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A B S T R A C T

The intake of nutrients is not only one of the fundamental determi-
nants of human health but also a major contributor in disease devel-
opment and progression. This thesis aims to uncover biological un-
derpinnings of health conditions caused by nutritional dysregulation,
such as caloric overload or consumption of hazardous substances as
well as the influence of the respective rescue interventions.
The first part of the thesis examines whether the transcriptional in-
duction of genes involved in DNA repair or cancer-related pathways
can be used to evaluate the effectiveness of cellular protection after
cancerogen exposure and to assess the risk of DNA adducts to trans-
late into tumourigenesis. The results indicate that genes involved in
DNA repair are not efficient enough to protect the cell against the
increasing numbers of DNA adducts after methylazoxymethanol ac-
etate exposure and an elevated risk of these DNA adducts to manifest
into tumour-causing mutations. However, combining the quantifica-
tion of DNA adducts with time-matched gene expression analysis
improves the predictive value for genotoxicant-induced carcinogene-
sis.
The second part of the thesis examines the molecular underpinnings
of hypothalamic leptin sensitivity that was restored by pharmaco-
logical-induced weight loss by exendin-4 treatment in contrast to
calorie restriction (CR). Hypothalamic gene expression profiles taken
from mouse cohorts under five diet settings indicate that calorie-
restricted mice undergo fasting-induced changes in fuel utilisation,
orexin receptor signaling and transcription factor regulation. Despite
similar loss of body weight, these changes in gene expression are
absent in mice treated with exendin-4 thus indicating that the preven-
tion of CR-induced hypometabolism might contribute to the superior
restoration of leptin sensitivity seen in exendin-4 treated mice.
In the last part of the thesis, an integration method for omics datasets
was developed to infer genetic control of metabolic networks, which
was named Correlation based Network Integration (CoNI).
First, CoNI was applied to liver metabolome and transcriptome data-
sets of lean and HFD-fed obese mice to unravel previously hidden
gene-metabolite interactions that exert major changes to hepatic meta-
bolite levels under normal dietary conditions and under dietary stress
resulting in steatosis. Validation of the selected regulator genes by
siRNA-mediated knockdown and by transcriptional profiling in hu-
man liver biopsies confirmed that these genes have indeed relevant
effects on hepatic metabolite levels. This demonstrates that our fully
data-driven method can be used as a flexible and solid tool for multi-
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ple omics data integration and interpretation.
Next, CoNI was applied to datasets from livers of mice undergoing
weight loss by calorie restriction or Glp-1 agonism to identify genes
that might be involved in the acute aggravation of hepatic steatosis
by exendin-4 treatment. Two genes with so far unknown function in
the regulation of liver metabolism during weight loss were identified
that might advance our search for druggable targets.

Overall, this thesis presents three studies that highlight the com-
plexity of molecular systems in response to nutritional dysregulation.
They accentuate that the sophisticated integration of data from mul-
tiple sources such as transcriptome profiles together with quantified
DNA adduct levels or metabolome profiles, as performed with our
new data integration approach CoNI, is key to predict the cellular
influences of potentially harmful substances or to identify new genes
that could be used as druggable targets.
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Z U S A M M E N FA S S U N G

Die Konzentration und Zusammensetzung der mit der Nahrung auf-
genommenen Nährstoffe bestimmt nicht nur die Gesundheit, son-
dern trägt auch wesentlich zur Entstehung von Krankheiten und deren
Verlauf bei. Das Ziel dieser Arbeit ist die Untersuchung der biolo-
gischen Grundlagen von Gesundheitszuständen, die durch eine dys-
regulierte Ernährung, wie beispielsweise überhöhte Kalorienzufuhr
oder die Aufnahme von gefährlichen Substanzen verursacht wurden.
Außerdem wird der Einfluss von entsprechenden Interventionen zur
Wiederherstellung des Gesundheitszustandes untersucht.
Im ersten Teil dieser Arbeit wird untersucht, ob die transkriptionelle
Induktion von Genen, die eine Rolle bei der DNS-Reparatur oder in
Stoffwechselwegen, die bei Krebs reguliert sind, spielen, dazu ver-
wendet werden kann die Effektivität von zellulären Schutzmecha-
nismen zu bewerten nachdem der Organismus mit krebserregenden
Substanzen exponiert wurde. Weiterhin soll abgeschätzt werden mit
welchem Risiko die gebildeten DNS-Addukte zu Tumorigenese füh-
ren. Die neuen Ergebnisse weisen darauf hin, dass die Gene, die an
Reparaturmechanismen der DNS beteiligt sind, die Zelle nicht ef-
fizient genug gegen eine ansteigende Anzahl an DNS-Addukten als
Folge einer Methylazoxymethanol Acetat Exposition und das dadurch
ansteigende Risiko einer Umwandlung der DNS-Addukte in tumor-
auslösende Mutationen schützen. Es konnte jedoch gezeigt werden,
dass die Kombination der Quantifikation von DNS-Addukten mit der
Analyse der darauf zeitlich abgestimmten Genexpression den Vorher-
sagewert der durch genotoxische Substanzen ausgelösten Karzino-
genese verbessert.
Der zweite Teil dieser Arbeit untersucht die molekularen Grundla-
gen der hypothalamischen Leptinsensitivität, die durch den phar-
makologisch induzierten Gewichtsverlust nach einer Exendin-4 Be-
handlung wiederhergestellt wurde. Dies wurde mit Kalorienrestrik-
tion allein nicht erreicht. Die Auswertung der hypothalamischen Gen-
expressionsprofile, der Mäuse aus den fünf verschiedenen Diätreg-
imen weist darauf hin, dass bei den kalorienrestriktierten Mäusen
durch das Fasten eine Veränderungen bei der Nährstoffverwertung
und der Orexinrezeptor-Signalwirkung sowie eine Regulation von
Transkriptionsfaktoren erfolgt. Trotz eines vergleichbaren Gewichts-
verlustes treten diese Veränderungen bei den Mäusen, die mit Exen-
din-4 behandelt wurden, nicht auf. Daraus lässt sich schließen, dass
die Behandlung mit Exendin-4 den kalorienrestriktion-induzierten
Hypometabolismus verhindert und so vermutlich zu einer verbesser-
ten Wiederherstellung der Leptinsensitivität beiträgt.
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Im letzten Teil dieser Arbeit wurde eine neue Analysemethode für
Omics Datensätze entwickelt, die es ermöglicht, Rückschlüsse auf
die genetische Kontrolle von metabolischen Netzwerken zu ziehen.
Die Correlation based Network Integration (CoNI) Methode wurde
zuerst auf Metabolom- und Transcriptom-Datensätzen, gewonnen aus
Lebergewebe von dünnen Mäusen und dicken Mäusen, die mit einer
hochkalorischen Diät gefüttert wurden, angewendet. Mit Hilfe von
CoNI konnten vorher verborgene Gen-Metabolit Interaktionen aufge-
deckt werden, die zwischen normaler Ernährungsweise und Über-
ernährung, die auch zu einer Lebersteatose führen kann, große Verän-
derungen in den Metabolitkonzentrationen in der Leber verursachen.
Die Validierung der ausgewählten, regulierenden Gene mittels siRNA
vermittelten Gen-Knockdown in Zellkultur und durch transkription-
elles Profiling in humanen Leberbiopsien bestätigte, dass diese Gene
maßgeblich die Metabolitkonzentrationen in der Leber beeinflussen.
Unsere vollkommen daten-getriebene Methode ist somit ein flexibles
und stabiles Werkzeug für die Integration und Interpretation ver-
schiedener Omics Datensätze.
Anschließend wurde die CoNI Methode auf Datensätze von Mäusen
angewendet, die durch Kalorienrestriktion oder durch die Behand-
lung mit einem Glp-1 Agonisten an Gewicht verloren, um Gene zu
identifizieren, die zu der akuten Verschlimmerung einer Lebersteatose
während der Behandlung mit Exendin-4 beitragen könnten. Es kon-
nten zwei Gene identifiziert werden, von denen bisher keine Funktion
in der Regulation des Lebermetabolismus während der Gewichtsab-
nahme bekannt war, die jedoch als potentielle Zielmoleküle für die
Behandlung von übergewichts-induzierter Lebersteatose in Frage kom-
men könnten.

Insgesamt präsentiert diese Arbeit drei Studien, die zeigen wie
komplex die Reaktion der molekularen Systeme auf eine Ernährungs-
dysregulation ist. Die Studien legen außerdem dar, dass die hochent-
wickelte Integration von Daten aus verschiedenen Quellen, beispiel-
sweise Transkriptionsprofile mit DNS-Adduktkonzentrationen oder
Metabolitprofilen, wie sie mit unserer neuentwickelten Methode zur
Datenintegration CoNI durchgeführt wurde, entscheidend für die
Vorhersage des Einflusses von möglicherweise schädlichen Substanzen
auf die Zelle oder für die Entdeckung von neuen krankheitsrelevan-
ten Zielmolekülen ist.

x



A C K N O W L E D G E M E N T S

Foremost, I would like to express my sincere gratitude to my advi-
sor Dr. Dominik Lutter for the continuous support of my PhD study
and research, for his patience, encouragement, enthusiasm, and ad-
vice. His guidance helped me in all the time of research and writing
of this thesis. I could not have imagined having a better advisor and
mentor for my PhD study.
It is a pleasure to thank Prof. Dr. Paul Pfluger and PD Dr. Kerstin
Stemmer who initiated several projects that made this thesis possible.
Besides my advisor and Prof. Dr. Pfluger, I would like to thank the
rest of my thesis committee: Prof. Dr. Dr. Matthias Tschöp and Dr. Jan
Krumsiek for their insightful comments and discussions.
The quality of the provided data is essential for the success of a
project. Therefore, I am grateful that all collaboration partners, I had
the honour to work with, provided high-quality data. Especially, I
would like to thank the following collaboration partners: Dr. Thomas
Schwarzmeier for mapping the RNA-Seq hypothalamus reads. Dr.
Martin Irmler for providing the microarray quantifications and an-
notations for the liver samples. Dr. Janina Torkaz for providing the
metabolome concentrations of the liver project. Heinke Bastek and
PD Dr. Kerstin Stemmer for performing the animal work and wet
lab experiments of the MAMAc project. Dr. Sonja Schriever for per-
forming the animal work and wet lab experiments of the weight-loss
intervention studies. Dr. Elisabeth Graf and her team for providing
protein quantifications and their annotation for the antibody evalua-
tion.
I am grateful for having met and worked with Dr. Sonja Schriever. I
thank you for all the scientific discussions, for reviewing this thesis,
for your advice in all situations, and for becoming an awesome friend
that I would not like to miss.
I thank Kerstin H. and Steffi K. for being great mentors and friends.
Julia, I thank you for being my best friend, always listening, for our
discussions and for reviewing this thesis.
Finally I would like to thank Steffi, Chris and especially my family
for unlimited support during the time of my thesis.

xi





C O N T E N T S

1 introduction 1

1.1 Nutrition – the critical determinant of our health . . . 1

1.2 Carcinogenesis . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Chemical carcinogenesis . . . . . . . . . . . . . . 2

1.2.2 Renal carcinogenesis . . . . . . . . . . . . . . . . 3

1.2.3 Eker rats as model animals for kidney cancer . 4

1.3 Obesity, its causes and consequences . . . . . . . . . . . 5

1.3.1 Obesity - the lifestyle burden . . . . . . . . . . . 5

1.3.2 Regulation of energy balance . . . . . . . . . . . 6

1.3.3 Leptin and leptin resistance . . . . . . . . . . . . 8

1.3.4 Exendin-4 . . . . . . . . . . . . . . . . . . . . . . 9

1.3.5 The liver as an essential metabolic organ . . . . 10

1.3.5.1 Metabolic processes and anatomy of the
liver . . . . . . . . . . . . . . . . . . . . 10

1.3.5.2 Nonalcoholic fatty liver disease . . . . 10

1.4 Analysing the transcriptome . . . . . . . . . . . . . . . . 12

1.4.1 Transcript quantification . . . . . . . . . . . . . . 12

1.4.1.1 RNA-microarrays . . . . . . . . . . . . 12

1.4.1.2 RNA-Sequencing (RNA-Seq) . . . . . . 13

1.4.1.3 Comparison of usage of RNA-microarrays
to RNA-Seq . . . . . . . . . . . . . . . . 14

1.4.2 Interpretation of transcriptome expression levels 14

1.4.3 Phosphorylated ribosome capture technique (PRC) 15

1.4.4 RNA-Seq in obesity research . . . . . . . . . . . 16

1.5 Metabolomics . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Data integration of metabolomics and other omics . . . 19

1.7 Scope of this thesis . . . . . . . . . . . . . . . . . . . . . 23

1.7.1 Time-matched analysis of DNA adduct forma-
tion and early gene expression in MAMAc treated
Eker rats . . . . . . . . . . . . . . . . . . . . . . . 23

1.7.2 Effects of weight loss interventions on hypotha-
lamic gene expression . . . . . . . . . . . . . . . 23

1.7.3 Estimating genetic impact on metabolic networks 23

2 datasets and methods 25

2.1 Microarray dataset obtained for kidneys of carcinogen
exposed rats . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Datasets of the weight loss intervention cohort . . . . . 27

2.2.1 PRC RNA-Seq datasets obtained for the weight
loss intervention cohort . . . . . . . . . . . . . . 29

2.2.1.1 Insulin PRC dataset . . . . . . . . . . . 30

2.2.1.2 Leptin PRC dataset . . . . . . . . . . . 30

xiii



xiv contents

2.2.2 Gold standard hypothalamic RNA-Seq dataset
obtained for the weight loss intervention cohort 30

2.3 Liver datasets of the weight loss intervention cohort . . 31

2.3.1 Transcriptome dataset . . . . . . . . . . . . . . . 31

2.3.2 Metabolome dataset . . . . . . . . . . . . . . . . 32

2.4 Data analysis of the carcinogen exposition dataset . . . 33

2.4.1 Microarray data processing . . . . . . . . . . . . 33

2.4.2 Differential gene expression analysis of microar-
ray probe-IDs . . . . . . . . . . . . . . . . . . . . 33

2.4.3 Pathway enrichment analysis . . . . . . . . . . . 34

2.5 Analysis of the hypothalamic RNA-Seq datasets . . . . 35

2.5.1 RNA-Seq read mapping and quality assessment 35

2.5.2 Antibody Evaluation . . . . . . . . . . . . . . . . 35

2.5.3 Gene expression analysis of the hypothalamic
RNA-Seq data . . . . . . . . . . . . . . . . . . . . 36

2.5.3.1 RNA-Seq data preprocessing . . . . . . 36

2.5.3.2 Batch effect correction . . . . . . . . . . 37

2.5.3.3 Pairwise gene expression comparison 37

2.5.3.4 Comparison to gene expression pattern
in specific neuronal populations . . . . 38

2.6 Analyses of the liver transcriptome and metabolome
datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.1 Metabolic parameters influencing profiles . . . 39

2.6.2 Differential liver gene expression analysis . . . 39

2.6.3 Differential liver metabolite concentration analysis 39

2.6.4 Linear regression analysis . . . . . . . . . . . . . 40

2.6.5 Data preprocessing for data integration . . . . . 40

2.7 Correlation-based Network Integration (CoNI) . . . . . 40

2.7.1 Correlation-based Network Integration (CoNI)
of liver metabolome and transcriptome datasets 41

2.7.1.1 Pairwise correlation analysis . . . . . . 41

2.7.1.2 Partial correlation analysis . . . . . . . 42

2.7.1.3 Undirected graph construction and clus-
tering . . . . . . . . . . . . . . . . . . . 43

2.7.1.4 Analysis of undirected and weighted
graphs . . . . . . . . . . . . . . . . . . . 43

2.7.2 Prioritising candidate genes by local regulator
gene (LRG) identification . . . . . . . . . . . . . 44

2.7.3 In vitro validation of obesity-related LRGs . . . 44

2.7.3.1 Database query for associated disease-
relevant SNPs for all LRGs . . . . . . . 44

2.7.3.2 SiRNA-mediated knockdown of selected
LRGs . . . . . . . . . . . . . . . . . . . 44

2.7.4 In vivo method validation . . . . . . . . . . . . . 46

2.7.4.1 Human cohort of subjects with liver
tissue samples . . . . . . . . . . . . . . 46



contents xv

2.7.4.2 Determination of liver tissue triglyceride
content . . . . . . . . . . . . . . . . . . 47

2.7.4.3 Real-Time PCR . . . . . . . . . . . . . . 47

2.7.4.4 Quantification of blood parameters . . 47

2.7.4.5 Statistical analyses . . . . . . . . . . . . 47

2.7.5 Application of CoNI to weight loss intervention
sets . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 results and discussion 49

3.1 Time-matched analysis of DNA adducts and gene ex-
pression . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Expression profiles differ between WT and Eker
rats . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.2 Transient gene expression changes upon MA-
MAc treatment in Eker rats . . . . . . . . . . . . 51

3.1.3 No transcriptional DNA damage response upon
MAMAc exposure . . . . . . . . . . . . . . . . . 53

3.1.4 Lack of DNA damage response not due to par-
tial loss of Tsc2 . . . . . . . . . . . . . . . . . . . 55

3.2 Effects of weight loss interventions on hypothalamic
gene expression . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 PRC RNA-Seq dataset shows bias for IP:Leptin
samples . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1.1 Read quality assessment and mapping
statistics of RNA-Seq reads . . . . . . . 58

3.2.1.2 High proportion of intron-mapping reads
observed in IP:Leptin dataset . . . . . 59

3.2.1.3 Mass spectrometry shows reduced an-
tibody specificity of PBS antibody . . . 60

3.2.2 Effect of weight loss and leptin on gene expression 62

3.2.2.1 Hypothalamic gene expression profiles
do not show response to leptin treatment 62

3.2.2.2 Pairwise comparisons of intervention
groups identified strong deregulation
between diet interventions . . . . . . . 65

3.2.2.3 Neuropeptides mirror administered diet 66

3.2.2.4 Fasting induced gene expression changes 67

3.2.2.5 Expression of fasting induced genes in
AgRP and POMC neurons . . . . . . . 71

3.3 Estimating genetic impact on metabolic networks . . . 73

3.3.1 Method application on Chow and HFD dataset 74

3.3.1.1 Genetic and metabolic profiling of chow-
and HFD-fed mice . . . . . . . . . . . . 74

3.3.1.2 Correlation analysis of metabolites re-
vealed diet-dependent changes in the
hepatic metabolome . . . . . . . . . . . 79



xvi contents

3.3.1.3 Chow and HFD networks obtained with
CoNI reflected the metabolic phenotype 80

3.3.1.4 Local regulator genes impact metabolic
sub-networks – Chow and HFD . . . . 83

3.3.1.5 Validation of LRGs by siRNA-mediated
knockdown showed influence of selected
genes on metabolic networks . . . . . . 88

3.3.1.6 Validation of method in human samples 92

3.3.2 Application of CoNI to weight loss intervention
datasets . . . . . . . . . . . . . . . . . . . . . . . 94

3.3.2.1 Genetic and metabolic profiling in liv-
ers of mice under weight loss interven-
tion pointed towards a differential reg-
ulation pattern in liver metabolism . . 94

3.3.2.2 Correlation pattern of metabolites re-
vealed weight loss intervention-dependent
changes in the hepatic metabolism . . 99

3.3.2.3 Networks obtained with CoNI – Ex4

and CR . . . . . . . . . . . . . . . . . . 99

3.3.2.4 Local regulator genes impact metabolic
sub-networks – Ex4 and CR . . . . . . 102

4 summary and conclusion 105

4.1 Time-matched analysis of DNA adduct formation and
early gene expression in MAMAc treated Eker rats . . 105

4.2 Effects of weight loss interventions on hypothalamic
gene expression . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 Estimating genetic impact on metabolic networks . . . 107

5 outlook 109

5.1 Time-matched analysis of DNA adduct formation and
early gene expression in MAMAc treated Eker rats . . 109

5.2 Effects of weight loss interventions on hypothalamic
gene expression . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Estimating genetic impact on metabolic networks . . . 109

a appendix 111

a.1 Supplementary Tables - Part 1 . . . . . . . . . . . . . . . 111

a.2 Supplementary Tables - Part 2 . . . . . . . . . . . . . . . 115

a.3 Supplementary Tables - Part 3 . . . . . . . . . . . . . . . 123

a.4 Supplementary Figures - Part 2 . . . . . . . . . . . . . . 161

a.5 Supplementary Figures - Part 3 . . . . . . . . . . . . . . 162

b list of posters and publications 169

bibliography 171



L I S T O F F I G U R E S

Figure 1 Feeding regulation of neuroendocrine hormones 7

Figure 2 Cellular signalling pathways modulated by lep-
tin . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 3 Gila monster . . . . . . . . . . . . . . . . . . . . 9

Figure 4 Comparison RNA-microarray and RNA-Seq . 13

Figure 5 Single cell sequencing of hypothalamus . . . . 15

Figure 6 Phosphorylated Ribosome Profiling . . . . . . 16

Figure 7 Central dogma of molecular biology . . . . . . 19

Figure 8 Regimen toxin treatment of rats . . . . . . . . . 25

Figure 9 Regimen of weight loss intervention study . . 27

Figure 10 Body weight development of weight loss inter-
vention cohort . . . . . . . . . . . . . . . . . . . 28

Figure 11 Food intake upon leptin injection . . . . . . . . 28

Figure 12 RNA extraction protocols . . . . . . . . . . . . 29

Figure 13 CoNI Step1 - Correlation analysis . . . . . . . . 41

Figure 14 CoNI Step2 - Partial correlation analysis . . . . 42

Figure 15 CoNI Step3 - Undirected graph construction
and clustering . . . . . . . . . . . . . . . . . . . 43

Figure 16 PCA of microarray dataset of rats treated with
toxins AAc, MAMAc, and OTA . . . . . . . . . 50

Figure 17 Heat map of probe-IDs altered by MAMAc treat-
ment in Eker rats . . . . . . . . . . . . . . . . . 53

Figure 18 Pathway enrichment after MAMAc treatment
in Eker rats and Mgmt expression . . . . . . . 54

Figure 19 Expression of DNA repair gene Ogg1 . . . . . 56

Figure 20 Genomic regions of mapped reads . . . . . . . 59

Figure 21 Read mapping distribution in intronic regions 60

Figure 22 Comparison of proteins detected in samples
extracted with antibodies used in study . . . . 61

Figure 23 PCA of TruSeq hypothalamus dataset . . . . . 63

Figure 24 Hypothalamic expression of neuropeptides . . 66

Figure 25 Expression pattern of altered genes between
Ex4 and CR . . . . . . . . . . . . . . . . . . . . . 68

Figure 26 DE fasting genes in neuronal subpopulations . 72

Figure 27 Phenotype monitoring . . . . . . . . . . . . . . 74

Figure 28 PCA of metabolite and transcript profiles – HFD
and Chow . . . . . . . . . . . . . . . . . . . . . 75

Figure 29 Differential gene expression analysis – HFD vs.
Chow . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 30 Deregulated liver metabolites upon HFD feeding 77

Figure 31 Pearson correlation analysis – Chow and HFD 79

xvii



xviii LIST OF FIGURES

Figure 32 CoNI networks – Chow and HFD . . . . . . . . 80

Figure 33 Node degree comparison – Chow and HFD . . 81

Figure 34 Community comparison – Chow and HFD . . 82

Figure 35 Gene distribution in Chow and HFD networks 83

Figure 36 Selected LRGs with sub-graphs – Chow and HFD 87

Figure 37 QPCR of siRNA-mediated knockdown . . . . . 88

Figure 38 Correlation of sub-network metabolites control
vs. KD – Cobll1, Appl2, and Gk . . . . . . . . . . 89

Figure 39 Correlation of sub-network metabolites control
vs. KD – Rapgef4 . . . . . . . . . . . . . . . . . . 90

Figure 40 Altered metabolites by siRNA-mediated KD –
Cobll1 and Gk . . . . . . . . . . . . . . . . . . . 90

Figure 41 Altered metabolites by siRNA-mediated KD –
Rapgef4 . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 42 Altered metabolites by siRNA-mediated KD –
Inhbe . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 43 Correlation analysis of human hepatic gene ex-
pression – GK, TAP1 and MYC . . . . . . . . . 92

Figure 44 Correlation analysis of human hepatic gene ex-
pression – SMIM13 . . . . . . . . . . . . . . . . 93

Figure 45 Correlation analysis of human hepatic gene ex-
pression – INHBE . . . . . . . . . . . . . . . . . 93

Figure 46 Phenotype monitoring – Weight loss cohorts . 95

Figure 47 PCA of metabolite and transcript profiles – Weight
loss cohorts . . . . . . . . . . . . . . . . . . . . . 95

Figure 48 Deregulated liver genes comparing the three
weight loss intervention sets . . . . . . . . . . . 96

Figure 49 Deregulated liver metabolites comparing the
three weight loss intervention sets . . . . . . . 98

Figure 50 CoNI networks – CR and Ex4 . . . . . . . . . . 100

Figure 51 Node degree comparison – CR and Ex4 . . . . 101

Figure 52 Gene distribution in CR and Ex4 networks . . 102

Figure A1 Comparison of proteins detected in samples
extracted with antibodies not used in study . . 161

Figure A2 Expression pattern of genes differing between
HFD- and chow-fed mice . . . . . . . . . . . . . 161

Figure A3 Variance explained by phenotypic features for
metabolites and genes . . . . . . . . . . . . . . 162

Figure A4 Class composition of correlated metabolite pairs
for the Chow and HFD setting . . . . . . . . . 163

Figure A5 Class composition of communities – Chow and
HFD . . . . . . . . . . . . . . . . . . . . . . . . . 164

Figure A6 Chow network genes . . . . . . . . . . . . . . . 165

Figure A7 HFD network genes . . . . . . . . . . . . . . . . 166

Figure A8 CR network genes . . . . . . . . . . . . . . . . . 167

Figure A9 Ex4 network genes . . . . . . . . . . . . . . . . 168



L I S T O F TA B L E S

Table 1 Distribution of measured endogenous metabo-
lites . . . . . . . . . . . . . . . . . . . . . . . . . 32

Table 2 Characteristics of subjects who donated liver
samples . . . . . . . . . . . . . . . . . . . . . . . 46

Table 3 Characteristics of subjects with available fast-
ing blood samples . . . . . . . . . . . . . . . . . 46

Table 4 DNA repair genes from selected DNA repair
KEGG pathways . . . . . . . . . . . . . . . . . . 57

Table 5 Mapping statistics of the three sequencing pro-
tocols . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 6 Number of differentially expressed genes for
pairwise treatment comparisons . . . . . . . . 64

Table 7 Summary LRGs – Chow and HFD . . . . . . . 84

Table A1 Differentially expressed genes in Eker control
rats . . . . . . . . . . . . . . . . . . . . . . . . . 111

Table A2 Differentially expressed genes in Eker rats treated
with MAMAc . . . . . . . . . . . . . . . . . . . 112

Table A3 KEGG pathways enriched by genes altered af-
ter first day of MAMAc exposure . . . . . . . . 113

Table A4 DNA repair pathway enrichment . . . . . . . . 114

Table A5 Protein abundances for antibody evaluation . . 115

Table A6 Number of differentially expressed genes for
pairwise diet comparisons . . . . . . . . . . . . 118

Table A7 Gene expression changes for neuropeptides . . 119

Table A8 Gene expression changes for fasting induced
genes . . . . . . . . . . . . . . . . . . . . . . . . 120

Table A9 Gene expression changes for fasting genes in
AgRP neurones . . . . . . . . . . . . . . . . . . 121

Table A10 Gene expression changes for fasting genes in
POMC neurones . . . . . . . . . . . . . . . . . . 122

Table A11 Human primer sequences for real-time PCR . 123

Table A12 Phenotype monitoring . . . . . . . . . . . . . . 123

Table A13 Relative importance of phenotype features in
metabolite set . . . . . . . . . . . . . . . . . . . 124

Table A14 Relative importance of phenotype features in
gene set . . . . . . . . . . . . . . . . . . . . . . . 125

Table A15 Differentially expressed genes – Liver HFD vs.
Chow . . . . . . . . . . . . . . . . . . . . . . . . 126

Table A16 GO terms enriched by genes altered by HFD
feeding in the liver . . . . . . . . . . . . . . . . 127

Table A17 Altered metabolites – Liver HFD vs. Chow . . 131

Table A18 Predictive potential of liver metabolites . . . . 135

xix



xx LIST OF TABLES

Table A19 Community comparison – Chow and HFD . . 136

Table A20 Pathway enrichments of Chow network genes 137

Table A21 Pathway enrichments of HFD network genes . 138

Table A22 SNPs associated with LRGs – Chow . . . . . . 139

Table A23 SNPs associated with LRGs – HFD . . . . . . . 140

Table A24 Metabolites influenced by selected LRGs – Chow
and HFD . . . . . . . . . . . . . . . . . . . . . . 141

Table A25 Metabolite correlation – validation . . . . . . . 143

Table A26 Associations between hepatic gene expression
levels and metabolic traits . . . . . . . . . . . . 144

Table A27 Phenotype monitoring – weight loss interven-
tion cohorts . . . . . . . . . . . . . . . . . . . . . 144

Table A28 Differentially expressed genes Liver – Ex4 vs. CR144

Table A29 Differentially expressed genes Liver – Ex4 vs.
H>C . . . . . . . . . . . . . . . . . . . . . . . . . 145

Table A30 Differentially expressed genes Liver – CR vs.
H>C . . . . . . . . . . . . . . . . . . . . . . . . . 146

Table A31 Altered metabolites – Liver Ex4 vs. CR . . . . . 148

Table A32 Altered metabolites – Liver Ex4 vs. H>C . . . 151

Table A33 Altered metabolites – Liver CR vs. H>C . . . . 155

Table A34 Pathway enrichments of CR network genes . . 158

Table A35 Pathway enrichments of Ex4 network genes . . 158

Table A36 SNPs associated with LRGs – CR . . . . . . . . 159

Table A37 SNPs associated with LRGs – Ex4 . . . . . . . . 159

Table A38 Metabolites influenced by selected LRGs – Ex4

and CR . . . . . . . . . . . . . . . . . . . . . . . 160



A C R O N Y M S

alpha CGRP Alpha calcitonin gene-related peptide

AA Amino acids

AAc Aristolochic acid

AB Antibody

Abca5 ATP binding cassette subfamily A member 5

Abhd2 Abhydrolase domain containing 2

AC Acylcarnitines

Acat1 Acetyl-CoA acetyltransferase 1

Acsf2 Acyl-CoA synthetase family member 2

Agrp Agouti-related neuropeptide

Appl2 Adaptor protein, phosphotyrosine interaction, PH domain
and leucine zipper containing 2

AR Abundance ratios

ARC Arcuate nucleus

Arhgap24 Rho GTPase activating protein 24

Arrdc2 Arrestin domain containing 2

ATP Adenosine triphosphate

BA Biogenic amine

BH Benjamini-Hochberg

BW Body weight

BWE Body weight measured at the end of the study

BMI Body mass index

CA Class abundance

Calca Calcitonin-related polypeptide alpha

Cart Cocaine- and amphetamine-regulated transcript

Cartpt Cart prepropeptide

xxi



xxii acronyms

Cd82 CD82 antigen

cDNA Complementary DNA

Cdkn1a Cyclin-dependent kinase inhibitor 1A

Ces Carboxylesterase

CNS Central nervous system

Cobll1 Cobl-like 1

ComAB Commercial Phospho-S6 Ribosomal Protein (Ser240/244)
antibody

ComAB3P ComAB + 3P peptide

CoNI Correlation-based Network Integration

CR Calorie restriction

Cyba Cytochrome b-245, alpha polypeptide

Cyp Cytochrome P450s

Da Dalton

Ddit4 DNA-damage-inducible transcript 4

Ddx3x DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 3,
X-linked

DE Differentially expressed

DIO Diet-induced obesity

DNA Deoxyribonucleic acid

Eno1 Enolase 1, (alpha)

Ex4 Exendin-4

Eya3 Eyes absent homolog 3

FDR False discovery rate

FoxO Forkhead Box O

GEO Gene Expression Omnibus

Gk Glycerol kinase

GLM Generalised linear model

Glp-1 Glucagon-like peptide 1

Gm4553 Predicted gene 4553



acronyms xxiii

GGM Gaussian graphical models

GO Gene Ontology

Gpr G-protein-coupled receptor

Grhpr Glyoxylate reductase/hydroxypyruvate reductase

Gzma Granzyme A

H>C HFD>Chow diet switch

HFD High fat diet

Hnrnpm Heterogeneous nuclear ribonucleoprotein M

HOMA-IR Homeostasis model assessment of insulin resistance

Hsd17b12 Hydroxysteroid (17-beta) dehydrogenase 12

Ifi47 Interferon gamma inducible protein 47

IgG Immunoglobulin G

IMPaLA Integrated Molecular Pathway Level Analysis

Inhbe Inhibin �E

INMEX INtegrative Meta-analysis of Expression data

i.p. Intraperitoneal

Jak2 Janus kinase 2

KD Knockdown

KEGG Kyoto Encyclopedia of Genes and Genomes

LPC Lyso-Phosphatidylcholines

LRb Leptin receptor

LRG Local regulator gene

Magix MAGI family member, X-linked

MAM Methylazoxymethanol

MAMAc Methylazoxymethanol acetate

MAPK Mitogen-activated protein kinase 1

Mgmt Methyl-guanin-DNA-Methyltransferase

mRNA Messenger RNA

Mrps12 Mitochondrial ribosomal protein S12



xxiv acronyms

mTOR Mammalian target of the rapamycin

m/z Mass to charge

Myc Myelocytomatosis oncogene

N7-mG N7-methylguanine

NADPH Nicotinamide adenine dinucleotide phosphate

NAFLD Non-alcoholic fatty liver disease

NOAL No-adverse-effect-level

NormA Normalised abundance

Npy Neuropeptide Y

Nrbf2 Nuclear receptor binding factor 2

O6-mG O6-methylguanine

Ogg1 8-oxoG-DNA glycosylase

OTA Ochratoxin A

PBS Phosphate buffered saline

PBSAB Phospho-S6 Ribosomal Protein (Ser240/244) antibody with
the higher concentrated PBS formulation

PBSAB3P PBSAB + 3P peptide

PC Phosphatidylcholines

PCA Principal component analysis

PI3K Phosphatidylinositol 3-kinase

PLS Partial least squares

Plin4 Perilipin 4 (S3-12)

Pnpla2 Patatin-like phospholipase domain containing 2

Pomc Proopiomelanocortin

PRC Phosphorylated ribosome capture

Rapgef4 Rap guanine nucleotide exchange factor (GEF) 4

Rbp Ribosomal binding protein

RCC Renal cell carcinoma

Rhoc Ras homolog family member C



acronyms xxv

RNA Ribonucleic acid

RNA-Seq RNA-Sequencing

RpS6 Ribosomal protein S6

SerpinA3 Serpin Family A Member 3

Sgk1 Serum- and glucocorticoid-induced protein kinase-1

siRNA Small interfering RNA

SM Sphingomyelins

Smim13 Small integral membrane protein 13

SNP Signel nucleotide polymorphism

Socs3 Suppressor of cytokine signalling 3

Spsb1 SplA/ryanodine receptor domain and SOCS box containing 1

STAT Signal transducers and activators of transcription

Sult1a1 Sulfotransferase family member 1A

TAG Triacylglyceride

Tap1 Transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)

TGF beta Transforming growth factor �

TSC Tuberous sclerosis complex

VLDL Very Low Density Lipoprotein

Vnn1 Vanin-1

WT Wild type

Xpo7 Exportin 7

Zbtb16 Zinc finger and BTB domain-containing protein 16





1
I N T R O D U C T I O N

1.1 nutrition – the critical determinant of our health

"Dis-moi ce que tu manges, je te dirai ce que tu es."

Jean-Ánthelme Brillat-Savarin

This citation by Brillat-Savarin [32] translates into: tell me what you
eat and I will tell you what you are. Despite being published in 1826

the quote has not lost any of its relevance; the nutritional intake is one
of the fundamental determinants not only of the maintenance of hu-
man health but also a major contributor in disease development and
progression [189]. Diet-induced obesity and its comorbidities such as Two of the main

causes of death could
partly be prevented
by the right lifestyle
and diet

diabetes and cardiovascular diseases are public health problems of
the first order. Lifestyle and diet interventions could prevent these
metabolic diseases that are driven by intake of excessive calories, di-
ets with an imbalance of omega 3 and omega 6 fats or high in satu-
rated fats, concentrated sugars, and refined flour products [61, 189].
Next to the directly associated comorbidities, obesity also raises the
risk of malignancies since it was estimated that over 90,000 cancer-
induced deaths per year could be prevented if the adult population
sustained a normal body weight [61]. Therefore, eating too much in-
creases the cancer risk but also consuming the wrong food increases
cancer risk. There are several substances that could be present in
consumed food items that are carcinogen from the beginning or be-
come carcinogen during the preparation process that induce DNA
adducts and increase the risk of developing tumours tremendously
[1, 16, 20]. To understand the underlying biology of processes in-
volved in obesity-induced metabolic dysregulation will help to iden-
tify new targets for the treatment of obesity related burdens and
therefore analysing omics, such as transcriptomics, proteomics and
metabolomics are good starting points.
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1.2 carcinogenesis

1.2.1 Chemical carcinogenesis

The production and use of chemicals are on the rise and humans
are increasingly exposed to numerous chemicals present in variousHumans are

increasingly exposed
to numerous

chemicals

sources such as drugs, food additives, cosmetics or pesticides. While
the use of many chemicals is highly beneficial for our society, they
may bear toxic and carcinogenic side effects. A proper risk assess-
ment of newly developed drugs and chemicals is mandatory in order
to identify a potential hazard and to define safe exposure levels for
humans. The latter requires detailed information about the mode of
action of the test compound.

Chemical carcinogens can be grouped into two groups: (1) Geno-
toxic substances can covalently bind to DNA thereby causing DNA
damage [174]. Subsequent failures in DNA repair mechanisms can
cause alterations in the DNA sequence named mutations, which can
be initiating events in tumourigenesis [137]; (2) Non-genotoxic car-
cinogens are cytotoxic or mitogenic substances that do not directly
react with the DNA [181]. They either promote cell proliferation by
directly stimulating mitogenic signalling cascades or by causing cell
death and regenerative cell proliferation [174].

Depending on their classification, carcinogens have been subjected
to different regulatory policies. Genotoxic carcinogens are considered
to have no safe dose threshold and are assumed to pose a cancer risk
at any dose subjected. Accordingly, they are currently banned for hu-
man use. In contrast, non-genotoxic carcinogens are thought to have
a safe exposure threshold and their use can be permitted if the intake
level does not exceed a defined acceptable daily intake level (ADI).

Recently, the above described concept got challenged and the ques-
tion emerged if also genotoxic carcinogens may bear a safe exposure
threshold. The latter is based on the finding that the translation of
DNA adducts into tumourigenesis depends on various factors, for
example the ability of the cell to repair the adducts. Therefore, the
level of DNA adducts alone fails to predict a cancer risk.

Research efforts are centred around the development of short-term
assays, which allow to study the mechanism of genotoxic carcinogens
in more detail. Accumulating evidence suggests that it is possible to
identify the carcinogenic potential of a chemical based on analysis of
gene expression analyses (toxicogenomics).
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The field of toxicogenomics emerged in the end of the 1990s, when Gene expression
profiles can help to
identify the toxicity
of substances before
the histopathological
phenotype can be
detected

microarray technology was applied to support toxicology experiments
[3]. Nowadays, the term toxicogenomics summarises all functional ge-
nomics approaches being applied to investigate mechanisms of toxi-
cology [3]. By monitoring thousands of genes simultaneously, tox-
icogenomics allows to characterise early gene expression patterns
induced by environmental toxicants even before histopathological
changes can be observed [236]. Accordingly, toxicogenomics has been
used to predict toxicological outcomes, such as carcinogenicity.

Together with the numerous bioinformatics approaches that have
been applied to analyse toxicogenomics data [3], they are of immense
value to determine safety levels for compounds of interest [55], to
distinguish genotoxic from non-genotoxic substances, and to identify
the mode of action of a chemical [236].

1.2.2 Renal carcinogenesis

Kidneys play a predominant role in excretion and are therefore highly
vulnerable to all toxicants circulating through the organism. The kid-
neys therefore represent one of the major target sites for chemical
toxicity including genotoxic and non-genotoxic carcinogenicity. For
2018, Bray et al. [29] estimated that there will be 403,262 new kidney
cancer cases worldwide, which corresponds to 2.2% of all new cancer
cases. The most common kidney cancer is renal cell carcinoma (RCC) Kidneys are highly

vulnerable to all
toxicants circulating
through the body

[213], which sporadically occurs mainly in adults [165]. It originates
from the epithelium of the renal proximal tubule [165]. Early diag-
noses and as a consequence early treatment of RCC turns out to be
challenging and the primary tumour is often only detected due to the
occurrence of metastases [165].

A well-established renal carcinogen is cycasin, a naturally occur-
ring, toxic azoxyglucoside produced by the cycad plant, which grows
for example on the island of Guam. Several western pacific popu-
lations used to consume the flour made from cycad nuts and to
apply the cycad seed for medical purposes [27]. In vivo, cycasin is
converted to the genotoxic metabolite methylazoxymethanol (MAM)
which is linked to neurotoxicity, hepatotoxicity, teratogenesis, and car-
cinogenicity [27, 107]. MAM is further converted to reactive interme- Cycasin is converted

to the genotoxic
metabolite MAM

diates such as methyldiazonium ions and carbon-centred free rad-
icals [215]. These can interact with the DNA in the O6-, N7-, and
C8-positions of guanine, which leads to the accumulation of pro-
mutagenic N7-methylguanine (N7-mG) and O6-methylguanine (O6-
mG) DNA adducts, causing the detrimental effects of MAM [215].
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A long-term observation study conducted by the National Cancer
Institute (NCI, Bethesda, MD) showed that MAM induced tumours
on several sites, primarily liver and renal cell carcinomas in non-
human primates [228]. In rat experiments the feeding of cycad nut
flour causes cancer occurring in the digestive tract, liver, and kid-
ney [168]. The synthetic MAM acetate (MAMAc), which is used to
perform most studies, is converted into MAM directly after adminis-
tration [260].

1.2.3 Eker rats as model animals for kidney cancer

Eker rats are heterozygous for a germ-line loss-of-function mutation
in the rat homologue of the tuberous sclerosis complex 2 (Tsc2) tu-
mour suppressor gene. A key function of the Tsc2 gene is to adjustEker rats are

heterozygous for a
loss-of-function

mutation in Tsc2
which makes them
highly susceptible

for RCC

the mammalian target of rapamycin (mTOR) pathway in response to
the availability of nutrients, cellular energy and growth factors [145].
In heterozygous Eker rats, spontaneous events or carcinogen expo-
sure can lead to the loss of the second Tsc2 allele and thus to an
uncontrolled activation of mTOR and its downstream effectors [161].
The later has been linked to the development of tumours in several
organs with highest incidences in the kidney [206]. In untreated Eker
rats the incidence of RCC is complete by one year of age [159, 240].
Based on their heterozygous mutation, Eker rats are specifically prone
to genotoxic and non-genotoxic carcinogens. The quantitative nature
of lesion formation in the model allows the production of statistically
powerful data to analyse the potency and relative degree of effects of
short- or long-term exposure to chemicals of interest [159].



1.3 obesity, its causes and consequences 5

1.3 obesity, its causes and consequences

1.3.1 Obesity - the lifestyle burden

Obesity is a growing global health problem. Since 1975 the number
of obese people has tripled resulting in 1.9 billion adults being over-
weight in 2016, which corresponds to 39% of all adults aged 18 years
and older worldwide [239]. Overweight was defined by a body mass
index (BMI: body weight in kilograms divided by the body height
in meters squared) of 25 kg/m2 or higher. Within the group of over-
weight people 13%, corresponding to 650 million people, were clas-
sified as obese with a BMI of more than 30 kg/m2 [239]. Obesity
leads to many comorbidities such as type 2 diabetes mellitus (T2DM) Symptoms of the

metabolic syndrome
reduce life
expectancy
dramatically and
increase the disease
and economic
burden

and cardiovascular diseases [98, 255]. Obesity is further a strong risk
factor for the metabolic syndrome that is diagnosed by several crite-
ria including abdominal obesity, insulin resistance, dyslipidemia, and
hypertension [255]. The risk of developing the metabolic syndrome
increases from a BMI of 21 kg/m2 and reduces life expectancy dra-
matically – by seven years at the age of 40 – and greatly increases the
disease and economic burden [98].

It is widely accepted that the majority of obese cases results from
a combination of increased food intake along with decreased energy
expenditure, resulting in excessive fat accumulation [71]. Obesity is
in most cases a preventable disease that depends largely on lifestyle.
Nowadays, living a healthy lifestyle has become a challenge: In our
everyday life we are faced by elevated levels of stress, the availabil-
ity of palatable foods that are high in sugar, fat, and calories, also
referred to as the "Western diet", and a reduction in physical activ-
ity due to the industrialisation [71]. In 2005, obesity was set to over-
take smoking as the main preventable cause of illness and premature
death in the USA [98]. While this is first and foremost of importance
to affected individuals, the associated morbidity is economically dam-
aging for society [98].

So far, behavioural and pharmacological treatments for obesity ac-
complish only a weight loss of 5 – 10% [209]. This weight loss is Treatments for

obesity accomplish a
weight loss of only 5
– 10%, which is
usually regained

almost in all cases regained over time [209]. Therefore, the under-
standing of factors leading to obesity and its comorbidities, and the
resulting identification of druggable targets and pathways can help to
develop preventive and more effective strategies against this lifestyle
burden and its associated comorbidities.
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1.3.2 Role of hypothalamus and hormones in the regulation of energy bal-
ance

Energy intake and energy expenditure are the two sides of the en-
ergy balance coin, which is important for maintaining body weight.
The brain senses the body’s nutrient and energy levels and integrates
this information to adjust the energy intake and expenditure accord-
ingly [22, 160, 251]. Whole-body energy expenditure is orchestrated
by several components, such as regulation of food intake, thermoge-
nesis to maintain body temperature, basal metabolism, the thermic
effect of food, and physical activity [22]. Each component has its own
effector pathways and neural controls [22].

Brain regions involved in the control of appetite and therefore en-
ergy intake are the hypothalamus, the corticolimbic system, and the
hindbrain, also referred to as brainstem [22]. Whereas the brainstem
is mainly responsible for controlling the size of the meals, the corticol-
imbic system provides the cognitive, emotional and executive support
for ingestive behaviour [22]. Since the neural processing within these
core processor units happens outside awareness it is relatively inac-
cessible to conscious manipulation [22].

In contrast, the hypothalamus is directly exchanging signals withThe hypothalamus is
directly exchanging

signals with the
peripheral blood

circulation and is
therefore the main

nutrient sensing site
in the brain

the peripheral blood circulation and is therefore the main nutrient
sensing site in the brain. Within the hypothalamus many nutrient
related signals from both the environment as well as the internal
milieu converge and become integrated [160]. In the 1940s, it was
shown in rodents that specific nuclei within the hypothalamus alter
food intake after electrical stimulation or inhibition by lesions, thus
demonstrating the special role of the hypothalamus in the regulation
of energy balance [22, 160, 251]. Nowadays, many discrete hypotha-
lamic neuronal populations have been identified that express specific
neurotransmitters to mediate particular effects on energy balance in
relation to the nutritional state [251].

The importance of the hypothalamus in context of energy home-
ostasis was also shown for humans in the most recent genome-wide
association study that indicated that the majority of genes associated
with BMI are expressed in the central nervous system (CNS) and
many of them in the hypothalamus [22].

One of the distinct neuronal circuits within the hypothalamus is
the arcuate nucleus (ARC), whose collection of neuronal cell bodies
occupies almost half of the length of the hypothalamus (Figure 1)
[251].
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Figure 1: Feeding regulation of neuroendocrine hormones in the hypothala-
mus.
NPY: neuropeptide Y; POMC: proopiomelanocortin; AgRP: agouti
gene-related protein; CART: cocaine- and amphetamine-regulated
transcript; ARC: arcuate nucleus; PVN: paraventricular nucleus;
VMH: ventromedial hypothalamic nucleus; DMH: dorsomedial
hypothalamic nucleus; MCH: melanin-concentrating hormone;
LHA: lateral hypothalamus; CRF: corticotrophin-releasing factor;
MC4R: melanocortin 4 receptor.
Taken from Yagi et al. [254].

The ARC is situated around the third ventricle and lies above the
median eminence [251]. The capillaries in the underlying median em-
inence are lacking tight junctions, thus the blood-brain barrier is here
allowing the exchange with the circulation. As a result, the ARC neu-
rons are readily accessible to circulation messenger such as the orex-
igenic hormone ghrelin and the anorexigenic hormones insulin and
leptin [251]. The ARC has further projections to other hypothalamic
regions, including the paraventricular nucleus (PVN), dorsomedial
hypothalamic nucleus (DMH), ventromedial hypothalamic nucleus
(VMH) and lateral hypothalamus [160, 251].

Within the ARC reside two neuronal populations that are well char-
acterised for their role in the regulation of food intake: one set of
neurons that is expressing neuropeptide Y (NPY) and agouti gene-
related protein (AgRP) stimulates food intake whereas the second set
of neurons expresses proopiomelanocortin (POMC) and cocaine- and
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amphetamine-regulated transcript (CART) and inhibits food intake
[90, 251].

1.3.3 Leptin and leptin resistance

Leptin is a 16 kDa hormone that is produced primarily in white
adipocytes in direct proportion to fat mass and indicates the status ofLeptin is an

adipocyte derived
hormone produced

in direct proportion
to fat mass

long-term energy stores of the body [18]. It targets hypothalamic lep-
tin receptors (LepR), such as the long isoform LRb, and downstream
JAK2/STAT3, MAPK and PI3K signaling to regulate food intake and
energy expenditure (Figure 2) [169].

Figure 2: Cellular signalling pathways modulated by leptin. Leptin binds to
the leptin receptor (LRb) which in turn activates the associated
Jak2 tyrosine kinase. This leads to the phosphorylation of intracel-
lular tyrosine residues on LRb, which leads to an activation of the
Extracellular Signal-regulated Kinase (ERK) signaling pathway, a
modulation of gene transcription in the nucleus, and the promo-
tion of PI3K pathway signalling. Leptin and insulin signaling con-
verge at multiple steps of their signaling cascade.
Taken from Myers Jr and Olson [169].

