706.05587.

18. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. arXiv 2016, arXiv:1612.01105.
19. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. Enet: A deep neural network architecture for real-time

semantic segmentation. arXiv 2016, arXiv:1606.02147.
20. Romera, E.; Alvarez, J.M.; Bergasa, L.M.; Arroyo, R. Efficient convnet for real-time semantic segmentation.

In Proceedings of the Intelligent Vehicles Symposium (IV), Redondo Beach, CA, USA, 11–14 June 2017;
pp. 1789–1794.

21. Scharstein, D.; Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.
Int. J. Comput. Vis. 2002, 47, 7–42. [CrossRef]

22. Furukawa, Y.; Hernández, C. Multi-view stereo: A tutorial. Found. Trends R© Comput. Graph. Vis. 2015,
9, 1–148. [CrossRef]

23. Ranftl, R.; Vineet, V.; Chen, Q.; Koltun, V. Dense monocular depth estimation in complex dynamic scenes.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 4058–4066.

https://roborace.com/
https://doi.org/10.1007/978-3-658-22050-1_12
http://dx.doi.org/10.1007/978-3-658-22050-1_12
https://computerresearch.org/index.php/computer/article/view/472/472
https://computerresearch.org/index.php/computer/article/view/472/472
http://dx.doi.org/10.1109/TITS.2007.908582
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1023/A:1014573219977
http://dx.doi.org/10.1561/0600000052

Sensors 2019, 19, 3224 20 of 20

24. Abrams, A.; Hawley, C.; Pless, R. Heliometric stereo: Shape from sun position. In European Conference on
Computer Vision; Springer: Berlin, Germany, 2012; pp. 357–370.

25. Godard, C.; Mac Aodha, O.; Brostow, G.J. Unsupervised monocular depth estimation with
left-right consistency. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; Volume 2, p. 7.

26. Mayer, N.; Ilg, E.; Hausser, P.; Fischer, P.; Cremers, D.; Dosovitskiy, A.; Brox, T. A large dataset to
train convolutional networks for disparity, optical flow, and scene flow estimation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 4040–4048.

27. Zbontar, J.; LeCun, Y. Stereo matching by training a convolutional neural network to compare image patches.
J. Mach. Learn. Res. 2016, 17, 2.

28. Jiao, J.; Cao, Y.; Song, Y.; Lau, R. Look deeper into depth: Monocular depth estimation with semantic booster
and attention-driven loss. In Proceedings of the European Conference on Computer Visio (ECCV), Munich,
Germany, 8–14 September 2018; pp. 53–69.

29. Ramirez, P.Z.; Poggi, M.; Tosi, F.; Mattoccia, S.; Di Stefano, L. Geometry meets semantics for semi-supervised
monocular depth estimation. In Proceedings of the Asian Conference on Computer Vision, Perth, Australia,
2–6 December 2018; pp. 298–313.

30. Hazirbas, C.; Ma, L.; Domokos, C.; Cremers, D. Fusenet: Incorporating depth into semantic segmentation via
fusion-based CNN architecture. In Proceedings of the Asian Conference on Computer Vision, Taipei, Taiwan,
20–24 November 2016; pp. 213–228.

31. Lin, X.; Sánchez-Escobedo, D.; Casas, J.R.; Pardàs, M. Depth estimation and semantic segmentation from a
single RGB image using a hybrid convolutional neural network. Sensors 2019, 19, 1795. [CrossRef] [PubMed]

32. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B.
The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

33. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press:
Cambridge, UK, 2003.

34. Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library; O’Reilly Media, Inc.:
Sevastopol, CA, USA, 2008.

35. Zhou, Q.Y.; Park, J.; Koltun, V. Open3D: A Modern Library for 3D Data Processing. arXiv 2018,
arXiv:1801.09847.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s19081795
http://www.ncbi.nlm.nih.gov/pubmed/30991663
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Semantic Segmentation
	Monocular Depth Estimation
	Fusing Semantic Segmentation and Monocular Depth Estimation

	Approach
	Semantic Segmentation Architecture
	Creation of Our Own Dataset for Semantic Segmentation

	Monocular Depth Estimation
	Proposed Approach
	Obtaining 2D Masks of the Road and the Fences from the Input Image
	Obtaining a Disparity Map from the Input Image
	Generating a 3D Point Cloud from the Disparity Map Generated by Monodepth
	Overlaying the 2D Masks onto the 3D Point Clouds
	Denoising the 3D Point Clouds
	Road's Width Computation
	Fence-to-Fence Distance Computation

	Datasets Used for the Evaluation

	Results
	Results on the Munich Test Set
	Inference Times of the Proposed Approach on the Munich Test Set
	Qualitative Results of the Proposed Approach on the Stuttgart Sequence of the Cityscapes Dataset

	Discussion
	Discussion of the Results on the Munich Test Set
	Discussion of the Inference Times on the Munich Test Set

	Outlook
	Conclusions
	References