The absence of leptin itself or of LRb, the leptin receptor predom-
inantly expressed in the CNS, causes massive hyperphagia and de-
creased energy expenditure leading to severe obesity [169]. Defects
in leptin signaling also result in early-onset insulin resistance, hy-
perglycaemia and metabolic dysfunctions that are more severe than
expected with obesity alone [169]. It was shown that whole-body
or CNS-restricted leptin treatment of leptin-deficient ob/ob mice re-
sulted in a rapid restoration of glycemic control independent of chan-
ges in food intake or adiposity suggesting that leptin controls blood
glucose levels irrespective of energy balance [169].
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In obese animals and humans the increased fat mass correlates with
elevated circulating leptin levels. Because leptin reduces food intake
and body weight, the absence of anorectic and metabolic effects in
obesity despite hyperleptinemia is widely interpreted as leptin resis-
tance [18]. There are several hypotheses on the molecular underpin- Leptin resistance is a

common trend in
obesity and
negatively impacts
metabolic health

nings of leptin resistance such as impaired LepR trafficking [49, 237],
impaired signaling linked to Socs3 expression [25], impaired histone
deacetylase 5 activity in the hypothalamus [118], or increased levels
of circulating c-reactive protein [38]. But the riddle is not solved yet
and further investigations are needed since the solution may offer
new targets for the treatment of obesity and related diseases [18].

1.3.4 Exendin-4

Exendin-4 (Ex4) is a hormone present in the venom of the American
poisonous lizard, the Gila monster (Heloderma suspectum) (Figure 3)
[74, 167].

Figure 3: Gila monster – Heloderma suspectum http://pixdaus.com/
arizona-gila-monster-stalks-its-prey-lizards-reptiles/
items/view/275321/

Exendin-4 mimics the incretin hormone glucagon-like peptide 1 Ex4 mimics the
incretin hormone
GLP-1 in reducing
food intake

(GLP-1) that is reducing food intake by promoting satiety, reducing
fat deposition, and reducing body weight [74, 167]. GLP-1 is secreted
from the intestinal K-cells and L-cells respectively and is derived from
proglucagon [74]. Exendin-4 is more stable to degradation by pepti-
dases than GLP-1, which has a very short half-live [74]. Like GLP-
1, exendin-4 stimulates insulin synthesis, inhibits glucagon secretion,
promotes b-cell proliferation, and protects against b-cell apoptosis
in response to different insults [74]. It also inhibits gastric emptying
which might lead to vomiting and nausea [74]. Müller et al. [167]
demonstrated that pharmacological induced weight loss by exendin-
4 treatment was able to restore leptin sensitivity in diet-induced obese
mice.

http://pixdaus.com/arizona-gila-monster-stalks-its-prey-lizards-reptiles/items/view/275321/
http://pixdaus.com/arizona-gila-monster-stalks-its-prey-lizards-reptiles/items/view/275321/
http://pixdaus.com/arizona-gila-monster-stalks-its-prey-lizards-reptiles/items/view/275321/
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1.3.5 The liver as an essential metabolic organ

The liver is the central organ for various physiological processes gov-
erning body energy metabolism and it connects substrate utilisation
of several tissues, such as skeletal muscle and adipose tissue [198,
232].

1.3.5.1 Metabolic processes and anatomy of the liver

After the digestion of food, nutrients in the form of glucose, fatty
acids and amino acids are absorbed into the bloodstream and are
transported to the liver and peripheral tissues [103, 198]. These macro-
nutrients are then taken up by the liver and processed thereby gen-
erating energy in the form of adenosine triphosphate (ATP) and sub-The liver is a hub

for various
physiological

processes governing
body energy
metabolism

strates necessary for the essential metabolic processes performed by
this organ such as homeostasis of lipid and cholesterol metabolism,
support of the immune system, breakdown of xenobiotic compounds,
regulation of blood volume, and endocrine control of growth signal-
ing pathways [232]. The liver can store glucose in the form of glyco-
gen or metabolise it into fatty acids or amino acids, which then pro-
vide metabolic fuels not only for the liver itself but also for muscle,
adipose tissue, and other extrahepatic tissues during fasting [198].
The liver is further the main organ for protein and amino acid meta-
bolism, as it breaks down amino acids for energy, but it also synthe-
sises the majority of proteins secreted into the circulation and orches-
trates the disposal of nitrogenous waste from protein degradation
[232].

To perform these demanding metabolic processes, the liver tissue
consists of numerous cellular populations. Hepatocytes are the pri-
mary epithelial cell type and perform many of the described pro-
cesses, such as the esterification of free fatty acids to generate triacyl-
glycerol (TAG), which is then stored in lipid droplets in the hepato-
cytes or is secreted as very low-density lipoprotein (VLDL) particles
[198, 232].

Hepatic energy metabolism is mainly regulated by transcription
factors and nuclear proteins, whose activity is again controlled by
metabolic hormones, such as insulin and glucagon [198]. A dysregu-
lation of hepatic metabolism during nutrient overload contributes to
the development of nonalcoholic fatty liver disease (NAFLD) often
observed in obese patients [198].

1.3.5.2 Nonalcoholic fatty liver disease

NAFLD is referred to as the hepatic manifestation of the metabolic
syndrome and is the most common liver disease worldwide in adults
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as well as in children and ranges in pathologies from steatosis to
nonalcoholic steatohepatitis (NASH), which could progress into liver
fibrosis or into liver cirrhosis and in some cases into hepatocellular
carcinoma [128, 189, 229]. 20 – 30% of the general population of de- 75 – 100% of obese

individuals suffer
from NAFLD

veloped countries are estimated to suffer from steatosis, this number
increases to 75 – 100% in obese individuals [128]. Up to date the
best therapeutic option to treat steatosis are lifestyle modifications
including calorie restriction with or without exercise to reduce body
weight [139, 189]. In this context, exendin-4 treatment was demon-
strated to have beneficial effects on reducing hepatic inflammation
and accumulation of lipids in the liver and thus improving insulin
sensitivity [60, 140, 246, 256]. A better understanding of the cellular
and molecular mechanisms involved in the development of hepatic
steatosis and NAFLD may help to identify novel therapies for these
obesity-associated diseases [189].



12 introduction

1.4 analysing the transcriptome

The transcriptome is the set of all RNA molecules in one cell or a pop-
ulation of cells. It thus gives a comprehensive view on all active tran-
scripts and their quantity in a given sample at a specific time-point
for a specific physiological condition [247]. The information capturedTranscript

expression profiles
promise a deep

biological insight on
molecular processes

in the transcriptome is quite extensive and focuses on different spec-
tra of transcription-involved processes. It enables us to analyse the
exon-intron structure, splice variants, and regulatory sequences [164].
Furthermore, noncoding RNA such as micro-RNAs and small inter-
fering RNAs (siRNAs), which are post-transcriptional regulators of
gene expression can be discovered and detected by analysing the tran-
scriptome [164]. Additionally, the discovery of transcript rearrange-
ments and profiling of single nucleotide variations are possible ap-
plying transcriptomics [164]. One of the main aims of transcriptomics
is to capture transcript expression changes under different conditions
[247]. Furthermore, transcript expression profiles promise a deep bi-
ological insight on molecular processes as they reflect intrinsic and
environmental influences [135]. As the focus of this thesis concern-
ing transcriptome analysis was on the analysis of mRNA expression
profiles we will concentrate on transcript quantification and the cor-
responding analysis in the following.

1.4.1 Transcript quantification

Several approaches have been developed to quantify the transcrip-
tome; the most commonly used ones are hybridisation- or sequence-
based approaches [247]. In the following we will present two of the
most popular technologies to quantify transcripts, which are the
hybridisation-based RNA-microarrays and the sequence-based RNA-
Sequencing, also referred to as RNA-Seq, that have been used to gen-
erate the datasets of this thesis (Figure 4).

1.4.1.1 RNA-microarrays

In the 1990s, microarrays were developed as the major technology
to quantify transcripts in a sample by analysing the RNA converted
into complementary DNA (cDNA) [144]. To detect gene specific tran-
scripts, fluorescently labelled cDNA is incubated with custom-made
microarrays or commercial high-density oligo microarrays, which re-
sults in the hybridisation between complementary polynucleotides
[144, 247]. After the hybridisation of the probes with the target cDNA,
the fluorescent signals are scanned and reported [144].
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Figure 4: Overview of RNA-microarray and RNA-Sequencing procedures.
Addapted from Manzoni et al. [154].

1.4.1.2 RNA-Sequencing (RNA-Seq)

In contrast to RNA-microarrays, RNA-Seq is a high-throughput DNA
sequencing method for mapping and quantifying transcripts directly
to the genome without hybridisation of the cDNA sequence to gene-
specific probes, thus allowing unbiased analysis of the whole tran-
scriptome [247]. Since the price for RNA-Seq has dropped in the re-
cent years it has become an attractive alternative to microarrays [144].

Briefly, a population of RNA is converted to a library of cDNA
fragments and adaptors are attached to one or both ends of these frag-
ments [247]. Following an optional amplification step, each molecule
is sequenced to retrieve short sequences, also referred to as reads,
with a length of 30 – 400 base pairs from one or both ends (single-
end or paired-end sequencing) [247]. After the sequencing step, reads
are aligned to a reference genome or transcriptome or are assembled
de novo without a reference sequence [247]. Transcriptomics by RNA-
Seq thus results in a genome-scale transcription map consisting of the
transcriptional structure and the expression level of each gene [247].
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1.4.1.3 Comparison of usage of RNA-microarrays to RNA-Seq

In the comparison of the newer RNA-Seq technology to the estab-
lished RNA-microarray technology, it becomes obvious that RNA-Seq
overcomes several limitations observed with the hybridisation-basedRNA-Seq overcomes

several limitations
observed with the

microarray
technology

microarray technology. First of all, RNA-Seq does not depend on a
priori knowledge of the target cDNA sequences, thus it is especially
attractive for non-model organisms for which no reference sequences
exist [247]. Furthermore, unlike microarrays, RNA-Seq captures the
precise location of transcription boundaries (exons), sequence varia-
tions, such as single nucleotide polymorphisms (SNPs) and alterna-
tive splicing isoforms [144, 247]. Moreover, RNA-Seq has a very low
background signal compared to microarrays as it has no hybridisa-
tion and cross-hybridisation artefacts and the sequenced fragments
can mostly be mapped unambiguously to unique genome regions
[166, 247]. Additionally, RNA-Seq has a large dynamic range of ex-
pression levels since it does not have an upper limit for quantification
whereas microarrays present a lack of sensitivity for genes expressed
either at low or very high levels [247]. Last but not least, RNA-Seq
has been shown to quantify gene expression levels highly accurately
and reproducibly for technical as well as biological replicates [247],
which makes the comparison across different experiments easier as
no complicated normalisation methods are required. On the other
hand, using microarrays is a lot easier and cheaper if the aim of a
study is the quantification of known transcripts.

1.4.2 Interpretation of transcriptome expression levels

After quantification and identification of individual transcripts, gene
expression levels are usually compared between treatment groups or
time-points resulting in differential gene expression profiles, which
are then linked to the biological context through enrichment and path-
way analyses [34]. These enrichment and pathway analyses that allow
the formulation of working hypotheses, are performed by mapping
significant genes to known biochemical pathways stored in publicly
available databases such as the Gene Ontology (GO) [14, 48] or the
Kyoto Encyclopedia of Genes and Genomes (KEGG) [121–123]. This
mapping approach is limited to the already known biochemical path-
ways. A second limitation is that the acquired knowledge is stored
in numerous databases not necessarily using the same identifier, thus
automatic analysis of multiple data sources is impeded. These limi-
tations do not only apply for transcriptome analysis but also to the
analysis of proteome and metabolome datasets.
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1.4.3 Phosphorylated ribosome capture technique (PRC)

Recent studies demonstrate a shift in the usage of whole tissue to Recent studies
demonstrate a shift
in usage of whole
tissue to single cell
sequencing

single cell sequencing. With this technique it is not only possible to
investigate several cell populations [35] but also to investigate cell
subpopulations such as neuronal subpopulations, and how they re-
spond to various stimuli (Figure 5) [35, 101, 110, 138, 257].

(a) Hypothalamic cell populations (b) Neuron populations

Figure 5: Single cell sequencing of hypothalamic cell populations. (a) Spec-
tral tSNE plot of all known cell populations in the hypothalamus.
(b) Spectral tSNE plot of neuron cell populations sequenced from
the hypothalamus.
Taken from Campbell et al. [35]

Before single cell sequencing became the state of the art, gathering
information on gene expression patterns of discrete cell populations,
especially neuronal subpopulations, was more complicated. In 2012,
Knight et al. [132] presented an approach to measure gene expression
in activated neuronal populations in the brain. The main difficulty
here was that neurons share marker genes and are thus difficult to be
distinguished [132]. Knight et al. [132] exploited the observation that
many stimuli that trigger signaling pathways correlated with neural RpS6 was used as a

tag to capture
mRNA from
activated neurons

activity also induce phosphorylation of ribosomal protein S6, which
is phosphorylated downstream of PI3-K/mTOR, MAPK, and Protein
kinase A (PKA) signaling (Figure 6). Phosphorylated S6 was used as
a tag to capture mRNA from activated cells, by immunoprecipitat-
ing the phosphorylated ribosomes and their associated mRNA from
mouse brain homogenates using antibodies recognising the specific
phosphorylation site 244 of S6 [132].

This technique is highly valuable to understand the biological un-
derpinnings of obesity since it is designed to capture the transcript
expression profiles of neuronal subpopulations responding to a stim-
ulus. As described in Section 1.3.2, several neuronal populations play
an important role in food intake and energy expenditure. But there
are plenty other mRNA quantification based approaches that were
and are used in obesity research.
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Figure 6: Phosphorylated Ribosome Profiling. (A) Neurotransmitters and
neuromodulators activate a set of signaling pathways in neurons,
which results in the phosphorylation of RpS6, which is a common
target of these pathways. (B) A stimulus activates a neuron sub-
population (red cells), which shows an increased pS6 concentra-
tion. Capturing phosphorylated ribosomes allows the quantifica-
tion of mRNA expressed in the activated cells.
Taken from Knight et al. [132].

1.4.4 RNA-Seq in obesity research

Microarray and RNA-Seq technologies, as the most prominently used
approaches, have proven to be highly valuable in all areas of bio-
logical research including the investigation of the biological under-
pinnings of obesity, its comorbidities, and treatment opportunities.Obesity results from

a combination of
genetic and

environmental
factors

This is, as any intervention, such as fasting, nutritional deficiency
or excessive intake of a nutrient, causes extensive changes in many
metabolic parameters [13]. Since gene expression is one of the main
determinants of observed metabolic profiles, capturing and analysing
changes in gene expression regulation is a promising approach to un-
derstand the complex biological underpinnings behind multifactorial
diseases such as obesity, which results from a combination of genetic
and environmental factors [158].

The broad use of transcriptomics and the public availability of these
datasets enable the performance of meta-analysis by combining exist-
ing datasets to gain knowledge without having to perform all ex-
periments over and over again. Swindell et al. [226] used such an ap-
proach to study the effects of calorie restriction in ten different tissues.
They show across multiple datasets that the beneficial effects of calo-
rie restriction on ageing and obesity are at least partly mediated by a
set of genes involved in tumour suppression and reduction of oxida-
tive stress across several tissues [226]. In another meta-analysis, Wu et
al. [252] examined the gene expression profiles of hypothalami from
mice of different ages fed ad libitum or subjected to calorie restric-
tion since weaning. They were able to show that calorie restriction
influenced the expression of genes associated with the mammalian
target of the rapamycin (mTOR) nutrient sensing pathway, which is
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involved in the regulation of energy intake and ageing [252]. Calorie
restriction was further shown to alter the expression of hypothala-
mic genes involved in hunger signaling and circadian rhythms using
RNA-Seq and subsequent pathway enrichment analysis [58].

1.5 metabolomics

Metabolites are small molecules with a size of 50 – 2000 Da that can ei-
ther be intermediate or end products of metabolism. Metabolites have Metabolites are

endpoints of
metabolic processes
in the cell

various functions in the cell, including fuel, structure, signaling, stim-
ulatory and inhibitory effect on enzymes, and are thus an important
read out of cells and tissues since they indicate the physiological state
of the cell and can be used as biomarkers to predict a phenotype or
disease state [11]. Additionally, metabolites are frequently exchanged
with the environment for example by inhalation, food intake, and
excretion [11]. Furthermore, the metabolome is highly dynamic and
time-dependent, as metabolites are sensitive to environmental condi-
tions and changes [11].

Metabolomics, the analysis of chemical processes involving metabo-
lites, is a valuable method to study the cellular metabolism, since,
as mentioned before, metabolites can be used as biomarkers to pre-
dict a phenotype. However, due to the high chemical diversity of It is not possible to

capture and analyse
all metabolites by
only one method due
to their high
chemical diversity

the metabolites, measuring the metabolome is not that straightfor-
ward and it is not possible to capture and analyse all metabolites
by only one method [11, 172]. Therefore, several methods including
gas chromatography (GC), liquid chromatography (LC), or nuclear
magnetic resonance (NMR) spectroscopy were developed to analyse
specific metabolite classes, but there is a lack of consistency in terms
of metabolite recovery between these methods [11, 172]. Depending
on the research question and prior knowledge, the experimental ap-
proach can be targeted to detect a priori selected metabolites by their
known masses or non-targeted, where all possible masses are de-
tected and quantified [11]. However, the interpretation especially of
non-targeted metabolomics is difficult since of right now only a lim-
ited amount of metabolites can be identified and annotated robustly
due to technological limitations of the used platforms [34]. Further-
more, the identification of the specific pathway or enzymatic reaction
connected to the altered metabolite is difficult as many metabolites
are involved in numerous pathways and are the substrates or prod-
ucts of several enzymes or reactions [11]. Another complication in
the metabolome interpretation is the tissue-specificity of the metabo-
lites and the limited data availability for only a few specific species
and tissues [11]. Other pitfalls are the very low concentrations of in-
tracellular metabolites, their very high turnover rate, their very high
susceptibility to chemical modifications, and that many metabolites
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do not exist in a free state within a cell [172].

Despite these challenges, metabolomics especially when integrated
with upstream cellular processes analysed by genomics, transcrip-
tomics, and proteomics empowers us to understand metabolic path-
ways and disease mechanisms in more detail. The benefit of an in-
tegrative analysis compared to an analysis focusing on individual
metabolites or genes, is the conservation of the causative context.
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1.6 data integration of metabolomics and other omics

Each omics type presents another aspect of a phenotype state or dis-
ease and its analysis can capture differences between a disease and a
control group. Nonetheless, this analysis is restricted to correlations, Multi-omics

integration allows to
capture potential
causative changes
that lead to a
complex disease

that mainly reflect reactive processes [97]. The integration of differ-
ent omics types offers the opportunity to capture potential causative
changes that lead to a complex disease, such as diabetes or cancer,
as the regulation of a biologic system occurs across multiple omics
levels [81, 97].

For the integration of omics datasets, we usually study the more
familiar interactions between genes, transcripts, and their translation
into proteins following the central dogma of molecular biology (Fig-
ure 7) [33].

Fig. 2 The relationship among the -omics levels beyond the central

Figure 7: Central dogma of molecular biology. DNA gets transcribed into
RNA, which gets translated into proteins, that are then catalysed
into metabolites. This central dogma gets extended by relation-
ships (shown in green) that one should keep in mind when in-
tegrating omics data.
Taken from Buescher and Driggers [33]

However, for the integration of metabolomics data with genomics,
transcriptomics or proteomics, the interactions are less linear and
the integration step is rather an disentangling of multiple cycles of
functional relationships, as metabolites can interfere with several pro-
cesses, they can be substrates and products of enzymes, they can al-
losterically regulate the activity of enzymes and transcription factors,
and they are the monomers from which proteins and RNA are syn-
thesised (Figure 7) [33].
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For the complex integration of omics datasets innovative statisti-
cal and machine learning approaches have been invented that com-For the integration

of omics datasets
innovative

approaches have
been invented

combining
knowledge of

multiple disciplines

bine the knowledge of multiple disciplines such as biology, medicine,
statistics, machine learning, and artificial intelligence [261]. Current
approaches used to integrate metabolomics with transcriptomics or
proteomics datasets can be divided into two groups: analysis tools
based on pathway and/or network annotations that depend on prior
knowledge versus tools relying more on the numerical aspect of the
dataset that is independent from any prior knowledge.

To use existing biological knowledge for the integration of meta-
bolomics and transcriptomics, metabolites and transcripts or their
correlations can be mapped to the genome-scale metabolic models
of the organism of interest [221, 266]. Su et al. [221] calculated pairs
of metabolites and transcripts involved in the same pathways or reac-
tions by correlation analysis of gene expression profiles and metabo-
lite measurements over cell-lines of the NCI60 dataset and mapping
known associations from the Edinburgh human metabolic network
database to their NCI60 associations. Çakir et al. [266] identified re-
porter reactions, where metabolites significantly react to perturba-
tions, by mapping metabolites and transcripts to a reduced genome-
scale metabolic model, where unmeasured metabolites are eliminated
from a published metabolic network.

There are several tools that approach integration through the use
of annotated pathway knowledge, such as Integrated Molecular Path-
way Level Analysis (IMPaLA [120]) and INtegrative Meta-analysis of
Expression data (INMEX [253]) [37]. INMEX is a tool for joint path-
way analysis, which can predict if several genes or metabolites are
more crucial due to their position in the network and assigns an ap-
propriate weight to these compounds [37, 253]. In general, signifi-
cantly deregulated genes and metabolites are determined in each set
separately and are, in a second step, mapped to pathways of sev-
eral data collections for over-representation, enrichment, or pathway
topology analysis to identify pathways that are differentially regu-
lated on either both levels or only the metabolic or transcriptomic
one [37, 120, 253].

The two main methods based more on the numerical aspect of
omics data integration are correlation analysis and/or unsupervised
multivariate techniques, such as principal component analysis (PCA),
partial least squares (PLS) regression, and O2-PLS, which is an exten-
sion of the standard PLS model [37, 114, 135]. PLS regression was,
for example, used by Griffin et al. [84] to study fatty liver disease
by integrating time-resolved metabolomics and transcriptomics data
obtained from rat liver tissue [135]. In general, correlation analysis is
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simple to implement and used quite frequently to integrate metabo-
lite and transcript datasets [5, 79, 104, 117, 124, 234, 248].

The correlation analysis approach is based on the fact that com-
mon regulatory events or substrate-product relationships of struc-
turally similar metabolites derived from the same or related path-
ways, often show correlations [203]. This correlation between metabo- Correlation between

metabolites or
between metabolites
and genes might not
be present at all
time-points

lites or between metabolites and genes might not be present at all
time-points. In fact, some gene/metabolite correlations only become
obvious under particular conditions, such as during a challenge of
the system, or at particular developmental stages [202]. Similar to a
gene co-regulation analysis, correlation analysis determines signifi-
cant associations between metabolites and genes, followed by cluster-
ing and network visualisation or gene enrichment analysis of func-
tional groups [114]. For instance, Bartel et al. [19] constructed a cor-
relation network that showed which transcripts and metabolites had
the same trend of up- and down-regulation in the blood of individu-
als from a population-based cohort.

However, the correlation approach might not be the best-suited
method to integrate metabolic-transcriptomic data, as metabolites are
not directly related to gene transcripts [37]. It has been observed One approach to

exclude
coincidentally
identified
relationships could
be the additional
application of partial
correlation

that metabolites known to be closely related in pathways, often do
not show a correlative link, while correlations occur connecting com-
pounds with great distances across the network [37]. One approach
to exclude these coincidentally identified relationships could be the
additional application of partial correlation [37, 73]. Additionally, par-
tial correlation could also solve the problem, that correlation analysis
cannot detect dependencies between variables, by incorporating the
effect of other variables [124].

One of the best-known and most distributed methods for undi-
rected network inference with partial correlation is called Gaussian
graphical model (GGM) [204]. Zuo et al. [265] recently proposed to
not only calculate the partial correlation coefficients between each
pair of nodes conditional on all other p - 2 nodes (with p being the
number of nodes in the network) as it is done in GGM, but to ex-
tent the calculation to additionally calculate the zero-th order, which
refers to simple correlation, and first order partial correlation coeffi-
cients (conditioned on one variable). They then calculate the second
order partial correlation (p - 2) only for metabolite-transcript pairs
that show zero-th order and first order partial correlations signifi-
cantly different from 0. This approach is supposed to remove most
false positive edges from the inferred networks. Additionally, they
claim that it also solves the problem of having biological experiments
with a large number of variable measurements but a relatively small
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sample size, which usually results in statistical challenges [129, 265].

Next to the data integration approach, there are several other limita-
tions impeding the further advancement of the multi-omics research
field. Currently, there exists a heterogeneous jungle of integrativeThere exists a

heterogeneous
jungle of integrative
analysis techniques

that are often not
user-friendly

analysis techniques that are often not user-friendly and/or return
results that are not easy to interpret. These limitations in data gen-
eration and interpretation further complicate the data comparison
between different labs that is already difficult due to the limited re-
producibility of results obtained with transcriptome, proteome and
metabolome research, and missing standards for the data formats
of omics data and for metadata [34]. The establishment of standard
workflows for metabolomics for data normalisation, quality control,
and data analysis, comparable to those implemented in microarray-
and sequencing-derived datasets [135] would be very helpful. This
standardisation of metabolome analysis could also help to facilitate
the establishment of public databases storing metabolomics data,
which could then simplify and accelerate future research.
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1.7 scope of this thesis

This PhD thesis aims to use known and to develop new bioinformat-
ics tools to uncover biological underpinnings of conditions caused by
nutritional dysregulation, such as caloric overload or consumption
of hazardous substances as well as the influence of the respective
rescue interventions. First, we will determine the predictive value of
combined analysis of pro-mutagenic DNA adducts formation after
consumption of carcinogenic food components together with associ-
ated early gene expression changes on tumourigenesis. Next, we will
use a model of diet-induced obese mice to unravel the molecular un-
derpinnings of pharmacologically induced weight loss versus calorie
restriction on hypothalamic leptin sensitivity and hepatic steatosis by
transcriptomics and metabolomics.

The PhD thesis is composed of three partially independent projects:

1.7.1 Time-matched analysis of DNA adduct formation and early gene ex-
pression in methylazoxymethanol acetate treated Eker rats

In the first part of the thesis, differential gene expression analysis and
pathway enrichment analysis were applied to examine if transcrip-
tional induction of genes involved in DNA repair or cancer-related
pathways can evaluate the effectiveness of methylazoxymethanol ac-
etate treatment on cellular protection. Furthermore, the risk of DNA
adduct formation for tumourigenesis on the basis of time-matched
transcriptome analysis was evaluated.

1.7.2 Effects of weight loss interventions on hypothalamic gene expression

In the second part of the thesis, differential gene expression analysis
and pathway enrichment analysis were applied to examine the molec-
ular underpinnings of restoration of hypothalamic leptin sensitivity
by pharmacologically induced weight loss in contrast to weight loss
induced by calorie restriction.

1.7.3 Estimating genetic impact on metabolic networks

In the last part of the thesis, a statistical method for correlation-based
network integration, called CoNI, was developed. CoNI is a generic
method and can be applied to multiple experimental settings. For
the newly developed method, liver transcriptome and metabolome
datasets of diet-induced obese mice undergoing weight loss interven-
tions compared to respective controls were combined to infer genetic
control of the metabolic networks. Here, we identified local regulator
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genes playing a role in hepatic steatosis and in the metabolic adapta-
tion in the liver during weight loss.



2
D ATA S E T S A N D M E T H O D S

2.1 microarray dataset obtained for kidneys of carcino-
gen exposed rats

In the first project of the thesis, gene expression data from kidneys of
carcinogen exposed Eker rats were used, as previously published by
Stemmer et al. [218]. The study focused on the genotoxic substance
aristolochic acid (AAc) and the non-genotoxic substance ochratoxin
A (OTA). Paralleled data from MAMAc exposed rats were collected
but not published before.

In this study, groups of male Tsc2

+/- Eker and wild type (WT) rats
at an initial age of 11 to 14 weeks were treated with MAMAc (250

µg/kg body weight (BW)), AAc (10 mg/kg BW) or OTA (210 µg/kg
BW) by oral gavage on a daily basis. Time-matched vehicle controls
were gavaged with 0.1 M NaHCO

3

. In case of the WT rats, only one
control cohort was kept for all three substances, whereas two control
groups were present for the Eker rats: One control cohort for AAc
and MAMAc treatment and one for the OTA administration.

MAMAc (N=3) Conrol (N=3) 

 

Acute: 1, 3, 7 and 14 days of oral treatment 

Male WT rats

Gene expression 

MAMAc (N=3) Conrol (N=3) 

Male Eker rats

Kidney cortex

AAAA
AAAA

AAAA

Figure 8: Regimen toxin treatment of rats.

Affymetrix microarray sequencing data were obtained from kidney
cortices for four time-points: Day 1, day 3, day 7, and day 14 after the
oral treatment with the respective toxin to capture early treatment

25
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effects on gene expression (Figure 8). This resulted in a dataset withGene expression
profiles were

obtained from
kidney cortices for
day 1, 3, 7, and 14

after treatment

three replicates for each sampled time-point, genotype, and treatment.
The protocol starting from the RNA isolation and sequencing to the
microarray data preprocessing resulted in the probe-ID abundances
and was described in Stemmer et al. [218].
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2.2 datasets of the weight loss intervention cohort

All experiments of the second and third project of the thesis were per-
formed in adult male C57BL/6J mice purchased from Janvier Labs
(Saint-Berthevin, Cedex, France). Mice were maintained on a 12-h
light-dark cycle with free access to water and standard chow diet
(Altromin, #1314).

Chow HFD H>C CR

Ex4

22 weeks
HFD

ad lib

Pharmacology

Lean
Control

Obese
Control

Diet
switch

H>C

Dieting

Diet
Control

}Weight loss
intervention

Figure 9: Regimen of weight loss intervention study. The administered diet
is indicated on the arrows.

To generate the diet-induced obese (DIO) colony, six weeks old
C57BL/6J males were subjected to ad-libitum feeding of 58% high
fat diet (HFD) (Research Diets, D12331) for 22 weeks (Figure 9). For
the diet intervention study, DIO mice were subdivided into four ex-
perimental groups. The group termed HFD was kept on HFD during
the study and served as "obese" control. The remaining three groups
of DIO mice were switched to chow on day 0 of the study and di-
vided as follows: Diet-switch (H>C) animals received ad libitum ac-
cess to chow diet. Calorie restricted (CR) mice were restricted to the
average food intake of the exendin-4 (Ex4) group and Ex4 treated
animals were subjected to daily injections of exendin-4 (0.08 mg/kg
body weight) (Tocris biosciences, Bristol, UK) in the morning for ten
days. Age-matched mice maintained on chow diet over the 22 weeks
and during the diet intervention period were used as a "lean" control
group.

At the end of the weight loss intervention study, mice in the diet-
switch control group H>C had lost 10% of their body weight but Diet-switch from

HFD to chow led to
a BW decrease of
10%, weight loss
intervention to a
decrease of 30%

there was no difference in body weight compared to the obese HFD
control. The H>C group was further significantly heavier than the
two weight loss groups CR and Ex4 (Figure 10). Dietary and phar-
macologically induced weight loss reduced body weight by 30% in
the CR and Ex4 group. There was no difference in body weight or
body weight loss between the two weight loss groups. CR and Ex4

mice were still significantly heavier than the Chow controls but signif-
icantly lighter than the HFD and H>C controls. Mice were randomly
assigned to the saline control group or the leptin treatment group
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Figure 10: Body weight development of weight loss intervention cohort. The
asterisks indicate the significance of the mean difference obtained
by Welch’s t-test. ⇤ ⇤ ⇤ indicates a significance level < 2.1e-12.

and received a single intraperitoneal (i.p.) injection of either saline or
3 mg leptin/kg body weight, 75 minutes before being sacrificed by
cervical dislocation for organ withdrawal.

In an independent cohort of mice that underwent the same weightEx4 mice are leptin
sensitive while CR

mice are still
resistant

loss regime, leptin sensitivity was tested by measuring 24h food in-
take after a single i.p. injection of either saline or 3 mg leptin/kg body
weight (Figure 11).
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Figure 11: Food intake upon leptin injection of weight loss intervention co-
hort. The asterisks indicate the significance of the mean differ-
ence: ⇤⇤: p-value<0.002, ⇤: p-value<0.02.

The lean Chow control and the Ex4 treated mice significantly re-
duced their 24h food intake after leptin injection relative to their
saline injected control group. In contrast, despite similar body weight
loss the CR mice did not respond to exogenous leptin by lowering
their 24h food intake. The obese HFD group and the H>C control
group, which is also still obese, were also leptin-resistant.
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2.2.1 PRC RNA-Seq datasets obtained for the weight loss intervention co-
hort

The PRC approach allows the analysis of mRNA bound to the ribo-
somes exclusively of activated neurons by RNA-Seq. The PRC tech-
nique results in two datasets for each experiment: Input samples and
their respective IP samples (Figure 12). The Input samples contain se-
quenced reads of the total mRNA of the hypothalamus. In contrast,
the IP samples consist of the sequenced reads of the mRNA, which
was isolated from immunoprecipitated ribosomes of activated neu-
rons.

10 hypothalami

+ 850 µl Puffer
Tissue

lyser

30 µl RNA extraction 

TruSeqInput

820 µl  + 5 µl  Antibody

RNA extraction 

IP

Illumina TruSeq KitClontech SMART-Seq kit

Clontech SMART-Seq kit

Figure 12: RNA extraction protocols to obtain the three RNA sequencing
datasets. Input and IP samples with the PRC technique and
Truseq as gold standard control.

The mRNA concentrations of the PRC IP samples (average mRNA
concentrations = 125 pg/µl) were below the concentration range of
the Illumina TruSeq kit [109], which is used routinely by the RNA-Seq
core facility at HMGU research centre. Thus, the Clontech SMART-
Seq protocol [43] for very low input samples was applied. In order
to have comparable datasets, the respective Input samples (average
mRNA concentrations = 70 ng/µl) were diluted to the ultra low RNA
levels of the IP samples and were also analysed with the SMART-Seq
kit. The sample sets generated with the ultra low input SMART-Seq
kit will be referred to as "Input" and "IP" samples.

For the immunoprecipitation step the Phospho-S6 Ribosomal Pro-
tein (Ser240/244) antibody (#2215, Cell Signaling Technology (CST),
Frankfurt am Main) was used in combination with a 3P peptide that
blocks unspecific binding of the polyclonal antibody to other phos-
phorylation sites of the S6 ribosomal protein (RpS6).

The commercially available formulation of the Phospho-S6 Ribo-
somal Protein antibody has concentrations of roughly 45 µg/ml in
a 50% glycerol solution. However, the IP reaction has to be carried
out with 1 µg antibody per reaction and would thus require high
volumes of the commercially available antibody. Therefore, a custom
made version of the antibody produced by CST with a concentration
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of 1.2 mg/ml in a PBS solution was applied. This higher concentrated
formulation will be referred to as PBS antibody.

2.2.1.1 Insulin PRC dataset

As the PRC approach was a method that was set up for the first
time in the lab, a smaller test set was generated before applying the
method to the large weight loss intervention study. For this posi-
tive control set, adult C57BL/6J mice were injected i.p. with 1.5 U
insulin/kg or saline as control 60 minutes before the sacrifice. Two
replicates per injection were generated resulting in four Input and
four IP samples, two for each treatment. For this test set the commer-
cial Phospho-S6 Ribosomal Protein antibody was used.

2.2.1.2 Leptin PRC dataset

The weight loss intervention study was performed to investigate the
effect of leptin treatment on hypothalamic mRNA expression as well
as the discrepant action of dietary vs. pharmacological weight loss
on feeding behaviour. For each of the n=5 diet groups (Chow, HFD,
H>C, CR, Ex4) four replicates per leptin or saline injection with 10

hypothalami each were generated resulting in 20 Input and 20 IP sam-
ples each. The total RNA-Seq sample set therefore included 40 Input
and 40 IP samples. Due to the large sample set, the PRC procedure
for the replicates was performed on four consecutive days with each
day having one replicate per diet group and treatment. For this large
sample set the PBS formulation of the Phospho-S6 Ribosomal Protein
antibody was used.

2.2.2 Gold standard hypothalamic RNA-Seq dataset obtained for the weight
loss intervention cohort

In order to assess the effect of the low input SMART-Seq kit on
read abundance and read quality, the standard sequencing Illumina
TruSeq kit was additionally used to sequence the Leptin PRC dataset
Input samples that reflect the total hypothalamic mRNA. Samples se-
quenced with this kit will be referred to as "TruSeq" samples. Thus,
for the Input samples two datasets – one Clontech SMART-Seq dataset
called "Input" and one Illumina TruSeq dataset called "TruSeq" – were
generated whereas only one Clontech SMART-Seq dataset was gener-
ated for the IP samples (Figure 12).
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2.3 liver datasets of the weight loss intervention co-
hort

In the course of the project on hypothalamic leptin resistance and
weight loss interventions, peripheral tissues from the differentially
treated mice (described in Section 2.2) were extracted additionally
to obtain a more holistic view on their health status. In the livers of
exendin-4 treated mice elevated triacylglyceride (TAG) concentrations
compared to all other groups were observed. This elevation had not
been expected as chronic exendin-4 treatment was shown to improve
hepatic steatosis before [60, 140, 246, 256]. Therefore, the metabolic
underpinnings of the increased liver TAG levels after acute exendin-4
treatment were assessed by metabolomics and transcriptomics.

For the investigation of the metabolic processes in liver the meta-
bolomics and the transcriptomics dataset were combined and a new
approach to assess the genetic control of metabolite interactions was
developed. The dataset of the five diet groups was divided into two
separate sets. The first set was used to test the new integration method
and contained the samples from the weight-stable Chow and HFD
control groups. The second set contained the samples from the weight
loss interventions: diet-switch (H>C) cohort, the calorie restricted
(CR) mice, and the exendin-4 treated (Ex4) mice. We applied the
newly developed method to this set to identify genes that might be
causal for the observed metabolic changes.

2.3.1 Transcriptome dataset

Microarray sequencing data were obtained from liver samples of each
diet group (n=10 per group) with the Affymetrix Mouse Clariom S Ar-
rays (Affymetrix, Santa Clara, US). Two samples of the HFD-fed mice
were excluded from the analysis as these mice had not gained body
weight on HFD and their liver transcriptome expression pattern was
comparable to control mice (data not shown). Three samples were re-
moved from the Ex4 set and one from the H>C set as these mice were
non-responders to the weight loss interventions.

On average, 22,206 transcripts were detected per sample. Transcripts
with low expression levels defined as less than 40 counts in 30% of
the samples were removed from the datasets. The removal of low ex-
pressed transcripts resulted in 10,159 genes in the Chow/HFD dataset
and 10,254 genes in the H>C/CR/Ex4 set for the downstream analy-
sis, respectively. Gene expression profiles were log-transformed to fit
a normal distribution, which increases the accuracy of applied statis-
tical tests.
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The microarray data of the Chow/HFD set has been submitted to
the GEO database at NCBI (GSE137923).

2.3.2 Metabolome dataset

Targeted quantitative metabolomics analysis of the livers of the weight
loss intervention study was performed applying the Biocrates
AbsoluteIDQTM p180 Kit (BIOCRATES Life Sciences AG, Innsbruck,
Austria). Combined with mass spectrometry this kit allows quantifi-
cation of up to 181 metabolites involved in metabolic diseases. The
measured metabolites can be assigned to defined classes as shown in
table 1.

Table 1: Distribution of measured endogenous metabolites.

metabolite # measured # metabolites

class metabolites in analysis

Hexoses 1 1

Biogenic Amines (BA) 14 12

Amino Acids (AA) 21 20

Acylcarnitines (AC) 40 40

Phosphatidylcholines (PC) 76 76

Lyso-Phosphatidylcholines (LPC) 14 14

Sphingomyelins (SM) 15 12

Metabolites with not-imputable concentration levels were excluded
from the downstream analysis (for class distribution of metabolites in
downstream analysis see table 1). Metabolite concentration profiles
were also log-transformed to fit a normal distribution.
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2.4 data analysis of the carcinogen exposition dataset

2.4.1 Microarray data processing

Microarray probe-IDs obtained for the Eker rats and their WT con-
trols were annotated using the R bioconductor package rat2302.db
[36, 78, 227]. The gene expression profiles were log-transformed to
fit a normal distribution, which increases the accuracy of applied sta-
tistical tests. Principal component analysis (PCA), which is an unsu-
pervised statistical procedure to explore the axes of variance in the
expression profiles contained in the dataset, was performed on the
complete dataset including the AAc and OTA expression profiles.

Since the findings on OTA and AAc treatment were already pub-
lished, we concentrated on the analysis of the samples relevant for
the MAMAc treatment in the following analyses.

2.4.2 Differential gene expression analysis of microarray probe-IDs

To gain more insight in the gene expression changes occurring dur-
ing the first 14 days of MAMAc treatment, differential gene expres-
sion analysis was performed for the expression patterns measured in
MAMAc treated rats and the corresponding control cohort. As the Limma was applied

to find differentially
expressed genes
between MAMAc
treated rats and their
untreated controls

gene expression profiles were gathered with the microarray technol-
ogy, the R bioconductor package Linear models for microarray data
(limma) [179, 191] was used for the statistical analysis of gene expres-
sion differences. Limma fits a linear model to each gene in the data
to estimate the observed variability to be able to distinguish it from
the random variation. Then, it determines the expression differences
by t-tests. To improve the power and achieve a more stable inference
even if only a small number of arrays is available for the experiment,
it moderates the standard error of the estimated log-fold changes
by parametric empirical Bayes [210, 211]. Empirical Bayes methods
estimate the prior distribution from the observed data, whereas in
standard Bayes methods the prior distribution is fixed before data ob-
servation. In this case, the used empirical Bayes method shrinks the
gene-wise residual variances towards a pooled estimate representing
the global trend [210, 211].

After the testing step, the false discovery rate (FDR) was controlled
by correcting the obtained p-values for multiple testing. The Benjamini-
Hochberg (BH) procedure [21] was applied for the correction. Genes
with adjusted p-value<0.05 were considered to differ significantly, al-
lowing an FDR of 5%.
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2.4.3 Pathway enrichment analysis

ClusterProfiler [258] identified the metabolic processes, which were
affected by the differentially expressed genes. It performed an over-
representation analysis of the genes of interest against the KEGG
database [121–123] and GO [14, 48] biological process terms. To con-
trol the FDR, the Benjamini-Hochberg [21] method was applied and
the adjusted p-value cutoff was set to 0.05, allowing an FDR of 5%.
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2.5 analysis of the hypothalamic rna-seq datasets

2.5.1 RNA-Seq read mapping and quality assessment

The reads obtained for the hypothalamic RNA-Seq datasets of the
weight loss intervention cohort were sequenced as 100 basepair paired-
end runs on Illumina HiSeq 2500. The image analysis and base calling
were performed with Illumina Real Time Analysis and the reads were
demultiplexed with CASAVA 1.8. Reads were aligned with the GEM
mapper (version 1.7.1) [155] and standard parameters (except mis-
matches=0.04 and min-decoded-strata=2) against the mm9 reference
genome [47].

The quality of the sequenced, sorted and aligned reads was then
assessed using FastQC (version v0.11.2) [10]. The number or mapped
reads were obtained using Samtools (version 1.1) [143] and the RNAse-
qmetrics tool from picard tools (version 1.128) [111] was used to as-
sess the genomic areas, where these reads map to. To obtain the posi-
tions of reads mapping to introns, all intronic regions from the UCSC
mm9 annotation BED file provided on the RSeQC website [186, 244]
were extracted. With RSeQC (version 2.6.1) the RNA-seq read cov-
erages over the gene body were then calculated. The tool takes 100

quantiles from each feature provided in the BED file, in our case these
features are introns, and extracts the coverage signals from the pro-
vided BAM files. The signals are then normalised and visualised.

2.5.2 Antibody Evaluation

To assess differences in binding affinities of the two antibodies used
for the generation of the IP samples, label-free protein quantifica-
tion within the immunoprecipitated samples using mass spectrom- Four different

antibody
combinations were
used to produce the
IP samples

etry was performed. As described above, four different settings were
used to produce the IP samples: Commercial Phospho-S6 Ribosomal
Protein (Ser240/244) antibody (ComAB), ComAB combined with 3P
peptide (ComAB3P), which was applied to produce the IP:Insulin
samples (Section 2.2.1.1); Phospho-S6 Ribosomal Protein (Ser240/244)
antibody with the higher concentrated PBS formulation (PBSAB),
which was used to obtain the IP:Leptin samples (Section 2.2.1.2), and
the PBSAB combined with 3P peptide (PBSAB3P). For each set of sam-
ples an Immunoglobulin G (IgG) negative control sample was run to
confirm that the primary antibody binds to the correct epitope on the
expected antigen under the same experimental conditions.

The measurement of the protein masses, their normalisation, and
annotation was performed by the Research Unit for Protein Science
of the Helmholtz Centre Munich. Mascot [178] was used to identify
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proteins from the mass spectrometry peptide m/z values with a min-
imal confidence score of 14 to report a protein.

For the analysis all proteins that were not measured either in the
IgG control or in all four antibody samples were removed. Further all
proteins, where only one sample showed a spectral count larger than
0, were removed since that hints to a false positive detection. Ad-
ditionally, proteins for which only one peptide was measured were
excluded as one peptide can be present in more than one protein and
the assignment is therefore not reliable.

For the comparison of protein concentrations between different
samples, the abundance ratios (AR) from the normalised abundance
(NormA) of the protein measured within the respective antibody sam-
ple compared to the normalised abundance of the protein measured
within the IgG control were calculated:

AR =
NormAAB

NormAIgG
(1)

To identify the proteins bound by the antibodies, the amount of
protein measured within each sample was assessed for several func-
tional protein classes, f. ex. ribosomal proteins. Then the AR of each
protein i=1,..,n in the respective antibody sample was normalised to
the protein length of the respective protein L and all proteins of the
respective class c were summarised:

CAc =
nX

i=1

ARi

Li
(2)

For the pie chart presentation of the identified fractions, the percent-
age of class abundance CAc per total abundance of all proteins mea-
sured in the sample was calculated. Protein lengths and GO [14, 48]
functional annotation were obtained from Ensemble (release 67) [72]
using the R bioconductor package biomaRt [31, 64].

2.5.3 Gene expression analysis of the hypothalamic RNA-Seq data

The following analyses were limited to the TruSeq RNA-Seq data of
the Leptin PRC dataset since the antibody used for the IP samples to
capture the mRNA attached to the ribosomes in the PRC approach
bound nonspecifically and thus dismantled the Clontech SMART-Seq
datasets.

2.5.3.1 RNA-Seq data preprocessing

Htseq-count [9] in union mode was applied to obtain read counts
from the provided read alignment files. This parameter setting is rec-
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ommended in the htseq-count manual [8]. The gene expression of the
40 TruSeq samples was compared using the R bioconductor package
DESeq2 [148]. DESeq was specifically designed for differential gene DESeq2 was applied

for differential gene
expression analysis

expression analysis. For the comparison between samples, the read
counts were normalised by library size and the regularised-logarithm
transformation was applied to make sure that the data are more ho-
moskedastic, meaning that genes with very high and very low counts
contribute equally to downstream calculations such as sample sim-
ilarity. To detect overall differences between the samples a principal
component analysis (PCA) was performed on the transformed expres-
sion values.

2.5.3.2 Batch effect correction

Batch effects were estimated using surrogate variable analysis imple-
mented in the R bioconductor package sva [142]. It borrows informa-
tion across genes in a dataset to construct covariates directly from
expression data to capture unmodeled, unknown, or latent sources
of noise [141]. These surrogate variables are then used to correct the
gene counts for visualisation and are incorporated in the differential
expression analysis.

We then performed the PCA on the corrected counts to check if the
batch effect removal was successful as well as to detect differences
between the hypothalamic samples in our dataset.

2.5.3.3 Pairwise gene expression comparison

The read count values of the two treatment groups within each of
the five diet groups were normalised by the library size and then
compared, resulting in five differential expression analyses and the
corresponding fold changes. Differential gene expression testing was
performed on the read counts only normalised for sequencing depth
since DESeq2 considers the count variance on the mean value while
estimating the dispersion, which can be seen as the square of biolog-
ical variation [149]. To control for unwanted variation, the surrogate
variables obtained with sva were added to the design matrix. DE-
Seq2 then fits a generalised linear model (GLM) for each gene in
the dataset. It assumes that the gene count follows a negative bino-
mial distribution, taking the mean and the dispersion into account.
The GLM returns then the log2 fold change between two compared
sample groups [148]. The Wald test implemented in DESeq2 was
then applied to detect significant differences in the calculated fold
changes. The BH method [21] was used to control the FDR by correct-
ing the obtained p-values for multiple testing. Genes with adjusted
p-value<0.05 were considered to differ significantly, allowing an FDR
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of 5%.

Genes with a mean base expression smaller than 50 and an abso-
lute log2 fold change smaller than 0.2 were ignored as Hart et al. [94]
had shown that low expressed genes might not play a functional role
in the cell since they are often associated with repressed promoters.
The R package clusterProfiler [258] was then used to test for overrep-
resented GO [14, 48] biological process terms among the significantly
altered genes as described in Section 2.4.3.

2.5.3.4 Comparison to gene expression pattern in specific neuronal popula-
tions

Henry et al. [101] produced a valuable resource of single-cell RNA-
Seq datasets to compare gene expression patterns in hypothalamic
AgRP and POMC neurons of mice in the fasted and fed state. This
gene expression data set (GEO Series GSE68177) was downloaded
from NCBI’s Gene Expression Omnibus (GEO) [17, 66] and DESeq2

was used to compare the samples of the fasted and fed mice for each
neuronal population separately.
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2.6 analyses of the liver transcriptome and metabolome

datasets

2.6.1 Identification of clinical and metabolic parameters influencing the
liver metabolome and transcriptome profiles

To investigate whether the observed metabolite concentrations and
gene expression levels were influenced by any clinical or metabolic
parameters, we first performed a PCA on each set to find the main
factor separating the samples. Tested parameters were: the adminis-
tered diet/intervention, the body weight measured at the end of the
study (BWE), and the liver TAG level.

The Wilcoxon signed-rank test [250] was applied to assess if the
parameters of interest differed between the compared groups.
Then, a relative importance analysis [231] was performed to assess the
effect of the intervention, BWE, liver TAG level, and liver Cholesterol
level on any metabolite concentration or gene expression measured
in our dataset. Since these four regressors are intercorrelated rela-
tive importance analysis instead of a linear regression analysis was
performed, which is better suited to handle intercorrelated regres-
sors [86]. Here, a linear model was fitted for each gene and metabo-
lite including the regressors "Intervention", "BWE", "Liver_TAG", and
"Liver_Cholesterol". To decompose the model variance R’s relaimpo
package [85] was used. P-values were corrected for multiple testing
applying the Bonferroni procedure [28] allowing an FDR of 5%.

2.6.2 Differential liver gene expression analysis

The R package limma [179, 191] (Section 2.4.2) was applied to in-
fer transcriptional differences between the cohorts. The analysis was
performed on the log2-transformed gene expression profiles. The BH
procedure [21] was applied to correct for multiple testing. Genes with
an adjusted p-value<0.05 were considered to differ significantly, al-
lowing an FDR of 5%. The R package clusterProfiler [258] was then
used to test for overrepresented GO [14, 48] biological process terms
among the significantly altered genes as described in Section 2.4.3.

2.6.3 Differential liver metabolite concentration analysis

TwoGroup from the R metabolomics package [53] was used to com-
pare the log2-transformed concentration levels between the cohorts.
The BH procedure [21] was applied for the multiple testing correction.
Metabolites with adjusted p-value<0.05 were considered to differ sig-
nificantly, allowing an FDR of 5%.
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2.6.4 Linear regression analysis

Linear regression analysis was performed to assess the predictive
potential of liver metabolites under different dietary conditions. For
each metabolite profile linear regression models were fitted for each
dietary condition separately. We fitted a model for each of the three
dependent variables: plasma cholesterol level, plasma insulin level,
and plasma TAG level. We defined a model to be significant if it re-
turned a non-adjusted p-value<0.0125. This cutoff was chosen, be-
cause not a single model would have been significant after multiple
testing correction.

2.6.5 Data preprocessing for data integration

The log2-transformed metabolite dataset was scaled using the square
root of the standard deviation as scaling factor (Pareto scaling [67]).
Genes with high within-group variance (variance>0.5) were excluded
from the downstream analysis to reduce the number of false positives
identified due to noisy expression patterns.

For the first set the data preprocessing resulted in 9,391 gene ex-
pression profiles in the Chow dataset and 9,397 profiles in the HFD
set. 8,888 of them were present in both sets. For the second set, this re-
sulted in 9,605 gene expression profiles in the H>C set, 9,111 profiles
in the CR set, and 9,349 profiles in the Ex4 set. 8,405 gene expression
profiles overlapped between all three datasets.

2.7 correlation-based network integration (coni)

Integrating data has become an important asset in todays research
as it offers the opportunity to capture potential causative links. How-
ever, many integration methods are not easy to use or produce results
that lack an ease of interpretability (Section 1.6). Here, we developed
a framework called Correlation-based Network Integration (CoNI) to
combine datasets from two related types of data to uncover hidden
relationships and support hypothesis generation.

First, relationships are detected in one of the two datasets that are
integrated using Pearson correlation. Next, CoNI exploits the ability
of partial correlation to detect dependencies between variables for
identifying relationships between factors of the two related datasets.
In the last step, networks are generated that are easy to interpret
despite capturing complex interactions. Since the method itself does
not imply any biological principles or hypotheses, it could be applied
to related datasets from all scientific fields such as physics, chemistry,
and sociology. In the following, we will describe the method in more
detail by a practical example for applying the method.
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2.7.1 Correlation-based Network Integration (CoNI) of liver metabolome
and transcriptome datasets

One purpose the new framework CoNI is highly apt for is to eluci-
date genetic control of metabolic networks, as metabolites are mainly
transformed from one into another and genes control the rates. The
framework includes three steps carried out for each of the investi-
gated treatment groups independently:

1. Pairwise correlation analysis on the metabolite dataset

2. Partial correlation analysis combining the metabolite concentra-
tions with the transcript expression profiles

3. Construction of undirected, weighted graphs

Starting from the pairwise metabolite correlations, an additional
layer of genetic interactions will be added to the dataset. Then, those
metabolite pair – gene triplets will be selected where the gene had a
significant impact on the metabolite correlation. From these selected
triplets an undirected graph will be built, where the nodes refer to the
metabolites and the controlling genes form the edges. In this setting,
an edge can consist of multiple genes and a gene can be mapped to
multiple edges.

2.7.1.1 Pairwise correlation analysis

For each metabolite pair Mi and Mj given M, i = 1,...,n, j = 1,...,n, i 6=j,
the Pearson correlation coefficients were obtained (Figure 13) using R
package Hmisc [93].

Step 1: Pairwise correlation analysis on metabolite concentrations
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Figure 13: Pairwise metabolite correlation analysis

Metabolite pairs with a p-value<0.05 were chosen for further pro-
cessing. Multiple testing correction was not performed as it would
have restricted the number of possible interactions tremendously.
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2.7.1.2 Partial correlation analysis

Partial correlation aims to investigate the influence of removing thePartial correlation
aims to investigate

the influence of
removing the linear

effect of a variable
on the correlation of

a pair of random
variables

effect of a variable on the correlation of a pair of random variables.
In our case, the partial correlation between metabolites Mi and Mj
given M, i = 1,...,n, j = 1,...,n, i6=j, reflected the correlation between Mi
and Mj after removing the linear effects of transcript Gk, given G, k =
1,...,n (Figure 14).

Step 2: Partial correlation analysis combining metabolite concentrations with 
             transcript expression profiles
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Figure 14: Partial correlation analysis assessing the correlation between two
metabolites after controlling for the influence of a gene.

R’s package ppcor [201] was used to obtain the Pearson partial
correlation coefficients for each combination of selected correlating
metabolite pairs and each gene in the noise-reduced set of gene ex-
pression profiles. Such a combination will be denoted as triplet in the
following.

To select triplets, for which the partial correlation coefficient dif-
fered significantly from the correlation coefficient of the respective
metabolite pair, Steiger’s test [217] was adapted. The original test
assesses the significance for the difference between two correlation
coefficients that share one variable. If we, for example, compare the
correlation coefficients ⇢ha and ⇢hb, h would be the shared variable.
The significance depends on the intercorrelation between variables a
and b (⇢ab), which has to be supplied as additional parameter. To
assess the difference in the magnitude of the two correlations, Steiger
modified the test statistic developed by Dunn and Clark [63] by using
the average of the two compared correlation coefficients to calculate
the z value [59, 217]:

z = ((Zjk -Zjh)
p
(n- 3))/(

p
(2- 2c)), (3)

where

r̄ = (rjk + rjh)/2 (4)
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and

c = (rkh(1- 2r̄

2)- (1/2)r̄2(1- 2r̄

2 - r

2
kh))/((1- r̄

2)2) (5)

Here, we wanted to compare a partial correlation coefficient and a
correlation coefficient. Therefore, we applied the test twice. The pro-
vided additional parameter was in the first test the correlation be-
tween M1 and G and in the second test between M2 and G: ⇢M1M2

vs. ⇢M1M2G with ⇢M1G or ⇢M2G as related correlations, where M1

denoted the first metabolite of the pair, M2 the second metabolite, and
G a gene. To be selected, the triplet had to reject the null-hypothesis
- stating that the correlation coefficients do not differ - significantly
(Bonferroni [28] adjusted p-value<0.05, allowing an FDR of 5%) in
both tests. The Steiger test is implemented in the function
cocor.dep.groups.overlap of R’s cocor package [59], which we used to
perform the testing.

2.7.1.3 Undirected graph construction and clustering

An undirected and weighted graph was generated using the R pack-
age igraph [50]. Nodes were formed by metabolites and genes set up
the edges (Figure 15). Edges were drawn if a metabolite pair corre-
lated and this correlation was influenced by at least one gene.

Step 3: Construction of undirected, weighted graph. Metabolites form nodes
             and edges are drawn if a metabolite pair (i.e. M1, M2) correlates 
             and is affected by at least one gene.

M1 M2

Go,..,q

Integrated network
Nodes = metabolites
Edges = genes

Figure 15: Selected triplets were used to generate an undirected and
weighted graph. Metabolites form the nodes and the genes are
stored as lists in the edges.

Several genes can be stored in several edges connecting more than
two correlating metabolites and a pair of metabolites might also have
several genes stored in the edge connecting them, indicating that
it can be influenced by more than one gene. The number of genes
connecting the two respective metabolite nodes determines the edge
weight.

2.7.1.4 Analysis of undirected and weighted graphs

The resulting graphs were compared regarding several aspects such
as connectivity, number of edges, metabolites (a.k.a. nodes), and genes
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present in the network. String protein database [196] was used to
quickly check for overrepresented GO [14, 48] molecular function
terms among the genes present in the two networks.

2.7.2 Prioritising candidate genes by local regulator gene (LRG) identifica-
tion

The network stored hundreds of genes within its edges. One wayLocal regulator
genes have a specific

impact on a local
sub-graph

to identify differences in the genetic program of the studied pheno-
types, is to select genes with a specific impact on a local sub-graph
within the estimated networks. These genes control a densely con-
nected metabolic sub-network and could, in theory, specifically regu-
late a metabolic pathway. We defined these so-called local regulator
genes (LRGs) as genes significantly enriched within a local sub-graph.

For each node in the network, all genes were selected that appeared
in the edges to the respective first indirect neighbour following each
outgoing edge. To test if a gene can be observed ("drawn") more often
than expected by chance, and can therefore be called a LRG, binomial
distribution testing was performed. P-values were Bonferroni [28]
corrected for multiple testing and genes with adjusted p-value<0.05

were selected, allowing an FDR of 5%.

2.7.3 In vitro validation of obesity-related LRGs

2.7.3.1 Database query for associated disease-relevant SNPs for all LRGs

To validate candidate genes in vitro, one option is to query addi-
tional databases for information on these hits, such as their function,
pathways they are involved in, or known associations with disease-
related SNPs. Therefore, the Type 2 Diabetes Knowledge Portal (http:
//www.type2diabetesgenetics.org/) was queried to see which of the
obtained LRGs were associated with SNPs relevant for obesity or re-
lated disease markers.

2.7.3.2 SiRNA-mediated knockdown of selected LRGs

To validate the results of the developed framework, five LRGs were5 local regulator
genes were validated
by siRNA-mediated

knockdown in
HepG2 cells

selected that were either differentially expressed between chow- and
HFD-fed mice or had been assigned to SNPs associated with obesity
in humans. We wanted to confirm the influence of the selected genes
on the metabolome since we hypothesised that these genes were im-
portant for a metabolite sub-network. Therefore, changes in the gene
expression should change the correlation pattern of the metabolites.

An siRNA-mediated knockdown of each of these five genes was
performed in HepG2 cells separately. The silencing mechanism in-

http://www.type2diabetesgenetics.org/
http://www.type2diabetesgenetics.org/
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duced by the siRNA should degrade the mRNA of the corresponding
gene [176]. RNA was extracted from HepG2 cells after siRNA knock-
down using the NucleoSpin RNA isolation kit (Macherey-Nagel, Düren,
Germany). Equal amounts of RNA were reverse transcribed to cDNA
using the QuantiTect Reverse Transcription kit (Qiagen, Hilden, Ger-
many). Gene expression was analysed using TaqMan probes for APPL2

(Hs01565861_m1), COBLL1 (Hs01117513_m1), GK (Hs02340007_g1),
INHBE (Hs00368884_g1), RAPGEF4 (Hs00199754_m1), and HPRT
(Hs02800695_m1) as the housekeeping gene with the respective Taq-
Man mastermix (Thermo Fischer Scientific, Inc., Rockford, IL USA).
qPCRs were carried out using a Quantstudio 6 Real Time PCR System
(Applied Biosystems). Gene expression was evaluated using the �-�
Ct method.
Gene expression analysis by qPCR confirmed that the siRNA-mediated
knockdown was successful as mRNA levels had been reduced by
more than 60% compared to non-target siRNA controls.
For each gene, two biological replicates with three technical replicates
for each gene specific knockdown as well as for the non-target siRNA
control knockdown were obtained. The Biocrates AbsoluteIDQTM p180

kit was used to quantify metabolite concentrations in the cell samples
as described in Section 2.3.2.

The measured metabolite concentrations were first normalised to
the relative cell count of the corresponding sample measured by
Hoechst staining of nuclei. One replicate of the Cobll1 specific knock-
down had to be excluded due to an error during sample prepara-
tion. Metabolites with missing values were excluded from the whole
dataset due to the overall low sample size. The metabolite concen-
trations were log-transformed and pareto-scaled as described before
(Section 2.3.2).

To assess how the metabolites that are connected by the edges
containing the selected LRGs behave in the in vitro setting, Pearson
correlation coefficients were obtained for these metabolite pairs for
the non-target siRNA control and gene specific siRNA knockdown
samples separately. R’s cocor.indep.groups function implemented in
the cocor package [59] was used to compare the corresponding pair-
wise correlation coefficients between knockdown and control for each
metabolite pair.

A one way ANOVA was performed to compare the log2-transformed
and pareto-scaled concentration levels between the siRNA-mediated
knockdown and control samples. The p-values were FDR-corrected as
introduced by Storey [220] and metabolites with adjusted p-value<0.05

were considered to differ significantly.
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2.7.4 In vivo method validation

2.7.4.1 Human cohort of subjects with liver tissue samples

170 liver tissue samples of 106 men and 64 women of European de-
scendent undergoing liver surgery at the Department of General, Vis-
ceral, and Transplant Surgery at the University Hospital of Tübingen
(Tübingen, Germany) were obtained to analyse the gene expression
in human livers (Table 2).

Table 2: Characteristics of subjects who donated liver samples.

means ± sd median (25-75%)

Age (years) 63.5 ± 11.7 65 (58-72)
BMI (kg/m2) 25.2 ± 4.1 25.2 (22.2-27.5)
Liver fat content (%) 2.16 ± 2.08 1.36 (0.85-2.65)

Before collection of the liver biopsies the subjects were fasted over-
night. In a subgroup of 77 subjects (49 men and 28 women) fasting
plasma samples were obtained for the calculation of the homeostasis
model assessment of insulin resistance (HOMA-IR) as proposed by
Matthews et al. [156] (Table 3).

Table 3: Characteristics of subjects with available fasting blood samples.

means ± sd median (25-75%)

Age (years) 62.1 ± 12.1 64 (55-71)
BMI (kg/m2) 24.7 ± 4.1 24.3 (21.5-26.7)
Liver fat content (%) 1.72 ± 1.35 1.22 (0.85-2.11)
Fasting glucose (mg/dl) 98.5 ± 25.8 92 (82-115)
HOMA-IR (arbitrary units) 2.26 ± 2.96 1.38 (0.71-2.36)

All subjects tested negative for viral hepatitis and did not show
signs for liver cirrhosis. Liver samples were taken from normal, non-
diseased tissue during surgery, immediately frozen in liquid nitrogen,
and stored at -80

�C. The tissue was judged by an experienced pathol-
ogist and only samples from normal, non-diseased tissue were in-
cluded in the study. Informed, written consent was obtained from all
participants, and the Ethics Committee of the University of Tübingen
approved the protocol (239/2013BO1) according to the Declaration of
Helsinki.
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2.7.4.2 Determination of liver tissue triglyceride content

Liver tissue samples were homogenised in phosphate-buffered saline
containing 1% Triton X-100 with a TissueLyser (Qiagen, Hilden, Ger-
many). Triglyceride concentrations in the homogenate were quanti-
fied using an ADVIA XPT clinical chemistry analyser (Siemens Health-
ineers, Eschborn, Germany) to determine the liver fat content. Results
were calculated as mg/100 mg tissue weight (%).

2.7.4.3 Real-Time PCR

Frozen tissue was homogenised in a TissueLyser (Qiagen) for real-
time (RT)-PCR and quantitative RT-PCR analysis of hepatic mRNA
expression and RNA was extracted with the RNeasy Tissue Kit (Qi-
agen) according to the manufacturer’s instructions. Total RNA was
treated with RNase-free DNase I and was transcribed into cDNA by
applying a first-strand cDNA kit. PCRs were performed in duplicates
on a LightCycler480 (Roche Diagnostics, Mannheim, Germany). The
human primer sequences that were used are shown in table A11. Data
are presented relative to the housekeeping gene Rps13 using the �-�
Ct method.

2.7.4.4 Quantification of blood parameters

Plasma insulin was determined on the ADVIA Centaur XPT chemilu-
minometric immunoassay system. Fasting plasma glucose concentra-
tions were measured using the ADVIA XPT Clinical chemistry anal-
yser (both Siemens Healthineers, Eschborn, Germany).

2.7.4.5 Statistical analyses

Data were tested for normal distribution applying the Shapiro-Wilk
W-test and data that were not normally distributed were log-trans-
formed. Person correlation was used to test for univariate associations
between parameters. Multivariate linear regression analyses were ap-
plied to adjust the effects of covariates and identify independent re-
lationships. The statistical software package JMP 14.0 (SAS Institute,
Cary, NC) was used.

2.7.5 Particularity in the application of CoNI to weight loss intervention
datasets

To apply CoNI to the second dataset, containing the samples of the
weight loss intervention groups Ex4, CR, and H>C, all preprocessing
steps and analyses were performed as described above (Section 2.7.1).
In contrast to the Chow vs. HFD dataset set, the linear regression
analysis was not performed on the weight loss datasets since the
PCA already identified the parameter with the largest influence on
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metabolite concentration levels.

When selecting the edges for the Ex4 and H>C networks, the num-
bers of selected edges were too large to be used for further analyses.
Therefore, only 503 edges were allowed to be selected for the H>C
network and 565 for the Ex4 network by setting the adjusted p-value
cutoffs to 1.0E-05 for H>C and to 1.0E-09 for Ex4. String protein
database [196] was used to quickly check for overrepresented Reac-
tome [68] pathways among the genes present in the two networks.



3
R E S U LT S A N D D I S C U S S I O N

3.1 time-matched analysis of dna adduct formation and

early gene expression in methylazoxymethanol ac-
etate treated eker rats

Carcinogenicity testing is a critical component of the safety assess-
ment of newly developed drugs and chemicals. Appropriate regula-
tion of a carcinogenic compound requires a definition of its mode
of action in order to clarify whether a safe no-adverse-effect-level
(NOAL) can be defined. Key mechanisms contributing to the NOAL The quantification of

DNA adducts alone
cannot predict if the
exposure to a
hazardous substance
causes mutations in
critical genes

of carcinogenic compounds are carcinogen detoxification and DNA
repair. While an NOAL can be usually defined for a non-genotoxic
carcinogen, threshold doses for genotoxins are still debated. The ab-
sence or presence of DNA adducts can serve as a biomarker to distin-
guish genotoxic from non-genotoxic carcinogens. However, the quan-
tification of DNA adducts alone cannot predict if the exposure to a
hazardous substance causes mutations in critical genes that lead to
a future cancer risk. The majority of DNA adducts and related DNA
damage may be repaired and their predictive value is therefore lim-
ited.

We here hypothesise that the complex interplay of various factors
that transform DNA adducts into tumour causing mutations could be
reflected by very specific expression changes that can be captured us-
ing gene expression measurements on several time-points after geno-
toxin exposure. In combination, the gene expression pattern and the
DNA adduct quantification could serve as an early effect biomarker
in response to DNA adduct formation.

Stemmer et al. [218] measured DNA adducts and gene expression
profiles after 1, 3, 7 and 14 days of low-dose carcinogen exposure in
Eker and wild type rats and also captured the number and incidence
of pre-neoplastic lesions after six months of continuous exposure to
the genotoxin. They investigated the three toxins ochratoxin A (OTA),
aristolochic acid (AAc), and MAMAc. Stemmer et al. [218] published
the findings on OTA and AAc. The not-published MAMAc data gave
us the unique opportunity to investigate the predictive value of com-
bined analysis of pro-mutagenic DNA adducts together with time-
matched gene expression changes.

49
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In this first part of the thesis, differential gene expression analysis
and pathway enrichment analysis were applied to examine if tran-
scriptional induction of genes involved in DNA repair or cancer re-
lated pathways can evaluate the effectiveness of cellular protection
and allows to assess the risk of DNA adducts to translate into tu-
mourigenesis. This work is the result of a collaboration with the
Chair of Human and Environmental Toxicology, University of Kon-
stanz. The collaboration partners performed all rat and wet lab ex-
periments. Excerpts and figures presented here have been published
previously in Archives of Toxicology (Klaus V*, Bastek H* et al 2017;
*Equal contribution).

3.1.1 Expression profiles differ between WT and Eker rats

The PCA performed to get an overview of the gene expression pro-
files of all 108 samples showed that the genotype caused the strongest
differences (Figure 16). The first principal component, which cap-
tured 16.21% of the variance, clearly subdivided the samples into WTPCA separated WT

and Eker samples and Eker clusters. The second principal component capturing 6.29%
of the variance subdivided the samples of rats treated with OTA and
their Eker controls from the other samples.
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Figure 16: PCA of gene expression profiles of WT and Eker rats treated with
toxins AAc, MAMAc, and OTA. The shape of the data points
indicates the administered treatment. The colouring shows the
respective genotype (GT) and the sampled time-point (TP).

One explanation for the separation of the OTA treatment samples
from the others in the Eker rats could be that OTA is in contrast to
AAc and MAMAc a non-genotoxic substance. This however would
not explain why the controls differed from the AAc and MAMAc
controls. Therefore, the most likely explanation would be the pres-
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ence of batch effects.

In the Eker samples, there was a slight separation between the MA-
MAc and AAc treated mice and the corresponding control samples.
The samples of the same time-points, treatment, and genotype tended
to cluster together, but we could not observe large differences be-
tween the time-points of the same genotype and treatment.

3.1.2 Transient gene expression changes upon MAMAc treatment in Eker
rats

On the first day after MAMAc treatment formed O6-mG and N7-mG
DNA adducts could be observed in the Eker rat cohort, which showed
that DNA adducts are indeed a sensitive biomarker to detect geno-
toxin exposure as described in La and Swenberg [137] and Peluso et
al. [177]. This is in line with findings of Sohn et al. [212] and Kisby
et al. [130], who observed O6-mG and N7-mG adducts after a single
high dose of MAMAc (20 mg/kg BW, i.p.) in the liver, kidneys and
the brain.

We wanted to assess if MAMAc treatment and the following DNA
adduct accumulation correspond to the gene expression profile in
the kidney cortices of investigated rats within the first 14 days of
administration.

MAMAc treatment and DNA adducts did not alter gene expression for the
two weeks after first exposure

First, we compared each of the four time-points (day 1, day 3, day 7,
and day 14) with the preceding one within the respective genotype No gene expression

changes in WT rats
after first day of
MAMAc exposure

for the treatment and control group separately. This was done to see
if we can observe changes over the 14 days within the cohorts.
We could not observe any gene that changed significantly over time
in the WT samples, neither in the control samples nor in the MAMAc
treated WT rats.

Over the period of 14 days, 35 probe-IDs, that correspond to 34

genes, changed significantly in the Eker control group (Table A1) and
22 probe-IDs, that correspond to 21 genes, differed in the Eker cohort
treated with MAMAc (Table A2). As six of the 35 probe-IDs differing MAMAc treatment

and DNA adducts
did not influence
gene expression after
the first day

between time-points in the controls differed also in the treated rats,
their expression change seemed to be independent from the MAMAc
treatment. This response can only be considered to be very mild. The
small number of genes did not allow the performance of a pathway
enrichment analysis.
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Taken together, the administration of MAMAc and the induced
DNA adducts did not hamper the gene expression for the 13 days
after first exposure.

MAMAc induced DNA adducts manifest in an instantly altered gene ex-
pression profile

Second, we investigated the differences in gene expression for each
sampled time-point between treated and control rats of each geno-
type cohort, to find out which genes differ upon MAMAc exposure
on the respective day after treatment initiation.

On the third day no gene was altered between treated and control
rats for both genotype groups. For the WT rats we observed one gene
that was altered on day 7, and two genes that differed on day 14. For
the Eker cohort, we observe one gene to be differentially expressed
between treated and control rats on day 7 and no gene to be altered
on day 14.

In summary, we observed few genes that were differentially ex-
pressed after the first day of MAMAc treatment between treated and
control rats of both genotype cohorts. Since the previous analysis al-
ready hinted to a stable gene expression pattern over the measured
period of time after the first day in the control groups as well as in
the exposure groups, we did expect this result.

Comparing the expression patterns for the treated and control rats
measured on the first day, we observed two genes that differed in the
WT rats and 86 differentially expressed probe-IDs (76 could be anno-
tated with gene symbols) upon MAMAc administration in the Eker
rats.

The heat map (Figure 17) of the 87 probe-IDs altered at day 1 or
day 7, respectively, demonstrates that most genes were regulated inGenes responded in

transient manner to
MAMAc exposure

a transient manner, which means that they kept their expression pat-
tern constant across the complete measured time frame. The strongest
signal was shown after the first day of MAMAc administration.

We could observe DNA adducts induced by MAMAc treatment af-
ter the first day of exposure in the Eker rats. The induction of DNA
adducts manifested in an instantly altered gene expression profile.
Even if the DNA adduct levels increased over the next 13 days, in-
dicating that adduct formation exceeded the rate of adduct loss, the
gene expression patterns of the surrounding tissue remained stable
for that time frame.
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Figure 17: Heat map of probe-IDs altered by MAMAc treatment in Eker rats
on days 1 and 7.

This shows that the MAMAc treatment and the following DNA
adduct accumulation corresponded to the gene expression profile in
the sampled kidney cortices.

3.1.3 No transcriptional DNA damage response upon MAMAc exposure

To identify the pathways to which the 76 annotated genes, altered on
the first day of MAMAc exposure in the Eker rats, belong to, we per-
formed pathway enrichment analyses on KEGG [121–123] pathways
and on GO [14, 48] biological process terms.

We observed an effect of MAMAc exposure on 18 KEGG pathways
(Table A3). Ten up-regulated genes belonged to pathways related to
cancer. We used the String database [196] to find out if the proteins en- 10 genes

up-regulated upon
MAMAc treatment
in Eker rats
belonged to
cancer-related
pathways

coded by these ten genes interact. We could observe that these genes
were involved in MAPK signaling pathway (KEGG adj. p-value =
0.0017), which plays a role in cancer relevant pathways such as cell
proliferation and apoptosis [263], and in FoxO (KEGG adj. p-value
= 0.002) and TGF� signaling pathways (KEGG adj. p-value = 0.016),
which are involved in tumour suppression in the healthy state but
can lead to cancer progression and tumourigenesis when dysfunc-
tional [69, 263].

Whether the transcriptional induction of cancer-involved genes was
caused by the pro-mutagenic DNA adduct formation needs to be in-
vestigated further. However, it may hint to a possible translation of
DNA adducts induced by MAMAc into tumour causing mutations,
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which could serve as a predictive tool.

In the healthy state, several pathways protect the cells from mu-
tations that might lead to cancer, eventually. MAMAc is a genotoxic
substance and the kidney cortex is the tissue that gets in contact with
the highest dose of the toxins circulating in the body. Therefore, we
would have expected that the treatment with MAMAc would induce
transcriptional activation of genes involved in cell protection path-
ways in the kidney cortex.

We looked at the following protection pathways: DNA repair path-
ways (DNA replication, mismatch repair, excision repair, homologous
recombination, direct reversal), apoptosis (pro- and anti-apoptotic
pathway), cell cycle (cell cycle progression, cell cycle arrest), TGF�
signaling pathway, and mTOR signaling pathway.

Eight of the 76 genes with significant expression changes after MA-
MAc treatment were involved in pro-apoptotic pathways (GO adj. p-
value = 0.028) (Figure 18a and Table A4). In contrast, the enrichment
of the seven significantly altered anti-apoptotic genes was not signif-
icant (GO adj. p-value = 0.16) as well as the enrichment of the eight
differentially expressed genes involved in cell cycle regulation (GO
adj. p-value = 0.1) (Figure 18a and Table A4).
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Figure 18: (a) Pathway enrichment of genes altered by MAMAc treatment
in Eker rats. The number of genes present in a pathway is shown
in the x-axis. The bar colour visualises the adjusted p-value. (b)
Mgmt expression after MAMAc and AAc treatment compared in
WT and Eker rats.

Even though we observed genes involved in apoptosis or pathways
relevant for early cancer stages, the histopathological analyses of the
kidneys from the same animals did not show any sign of increased
mitotic events or apoptotic cell death in the up to 14 days MAMAc
treated Eker rats. This was in line with the only slightly increased
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incidence of tumours in MAMAc treated Eker rats compared to the
vehicle-treated Eker rats. Taking into account that Eker rats are very
sensitive towards genotoxic carcinogens such as aristolochic acid [218, Histopathology did

not show increase in
mitotic events or
apoptotic cell death
in MAMAc treated
Eker rats

219] or dimethylnitrosamine [240], we had expected a higher increase.
We could observe only few DNA adducts that had manifested in mu-
tation causing tumours, which might be explained by the observed
inability of MAMAc to increase cell proliferation. One critical event
necessary to convert DNA damage into heritable mutations and for
carcinogenesis is increased cell proliferation [45, 184]. Early expres-
sion changes of cell cycle regulating genes following up to 14 days of
AAc and OTA treatment [218] could predict an increase in cell prolif- MAMAc was not

able to increase cell
proliferation

eration after six month of AAc and OTA administration [219]. How-
ever, we observed negligible changes of cell cycle regulating genes in
the 14 days MAMAc exposed Eker rats and a missing increase of cell
proliferation markers upon chronic MAMAc treatment.

No gene involved in any of the DNA repair pathways that should
respond to the observed DNA adduct formation was significantly al-
tered upon MAMAc exposure (Figure 18a). Even the primary repair No gene involved in

any of the DNA
repair pathways was
significantly altered

enzyme for O6-mG adducts, O6-Methyl-guanin-DNA-Methyltrans-
ferase (Mgmt) did not respond to MAMAc treatment (Figure 18b).
Stemmer et al. [218] showed that Mgmt is induced in a time-dependant
manner in the kidney cortex of male Eker rats following treatment
with the positive control genotoxin AAc, which is in line with our ob-
servations (Figure 18b). One possible explanation for the discrepant
finding could be that DNA adducts have to accumulate to reach a
specific threshold level to activate DNA damage response genes to
a detectable level. This hypothesis is in agreement with an in vitro
study performed by Clewell et al. [42] showing that three tested geno-
toxic agents increased micronuclei formation significantly but failed
to induce expression changes in p53 and its downstream DNA repair
genes.

3.1.4 Lack of DNA damage response not due to partial loss of Tsc2

Habib et al. [89] showed that a partial loss of Tsc2 in kidney cortices
of Eker rats reduced the expression levels of the DNA repair enzyme
8-oxoG-DNA glycosylase (Ogg1) compared to wild type rats, which
contributes to tumourigenesis. Therefore, we wondered if the chronic
reduction of DNA repair pathway genes by genetic haploinsufficiency
of Tsc2 in our Eker rats could be the reason for the lack of transcrip-
tional regulation after MAMAc exposure in Eker rats.

In our hands, Ogg1 did not show expression differences between
WT and Eker control rats (Figure 19). The discrepancy might be a
result of the difference in the methods used to measure Ogg1. While
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Habib et al. [89] measured Ogg1 protein expression, we measured its
expression on the mRNA level.
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Figure 19: Expression of DNA repair gene Ogg1 in WT and Eker control
rats.

The absent down-regulation of Ogg1 mRNA levels could be ex-
plained by the weak correlation reported between mRNA and protein
abundance levels due to post-transcriptional and post-translational
factors, and noise and experimental errors that can reduce protein
abundance [153].

As mentioned in Section 3.1.2, we did observe five genes that were
altered upon MAMAc exposure in the WT rats on all four time-points.
None of these genes is involved in any of the DNA repair pathways
(DNA replication, mismatch repair, excision repair, homologous re-
combination, direct reversal, base excision repair, non-homologous
end joining, and Fanconi anemia pathway), indicating that WT rats
did also not show a significant induction of DNA repair genes follow-
ing up to 14 days of low dose MAMAc treatment.

We compared the gene expression profiles for Eker and WT rats
on each sampled time-point. We could observe eight probe-IDs thatWeak effect of partial

Tsc2 loss on
transcription levels

of DNA repair genes

could be assigned to seven genes involved in one of the DNA re-
pair pathways being significantly deregulated on each measured time-
point (Table 4).
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Table 4: Differentially expressed DNA repair genes in Eker and WT rats.
direction of adjusted

probe-id gene kegg pathway regulation p-value

1390040_at Bre Homologous recombination Down 9.037353e-06

1373451_at Rnaseh2b DNA replication Down 1.007141e-05

1392807_at Lig3 Base excision repair Down 1.809460e-05

1372793_at Ssbp1 DNA replication, Homologous recombination, Up 5.772972e-05

Mismatch repair

1388367_at Pole4 DNA replication, Nucleotide excision repair, Down 1.200040e-04

Base excision repair

1374318_at Brcc Homologous recombination Up 1.258071e-04

1374044_at Stra13 Fanconi anemia pathway Up 1.458302e-04

1374010_at Lig3 Base excision repair Up 8.834112e-04

The direction of the expression change did not show a consistent
pattern, as these probe-IDs are up- and down-regulated in equal
shares.
This indicates that a partial loss of Tsc2 affected the overall transcrip-
tion levels of DNA repair genes only marginally.
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3.2 effects of weight loss interventions on hypothala-
mic gene expression

Pharmacologically induced body weight loss by treatment with the
Glp-1 agonist exendin-4 leads to a stabilisation of the lower body
weight after weight loss in mice, which is not the case when body
weight loss was induced by calorie restriction [167]. In this second
part of the thesis, differential gene expression analysis and pathway
enrichment analysis were applied to hypothalamus samples of mice
injected with saline or leptin after pharmacologically induced weight
loss compared to calorie restriction in order to gain more insight into
the underlying molecular mechanisms.

This work is the result of a collaboration with three research units
at the Helmholtz Centre Munich, namely the Research Unit Neuro-
biology of Diabetes, the Core Facility Next-Generation-Sequencing,
and the Research Unit for Protein Science. The collaboration partners
performed all mouse and wet lab experiments.

3.2.1 PRC RNA-Seq dataset shows bias for IP:Leptin samples

3.2.1.1 Read quality assessment and mapping statistics of RNA-Seq reads

When checking the read quality by applying FastQC no abnormality
for the quality of the samples was observed for either the ClontechSample sizes differed

massively between
the three sample sets

SMART-Seq or the Illumina TruSeq protocol. However, the sample
sizes differed massively between the three sample sets with the IP
samples having the highest number of reads (Table 5). At the same
time the IP samples had the least percentage of reads mapped to the
reference genome.

Table 5: Mapping statistics of the three sequencing protocols (m = million).

sample mapping

protocol content size fraction

TruSeq Whole tissue 57 ± 9m 98.85 ± 0.59%
Input Whole tissue 70 ± 11m 92.42 ± 2.06%
IP mRNA bound to ribosomes 83 ± 15m 89.82 ± 2.0%

in activated neurons
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3.2.1.2 High proportion of intron-mapping reads observed in IP:Leptin
dataset

We next assessed the genomic region to which the reads could be
mapped, thereby focusing on reads mapping to exonic and intronic Majority of reads of

the IP:Leptin dataset
mapped to intronic
regions

regions of the genome. Usually, the majority of reads maps to exonic
regions [75, 166, 225], which was true for the Leptin PRC TruSeq
and Input:Leptin datasets (Figure 20a) as well as for the Input:Insulin
and IP:Insulin datasets (Figure 20b). In contrast, the majority of reads
of the IP:Leptin dataset mapped to intronic regions. The average of
reads that mapped to intronic regions in the IP:Leptin samples was
58.9% the minimum was 41.3%.
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Figure 20: Genomic regions of mapped reads shown for each protocol. The
fraction of reads mapped to the intronic regions is shown on the
y-axis, the fraction of the reads mapping to the exonic regions is
shown on the x-axis. (a) shows the fractions for the leptin samples
and (b) shows the fractions for the insulin samples.

To check whether these intron-mapping reads showed a positional
bias, the distribution of the relative position of reads mapping to in-
trons was assessed for each dataset (Figure 21). All datasets except the
IP:Leptin dataset showed a homogeneous pattern which differs dras- IP:Insulin and

IP:Leptin samples
differ fundamentally

tically from the read distribution observed in the IP:Leptin dataset
(Figure 21b). Taken together this hints to fundamental differences be-
tween the IP:Insulin and IP:Leptin samples.

Whereas the IP:Insulin samples were used to establish the method
in our lab, the IP:Leptin samples were generated with the modified
protocol adapted to the large scale sample throughput. The major
difference between the applied protocols was the antibody used to
capture the mRNA bound to ribosomes of activated neurons.
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Figure 21: Read mapping distribution in intronic regions shown for (a)
samples of the TruSeq, Input, IP:Insulin, and the (b) IP:Leptin
datasets. The x-axis shows the read mapping position within the
intron respective to the intron length.

3.2.1.3 Mass spectrometry shows reduced antibody specificity of PBS anti-
body

To investigate the differences of the two IP datasets that had been
generated independently, mass spectrometry analysis of the proteins
pulled down by either antibody formulation with or without addition
of the 3P peptide was performed: Commercial antibody (ComAB),
Commercial AB + 3P (ComAB3P), PBS antibody (PBSAB), and PBS
AB + 3P (PBSAB3P).

The mass spectrometry analysis quantified 297 annotated proteins
that were present in all four IP samples. After removing proteins to
which only one peptide could be assigned to and after removing pro-
teins that were not measured reliably, about 170 proteins were used
in the downstream analysis.

Since the Phospho-S6 Ribosomal Protein (Ser240/244) antibody was
designed to specifically bind the two C-terminal sites 240 and 244

of phosphorylated ribosomal protein S6 [132, 267], we first checkedBoth antibody
formulations are

able to recognise the
target protein RpS6

whether RpS6 could be detected in all IP samples. The abundance
ratio (AR, calculated by dividing the normalised protein abundance
of the respective antibody by the normalised protein abundance ob-
served in the iGg control) of RpS6 was highest in the IP samples
extracted with the PBSAB with 63.8, followed by the ComAB3P with
48.8. The ARs of the PBSAB3P and ComAB were 27.0 and 28.6, respec-
tively. This indicated that both formulations of the RpS6 antibody
were able to recognise the target protein RpS6. However, the total
amount of RpS6 protein in the pulldown was rather low (Table A5).
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One explanation for the detection of only low levels of RpS6 could be,
that the peptide fragments after trypsin digestion were too small to
be aligned back to a protein after mass spectrometry. This is a com-
mon problem for all alkaline proteins. Additionally, small proteins
are in general more difficult to detect. Therefore, not detecting or de-
tecting only low levels of RbS6 was not necessarily a consequence of
antibody un-specificity.

The higher number of reads mapping to intronic regions in the
PBS:IP samples suggested that the PBSAB was binding nonspecifi-
cally and might have extracted mRNA that was not bound to ribo-
somes and therefore still contained intronic regions. Thus, the func-
tional classes of the extracted proteins were analysed in the different
IP samples, focusing on ribosomal proteins as well as proteins in-
volved in splicing and RNA-binding. 165 proteins were analysed for
the PBSAB and the PBSAB3P, whereas 142 proteins were taken into
account for ComAB and 157 for the ComAB3P. The percentages of
the class abundances (Section 2.5.2) of the functional classes for the
ComAB3P that had been used to generate the IP:Insulin samples and
the PBSAB that had been used to generate the IP:Leptin samples are
illustrated in figure 22. The percentages of the class abundances for
the ComAB and PBSAB3P are shown in figure A1.
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Figure 22: Comparison of protein abundances detected in samples extracted
with the (a) Commercial antibody + 3P used to produce the
IP:Insulin dataset and the (b) PBS antibody used to capture the
ribosomes in the IP:Leptin dataset. The number in the brackets
gives the number of quantified proteins.

The main difference between the sample sets generated with the
two antibody formulations was the class abundance for ribosomal
binding proteins (Rbp, Figures 22 and A1, shown in blue) versus the
abundance for RNA binding proteins (Figures 22 and A1, shown in
salmon). The percentage of class abundance of the commercial anti-
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body formulation for Rbps was 59% for the ComAB3P and 48% for
the ComAB sample, respectively, whereas it was below 10% in the
IP samples generated with PBS formulation. In contrast, samples ob-
tained with the PBS antibodies (Figures 22b and A1b) showed higher
percentages of class abundances (47 and 42% vs. 2 and 5%) of pro-
teins involved in RNA binding when compared to the commercial
formulation of the antibody (Figures 22a and A1a). Further, the per-
centages of class abundances of proteins involved in splicing (Figures
22 and A1, shown in yellow) and splicing + RNA binding (Figures 22

and A1, shown in orange) were much higher in the PBSAB samples
compared to the ComAB samples.

Taken together, the pattern of extracted proteins of the PBS anti-
bodies indicated that the higher concentrated, specifically synthesised
formulation of the antibody bound less specific to ribosomal proteins
than the commercially available antibody.

It can be assumed that the less specific binding pattern of the PBS
antibody to Rbp (Figure 22b) used to generate the IP:Leptin samplesNon-RpS6-specific

binding pattern of
the PBS antibody

could explain high
amounts of intronic

mRNA in the
IP:Leptin dataset

could explain the high amounts of intronic RNA in this dataset (Fig-
ure 21b). Ultimately, the mass spectrometry data suggested that pro-
cessing the IP:Leptin dataset would lead to an analysis of reads rather
associated with unprocessed mRNA than with mRNA bound to ribo-
somal proteins. It was thus decided that only the gold standard whole
tissue RNA-Seq dataset of the Input:Leptin samples generated with
the TruSeq sequencing kit will be used for the downstream analyses.

3.2.2 Effect of weight loss intervention and leptin treatment on hypothala-
mic gene expression

Despite similar body weight loss, exendin-4 treated mice significantly
reduced their 24h food intake after an acute injection of leptin while
mice that were calorie restricted did not respond to the leptin injec-
tion (Figure 11). These findings are in line with the previously pub-
lished superior restoration of leptin sensitivity by pharmacologically
induced weight loss [167].

To assess the biological underpinnings of the leptin re-sensitisation
by exendin-4 treatment, the hypothalamic gene expression profiles of
saline versus leptin treated mice of the two weight loss intervention
groups were compared relative to the control cohorts.

3.2.2.1 Hypothalamic gene expression profiles do not show response to lep-
tin treatment

The PCA performed to get an overview on the gene expression pro-
files of all 40 TruSeq samples showed a clear batch effect introduced
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by the sampling day (Figure 23a). All samples that had been gener-
ated on day 3 formed a cluster on the left side of the graph (Figure
23a). After removing the batch effect the samples split up more ac- After removing

batch effects,
samples split up
more according to
the administered diet
regime

cording to the administered diet regime. The first principal compo-
nent, capturing 52% of the variance clearly subdivides the HFD and
Chow control groups from the two weight loss intervention cohorts
Ex4 and CR (Figure 23b). The diet-switch group (H>C) presents an
intermediate phenotype between the Chow and HFD control groups
and the two weight loss groups (Figure 23b).
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Figure 23: PCA of whole tissue hypothalamus dataset obtained with the Il-
lumina TruSeq kit. (a) before and (b) after batch correction.

Two samples had been generated for each diet group on each sam-
pling day – one saline and one leptin sample. These two samples were
found next to each other in the PCA plot indicating that the gene ex-
pression profiles did not differ fundamentally between mice treated
with either saline or leptin (Figure 23b).

We compared the two treatment groups within each diet setting
to make sure that no small but important leptin-induced changes in
hypothalamic gene expression were missed. However, acute injection
of leptin only changed the gene profiles of mice on chow diet and
of mice that had been calorie restricted compared to their respective
saline control group (Table 6).

The G protein-coupled receptor 39 (Gpr39) was found to be up-
regulated upon leptin treatment in CR mice and down-regulated upon
leptin treatment in chow-fed mice, whereas expression levels of
granzyme A (Gzma), ATP binding cassette subfamily A member 5

(Abca5) and suppressor of cytokine signaling 3 (Socs3) were changed
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Table 6: Number of differentially expressed genes for the comparison of lep-
tin to saline treatment for each diet group. The average expression
and the log2 fold changes for the significantly (adjusted p-value <

0.05) differing genes are given in the brackets.

group total # of de genes

de genes (average expression, log2 fold change)

Chow 4 Gpr39 (0.35, -12.99),
Gzma (0.33, -13.49),
Socs3 (103.46, 1.16),
abca5 (0.40, -15.94)

CR 1 Gpr39 (0.35, 26.77)
H>C 0

Ex4 0

HFD 0

in mice maintained on chow diet (Table 6). The expression levels ofUp-regulation of
Socs3 upon leptin

treatment in the
leptin-sensitive

Chow group
indicates that the

leptin injection per
se had been
functional

Gpr39, Gzma, and Abca5 were very low and might not be reliably
measurable at all (Table 6). Socs3 is a known downstream target of
leptin that gets activated via STAT3-mediated transcription and plays
an important role in the feedback inhibition on the leptin receptor
and is a potential mediator of physiologic leptin resistance [24]. The
expression of Socs3 was up-regulated upon leptin treatment in the
leptin-sensitive Chow group thus indicating that the leptin injection
per se had been functional (Table 6).

However, the absence of more leptin-induced changes in the hy-
pothalamic gene expression patterns points towards a time-dependent
effect. The mice had been sacrificed 75 minutes after leptin treatment
to capture early gene expression changes in activated neurons. This
acute setting might have been too short to induce leptin-mediated
gene expression changes, which are usually observed after more than
4h post i.p. leptin injection [6, 57]. Another reason for the absence
of a distinct leptin effect could be that mRNA levels of the whole
hypothalamus were analysed with the TruSeq method. The hypotha-
lamus is a heterogeneous mix of cells and contains besides neurons,
astrocytes, microglia, endothelial cells, and tanycytes [39, 77]. Even
if the acute injection of leptin changed the gene expression profiles
in leptin-responsive neurons, this effect might have been masked by
the unchanged or adverse mRNA levels in the other cell types of the
hypothalamic samples [76].
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The absence of a leptin effect and the high similarity between the Leptin and saline
datasets were
combined for each
diet group due to
absent leptin effect

two treatment groups enabled us to combine the leptin and saline
samples for each diet. The statistical power of the small dataset was
thus increased as now eight replicates per diet group were compared
instead of four.

3.2.2.2 Pairwise comparisons of intervention groups identified strong dereg-
ulation between diet interventions

To investigate the effect of the administered diets and weight loss The numbers of
differentially
expressed genes
resembled the image
drawn by the PCA:
Few genes were
altered between
Chow and HFD and
between Ex4 and CR

interventions on the hypothalamic mRNA levels, we compared the
expression profiles of each diet group to the expression profiles of
the other diet groups in a pairwise manner using DESeq2. The num-
bers of differentially expressed genes resembled the image drawn by
the PCA: Few genes were altered between the two weight stable con-
trol groups Chow and HFD (Table A6). At the same time few genes
differed when comparing the three weight-loss groups H>C, Ex4 and
CR with each other (Table A6). This quite similar expression pattern
between the intervention groups was challenging, as there was no
clear difference between the groups.

One possible explanation for the high similarity in the hypothala-
mic expression pattern of chow- and HFD-fed mice is that there is no
acute stimulus that would change the gene expression in the hypotha-
lamus. The HFD induced body weight gain had been accomplished
by the start of the study. The mice were fed ad libitum and had a
stable body weight over the complete study period (Figure 10). In
contrast, the weight loss intervention groups CR and Ex4 underwent
a massive change in body weight (Figure 10). However, as the loss in
body weight between CR and Ex4 treated mice was similar, hypotha-
lamic gene expression was apparently changed likewise. Along this
line, more genes were changed between CR or Ex4 compared to the
weight stable control groups Chow (1,728 vs. 2,142 DE genes, respec-
tively) and HFD (2,691 vs. 3,079 DE genes, respectively) than between
CR or Ex4 and the diet-switch group H>C that also lost some body
weight (119 vs. 230 DE genes, respectively) (Table A6).

We took a closer look at the differentially expressed genes between
diet groups. For example, one gene that was found to be increased in
the HFD-fed mice, when compared to our Chow cohort was Serpin
Family A Member 3 (SerpinA3) (Figure A2). This increase of SerpinA3
expression had been reported before by Sergi et al. [205], who pro-
posed that SerpinA3 expression is involved in hypothalamic inflam-
mation mediated by nutrition. Another gene that showed a higher
expression in our HFD-fed cohort compared to the Chow mice was
calcitonin-related polypeptide ↵ (Calca) (Figure A2). This gene can be
alternatively spliced into calcitonin and ↵CGRP (↵ Calcitonin gene-
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related peptide) in a tissue-specific manner [241]. The expression of
↵CGRP had been reported to be distributed across the CNS, includ-
ing the hypothalamus. When Walker et al. [241] prevented the pro-
duction of ↵CGRP in their mouse model, they observed that the mice
were phenotypically unchanged, but upon HFD challenge they were
protected from diet-induced obesity, suggesting that ↵CGRP is in-
volved in metabolic regulation and lipid management [241].

In the following, we concentrated on the group comparisons that
returned small numbers of altered genes but were of high scientific
relevance such as the comparisons of HFD to Chow and Ex4 to CR.

3.2.2.3 Neuropeptides mirror administered diet

When the hypothalamic gene expression profiles of the weight stable
diet groups HFD and Chow were compared, ten genes were found to
be altered (Figure A2, Table A6). Three of the significantly regulated
mRNAs belonged to the group of neuropeptides that are important
regulators in the control of energy expenditure and food intake: Ex-
pression levels of the orexigenic mediators Npy and Agrp were down-
regulated in HFD compared to Chow, while the anorexic neuropep-
tide Cartpt (Cart prepropeptide) was up-regulated (Figure A2). These
findings are in line with previous work showing a decrease in genes
promoting food intake whereas genes inhibiting food intake were in-
creased in diet-induced mice [99].

When the gene expression profiles of all neuropeptides present in
our dataset were compared across all five groups, mRNA levels of
Npy and Agrp were found to be similarly expressed in obese (HFD,
H>C) mice compared to mice that had lost 30% of their body weight
(CR, Ex4) (Figure 24).
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Figure 24: Neuropeptide expression in hypothalami across all diet groups.

Expression of Npy and Agrp was significantly up-regulated in the
weight loss intervention groups CR and Ex4 when compared to the
weight stable Chow and HFD groups as well as to the H>C group
that had only lost 10% body weight due to the switch to less calo-
rie dense food (Figure 24, Table A7). In contrast to the three control
groups that were not restricted in their food intake, Ex4 treatment in-
duced a significant reduction in food intake to which the food intake
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of the CR group was matched. The up-regulation of the key orexi-
genic neuropeptides thus reflected the fasting state of the weight loss
intervention groups. This fasting-induced up-regulation of Npy and
Agrp mRNA levels that are co-expressed in the hypothalamus had
been shown before [90].

In contrast, mRNA levels of the anorexigenic neuropeptide Pomc
were significantly down-regulated in Ex4 when compared to the HFD The effect of weight

loss interventions
was not only
reflected in body
weight phenotype
but also on
hypothalamic
mRNA levels

and H>C group (Figure 24, Table A7). Pomc expression was similarly
regulated in CR mice but only significantly down-regulated when
compared to HFD (Table A7). Also the second food-intake stimulat-
ing neuropeptide Cartpt, that was up-regulated in HFD compared to
Chow (log2 FC: 0.32, adj. p-value: 0.047), was significantly down-regu-
lated in the weight loss groups CR and Ex4 when compared to H>C
(Figure 24, Table A7). As Pomc and Cartpt are antagonists of Npy and
Agrp, and were shown to decrease their mRNA levels upon fasting
[90], the observed findings match the applied food restriction.

Taken together, the neuropeptide mRNA expression patterns showed
that the effect of the weight loss interventions was not only reflected
in the body weight phenotype but also on the hypothalamic mRNA
levels.

3.2.2.4 Fasting induced gene expression changes

The mice of both weight loss intervention groups lost the same amount
of body weight and fat mass during the study period of ten days. But
in contrast to calorie-restricted mice, the exendin-4 treated mice re-
gained leptin sensitivity since they decreased their food intake upon
leptin injection. Therefore, the comparison of the hypothalamic gene
expression changes between the CR and the Ex4 group will allow us
to assess possible targets for weight loss interventions and leptin re-
sensitisation.

When the mRNA profiles of the CR group were compared with
the Ex4 group, 29 genes were found to be differentially expressed
(Figure 25, Table A8). The majority of these differentially expressed 8 of the 29 genes

differing between
CR and Ex4 are
induced by fasting
in the hypothalamus

genes showed an up-regulation of the mRNA levels in the CR group
compared to the Ex4 group. Interestingly, eight of the 29 altered genes
are known to be induced in the hypothalamus by fasting (Figure 25

highlighted in red) and will be discussed in detail in the following.

Among the eight fasting induced genes that were found to be up-
regulated in the hypothalamus of CR mice compared to Ex4 treated
mice were Plin4 (Perilipin 4), also referred to as S3-12, and Pnpla2
(Patatin-like phospholipase domain containing 2). Plin4 belongs to
the PAT family of lipid storage droplet proteins and plays a key role
in intracellular lipid trafficking [183, 190]. Plin4 was significantly up-
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Figure 25: Expression pattern of altered genes between Ex4 and CR. Genes
induced by fasting in the hypothalamus are highlighted.

regulated in CR mice compared to all other control groups (Table A8).
In Ex4 treated mice, Plin4 expression was significantly lower than in
CR mice but up-regulated compared to the diet-switch control H>C,
indicating a weight loss mediated effect that was pronounced by calo-
rie restriction.

The triglyceride lipase Pnpla2 hydrolyses monoacyl glycerides and
glycerol from triglycerides in preparation for beta-oxidation [183]. Pn-
pla2 was not altered by exendin-4 treatment when compared to the
three control groups. CR, on the other hand, did up-regulate the gene
when compared to the three control groups even if the fold changes
where rather modest (Table A8).

Both genes are known to increase the utilisation of lipid oxidation
instead of glycolysis for energy production [183] and were shown to
be induced by fasting in the hypothalamus of mice by Poplawski et al.
[183]. Data from human studies further indicated an important role
for Plin4 in the regulation of metabolism as several SNPs assigned to
Plin4 were shown to be associated with obesity related phenotypes
[190]. The gene expression changes by weight loss due to calorie re-
striction therefore indicate a metabolic reprogramming away from
glycolysis towards lipid oxidation that is not present when the body
weight loss was pharmacologically induced. The metabolic switch
from glucose metabolism to lipid oxidation in calorie-restricted mice
is further supported by the finding that Hif3a (Hypoxia-inducible fac-
tor 3, alpha subunit), a transcription factor that has been brought in
connection with reduced glycolysis [183], was also up-regulated in
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CR mice compared to exendin-4 treated and the diet-switch mice.

Interestingly, two of the eight fasting induced genes that were up-
regulated in the CR mice compared to exendin-4 treated mice had
previously been linked to the appetite regulating neuropeptide orexin.
Orexin, also known as hypocretin, is predominantly produced in the
lateral hypothalamus and was shown to regulate arousal, wakeful-
ness, and appetite [15]. Stimulation with orexin increases the craving
for food and the meal size by suppressing inhibitory postingestive
feedback [15].

The increased mRNA levels of the cellular stress responsive ki-
nase Sgk1 (serum- and glucocorticoid-induced protein kinase-1) in
CR mice was in line with findings from Nonogaki, Ohashi-Nozue,
and Oka [175], who showed that Sgk1 expression is induced upon
fasting in the hypothalamus and proposed that hypothalamic Sgk1
is involved in energy homeostasis in mice. Deng et al. [56] studied
the role of Sgk1 specifically in hypothalamic POMC neurons and saw
that Sgk1 co-localises with POMC neurons. When knocking out Sgk1
in POMC neurons, mice showed an obese phenotype and a decreased
energy expenditure [56]. The opposite phenotype was observed when
they over-expressed Sgk1 in POMC neurons [56]. The work of Koe-
sema and Kodadek [133] then proposed an involvement of orexin re-
ceptor signaling in the Sgk1 mediated regulation of energy homeosta-
sis. The hypothalamic expression of Sgk1 in exendin-4 treated mice
was higher compared to the diet-switch control but unchanged com-
pared to the weight stable control indicating an ameliorated orexin
effect in pharmacologically induced weight loss.

The second up-regulated gene in our CR mice that Koesema and
Kodadek [133] observed to be highly regulated by orexin was Zbtb16
(Zinc finger and BTB domain-containing protein 16). Zbtb16 is a zinc
finger transcription factor located in the nucleus that is involved in
cell cycle progression, and interacts with a histone deacetylase [224].
Zbtb16 was shown to be up-regulated upon fasting in AgRP neurons
[101]. A loss of function mutation in Zbtb16 can cause human neu-
rological disorders [26]. Additionally, the reduced expression might
contribute to phenotypic properties of the Prader-Willi Syndrome,
such as obesity and neurodevelopmental defects [26]. In contrast to
the significant up-regulation in the CR group, the expression of Zbtb16
was unaltered in the Ex4 group compared to all other groups (Table
A8). This points towards an involvement of orexin receptor signaling
specifically in caloric restriction mediated weight loss.

Another master regulator of food intake is the transcription factor
FoxO1 (Forkhead Box O1 Protein) which is a shared element of path-
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ways regulated by the anorexigenic hormones leptin and insulin to
regulate food intake and energy efficiency [127, 131, 182]. FoxO1 pro-
motes opposite patterns of coactivator-corepressor exchange at the
POMC and AgRP promoters, resulting in activation of AgRP and in-
hibition of POMC [131]. Accordingly, induction of the transcription
factor FoxO1 leads to an increase in food intake and as a consequence
also to an increase in body weight [127]. In contrast, mice with a
knock-out of FoxO1 specifically in AgRP neurons showed reduced
food intake [187]. Along this line of evidence, our CR mice showed
a modest up-regulation of FoxO1 when compared to the three con-
trol groups (data not shown) indicating an activation of FoxO1. There
was no difference in FoxO1 expression between CR and Ex4 treated
mice. However, two targets of FoxO1, Cdkn1a (Cyclin-dependent ki-
nase inhibitor 1A) and Gpr17 (G-protein-coupled receptor 17), were
significantly altered between CR and Ex4 treated mice (Table A8).

The cyclin-dependent kinase inhibitor Cdkn1a, also referred to as
p21, was shown before to be induced by fasting in the hypothalamus
[87, 183, 226, 230]. It had been suggested that FoxO1, but not p53, con-
tributes to the robust induction of p21 expression in fasted mice [230].
Indeed, hypothalamic Cdkn1a expression was significantly increased
in CR compared to Ex4 treated mice and to the obese control groups
HFD and H>C. This finding points towards a FoxO1 dependent effect
in calorie restriction since FoxO1 expression was only up-regulated in
CR mice and both the expression of Cdkn1a and of FoxO1 was unal-
tered between Ex4 and the control groups.

Gpr17 is the Uracil nucleotide/cysteinyl leukotriene receptor that
was identified as FoxO1 target by Ren et al. [187]. AgRP-specific loss
of Gpr17 was shown to lead to a reduction in feeding and improved
metabolic status [188]. In contrast to Cdkn1a, no change in the hy-
pothalamic expression of Gpr17 was observed in the CR mice com-
pared to the control groups. But a significant down-regulation of hy-
pothalamic Gpr17 expression was seen for Ex4 treated mice compared
to all other groups.

Taken together, we did not observe a clear FoxO1 mediated effect
in our weight loss intervention due to the observation of a differential
regulation pattern for the two FoxO1 target genes Cdkn1a and Gpr17
between CR and Ex4 treated mice.

The remaining two fasting induced genes in the hypothalamic sam-
ples of CR mice were Sult1a1 (sulfotransferase family member 1A)
and Arrdc2 (arrestin domain containing 2).
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The hormonal regulator Sult1a1 was shown to be up-regulated by
calorie restriction in several tissues including the hypothalamus [226].
However, the expression pattern of Sult1a1 in response to HFD feed-
ing in peripheral tissues was contradictory with increased Sult1a1
mRNA levels in liver but down-regulation in adipose tissue of HFD-
fed rats [88]. In our hypothalamic data set no difference between
chow- and HFD-fed mice was observed. However Sult1a1 expression
was up-regulated in both weight loss intervention groups compared
to the diet-switch control pointing to an effect specific to body weight
loss that was more pronounced in CR.

Not much is known yet about the expression regulation of Arrdc2
that has been associated with signal transduction [82]. Guarnieri et
al. [87] showed an up-regulation of Arrdc2 upon food restriction in
the nucleus accumbens but not in the hypothalamus. In our hypotha-
lamus dataset, Arrdc2 expression was increased in both weight loss
groups compared to the H>C control group. Its expression was also
increased in CR when compared to HFD. This might indicate a role
of Arrdc2 in the regulation of body weight loss.

Overall, the described changes in the hypothalamic gene expres-
sion profile indicate that calorie-restricted mice undergo fasting in-
duced changes in fuel utilisation, orexin receptor signaling and tran-
scription factor regulation. Here, treatment with exendin-4 seems to
ameliorate the fasting induced up-regulation of hypothalamic genes
despite similar body weight loss. We hypothesise that this attenua-
tion of the fasting-dependent hypometabolism in CR mice might con-
tribute to the superior restoration of leptin sensitivity in exendin-4
treated mice.

3.2.2.5 Expression of fasting induced genes in AgRP and POMC neurons

It has been shown in numerous studies that different neuronal pop-
ulations are involved in the hypothalamic control of energy expendi-
ture and food intake, as reviewed by Williams et al. [251]. As whole
hypothalamus samples were investigated in our dataset that contain
various neuronal populations and other cell types such as glial cells
and tanycytes, cell type specific gene expression patterns could be
masked. In order to investigate whether the 29 genes differentially
expressed in the weight loss intervention groups play a role in two of
the most important neuronal populations with respect to food intake,
the AgRP and POMC neurons (Section 1.3.2), we studied their ex-
pression in the dataset of Henry et al. [101] who produced a valuable
resource to compare gene expression patterns in AgRP and POMC
neurons in the fasted and fed state.
The AgRP and POMC data was analysed separately using DESeq2 to
compare fasted and fed mice and to compare the expression changes
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observed in the two neuronal populations to the gene expression al-
terations observed in our whole tissue data set.

We could observe that five (Sgk1, Cdkn1a, Zbtb16, Spsb1, Ddit4) of
our fasting genes were significantly differentially expressed in the
AgRP neurons upon fasting (Figure 26a, Table A9). All of them showed
a higher expression in the fasted state, which is in line with our find-7 genes differing

between Ex4 and
CR are also altered

upon fasting in
either AgRP or

POMC neurons

ings.
Further, an increased expression of Zbtb16 and Bcl6 (B-cell CLL/-

lymphoma 6) was detected in POMC neurons of fasted mice (Figure
26b, Table A10), which is in line with our data from whole hypothala-
mus samples. In contrast, Hr (Hairless homolog) was down-regulated
in POMC neurons (Figure 26b, Table A10), while it was up-regulated
in our whole tissue samples.
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Figure 26: Fasting genes differentially expressed between fasting and feed-
ing in (a) AgRP and (b) POMC neurons.

Overall, the similar expression pattern of the fasting induced genes
in isolated AgRP and POMC neurons from fasted mice indicates, that
our analysis of the whole hypothalamus gene expression profile is a
good starting point to define genes of interest in the context of fasting.
However, further experiments are needed to understand the neuron-
specific effects of the weight loss interventions.
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3.3 estimating genetic impact on metabolic networks

The integration of metabolite datasets with transcriptomics and pro-
teomics will help us to gain a more holistic view of molecular un-
derpinnings of physiological and pathopysiological cellular signaling.
Furthermore, metabolomics could be used to identify biomarkers and
new targets for the treatment of metabolic diseases, such as diabetes
and cancer. However, current system-biological approaches integrat-
ing metabolomics and other omics datasets often lack user friend-
liness, output interpretability or are based on prior knowledge on
pathways and enzymatic reactions. As a result, the genetic control of
metabolic pathways, their dynamics, and dependence on different di-
ets and diseases remains rather unknown. Overall, this complicates
the detection of new genes or enzymes, which influence those metabo-
lites that are important for specific pathways or disease states.

In this last part of the thesis, we present a new generic integration
method that, here, was applied to integrate metabolomics and tran-
scriptomics data based on pairwise correlation analysis of metabolites
coupled to partial correlation combining the metabolite correlations
with the transcript expression profiles followed by the construction of
undirected, weighted graphs. The idea behind this approach is to link
changes in metabolite concentrations to differentially expressed genes
between dietary groups or treatment conditions thereby helping to
develop hypotheses for genes that influence the observed metabo-
lite network and might therefore play a role for the development of
the observed phenotype. In contrast to many other approaches, our
method is fully unsupervised and independent from additional prior
knowledge. Its straightforward but flexible setting allows for multiple
applications, yet the produced networks may convey complex inter-
actions but are easy to interpret.

This work is the result of a collaboration with two research units at
the Helmholtz Centre Munich, namely the Research Unit Neurobiol-
ogy of Diabetes and the Research Unit Molecular Endocrinology and
Metabolism. The collaboration partners performed all mouse and wet
lab experiments. Excerpts and figures presented here were submitted
(Klaus VS*, Schriever SC* et al; *Equal contribution).

Pharmacological-induced weight loss by exendin-4 treatment caused
a massive accumulation of triglycerides in the livers of mice after ten
days of treatment. This acute hepatic steatosis turned out to be a tran- Ex4 mice showed

massive but
transient
accumulation of
triglycerides in the
liver

sient phenomenon since the livers of mice treated with exendin-4 for
30 days were clear of triglycerides when compared to the HFD control
group (data not shown). To investigate the molecular underpinnings
of the acute triglyceride accumulation, hepatic gene expression pro-
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files and metabolite levels were measured in mice after ten days of
treatment. The metabolome is the functional readout of cellular pro-
cesses taking place at a defined time-point. These processes are regu-
lated by genes but they can in turn also be regulated by the metabolite
levels itself exemplifying one of various complex feed-back systems
in biology (Figure 7) [30, 33, 173]. To assess the genetic control of the
metabolite networks under each dietary condition, we developed a
new data integration approach.

3.3.1 Method application on Chow and HFD dataset

For testing the method, the two weight stable control groups, Chow
and HFD, were used as the comparison of lean versus diet-induced
obese mice is a well-studied setting.

3.3.1.1 Genetic and metabolic profiling of chow- and HFD-fed mice

HFD feeding for 22 weeks resulted in the obese phenotype char-HFD cohort shows
typical signs of diet

induced obesity
acterised by significant metabolic alterations compared to the lean
chow-fed control mice (Table A12, Figure 27).
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Figure 27: Phenotype monitoring of chow- and HFD-fed mice: (a) Body
weight measured at the end of the study, (b) plasma insulin levels,
(c) plasma cholesterol levels, (d) plasma and (e) liver triacylglyc-
eride (TAG) levels. ⇤: p <= 0.05; ⇤⇤: p <= 0.01; ⇤ ⇤ ⇤: p <= 0.001

Except of two non-responders with body weights of 33.3g and 37.5g
that were excluded from further analyses, the HFD-fed mice had a
significantly increased body weight at the end of the study period
and elevated plasma insulin levels compared to the Chow controls
(Figures 27a and 27b, Table A12), which is in line with the obese
phenotype previously reported for the C57BL/6J mouse model [92,
116, 207, 214]. The observed elevated plasma cholesterol and triglyc-
eride levels in the obese mice (Figures 27c and 27d, Table A12) had
also been reported before [116, 126]. The analysis of the liver triglyc-
eride concentrations revealed a hepatic steatosis in the HFD-fed mice
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(Figure 27e, Table A12) confirming already published data for DIO
C57BL/6J mice [119, 207]. Taken together, the two diet groups showed
all metabolic perturbations expected after HFD exposure and are thus
a good model to study obesity-induced changes in the metabolome
and transcriptome.

The initial analysis of the gene expression profile and the metabo-
lite profile of the chow- and HFD-fed mice by PCAs revealed that the Diet was main

influencing factor
responsible for
observed variance in
the gene and
metabolite profiles

diet was in both cases the main influencing factor responsible for the
observed variance in the gene and metabolite abundance profiles (Fig-
ure 28). The first principle component explained 18.4% of the variance
observed in the gene expression profiles and 42.1% of the variation
encountered in the metabolite concentration profiles.
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Figure 28: PCA showing the main contributor to differences observed in (a)
gene expression and (b) metabolite concentration profiles.

Next, the other two factors – body weight measured at the end
of the study (BWE) and liver triacylglyceride levels (TAG) – were
also taken into account as possible influencers of the gene expres-
sion changes and metabolite levels. BWE and hepatic TAG correlated
(⇢=0.86) with each other and were induced by the administered diet.
Thus, a relative importance analysis was performed to assess the
main influencing factor for each gene and each metabolite in our
dataset. The analysis showed that the administered diet explained
indeed most of the variance observed in the expression of all genes
and metabolites in the dataset (Figure A3, Tables A13 and A14).

The differential gene expression analysis comparing the hepatic
gene expression profiles of HFD-fed mice to chow-fed controls iden-
tified 989 genes that were significantly deregulated in the livers of
obese mice (Figure 29a, Table A15). Of the differentially expressed
genes, 501 genes were up- and 488 genes were down-regulated. Among
the top 50 significantly differentially expressed genes in liver between
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Figure 29: Differential gene expression analysis comparing the liver gene
expression profiles of HFD-fed mice to chow-fed mice. (a) Vol-
cano plot of gene expression alterations. (b) Top 30 GO terms
enriched by differentially expressed genes. The BH adjusted p-
value is shown on the x-axis and the number of genes involved
in the respective biological process is indicated by the grayscale.

HFD and Chow were known HFD-regulated genes described in the
following.

Cyp2b9 (Cytochrome P450s (Cyp) 2B9) was one of the top up-
regulated genes. It belongs to the Cyp2b family members primarily
expressed in the liver and is part of the hepatic detoxication sys-
tem that might be influenced by diets containing unsaturated fatty
acids [70]. Tsc22d1 (Transforming growth factor-� 1 stimulated clone-
22 D1), which is suggested to be required for the basic high-density
lipoprotein (HDL) cholesterol maintenance in the livers of obese mice
[113], was also up-regulated upon HFD feeding in our dataset. Vanin-
1 (Vnn1) showed a higher expression pattern in the livers of our HFD
mice. Vnn1 is an oxidative stress sensor enriched in the liver regu-
lating several metabolic pathways including hepatic gluconeogenesis
[40]. Ces2a (Carboxylesterase 2A), for which Ruby et al. [197] showed
that it controls a hepatic lipid network, which is dysregulated in
human and mouse obesity, showed a significantly lower expressionMany genes altered

by HFD feeding
were involved in
lipid metabolism

upon HFD feeding. This is in line with the observed decreased hep-
atic activity of Ces2a in obese rodents and humans [197]. This ini-
tial analysis of the differentially regulated genes revealed that many
genes altered by HFD feeding were involved in lipid metabolism.

The performed GO term overrepresentation analysis of the differen-
tially expressed genes did support this observation as lipid metabolic
pathways were highly significantly regulated and overrepresented in
the variety of the metabolic processes deregulated by HFD feeding
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(Figure 29b, Table A16).

The differential metabolome analysis comparing the liver metabo-
lite profiles of HFD-fed mice to chow-fed mice identified 91 metabo-
lites to be altered upon HFD feeding. Two thirds of the metabolites
(63 of the 91) with changed concentrations by HFD feeding belonged
to one of the three measured phospholipid classes: Phosphatidyl-
cholines (PC), Sphingomyelins (SM), and Lyso-Phosphatidylcholines
(LPC) (Figure 30, Table A17).
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Figure 30: Volcano plot of deregulated liver metabolites upon HFD feeding.

Phospholipids play an important role in the communication be-
tween extra- and intracellular space since they are precursors of sig-
naling molecules [46, 52]. Free fatty acids, which are taken up from
the liver, are converted into these phospholipids, which are struc-
tural components of cell membranes of very low density lipoproteins
(VLDL), bile particles, and the surface layer of lipid droplets [198].

Despite higher hepatic triglyceride levels and increased plasma
triglyceride concentrations, no clear pattern of regulation was ob-
served for the deregulated phospholipid levels in the livers of HFD-
fed mice compared to the Chow control group. It had been shown
before that decreased PC levels in the liver lead to an accumulation
of intracellular TAG as a result of impaired VLDL secretion due to im-
pairment in PC biosynthesis [46]. On the other hand, in the state of
hepatosteatosis and steatohepatitis in mice, however, PC levels are de-
creased compared to histologically healthy livers [44]. In our dataset,
some PCs were decreased, which was in line with the increased liver
TAG levels and the observed hepatosteatosis. However, for other PCs
increased concentrations were found that could not be explained by
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the liver phenotype.

Twenty percent of the metabolites (18 of the 91) with altered concen-
trations by HFD feeding belonged to the class of acylcarnitines. Acyl-
carnitines are intermediates of amino acids and fatty acid oxidation
[80]. In our dataset, the short-chain acylcarnitines propionyl-carnitine
(C3) and valeryl-carnitine (C5) were up-regulated (Table A17). C3 is
an intermediate of branched-chain amino acid degradation, while the
metabolic origin of C5 is unknown [80]. Giesbertz et al. [80] reported
an increase in plasma and hepatic C3 and C5 levels in streptozotocin-
induced insulin-deficient mice, which serve as a model of type I dia-
betes. Plasma branched-chain acylcarnitine levels were further shown
to be associated with type 2 diabetes [171], but it is not known if this
also applies to their concentration levels in liver. While an increase
in long-chain acylcarnitine accumulation in the liver had been linked
to HFD-induced NAFLD [242], we did only observe an increase of
C12. The levels of most other long-chain acylcarnitines, namely C14:1,
C14:1-OH, C14:2, C14:2-OH, C16:1-OH, C16:2, C16:2-OH and C18:2
were significantly decreased in the livers of our HFD-fed mice com-
pared to the Chow controls (Table A17). The demonstrated increase
in long-chain acylcarnitines often goes together with an increased
expression of cyclooxygenase-2 (Ptgs2), a deregulation of long-chain
acyl coenzyme A dehydrogenase (Acadl), or sirtuin 3 (Sirt3) [23, 105,
106, 157, 199, 238]. We did not observe a deregulation of any of these
genes induced by HFD feeding in our cohort.

In a last step, a linear regression analysis was performed to test if
liver metabolites can be used to predict a metabolic phenotype un-
der different dietary conditions. We identified multiple metabolitesHFD increases the

correlation between
liver metabolites and

clinical blood
parameters

that correlated with either plasma cholesterol, insulin, or TAG levels
(Table A18). In the Chow dataset, only two metabolites could pre-
dict either the insulin or the cholesterol level. In contrast, in the HFD
dataset three metabolites were observed that correlated with TAG
and 17 metabolites that were associated with insulin levels. From the
insulin associated metabolites all PC, LPC and AA showed a negative
correlation, whereas the AC were all positively correlated. This indi-
cated that the metabolic alterations induced by HFD feeding increase
the correlation between liver metabolites and clinical blood parame-
ters.

Taken together, the described changes in hepatic metabolite concen-
trations indicate that the changes in the gene expression profiles of
HFD-fed mice compared to Chow controls were also manifested on
the metabolite level.
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3.3.1.2 Correlation analysis of metabolites revealed diet-dependent changes
in the hepatic metabolome

To investigate if and to what extent the interaction between liver
metabolites was altered by the respective diet, we calculated for each
metabolite pair the Pearson correlation coefficient for the datasets
Chow and HFD separately (Figure 31). By allowing a non-adjusted
p-value<0.05 for the correlation coefficient significance, we selected
2,488 metabolite pairs for Chow and 2,322 metabolite pairs for HFD.
Less than 50% of these metabolite pairs (n=923) correlated signifi-
cantly in both sets, indicating that the administered diet substantially
alters the hepatic metabolism. This finding is in line with previous
studies showing that an oversupply of nutrients alters the hepatic
metabolism not only in rodents but also in dogs and humans [134].

−1 0 1

Correlation

Chow
HFD

Acylcarnitines
Phosphatidylcholines
Lyso−Phosphatidylcholines
Sphingomyelins
Biogenic Amines
Amino Acids
Hexoses

Diet

Metabolite class

Figure 31: Pairwise correlation matrix. The upper triangle shows the corre-
lation coefficients obtained in the Chow set, the lower triangle
shows the coefficients for the HFD set.

When the metabolite classes of the 923 significantly correlating
metabolite pairs were analysed, we found that mainly the metabo-
lite class of amino acids was correlated in both diet sets, indicating
that amino acids interact independent of dietary conditions (Figure
A4).

For metabolite pairs assigned to other metabolite classes we ob-
served substantial changes within their correlations depending on
the diet (Figure A4). AC and PC metabolite combinations showed
the highest absolute number of changes, with a correlation pattern
switching from positive to negative (Figures A4 and 31). For the pairs
SM – BA, SM – AA, SM – H, AA – PC, and PC – H no metabolite pair
correlated in either diet set.

Taken together, the Pearson correlation coefficient analysis revealed
diet-dependent changes in the metabolite correlations with the excep-
tion of amino acids. This was also observed by others. Dyar et al.
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[65] previously reported diet-dependent changes in metabolite corre-
lations in a circadian manner over multiple tissues.

3.3.1.3 Chow and HFD networks obtained with CoNI reflected the metabolic
phenotype

To assess the genetic impact on the metabolite network formed under
each dietary condition, we integrated the gene expression profiles
and the metabolite concentration profiles with our newly developed
approach called Correlation-based Network Integration (CoNI) (Sec-
tion 2.7.1).

As first result, we obtained two independent networks for Chow
and HFD (Figure 32). The networks were constructed of 485 metabo-
lite pair – gene triplets for the Chow and 1,058 metabolite pair –
gene triplets for the HFD set. From the 181 measured metabolites
133 were connected within the Chow network and 164 metabolites
within the HDF network, respectively. Of these metabolites that could
be connected 127 were found in both networks. When the resulting
metabolite pairs were compared between the Chow and HFD dataset,
67 metabolite pairs were found to be connected in both diet net-
works. In the Chow network, 340 metabolite pairs were exclusively
connected, whereas twice as much metabolite pairs (n=655) were con-
nected specifically in the HFD network.

1

2
3

4

65

(a) Chow Network

1

2

3

4

5

6

(b) HFD Network

Figure 32: Networks obtained with CoNI for (a) Chow and (b) HFD. Nodes
represent metabolites and are coloured according to their metabo-
lite class. Edges are build from genes that influence the respective
metabolite pair. The numbered ellipses show the communities ob-
tained for the respective network.

When the node degree distributions of both networks were com-
pared, a trend towards higher degrees was observed for the HFD net-
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work. However, both graphs followed a power law distribution (Fig-
ure 33a). The comparison of the node degrees for the specific metabo-
lite classes showed that the HFD network had higher degrees for all
metabolite classes, which reflects the overall higher number of edges
in the HFD network (Figure 33b). In contrast to the elevated but sim-
ilar distribution of node degrees within the HFD network, the Chow
network shows a trend towards increased node degrees for Lyso- and
Phosphatidylcholines compared to the other metabolite classes.
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Figure 33: Node degree comparison. (a) Degree distribution and (b) node
degrees shown for each metabolite class of the Chow and HFD
networks.

A more detailed analysis of the inferred networks revealed that the Inferred networks
tended to be
organised in densely
connected
sub-networks

networks were organised in densely connected sub-networks, also
called communities. When the fast greedy modularity optimisation
algorithm [41] was applied to the networks, we identified six network
communities each in the Chow and HFD graph (Figure 32).

To identify communities with higher diet-dependent regulation the
overlap of metabolites within the communities between the Chow
and HFD graphs were compared (Figure 34).

For both diets the PCs split up in four communities, whereas the
other two communities were mainly characterised by either AC or by
AA (Figure A5). Whereas the latter communities (AC and AA) appear
to be stable, the PC communities seem to be more reorganised upon
the change to HFD feeding (Figure 34, Table A19). One possible ex-
planation could be that amino acid interactions are more conserved,
as they are involved in essential cell processes.

Next, we had a closer look at the genes connecting the metabo-
lite pairs. In contrast to the metabolites, the genes in both networks
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15 910

Chow HFD

(a) 2 – 2

95 13

HFDChow

(b) 5 – 4

15 1119

Chow HFD

(c) 3 – 6

324 12

HFD
Chow

(d) 6 – 3

Figure 34: Node comparison between community (a) 2 of the Chow network
and community 2 of the HFD network. According node compar-
isons of community (b) 5 of the Chow and 4 of the HFD, (c) 3 of
the Chow and 6 of the HFD, (d) and 6 of the Chow and 3 of the
HFD networks.

showed greater heterogeneity. Only five genes were present in the
edges of both the Chow and the HFD network (Gm4553, Hnrnpm,
Tap1, Xpo7, Eya3). Of these genes present in both networks, only Tap1
was differentially expressed between HFD-fed and chow-fed mice.
That Tap1 is present in both networks and is differentially expressed
is striking since Tap1 was recently found to be a key peripheral con-
tributor to hepatic lipid deposition and the development of diet-ind-
uced NAFLD in mice [12]. Within the Chow network, 166 individual
genes were identified, of which 15 were differentially expressed be-
tween the two diet groups Chow and HFD (Figure A6). In contrast,
twice as many individual genes (n=319) were found in the HFD net-
work, of which 33 were differentially expressed in HFD compared to
Chow (Figure A7). This, together with the increase in network den-
sity, strongly indicates the massive change in metabolite regulation
that is caused by dietary stress and a developing hepatic steatosis.

When the number of genes that map to a single edge was counted,
we observed that most edges consisted of a single gene (85.75% in
Chow, 65.93% in HFD). The maximum number of genes per edge
was six genes in Chow and five genes in HFD (Figure 35a). The dis-
tribution of genes over the edges (Figure 35b) showed that less genes
control more metabolite pairs in the Chow network compared to the
HFD network. In contrast, the genes in the HFD network were less
distributed. The highest distribution in both networks was found for
Nop16 (NOP16 nucleolar protein), appearing in 113 of 407 edges in
Chow and Cobll1 (Cobl-like 1), appearing in 25 of 722 edges in HFD.

To further classify the genes found in both networks a functional
enrichment analysis using KEGG pathways and GO biological pro-
cesses was performed. For the Chow network we did not identifyGlycerolipid

metabolism and
NAFLD were

enriched for the
HFD network genes

informative categories for the individual genes. However, the indi-
vidual genes of the HFD network were enriched in the KEGG cat-
egories Glycerolipid metabolism and Non-alcoholic fatty liver dis-
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Figure 35: Gene distribution in Chow and HFD networks. (a) shows the
number of genes that build up an edge. (b) shows the number
of edges that could be found for one gene.

ease (NAFLD) (Tables A20 and A21). This finding confirmed that
our CoNI approach is reflecting the metabolic phenotype of the HFD
group since the mice showed elevated TAG levels in the liver, which
is a sign of fatty liver disease.

3.3.1.4 Local regulator genes impact metabolic sub-networks within the
Chow and HFD networks

The primary motivation for integrating the genetic data into the meta-
bolic network was to identify genes that control hepatic metabolite
levels under different dietary conditions. Thus, so-called local reg-
ulator genes (LRGs) were defined as genes that were significantly
enriched in a local sub-graph within the Chow or HFD network,
thereby controlling a densely connected metabolic sub-network (Sec-
tion 2.7.2).

This prioritisation of candidate genes helped to identify 20 LRGs
in the Chow and 59 LRGs in the HFD network, respectively. None of
the LRGs was identified in both networks showing that the network-
based approach reflected the diet-dependent changes in hepatic meta-
bolism. From these 79 identified LRGs, eight genes were differentially Network-based

approach reflected
the diet-dependent
changes in hepatic
metabolism

expressed between mice on chow and high-fat diet. In the Chow net-
work Ddx3x and in the HFD network Myc, Arhgap24, Smim13, Rapgef4,
Cd82, Inhbe, and Gk were identified as differentially expressed LRGs
(Figures A6 and A7, Tables 7, A22, and A23).

Among the differentially expressed LRGs were known regulators
of hepatic lipid metabolism and genes that had been shown to be reg-
ulated by HFD feeding before, whereas others had not been described
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in the context of obesity or liver metabolism, yet. The expression of
the LRG glycerol kinase (Gk) that had been proposed as regulator for
several lipids was higher in the HFD group compared to the Chow

Table 7: Characteristics and selection criteria for the genes further subjected
to validation experiments, identified in the Chow and HFD setting.

log2fc

si- hfd vs . adjusted

gene selection network rna chow p-value p-value

Arhgap24 LRG HFD no 0.992 1.23E-03 2.07E-02

Cd82 LRG HFD no 0.500 1.83E-03 2.69E-02

Gk LRG HFD yes 0.729 5.99E-04 1.36E-02

Inhbe LRG/SNP HFD yes 1.200 1.56E-03 2.43E-02

Myc LRG HFD no -1.309 3.66E-03 4.20E-02

Rapgef4 LRG HFD yes -1.227 1.35E-05 1.38E-03

Smim13 LRG HFD no -0.890 6.44E-04 1.40E-02

Ddx3x LRG Chow no -0.602 2.72E-04 8.23E-03

Cobll1 SNP HFD yes -0.334 6.58E-02 2.38E-01

Appl2 SNP HFD yes 0.632 2.91E-02 1.48E-01

Tap1 DE Chow/HFD no 1.043 1.50E-05 1.48E-03

control (Table 7). The increased expression of Gk under HFD ex-
posure could be interpreted as adaptive mechanism to handle theAmong the

differentially
expressed LRGs

were known
regulators of hepatic

lipid metabolism

increased hepatic lipid load. This hypothesis is supported by the find-
ing that overexpression of Gk favours recycling of free fatty acids lead-
ing to increased fat storage in rat hepatoma cells [91, 102, 152, 216].

Another gene that had already been shown to play a role in liver
metabolism, was the Myelocytomatosis oncogene (Myc) encoding c-
myc, which is a pleiotropic transcription factor [83, 125]. Myc is not
only involved in the regulation of general cellular processes, such as
cell growth, cell proliferation, apoptosis, and differentiation [83] but
also required for hepatocellular proliferation and liver tumourigene-
sis [185] as well as the regulation of hepatic glycolysis [192, 193, 235].
Under HFD exposure, Myc overexpression in transgenic mice nor-
malises glycemia, insulinemia, and the expression of genes involved
in hepatic metabolism [194]. This finding indicates that Myc plays
an important role in the regulation of liver metabolism under HFD
conditions, which is in line with our observed decrease in hepatic ex-
pression of Myc in the HFD-fed mice compared to the Chow controls
(Table 7).

The last differentially expressed LRG with known function in hep-
atic metabolism was Inhibin �E (Inhbe) which encodes an inhibin �

subunit and is together with Inhbc mainly expressed in the liver [54,
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249]. Inhbe was observed to be regulated by the nutritional status,
such as high fat diet, fasting, and re-feeding in the rodent liver [95,
96, 195]. High-fat diet feeding induced the expression of Inhbe in the
liver [95]. Data from human livers revealed that the hepatic activin E
complex, which consists of two INHBE subunits [163], was potentially
linked to insulin resistance, shown by a positive correlation between
hepatic Inhbe mRNA levels and insulin resistance [223]. Sugiyama
et al. [223] demonstrated that a siRNA-mediated knockdown of the
Inhbe gene decreased fat mass in db/db mice. Along this line of ev-
idence, hepatic expression of Inhbe was significantly up-regulated in
the HFD group compared to Chow (Table 7).

The other five differentially expressed LRGs encode proteins that
are involved in several cellular processes that occur in the healthy
state as well as in the pathological state, such as tissue differentiation,
cell proliferation, tumour cell metastasis and cell migration. How-
ever, no associations to diet-induced obesity or fatty liver disease are
known to date.

The LRG Ddx3x (DEAD/H (Asp-Glu-Ala-Asp/His) box polypep-
tide 3, X-linked), identified in the Chow network, is a member of
the DEAD-box RNA helicase family and participates in several gene
regulation events, including transcriptional regulation, RNA unwind-
ing, splicing, RNA nuclear export, ribosomal biogenesis, and mRNA
translation [245]. Expression of Ddx3x was reduced by HFD feeding
(Table 7) indicating a potential regulating role for hepatic processes.

Also showing a decrease in hepatic gene expression upon HFD ex-
posure was Rapgef4 (Rap guanine nucleotide exchange factor (GEF)
4) that encodes the protein Epac2 (Table 7). So far, three isoforms
have been identified that differ in their tissue expression pattern [222].
Whereas the brain-specific isoform Epac2A was linked to obesity, the
functions of the adrenal gland specific Epac2B and the liver specific
Epac2C have not been fully unravelled, yet [108, 222]. The tissue
specific expression pattern and its regulation by HFD make Epac2C
an interesting new target for obesity related deregulation of liver
metabolism.

The last LRG with decreased hepatic expression in HFD was Smim13
(Small integral membrane protein 13, Table 7), whose function is not
resolved, yet.

A LRG showing a HFD-induced increase in expression was CD82

antigen (Cd82, Table 7), which is one of the most characterised mem-
bers of tetraspanins. This family of proteins with four transmembrane
domains is widely expressed and plays a physiological role in cell ad-
hesion, motility, activation, and proliferation [180] but has so far not
been discussed in the context of obesity related fatty liver metabolism.

Another LRG with increased expression in the HFD group was
Arhgap24 (Rho GTPase activating protein 24, Table 7) that is involved
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in cell cycle, invasion, apoptosis and other cell processes [262]. It has
implications for cancer and is a promising target in proteinuric kidney
disease [170, 262] but has not been described a regulator of hepatic
metabolism so far.

Additional to the analysis of the differentially expressed genes, the
Type 2 Diabetes Knowledge Portal [112] was queried to determine
LRGs that contain Single Nucleotide Polymorphisms (SNPs) associ-
ated with obesity and related disease markers in human. For our
set of 79 LRGs in total, we could identify SNPs for three LRGs of
the Chow set (Table A22) and for 17 LRGs of the HFD set (Table
A23). Among the LRGs associated most with the human SNPs of
interest were Cobl-like 1 (Cobll1), Adaptor protein, phosphotyrosine
interaction, PH domain and leucine zipper containing 2 (Appl2), and
the differentially expressed LRG Inhbe, which was described above.
Cobll1 is known to bind actin monomers and cadherin but aside from
that its function is not fully resolved, yet. So far, Cobll1 had not been
described in the context of high-fat diet feeding, obesity and/or di-
abetes. In contrast, Appl2 had been shown to be involved in insulin
signaling, endosomal trafficking, adiponectin signaling and other sig-
naling pathways [147]. Ryu [200] demonstrated that a liver-specific
knockout of Appl2 improved insulin sensitivity, increased adiponectin
signaling, and induced anti-inflammatory effects in HFD-fed mice,
implicating the involvement of Appl2 in hepatic metabolism.

In a final step, we analysed the metabolites that were directly reg-
ulated by the LRGs within the isolated sub-networks (Figure 36). For
all selected genes, the regulated metabolites showed substantial differ-
ences between Chow and HFD (Table A24) indicating that these genes
were indeed influencing the corresponding metabolic sub-network in
the respective phenotype setting. The number of metabolites regu-
lated by the selected LRGs and therefore present in the respective
isolated sub-networks ranged from six metabolites (Ddx3x, Smim13
sub-networks) to 14 metabolites (Cobll1 sub-network). According to
the detected abundance and diet-dependent regulation of measured
metabolites, most genes within the sub-networks were regulating PC
(Gk and Cobll1 sub-networks). However, also metabolites of the classes
SM (Ddx3x, Arhgap24, Cd82, Appl2) or AC (Myc) were found in the re-
spective sub-networks. Interestingly, the sub-networks of the LRGs
Rapgef4 and Smim13 mainly contained AA, whereas Inhbe only regu-
lated AC.

Taken together, several local regulators selected with our network-
based approach were genes associated with obesity, type 2 diabetes,
HFD feeding, liver metabolism, and cellular processes. This indicated
that our approach enabled us to detect genes playing a superordi-
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Figure 36: LRGs selected for further investigation for the Chow/HFD set-
ting.

nate role in the regulation of metabolite levels in the context of HFD-
induced hepatic steatosis compared to a solely transcriptomics-based
approach. Especially the identification of Rapgef4, Inhbe, and Cobll1 as
important regulators demonstrates that the here presented method is
able to identify promising new gene candidates, here in the context
of dietary induced liver steatosis.

Initially, we aimed to identify genes that specifically regulate a
metabolic pathway. Here, it is important to note that our metabolic
data was restricted to 181 metabolites detectable by the used kit,
thus, our reconstructed networks are only capable of representing
a large abstraction of the underling metabolic network. In our case,
no direct gene-metabolite interactions as annotated in KEGG were
retrieved with our method. Therefore, we rather expected to iden-
tify genes that do not directly control metabolite concentrations, such
as enzymes, but more upstream genes with a controlling effect on
metabolic pathways. Additionally, only one of the genes selected for
validation was among the 100 most significantly regulated genes be-
tween Chow and HFD. Thus, the genes identified here would likely
have been remained undiscovered by only analysing the transcrip-
tome dataset. The here presented CoNI approach helps to identify
otherwise hidden genes that directly influence specific metabolic sub-
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networks of the phenotypic setting of interest. Thus, new hypotheses
on the molecular underpinnings can be proposed on a more func-
tional level as the metabolite network is included as a second layer to
the transcriptome dataset.

3.3.1.5 Validation of LRGs by siRNA-mediated knockdown showed influ-
ence of selected genes on metabolic networks

Our CoNI approach enabled us to identify eight LRGs differentially
expressed in livers of chow- and HFD-fed mice. With the additionally
selected two SNP-associated LRGs, and Tap1, which was selected due
to its presence in both networks and for being differentially expressed
at the same time, a total of eleven genes were selected for further in-
vestigation (Figure 36, Tables 7 and A24).

These genes were then prioritised for the in vitro validation ap-
proach resulting in a set of five genes, for which the siRNA-mediated
knockdown (KD) experiments in HepG2 cells were performed and
metabolite levels were measured using the AbsoluteIDQTM p180 kit.
All siRNAs successfully knocked down the target genes compared to
a non target siRNA (Figure 37).
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Figure 37: mRNA levels of target genes after siRNA-mediated knockdown
in HepG2 cells. Fold changes are shown relative to control sam-
ples.

Since we had used pairwise metabolite correlation as a first step
to build our CoNI approach for the in vivo datasets, we now looked
at the concentration correlation pattern of the metabolites connecting
the edges in the sub-graphs of the respective LRG (edges marked in
black in Figure 36). In the in vitro validation system, the concentra-
tion levels of several metabolites stayed below the limit of detection
(LOD). These metabolites included 38 of the 40 measured acylcar-
nitines, three of the 21 amino acids, 15 of the 21 biogenic amines, 22

of the 90 glycerophospholipids, and three of the 15 sphingolipids. Be-
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cause Inhbe is only associated with acylcarnitines we had to exclude
the gene from this analysis.
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Figure 38: Correlation coefficients of metabolite pairs present in the (a)
Cobll1, (b) Appl2, and (c) Gk sub-networks for control and knock-
down samples. Coefficients are only shown for metabolite pairs
that build an edge that contains Cobll1, Appl2 or Gk in the HFD
network, respectively.

The pairwise metabolite correlations detected for Cobll1 and Appl2 Pairwise metabolite
correlation differs
between gene KD
and control samples

in vivo were always stronger when the respective gene was regulated
by diet-induced obesity compared to the non-target siRNA control
setting (Figure 38a and 38b). A similar finding was made for Gk (Fig-
ure 38c; 8 out of 11 pairs) and for Rapgef4 (Figure 39; 9 out of 13 pairs).
However, this observation was only a trend, as the difference between
the correlation coefficients for the pairs observed in the control sam-
ples and in the knockdown samples was not statistically significant
(Table A25). Nevertheless, the fact that the correlation coefficients dif-
fered between KD and control cells still indicated, that the respective
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gene influenced the concentration pattern of the respective metabolite
pair.

−1.0

−0.5

0.0

0.5

1.0

Ph
e_
H1

Ph
e_
PC
.aa
.C
38
.1

Ph
e_
lys
oP
C.
a.C
16
.0

Ph
e_
t4.
OH
.P
ro

Pr
o_
PC
.aa
.C
38
.1

Pr
o_
lys
oP
C.
a.C
16
.0

Pr
o_
t4.
OH
.P
ro

Trp
_P
C.
aa
.C
38
.1

Trp
_ly
so
PC
.a.
C1
6.0

Va
l_l
ys
oP
C.
a.C
16
.0

lys
oP
C.
a.C
16
.0_
PC
.aa
.C
38
.1

t4.
OH
.P
ro_
PC
.aa
.C
38
.1

t4.
OH
.P
ro_
lys
oP
C.
a.C
16
.0

NT-siRNA siRNA

C
or
re
la
tio
n

Figure 39: Correlation coefficients of metabolite pairs present in the Rapgef4
sub-network for control and knockdown samples. Coefficients are
only shown for metabolite pairs that build an edge that contains
Rapgef4 in the HFD network.

Next, the comparison of metabolite concentration levels between
each knockdown sample set and control samples revealed between
two and 58 altered metabolite concentrations for Cobll1 (Figure 40a),
Gk (Figure 40b), Rapgef4 (Figure 41), and Inhbe (Figure 42). This points
to the predicted regulatory effect of the respective gene on the metabolic
network.
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Figure 40: Metabolites significantly altered by siRNA-mediated knockdown
compared to untreated HEPG2 cells for (a) Cobll1 and (b) Gk.
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Figure 41: Metabolites significantly altered by siRNA-mediated knockdown
compared to untreated HEPG2 cells for Rapgef4.
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Figure 42: Metabolites significantly altered by siRNA-mediated knockdown
compared to untreated HEPG2 cells for Inhbe.

Taken together, the analyses showed that the metabolite interac-
tions / networks indeed change upon siRNA-mediated knockdown
of at least four of the five candidate genes indicating that these genes
significantly impact cellular metabolism.



92 results and discussion

3.3.1.6 Validation of method in human samples

To additionally assess the translational relevance of our developed
method, hepatic mRNA expression profiles of the selected LRGs were
correlated with clinical parameters, such as hepatic triglyceride con-
tent and BMI, in liver tissue biopsies of 170 human volunteers. The
subjects covered a wide range of liver fat content (Table 2). Further-
more, in a subgroup of 77 subjects with available fasting blood sam-
ples, relationships between metabolic characteristics and the HOMA-
IR, which is an indicator for insulin resistance, were analysed (Table
3).

For five of the eleven selected genes, significant associations be-
tween gene expression and metabolic traits could be observed (Table
A26). GK, TAP1, and MYC were associated with BMI (Figures 43a,
43b, and 43c) but not with liver fat content (Figures 43d, 43e, and
43f).
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Figure 43: Pearson correlation analysis of human hepatic gene expression
compared to BMI for (a) GK, (b) TAP1, and (c) MYC and com-
pared to hepatic triglyceride content (HTC) for (d) GK, (e) TAP1,
and (f) MYC.

SMIM13 was associated with liver fat content, while it did not show
an association with BMI (Figures 44a and 44b).
Aside from BMI, INHBE was also associated with liver fat contentINHBE was

associated with BMI,
liver fat content and
whole-body insulin

resistance

and whole-body insulin resistance (Figures 45a, 45b, and 45c). The
correlation of hepatic INHBE mRNA levels and insulin resistance was
also recently shown by Sugiyama et al. [223].
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Figure 44: Pearson correlation analysis of human hepatic gene expression of
SMIM13 compared to (a) hepatic triglyceride content (HTC) and
to (b) BMI.
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Figure 45: Pearson correlation analysis of human hepatic gene expression of
INHBE compared to (a) BMI, to (b) hepatic triglyceride content
(HTC), and to (c) the HOMA-IR.

Both validation approaches, siRNA-mediated knockdown in HepG2

cells and transcriptional profiling in human liver biopsies, could con-
firm that seven of the eleven selected genes show a transcriptional
association with clinical obesity or show regulatory effects on cellu-
lar metabolite levels. Among these seven confirmed genes, four had
already been linked to hepatic lipid metabolism, whereas three have
not been described in the context of high-fat diet feeding, obesity
and/or diabetes before. The method identified among others Inhbe
and Cobll1 as important regulators, which could be confirmed. Es-
pecially Inhbe was significantly correlated with body weight, liver
triglyceride levels and whole-body insulin resistance and showed the
strongest impact on cellular metabolism. This underlines that CoNI
successfully integrates transcriptomics and metabolomics data and
enables us to identify regulatory gene candidates in the context of
hepatic steatosis induced by HFD.
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3.3.2 Application of CoNI to weight loss intervention datasets

Our biological interest focused on the underlying mechanisms for the
observed physiological differences between the two weight loss inter-
vention groups, exendin-4 treatment versus calorie restriction. While
both mice cohorts lost the same amount of body weight, only exendin-
4 treatment was sufficient to restore hypothalamic leptin sensitivity.
On the other hand, this pharmacological-induced weight loss caused
a massive accumulation of triacylglycerides in livers of mice after ten
days of treatment. This acute hepatic steatosis turned out to be a tran-
sient phenomenon since the livers of mice treated with exendin-4 for
30 days were clear of triglycerides when compared to the HFD con-
trol group (data not shown). Neither restoration of leptin sensitivity
nor acceleration of hepatic steatosis were observed when body weight
was lost by caloric restriction.

To investigate the molecular underpinnings of the hepatic triglyc-
eride accumulation in exendin-4 treated mice and to identify novel
regulator genes of hepatic metabolism during weight loss interven-
tions, we applied our new CoNI method to the metabolome and tran-
scriptome datasets of the two weight loss groups CR and Ex4 as well
as to their diet-switch control group H>C. As the focus of the study
is on the two weight loss intervention groups, additional figures and
tables for the comparisons of Ex4 or CR, respectively, with the diet-
switch control can be found in the appendix.

3.3.2.1 Genetic and metabolic profiling in livers of mice under weight loss
intervention pointed towards a differential regulation pattern in
liver metabolism

Prior to the analysis of the liver-specific genetic and metabolic pro-
files of mice undergoing weight loss interventions, we assessed basic
phenotypic parameters and revealed that both the calorie restricted
as well as the exendin-4 treated mice had a significantly lower body
weight compared to the diet-switch control group (Table A27 and Fig-
ure 46).

The reduction in body weight was reflected by reduced plasma
insulin levels and lower circulating TAG levels compared to the diet-
switched mice (Figures 46a, 46c, and 46d), indicating that the mice
in the CR and Ex4 groups had overcome the obesity-induced hyper-
insulemia. Plasma cholesterol levels were similar for all three groups
(Figure 46b). Hepatic steatosis that was assessed by Oil-Red-O-Staining
and extraction of hepatic TAG was significantly elevated in mice
acutely treated with exendin-4 (Figure 46e).
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Figure 46: Phenotype monitoring of Ex4 treated and calorie restricted mice
and mice of the diet-switch control group H>C: (a) Body weight
(BW) measured at the end of the study, (b) plasma cholesterol
levels, (c) plasma insulin levels, (d) plasma and (e) liver triacyl-
glyceride (TAG) levels. *: p <= 0.05; **: p <= 0.01; ***: p <= 0.001

The initial analysis of the gene expression profile and the metabo-
lite profile of the CR, Ex4 and H>C mice by PCAs revealed that the
intervention was in all three cases the main influencing factor respon-
sible for the observed variance in the gene and metabolite abundance
profiles (Figure 47). The first principle component explained 27.6% of
the variance observed in the gene expression profiles and 36.2% of
the variation encountered in the metabolite concentration profiles.
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Figure 47: PCA showing the main contributor to differences observed in (a)
gene expression and (b) metabolite concentration profiles of the
weight loss cohorts.

Next, the differential gene expression analysis comparing the hep-
atic gene expression profiles of exendin-4 treated mice to CR mice
identified 494 genes that were significantly deregulated in the livers
of exendin-4 treated mice (Figure 48a and Table A28). Of the differ-
entially expressed genes, 271 genes were up- and 223 genes were
down-regulated.
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Among the top 50 significantly differentially expressed genes in
liver between Ex4 and CR were two genes involved in hepatic lipid
metabolism: Hepatic transcript levels of the lipase and esterase Ces3b
(Carb-oxyl-esterase 3B) were down-regulated in the livers of exendin-
4 treated mice compared to calorie restricted mice. Since a high ex-
pression of Ces3b had been hypothesised to contribute to a reduced
hepatic lipid content [136], the lower Ces3b expression in exendin-4
treated mice is in line with the increased hepatic lipid content in this
group compared to CR mice.
The second differentially expressed gene involved in hepatic lipid
metabolism was Cyp2c54 (Cytochrome P450 2C54) that is known to
play a role in liver detoxification processes [146, 243]. The down-
regulation of Cyp2c54 in the livers of exendin-4 treated mice could
be a likely consequence of the elevated TAG levels.
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(c) CR vs. H>C

Figure 48: Volcano plots of deregulated liver genes comparing (a) Ex4 treat-
ment to CR, (b) Ex4 treatment to H>C, and (c) CR to H>C. Genes
that are deregulated in the same direction in Ex4 compared to CR
as well as to H>C are highlighted in red.
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When we compared the gene expression profiles of each weight
loss intervention group to the diet-switch control group, we found Weight loss itself,

independent of the
treatment, had a
great impact on
hepatic transcript
levels

an elevated number of differentially expressed genes thus indicating
that the weight loss itself, independent of the treatment, had a great
impact on hepatic transcript levels. We observed 3,821 differentially
expressed genes between Ex4 and H>C (Figure 48b and Table A29),
and 1,692 genes altering between CR and H>C (Figure 48c and Table
A30). From these genes, 2,159 and 952 genes were up- and 1,662 and
740 genes were down-regulated for Ex4 vs. H>C and CR vs. H>C, re-
spectively. Interestingly, Ces3b was also down-regulated in the livers
of exendin-4 treated mice compared to the diet-switch mice, thus con-
firming an exendin-4 specific effect. This effect could also be observed
by the high number of genes that are deregulated in the same direc-
tion when comparing Ex4 to either CR or H>C (Figures 48a and 48b).

The performed GO term overrepresentation analysis of the 50 genes
with the lowest adjusted p-values for each comparison showed that
22 of the genes differing between CR and H>C did belong to lipid
metabolic processes (FDR: 3.38e-14). Genes differing for Ex4 vs. H>C 10 days of CR

changed the
transcript profile
regulating hepatic
lipid metabolism

as well as for Ex4 vs. CR were mainly involved in chromatin organ-
isation (FDR: 0.006 and 0.0011, respectively). This indicates, that ten
days of CR already changed the transcript profile regulating hepatic
lipid metabolism, despite no obvious changes in liver TAG levels com-
pared to the diet-switch control. In contrast, lipid metabolism in liv-
ers of exendin-4 treated mice was not changed but rather further im-
paired compared to the still obese diet-switch control, which was also
mirrored on the metabolite level by elevated triacylglyceride levels in
livers of exendin-4 treated mice.

Following the differential gene expression analysis, differential meta-
bolome analysis was performed. In livers of exendin-4 treated mice it
identified 70 metabolites to be altered compared to CR and 92 dif-
fered when compared to H>C. Two thirds of the metabolites (46

of the 70) that differed in their concentrations between Ex4 com-
pared to CR belonged to one of the three measured phospholipid
classes: Phosphatidylcholines (PC), Sphingomyelins (SM), and Lyso-
Phosphatidylcholines (LPC) (Figure 49a and Table A31).

A similar pattern of deregulated metabolite classes was seen for
the comparison of Ex4 to the diet-switch (Figure 49b and Table A32).
Surprisingly, the comparison of CR to the diet-switch control also re-
vealed that two thirds (44 of the 68) of the metabolites belong to the
three measured phospholipid classes (Figure 49c and Table A33). It
might, however, just reflect the narrow portfolio of metabolites mea-
sured in our targeted approach.
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Figure 49: Volcano plots of deregulated liver metabolites comparing (a) Ex4

treatment to CR, (b) Ex4 treatment to H>C, and (c) CR to H>C.

We observed a clear regulation pattern for the deregulated phos-A clear regulation
pattern for the

deregulated
phospholipid levels

could be observed

pholipid levels in the livers of exendin-4 treated mice compared to
CR mice. Metabolites that belonged to the PC and SM classes were
up-regulated upon exendin-4 treatment compared to CR, while down-
regulated metabolites mainly belonged to the LPC, AC, and AA classes.
As discussed in Section 3.3.1.1, in the state of hepatosteatosis and
steatohepatitis in mice, however, PC levels are decreased compared
to histologically healthy livers. This could indicate that despite hav-
ing high triglyceride levels in the liver the exendin-4 treated mice do
not suffer from hepatosteatosis. This conclusion would be in line with
the transient manner of the triglyceride level elevation and supports
the hypothesis of an acute buffering capacity of the liver during acute,
pharmacological-induced weight loss.

Within the metabolite class of biogenic amines, we found a quite
prominent down-regulation of the naturally occurring polyamine sper-
mine upon exendin-4 treatment compared to CR. Spermine is, to-
gether with its precursor spermidine, an essential regulator of several
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cellular processes, such as DNA stability, cellular growth, differenti-
ation, and apoptosis and might also be involved in autophagy [4].
Recent reports have not only shown an inter-relationship between
autophagy and the process of lipid breakdown but also that the in-
hibition of macroautophagy, which is one of the three forms of au-
tophagy, leads to an increase in cellular triglyceride content [7, 51,
208]. Therefore, it would be interesting to investigate whether the
transient increase of liver triglycerides could be explained by an alter-
ation in autophagal processes.

Overall, genetic and metabolic profiling in livers of mice that under-
went weight loss interventions revealed massive changes in transcript
and metabolite levels compared to their diet-switch control that can
be attributed mostly to the loss in body weight. However, the defined
changes that were observed between the two treatment groups point
towards a differential regulation pattern in liver metabolism, which
could play an important role for whole body metabolism and for
adaptive mechanisms after the period of acute weight loss.

3.3.2.2 Correlation pattern of metabolites revealed weight loss intervention-
dependent changes in the hepatic metabolism

In order to identify differences in the genetic control of hepatic meta-
bolic networks during weight loss, the newly developed CoNI ap-
proach was applied to the Ex4 and CR dataset. We mainly concen-
trated on the detection of LRGs, those genes that were significantly
enriched in a local sub-graph within the CR or Ex4 network.

To investigate whether the method of weight loss intervention al-
tered the interaction between liver metabolites, we calculated for each
metabolite pair the Pearson correlation coefficient under Ex4 and
CR treatment, respectively. By allowing a non-adjusted p-value<0.05

for the correlation coefficient significance, 1,536 and 2,643 metabolite
pairs were selected for Ex4 and CR, respectively. 341 metabolite pairs
correlated significantly in both sets, indicating that the administered
interventions substantially altered the hepatic metabolism.

3.3.2.3 Networks obtained with CoNI reflected the differences in the metabolic
phenotype of Ex4 treated mice compared to calorie restriction

To assess the genetic impact on the hepatic metabolite network formed
under each weight loss intervention, we integrated the gene expres-
sion profiles and the metabolite concentration profiles applying our
developed approach CoNI (Section 2.7.1).

In the first step, we obtained two independent networks for CR and
Ex4 (Figure 50). The networks were constructed of 389 metabolite –
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(a) CR Network (b) Ex4 Network

Figure 50: Networks obtained with CoNI for (a) CR and (b) Ex4. Nodes rep-
resent metabolites and are coloured according to their metabolite
class. Edges are build from genes that influence the respective
metabolite pair.

gene triplets for the CR and 565 metabolite – gene triplets for the Ex4

set, respectively. From the 181 measured metabolites 134 were con-
nected in the CR and 149 metabolites in Ex4 network, respectively. Of
the metabolites that could be connected, 114 were found in both net-
works. When the resulting metabolite pairs were compared between
the CR and Ex4 dataset, 13 metabolite pairs were found to be con-
nected in both diet networks. In the CR network, 319 metabolite pairs
were exclusively connected, whereas 409 metabolite pairs were con-
nected specifically in the Ex4 network. It is worth to note here that
the number of metabolite pairs connected in both weight loss inter-
vention networks was more than five times lower than in the Chow
and HFD datasets, where 67 metabolite pairs were connected in both
networks (Section 3.3.1.3).

When the node degree distributions of both networks were com-
pared, similar degrees for both networks were observed. Both graphs
followed a power law distribution (Figure 51a). The comparison of
the node degrees for the specific metabolite classes showed that the
Ex4 network had higher degrees for the acylcarnitines (Figure 51b).
In contrast, the biogenic amines and amino acids showed higher de-
grees in the CR network. The three phospholipid classes showed sim-
ilar node degrees.

A more detailed analysis of the inferred networks revealed that the
networks were organised in communities but in contrast to the Chow
and HFD networks, they did not show a clear separation between
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Figure 51: Node degree comparison. (a) Degree distribution and (b) node
degrees shown for each metabolite class of the CR and Ex4 net-
works.

the metabolite classes. This might be a technical consequence as the
graphs consisted of less metabolite – gene triplets than the Chow and
HFD graphs.

Next, we had a closer look at the genes connecting the metabo-
lite pairs. In contrast to the metabolites, the genes in both networks
showed greater heterogeneity. Only nine genes were present in edges
of both the CR and the Ex4 network (Eno1, Hsd17b12, Acsf2, Mrps12,
Rhoc, Abhd2, Grhpr, Acat1, Ifi47). Of these genes present in both net-
works, only Rhoc was differentially expressed between Ex4 and CR.
Within the CR network 175 individual genes were identified, of which
15 were differentially expressed between the two weight loss inter-
vention groups Ex4 and CR (Figure A8). In contrast, almost twice as
many individual genes (n=286) were found in the Ex4 network, of
which five were differentially expressed in Ex4 compared to CR (Fig-
ure A9).

When the number of genes that map to a single edge was counted,
we observed that most edges consisted of a single gene (69.23% in
CR, 50.53% in Ex4). The maximum number of genes per edge was
five genes in both networks (Figure 52a). The distribution of genes
over the edges (Figure 52b) showed that the distribution is similar for
both graphs, where less genes control more of the network.

To further classify the genes identified in each of the two networks,
a functional enrichment analysis using Reactome pathways was per-
formed. For the CR network we did not identify informative cate- Metabolism of lipids

was enriched for the
Ex4 network genes

gories for the individual genes. However, the individual genes of
the Ex4 network were identified to be enriched in the Reactome cate-
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Figure 52: Gene distribution in CR and Ex4 networks. (a) shows the number
of genes that build up an edge. (b) shows the number of edges
that could be found for one gene.

gories "Metabolism of lipids" and "Phospholipid metabolism" (Tables
A34 and A35). This finding confirmed that our CoNI approach is
reflecting the metabolic phenotype of the Ex4 group since the mice
showed elevated TAG levels in the liver.

3.3.2.4 Local regulator genes impact metabolic sub-networks within the
Ex4 and CR networks

Here, the primary motivation for integrating the genetic data into the
metabolic network was to identify genes that control hepatic metabo-
lite levels during the weight loss interventions.

The CoNI approach helped to identify 17 LRGs in the CR and 24

LRGs in the Ex4 network, respectively. None of the LRGs was iden-The network-based
approach reflected

the intervention-
dependent changes

in hepatic
metabolism

tified in both networks showing that the network-based approach
reflected the intervention-dependent changes in hepatic metabolism.
From these 41 identified LRGs, two genes were differentially expressed
between Ex4 and CR mice. In the CR network Magix and in the
Ex4 network Cyba were identified as differentially expressed LRGs,
with Magix being down-regulated and Cyba being up-regulated upon
exendin-4 treatment compared to CR (Figures A8 and A9).

The function of Magix (MAGI family member, X-linked) has not
been annotated, yet, and the gene had not been described in the con-
text of fasting or obesity so far. Interestingly, the Mouse ENCODE
transcriptome project found that Magix is not expressed in the de-
veloping liver but highly expressed in the adult liver thus pointing
towards a potential role in liver metabolism [259]. Cyba (Cytochrome
b-245, alpha polypeptide) is a NADPH oxidase complex gene, which
is also referred to as p22phox [62]. Abreu et al. [2] suggested that the el-
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evated expression of p22phox during a hypercholesterolemic diet could
be involved in the activation of the NADPH oxidase enzyme complex,
which could favour the generation of reactive oxygen species (ROS),
thus further escalating the oxidative stress in the cell. Since it was
proposed that NADPH oxidases play a role in chronic liver diseases
[115, 162], the increased expression of Cyba in the livers of exendin-
4 treated mice along with their high concentration of triglycerides
could indicate an induction of oxidative stress. However, on the long
run GLP-1 analogs, such as exendin-4, have been shown to reduce ox-
idative stress by inhibiting NADPH oxidases at least in the kidneys
[100].

Additional to the analysis of the differentially expressed genes, the
Type 2 Diabetes Knowledge Portal [112] was queried to determine
LRGs of the CR and the Ex4 set that contain SNPs associated with
obesity and related disease markers in humans. For the complete set
of 41 LRGs, we could identify obesity-associated SNPs for three LRGs
of the CR set (Table A36) and for seven LRGs of the Ex4 set (Table
A37). The LRG associated most with the human SNPs of interest was
nuclear receptor binding factor 2 (Nrbf2), strongly associated with sev-
eral obesity and type 2 diabetes related markers, such as BMI, HDL
cholesterol and Triglycerides. Nrbf2 is involved in the regulation of
autophagy, but the exact function of the gene remains elusive [150,
151, 264].

The identification of an autophagy-involved gene in this context is
quite interesting, as a possible alteration in autophagic behaviour had
already been suggested by the down-regulation of the autophagy-
involved metabolite Spermine upon exendin-4 treatment compared
to calorie restriction. Autophagy is the process of degrading cytosolic
materials. In the liver, autophagy contributes to essential functions,
such as glycogenolysis, gluconeogenesis, and �-oxidation and func-
tions as a defence mechanism against NAFLD [233]. It was reported
that lipotoxic effects, such as insulin resistance and oxidative stress,
which are induced by elevated triglyceride and free fatty acid levels
in NAFLD, suppress autophagic processes [233], which would be in
line with our findings in livers of exendin-4 treated mice.

In a final step, we analysed the metabolites that were directly reg-
ulated by the LRGs within the isolated sub-networks. For all selected
genes, the regulated metabolites showed substantial differences be-
tween CR and Ex4 (Table A38) indicating that these genes were in-
deed influencing the corresponding metabolic sub-network in the re-
spective phenotype setting.
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Overall, the identification of several genes associated with obesity,
fasting and autophagy in the livers of the two weight loss interven-
tion groups indicated that the developed method is a valuable tool
to select genes of interest in the context of the observed metabolic
environment. However, in future experiments the exact function of
the identified LRGs in the context of acute hepatic steatosis during
exendin-4 treatment needs to be investigated.



4
S U M M A RY A N D C O N C L U S I O N

4.1 time-matched analysis of dna adduct formation and

early gene expression in methylazoxymethanol ac-
etate treated eker rats

The concept currently accepted in the field states that the quantifi-
cation of DNA adducts can only serve as a biomarker for internal
exposure but not as a marker for DNA damage relevant for cancer or
tumourigenesis [137, 177]. This concept is also supported by our data.

DNA adduct formation is considered to be crucial for carcinogen-
esis induced by genotoxic substances. But there are several factors,
such as mutagenesis in critical genes and cell proliferation, that are
additionally necessary for the translation of DNA adducts into cancer-
causing mutations. Predicting the effect of genotoxic carcinogens on
the organism should therefore be based on the detection of distinct
biomarkers capturing the multistage mechanism of carcinogenesis.

Exposure to low dose MAMAc for two weeks resulted in a time-
dependent accumulation of pro-mutagenic DNA adducts in the Eker
rat kidney cortex. This was not reflected by time-matched expression
changes of genes involved in cyto-protective mechanisms, such as
DNA repair, cell cycle arrest or apoptosis. Instead, genes involved
in tumour-related MAPK, FoxO, and TGF� pathways were induced.
Continuous MAMAc exposure for six months leads to a mild but sig-
nificant increase in pre-neoplastic and neoplastic lesions. This hints to
the DNA repair not being efficient enough to protect the cell against
the increasing numbers of DNA adducts and an elevated risk of these
DNA adducts to manifest into tumour-causing mutations.

We suggest that combining the quantification of DNA adducts with
time-matched gene expression analysis improves the predictive value
for carcinogenesis induced by a genotoxicant.

105
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4.2 effects of weight loss interventions on hypothala-
mic gene expression

Obese individuals show high levels of leptin correlating with increased
fat mass while being "leptin resistant", meaning that the anorectic
and metabolic effects of leptin are absent. Accordingly, therapy with
recombinant leptin is inefficient in decreasing body weight of diet-
induced obese mice and obese humans. Molecular underpinnings for
the insensitivity towards leptin action are not entirely understood, yet.
The aim of the present study was to investigate the superior restora-
tion of leptin sensitivity by pharmacologically mediated weight loss
compared to calorie restriction. Therefore, hypothalamic gene expres-
sion profiles of five diet groups were analysed – two weight stable
control groups, one diet-switch control group, and two weight loss
intervention groups.

First, we aimed to identify leptin-dependent changes of the trans-
latome by investigating mRNA bound to ribosomes in neurons acti-
vated by leptin treatment. Unfortunately, the employed antibody did
not bind the target protein reliably, leading to many intron-mapping
reads and a high unreliability in the obtained dataset. Therefore, in
the second approach the mRNA expression data of whole tissue hy-
pothalamus samples were analysed and several genes known to be
regulated by fasting were identified as differentially regulated in calorie-
restricted mice compared to exendin-4 treated mice.

We were also able to show that some of these fasting-induced genes
are expressed in AgRP and POMC neurons, which belong to the most
important neuronal subpopulations involved in the regulation of food
intake and energy expenditure, indicating that our analysis of the
whole hypothalamus gene expression pattern is a good starting point
to define genes of interest in the context of fasting.
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4.3 estimating genetic impact on metabolic networks

Metabolites as endpoints of molecular processes are an important
readout of cellular signaling and metabolic processes in a tissue of in-
terest at a defined time-point. However, the genetic control of metabolic
pathways, their dynamics, and dependence on different diets and dis-
ease states remains rather unknown. Here, we presented a newly de-
veloped statistical method for correlation-based network integration
(CoNI) of generic character that can be applied to multiple experi-
mental settings.

Here, we used the novel method to integrate metabolome and tran-
scriptome datasets to unravel previously hidden regulatory genes
that exert major changes to hepatic metabolite levels. We applied the
new method CoNI to two fascinating liver phenotypes. First, we inte-
grated liver metabolomics and transcriptomics of chow- and HFD-fed
mice, and identified several genes that could play an important role
in the development of liver steatosis in diet-induced obesity. Selected
candidate genes were validated by siRNA mediated knockdown in
vitro and by transcriptional profiling in human liver biopsies, show-
ing that these genes are indeed involved in the regulation of the con-
structed metabolic networks. Next, we applied the CoNI method to
liver datasets obtained from two different weight loss interventions
to identify genes that might be involved in the development of the
acute hepatic steatosis observed by exendin-4 treatment compared to
CR-induced weight loss. Two genes with so far unknown function
in the regulation of liver metabolism were identified along with one
gene involved in oxidative stress. These candidate genes await fur-
ther characterisation and validation but they could be potential new
targets for the treatment of acute hepatic steatosis.

Overall, the CoNI method allowed us to identify genes regulat-
ing metabolic networks in livers of obese mice or of mice undergo-
ing weight loss interventions that would not have been detected by
analysing solely the transcriptome dataset. The two validation ap-
proaches demonstrated that our fully data-driven versatile method
can be used as a flexible and solid tool for multiple omics data inte-
gration and interpretation.





5
O U T L O O K

5.1 time-matched analysis of dna adduct formation and

early gene expression in methylazoxymethanol ac-
etate treated eker rats

In further experiments, it would be interesting to additionally quan-
tify the mRNA levels of kidney cortices of Eker rats treated with
MAMAc chronically for three to six month and their controls. This
would show if an increased DNA adduct accumulation leads to an
activation of DNA damage repair genes. It would also be interesting
to test if a higher dose of MAMAc could induce stronger transcrip-
tional changes than the ones observed after the first day of MAMAc
treatment and if a higher dose could induce Ogg1 as observed by
others either on mRNA or on protein level.

5.2 effects of weight loss interventions on hypothala-
mic gene expression

Further analyses are needed to gain a deeper insight into the molec-
ular mechanisms of the observed fasting-induced genes that were
differentially expressed between the two weight loss groups. Under-
standing their role in hypothalamic leptin resistance and leptin re-
sensitisation will help to define them as potential targets for obesity
treatment. To overcome the limitations of the possibly hidden neuron-
specific effects of the weight loss interventions, single-cell sequencing
instead of whole tissue RNA-Sequencing could be performed in our
diet setting.

5.3 estimating genetic impact on metabolic networks

In a future analysis it would be very interesting to compare the CoNI
networks of Ex4-treated and HFD-fed mice to gain a better under-
standing of the weight loss induced increase in hepatic lipid storage.
With CoNI we could elucidate, which genes and metabolites drive
the differences in lipid metabolism in these two settings. By identify-
ing the gene-metabolite interactions driving the chronic versus acute
lipid storage, we could unravel novel genes involved in the aetiology
and reversal of hepatic steatosis. Our work will thus help to delin-
eate the molecular underpinnings of hepatic steatosis and advance
our search for novel, druggable targets.
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A newly developed method such as CoNI can always be improved.
Currently, zero- and first-order correlations are used to infer the net-
works of interest, however recently researchers in the field suggested
to additionally use higher order correlations in order to reduce the
number of false positive inferred network edges. Another suggestion
for improvement is to use a more sophisticated method to infer the
local regulator genes. Therefore, one could use nearest neighbour al-
gorithms instead of selecting the next two adjacent nodes to define
the sub-graph for binomial testing.

The biggest asset of CoNI is that the method is not restricted to be
used with transcriptome and metabolome datasets. It can be applied
to any types of data that interact, such as proteome and metabolome
data, or lipidome and proteome or transcriptome datasets, to name
only a few. In contrast to many other approaches our method is fully
unsupervised and independent from additional prior knowledge. Its
straightforward but flexible setting allows for multiple applications,
yet the produced networks may convey complex interactions but are
easy to interpret. Overall, the method holds great potential and could
be applied widely to solve research questions in the life science field
and beyond.
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Table A1: Differentially expressed genes in Eker control rats altered over the
sampled time period.

day 3 vs day 7 vs day 14 vs average adjusted gene

array id day 1 day 3 day 7 expression p-value p-value symbol

1387874_at -1.58254441 0.15477784 -0.089046160 3.962288 9.910849e-09 0.0001578104 Dbp

1386981_at 0.55123695 0.23285023 -0.196684360 6.633349 3.690957e-08 0.0002938556 Slc16a1

1390430_at -1.15480677 0.14347506 0.279337088 4.481322 1.736862e-07 0.0009218687 Nr1d2

1368511_at -0.82964762 0.06112083 -0.096923987 3.487948 5.709765e-07 0.0017658306 Bhlhe41

1370510_a_at 0.84165994 0.05151621 -0.221614758 4.062811 6.323307e-07 0.0017658306 Arntl

1370816_at -1.70367781 0.40576752 0.302570740 3.800409 6.653886e-07 0.0017658306 Nr1d1

1377407_at 0.12161954 -0.48986204 -0.016501745 4.175413 1.025823e-05 0.0217476716 Acsm5

1370541_at -1.16554705 0.15757585 0.316446702 4.168719 1.109277e-05 0.0217476716 Nr1d2

1373043_at 0.43304157 -0.29205910 0.026974837 5.228216 1.229222e-05 0.0217476716 Sdf2l1

1372001_at 0.08514516 -0.15604194 -0.254101435 4.404160 1.546960e-05 0.0230393671 Fam96b

1373526_at 0.02362696 -0.36520402 -0.297851006 4.196020 1.658932e-05 0.0230393671 Atg5

1390592_at -0.02505859 -0.40258280 0.169960340 4.611800 1.736309e-05 0.0230393671 NA

1387146_a_at -0.18662373 -0.12054372 -0.082185825 4.148919 2.183763e-05 0.0251029547 Ednrb

1371202_a_at -0.09094477 -0.30095323 0.196770191 5.345673 2.207130e-05 0.0251029547 Nfib

1387041_at 0.31535451 0.07735984 0.010541916 5.143865 2.644404e-05 0.0274863665 Ubqln1

1374585_at 0.24595674 0.18191751 -0.113824844 5.493505 3.198468e-05 0.0274863665 Echdc1

1372452_at 0.64832656 0.11253516 -0.109554926 4.512428 3.233919e-05 0.0274863665 NA

1389355_at 0.35598214 -0.05021318 -0.060883681 4.918948 3.277802e-05 0.0274863665 Ier5

1372151_at -0.06364361 0.37894543 0.014122327 3.662133 3.496133e-05 0.0274863665 Tcerg1

1383160_at 0.62450218 -0.04330715 0.048439979 5.099766 3.549169e-05 0.0274863665 Chordc1

1369971_a_at -0.56249889 0.09082476 0.044863860 4.300693 3.625031e-05 0.0274863665 Hnrnpd

1370174_at -0.18186744 -0.21854631 -0.078942299 3.720235 4.118148e-05 0.0298060295 Ppp1r15a

1372810_at -0.38763046 0.00840807 0.157007535 4.858478 4.574578e-05 0.0307010787 Hnrnpdl

1373158_at -0.46488190 0.15331491 0.025881926 4.269187 4.627431e-05 0.0307010787 Gpr146

1371310_s_at 0.39338017 -0.01820374 -0.094340960 6.021709 5.206520e-05 0.0331613657 Serpinh1

1367919_at 0.04883862 -0.66449388 0.400321722 3.346442 5.884534e-05 0.0360382451 Nup210

1370283_at 0.56286208 -0.18084780 -0.024865945 6.447950 7.143060e-05 0.0421255341 Hspa5

1376518_at 0.43447812 -0.15428209 0.004062335 5.066327 7.418710e-05 0.0421886145 Palm3

1370411_at -0.97898571 1.03864678 -0.003437599 3.946266 7.756465e-05 0.0425883436 Trpc1

1370381_at 0.33519109 0.22669395 -0.049853961 5.145883 8.432654e-05 0.0430429623 Pnrc1

1380854_at 0.03301048 0.32182391 -0.033223947 5.447217 8.630849e-05 0.0430429623 Vegfb

1371132_a_at -0.41741323 -0.28982917 0.052586158 4.234037 8.650222e-05 0.0430429623 Ank3

1390027_at -0.23098803 -0.10861270 0.072813193 5.341700 9.774847e-05 0.0461109851 Usp8

1369926_at 0.03228855 -0.31997363 0.102582296 8.494349 9.845968e-05 0.0461109851 Gpx3

1380466_at -0.12082219 0.77545102 -0.320862929 2.918114 1.087430e-04 0.0494718641 NA
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Table A2: Differentially expressed genes in Eker rats treated with MAMAc
altered over the sampled time period.

day 3 vs day 7 vs day 14 vs average adjusted gene

array id day 1 day 3 day 7 expression p-value p-value symbol

1370541_at -1.21507486 -0.23929222 -0.16177233 3.7250703 4.921253e-12 7.836111e-08 Nr1d2

1370816_at -1.43239943 0.04222790 -0.15189020 3.1388813 8.865305e-08 7.058113e-04 Nr1d1

1390430_at -1.01694965 -0.36046743 -0.08782959 3.8004326 1.031580e-06 5.475285e-03 Nr1d2

1374625_at -0.46250200 0.12783384 -0.11794345 6.0900713 1.402006e-06 5.557025e-03 Hes6

1370245_at -0.35511128 -0.09524171 -0.14332263 6.5318151 1.744968e-06 5.557025e-03 Ctsl

1387874_at -0.96508789 -0.01245769 0.20371119 3.8260615 4.542814e-06 1.205587e-02 Dbp

1373309_at -0.90716791 -0.12718137 -0.06702598 4.7548697 5.412570e-06 1.231205e-02 Tmem86a

1368488_at 0.88186296 -0.19276158 0.16966216 4.1323764 6.481672e-06 1.290096e-02 Nfil3

1372911_at -0.52840392 -0.24752108 0.11297671 5.3899284 7.684729e-06 1.359599e-02 Mthfr

1389355_at 0.26621215 0.20148786 -0.28398546 5.0457483 1.019493e-05 1.481846e-02 Ier5

1398819_at 0.37511365 -0.08899514 0.03674650 6.5239087 1.073314e-05 1.481846e-02 Dnaja1

1388722_at 0.45948823 -0.03271151 0.03183270 5.0735160 1.116759e-05 1.481846e-02 Dnajb1

1368992_a_at -0.58905681 -0.05716769 0.27510468 5.7349572 1.241085e-05 1.520138e-02 Srsf5

1367771_at 0.54341284 0.01545127 0.06290372 5.5408550 2.059624e-05 2.342528e-02 Tsc22d3

1383160_at 0.49162006 -0.12003771 0.02431758 5.1405705 2.547648e-05 2.704413e-02 Chordc1

1389514_at 0.31344973 1.41180211 -1.05189912 0.6628551 3.466012e-05 3.449331e-02 Lingo1

1370610_at -0.26291513 -0.33158429 0.58069897 6.0377897 3.981318e-05 3.557691e-02 Slc34a1

1376135_at -0.37171332 -0.21766027 0.38231389 4.4135759 4.062696e-05 3.557691e-02 Dars2

1372823_at -0.08807031 -0.48951666 0.45908666 3.7366102 4.333652e-05 3.557691e-02 Hnrnpu

1388010_at 0.02867063 -0.18576523 1.10897219 2.0240366 4.468619e-05 3.557691e-02 Parpbp

1387513_at -0.21167755 -0.31821092 0.01065350 3.0425292 5.543694e-05 4.203440e-02 Cyth3

1368542_at 1.72643342 0.07225291 -0.12957708 2.5678892 6.546719e-05 4.738337e-02 Zfp423
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Table A3: 18 KEGG pathways enriched by genes altered after the first day of MAMAc exposure.
adjusted

pathway id description generatio bgratio p-value p-value gene id

rno05212 Pancreatic cancer 6/42 65/7887 1.030077e-06 0.0001648124 Tgfbr2/Smad3/Tgfbr1/Smad4/Egfr/Mapk9

rno05210 Colorectal cancer 5/42 64/7887 2.026426e-05 0.0016211406 Tgfbr2/Smad3/Tgfbr1/Smad4/Mapk9

rno05200 Pathways in cancer 10/42 400/7887 3.431822e-05 0.0016467467 Tgfbr2/Gnai3/Smad3/Tgfbr1/Hsp90ab1/Smad4/Nfkb2/Prkacb/Egfr/Mapk9

rno04520 Adherens junction 5/42 74/7887 4.116867e-05 0.0016467467 Tgfbr2/Smad3/Tgfbr1/Smad4/Egfr

rno04010 MAPK signaling pathway 8/42 259/7887 5.432370e-05 0.0017383584 Tgfbr2/Tgfbr1/Pak2/Nfkb2/Prkacb/Egfr/Mapk9/Cacng4

rno04068 FoxO signaling pathway 6/42 136/7887 7.412887e-05 0.0019767697 Tgfbr2/Smad3/Tgfbr1/Smad4/Egfr/Mapk9

rno04933 AGE-RAGE signaling pathway in diabetic complications 5/42 104/7887 2.089716e-04 0.0047749974 Tgfbr2/Smad3/Tgfbr1/Smad4/Mapk9

rno05142 Chagas disease (American trypanosomiasis) 5/42 107/7887 2.387499e-04 0.0047749974 Tgfbr2/Gnai3/Smad3/Tgfbr1/Mapk9

rno04971 Gastric acid secretion 4/42 74/7887 6.103180e-04 0.0108048546 Gnai3/Kcnj15/Kcnj1/Prkacb

rno05220 Chronic myeloid leukemia 4/42 76/7887 6.753034e-04 0.0108048546 Tgfbr2/Smad3/Tgfbr1/Smad4

rno04350 TGF-beta signaling pathway 4/42 86/7887 1.075586e-03 0.0156448934 Tgfbr2/Smad3/Tgfbr1/Smad4

rno04914 Progesterone-mediated oocyte maturation 4/42 90/7887 1.274468e-03 0.0169929016 Gnai3/Hsp90ab1/Prkacb/Mapk9

rno04915 Estrogen signaling pathway 4/42 96/7887 1.619159e-03 0.0199281077 Gnai3/Hsp90ab1/Prkacb/Egfr

rno04724 Glutamatergic synapse 4/42 115/7887 3.132658e-03 0.0358018074 Gnai3/Shank3/Prkacb/Slc38a2

rno05166 HTLV-I infection 6/42 293/7887 4.242244e-03 0.0448883947 Tgfbr2/Smad3/Tgfbr1/Smad4/Nfkb2/Prkacb

rno04510 Focal adhesion 5/42 206/7887 4.488839e-03 0.0448883947 Cav2/Pak2/Itga1/Egfr/Mapk9

rno05230 Central carbon metabolism in cancer 3/42 65/7887 4.877423e-03 0.0459051600 Pdha1/Egfr/Pfkl

rno04380 Osteoclast differentiation 4/42 134/7887 5.409953e-03 0.0480884687 Tgfbr2/Tgfbr1/Nfkb2/Mapk9
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Table A4: Enrichment statistics on DNA repair pathways. Up-regulation of genes is indicated in red and down-regulation in blue.
pathway id description generatio bgratio p-value adjusted p-value gene id

GO:0043065 positive regulation of apoptotic process 8/69 572/17324 0.001913542 0.028174386 Smad3/Tgfbr1/Slc11a2/Pak2/Itga1/Ppp1r15a/Ip6k2/Mapk9

GO:0043066 negative regulation of apoptotic process 7/69 861/17324 0.05482791 0.15751587 Smad3/Kcnj1/Tgfbr1/Hsp90ab1/Cebpb/Pak2/Egfr

GO:0045786 negative regulation of cell cycle 4/69 363/17324 0.056700575 0.159997354 Smad3/Ctdsp2/Prkacb/Egfr

GO:0045787 positive regulation of cell cycle 2/69 300/17324 0.336258954 0.391340374 Egfr/Rdx

GO:0051726 regulation of cell cycle 8/69 891/17324 0.024806476 0.104748855 Smad3/Cav2/Pak2/Ctdsp2/Prkacb/Egfr/Rdx/Rnf4
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a.2 supplementary tables - part 2

Table A5: Normalised protein abundances extracted with the four evaluated
antibodies. Abundances of proteins, for which only one sample
showed a spectral count larger than 0 and proteins that were not
measured in either the IgG control or all 4 antibody samples are
not shown (Section 2.5.2).

PROTEIN PEPTIDE UNIQUE IGG PBSAB PBSAB3P COMAB COMAB3P

COUNT PEPTIDES

Rps6 1 1 171 10932 4633 4900 8370

Rpl13 4 4 2726 73799 33776 53771 113463

Add1 2 2 650 14172 12798 1262 99

Tubb5 30 3 91538 8642670 8666394 568941 192282

Sf3a1 4 4 3958 103822 83532 137577 9413

Puf60 5 5 490358 382299 385255 118594 704173

Camk2b 3 2 7245 103504 89018 323 3930

Hdgfrp2 10 10 1158 27498 10817 677524 915940

Rps11 2 2 586 53772 10737 44605 85136

Rpl8 3 3 1167 75759 28449 20600 80696

Grm3 2 2 128 68647 70758 1567 376

Rps5 2 2 1603 57803 25497 5906 30884

Slc1a2 1 1 138 28907 28864 3850 102

Slc1a3 2 2 203 126024 118263 5912 1089

Krt14 13 2 57199 16722 12522 37672 27540

Krt13 9 2 21787 20106 1445 27821 17510

Hnrnpa0 1 1 127 29157 30468 1049 1658

Rps18 4 4 5638 109286 32526 39127 107640

Rpl30 1 1 231599 237816 227585 93833 188571

Snap47 3 3 87300 137414 84904 586533 114801

Slc25a11 3 3 172 139465 123189 8531 298

Hspa8 17 14 112411 820669 695373 30863 241906

Cd5l 6 6 115094 124169 123103 13911 180945

Slc25a5 5 3 6711 304552 373175 9817 13178

Krt42 8 2 381841 161405 127995 740660 214403

Rpl19 2 2 41256 92030 42521 76292 126007

Hist1h2bc 2 2 3981 59051 36203 3515 7068

Prpf8 9 9 4269 198143 151962 11150 1867

Dync1h1 5 5 535 44066 39009 7824 1419

Brsk2 2 2 182 22822 23176 271 506

Ywhah 3 2 5529 22746 24250 222 2398

Cand1 3 3 1510 89829 87837 9135 3313

Snrpd3 2 2 7603 136268 122264 14654 8633

Hcn2 13 13 16488 1133451 1085675 42520 26598

Gnb2l1 4 4 23028 183208 82559 355114 300488

Eftud2 5 5 761 162522 125529 6384 351

Pnn 3 3 1422 17077 14818 2689 2749

Erh 2 2 6912 123936 124642 406 17661

Nefm 7 6 104353 87382 91395 24860 5654

Nefl 6 5 46460 28673 27142 65051 1462

Sucla2 2 2 208 22101 22330 10441 270

Sub1 1 1 171123 173293 176353 127582 217333

Ywhaz 5 3 17875 302930 303759 3604 17058

Dnm1l 3 3 1083 76388 65690 16509 622

Fyttd1 3 3 8474 100706 77235 23911 18654

Krt5 16 12 1167768 939367 650285 3061975 1141326

Krt2 8 5 3373373 3113707 2150204 14645665 3193835

Krt6b 10 1 234222 38824 57030 234125 118366

Krt1 9 5 5852041 5704066 4050988 37481288 5935134

Krt79 5 2 3006820 2027603 1384647 3506245 2419241

C3 2 2 25436 33231 33843 16 64864



116 appendix

Normalised protein abundances extracted with the four evaluated antibod-
ies.

PROTEIN PEPTIDE UNIQUE IGG PBSAB PBSAB3P COMAB COMAB3P

COUNT PEPTIDES

Mapre2 2 2 355 184542 121877 10 37320

Rps14 3 3 9211 240093 103022 181921 268079

Fth1 7 7 5156 260008 257678 749 3993

Sf3b2 2 2 7979 71807 63347 9397 27818

Rps26 2 2 1515 93750 27882 19979 87177

Eif4a3 6 6 15688 173600 132562 15879 17189

Sf3b1 10 10 13399 247454 214304 7387 13103

Hspa5 11 8 19447 433368 390207 109191 34142

Kcnip3 2 2 22517 87132 72001 25083 19085

Raly 7 7 16111 299897 234374 36166 9880

Rbm39 2 2 28254 30552 26786 7031 39468

Fcgr1 6 6 467007 570118 617778 163642 1005440

Zranb2 3 3 49639 44140 34457 54137 75974

Atad3a 2 2 7996 16995 17822 5123 7243

Alb 4 4 125134 65233 125823 212888 338923

Arl6ip4 3 3 474247 383692 341769 462749 692207

Rpl6 4 4 1119 62929 24627 158392 80404

Ndufa4 3 3 6461 284886 333873 7259 13485

Prss1 2 1 88085898 46742238 59577187 530046180 96815553

2210010C04Rik 4 4 1020252 422881 597601 12333020 910140

Rps3 7 7 19971 443453 142669 120010 484092

Rps4x 5 5 1412 162714 44299 14609 120435

Slc25a4 6 4 13271 1022350 1070471 7562 19239

Tmprss13 1 1 106218 42365 60616 1450314 86955

Rpl4 3 3 5268 108167 46812 86906 159396

Map4 4 4 596 50913 47331 3181 579

Rpsa 4 4 9893 346355 132600 147351 380897

Krt75 9 2 261753 241082 143407 616496 241036

C1qc 2 2 292532 88174 78934 51761 37309

H2afz 1 1 4822 31965 22674 9860 7359

Sv2a 2 2 1105 36007 39467 4002 463

Snrpd2 2 2 540 93679 80109 701 2290

Dhx9 14 14 19062 645605 583634 110159 12918

Arglu1 2 2 58527 56499 60441 24131 85212

Brsk1 3 3 424 59408 48831 8195 324

Atp6v1h 3 3 73610 153641 144392 12927 123569

Ina 7 6 263859 106382 101689 29860 12188

Rpl21 2 2 730 22652 9951 9714 39834

Tubb4b 33 1 288389 1337358 1342820 22762 297388

Eef1a1 3 3 25430 250451 264141 143675 30842

Alg2 5 5 5349 176571 231536 16622 2072

Bclaf1 4 4 21876 115062 101825 8702 8348

Sf3b6 1 1 1469 54289 50734 19046 7291

Rbm8a 3 3 440 145302 108873 10161 2363

Hacd3 3 3 1450 114850 116379 799 127

Sf3b3 5 5 19857 136295 96730 1876 3793

Sptan1 9 9 264590 126549 122574 3146 109775

Rpl10a 1 1 3329 53354 25223 47 62356

C1qa 2 2 216238 40622 40203 1716 299

Hnrnph2 3 3 2796 246938 221166 24609 2570

Ywhag 5 4 11694 245918 241741 538 7761

Mbp 4 4 595904 3305362 2729441 375958 771736

Dsg1c 1 1 16820 6677 4837 84814 8367

Luc7l2 2 2 24807 19031 17512 10823 32130

Pura 8 8 13902 1058492 801018 10406 58355

Sfxn3 2 2 2855 26859 34860 30951 3507

Tubb2a 36 3 77793 6771981 6443899 1050783 150612

Dhx30 1 1 266180 178610 227100 36219 478204

Srsf11 1 1 50968 34292 29560 9775 78431
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Normalised protein abundances extracted with the four evaluated antibod-
ies.

PROTEIN PEPTIDE UNIQUE IGG PBSAB PBSAB3P COMAB COMAB3P

COUNT PEPTIDES

Dnm3 5 3 5213 60535 66541 4863 535

Gfap 19 17 3034361 118003 95747 440933 128954

Phgdh 4 4 712 103720 99966 7580 163

Purg 1 1 51 51465 26684 168 1824

Krt73 6 1 30934 36229 3416 6548 31764

Khdrbs1 1 1 200 4862 4679 66 354

Hspa12a 3 3 1413 85263 85699 33566 4548

C4b 4 4 153090 151624 169482 2605 246676

Tubb3 27 5 55561 2139088 2013484 33360 51741

Tubb4a 32 7 82059 6188544 5674744 267010 95357

Nf1 6 6 5174 86248 78573 60358 29021

Actg1 9 9 1431630 871828 801262 264522 180884

Try10 4 3 5535403 5868385 7470256 28996780 4784142

Rpl18 3 3 847 121988 52126 47736 156923

Rps7 2 2 1784 61883 28366 28033 101531

Slc25a3 2 2 41335 36369 35983 50870 22145

Dnm1 6 4 8934 212877 242279 31452 13470

Kcnd3 4 4 11450 119004 127396 1403 3026

Tuba4a 21 4 74074 5680273 5978744 122768 142072

Rpl17 2 2 32474 54908 19150 119481 67521

Gm10036 2 2 3207 120194 43004 16413 147888

Rps25 2 2 25330 137533 47183 61004 126992

Rps17 1 1 2563 28936 12014 23949 30878

Thrap3 7 7 2946 97752 90883 23319 4167

Kcnd2 8 8 18637 372070 337493 20710 14279

Rplp0 4 4 2285 216453 99481 79514 248152

Igj 1 1 51066 57786 55211 20054 118642

Kcnip4 2 2 11065 104078 91107 27956 18313

Krt77 6 2 303001 291042 202795 614378 333069

Srrm2 3 3 38951 37117 30649 893 55335

Rpl7a-ps3 4 4 2542 124122 44551 180274 129989

Ssb 7 7 13 165270 98259 1670 1118

Srsf2 2 2 50264 43165 37469 128587 59668

Rpl27 2 2 260 56321 21525 24085 75140

Sugp2 7 7 8270 276272 209206 102435 10328

Gm9755 8 8 14183 313809 253540 85044 21866

Rps2 3 3 2246 242230 85733 39954 254906

Tuba1a 22 1 8232 113624 119044 4216 4481

Mb21d2 18 18 5158753 7063647 6178381 4583115 14830306

Krt76 5 1 2177455 1972762 1233207 7438566 1832451

Gh 2 2 661 18364 14898 3838 229

Nsf 14 14 24432 633103 652703 73106 55930

Cnp 8 8 42959 426759 420362 12526 30804

Krt10 10 4 8550436 6074820 5536775 33678307 7271377

Rpl23 2 2 967 31564 9164 26043 32163

Snrnp200 13 12 5024 259174 202262 21846 7828

Rpl23a 2 2 7387 141067 36432 191661 152253

Rps8 3 3 2529 228233 53693 258453 209935

Camk2a 5 4 35369 263671 242438 14107 14744

Rnh1 7 7 5671453 4848460 4555582 4174485 5008795

Rps15a 1 1 214 34990 11454 13668 46814

Rps19 5 5 34906 337164 151805 1753369 374915

Hnrnpc 13 12 47787 3286420 2713011 80659 41918

Rpl9 3 3 30604 177773 64422 320746 216608

Rps28 2 2 1684 141429 56076 4549 224383

Rps10 1 1 1150 68818 20506 13295 58207

Dmxl2 4 4 1617 81519 73626 2502 3843

Dsp 5 4 77006 58899 61944 389542 88662

Myo5a 2 2 7300 14659 10640 2098 144
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Normalised protein abundances extracted with the four evaluated antibod-
ies.

PROTEIN PEPTIDE UNIQUE IGG PBSAB PBSAB3P COMAB COMAB3P

COUNT PEPTIDES

Rpl12 3 3 1694 126998 49120 1073 151817

Rps20 1 1 7345 87954 31469 30113 101218

Slc25a12 15 15 29725 964738 921151 125333 36925

Pcmt1 4 4 233239 245468 255965 36448 452421

Matr3 22 22 114179 2431779 1970956 171552 59785

Krt78 3 3 4290233 4720040 3059204 7336781 4257667

Snrpe 1 1 3379 48301 43579 21001 5458

Rpl14 1 1 986 58138 17270 22122 76643

Table A6: Number of differentially expressed genes for pairwise diet/inter-
vention comparisons.

comparison total # of # up-regulated # down-regulated

de genes genes genes

HFD vs Chow 10 8 2

H>C vs HFD 1319 468 851

H>C vs Chow 501 138 318

CR vs Chow 1728 828 900

CR vs HFD 2691 1342 1349

CR vs H>C 119 102 17

Ex4 vs Chow 2142 1113 1029

Ex4 vs HFD 3079 1617 1462

Ex4 vs H>C 230 132 98

Ex4 vs CR 29 2 27
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Table A7: Log2 fold changes of neuropeptides compared between weight loss intervention and control groups. Adjusted p-values of the corresponding
test are given in brackets

gene mean expression ex4vschow ex4vshfd ex4vshc crvschow crvshfd crvshc

Npy 581.85 0.449 (0.004) 1.034 (1.46E-12) 0.790 (3.54E-19) 0.619 (1.86E-04) 1.204 (8.59E-20) 0.960 (5.24E-31)

Agrp 145.06 1.072 (8.41E-05) 1.691 (3.46E-11) 1.512 (1.99E-23) 1.094 (1.47E-04) 1.713 (9.07E-13) 1.534 (3.00E-26)

Bdnf 628.26 -0.105 (0.477) 0.040 (0.813) -0.051 (0.678) -0.010 (0.959) 0.134 (0.316) 0.043 (0.815)

Cartpt 2136.75 0.132 (0.504) -0.186 (0.305) -0.248 (0.046) 0.058 (0.797) -0.259 (0.115) -0.321 (0.008)

Glp1r 76.81 0.603 (0.016) 0.366 (0.162) 0.167 (0.47) 0.423 (0.098) 0.185 (0.527) -0.013 (0.979)

Grm1 1946.30 0.087 (0.405) 0.140 (0.137) 0.030 (0.745) 0.099 (0.320) 0.152 (0.091) 0.042 (0.720)

Lepr 100.26 0.029 (0.938) -0.090 (0.775) 0.008 (0.980) 0.006 (0.987) -0.113 (0.711) -0.015 (0.975)

Mc3r 203.49 0.245 (0.105) 0.177 (0.258) -0.004 (0.986) 0.169 (0.283) 0.101 (0.557) -0.080 (0.666)

Pomc 1215.88 -0.793 (0.226) -1.670 (0.003) -1.167 (0.007) -0.438 (0.543) -1.315 (0.021) -0.812 (0.149)

Trmt1 893.88 -0.177 (0.196) -0.208 (0.109) -0.079 (0.490) -0.091 (0.553) -0.122 (0.385) 0.007 (0.976)



1
2

0
a

p
p

e
n

d
i
x

Table A8: Log2 fold changes of genes differentially expressed between Ex4 and CR. Adjusted p-values of the corresponding test are given in brackets
gene mean expression ex4vscr ex4vschow ex4vshfd ex4vshc crvschow crvshfd crvshc

Daam2 2100.31 -0.226 (0.04) -0.258 (0.04) -0.256 (0.03) -0.009 (0.95) -0.032 (0.86) -0.03 (0.86) 0.217 (0.03)

Mertk 276.27 -0.318 (4.80E-02) -0.143 (0.51) -0.061 (0.80) 0.152 (0.32) 0.175 (0.39) 0.257 (0.16) 0.47 (1.90E-05)

Hif3a 209.79 -0.500 (0.03) -0.451 (0.11) -0.251 (0.41) 0.383 (0.06) 0.049 (0.90) 0.249 (0.40) 0.883 (6.00E-09)

Cdh19 169.82 -0.434 (0.03) -0.541 (0.02) -0.501 (0.03) -0.052 (0.84) -0.107 (0.73) -0.067 (0.83) 0.382 (0.046)

Prodh 336.67 -0.284 (4.00E-03) -0.072 (0.67) -0.055 (0.75) 0.084 (0.48) 0.212 (0.12) 0.229 (0.08) 0.369 (3.79E-06)

Zbtb16 277.99 -0.648 (1.00E-03) 0.137 (0.71) 0.482 (0.10) 0.159 (0.54) 0.785 (4.00E-03) 1.129 (2.37E-05) 0.806 (1.84E-06)

Adipor2 2041.16 -0.228 (0.01) 0.024 (0.88) 0.101 (0.43) 0.081 (0.41) 0.252 (0.02) 0.328 (1.00E-03) 0.308 (4.31E-06)

Cpm 318.24 -0.284 (0.03) -0.068 (0.74) 0.053 (0.80) 0.004 (0.98) 0.217 (0.17) 0.337 (0.02) 0.289 (0.01)

Anln 1214.09 -0.291 (0.02) -0.086 (0.65) 0.040 (0.85) 0.067 (0.64) 0.205 (0.19) 0.331 (0.02) 0.358 (2.00E-04)

Arhgef10 1328.44 -0.226 (8.00E-03) 0.013 (0.94) 0.082 (0.53) 0.018 (0.89) 0.239 (0.02) 0.307 (2.00E-03) 0.243 (7.00E-04)

Sgk1 2762.78 -0.403 (3.80E-05) 0.002 (0.99) 0.268 (0.08) 0.297 (6.00E-03) 0.405 (6.00E-03) 0.671 (4.05E-06) 0.7 (2.84E-18)

Arl4d 356.10 -0.537 (3.00E-04) -0.260 (0.28) 0.056 (0.85) 0.191 (0.30) 0.277 (0.23) 0.593 (3.00E-03) 0.728 (5.05E-09)

Arrdc2 366.24 -0.381 (2.00E-03) -0.104 (0.63) 0.152 (0.45) 0.398 (1.00E-03) 0.276 (0.12) 0.533 (9.00E-04) 0.778 (2.28E-17)

Plin4 248.46 -1.254 (2.64E-07) -0.249 (0.63) 0.179 (0.74) 1.063 (2.00E-04) 1.005 (0.01) 1.433 (2.00E-04) 2.317 (8.58E-28)

Sult1a1 115.22 -0.554 (1.00E-03) 0.134 (0.67) 0.220 (0.44) 0.594 (7.00E-04) 0.688 (4.00E-03) 0.774 (6.00E-04) 1.147 (1.72E-18)

Agxt2l1 1352.61 -0.389 (0.03) 0.047 (0.88) 0.233 (0.31) 0.227 (0.18) 0.436 (0.03) 0.622 (1.00E-03) 0.616 (5.78E-07)

Upp2 589.10 0.208 (0.02) 0.562 (2.35E-08) 0.436 (1.36E-05) 0.347 (1.66E-07) 0.354 (8.00E-04) 0.228 (0.02) 0.140 (.17)

Irf7 53.44 0.526 (9.00E-03) 0.315 (0.26) 0.100 (0.76) 0.146 (0.51) -0.210 (0.49) -0.426 (0.09) -0.379 (0.10)

Hr 1038.00 -0.557 (2.82E-06) -0.313 (0.12) 0.039 (0.89) 0.215 (0.16) 0.244 (0.23) 0.596 (7.00E-04) 0.772 (1.18E-13)

Cdkn1a 346.56 -0.632 (8.61E-09) -0.325 (0.09) -0.112 (0.63) 0.228 (0.13) 0.306 (0.11) 0.520 (3.00E-03) 0.860 (7.09E-18)

Mfsd2a 339.07 -0.614 (9.61E-06) -0.484 (0.03) -0.375 (0.09) -0.037 (0.89) 0.129 (0.64) 0.238 (0.31) 0.577 (1.82E-05)

Frmpd1 421.90 -0.276 (0.02) 0.029 (0.89) 0.177 (0.24) 0.068 (0.61) 0.306 (0.03) 0.454 (5.00E-04) 0.345 (1.00E-04)

Tekt4 64.36 -0.487 (0.03) -0.584 (0.02) -0.298 (0.29) -0.042 (0.9) -0.097 (0.77) 0.188 (0.52) 0.445 (0.03)

Ddit4 875.81 -0.430 (1.00E-03) -0.144 (0.51) -0.082 (0.73) -0.033 (0.88) 0.286 (0.13) 0.348 (4.90E-02) 0.397 (1.00E-03)

Plekhf1 175.78 -0.424 (0.02) -0.283 (0.22) -0.223 (0.35) -0.032 (0.90) 0.141 (0.59) 0.201 (0.39) 0.392 (0.02)

Spsb1 470.35 -0.229 (0.01) -0.003 (0.99) 0.080 (0.56) 0.074 (0.47) 0.226 (0.04) 0.308 (3.00E-03) 0.303 (1.41E-05)

Pnpla2 636.17 -0.234 (1.00E-03) 0.047 (0.72) 0.111 (0.31) 0.028 (0.80) 0.281 (4.00E-03) 0.345 (2.00E-04) 0.262 (2.75E-05)

Gpr17 797.95 -0.280 (1.00E-03) -0.389 (9.00E-04) -0.420 (2.00E-04) -0.431 (2.81E-09) -0.109 (0.42) -0.140 (0.26) -0.151 (0.19)

Bcl6 553.84 -0.212 (0.01) 0.152 (0.17) 0.107 (0.36) -0.024 (0.84) 0.365 (4.00E-04) 0.320 (9.00E-04) 0.189 (0.02)
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Table A9: Log2 fold changes of genes differentially expressed between Ex4

and CR between fed and fasted state in AgRP neurones.

mean log2- adjusted

gene expression foldchange p-value p-value

Sgk1 1630.00 2.497 7.12E-30 9.45E-27

Cdkn1a 4245.28 6.349 1.54E-16 4.75E-14

Zbtb16 1575.52 1.859 2.35E-06 6.92E-05

Upp2 195.35 -2.289 1.16E-05 2.69E-04

Spsb1 389.14 1.994 3.13E-05 6.34E-04

Ddit4 615.83 1.128 3.41E-03 0.0275

Agxt2l1 36.87 3.312 0.0086 0.0548

Arhgef10 144.86 -1.096 0.0183 0.0963

Frmpd1 96.72 -0.996 0.0191 0.0986

Arrdc2 25.09 -1.527 0.1191 0.3261

Cpm 59.72 -1.448 0.1253 0.3361

Prodh 46.47 -1.460 0.1488 0.3727

Sult1a1 33.27 1.038 0.2542 0.5090

Mertk 22.42 1.644 0.2579 0.5134

Bcl6 522.96 0.446 0.2760 0.5336

Adipor2 604.63 0.322 0.2997 0.5595

Pnpla2 629.03 0.208 0.4144 0.6663

Tekt4 15.05 1.058 0.4270 0.6774

Arl4d 0.59 -2.235 0.4667 NA
Anln 28.24 1.149 0.4704 0.7102

Irf7 56.93 -0.440 0.5822 0.7906

Gpr17 0.67 -1.683 0.5838 NA
Plin4 47.61 -0.443 0.6081 0.8082

Hif3a 20.48 0.562 0.6690 0.8465

Hr 199.48 0.047 0.9171 0.9711

Mfsd2a 5.97 0.170 0.9174 0.9713

Daam2 70.16 -2.694 NA NA
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Table A10: Log2 fold changes of genes differentially expressed between Ex4

and CR between fed and fasted state in POMC neurones.

mean log2- adjusted

gene expression foldchange p-value p-value

Zbtb16 829.01 2.652 5.42E-20 2.15E-16

Bcl6 365.73 1.518 2.59E-05 3.93E-03

Cpm 26.40 -3.798 1.46E-04 0.0127

Sult1a1 35.75 -3.847 8.09E-04 0.0333

Hr 175.77 -2.129 9.13E-04 0.0355

Pnpla2 390.58 0.956 0.0153 0.1882

Spsb1 19.77 2.547 0.0296 0.2593

Anln 39.74 1.957 0.0652 0.3753

Mfsd2a 5.18 -3.174 0.0901 NA
Ddit4 417.16 0.467 0.1741 0.5812

Tekt4 47.38 -1.260 0.2663 0.6848

Arrdc2 23.01 -1.305 0.2974 0.7126

Arl4d 0.71 3.194 0.2998 NA
Arhgef10 201.01 0.385 0.3244 0.7304

Plin4 40.92 0.586 0.3721 0.7669

Gpr17 1.52 -2.331 0.4438 NA
Cdkn1a 312.81 -0.372 0.4589 0.8227

Sgk1 321.94 0.390 0.4881 0.8397

Frmpd1 35.71 -0.333 0.6127 0.8925

Adipor2 628.73 0.122 0.6298 0.8976

Irf7 69.66 -0.186 0.7580 0.9426

Agxt2l1 10.27 0.671 0.7953 0.9535

Plekhf1 0.13 -0.755 0.8113 NA
Prodh 29.92 -0.205 0.8369 0.9652

Upp2 227.93 0.055 0.8969 0.9764

Daam2 41.88 -0.046 0.9655 0.9914

Hif3a 23.70 0.054 0.9665 0.9914
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a.3 supplementary tables - part 3

Table A11: Human primer sequences for real-time PCR.

human gene upstream primer downstream primer

RPS13 5’-ccccacttggttgaagttga-3’ 5’-acaccatgtgaatctctcagga-3’
ARHGAP24 5’-tgtcttgagctcccagcaa-3’ 5’-tgacaaagcctccttgcttc-3’
CD82 5’-gccgacaagagcagtttcat-3’ 5’-gacataggcccccatccta-3’
GK 5’-ttgattcatggcttatttggagt-3’ 5’-tctgtacagtggacacctccat-3’
INHBE 5’-tcagctttgctactgtcacagac-3’ 5’-cgaggagtggacaggtgaa-3’
MYC 5’-tgctccatgaggagacacc-3’ 5’-cttttccacagaaacaacatcg-3’
RAPGEF4 5’-ttttatgccaaatacccagctt-3’ 5’-tgaaggctgtgcgtggta-3’
SMIM13 5’-ctgactctgcttgtgttcgtg-3’ 5’-agatgccatacaaaataccaacc-3’
DDX3X 5’-gctggcctagacctgaactc-3’ 5’-gcttctcggttccttaaatgag-3’
COBLL1 5’-ccgagtcacctagtgccagt-3’ 5’-ttcattatgtgcagagttattttcct-3’
APPL2 5’-caagcagtgactcccattacaa-3’ 5’-tcattttcattttccatctctgaa-3’
TAP1 5’-ctcagggctatgacacagagg-3’ 5’-acacggtttccggatcaat-3’

Table A12: Phenotype monitoring of chow- and HFD-fed mice, giving the
mean and standard deviation for each measured feature.

chow hfd p-value

n=10 n=8

Body weight at the end of the study (g) 33.49 ± 1.56 49.2 ± 4.49 4.40E-05

Liver triglyceride levels (µg/mg) 4.13 ± 0.9 9.4 ± 3.11 4.50E-04

Plasma triglyceride levels (mg/dl) 44.09 ± 6.84 54.49 ± 8.43 1.60E-02

Plasma cholesterol levels (mg/dl) 45.74 ± 7.84 121.24 ± 18.79 4.10E-04

Plasma insulin levels (mg/dl) 0.02 ± 0.01 0.07 ± 0.06 6.20E-04
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Table A13: Variance explained by phenotypic features for metabolites in the Chow/HFD setting.
p-value adj. p-value p-value adj. p-value lmg p-value adj. p-value p-value adj. p-value

metabolite lmg diet diet diet lmg bwe bwe bwe cholesterol cholesterol cholesterol lmg tag tag tag

PC.aa.C34.3 0.2397331 4.31E-09 7.36E-07 0.3637867 9.65E-05 0.01678879 0.16846980 0.36934000 1 0.1719371 0.527081000 1

C14.2 0.3824772 2.47E-06 3.71E-04 0.2007075 0.162514343 1 0.12291326 0.60786798 1 0.1279165 0.917985552 1

C16.2 0.3318389 1.56E-05 2.20E-03 0.1846086 0.314900457 1 0.11465882 0.64218349 1 0.1493048 0.487416036 1

C18.2 0.3901557 8.86E-07 1.38E-04 0.2048238 0.127650983 1 0.11937203 0.25109748 1 0.1458316 0.626830635 1

Asp 0.3194756 4.65E-05 6.37E-03 0.1740213 0.319939103 1 0.15424877 0.43150864 1 0.1015451 0.249832364 1

Putrescine 0.2607054 8.35E-05 1.12E-02 0.1827139 0.927184516 1 0.13266913 0.86303834 1 0.1328082 0.836380917 1

t4.OH.Pro 0.2222667 9.56E-05 1.27E-02 0.1873886 0.651458492 1 0.18168860 0.33759564 1 0.1195831 0.778944422 1

lysoPC.a.C14.0 0.4411156 6.86E-07 1.08E-04 0.1937812 0.007522638 1 0.10759604 0.52111911 1 0.1314394 0.475029116 1

lysoPC.a.C16.1 0.3650641 2.23E-04 2.85E-02 0.1694339 0.014151719 1 0.07554781 0.85732311 1 0.1202797 0.219040861 1

lysoPC.a.C17.0 0.2843330 7.39E-07 1.16E-04 0.2681873 0.266186706 1 0.16977473 0.90677111 1 0.1395947 0.221561671 1

PC.aa.C30.0 0.3830651 1.01E-10 1.75E-08 0.2283272 0.046594043 1 0.15540033 0.88868113 1 0.1976983 0.033203621 1

PC.aa.C32.0 0.2912734 7.54E-06 1.07E-03 0.2104443 0.962157674 1 0.18477355 0.34688448 1 0.1199915 0.163641780 1

PC.aa.C32.1 0.4133186 2.34E-10 4.05E-08 0.2256981 0.010562309 1 0.15119989 0.89820360 1 0.1695124 0.252286374 1

PC.aa.C32.2 0.4722346 2.62E-08 4.38E-06 0.2063656 0.000296728 0.05133389 0.12077814 0.72825299 1 0.1269030 0.419608320 1

PC.aa.C34.1 0.3339641 1.75E-07 2.87E-05 0.2084898 0.350744410 1 0.16112915 0.53555909 1 0.1849410 0.206710021 1

PC.aa.C34.4 0.3238726 2.41E-04 3.06E-02 0.2208350 0.002071953 0.34601607 0.12234363 0.05627055 1 0.1197969 0.071057232 1

PC.aa.C36.1 0.2779443 3.98E-09 6.85E-07 0.2400864 0.190393044 1 0.18593593 0.35753964 1 0.2344774 0.028962682 1

PC.aa.C36.6 0.4267069 8.48E-09 1.44E-06 0.2108815 0.005021467 0.82352064 0.13720851 0.94982906 1 0.1578511 0.252646848 1

PC.aa.C38.0 0.3984595 6.83E-06 9.84E-04 0.2055150 0.159174987 1 0.10484757 0.24105572 1 0.1159605 0.036213180 1

PC.ae.C36.2 0.3025715 3.20E-08 5.31E-06 0.2776466 0.179721930 1 0.17348706 0.92401730 1 0.1594081 0.491738266 1

PC.ae.C36.3 0.2955483 1.00E-08 1.70E-06 0.2916777 0.062584684 1 0.17742403 0.89255367 1 0.1633029 0.432452505 1

PC.ae.C38.2 0.2812057 2.96E-07 4.79E-05 0.2745673 0.172731138 1 0.18237148 0.69453668 1 0.1426644 0.174620697 1

PC.ae.C38.3 0.3273298 2.99E-06 4.45E-04 0.2712003 0.895886184 1 0.11377866 0.06438646 1 0.1421146 0.004806265 0.8122588

PC.ae.C38.4 0.3914228 2.46E-06 3.71E-04 0.2048159 0.158422713 1 0.12936476 0.85110585 1 0.1143467 0.104516738 1

PC.ae.C38.5 0.3741524 1.88E-04 2.43E-02 0.1631596 0.106978910 1 0.07704193 0.35315828 1 0.1292784 0.018098797 1

PC.ae.C40.4 0.3831085 3.30E-06 4.85E-04 0.1895061 0.090916404 1 0.14840700 0.48343384 1 0.1240288 0.017201300 1

PC.ae.C40.5 0.3575933 1.88E-06 2.88E-04 0.2449014 0.585152874 1 0.11388839 0.18098502 1 0.1450956 0.003649595 0.6240808

PC.ae.C40.6 0.3499597 5.93E-06 8.59E-04 0.1946199 0.277241374 1 0.15430081 0.55441853 1 0.1131498 0.316907781 1

SM.C18.0 0.3067348 1.05E-06 1.62E-04 0.2074867 0.733184245 1 0.12568437 0.26411555 1 0.2180816 0.078555633 1

SM.C24.1 0.3720558 1.93E-05 2.70E-03 0.1903311 0.206921589 1 0.11456750 0.75704235 1 0.1067450 0.126299312 1
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Table A14: Variance explained by phenotypic features for genes in the Chow/HFD setting.
p-value adj. p-value p-value adj. p-value lmg p-value adj. p-value p-value adj. p-value

gene lmg diet diet diet lmg bwe bwe bwe cholesterol cholesterol cholesterol lmg tag tag tag

Slc22a27 0.191592 7.26E-07 0.007363921 0.3375418 3.24E-06 0.03290757 0.2594746 0.006819713 1 0.1310797 0.5356962 1

Ces2a 0.2984175 1.55E-10 1.57E-06 0.2446594 0.23623412 1 0.22972 0.014173468 1 0.1893612 0.3155422 1

Aqp4 0.2939618 3.69E-07 3.74E-03 0.2111855 0.92927098 1 0.1767754 0.369768717 1 0.1928836 0.21706407 1

Arsg 0.2830303 5.50E-07 5.58E-03 0.2545769 0.31897918 1 0.1814344 0.623370419 1 0.147151 0.48756077 1

Apoa4 0.2593114 2.62E-06 2.66E-02 0.17866 0.45013905 1 0.2260362 0.02976046 1 0.1816289 0.13759269 1

Bdh1 0.238317 1.41E-06 1.43E-02 0.2244287 0.22931477 1 0.188653 0.337926236 1 0.198287 0.27475172 1

Psmb9 0.3266071 3.82E-06 3.86E-02 0.2553741 0.89627629 1 0.1259163 0.054600349 1 0.1224802 0.30086504 1

Rpl12 0.294529 1.21E-06 1.22E-02 0.2111916 0.94932714 1 0.1967805 0.227186316 1 0.1466623 0.97267174 1

Rps20 0.3705123 3.33E-06 3.37E-02 0.1928776 0.14012128 1 0.1469854 0.59900382 1 0.1173836 0.63966834 1

Gm9396 0.2351322 7.46E-07 7.56E-03 0.1944879 0.61129928 1 0.2184573 0.055137265 1 0.2217089 0.0628943 1

Cyp2b9 0.2893306 8.79E-12 8.93E-08 0.2606278 0.01602672 1 0.238335 0.003740839 1 0.1875259 0.51246048 1

Bphl 0.3345739 1.19E-06 1.21E-02 0.2515636 0.97053376 1 0.1392637 0.539787079 1 0.1293883 0.0567737 1

Khk 0.2693985 1.45E-06 1.47E-02 0.2517797 0.28296918 1 0.180004 0.615489725 1 0.1444608 0.52380387 1

Sema5b 0.2508726 2.18E-06 2.21E-02 0.221625 0.38652311 1 0.2087802 0.199961959 1 0.1560804 0.90781099 1

H60b 0.3214939 7.71E-08 7.83E-04 0.2274201 0.88938497 1 0.1361042 0.177087394 1 0.2184438 0.06696902 1

Gm3934 0.2830693 1.77E-06 1.80E-02 0.1915237 0.62109772 1 0.1713278 0.285974181 1 0.1990761 0.1297356 1

Lgals8 0.249661 4.88E-06 4.94E-02 0.1780928 0.68922352 1 0.2059458 0.075994268 1 0.1926876 0.1308367 1

Dhrs1 0.2634845 1.39E-06 1.41E-02 0.2220795 0.48265451 1 0.1643399 0.702249364 1 0.1966663 0.27333796 1

Gstp1 0.2650882 2.89E-06 2.92E-02 0.1849026 0.68327679 1 0.1697475 0.255584377 1 0.216774 0.07101221 1
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Table A15: Top 50 significantly differentially expressed genes between HFD
and Chow in the liver samples.

AVERAGE ADJUSTED

GENE LOG2FC EXPRESSION T P-VALUE P-VALUE

Cyp2b9 10.276 8.112 17.619 4.02E-14 4.08E-10

Ces2a -2.311 13.168 -14.084 3.21E-12 1.63E-08

H60b -3.360 8.709 -10.833 4.31E-10 1.46E-06

Gpc1 3.269 7.083 10.340 9.92E-10 2.28E-06

Aqp4 2.678 6.201 10.270 1.12E-09 2.28E-06

Arsg 2.232 7.862 9.912 2.10E-09 3.55E-06

Sema5b 3.065 8.191 8.988 1.14E-08 1.65E-05

Fabp2 2.508 12.854 8.916 1.30E-08 1.65E-05

Ugt2b38 -2.188 9.550 -8.764 1.74E-08 1.96E-05

Apobec1 -1.720 11.600 -8.618 2.30E-08 2.22E-05

Tmem86a 1.820 7.716 8.597 2.40E-08 2.22E-05

Tsc22d1 3.812 13.052 8.516 2.81E-08 2.38E-05

Gm3934 -1.872 8.128 -8.312 4.19E-08 3.27E-05

Mettl20 -1.676 11.002 -8.238 4.85E-08 3.52E-05

Sult1c2 2.448 6.539 8.099 6.40E-08 4.33E-05

Vnn1 2.784 12.699 7.820 1.12E-07 7.13E-05

Gstp1 -1.850 16.556 -7.738 1.33E-07 7.94E-05

Bdh1 1.228 14.408 7.681 1.49E-07 8.35E-05

Aqp8 3.238 12.104 7.660 1.56E-07 8.35E-05

9030619P08Rik 2.740 7.409 7.627 1.67E-07 8.48E-05

Tjp3 1.577 6.720 7.604 1.75E-07 8.48E-05

Apoa4 2.973 17.802 7.513 2.11E-07 9.76E-05

Psmb9 1.726 8.180 7.461 2.36E-07 0.000104215

Lect2 1.514 14.095 7.278 3.46E-07 0.000137849

Rpl12 -0.942 15.692 -7.262 3.58E-07 0.000137849

Siae 1.218 12.551 7.241 3.75E-07 0.000137849

Ppp1r3c 2.440 9.062 7.236 3.78E-07 0.000137849

Asns -3.977 7.845 -7.234 3.80E-07 0.000137849

Khk 0.945 16.295 7.169 4.36E-07 0.00015287

Slc35f2 1.839 5.804 7.064 5.46E-07 0.000184742

Serpina1e -2.913 17.451 -6.981 6.52E-07 0.00021361

Cyp4a12b -2.106 13.548 -6.901 7.75E-07 0.000243371

Gstp2 -1.999 13.559 -6.892 7.91E-07 0.000243371

Acmsd -2.433 8.542 -6.862 8.43E-07 0.000251796

Ces2e 1.400 11.616 6.825 9.15E-07 0.000265089

Gm9396 -0.998 10.891 -6.812 9.39E-07 0.000265089

Slco2a1 -1.493 9.449 -6.781 1.01E-06 0.000274249

Igfbp2 -1.655 15.882 -6.772 1.03E-06 0.000274249

Cd207 -1.826 4.932 -6.720 1.15E-06 0.000299239

Cd36 2.908 10.195 6.702 1.19E-06 0.000303454

Camk2b 2.108 6.484 6.680 1.25E-06 0.000310727

Svil 1.171 8.685 6.647 1.35E-06 0.000326076

Fetub -1.150 13.762 -6.598 1.50E-06 0.000354628

Apoc2 1.071 16.571 6.585 1.54E-06 0.000356573

Esrrg 1.495 4.756 6.573 1.59E-06 0.000357992

Selenbp2 -2.356 11.250 -6.532 1.74E-06 0.00038325

Spp2 1.124 9.089 6.522 1.78E-06 0.000383718

Slc17a4 1.899 7.699 6.489 1.91E-06 0.000404326

Tuba8 -1.578 6.232 -6.461 2.03E-06 0.000418911

Leap2 1.458 8.787 6.455 2.06E-06 0.000418911

Ebpl 1.049 11.518 6.385 2.41E-06 0.000475711
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Table A16: Top 30 GO terms enriched by differentially expressed genes. Terms that had overlapping enriched gene sets were summarised.
ADJUSTED

PATHWAY ID DESCRIPTION GENERATIO BGRATIO P-VALUE P-VALUE COUNT GENE ID

GO:0022613 ribonucleoprotein complex biogenesis 50/972 395/23577 1.87e-12 4.49e-09 50 Noc4l/Gm17430/Rrn3/Nop2/Rplp0/Noct/Celf1/Ddx3x/Fbl/Grb7/Rpsa/Ncl/Rpl10a/

Rpl6/Rpl7a/Rpl7/Rps14/Rps16/Rps17/Rps18/Rps24/Rps5/Rps6/Rps7/Rps8/Utp18/Eif5/

Ranbp9/Gnl2/Rpl12/Wdr3/Rpl3/Lsm2/Gnl3/Rps28/Eif3d/Nop58/Ftsj3/Ddx21/Rpl35/

Gtf2h5/Rps21/Nop56/Gemin6/Rpl38/Srsf6/Rpf1/Wdr43/Eif4b

GO:0044283 small molecule biosynthetic process 54/972 467/23577 8.81e-12 1.41e-08 54 Gck/Gk/Cth/Cyb5r3/Asl/Acadm/Apoa4/Apoc2/Atf4/Car5a/Cyp7b1/Dhcr7/Egr1/

Fdft1/Fgf1/Gamt/Gnmt/Got1/Gsto1/Hmgcl/Hnf4a/Hyal1/Mvk/Pck1/Pcx/Pklr/

Pltp/Por/Mvd/Ptk2b/Rbp1/Rdh16/Acsm3/Scd2/Shmt1/Srebf1/Hmgcs1/Slc45a3/

Tcf4/Gls2/Cps1/Decr2/Acmsd/Gulo/Asns/Aass/Slc35b4/0610007P14Rik/Moxd1/

Bhmt2/Dgat2/Elovl5/Oxsm/Fads1/Adck4

GO:0019216 regulation of lipid metabolic process 40/972 306/23577 1.17e-10 1.13e-07 40 Adora1/Apoa4/Apobec1/Apoc2/Cd36/Cd81/Cidea/Cyp17a1/Dhcr7/Egr1/Fgf1/

Gk/Hnf4a/Id2/Cyr61/Il1a/Ldlr/Pcx/Pdgfa/Por/Ptk2b/Rora/Sorbs1/Srebf1/

Slc45a3/Tcf4/Thrsp/Sf1/Abcd2/Mettl20/Nr1d2/Irs2/Acsl4/Fgf21/Smpd3/Dgat2/

Elovl5/Crtc3/Tysnd1/Gpld1

GO:0006631 fatty acid metabolic process 43/972 355/23577 2.77e-10 2.22e-07 43 Gpat4/Acat1/Acadm/Acads/Abcd1/Apoa4/Apoc2/Cd36/Cyp2b10/Cyp2b9/Cyp2c38/

Cyp2c39/Fabp2/Gk/Hadh/Hnf4a/Hpgd/Lipa/Por/Abhd16a/Acsm3/Scd2/Srebf1/

Slc45a3/Cyp2c70/Cyp2c44/Acad9/Daglb/Cyp2a22/Decr2/Abcd2/Mettl20/Irs2/

Acsl4/Acadsb/Dgat2/Elovl5/Oxsm/Cyp2d40/Tysnd1/Cyp2c55/Fads1/Aacs

GO:0005996 monosaccharide metabolic process 33/972 244/23577 2.07e-09 1.11e-06 33 H6pd/Gck/Gk/Acadm/Atf4/Car5a/Gnmt/Gpld1/Gsto1/Hnf4a/Khk/Man2a1/Myc/

Pck1/Pcx/Enpp1/Rora/Sorbs1/Slc45a3/Tcf4/Ppp1r3b/Gulo/Galm/Irs2/Slc23a2/

Slc23a1/Slc35b4/Midn/Pgm2/Dgat2/Ugt2b1/Gale/Fggy

GO:0002181 cytoplasmic translation 16/972 62/23577 2.83e-09 1.36e-06 16 Rbm4/Rpl6/Rpl7a/Rpl7/Rpl9/Rps7/Eif5/Rpl27a/Rpl8/Rps3/Eif3d/Rplp1/Rpl35/Rpl15/

Rplp2/Rps20/Eif4b

GO:0016042 lipid catabolic process 33/972 269/23577 2.40e-08 8.90e-06 33 Hsd3b7/Acat1/Acadm/Acads/Adora1/Abcd1/Apoa4/Apoc2/Cidea/Cyp26a1/

Cyp46a1/Gpld1/Hadh/Hexb/Ldlr/Lipa/Lipg/Bco2/Neu1/Abhd16a/Cps1/Daglb/

Cyp26b1/Pnpla7/Abcd2/Mettl20/Irs2/Fgf21/Smpdl3a/Plbd1/Crtc3/Tysnd1/Gpcpd1

GO:0015711 organic anion transport 40/972 369/23577 2.79e-08 9.59e-06 40 Adora1/Abcd1/Apoa4/Apoc2/Aqp8/Atp9a/Slc7a2/Cd36/Slc25a1/Fabp2/Gja1/Il1a/

Ldlr/Slc22a27/Myc/Pctp/Pltp/Slc10a1/Slc16a7/Slc23a2/Slc23a1/Slc2a2/Slc36a1/

Slc17a8/Slc16a11/Slc25a21/Slc38a7/Slc22a26/Slco2a1/Slco1b2/Irs2/Acsl4/
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Top 30 GO terms enriched by differentially expressed genes. Terms that had overlapping enriched gene sets were summarised.
ADJUSTED

PATHWAY ID DESCRIPTION GENERATIO BGRATIO P-VALUE P-VALUE COUNT GENE ID

Slc35b4/Prelid1/Slc38a2/Gipc1/Slc25a22/Slc16a13/Tmem30a/Slc35b2

GO:0006790 sulfur compound metabolic process 33/972 272/23577 3.15e-08 1.01e-05 33 Gpat4/Blmh/Cth/Acat1/Cs/Gamt/Gnmt/Gpc1/Gstp2/Gstp1/Gstt1/Gstt2/Gsto1/

Hmgcl/Hnf4a/Mvk/Enpp1/Mvd/Acsm3/Tcf4/Cps1/Mpst/Hs3st3b1/Bhmt2/

Ethe1/Acadsb/Dgat2/Sult1c2/Oxsm/Sulf2/Arsg/Gstk1/Glce

GO:0008202 steroid metabolic process 33/972 273/23577 3.44e-08 1.04e-05 33 Hsd3b7/Cyb5r3/Akr1c20/Apoa4/Cyp17a1/Cyp26a1/Cyp2b10/Cyp46a1/Cyp7b1/

Dhcr7/Egr1/Fdft1/Fgf1/Fgfr1/Il1a/Ldlr/Lipa/Mvk/Pctp/Por/Med1/Mvd/Rora/

Srebf1/Srebf2/Hmgcs1/Vldlr/Sf1/Cyp26b1/0610007P14Rik/Dgat2/Ebpl/Sdr42e1

GO:0044282 small molecule catabolic process 31/972 258/23577 1.02e-07 2.46e-05 31 Hsd3b7/Blmh/Acat1/Acadm/Acads/Abcd1/Cyp26a1/Cyp46a1/Gk/Got1/Hadh/

Hyal1/Khk/Abhd16a/Shmt1/Ido2/Gls2/Ppat/Cyp26b1/Aadat/Abcd2/Aass/Galm/

Mettl20/Irs2/Nagk/Qprt/Afmid/Tysnd1/Pgm2/Gale

GO:1903829 positive regulation of cellular 38/972 381/23577 5.23e-07 9.69e-05 38 Bmp4/Bmpr1a/Cct2/Cct5/Plk3/Csnk2a2/Egfr/Hnmt/Ube2j2/Gas6/Gnb2l1/Hcls1/

protein localization Sqstm1/Med1/Rbpms/Rpl28/Sorbs1/Srebf2/Stx4a/Dtx3l/Tcf4/Gls2/Kat7/Tgfbr1/

Zpr1/Ddx58/Leprot/Mrgpre/Epb41/Gnl3/Ablim3/Plagl2/Pdcd10/Rtn4/1810011O10Rik/

Tmem30a/Ipo5/Sulf2

GO:0044262 cellular carbohydrate metabolic 29/972 251/23577 5.99e-07 0.11e-03 29 Gck/Gk/Phka2/Acadm/Gnmt/Got1/Gpld1/Hnf4a/Khk/Pck1/Enpp1/Ptk2b/Rora/

process Sorbs1/Stat3/Slc45a3/Tcf4/Ppp1r3b/Irs2/Ppp1r3c/Slc35b4/Midn/Dgat2/Mogat1/

Pgm2/Stk40/Gbe1/Fggy

GO:0006766 vitamin metabolic process 13/972 62/23577 1.17e-06 0.16e-03 13 Cbr1/Cyp26a1/Fgfr1/Gsto1/Pltp/Rbp1/Shmt1/Vnn1/Cyp26b1/Vnn3/Gulo/Slc23a2/

Slc23a1/Mmab

GO:0034660 ncRNA metabolic process 40/972 427/23577 1.32e-06 0.16e-03 40 Noc4l/Rrn3/Eprs/Nop2/Tars/Ang/Ell/Fbl/Rpsa/Ncl/Rpl10a/Rpl7a/Rpl7/Rps14/Rps16/

Rps17/Rps24/Rps6/Rps7/Rps8/Smarca4/Spin1/Utp18/Rpp38/Snapc4/Wdr3/Rps28/

Nop58/Ftsj3/Ddx21/Rpl35/Rnf113a2/Gtf2h5/Rps21/Nop56/Yars2/Nars/Rpf1/Wdr43

GO:0010876 lipid localization 34/972 334/23577 1.30e-06 0.16e-03 34 Abcd1/Apoa4/Apoc2/Aqp8/Atp9a/Anxa2/Cd36/Cidea/Fabp2/Hexb/Il1a/Ldlr/Lipg/

Lrp6/Mest/Pctp/Enpp1/Pltp/Ptch1/Slc10a1/Srebf2/Spns2/Vldlr/Slco2a1/Slco1b2/

Irs2/Acsl4/Apom/Prelid1/Dgat2/Tmem30a/Osbpl3/Hbp1/Spin1

GO:0051262 protein tetramerization 21/972 159/23577 2.53e-06 0.25e-03 21 Cth/Acadm/Acads/Asl/Anxa2/Cryz/Gnmt/Hist2h3c1/Hmgcl/S100a10/Shmt1/Ppat/

Cpsf7/Hist1h3h/Hist1h3i/Txnrd1/Samhd1/Dctpp1/Acot13/Crtc3/Hist2h3c2
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Top 30 GO terms enriched by differentially expressed genes. Terms that had overlapping enriched gene sets were summarised.
ADJUSTED

PATHWAY ID DESCRIPTION GENERATIO BGRATIO P-VALUE P-VALUE COUNT GENE ID

GO:0006979 response to oxidative stress 36/972 376/23577 2.68-06 0.26e-03 36 Foxp1/Ppp1r15b/Vimp/Apoa4/Aqp1/Atf4/Atox1/Atp2a2/Atrn/Bmp4/Casp6/Cd36/

Plk3/Egfr/Stx2/Gnb2l1/Gstp1/Hyal1/Ppargc1b/Prkca/Ptk2b/Rbpms/Ripk1/

Stx4a/Ucp2/Vnn1/Mapk3/Rps3/Msrb3/Txnrd1/Fut8/Rcan2/Pdcd10/

1600014C10Rik/Neil1/Sesn3

GO:0048732 gland development 39/972 429/23577 3.69e-06 0.35e-03 39 Gpat4/Asl/Acadm/Bmp4/Bmpr1a/Btrc/Capn1/Cebpb/Cobl/Cyp7b1/Egfr/Fgfr1/

Foxa3/Id2/Lmo4/Lrp6/Man2a1/Cited2/Neu1/Nme1/Notch1/Pdgfa/Med1/

Prlr/Ptch1/Rps6ka1/Smarca4/Tcf4/Tgfbr1/Lims2/Mpst/Mapk3/Irs2/Irf6/

Adrm1/Rtn4/Sulf2/Aacs/Gja1

GO:0061008 hepaticobiliary system development 17/972 113/23577 3.81e-06 0.35e-03 17 Asl/Acadm/Bmp4/Cebpb/Cobl/Foxa3/Man2a1/Cited2/Notch1/Med1/

Rps6ka1/Smarca4/Lims2/Mpst/Nipbl/Sulf2/Aacs

GO:0016051 carbohydrate biosynthetic process 22/972 177/23577 4.07e-06 0.37e-03 22 Gck/Gk/Acadm/Atf4/Car5a/Gnmt/Got1/Gsto1/Hnf4a/Pck1/Pcx/Enpp1/

Ptk2b/Sorbs1/Tcf4/Ppp1r3b/Gulo/Irs2/Ppp1r3c/Slc35b4/Dgat2/Pgm2/Gbe1

GO:0097006 regulation of plasma lipoprotein 12/972 59/23577 4.21e-06 0.38e-03 12 Apoa4/Apoc2/Anxa2/Cd36/Gpld1/Ldlr/Lipg/Pltp/Vldlr/Plagl2/Apom/Dgat2

particle levels

GO:0033157 regulation of intracellular protein 35/972 376/23577 6.87e-06 0.57e-03 35 Atpif1/Bmp4/Bmpr1a/Cd36/Cdkn1a/Plk3/Csnk2a2/Ddx5/Egfr/Hnmt/Ube2j2/

transport Gas6/Hcls1/Hnf4a/Med1/Ptpn1/Rbpms/Rpl28/Srebf1/Srebf2/Tcf4/Gls2/

Tgfbr1/Zpr1/Ddx58/Leprot/Mrgpre/Ablim3/Plagl2/Pdcd10/1810011O10Rik/

Tmem30a/Ipo5/Sulf2/Svip

GO:1901615 organic hydroxy compound 38/972 426/23577 7.60e-06 0.48e-03 38 Hsd3b7/Cyb5r3/Apoa4/Cyp26a1/Cyp46a1/Cyp7b1/Ddc/Dhcr7/Fdft1/Fgf1/Fgfr1/

metabolic process Gk/Got1/Ldlr/Lipa/Mvk/Pck1/Pctp/Pltp/Por/Med1/Mvd/Ptk2b/Rbp1/Srebf1/

Srebf2/Hmgcs1/Vldlr/Cyp26b1/Spp2/Gde1/0610007P14Rik/Moxd1/Dgat2/

Ebpl/Mogat1/Rapgef2

GO:0006520 cellular amino acid 27/972 256/23577 8.18e-06 0.63e-03 27 Blmh/Eprs/Cth/Asl/Acat1/Tars/Ddc/Gamt/Gnmt/Got1/Hnf4a/P4ha2/Shmt1/Ido2/

metabolic process Gls2/Cps1/Ppat/Aadat/Mpst/Asns/Aass/Txnrd1/Nit2/Bhmt2/Yars2/Nars/Afmid

GO:0010608 posttranscriptional regulation of 39/972 452/23577 1.26e-05 0.86e-03 39 Eprs/Ppp1r15b/Ang/Apobec1/Bcl3/Bmp4/Noct/Ddx3x/Ddx5/Egfr/Enc1/Gnb2l1/Grb7/

gene expression Matr3/Mvk/Ncl/Neu1/Prkca/Ptbp1/Ptk2b/Rara/Rbm4/Shmt1/Stat3/Eif5/

Epb41l5/Gigyf2/Pabpc4/Mapk3/Ctif/Rps3/Eif3d/Rplp1/Rmnd1/Rbm4b/

Epb41l5/Rpl38/Cnot8/Taco1/Pum1
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Top 30 GO terms enriched by differentially expressed genes. Terms that had overlapping enriched gene sets were summarised.
ADJUSTED

PATHWAY ID DESCRIPTION GENERATIO BGRATIO P-VALUE P-VALUE COUNT GENE ID

GO:0034248 regulation of cellular amide 37/972 420/23577 1.32e-05 0.89e-03 37 Eprs/Ppp1r15b/Ang/Bcl3/Bmp4/Plk3/Ddx3x/Ddx5/Egfr/Enc1/Gnb2l1/Grb7/Cyr61/

metabolic process Mvk/Ncl/Neu1/Prkca/Ptbp1/Ptk2b/Rara/Rbm4/Shmt1/Stat3/Eif5/Gigyf2/

Mapk3/Ctif/Rps3/Eif3d/Rplp1/Smpd3/Rmnd1/Rbm4b/Rpl38/Cnot8/

Taco1/Pum1

GO:0006805 xenobiotic metabolic process 10/972 46/23577 1.434e-05 0.94e-03 10 Cryz/Cyp26a1/Cyp2b10/Cyp46a1/Gstt1/Gsto1/Hnf4a/Rora/Cyp26b1/Ugt2b1

GO:0061614 pri-miRNA transcription from 9/972 38/23577 1.84e-05 0.11e-02 9 Bmp4/Bmpr1a/Ddx5/Smarca4/Stat3/Tgfbr1/Yy1/Ets1/Gnl3

RNA polymerase II promoter

GO:0051186 cofactor metabolic process 32/972 348/23577 2.14e-05 0.13e-02 32 H6pd/Gpat4/Gck/Gk/Acat1/Atpif1/Cpox/Cs/Gamt/Gnmt/Hmgcl/Hnf4a/Khk/

Alad/Mvk/Myc/Pklr/Mvd/Acsm3/Shmt1/Stat3/Vnn1/Vnn3/Txnrd1/

Bhmt2/Acadsb/Qprt/Dgat2/Oxsm/Ppat/Gale/Adck4
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Table A17: Significantly altered metabolites between HFD and Chow in the liver samples.
SHORT ADJUSTED FOLD METABOLON

MOLECULE NAME T P-VALUE P-VALUE CHANGE SE CLASS

C(18:1;9E-enoyl/14:0) aa Phosphatidylcholine PC aa C32:1 14.30866265 3.49E-10 6.12E-08 1.635841011 0.11432522 Phosphatidylcholines

C(12:0/18:0) aa Phosphatidylcholine PC aa C30:0 14.91015834 9.05E-10 7.92E-08 2.049536066 0.137459041 Phosphatidylcholines

C(18:1;9Z-enoyl/e18:1;1Z-en) ae L-Phosphatidylcholine PC ae C36:2 -12.04744491 1.96E-09 9.02E-08 -1.03751766 0.086119311 Phosphatidylcholines

C(20:3;8Z,11Z,14Z-trienoyl/e16:0) ae L-Phosphatidylcholine PC ae C36:3 -12.21111465 2.06E-09 9.02E-08 -1.233483754 0.101013199 Phosphatidylcholines

C(18:1;9Z,12Z-dienoyl/e16:0) ae L-Phosphatidylcholine PC ae C34:2 -10.4876851 1.66E-08 4.89E-07 -1.370791411 0.13070486 Phosphatidylcholines

Acetyl-L-ornithine Ac-Orn -10.69090152 1.68E-08 4.89E-07 -1.643630232 0.153741032 Biogenic Amines

C(16:0/18:1;9E-enoyl) aa Phosphatidylcholine PC aa C34:1 10.49049553 2.02E-08 5.05E-07 0.673766131 0.06422634 Phosphatidylcholines

C17:0 a Lysophosphatidylcholine lysoPC a C17:0 -9.06977874 1.05E-07 2.20E-06 -1.101082181 0.121401217 Lyso-Phosphatidylcholines

C(16:0/18:2;2E,4E-dienoyl) aa L-Phosphatidylcholine PC aa C34:2 -9.150299365 1.20E-07 2.20E-06 -0.466270614 0.05095687 Phosphatidylcholines

C(18:2;9Z,12Z-dienoyl/18:4;9E,11E,13E,15E-tetraenoyl) aa L-Phosphatidylcholine PC aa C36:6 9.963411588 1.25E-07 2.20E-06 1.258088089 0.126270814 Phosphatidylcholines

Octadecadienylcarnitine C18:2 -8.513168851 2.56E-07 4.08E-06 -2.498208596 0.293452255 Acylcarnitines

Tetradecadienylcarnitine C14:2 -8.435779611 3.38E-07 4.93E-06 -1.982172982 0.234972116 Acylcarnitines

C(16:0/20:1;11Z-enoyl) aa Phosphatidylcholine PC aa C36:1 11.07174403 4.17E-07 5.61E-06 1.211814171 0.109451065 Phosphatidylcholines

Phosphatidylcholine with acyl-alkyl residue sum C38:2 PC ae C38:2 -8.9447655 6.37E-07 7.97E-06 -0.889849579 0.099482717 Phosphatidylcholines

C(18:2;9Z,12Z-dienoyl/16:1;7Z-enoyl) aa Phosphatidylcholine PC aa C34:3 -8.02139501 1.35E-06 1.57E-05 -1.006705112 0.125502498 Phosphatidylcholines

Hexadecadienylcarnitine C16:2 -7.318894289 2.57E-06 2.81E-05 -2.260155226 0.308811022 Acylcarnitines

Phosphatidylcholine with acyl-alkyl residue sum C40:2 PC ae C40:2 -7.079451734 2.98E-06 3.07E-05 -0.666891038 0.094200944 Phosphatidylcholines

C(22:5;4Z,7Z,10Z,13Z,16Z,19Z-hexaenoyl/e18:0) ae L-Phosphatidylcholine PC ae C40:6 -7.276790717 3.57E-06 3.47E-05 -0.628409335 0.086358033 Phosphatidylcholines

C(16:1;9E-enoyl/16:1;9E-enoyl) aa Phosphatidylcholine PC aa C32:2 7.42427024 5.59E-06 5.15E-05 1.325192627 0.178494665 Phosphatidylcholines

C18:0 Sphingomyelin SM C18:0 7.640123298 9.13E-06 7.99E-05 0.945148447 0.123708533 Sphingomyelins

C(18:1;6Z,9Z,12Z-trienoyl/e16:0) ae L-Phosphatidylcholine PC ae C34:3 -6.303549989 1.09E-05 9.12E-05 -0.845655366 0.134155415 Phosphatidylcholines

C(11:0/25:0) aa Phosphatidylcholine PC aa C36:0 -6.468471769 1.49E-05 0.000118797 -0.791770667 0.122404595 Phosphatidylcholines

Hydroxyproline OH-Pro -6.07394404 1.65E-05 0.0001254 -0.603386623 0.099340168 Biogenic Amines

C(20:1;13Z-enoyl/18:2;9Z,12Z-dienoyl) aa L-Phosphatidylcholine PC aa C38:3 7.16932514 2.24E-05 0.000163602 1.078395705 0.150418022 Phosphatidylcholines

C(22:5;7Z,10Z,13Z,16Z,19Z-pentaenoyl/18:1;11Z-enoyl) aa L-Phosphatidylcholine PC aa C40:6 6.737660503 3.01E-05 0.00020419 0.820985476 0.121850229 Phosphatidylcholines

C(18:0/14:0) aa Phosphatidylcholine PC aa C32:0 -6.74539856 3.03E-05 0.00020419 -0.830776826 0.123162007 Phosphatidylcholines

C(20:4;5E,8E,11E,14E-tetraenoyl/e18:0) ae L-Phosphatidylcholine PC ae C38:4 -6.950486049 3.43E-05 0.000217298 -0.814096275 0.117127963 Phosphatidylcholines

C(20:1;9Z-enoyl/e16:0) ae L-Phosphatidylcholine PC ae C36:1 -5.802389172 3.48E-05 0.000217298 -0.557957801 0.09616001 Phosphatidylcholines
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Significantly altered metabolites between HFD and Chow in the liver samples.
SHORT ADJUSTED FOLD METABOLON

MOLECULE NAME T P-VALUE P-VALUE CHANGE SE CLASS

Sphingomyelin with acyl residue sum C20:2 SM C20:2 -6.581077486 3.65E-05 0.000220103 -1.269922259 0.192965705 Sphingomyelins

Putrescine Putrescine 5.96957651 6.18E-05 0.000360755 1.616966542 0.270867881 Biogenic Amines

Phosphatidylcholine with acyl-alkyl residue sum C40:4 PC ae C40:4 -5.972509986 7.60E-05 0.000428831 -0.582167426 0.0974745 Phosphatidylcholines

Aspartic acid Asp -5.722766937 8.46E-05 0.00046273 -0.697933973 0.121957434 Amino Acids

C18:1;9Z,12Z-dienoyl a Lysophosphatidylcholine lysoPC a C18:2 -5.71578709 9.49E-05 0.000503457 -1.008726926 0.176480843 Lyso-Phosphatidylcholines

C18:1;11Z-enoyl Sphingomyelin SM C18:1 5.200054855 9.84E-05 0.000506359 0.887607177 0.170691887 Sphingomyelins

C(22:6;4Z,7Z,10Z,13Z,16Z,19Z-pentaenoyl/e16:0) ae L-Phosphatidylcholine PC ae C38:6 -5.111585542 0.00010475 0.000523751 -0.424770206 0.083099501 Phosphatidylcholines

C14:0 a Lysophosphatidylcholine lysoPC a C14:0 6.659219104 0.000108863 0.000529195 0.361476147 0.054282062 Lyso-Phosphatidylcholines

C(22:5;4Z,7Z,10Z,13Z,16Z-pentaenoyl/e18:0) ae L-Phosphatidylcholine PC ae C40:5 -5.826766562 0.000119343 0.000564461 -0.514331731 0.088270523 Phosphatidylcholines

C(12:0/26:0) aa Phosphatidylcholine PC aa C38:0 -5.745133729 0.000165461 0.00076199 -0.530674524 0.092369394 Phosphatidylcholines

C24:1 Sphingomyelin SM C24:1 -5.813020619 0.000177788 0.000797769 -0.825868849 0.142072238 Sphingomyelins

Phosphatidylcholine with acyl-alkyl residue sum C38:3 PC ae C38:3 -5.509829851 0.000188432 0.00082439 -0.542330086 0.098429552 Phosphatidylcholines

Decadienylcarnitine C10:2 5.088121671 0.000218641 0.000933224 0.311707276 0.061261758 Acylcarnitines

Hydroxytetradecadienylcarnitine C14:2-OH -4.829884199 0.000241704 0.001007099 -0.820455033 0.169870539 Acylcarnitines

C(22:4;7Z,10Z,13Z,16Z,19Z-tetraenoyl/18:1;9Z-enoyl) aa Phosphatidylcholine PC aa C40:5 5.465435511 0.000301708 0.00122788 0.843748765 0.154379054 Phosphatidylcholines

Serotonin Serotonin -4.580557281 0.000315976 0.001256724 -0.782373943 0.170803222 Biogenic Amines

C(16:0/e18:0) ae D-Phosphatidylcholine PC ae C34:0 -4.704307546 0.000353601 0.001360752 -0.448168688 0.095267727 Phosphatidylcholines

Hydroxysphingomyelin with acyl residue sum C22:1 SM (OH) C22:1 -4.546397284 0.000357683 0.001360752 -0.674724004 0.1484085 Sphingomyelins

Hexenoylcarnitine C6:1 4.493579457 0.000373443 0.001390479 0.598642787 0.13322181 Acylcarnitines

Hydroxysphingomyelin with acyl residue sum C16:1 SM (OH) C16:1 -4.375631183 0.000473072 0.001724741 -0.663386691 0.151609371 Sphingomyelins

C(20:1;11Z-enoyl/20:0) aa L-Phosphatidylcholine PC aa C40:1 -4.406882795 0.000592115 0.002114697 -0.345164401 0.078323935 Phosphatidylcholines

Phosphatidylcholine with acyl-alkyl residue sum C40:1 PC ae C40:1 -4.18512885 0.000846017 0.00296106 -0.41345793 0.098792163 Phosphatidylcholines

Hydroxysphingomyelin with acyl residue sum C24:1 SM (OH) C24:1 -4.182484677 0.000897959 0.003081231 -0.555571808 0.132832957 Sphingomyelins

C(22:0/e20:0) ae L-Phosphatidylcholine PC ae C42:0 4.480543288 0.000969359 0.003262266 0.34256801 0.076456802 Phosphatidylcholines

C(18:0/18:2;9Z,12Z-dienoyl) aa L-Phosphatidylcholine PC aa C36:2 4.652146115 0.001002208 0.003309177 0.383683466 0.082474509 Phosphatidylcholines

Glutamine Gln 4.06982264 0.001039155 0.003367633 0.313354714 0.076994685 Amino Acids

C16:1;9Z-enoyl a Lysophosphatidylcholine lysoPC a C16:1 4.126528723 0.001145627 0.003645176 0.898164399 0.217656161 Lyso-Phosphatidylcholines

C(21:1;12Z-enoyl/21:1;12Z-enoyl) aa Phosphatidylcholine PC aa C42:2 -3.966069548 0.001183369 0.003698027 -0.575692991 0.145154538 Phosphatidylcholines



A
.
3

s
u

p
p

l
e

m
e

n
t

a
r

y
t

a
b

l
e

s
-

p
a

r
t

3
1

3
3

Significantly altered metabolites between HFD and Chow in the liver samples.
SHORT ADJUSTED FOLD METABOLON

MOLECULE NAME T P-VALUE P-VALUE CHANGE SE CLASS

Butenylcarnitine C4:1 -4.216019793 0.001227714 0.003769297 -0.402490487 0.095466935 Acylcarnitines

C(20:4;5E,8E,11E,14E-tetraenoyl/e16:0) ae L-Phosphatidylcholine PC ae C36:4 -4.087347232 0.001543422 0.004656878 -0.427507713 0.104592952 Phosphatidylcholines

C18:1;9E-enoyl a Lysophosphatidylcholine lysoPC a C18:1 4.286672817 0.001859507 0.005515487 0.715671708 0.166952725 Lyso-Phosphatidylcholines

2-Methylbutyrylcarnitine C5 3.911475813 0.002016114 0.005880331 0.760849608 0.194517273 Acylcarnitines

Glutaconylcarnitine C5:1-DC 4.034792344 0.00210586 0.006041403 0.687227981 0.170325489 Acylcarnitines

C(18:0;12Z-enoyl/22:4;7Z,10Z,13Z,16Z-tetraenoyl) aa Phosphatidylcholine PC aa C40:4 4.105081862 0.002243315 0.006331937 0.490070825 0.119381499 Phosphatidylcholines

Pimelylcarnitine C7-DC -3.631687795 0.002411377 0.006698268 -0.990235673 0.272665419 Acylcarnitines

C(18:1;9Z-enoyl/e14:0) ae L-Phosphatidylcholine PC ae C32:1 3.54955285 0.002749436 0.007462906 0.448253682 0.126284549 Phosphatidylcholines

C(16:1;9Z-enoyl/e14:0) ae L-Phosphatidylcholine PC ae C30:1 -3.708774049 0.002771936 0.007462906 -1.113488649 0.300230921 Phosphatidylcholines

Hydroxytetradecenoylcarnitine C14:1-OH -3.538281888 0.002906404 0.007635125 -0.766372362 0.21659449 Acylcarnitines

Phosphatidylcholine with acyl-alkyl residue sum C42:2 PC ae C42:2 3.513573088 0.002923162 0.007635125 0.515241583 0.146643195 Phosphatidylcholines

Spermine Spermine -3.501661517 0.002973632 0.007652731 -0.491506822 0.140363887 Biogenic Amines

C(16:0/18:4;9Z,11E,13E,15Z-tetraenoyl) aa L-Phosphatidylcholine PC aa C34:4 3.495071843 0.003103006 0.007869942 0.470858299 0.134720635 Phosphatidylcholines

Hydroxyhexadecadienylcarnitine C16:2-OH -3.476691199 0.003521703 0.008804258 -0.682542932 0.196319688 Acylcarnitines

lysoPC a C20:3 lysoPC a C20:3 3.893178042 0.003688499 0.00909137 0.70277155 0.180513591 Lyso-Phosphatidylcholines

Hydroxysphingomyelin with acyl residue sum C22:2 SM (OH) C22:2 -3.496881639 0.003917667 0.009522108 -0.474129905 0.135586489 Sphingomyelins

C(18:1;6Z-enoyl/24:0) aa L-Phosphatidylcholine PC aa C42:1 -3.408185802 0.004161338 0.009975811 -0.584566365 0.171518338 Phosphatidylcholines

C(20:4;(5Z,8Z,11Z,14Z-tetraenoyl/e18:1;9Z-en) ae L-Phosphatidylcholine PC ae C38:5 -3.831394156 0.004265876 0.01008822 -0.442305347 0.115442403 Phosphatidylcholines

Phosphatidylcholine with acyl-alkyl residue sum C44:6 PC ae C44:6 -3.381274509 0.004376262 0.010211277 -0.308334837 0.09118894 Phosphatidylcholines

Dodecanoylcarnitine C12 3.621698249 0.004591002 0.010571385 1.052186109 0.290522853 Acylcarnitines

Propionylcarnitine C3 3.225697496 0.005393048 0.012256927 0.873466208 0.270783671 Acylcarnitines

C(16:0/26:0) aa L-Phosphatidylcholine PC aa C42:0 -3.178008138 0.005842929 0.013109137 -0.403063134 0.126828855 Phosphatidylcholines

C(16:0/e14:0) ae Phosphatidylcholine (PC Ae C30:0) PC ae C30:0 3.226628073 0.005952734 0.013186166 0.579631224 0.179639925 Phosphatidylcholines

Aldohexose H1 3.179754358 0.006027961 0.013186166 0.595193673 0.187182281 Hexoses

Dodecenoylcarnitine C12:1 -3.063020165 0.00838659 0.018119176 -0.495078739 0.161630911 Acylcarnitines

Glycine Gly -2.830439712 0.012068774 0.02575653 -0.392547353 0.138687763 Amino Acids

C(20:3;5Z,8Z,11Z-trienoyl/18:1;9Z-enoyl) aa L-Phosphatidylcholine PC aa C38:4 3.116888933 0.012258279 0.025845769 0.499241034 0.160172866 Phosphatidylcholines

Hydroxyhexadecenoylcarnitine C16:1-OH -2.800511087 0.012944217 0.026967119 -0.899745292 0.321278961 Acylcarnitines
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Significantly altered metabolites between HFD and Chow in the liver samples.
SHORT ADJUSTED FOLD METABOLON

MOLECULE NAME T P-VALUE P-VALUE CHANGE SE CLASS

Alanine Ala 2.768647786 0.014875106 0.030625218 0.288156961 0.104078591 Amino Acids

Phosphatidylcholine with acyl-alkyl residue sum C30:2 PC ae C30:2 -2.77972129 0.018533605 0.037713731 -0.396587618 0.14267172 Phosphatidylcholines

C(10:0/16:0) aa Phosphatidylcholine PC aa C26:0 -2.627196328 0.020667764 0.041573089 -0.622816473 0.237065067 Phosphatidylcholines

Hexanoylcarnitine (Fumarylcarnitine) C6 (C4:1-DC) 2.574285087 0.021012376 0.041785975 0.531064267 0.206295825 Acylcarnitines

C(20:0/e18:0) ae L-Phosphatidylcholine PC ae C38:0 2.538697342 0.021898434 0.043058718 0.267700123 0.105447829 Phosphatidylcholines

Myristoleylcarnitine (Tetradecenoylcarnitine) C14:1 -2.487546338 0.024325198 0.047298996 -0.968173648 0.389208287 Acylcarnitines

C(20:4;5Z,8Z,11Z,14Z-tetraenoyl/18:1;9Z-enoyl) aa L-Phosphatidylcholine PC aa C38:5 2.567230784 0.025765113 0.049548294 0.362494069 0.141200421 Phosphatidylcholines
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Table A18: Predictive potential of liver metabolites under Chow and HFD. Only metabolites are shown that were significant for at least one of plasma
Cholesterol, Insulin, or TAG levels.

adj. adj. adj. adj. adj. adj.

p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value p-value

cholesterol cholesterol cholesterol cholesterol insulin insulin insulin insulin tag tag tag tag metabolon

metabolite chow chow hfd hfd chow chow hfd hfd chow chow hfd hfd class

Asn 0.911994114 1 0.101759262 1 0.411918124 1 0.009818572 1 0.480716541 1 0.35446621 1 Amino Acids

C10 0.854410205 1 0.400112292 1 0.238000155 1 0.006879049 1 0.254020658 1 0.319883145 1 Acylcarnitines

C12 0.751144335 1 0.340191824 1 0.255508452 1 0.003942599 0.66235656 0.347216597 1 0.579985278 1 Acylcarnitines

C14 0.48417276 1 0.204513776 1 0.384812051 1 0.010539734 1 0.362260907 1 0.694101599 1 Acylcarnitines

C14.2.OH 0.337292874 1 0.514904041 1 0.563022103 1 0.003272801 0.556376116 0.318526037 1 0.468515419 1 Acylcarnitines

Ile 0.591156898 1 0.11433655 1 0.689260705 1 0.011301566 1 0.348959479 1 0.149610849 1 Amino Acids

PC.aa.C30.0 0.451584975 1 0.318219775 1 0.903084779 1 0.007618332 1 0.585584451 1 0.919721661 1 Phosphatidylcholines

PC.aa.C30.2 0.518588186 1 0.646856413 1 0.550718289 1 0.005424338 0.90586452 0.850726102 1 0.684805555 1 Phosphatidylcholines

PC.aa.C42.2 0.557276182 1 0.699838857 1 0.450782606 1 0.011439119 1 0.716218534 1 0.755201656 1 Phosphatidylcholines

PC.ae.C30.0 0.654817899 1 0.690010183 1 0.621912107 1 0.003672629 0.62067435 0.71488709 1 0.191483907 1 Phosphatidylcholines

PC.ae.C32.1 0.631270347 1 0.986749901 1 0.526978964 1 0.001456876 0.252039497 0.754639991 1 0.982411266 1 Phosphatidylcholines

PC.ae.C36.0 0.901923703 1 0.364969504 1 0.458248493 1 0.010656327 1 0.795761033 1 0.968450207 1 Phosphatidylcholines

Phe 0.548217508 1 0.162330625 1 0.827752553 1 0.003153427 0.539236098 0.262329618 1 0.19363353 1 Amino Acids

Pro 0.700773988 1 0.103065193 1 0.546724499 1 0.002894156 0.497794751 0.368814639 1 0.472794182 1 Amino Acids

Thr 0.99812224 1 0.177779704 1 0.458711955 1 0.001293661 0.225097085 0.558354374 1 0.543179564 1 Amino Acids

Trp 0.4612156 1 0.203961116 1 0.882486841 1 0.001130763 0.197883548 0.384615888 1 0.321460962 1 Amino Acids

lysoPC.a.C17.0 0.453764884 1 0.696689284 1 0.183931667 1 0.006732498 1 0.730805384 1 0.49244394 1 Lyso-Phosphatidylcholines

C3.OH 0.004939188 0.864357963 0.334941562 1 0.767368896 1 0.5416634 1 0.347651109 1 0.388735991 1 Acylcarnitines

PC.ae.C44.5 0.895475752 1 0.699877356 1 0.406369788 1 0.998818923 1 0.979497158 1 0.007997177 1 Phosphatidylcholines

SM.C20.2 0.488898187 1 0.754897739 1 0.603701175 1 0.797515251 1 0.901199188 1 0.006287184 1 Sphingomyelins

SM.C24.1 0.303389332 1 0.933367869 1 0.407842386 1 0.436079254 1 0.355682348 1 0.002724067 0.476711799 Sphingomyelins
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Table A19: Comparison of metabolites present in the communities between Chow and HFD networks.
community chow community hfd total elements

1 1 6 PC.ae.C36.4, PC.ae.C40.5, PC.aa.C34.1, PC.ae.C40.6, SM.C24.0, SM.C18.1

1 2 3 PC.ae.C34.2, Carnosine, SM.C20.2

1 3 5 SM.C18.0, SM..OH..C24.1, PC.ae.C36.3, PC.aa.C32.0, PC.ae.C38.2

1 6 6 PC.ae.C36.2, PC.ae.C34.0, PC.ae.C38.6, PC.ae.C36.5, PC.ae.C34.1, PC.aa.C34.2

2 1 6 PC.ae.C42.3, PC.aa.C38.0, PC.ae.C38.3, PC.ae.C42.2, PC.ae.C38.0, PC.ae.C38.5

2 2 10 C5.DC..C6.OH., PC.aa.C36.6, PC.aa.C34.3, PC.aa.C34.4, C5.M.DC, PC.aa.C32.1, PC.ae.C36.0, PC.aa.C36.5, PC.ae.C40.2, PC.aa.C32.2

2 3 3 lysoPC.a.C16.1, PC.aa.C32.3, lysoPC.a.C18.1

2 6 2 PC.ae.C34.3, PC.ae.C36.1

2 7 1 His

3 1 7 PC.ae.C44.5, PC.aa.C36.0, PC.ae.C44.4, PC.aa.C42.4, PC.aa.C42.5, PC.ae.C44.6, PC.aa.C40.2

3 2 1 PC.ae.C42.4

3 3 5 PC.aa.C30.0, t4.OH.Pro, lysoPC.a.C14.0, PC.ae.C38.1, PC.aa.C38.1

3 5 2 PC.aa.C42.0, PC.aa.C42.1

3 6 19 lysoPC.a.C26.0, PC.aa.C40.1, PC.aa.C42.2, PC.aa.C30.2, PC.ae.C32.1, PC.ae.C32.2, PC.aa.C26.0, PC.ae.C30.0, lysoPC.a.C28.1, PC.ae.C30.2,

PC.aa.C28.1, PC.ae.C30.1, lysoPC.a.C24.0, PC.aa.C24.0, PC.ae.C42.5, lysoPC.a.C28.0, PC.ae.C44.3, SM.C16.1, lysoPC.a.C26.1

4 1 9 SM.C16.0, PC.aa.C36.1, PC.aa.C40.5, PC.aa.C38.5, PC.aa.C40.6, PC.aa.C38.3, PC.aa.C36.2, PC.aa.C36.4, PC.aa.C38.6

4 3 1 Taurine

4 4 1 C18.1

4 5 1 SM.C24.1

4 6 2 SM..OH..C16.1, SM..OH..C22.1

5 1 3 C10.2, PC.aa.C36.3, PC.ae.C42.0

5 3 2 Spermidine, H1

5 4 13 C14.2, C14.2.OH, C16.1.OH, C16, C14.1, C16.1, C12.1, C16.2.OH, C18.1.OH, C18.2, C14, C14.1.OH, C16.2

6 2 2 C0, Ac.Orn

6 3 12 lysoPC.a.C16.0, Lys, Asn, Gly, Met, Orn, lysoPC.a.C18.2, Trp, lysoPC.a.C20.4, Spermine, Thr, C3

6 4 1 lysoPC.a.C17.0

6 5 1 Asp
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Table A20: KEGG pathways and GO terms enriched by genes present in edges of the Chow network.
adjusted

id description generatio bgratio p-value p-value count gene id

mmu04141 Protein processing in endoplasmic reticulum 7/59 163/8370 1.36E-04 0.018769087 7 Sec63/Stt3a/Hsp90b1/Ssr3/Derl1/Sec24d/Tram1

mmu03060 Protein export 3/59 28/8370 9.62E-04 0.066351375 3 Sec63/Srp54a/Sec11a

GO:0048193 Golgi vesicle transport 12/158 257/23239 2.05E-07 4.91E-04 12 Kif13a/Rab1a/Vamp3/Mppe1/Klhl20/Golga5/Tmed2/Sec24d/

Ddhd2/Rab1b/Scfd1/Scyl1

GO:0006613 cotranslational protein targeting to membrane 4/158 18/23239 5.84E-06 0.004675 4 Sec63/Srp54a/Ssr3/Tram1

GO:0006614 SRP-dependent cotranslational protein targeting to membrane 4/158 17/23239 4.57E-06 0.004675 4 Sec63/Srp54a/Ssr3/Tram1

GO:0006888 ER to Golgi vesicle-mediated transport 7/158 124/23239 2.27E-05 0.013642464 7 Rab1a/Mppe1/Tmed2/Sec24d/Ddhd2/Rab1b/Scfd1

GO:0045047 protein targeting to ER 4/158 32/23239 6.38E-05 0.030607807 4 Sec63/Srp54a/Ssr3/Tram1

GO:0072599 establishment of protein localization to endoplasmic reticulum 4/158 36/23239 1.02E-04 0.04090721 4 Sec63/Srp54a/Ssr3/Tram1



1
3

8
a

p
p

e
n

d
i
x

Table A21: KEGG pathways and GO terms pathways enriched by genes present in edges of the HFD network.
adjusted

id description generatio bgratio p-value p-value count gene id

mmu00561 Glycerolipid metabolism 6/143 61/8370 0.000574079 0.09826275 6 Gpat4/Dgkz/Gk/Agpat1/Lpin2/Agpat2

mmu05010 Alzheimer disease 10/143 175/8370 0.000802145 0.09826275 10 Atp2a2/Atp5b/Bid/Cox5a/Ndufa2/Mapk3/Bace2/Ndufb5/Ndufb9/Ern1

mmu00190 Oxidative phosphorylation 8/143 134/8370 0.002034651 0.166163147 8 Atp5b/Cox5a/ND3/Ndufa2/Ndufb5/Ndufb9/Atp6v1g2/Ppa1

mmu04010 MAPK signaling pathway 12/143 294/8370 0.004409988 0.180074491 12 Mapkapk3/Erbb3/Fgfr4/Jun/Jund/Mknk2/Myc/Pdgfa/Rac1/Rasa1/

Map3k2/Mapk3

mmu04072 Phospholipase D signaling pathway 8/143 149/8370 0.003925327 0.180074491 8 Dgkz/Adcy6/Pdgfa/Pip5k1c/Mapk3/Agpat1/Rapgef4/Agpat2

mmu04932 Non-alcoholic fatty liver disease (NAFLD) 8/143 151/8370 0.004255706 0.180074491 8 Bid/Cox5a/Jun/Ndufa2/Rac1/Ndufb5/Ndufb9/Ern1

mmu04520 Adherens junction 5/143 72/8370 0.007590962 0.206642843 5 Ctnna1/Pvrl2/Rac1/Tcf7/Mapk3

mmu05231 Choline metabolism in cancer 6/143 99/8370 0.00683156 0.206642843 6 Dgkz/Jun/Pdgfa/Pip5k1c/Rac1/Mapk3

mmu05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 5/143 72/8370 0.007590962 0.206642843 5 Atp2a2/Ctnna1/Dsc2/Itga3/Tcf7

GO:0043543 protein acylation 13/304 226/23239 9.59E-06 0.032238887 13 Trrap/Taf9/Nmt2/Abhd17a/Mapk3/Brd7/Park7/Naa40/Zdhhc4/Setd5/Iws1/

Naa60/Brd8

GO:0045786 negative regulation of cell cycle 18/304 445/23239 2.60E-05 0.043727346 18 Trrap/Gadd45gip1/Dgkz/Dlg1/Gata6/Hpgd/Recql5/Myc/Pmp22/Ppp2r3a

/Zbtb17/Topbp1/Ern1/Brd7/Angel2/Cep192/Tom1l1

GO:0006473 protein acetylation 10/304 183/23239 0.000156369 0.049557471 10 Trrap/Taf9/Mapk3/Brd7/Park7/Naa40/Setd5/Iws1/Naa60/Brd8

GO:0006475 internal protein amino acid acetylation 9/304 145/23239 0.000127746 0.049557471 9 Trrap/Taf9/Mapk3/Brd7/Naa40/Setd5/Iws1/Naa60/Brd8

GO:0009108 coenzyme biosynthetic process 10/304 178/23239 0.000124607 0.049557471 10 Gk/Mocs2/Myc/Nfs1/Naprt/Zbtb20/Adck3/Coq10b/Mocos

GO:0016573 histone acetylation 9/304 137/23239 8.27E-05 0.049557471 9 Trrap/Taf9/Mapk3/Brd7/Naa40/Setd5/Iws1/Naa60/Brd8

GO:0018393 internal peptidyl-lysine acetylation 9/304 142/23239 0.000108904 0.049557471 9 Trrap/Taf9/Mapk3/Brd7/Naa40/Setd5/Iws1/Naa60/Brd8

GO:0018394 peptidyl-lysine acetylation 9/304 153/23239 0.00019174 0.049557471 9 Trrap/Taf9/Mapk3/Brd7/Naa40/Setd5/Iws1/Naa60/Brd8

GO:0034976 response to endoplasmic reticulum stress 11/304 213/23239 0.000122138 0.049557471 11 Hspa13/Bid/Jun/Pmp22/Ern1/Park7/Ube4b/Ufm1/Tmx1/Erp44

GO:0045981 positive regulation of nucleotide metabolic process 5/304 41/23239 0.000188835 0.049557471 5 Gadd45gip1/Gk/Myc/Zbtb20/Park7

GO:0090407 organophosphate biosynthetic process 17/304 473/23239 0.000182041 0.049557471 17 Gpat4/Gk/Dgkz/Adcy6/Atp5b/Mocs2/Myc/Nfs1/Pdgfa/Pip5k1c/Naprt/

Agpat1/Zbtb20/Agpat2/Mocos

GO:1900544 positive regulation of purine nucleotide metabolic process 5/304 41/23239 0.000188835 0.049557471 5 Gadd45gip1/Gk/Myc/Zbtb20/Park7

GO:1903580 positive regulation of ATP metabolic process 5/304 35/23239 8.72E-05 0.049557471 5 Gadd45gip1/Gk/Myc/Zbtb20/Park7
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Table A22: SNPs associated with LRGs of Chow graph.
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Table A23: SNPs associated with LRGs of HFD graph.
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Cobll1 X X X X X X X X X X X

Appl2 X X X X X X X X X

Topbp1 X X X X X X

Pbrm1 X X X X X

Lgr4 X X X

Tmed1 X X X

Rpl17 X X

Atp9b X X

Rac1 X X

Tmem205 X X

Hddc3 X X

Inhbe X X

Dgkz X

Cep192 X

Tbcc X

Setd5 X

CoX5a X
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Table A24: Metabolites influenced by the 10 LRGs selected for the Chow and HFD networks.
SHORT METABOLON FOLD ADJUSTED

NAME MOLECULE CLASS CHANGE P-VALUE P-VALUE LRG

PC.aa.C34.2 C(16:0/18:2;2E,4E-dienoyl) aa L-Phosphatidylcholine Phosphatidylcholines -0.466270614 1.20E-07 2.20E-06 Ddx3x

PC.ae.C36.3 C(20:3;8Z,11Z,14Z-trienoyl/e16:0) ae L-Phosphatidylcholine Phosphatidylcholines -1.233483754 2.06E-09 9.02E-08 Ddx3x

PC.ae.C36.2 C(18:1;9Z-enoyl/e18:1;1Z-en) ae L-Phosphatidylcholine Phosphatidylcholines -1.03751766 1.96E-09 9.02E-08 Ddx3x

PC.ae.C34.2 C(18:1;9Z,12Z-dienoyl/e16:0) ae L-Phosphatidylcholine Phosphatidylcholines -1.370791411 1.66E-08 4.89E-07 Ddx3x

SM.C20.2 Sphingomyelin with acyl residue sum C20:2 Sphingomyelins -1.269922259 3.65E-05 0.000220103 Ddx3x

PC.ae.C36.1 C(20:1;9Z-enoyl/e16:0) ae L-Phosphatidylcholine Phosphatidylcholines -0.557957801 3.48E-05 0.000217298 Ddx3x

PC.aa.C38.0 C(12:0/26:0) aa Phosphatidylcholine Phosphatidylcholines -0.530674524 0.000165461 0.00076199 Arhgap24, Gk, Cobll1

PC.aa.C40.2 C(20:1;11E-enoyl/20:1;11E-enoyl) aa L-Phosphatidylcholine Phosphatidylcholines -0.038473213 0.710597926 0.7272201 Arhgap24

PC.aa.C42.5 C(22:1;7Z,10Z,13Z,16Z,19Z-pentanoyl/20:0) aa L-Phosphatidylcholine Phosphatidylcholines 0.012277716 0.890667707 0.890667707 Arhgap24, Cd82, Gk

SM.C24.0 C24:0 Sphingomyelin Sphingomyelins 0.167049525 0.157145082 0.221777333 Arhgap24

PC.aa.C42.6 C(22:6;4Z,7Z,10Z,13Z,16Z,19Z-hexaenoyl/20:0) aa Phosphatidylcholine Phosphatidylcholines 0.137708651 0.046976764 0.083039734 Arhgap24

PC.ae.C42.0 C(22:0/e20:0) ae L-Phosphatidylcholine Phosphatidylcholines 0.34256801 0.000969359 0.003262266 Arhgap24, Gk, Cobll1

PC.aa.C40.4 C(18:0;12Z-enoyl/22:4;7Z,10Z,13Z,16Z-tetraenoyl) aa Phosphatidylcholine Phosphatidylcholines 0.490070825 0.002243315 0.006331937 Arhgap24, Gk, Cobll1

PC.aa.C36.2 C(18:0/18:2;9Z,12Z-dienoyl) aa L-Phosphatidylcholine Phosphatidylcholines 0.383683466 0.001002208 0.003309177 Arhgap24, Gk

PC.ae.C42.2 Phosphatidylcholine with acyl-alkyl residue sum C42:2 Phosphatidylcholines 0.515241583 0.002923162 0.007635125 Arhgap24

PC.aa.C36.3 C(18:3;6Z,9Z,12Z-trienoyl/18:0) aa Phosphatidylcholine Phosphatidylcholines 0.243808025 0.036635409 0.067486279 Arhgap24

PC.ae.C42.1 Phosphatidylcholine with acyl-alkyl residue sum C42:1 Phosphatidylcholines -0.176489614 0.128192533 0.186947444 Cd82, Appl2, Cobll1

PC.ae.C40.3 Phosphatidylcholine with acyl-alkyl residue sum C40:3 Phosphatidylcholines -0.173194963 0.094790077 0.149969482 Cd82, Appl2

PC.aa.C42.4 Phosphatidylcholine with diacyl residue sum C42:4 Phosphatidylcholines 0.089705388 0.358261969 0.417972297 Cd82

PC.ae.C40.5 C(22:5;4Z,7Z,10Z,13Z,16Z-pentaenoyl/e18:0) ae L-Phosphatidylcholine Phosphatidylcholines -0.514331731 0.000119343 0.000564461 Cd82, Appl2, Cobll1

PC.ae.C40.4 Phosphatidylcholine with acyl-alkyl residue sum C40:4 Phosphatidylcholines -0.582167426 7.60E-05 0.000428831 Cd82, Appl2, Cobll1

SM.C18.1 C18:1;11Z-enoyl Sphingomyelin Sphingomyelins 0.887607177 9.84E-05 0.000506359 Cd82, Appl2

PC.aa.C40.5 C(22:4;7Z,10Z,13Z,16Z,19Z-tetraenoyl/18:1;9Z-enoyl) aa Phosphatidylcholine Phosphatidylcholines 0.843748765 0.000301708 0.00122788 Cd82, Appl2, Cobll1

PC.aa.C38.5 C(20:4;5Z,8Z,11Z,14Z-tetraenoyl/18:1;9Z-enoyl) aa L-Phosphatidylcholine Phosphatidylcholines 0.362494069 0.025765113 0.049548294 Cd82, Appl2, Cobll1

PC.aa.C38.1 C(18:1;11E-enoyl/20:0) aa Phosphatidylcholine Phosphatidylcholines -0.267706204 0.086789162 0.140630587 Rapgef4, Smim13

t4.OH.Pro Hydroxyproline Biogenic Amines -0.603386623 1.65E-05 0.0001254 Rapgef4

lysoPC.a.C16.0 C16:0 a Lysophosphatidylcholine Lyso-Phosphatidylcholines -0.228280356 0.081355221 0.133057605 Rapgef4

Val Valine Amino Acids -0.367560007 0.097661643 0.151245907 Rapgef4, Smim13
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Metabolites influenced by the 10 LRGs selected for the Chow and HFD networks.
SHORT METABOLON FOLD ADJUSTED

NAME MOLECULE CLASS CHANGE P-VALUE P-VALUE LRG

Phe Phenylalanine Amino Acids -0.208019722 0.254189294 0.317736618 Rapgef4

Trp Tryptophan Amino Acids -0.162756332 0.45204104 0.503867402 Rapgef4

Thr Threonine Amino Acids -0.222649868 0.118520475 0.174294816 Rapgef4, Smim13

Pro Proline Amino Acids -0.245618252 0.276543266 0.343227458 Rapgef4, Smim13

Asn Asparagine Amino Acids -0.132257174 0.36666474 0.42494258 Rapgef4, Smim13

C3 Propionylcarnitine Acylcarnitines 0.873466208 0.005393048 0.012256927 Rapgef4

H1 Aldohexose Hexoses 0.595193673 0.006027961 0.013186166 Rapgef4

alpha.AAA 2-Aminoadipic acid Biogenic Amines -0.396150042 0.224209802 0.28850526 Smim13

C16.1.OH Hydroxyhexadecenoylcarnitine Acylcarnitines -0.899745292 0.012944217 0.026967119 Inhbe

C16.1 Palmitoleylcarnitine (Hexadecenoylcarnitine) Acylcarnitines -0.48754569 0.245294856 0.311062318 Inhbe

C16.OH Hydroxyhexadecanoylcarnitine Acylcarnitines -0.35882423 0.355525595 0.417563618 Inhbe

C14.2 Tetradecadienylcarnitine Acylcarnitines -1.982172982 3.38E-07 4.93E-06 Inhbe

C14 Myristylcarnitine (Tetradecanoylcarnitine) Acylcarnitines 0.638058621 0.09320799 0.149645855 Inhbe

C12 Dodecanoylcarnitine Acylcarnitines 1.052186109 0.004591002 0.010571385 Inhbe

C10 Decanoylcarnitine Acylcarnitines 0.121683069 0.402401585 0.457846443 Inhbe

PC.aa.C36.4 C(16:0/20:4;Z,8E,11E,14E,17E-tetraenoyl) aa L-Phosphatidylcholine Phosphatidylcholines -0.14112726 0.158462029 0.22184684 Myc, Cobll1

PC.ae.C38.5 C(20:4;(5Z,8Z,11Z,14Z-tetraenoyl/e18:1;9Z-en) ae L-Phosphatidylcholine Phosphatidylcholines -0.442305347 0.004265876 0.01008822 Myc, Gk, Cobll1

PC.aa.C38.6 C(16:0/22:6;4E,7E,10E,13E,16E,19E-hexaenoyl) aa L-Phosphatidylcholine Phosphatidylcholines 0.133453182 0.133347382 0.192857783 Myc, Gk, Cobll1

C10.2 Decadienylcarnitine Acylcarnitines 0.311707276 0.000218641 0.000933224 Myc

PC.aa.C40.6 C(22:5;7Z,10Z,13Z,16Z,19Z-pentaenoyl/18:1;11Z-enoyl) aa L-Phosphatidylcholine Phosphatidylcholines 0.820985476 3.01E-05 0.00020419 Myc

PC.aa.C38.4 C(20:3;5Z,8Z,11Z-trienoyl/18:1;9Z-enoyl) aa L-Phosphatidylcholine Phosphatidylcholines 0.499241034 0.012258279 0.025845769 Myc

PC.aa.C38.3 C(20:1;13Z-enoyl/18:2;9Z,12Z-dienoyl) aa L-Phosphatidylcholine Phosphatidylcholines 1.078395705 2.24E-05 0.000163602 Gk, Cobll1

PC.aa.C36.1 C(16:0/20:1;11Z-enoyl) aa Phosphatidylcholine Phosphatidylcholines 1.211814171 4.17E-07 5.61E-06 Gk

PC.ae.C36.4 C(20:4;5E,8E,11E,14E-tetraenoyl/e16:0) ae L-Phosphatidylcholine Phosphatidylcholines -0.427507713 0.001543422 0.004656878 Gk, Cobll1

PC.ae.C38.4 C(20:4;5E,8E,11E,14E-tetraenoyl/e18:0) ae L-Phosphatidylcholine Phosphatidylcholines -0.814096275 3.43E-05 0.000217298 Cobll1

SM..OH..C22.2 Hydroxysphingomyelin with acyl residue sum C22:2 Sphingomyelins -0.474129905 0.003917667 0.009522108 Appl2

PC.ae.C38.3 Phosphatidylcholine with acyl-alkyl residue sum C38:3 Phosphatidylcholines -0.542330086 0.000188432 0.00082439 Appl2
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Table A25: Pairwise metabolite correlations of control and siRNA knock-
down samples for candidate genes. The last column shows the
p-values obtained with the Steiger test, testing the difference be-
tween the two correlation coefficients.

CORRELATION CORRELATION CONTROL

METABOLITE 1 METABOLITE 2 GENE CONTROL KD VS. KD

PC.aa.C40.5 PC.ae.C40.5 Appl2 0.573 0.977 0.0528

PC.aa.C38.5 PC.ae.C40.5 Appl2 0.763 0.970 0.1797

PC.ae.C38.3 PC.ae.C38.4 Appl2 0.665 0.970 0.1147

PC.ae.C38.3 PC.ae.C40.5 Appl2 0.327 0.953 0.0614

PC.ae.C38.4 PC.ae.C40.5 Appl2 0.721 0.942 0.3008

PC.ae.C38.3 SM.C18.1 Appl2 0.780 0.780 0.9998

PC.ae.C38.4 PC.ae.C40.3 Appl2 0.564 0.694 0.7912

PC.aa.C38.5 PC.aa.C38.6 Cobbl1 0.995 0.999 0.2545

PC.aa.C40.4 PC.ae.C38.4 Cobbl1 0.959 0.995 0.2565

PC.aa.C38.6 PC.ae.C40.5 Cobbl1 0.793 0.994 0.0444

PC.aa.C36.4 PC.ae.C38.5 Cobbl1 0.864 0.993 0.0931

PC.ae.C38.4 PC.ae.C38.5 Cobbl1 0.796 0.993 0.0589

PC.aa.C38.3 PC.ae.C38.4 Cobbl1 0.542 0.983 0.0541

PC.aa.C38.5 PC.ae.C38.4 Cobbl1 0.936 0.980 0.5168

PC.aa.C40.5 PC.ae.C38.4 Cobbl1 0.906 0.978 0.4121

PC.aa.C38.0 PC.ae.C40.5 Cobbl1 0.576 0.978 0.0814

PC.aa.C38.6 PC.ae.C38.4 Cobbl1 0.951 0.976 0.6809

PC.aa.C36.4 PC.aa.C38.5 Cobbl1 0.976 0.964 0.8124

PC.aa.C36.4 PC.aa.C38.6 Cobbl1 0.993 0.958 0.3408

PC.aa.C38.5 PC.ae.C38.5 Cobbl1 0.933 0.951 0.8628

PC.aa.C38.0 PC.ae.C38.4 Cobbl1 0.689 0.934 0.3544

PC.aa.C38.5 PC.ae.C36.4 Cobbl1 0.963 0.918 0.6496

PC.aa.C36.4 PC.aa.C38.0 Cobbl1 0.836 0.915 0.7033

PC.aa.C38.6 PC.aa.C42.5 Gk 0.657 0.852 0.5585

PC.aa.C36.2 PC.aa.C38.6 Gk 0.164 -0.835 0.0931

PC.aa.C38.3 PC.aa.C38.6 Gk 0.362 -0.810 0.0649

PC.aa.C38.6 PC.aa.C40.4 Gk 0.942 0.735 0.3186

PC.aa.C38.0 PC.aa.C42.5 Gk 0.343 0.657 0.5982

PC.aa.C38.3 PC.ae.C38.5 Gk -0.027 -0.589 0.4272

PC.aa.C40.4 PC.ae.C38.5 Gk 0.715 0.540 0.7205

PC.aa.C36.1 PC.aa.C38.0 Gk 0.037 -0.442 0.5303

PC.aa.C36.1 PC.aa.C38.6 Gk 0.234 -0.297 0.5044

PC.aa.C38.3 PC.ae.C36.4 Gk 0.405 -0.264 0.3914

PC.aa.C36.1 PC.ae.C38.5 Gk -0.097 -0.178 0.9198

Phe H1 Rapgef4 0.770 0.846 0.7852

Pro lysoPC.a.C16.0 Rapgef4 -0.760 -0.813 0.8640

Trp lysoPC.a.C16.0 Rapgef4 -0.028 -0.706 0.2973

Phe t4.OH.Pro Rapgef4 0.733 0.700 0.9352

t4.OH.Pro lysoPC.a.C16.0 Rapgef4 0.656 0.692 0.9340

Pro PC.aa.C38.1 Rapgef4 -0.799 -0.581 0.5959

Pro t4.OH.Pro Rapgef4 -0.453 -0.513 0.9228

Phe lysoPC.a.C16.0 Rapgef4 0.388 0.513 0.8475

Phe PC.aa.C38.1 Rapgef4 0.238 0.508 0.6976

lysoPC.a.C16.0 PC.aa.C38.1 Rapgef4 0.981 0.317 0.0148

t4.OH.Pro PC.aa.C38.1 Rapgef4 0.506 0.292 0.7529

Trp PC.aa.C38.1 Rapgef4 -0.180 0.239 0.6016

Val lysoPC.a.C16.0 Rapgef4 0.012 -0.053 0.9356
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Table A26: Associations between hepatic gene expression levels and
metabolic traits: BMI (n=170), TAG (n=170), and HOMA-IR
(n=77) from human volunteers.
human bmi bmi tag tag homa-ir homa-ir

gene p-value r

2

p-value r

2

p-value r

2

RAPGEF4 0.7570 0.0006 0.7010 0.0009 0.2330 0.0189

ARHGAP24 0.0934 0.0167 0.0889 0.0171 0.8610 0.0004

GK 0.0034 0.0500 0.0887 0.0171 0.1010 0.0355

COBLL1 0.7430 0.0006 0.1570 0.0119 0.7300 0.0016

INHBE 0.0001 0.0842 < 0,0001 0.0990 0.0078 0.0906

CD82 0.8000 0.0004 0.1030 -0.0157 0.6410 0.0029

TAP1 0.0078 0.0413 0.1023 0.0158 0.1440 0.0282

SMIM13 0.0810 0.0180 0.0169 0.0335 0.1820 0.0237

DDX3X 0.0696 0.0009 0.9670 < 0,0010 0.6420 0.0029

MYC 0.0092 0.0397 0.7100 0.0008 0.2290 0.0190

APPL2 0.3890 0.0044 0.6100 0.0015 0.9700 < 0,0010

Table A27: Phenotype monitoring of Ex4 treated, CR and H>C mice, giving
the mean and standard deviation for each measured feature.

h>c cr ex4 p-value

Body weight at the end of the study (g) 47.26 ± 5.05 37.16 ± 6.40 39.37 ± 2.60 1.5E-03

Liver triglyceride levels (µg/mg) 7.73 ± 3.03 9.15 ± 3.67 17.76 ± 6.46 1.4E-03

Plasma triglyceride levels (mg/dl) 62.38 ± 12.85 43.02 ± 14.24 47.12 ± 10.80 1.8E-02

Plasma cholesterol levels (mg/dl) 67.15 ± 8.00 54.65 ± 13.62 60.51 ± 25.02 1.3E-01

Plasma insulin levels (mg/dl) 5.23 ± 3.74 0.31 ± 0.19 0.30 ± 0.11 2E-04

Table A28: 50 genes with the smallest adjusted p-values for the comparison
of liver expression profiles of exendin-4 treated mice compared
to calorie restricted mice.

AVERAGE ADJUSTED

GENE LOG2 FC EXPRESSION T P-VALUE P-VALUE

Mki67 4.822 5.85 23.49 3.45E-20 3.54E-16

Hist2h3b 3.473 9.08 20.67 1.09E-18 1.12E-14

Hist1h2ao 4.207 10.76 18.87 1.22E-17 1.25E-13

Hist1h2ap 4.207 10.76 18.87 1.22E-17 1.25E-13

D17H6S56E-5 6.189 7.57 18.59 1.81E-17 1.85E-13

Hist2h3c2 3.963 9.03 18.02 4.13E-17 4.23E-13

Hist2h3c1 3.963 9.03 18.02 4.13E-17 4.23E-13

Hist1h2af 4.108 8.05 16.49 4.17E-16 4.27E-12

Hist1h2ai 3.285 11.12 16.26 6.02E-16 6.17E-12

Gstm2 4.004 11.05 16.04 8.51E-16 8.72E-12

Hist1h2ag 3.741 10.70 14.98 4.89E-15 5.01E-11

Chpt1 -2.846 14.51 -14.83 6.31E-15 6.47E-11

Hist1h2ah 3.723 10.65 14.53 1.06E-14 1.08E-10

Ces3b -5.415 12.38 -14.49 1.14E-14 1.17E-10

Cenpm 3.071 5.18 14.31 1.56E-14 1.60E-10

Hist1h2ab 3.018 7.93 14.25 1.72E-14 1.76E-10

Hist1h3h 2.968 10.34 14.24 1.75E-14 1.79E-10

Hist1h3i 2.985 10.90 13.80 3.87E-14 3.97E-10

Inmt -5.833 12.46 -13.51 6.58E-14 6.75E-10

Hist1h1a 3.112 6.19 13.47 7.01E-14 7.19E-10

Hist1h2ae 3.174 7.00 13.19 1.18E-13 1.21E-09

Gstm3 5.013 11.59 13.00 1.68E-13 1.72E-09
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Top 50 DE genes in the liver Ex4 vs. CR.
AVERAGE ADJUSTED

GENE LOG2 FC EXPRESSION T P-VALUE P-VALUE

BC021614 3.151 9.56 12.81 2.40E-13 2.47E-09

Hist1h2ad 3.295 10.20 12.63 3.42E-13 3.50E-09

Hist1h3g 2.930 7.76 12.61 3.54E-13 3.63E-09

Wfdc21 -4.440 14.19 -12.54 4.05E-13 4.16E-09

Pigr -2.396 16.91 -12.07 1.01E-12 1.04E-08

Cyp2c54 -5.258 11.56 -12.06 1.04E-12 1.07E-08

Hist1h2ak 3.289 7.28 12.01 1.15E-12 1.18E-08

Hist1h2an 3.152 11.13 11.94 1.32E-12 1.35E-08

Mcm5 3.554 5.51 11.85 1.57E-12 1.61E-08

Car1 -3.350 6.83 -11.67 2.27E-12 2.32E-08

Serpina1d -1.920 17.38 -11.65 2.39E-12 2.45E-08

Hist1h3e 2.486 11.12 11.52 3.11E-12 3.19E-08

Srxn1 3.577 10.96 11.32 4.63E-12 4.75E-08

Gm6682 1.859 12.87 11.18 6.23E-12 6.39E-08

Palmd 1.895 12.48 11.17 6.37E-12 6.54E-08

Scnn1a -3.477 9.18 -11.10 7.36E-12 7.54E-08

Acadsb -1.601 13.26 -11.08 7.75E-12 7.95E-08

Slc27a5 -2.700 14.58 -11.06 8.00E-12 8.20E-08

Serpina3m -1.960 18.18 -10.97 9.69E-12 9.93E-08

Nox4 -2.428 9.09 -10.94 1.02E-11 1.05E-07

Mcm2 2.633 5.85 10.80 1.40E-11 1.43E-07

Rorc -2.491 9.69 -10.77 1.50E-11 1.53E-07

H2afx 1.764 8.66 10.76 1.53E-11 1.57E-07

Csad -2.972 13.99 -10.69 1.75E-11 1.79E-07

Tuba1b 1.871 11.10 10.68 1.81E-11 1.85E-07

Mcm6 3.640 5.90 10.63 1.99E-11 2.04E-07

Cyp2d9 -2.714 17.88 -10.61 2.11E-11 2.16E-07

Slc48a1 2.193 12.69 10.60 2.15E-11 2.20E-07

Table A29: 50 genes with the smallest adjusted p-values for the comparison
of liver expression profiles of exendin-4 treated mice compared
to diet switch H>C mice.

AVERAGE ADJUSTED

GENE LOG2 FC EXPRESSION T P-VALUE P-VALUE

Hist2h3b 3.815 9.08 22.20 1.60E-19 1.05E-15

Mki67 4.617 5.85 22.00 2.04E-19 1.05E-15

Hist2h3c2 4.409 9.03 19.61 4.45E-18 1.14E-14

Hist2h3c1 4.409 9.03 19.61 4.45E-18 1.14E-14

Cyp4a31 5.271 10.15 18.90 1.17E-17 2.05E-14

D17H6S56E-5 6.428 7.57 18.89 1.20E-17 2.05E-14

Chpt1 -3.573 14.51 -18.21 3.15E-17 4.62E-14

Ces3b -6.668 12.38 -17.45 9.62E-17 1.23E-13

App 3.499 12.99 16.93 2.12E-16 2.42E-13

Hist1h2ao 3.679 10.76 16.14 7.23E-16 6.74E-13

Hist1h2ap 3.679 10.76 16.14 7.23E-16 6.74E-13

Slc15a5 -4.164 6.92 -15.96 9.70E-16 8.29E-13

Acadsb -2.291 13.26 -15.50 2.07E-15 1.63E-12

Hist1h1a 3.560 6.19 15.07 4.19E-15 3.07E-12

Hist1h2ai 3.020 11.12 14.62 9.08E-15 6.21E-12

Trhde -2.837 4.97 -14.42 1.28E-14 8.17E-12

Haao -3.341 13.99 -14.29 1.61E-14 8.74E-12

Hist1h2af 3.641 8.05 14.29 1.60E-14 8.74E-12

Acot29 4.943 11.78 14.29 1.62E-14 8.74E-12

Inmt -6.273 12.46 -14.20 1.88E-14 9.63E-12

Wfdc21 -5.103 14.19 -14.09 2.28E-14 1.11E-11

Hist1h2ab 3.000 7.93 13.86 3.48E-14 1.62E-11

Cenpm 3.011 5.18 13.72 4.47E-14 1.99E-11

H2afx 2.295 8.66 13.69 4.70E-14 2.01E-11
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Top 50 DE genes in the liver Ex4 vs. H>C.
AVERAGE ADJUSTED

GENE LOG2 FC EXPRESSION T P-VALUE P-VALUE

Scnn1a -4.348 9.18 -13.58 5.78E-14 2.37E-11

Car1 -3.948 6.83 -13.45 7.27E-14 2.87E-11

Srxn1 4.335 10.96 13.42 7.68E-14 2.92E-11

Hist1h3h 2.844 10.34 13.35 8.77E-14 3.21E-11

Ido2 -3.175 10.16 -13.26 1.03E-13 3.65E-11

Hist1h2ag 3.377 10.70 13.22 1.11E-13 3.79E-11

Hist1h2ah 3.437 10.65 13.12 1.34E-13 4.45E-11

Ghr9 -2.121 16.88 -13.07 1.49E-13 4.76E-11

Rplp1 1.503 16.92 13.03 1.59E-13 4.93E-11

Ces1e -3.943 11.54 -12.95 1.84E-13 5.55E-11

Rps12 1.922 13.14 12.80 2.44E-13 7.14E-11

Myc 4.264 8.71 12.67 3.13E-13 8.92E-11

Slc27a59 -3.144 14.58 -12.60 3.61E-13 1.00E-10

Serpina1d -2.122 17.38 -12.58 3.72E-13 1.00E-10

AI506816 4.909 7.29 12.46 4.73E-13 1.24E-10

Ttc39c -3.409 13.90 -12.30 6.45E-13 1.61E-10

Nt5dc2 2.773 9.10 12.31 6.31E-13 1.61E-10

Hist1h3i 2.713 10.90 12.27 6.91E-13 1.69E-10

Serpinb6a 2.559 7.57 12.25 7.08E-13 1.69E-10

Hnrnpa1 1.698 10.08 12.21 7.66E-13 1.79E-10

Mcm2 3.029 5.85 12.15 8.71E-13 1.98E-10

Cyp2d9 -3.166 17.88 -12.10 9.58E-13 2.14E-10

Hist1h2ae 2.966 7.00 12.06 1.05E-12 2.29E-10

Serpina3m -2.169 18.18 -11.88 1.50E-12 3.01E-10

Slc38a3 -1.486 17.33 -11.88 1.47E-12 3.01E-10

Hist1h2ak 3.329 7.28 11.89 1.47E-12 3.01E-10

Table A30: 50 genes with the smallest adjusted p-values for the comparison
of liver expression profiles of calorie restricted mice compared to
diet switch H>C mice.

AVERAGE ADJUSTED

GENE LOG2 FC EXPRESSION T P-VALUE P-VALUE

Acly -3.197 12.09 -13.03 1.59E-13 1.63E-09

Fasn -4.433 11.06 -12.65 3.25E-13 1.66E-09

Dpy19l3 -3.006 7.46 -12.35 5.88E-13 2.01E-09

Anks4b -2.180 8.41 -12.02 1.11E-12 2.81E-09

Cyp4a31 3.031 10.15 11.92 1.37E-12 2.81E-09

Dhcr7 -3.341 9.96 -11.62 2.54E-12 3.73E-09

Cyp39a1 3.834 13.70 11.67 2.29E-12 3.73E-09

Trhde -2.050 4.97 -11.43 3.70E-12 4.74E-09

Acot2 3.574 11.78 11.33 4.57E-12 5.21E-09

Mt1 5.277 14.64 10.94 1.04E-11 1.06E-08

Elovl6 -3.233 12.15 -10.60 2.16E-11 2.01E-08

Mid1ip1 -2.644 9.67 -10.38 3.43E-11 2.70E-08

Pcsk4 -2.224 5.71 -10.41 3.24E-11 2.70E-08

Fdps -3.186 8.76 -10.17 5.53E-11 3.15E-08

Acss2 -3.042 12.29 -10.22 4.95E-11 3.15E-08

Rorc 2.199 9.69 10.19 5.22E-11 3.15E-08

Cln6 2.347 8.49 10.26 4.52E-11 3.15E-08

Pdk4 3.388 8.38 10.17 5.51E-11 3.15E-08

Nsdhl -4.233 12.04 -10.03 7.44E-11 4.01E-08

Aqp8 -4.455 10.88 -9.92 9.60E-11 4.38E-08

Insig1 -2.855 12.81 -9.94 9.19E-11 4.38E-08

Gpam -2.061 14.55 -9.96 8.77E-11 4.38E-08

Zfp36l1 1.414 13.32 9.91 9.83E-11 4.38E-08

Thrsp -5.906 12.30 -9.76 1.38E-10 5.67E-08

Igfbp1 5.862 10.38 9.77 1.34E-10 5.67E-08

Plbd2 1.379 11.25 9.62 1.90E-10 7.48E-08
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Top 50 DE genes in the liver CR vs. H>C.
AVERAGE ADJUSTED

GENE LOG2 FC EXPRESSION T P-VALUE P-VALUE

Slc15a5 -2.274 6.92 -9.56 2.18E-10 8.09E-08

Mt2 6.084 13.36 9.55 2.21E-10 8.09E-08

Nt5dc2 1.954 9.10 9.52 2.40E-10 8.49E-08

Clpx 2.332 11.93 9.46 2.72E-10 9.30E-08

Cyp4a10 2.737 16.72 9.43 2.95E-10 9.75E-08

Mvd -2.386 5.61 -9.37 3.35E-10 1.07E-07

Cyp2u1 -2.992 12.01 -9.36 3.48E-10 1.08E-07

Slc23a1 -2.171 11.94 -9.34 3.59E-10 1.08E-07

Nr1d1 -4.957 10.99 -9.32 3.82E-10 1.12E-07

Gstm7 -1.726 10.73 -9.26 4.37E-10 1.25E-07

Nfil3 2.024 7.93 9.19 5.12E-10 1.42E-07

Ldlr -1.955 10.58 -9.15 5.68E-10 1.53E-07

Mmp14 1.426 8.44 8.99 8.28E-10 2.18E-07

Msmo1 -2.779 9.04 -8.94 9.15E-10 2.23E-07

Tbcel -1.536 8.27 -8.95 9.08E-10 2.23E-07

Acot1 3.246 11.32 8.94 9.13E-10 2.23E-07

Pcsk9 -2.482 6.85 -8.86 1.12E-09 2.66E-07

Echdc1 -2.088 11.58 -8.82 1.22E-09 2.84E-07

Mmab -1.387 8.02 -8.70 1.66E-09 3.77E-07

Tsc22d1 -3.127 13.40 -8.64 1.92E-09 4.20E-07

Cda 2.187 10.03 8.63 1.93E-09 4.20E-07

Slc38a3 -0.977 17.33 -8.56 2.27E-09 4.75E-07

Tspan4 1.688 11.25 8.57 2.26E-09 4.75E-07

Myc 2.614 8.71 8.52 2.53E-09 5.19E-07
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Table A31: Significantly altered metabolites between Ex4 and CR in the liver samples.
SHORT ADJUSTED FOLD METABOLON

MOLECULE NAME T P-VALUE P-VALUE CHANGE SE CLASS

C(22:4;7Z,10Z,13Z,16Z,19Z-tetraenoyl/18:1;9Z-enoyl) aa Phosphatidylcholine PC aa C40:5 17.21 3.03E-11 5.30E-09 1.58 0.09 Phosphatidylcholines

Spermine Spermine -12.95 2.98E-09 2.61E-07 -1.44 0.11 Biogenic Amines

C(18:0;12Z-enoyl/22:4;7Z,10Z,13Z,16Z-tetraenoyl) aa Phosphatidylcholine PC aa C40:4 11.06 1.80E-08 1.05E-06 0.91 0.08 Phosphatidylcholines

C18:1;11Z-enoyl Sphingomyelin SM C18:1 10.46 8.82E-08 3.86E-06 0.89 0.09 Sphingomyelins

C18:1;9Z,12Z-dienoyl a Lysophosphatidylcholine lysoPC a C18:2 -9.19 2.12E-07 7.43E-06 -1.46 0.16 Lyso-Phosphatidylcholines

C(22:5;7Z,10Z,13Z,16Z,19Z-pentaenoyl/18:1;11Z-enoyl) aa L-Phosphatidylcholine PC aa C40:6 8.72 3.46E-07 1.01E-05 0.75 0.09 Phosphatidylcholines

C(22:6;4Z,7Z,10Z,13Z,16Z,19Z-hexaenoyl/20:0) aa Phosphatidylcholine PC aa C42:6 8.53 5.78E-07 1.35E-05 0.59 0.07 Phosphatidylcholines

C(18:1;9Z-enoyl/e14:0) ae L-Phosphatidylcholine PC ae C32:1 8.25 6.19E-07 1.35E-05 0.84 0.10 Phosphatidylcholines

C(20:4;5E,8E,11E,14E-tetraenoyl/e16:0) ae L-Phosphatidylcholine PC ae C36:4 7.92 1.03E-06 2.00E-05 0.86 0.11 Phosphatidylcholines

C(22:1;7Z,10Z,13Z,16Z,19Z-pentanoyl/20:0) aa L-Phosphatidylcholine PC aa C42:5 8.12 1.42E-06 2.48E-05 0.77 0.10 Phosphatidylcholines

C16:0 Sphingomyelin SM C16:0 7.59 1.65E-06 2.60E-05 0.77 0.10 Sphingomyelins

C(12:0/18:0) aa Phosphatidylcholine PC aa C30:0 7.53 2.00E-06 2.60E-05 0.70 0.09 Phosphatidylcholines

C16:0 a Lysophosphatidylcholine lysoPC a C16:0 -7.50 2.08E-06 2.60E-05 -0.69 0.09 Lyso-Phosphatidylcholines

C(20:3;5Z,8Z,11Z-trienoyl/18:1;9Z-enoyl) aa L-Phosphatidylcholine PC aa C38:4 7.55 1.78E-06 2.60E-05 0.95 0.13 Phosphatidylcholines

(5Z,8Z,11Z,14Z) a C20:4 Lysophosphatidylcholine lysoPC a C20:4 -7.32 2.84E-06 3.31E-05 -1.07 0.15 Lyso-Phosphatidylcholines

C(16:0;e18:1;9Z-en) ae Phosphatidylcholine PC ae C34:1 7.41 3.12E-06 3.41E-05 0.77 0.10 Phosphatidylcholines

C17:0 a Lysophosphatidylcholine lysoPC a C17:0 -7.32 3.78E-06 3.89E-05 -0.75 0.10 Lyso-Phosphatidylcholines

Glycine Gly -6.94 4.85E-06 4.72E-05 -0.67 0.10 Amino Acids

Pimelylcarnitine C7-DC -6.85 8.48E-06 7.81E-05 -0.77 0.11 Acylcarnitines

C(20:4;5E,8E,11E,14E-tetraenoyl/e18:0) ae L-Phosphatidylcholine PC ae C38:4 7.07 1.01E-05 8.86E-05 0.51 0.07 Phosphatidylcholines

C(20:1;13Z-enoyl/18:2;9Z,12Z-dienoyl) aa L-Phosphatidylcholine PC aa C38:3 6.28 1.49E-05 1.24E-04 1.17 0.19 Phosphatidylcholines

Valine Val -6.41 1.74E-05 1.38E-04 -0.95 0.15 Amino Acids

C(20:4;(5Z,8Z,11Z,14Z-tetraenoyl/e18:1;9Z-en) ae L-Phosphatidylcholine PC ae C38:5 6.13 1.91E-05 1.46E-04 0.90 0.15 Phosphatidylcholines

Phosphatidylcholine with acyl-alkyl residue sum C42:3 PC ae C42:3 -6.95 2.08E-05 1.52E-04 -1.19 0.17 Phosphatidylcholines

Phosphatidylcholine with acyl-alkyl residue sum C40:1 PC ae C40:1 -6.90 3.54E-05 2.48E-04 -1.04 0.15 Phosphatidylcholines

Sphingomyelin with acyl residue sum C16:1 SM C16:1 5.73 4.00E-05 2.69E-04 0.36 0.06 Sphingomyelins

C18:1;9E-enoyl a Lysophosphatidylcholine lysoPC a C18:1 -6.19 4.38E-05 2.84E-04 -0.97 0.16 Lyso-Phosphatidylcholines

Acetyl-L-ornithine Ac-Orn -5.53 5.91E-05 3.69E-04 -0.62 0.11 Biogenic Amines
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Significantly altered metabolites between Ex4 vs. CR in the liver samples.
SHORT ADJUSTED FOLD METABOLON

MOLECULE NAME T P-VALUE P-VALUE CHANGE SE CLASS

C(22:0/e20:0) ae L-Phosphatidylcholine PC ae C42:0 5.41 7.59E-05 4.43E-04 0.26 0.05 Phosphatidylcholines

C24:1 Sphingomyelin SM C24:1 5.97 7.34E-05 4.43E-04 0.94 0.16 Sphingomyelins

C18:0 Sphingomyelin SM C18:0 6.15 9.39E-05 5.14E-04 0.98 0.16 Sphingomyelins

Putrescine Putrescine 5.49 9.16E-05 5.14E-04 1.97 0.36 Biogenic Amines

C(18:0/18:2;9Z,12Z-dienoyl) aa L-Phosphatidylcholine PC aa C36:2 5.28 1.32E-04 7.02E-04 0.51 0.10 Phosphatidylcholines

lysoPC a C20:3 lysoPC a C20:3 -5.11 1.37E-04 7.04E-04 -0.90 0.18 Lyso-Phosphatidylcholines

Phosphatidylcholine with acyl-alkyl residue sum C40:4 PC ae C40:4 5.33 1.50E-04 7.52E-04 0.40 0.07 Phosphatidylcholines

C(20:4;5Z,8Z,11Z,14Z-tetraenoyl/e16:1;1Z-en) ae L-Phosphatidylcholine PC ae C36:5 4.96 1.92E-04 9.32E-04 0.45 0.09 Phosphatidylcholines

Phosphatidylcholine with acyl-alkyl residue sum C44:5 PC ae C44:5 -4.79 2.38E-04 1.13E-03 -0.53 0.11 Phosphatidylcholines

2,6 Dimethylheptanoylcarnitine (Nonaylcarnitine) C9 -4.92 2.56E-04 1.18E-03 -0.41 0.08 Acylcarnitines

C24:0 Sphingomyelin SM C24:0 5.92 2.78E-04 1.25E-03 0.58 0.10 Sphingomyelins

C(16:0/20:1;11Z-enoyl) aa Phosphatidylcholine PC aa C36:1 5.19 3.44E-04 1.47E-03 0.79 0.15 Phosphatidylcholines

Leucine Leu -4.70 3.44E-04 1.47E-03 -0.61 0.13 Amino Acids

Hydroxysphingomyelin with acyl residue sum C16:1 SM (OH) C16:1 4.75 4.15E-04 1.73E-03 0.52 0.11 Sphingomyelins

Octanoylcarnitine C8 -4.66 5.02E-04 2.04E-03 -0.30 0.07 Acylcarnitines

Isoleucine Ile -4.41 5.73E-04 2.28E-03 -0.63 0.14 Amino Acids

C(20:4;5Z,8Z,11Z,14Z-tetraenoyl/18:1;9Z-enoyl) aa L-Phosphatidylcholine PC aa C38:5 4.49 6.77E-04 2.63E-03 0.35 0.08 Phosphatidylcholines

C(16:0/18:4;9Z,11E,13E,15Z-tetraenoyl) aa L-Phosphatidylcholine PC aa C34:4 4.19 7.91E-04 3.01E-03 0.47 0.11 Phosphatidylcholines

C(22:6;4Z,7Z,10Z,13Z,16Z,19Z-pentaenoyl/e16:0) ae L-Phosphatidylcholine PC ae C38:6 4.24 9.32E-04 3.47E-03 0.24 0.06 Phosphatidylcholines

Hydroxytetradecenoylcarnitine C14:1-OH 4.12 9.50E-04 3.47E-03 0.50 0.12 Acylcarnitines

Glutarylcarnitine C5-DC (C6-OH) -4.06 1.21E-03 4.31E-03 -0.52 0.13 Acylcarnitines

Dodecanedioylcarnitine C12-DC -4.05 1.26E-03 4.41E-03 -0.26 0.06 Acylcarnitines

C(20:3;11Z,14Z.17Z-trienoyl/20:0) aa L-Phosphatidylcholine PC aa C40:3 3.85 1.61E-03 5.32E-03 0.42 0.11 Phosphatidylcholines

C(18:1;9E-enoyl/14:0) aa Phosphatidylcholine PC aa C32:1 3.86 1.56E-03 5.32E-03 0.59 0.15 Phosphatidylcholines

Myristylcarnitine (Tetradecanoylcarnitine) C14 3.87 1.61E-03 5.32E-03 0.62 0.16 Acylcarnitines

C(18:1;9Z,12Z-dienoyl/e16:0) ae L-Phosphatidylcholine PC ae C34:2 3.84 1.65E-03 5.34E-03 0.25 0.06 Phosphatidylcholines

Hexenoylcarnitine C6:1 -3.81 1.71E-03 5.45E-03 -0.40 0.11 Acylcarnitines

Phenylalanine Phe -3.46 3.53E-03 1.10E-02 -0.51 0.15 Amino Acids
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Significantly altered metabolites between Ex4 vs. CR in the liver samples.
SHORT ADJUSTED FOLD METABOLON

MOLECULE NAME T P-VALUE P-VALUE CHANGE SE CLASS

Hydroxysphingomyelin with acyl residue sum C22:2 SM (OH) C22:2 3.79 4.20E-03 1.29E-02 0.64 0.17 Sphingomyelins

Carnosine Carnosine -3.35 4.62E-03 1.39E-02 -0.54 0.16 Biogenic Amines

C(16:0/20:4;Z,8E,11E,14E,17E-tetraenoyl) aa L-Phosphatidylcholine PC aa C36:4 3.30 5.55E-03 1.65E-02 0.28 0.09 Phosphatidylcholines

C(20:3;8Z,11Z,14Z-trienoyl/e16:0) ae L-Phosphatidylcholine PC ae C36:3 3.26 7.38E-03 2.15E-02 0.20 0.06 Phosphatidylcholines

Hydroxyhexadecenoylcarnitine C16:1-OH 3.17 7.74E-03 2.22E-02 0.45 0.14 Acylcarnitines

C16:1;9Z-enoyl a Lysophosphatidylcholine lysoPC a C16:1 -3.06 8.12E-03 2.25E-02 -0.61 0.20 Lyso-Phosphatidylcholines

Hydroxyhexadecadienylcarnitine C16:2-OH 3.09 8.04E-03 2.25E-02 0.21 0.07 Acylcarnitines

Tryptophan Trp -3.03 8.48E-03 2.32E-02 -0.45 0.15 Amino Acids

Palmitoleylcarnitine (Hexadecenoylcarnitine) C16:1 3.07 1.06E-02 2.86E-02 0.56 0.18 Acylcarnitines

Stearoylcarnitine (Octadecanoylcarnitine) C18 2.91 1.12E-02 2.97E-02 0.48 0.16 Acylcarnitines

Phosphatidylcholine with acyl-alkyl residue sum C42:1 PC ae C42:1 2.92 1.14E-02 2.97E-02 0.32 0.11 Phosphatidylcholines

Palmitoylcarnitine C16 2.88 1.33E-02 3.42E-02 0.50 0.17 Acylcarnitines

Malonylcarnitine C3-DC (C4-OH) -2.73 1.56E-02 3.95E-02 -0.61 0.22 Acylcarnitines

C(18:3;9Z,12Z,15Z-trienoyl/14:0) aa Phosphatidylcholine PC aa C32:3 2.67 1.90E-02 4.75E-02 0.41 0.15 Phosphatidylcholines
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Table A32: Significantly altered metabolites between Ex4 and H>C in the liver samples.
SHORT ADJUSTED FOLD METABOLON

MOLECULE NAME T P-VALUE P-VALUE CHANGE SE CLASS

C18:1;11Z-enoyl Sphingomyelin SM C18:1 -26.17 6.39E-13 1.12E-10 1.84 0.07 Sphingomyelins

Phosphatidylcholine with acyl-alkyl residue sum C42:3 PC ae C42:3 22.43 3.19E-12 2.79E-10 -2.22 0.10 Phosphatidylcholines

Phosphatidylcholine with acyl-alkyl residue sum C40:1 PC ae C40:1 23.63 8.30E-12 4.84E-10 -1.86 0.08 Phosphatidylcholines

C16:0 Sphingomyelin SM C16:0 -13.27 4.96E-09 2.17E-07 1.48 0.11 Sphingomyelins

C18:1;9Z,12Z-dienoyl a Lysophosphatidylcholine lysoPC a C18:2 12.70 6.62E-09 2.32E-07 -1.89 0.15 Lyso-Phosphatidylcholines

Aldohexose H1 12.09 9.47E-09 2.76E-07 -1.83 0.15 Hexoses

C(20:4;5E,8E,11E,14E-tetraenoyl/e16:0) ae L-Phosphatidylcholine PC ae C36:4 -16.39 1.19E-08 2.96E-07 1.24 0.08 Phosphatidylcholines

Methylglutarylcarnitine C5-M-DC -13.18 1.53E-08 3.34E-07 3.09 0.23 Acylcarnitines

Hydroxysphingomyelin with acyl residue sum C14:1 (C14:1-OH Sphingomyelin) SM (OH) C14:1 -10.72 3.96E-08 7.71E-07 1.19 0.11 Sphingomyelins

Hydroxysphingomyelin with acyl residue sum C16:1 SM (OH) C16:1 -10.45 5.76E-08 9.20E-07 1.30 0.12 Sphingomyelins

C(22:6;4Z,7Z,10Z,13Z,16Z,19Z-pentaenoyl/e16:0) ae L-Phosphatidylcholine PC ae C38:6 -10.42 5.78E-08 9.20E-07 0.66 0.06 Phosphatidylcholines

C(20:4;(5Z,8Z,11Z,14Z-tetraenoyl/e18:1;9Z-en) ae L-Phosphatidylcholine PC ae C38:5 -12.87 8.23E-08 1.06E-06 1.39 0.11 Phosphatidylcholines

Acetyl-L-ornithine Ac-Orn 10.92 7.61E-08 1.06E-06 -1.05 0.10 Biogenic Amines

Alanine Ala 10.25 8.45E-08 1.06E-06 -1.20 0.12 Amino Acids

C(12:0/18:0) aa Phosphatidylcholine PC aa C30:0 -10.08 1.05E-07 1.22E-06 1.07 0.11 Phosphatidylcholines

Valine Val 9.83 1.17E-07 1.28E-06 -1.10 0.11 Amino Acids

C18:0 Sphingomyelin SM C18:0 -10.15 1.59E-07 1.64E-06 1.83 0.18 Sphingomyelins

C(16:0;e18:1;9Z-en) ae Phosphatidylcholine PC ae C34:1 -9.57 3.10E-07 3.02E-06 0.70 0.07 Phosphatidylcholines

C24:1 Sphingomyelin SM C24:1 -9.36 3.82E-07 3.30E-06 1.60 0.17 Sphingomyelins

lysoPC a C20:3 lysoPC a C20:3 15.43 3.67E-07 3.30E-06 -1.66 0.11 Lyso-Phosphatidylcholines

Phosphatidylcholine with acyl-alkyl residue sum C44:5 PC ae C44:5 10.07 3.96E-07 3.30E-06 -1.52 0.15 Phosphatidylcholines

Stearoylcarnitine (Octadecanoylcarnitine) C18 -8.73 4.95E-07 3.94E-06 1.53 0.18 Acylcarnitines

Phosphatidylcholine with acyl-alkyl residue sum C42:2 PC ae C42:2 9.77 6.43E-07 4.89E-06 -1.17 0.12 Phosphatidylcholines

C(20:4;5Z,8Z,11Z,14Z-tetraenoyl/e16:1;1Z-en) ae L-Phosphatidylcholine PC ae C36:5 -8.49 8.51E-07 6.21E-06 0.75 0.09 Phosphatidylcholines

Sphingomyelin with acyl residue sum C16:1 SM C16:1 -8.97 2.89E-06 2.02E-05 0.94 0.11 Sphingomyelins

Spermidine Spermidine -7.29 4.00E-06 2.69E-05 1.05 0.14 Biogenic Amines

Phosphatidylcholine with acyl-alkyl residue sum C40:2 PC ae C40:2 7.37 7.70E-06 4.99E-05 -0.85 0.12 Phosphatidylcholines

Hydroxytetradecenoylcarnitine C14:1-OH -7.18 9.26E-06 5.79E-05 0.98 0.14 Acylcarnitines
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Significantly altered metabolites between Ex4 vs. H>C in the liver samples.
SHORT ADJUSTED FOLD METABOLON

MOLECULE NAME T P-VALUE P-VALUE CHANGE SE CLASS

C(16:0/18:4;9Z,11E,13E,15Z-tetraenoyl) aa L-Phosphatidylcholine PC aa C34:4 -6.77 1.08E-05 6.32E-05 0.80 0.12 Phosphatidylcholines

C16:1;9Z-enoyl a Lysophosphatidylcholine lysoPC a C16:1 6.70 1.06E-05 6.32E-05 -1.21 0.18 Lyso-Phosphatidylcholines

Phosphatidylcholine with acyl-alkyl residue sum C38:2 PC ae C38:2 6.62 1.29E-05 7.25E-05 -0.61 0.09 Phosphatidylcholines

C(20:4;5E,8E,11E,14E-tetraenoyl/e18:0) ae L-Phosphatidylcholine PC ae C38:4 -7.35 2.63E-05 1.40E-04 0.69 0.09 Phosphatidylcholines

Isoleucine Ile 6.16 2.60E-05 1.40E-04 -0.67 0.11 Amino Acids

C(22:4;7Z,10Z,13Z,16Z,19Z-tetraenoyl/18:1;9Z-enoyl) aa Phosphatidylcholine PC aa C40:5 -7.02 2.96E-05 1.52E-04 1.15 0.16 Phosphatidylcholines

(5Z,8Z,11Z,14Z) a C20:4 Lysophosphatidylcholine lysoPC a C20:4 6.05 3.05E-05 1.53E-04 -0.75 0.12 Lyso-Phosphatidylcholines

Spermine Spermine 5.94 4.34E-05 2.05E-04 -0.62 0.10 Biogenic Amines

Putrescine Putrescine -8.23 4.28E-05 2.05E-04 2.38 0.29 Biogenic Amines

Hydroxyhexadecanoylcarnitine C16-OH -6.35 4.57E-05 2.11E-04 0.87 0.14 Acylcarnitines

C(18:1;9Z-enoyl/e14:0) ae L-Phosphatidylcholine PC ae C32:1 -6.14 4.89E-05 2.19E-04 0.78 0.13 Phosphatidylcholines

C(22:5;7Z,10Z,13Z,16Z,19Z-pentaenoyl/18:1;11Z-enoyl) aa L-Phosphatidylcholine PC aa C40:6 -6.40 6.54E-05 2.86E-04 0.85 0.13 Phosphatidylcholines

Palmitoylcarnitine C16 -6.09 7.89E-05 3.37E-04 1.10 0.18 Acylcarnitines

C16:0 a Lysophosphatidylcholine lysoPC a C16:0 5.72 8.23E-05 3.43E-04 -0.46 0.08 Lyso-Phosphatidylcholines

C(20:3;5Z,8Z,11Z-trienoyl/18:1;9Z-enoyl) aa L-Phosphatidylcholine PC aa C38:4 -5.75 8.69E-05 3.54E-04 0.91 0.16 Phosphatidylcholines

Leucine Leu 5.43 9.32E-05 3.71E-04 -0.59 0.11 Amino Acids

C18:1;9E-enoyl a Lysophosphatidylcholine lysoPC a C18:1 7.12 9.75E-05 3.79E-04 -0.97 0.14 Lyso-Phosphatidylcholines

C17:0 a Lysophosphatidylcholine lysoPC a C17:0 5.42 1.42E-04 5.41E-04 -0.58 0.11 Lyso-Phosphatidylcholines

Hexenoylcarnitine C6:1 5.45 1.87E-04 6.82E-04 -0.84 0.15 Acylcarnitines

C(22:5;4Z,7Z,10Z,13Z,16Z,19Z-hexaenoyl/e18:0) ae L-Phosphatidylcholine PC ae C40:6 -5.20 1.84E-04 6.82E-04 0.40 0.08 Phosphatidylcholines

Hydroxyhexadecenoylcarnitine C16:1-OH -5.56 2.08E-04 7.44E-04 0.92 0.17 Acylcarnitines

Phosphatidylcholine with acyl-alkyl residue sum C42:4 PC ae C42:4 5.23 2.33E-04 8.14E-04 -1.07 0.20 Phosphatidylcholines

Octanoylcarnitine C8 5.28 3.45E-04 1.16E-03 -0.42 0.08 Acylcarnitines

Butenylcarnitine C4:1 4.77 3.40E-04 1.16E-03 -0.44 0.09 Acylcarnitines

Hydroxysphingomyelin with acyl residue sum C22:1 SM (OH) C22:1 -4.83 3.64E-04 1.20E-03 0.54 0.11 Sphingomyelins

Hydroxyoctadecenoylcarnitine C18:1-OH -4.79 4.58E-04 1.48E-03 0.89 0.18 Acylcarnitines

Butyrylcarnitine C4 4.46 5.35E-04 1.70E-03 -1.15 0.26 Acylcarnitines

Phenylalanine Phe 4.38 7.29E-04 2.28E-03 -0.56 0.13 Amino Acids
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Significantly altered metabolites between Ex4 vs. H>C in the liver samples.
SHORT ADJUSTED FOLD METABOLON

MOLECULE NAME T P-VALUE P-VALUE CHANGE SE CLASS

Hydroxysphingomyelin with acyl residue sum C22:2 SM (OH) C22:2 -4.90 7.81E-04 2.40E-03 0.83 0.17 Sphingomyelins

Octadecadienylcarnitine C18:2 -4.88 8.17E-04 2.46E-03 0.84 0.17 Acylcarnitines

C(16:0/20:4;Z,8E,11E,14E,17E-tetraenoyl) aa L-Phosphatidylcholine PC aa C36:4 -4.29 8.58E-04 2.54E-03 0.32 0.07 Phosphatidylcholines

C(20:1;9Z-enoyl/e18:0) ae L-Phosphatidylcholine PC ae C38:1 4.27 9.03E-04 2.63E-03 -0.45 0.11 Phosphatidylcholines

C(12:0/26:0) aa Phosphatidylcholine PC aa C38:0 -4.28 9.34E-04 2.68E-03 0.44 0.10 Phosphatidylcholines

Glutamic acid Glu -4.31 1.02E-03 2.88E-03 0.70 0.16 Amino Acids

C(22:1;7Z,10Z,13Z,16Z,19Z-pentanoyl/20:0) aa L-Phosphatidylcholine PC aa C42:5 -4.34 1.09E-03 2.97E-03 0.47 0.11 Phosphatidylcholines

Hexanoylcarnitine (Fumarylcarnitine) C6 (C4:1-DC) 4.32 1.08E-03 2.97E-03 -1.06 0.25 Acylcarnitines

C(18:3;9Z,12Z,15Z-trienoyl/14:0) aa Phosphatidylcholine PC aa C32:3 -4.31 1.26E-03 3.39E-03 0.78 0.18 Phosphatidylcholines

C(22:5;4Z,7Z,10Z,13Z,16Z-pentaenoyl/e18:0) ae L-Phosphatidylcholine PC ae C40:5 -4.25 1.34E-03 3.56E-03 0.43 0.10 Phosphatidylcholines

Phosphatidylcholine with acyl-alkyl residue sum C44:4 PC ae C44:4 4.38 1.46E-03 3.81E-03 -0.64 0.15 Phosphatidylcholines

C(16:0/18:2;2E,4E-dienoyl) aa L-Phosphatidylcholine PC aa C34:2 4.49 1.79E-03 4.60E-03 -0.31 0.07 Phosphatidylcholines

C(20:3;11Z,14Z.17Z-trienoyl/20:0) aa L-Phosphatidylcholine PC aa C40:3 3.74 2.22E-03 5.62E-03 -0.39 0.11 Phosphatidylcholines

Tryptophan Trp 3.75 2.60E-03 6.50E-03 -0.44 0.12 Amino Acids

Dodecanoylcarnitine C12 -3.66 2.71E-03 6.68E-03 0.72 0.20 Acylcarnitines

C(20:0/e18:0) ae L-Phosphatidylcholine PC ae C38:0 4.28 2.75E-03 6.69E-03 -0.53 0.12 Phosphatidylcholines

Pimelylcarnitine C7-DC 3.95 3.02E-03 7.24E-03 -0.77 0.19 Acylcarnitines

Oleoylcarnitine (Octadecenoylcarnitine) C18:1 -3.79 3.43E-03 8.11E-03 1.11 0.29 Acylcarnitines

C(20:3;8Z,11Z,14Z-trienoyl/e16:0) ae L-Phosphatidylcholine PC ae C36:3 3.62 3.51E-03 8.20E-03 -0.24 0.07 Phosphatidylcholines

Phosphatidylcholine with acyl-alkyl residue sum C40:4 PC ae C40:4 -3.70 4.15E-03 9.57E-03 0.36 0.10 Phosphatidylcholines

C(22:0/e20:0) ae L-Phosphatidylcholine PC ae C42:0 3.58 4.66E-03 1.06E-02 -0.31 0.09 Phosphatidylcholines

Myristylcarnitine (Tetradecanoylcarnitine) C14 -3.52 4.81E-03 1.08E-02 0.76 0.22 Acylcarnitines

Hydroxypropionylcarnitine C3-OH -3.46 5.05E-03 1.12E-02 0.45 0.13 Acylcarnitines

Hexadecadienylcarnitine C16:2 -3.37 5.32E-03 1.16E-02 0.44 0.13 Acylcarnitines

Tetradecadienylcarnitine C14:2 -3.33 5.55E-03 1.20E-02 0.41 0.12 Acylcarnitines

C(18:0/14:0) aa Phosphatidylcholine PC aa C32:0 -3.38 6.33E-03 1.35E-02 0.42 0.12 Phosphatidylcholines

C(18:3;6Z,9Z,12Z-trienoyl/18:0) aa Phosphatidylcholine PC aa C36:3 3.17 6.87E-03 1.45E-02 -0.42 0.13 Phosphatidylcholines

C(18:1;11Z-enoyl/18:4;2E,4E,6E,11Z-tetraenoyl) aa Phosphatidylcholine PC aa C36:5 3.63 7.84E-03 1.63E-02 -0.35 0.10 Phosphatidylcholines
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Significantly altered metabolites between Ex4 vs. H>C in the liver samples.
SHORT ADJUSTED FOLD METABOLON

MOLECULE NAME T P-VALUE P-VALUE CHANGE SE CLASS

Acetylcarnitine C2 3.40 9.50E-03 1.96E-02 -0.38 0.11 Acylcarnitines

Dodecanedioylcarnitine C12-DC 2.94 1.30E-02 2.61E-02 -0.17 0.06 Acylcarnitines

C(18:1;9Z-enoyl/e18:1;1Z-en) ae L-Phosphatidylcholine PC ae C36:2 2.86 1.29E-02 2.61E-02 -0.19 0.07 Phosphatidylcholines

Hydroxyproline OH-Pro -2.95 1.63E-02 3.24E-02 0.43 0.15 Biogenic Amines

Carnitine C0 2.76 1.67E-02 3.29E-02 -0.44 0.16 Acylcarnitines

Glutarylcarnitine C5-DC (C6-OH) -2.75 1.72E-02 3.35E-02 0.35 0.13 Acylcarnitines

Phosphatidylcholine with acyl-alkyl residue sum C42:5 PC ae C42:5 -2.63 1.96E-02 3.77E-02 0.12 0.05 Phosphatidylcholines

2-Methylbutyrylcarnitine C5 2.65 2.10E-02 4.00E-02 -0.53 0.20 Acylcarnitines
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Table A33: Significantly altered metabolites between CR and H>C in the liver samples.
SHORT ADJUSTED FOLD METABOLON

MOLECULE NAME T P-VALUE P-VALUE CHANGE SE CLASS

C18:1;11Z-enoyl Sphingomyelin SM C18:1 -10.03 2.14E-08 3.75E-06 0.95 0.09 Sphingomyelins

Alanine Ala 8.54 1.48E-07 8.64E-06 -1.02 0.12 Amino Acids

Hydroxysphingomyelin with acyl residue sum C14:1 (C14:1-OH Sphingomyelin) SM (OH) C14:1 -9.02 1.43E-07 8.64E-06 0.95 0.11 Sphingomyelins

C(20:3;8Z,11Z,14Z-trienoyl/e16:0) ae L-Phosphatidylcholine PC ae C36:3 8.25 2.99E-07 1.31E-05 -0.44 0.05 Phosphatidylcholines

Methylglutarylcarnitine C5-M-DC -7.43 1.10E-06 3.47E-05 2.41 0.32 Acylcarnitines

C(20:3;11Z,14Z.17Z-trienoyl/20:0) aa L-Phosphatidylcholine PC aa C40:3 7.30 1.25E-06 3.47E-05 -0.81 0.11 Phosphatidylcholines

C(22:6;4Z,7Z,10Z,13Z,16Z,19Z-hexaenoyl/20:0) aa Phosphatidylcholine PC aa C42:6 7.71 1.39E-06 3.47E-05 -0.63 0.08 Phosphatidylcholines

C(22:6;4Z,7Z,10Z,13Z,16Z,19Z-pentaenoyl/e16:0) ae L-Phosphatidylcholine PC ae C38:6 -7.14 2.75E-06 6.02E-05 0.42 0.06 Phosphatidylcholines

Hydroxysphingomyelin with acyl residue sum C16:1 SM (OH) C16:1 -6.95 4.42E-06 8.60E-05 0.78 0.11 Sphingomyelins

Spermine Spermine -6.45 6.06E-06 1.06E-04 0.82 0.13 Biogenic Amines

Stearoylcarnitine (Octadecanoylcarnitine) C18 -6.06 1.45E-05 2.13E-04 1.05 0.17 Acylcarnitines

C24:0 Sphingomyelin SM C24:0 7.43 1.46E-05 2.13E-04 -0.78 0.11 Sphingomyelins

Spermidine Spermidine -5.97 1.64E-05 2.21E-04 0.88 0.15 Biogenic Amines

Phosphatidylcholine with acyl-alkyl residue sum C44:5 PC ae C44:5 6.22 2.34E-05 2.73E-04 -0.99 0.16 Phosphatidylcholines

C16:0 Sphingomyelin SM C16:0 -5.84 2.34E-05 2.73E-04 0.71 0.12 Sphingomyelins

Glutarylcarnitine C5-DC (C6-OH) -5.56 3.49E-05 3.60E-04 0.86 0.16 Acylcarnitines

C18:0 Sphingomyelin SM C18:0 -5.87 3.35E-05 3.60E-04 0.85 0.14 Sphingomyelins

C(22:0/e20:0) ae L-Phosphatidylcholine PC ae C42:0 6.49 4.38E-05 4.26E-04 -0.57 0.09 Phosphatidylcholines

Phosphatidylcholine with acyl-alkyl residue sum C42:2 PC ae C42:2 5.33 6.07E-05 5.59E-04 -0.91 0.17 Phosphatidylcholines

Phosphatidylcholine with acyl-alkyl residue sum C42:3 PC ae C42:3 5.75 6.70E-05 5.86E-04 -1.03 0.18 Phosphatidylcholines

Phosphatidylcholine with acyl-alkyl residue sum C38:2 PC ae C38:2 5.17 1.01E-04 8.42E-04 -0.59 0.11 Phosphatidylcholines

C(18:0;12Z-enoyl/22:4;7Z,10Z,13Z,16Z-tetraenoyl) aa Phosphatidylcholine PC aa C40:4 5.57 1.18E-04 9.35E-04 -0.72 0.13 Phosphatidylcholines

Sphingomyelin with acyl residue sum C16:1 SM C16:1 -5.32 1.85E-04 1.41E-03 0.58 0.11 Sphingomyelins

Butyrylcarnitine C4 4.91 1.96E-04 1.43E-03 -1.17 0.24 Acylcarnitines

Phosphatidylcholine with acyl-alkyl residue sum C40:1 PC ae C40:1 5.08 2.30E-04 1.61E-03 -0.82 0.16 Phosphatidylcholines

C(18:3;6Z,9Z,12Z-trienoyl/18:0) aa Phosphatidylcholine PC aa C36:3 4.75 2.63E-04 1.77E-03 -0.61 0.13 Phosphatidylcholines

Aldohexose H1 4.86 3.03E-04 1.97E-03 -1.30 0.27 Hexoses

C24:1 Sphingomyelin SM C24:1 -4.52 3.52E-04 2.20E-03 0.66 0.15 Sphingomyelins
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Significantly altered metabolites between CR vs. H>C in the liver samples.
SHORT ADJUSTED FOLD METABOLON

MOLECULE NAME T P-VALUE P-VALUE CHANGE SE CLASS

C(20:0/e18:0) ae L-Phosphatidylcholine PC ae C38:0 4.42 3.74E-04 2.26E-03 -0.30 0.07 Phosphatidylcholines

lysoPC a C20:3 lysoPC a C20:3 5.06 4.47E-04 2.61E-03 -0.76 0.15 Lyso-Phosphatidylcholines

Creatinine Creatinine -4.29 5.55E-04 3.13E-03 0.48 0.11 Biogenic Amines

C(18:1;9E-enoyl/14:0) aa Phosphatidylcholine PC aa C32:1 4.52 6.62E-04 3.51E-03 -0.60 0.13 Phosphatidylcholines

C(18:1;11Z-enoyl/18:4;2E,4E,6E,11Z-tetraenoyl) aa Phosphatidylcholine PC aa C36:5 4.74 6.54E-04 3.51E-03 -0.48 0.10 Phosphatidylcholines

C(16:0/18:2;2E,4E-dienoyl) aa L-Phosphatidylcholine PC aa C34:2 4.23 6.98E-04 3.59E-03 -0.22 0.05 Phosphatidylcholines

C(18:1;9Z-enoyl/e18:1;1Z-en) ae L-Phosphatidylcholine PC ae C36:2 4.10 7.58E-04 3.79E-03 -0.27 0.07 Phosphatidylcholines

Acetyl-L-ornithine Ac-Orn 4.12 7.90E-04 3.84E-03 -0.43 0.11 Biogenic Amines

Glycine Gly -4.04 8.94E-04 4.23E-03 0.46 0.11 Amino Acids

Hydroxysphingomyelin with acyl residue sum C22:1 SM (OH) C22:1 -3.91 1.27E-03 5.86E-03 0.35 0.09 Sphingomyelins

Phosphatidylcholine with acyl-alkyl residue sum C40:2 PC ae C40:2 3.82 1.41E-03 6.34E-03 -0.61 0.16 Phosphatidylcholines

C(20:4;5E,8E,11E,14E-tetraenoyl/e16:0) ae L-Phosphatidylcholine PC ae C36:4 -4.03 1.56E-03 6.83E-03 0.38 0.10 Phosphatidylcholines

C(20:1;13Z-enoyl/18:2;9Z,12Z-dienoyl) aa L-Phosphatidylcholine PC aa C38:3 3.76 1.73E-03 7.39E-03 -0.87 0.23 Phosphatidylcholines

C(20:4;(5Z,8Z,11Z,14Z-tetraenoyl/e18:1;9Z-en) ae L-Phosphatidylcholine PC ae C38:5 -3.87 1.86E-03 7.73E-03 0.50 0.13 Phosphatidylcholines

Hexanoylcarnitine (Fumarylcarnitine) C6 (C4:1-DC) 3.70 2.96E-03 1.21E-02 -0.91 0.25 Acylcarnitines

C(20:4;5Z,8Z,11Z,14Z-tetraenoyl/e16:1;1Z-en) ae L-Phosphatidylcholine PC ae C36:5 -3.43 3.20E-03 1.27E-02 0.31 0.09 Phosphatidylcholines

C(12:0/18:0) aa Phosphatidylcholine PC aa C30:0 -3.43 3.52E-03 1.37E-02 0.37 0.11 Phosphatidylcholines

Decadienylcarnitine C10:2 -3.30 4.24E-03 1.60E-02 0.21 0.06 Acylcarnitines

Hydroxypropionylcarnitine C3-OH -3.43 4.30E-03 1.60E-02 0.47 0.14 Acylcarnitines

Octadecadienylcarnitine C18:2 -3.28 5.25E-03 1.91E-02 0.66 0.20 Acylcarnitines

Malonylcarnitine C3-DC (C4-OH) -3.17 5.62E-03 2.01E-02 0.76 0.24 Acylcarnitines

Hydroxytetradecenoylcarnitine C14:1-OH -3.10 6.77E-03 2.30E-02 0.48 0.15 Acylcarnitines

C(18:0/18:2;9Z,12Z-dienoyl) aa L-Phosphatidylcholine PC aa C36:2 3.19 6.84E-03 2.30E-02 -0.39 0.12 Phosphatidylcholines

C(16:0/e20:0) ae L-Phosphatidylcholine PC ae C36:0 -3.13 6.81E-03 2.30E-02 0.40 0.13 Phosphatidylcholines

Asymmetric dimethylarginine ADMA -3.02 7.69E-03 2.49E-02 1.01 0.33 Biogenic Amines

Acetylcarnitine C2 3.22 7.68E-03 2.49E-02 -0.37 0.12 Acylcarnitines

C(18:2;9Z,12Z-dienoyl/16:1;7Z-enoyl) aa Phosphatidylcholine PC aa C34:3 2.85 1.12E-02 3.50E-02 -0.33 0.12 Phosphatidylcholines

C(12:0/26:0) aa Phosphatidylcholine PC aa C38:0 -3.00 1.11E-02 3.50E-02 0.23 0.08 Phosphatidylcholines
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Significantly altered metabolites between CR vs. H>C in the liver samples.
SHORT ADJUSTED FOLD METABOLON

MOLECULE NAME T P-VALUE P-VALUE CHANGE SE CLASS

C(22:5;4Z,7Z,10Z,13Z,16Z,19Z-hexaenoyl/e18:0) ae L-Phosphatidylcholine PC ae C40:6 -2.82 1.20E-02 3.69E-02 0.29 0.10 Phosphatidylcholines

Glutamic acid Glu -2.81 1.24E-02 3.74E-02 0.54 0.19 Amino Acids

Phosphatidylcholine with acyl-alkyl residue sum C42:1 PC ae C42:1 2.80 1.33E-02 3.93E-02 -0.44 0.16 Phosphatidylcholines

C16:1;9Z-enoyl a Lysophosphatidylcholine lysoPC a C16:1 2.74 1.41E-02 4.11E-02 -0.60 0.22 Lyso-Phosphatidylcholines

Carnosine Carnosine -2.73 1.44E-02 4.12E-02 0.43 0.16 Biogenic Amines

Phosphatidylcholine with acyl-alkyl residue sum C42:4 PC ae C42:4 2.70 1.55E-02 4.36E-02 -0.79 0.29 Phosphatidylcholines

C16:0 a Lysophosphatidylcholine lysoPC a C16:0 -2.70 1.57E-02 4.36E-02 0.23 0.08 Lyso-Phosphatidylcholines

Hexenoylcarnitine C6:1 2.71 1.77E-02 4.66E-02 -0.44 0.16 Acylcarnitines

Citrulline Cit -2.72 1.78E-02 4.66E-02 0.56 0.20 Amino Acids

C(16:1;9E-enoyl/16:1;9E-enoyl) aa Phosphatidylcholine PC aa C32:2 2.63 1.78E-02 4.66E-02 -0.42 0.16 Phosphatidylcholines

Phosphatidylcholine with acyl-alkyl residue sum C38:3 PC ae C38:3 2.66 1.77E-02 4.66E-02 -0.29 0.11 Phosphatidylcholines

Palmitoylcarnitine C16 -2.61 1.85E-02 4.75E-02 0.59 0.23 Acylcarnitines
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Table A34: Reactome pathways enriched by genes present in edges of the
CR network

id description count bg count fdr gene id

MMU-1430728 Metabolism 29 1685 0.0195 AK157302/Acaa2/Acat1/Acsf2/Acsm5/Agmo/B4galt3/Bcat2/Cyb5b/

Decr1/Decr2/Eno1/Fdx1/Fh1/Gatm/Gnai2/Grhpr/Gusb/Hsd17b12/

Man2b2/Mdh1/Nme2/Paics/Papss1/Pik3ca/Psmd9/Serinc2/Slc22a1/

Tyms

Table A35: Reactome pathways enriched by genes present in edges of the
Ex4 network

id description count bg count fdr gene id

MMU-556833 Metabolism of lipids 27 615 3.14e-05 Acad10/Acat1/Acox3/Acsf2/Acsf3/Akr1c6/Aldh3a2/

Cyp2d34/Enpp6/Ept1/Fabp7/Ggps1/Hmgcs2/

Hsd17b12/Hsd17b13/Lpcat1/Lpcat3/Mgll/

Mid1ip1/Mmaa/Mtm1/Mtmr9/Ocrl/Pi4k2b/

Pla1a/Scap/Tspo

MMU-1430728 Metabolism 46 1685 0.00035 Acad10/Acat1/Acox3/Acsf2/Acsf3/Adi1/Akr1c6/Aldh3a2/

B4galt1/Cmbl/Cyp2d34/Dguok/Eno1/Enpp6/Ept1/Fabp7/

Ggct/Ggps1/Grhpr/Gstp1/Gusb/Hmgcs2/Hsd17b12/

Hsd17b13/Iscu/Kmo/Lpcat1/Lpcat3/Lrat/Mgll/Mid1ip1/

Mmaa/Mocs1/Mtm1/Mtmr9/Nup133/Ocrl/Pgls/Pi4k2b/

Pla1a/Psmd3/Scap/Slc19a2/Slc25a21/Tspo/mt-Nd3

MMU-194315 Signaling by Rho GTPases 15 349 0.0131 Arhgap17/Arhgap23/Cyba/Cyfip1/Gdi2/Iqgap1/Nup133/

Ocrl/Pfn1/Rhoa/Rhoc/Rhoj/Rhou/Tuba4a/Ywhab

MMU-1483257 Phospholipid metabolism 10 173 0.0173 Enpp6/Ept1/Lpcat1/Lpcat3/Mgll/Mtm1/Mtmr9/Ocrl/

Pi4k2b/Pla1a

MMU-194840 Rho GTPase cycle 8 121 0.0282 Arhgap17/Arhgap23/Gdi2/Ocrl/Rhoa/Rhoc/Rhoj/Rhou
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Table A36: SNPs associated with LRGs of CR graph

BMI Type 2 diabetes

Pisd X X
Hsd17b12 X X
Cystm1 X

Table A37: SNPs associated with LRGs of Ex4 graph

BMI HDL cholesterol Triglycerides Fasting glucose

Nrbf2 X X X
Tspo X
Cast X
Cdc23 X
Mknk2 X
Scap X
Thap3 X
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Table A38: Metabolites influenced by the three LRGs selected for the Ex4 and CR networks.
SHORT METABOLON FOLD ADJUSTED

NAME MOLECULE CLASS CHANGE P-VALUE P-VALUE LRG

C5.DC..C6.OH. Glutarylcarnitine Acylcarnitines -0.515287934 0.001207698 0.004313208 Cyba

PC.aa.C40.2 C(20:1;11E-enoyl/20:1;11E-enoyl) aa L-Phosphatidylcholine Phosphatidylcholines 0.373809508 0.025051772 0.057685001 Cyba

PC.ae.C40.3 Phosphatidylcholine with acyl-alkyl residue sum C40:3 Phosphatidylcholines 0.249149564 0.024649566 0.057515654 Cyba

PC.ae.C40.5 C(22:5;4Z,7Z,10Z,13Z,16Z-pentaenoyl/e18:0) ae L-Phosphatidylcholine Phosphatidylcholines 0.206677093 0.07358569 0.134755736 Cyba

PC.aa.C42.4 Phosphatidylcholine with diacyl residue sum C42:4 Phosphatidylcholines 0.44279081 0.022627417 0.053510782 Cyba

Ile Isoleucine Amino Acids -0.626218372 0.000572769 0.00227806 Magix

Lys Lysine Amino Acids -0.111954684 0.619678603 0.704180231 Magix

Leu Leucine Amino Acids -0.60734028 0.000344155 0.001469221 Magix

Val Valine Amino Acids -0.946678204 1.74E-05 0.000138153 Magix

lysoPC.a.C14.0 C14:0 a Lysophosphatidylcholine Lyso-Phosphatidylcholines -0.130123949 0.053392006 0.102676934 Magix

lysoPC.a.C16.0 C16:0 a Lysophosphatidylcholine Lyso-Phosphatidylcholines -0.687545399 2.08E-06 2.60E-05 Magix, Nrbf2

lysoPC.a.C16.1 C16:1;9Z-enoyl a Lysophosphatidylcholine Lyso-Phosphatidylcholines -0.610277577 0.008116629 0.02254619 Magix, Nrbf2

C3.1 Propenylcarnitine Acylcarnitines -0.610277577 0.008116629 0.02254619 Magix

lysoPC.a.C20.4 (5Z,8Z,11Z,14Z) a C20:4 Lysophosphatidylcholine Lyso-Phosphatidylcholines -1.074249143 2.84E-06 3.31E-05 Magix, Nrbf2

Phe Phenylalanine Amino Acids -0.506966176 0.003532449 0.011038903 Magix

Pro Proline Amino Acids -0.303818903 0.039196422 0.080698516 Magix

PC.aa.C34.4 C(16:0/18:4;9Z,11E,13E,15Z-tetraenoyl) aa L-Phosphatidylcholine Phosphatidylcholines 0.466929492 0.000791176 0.003009909 Magix

PC.aa.C36.6 C(18:2;9Z,12Z-dienoyl/18:4;9E,11E,13E,15E-tetraenoyl) aa L-Phosphatidylcholine Phosphatidylcholines -0.045980197 0.720629914 0.793146132 Nrbf2
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Figure A1: Comparison of protein abundances detected in samples ex-
tracted with the (a) Commercial antibody and the (b) PBS an-
tibody + 3P. The number in the brackets gives the number of
quantified proteins.
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Figure A2: Significantly differentially expressed genes between HFD- and
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Figure A3: Variance explained by phenotypic features for (a) genes and (b)
metabolites in our dataset.
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Figure A8: Genes present in the edges of the CR network. LRGs are coloured
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Figure A9: Genes present in the edges of the Ex4 network. LRGs are
coloured in blue, differentially expressed genes in orange, and
differentially expressed LRGs in green.
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