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Abstract

This cumulative thesis is devoted to the modeling and simulation of fluid and solid
dynamics, where violent events such as impact and breaking of free surface or large
deformation of structure are involved, using the smoothed particle hydrodynamics
(SPH) method. In particular, a low-dissipation weakly-compressible SPH (WCSPH)
method based on Riemann solver is developed for free-surface flows, a simple and
efficient weighted essentially non-oscillatory (WENO) reconstruction is proposed to
increase the accuracy of the proposed method through decreasing numerical dissi-
pation and a generalized transport-velocity formulation is developed to tackle the
tensile instability problem of the SPH method.

Simulating time evolution of free-surface flows exhibiting violent events such as
impact and breaking is a challenging task due to the complex topology changes,
which poses a serious accuracy and efficiency limitation for traditional WCSPH
method. The first part of this thesis contributes to developing low-dissipation WC-
SPH method with significantly improved robustness and accuracy. The key idea is
to modify a Riemann solver which determines the particle interaction by a simple
limiter to decrease the intrinsic numerical dissipation. Unlike using explicit diffusive
terms, the present method regularizes the density profile implicitly by the Riemann
solver. In addition, a wall boundary condition based on the one-sided Riemann
solver is developed to handle violent breaking-wave impact. To test the robustness
and accuracy of the low-dissipative Riemann solver, a number of two and three-
dimensional tests, including the Taylor-Green vortex and several dam-break prob-
lems, are carried out and the results are compared to analytical and previous results.

The second part of this thesis considers to improve the accuracy of the WCSPH
method based on Riemann solver by employing a WENO reconstruction. The key
idea is to construct, along each interacting particle pair, a 4-point stencil and to ap-
ply a WENO reconstruction for determining the particle interaction with a Riemann
solver. The construction is applied to the aforementioned low-dissipation Riemann-
based WCSPH method. The proposed WENO construction does not apply multi-
dimensional candidate stencils. Rather it operates in a one-dimensional fashion
along each interacting particle pair, similarly as that used for monotonic upwind
scheme for conservation laws (MUSCL) reconstruction. Several numerical examples
on Taylor-Green vortex flow, dam break and non-linear liquid sloshing demonstrate
that the method preserves the capability of producing smooth and accurate pressure
fields of the original method and now achieves also very small numerical dissipa-
tion.

The third part of this thesis aims at eliminating the long-standing issue, e.g.,
tensile instability, of SPH method. In fluid-dynamics simulations this instability
leads to particle clumping and void regions when negative pressure occurs. In
solid-dynamics simulations, it results in unphysical structure fragmentation. We
proposed a generalized transport-velocity formation for providing a solution of this
problem. Other than imposing a global background pressure, a variable background
pressure is used to modify the particle transport velocity and eliminate the tensile
instability completely. Furthermore, such a modification is localized by defining a
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shortened smoothing length. The results of extensive numerical tests on both fluid
and solid dynamics problems indicate that the new method provides a unified ap-
proach for multi-physics SPH simulations.
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Chapter 1

Introduction

1.1 Numerical methods for fluid and solid dynamics

Fluid and solid dynamics problems, in particular those corresponding to free-surface
flows where violent impact and breaking events are involved, structure analysis
with crack propagation and large deformation, and the coupling of fluid-rigid struc-
ture interactions, are often encountered in the areas of science and engineering.
Typical examples include wave breaking, wave impact on structure, sloshing phe-
nomena, high-velocity impact and soft material deformation as shown in Fig. 1.1.
Numerical simulations of these problems play a valuable role in examinations and
demonstrations for theories, offer insights to new physical phenomena and provide
assistance in the industrial design [1]. However, computational modeling of these
problems is highly challenging due to the intrinsic complexity of topological changes
during the surface or interface evolution.

FIGURE 1.1: Typical examples of fluid and solid dynamics : (a) break of Draupner wave
(reproduced from Ref. [2] ), (b) rogue wave impact on offshore structure (reproduced
from Ref. [3]), (c) impact event in sloshing phenomena (reproduced from Ref. [4] ), (d)
high velocity impact (reproduced from Ref. [5]) and (d) collision of rubber rings with
Poisson ratio v = 0.49 (reproduced from Ref. [6] ) .
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Mesh-based approaches, such as the Finite Difference Method (FDM) [1] and the
Finite Elements Method (FEM) [7], encounter difficulties for simulating the afore-
mentioned applications with complex topological changes. The major issues of mesh-
based numerical methods are inherited from the use of mesh, where computational
rather expensive process of high quality mesh generation/regeneration is essential.
As a consequence, the mesh-based methods encounter difficulties in handling with
problems corresponding to wave breaking and impact (for FDM), and large struc-
ture deformation (for FEM) which are in the main scope of this thesis.

As an alternative, meshfree methods are expected to be superior to mesh-based
FDM and FEM methods, and have received significant interest in the past decades.
Meshfree numerical methods, which use a set of arbitrarily distributed particles to
represent the computational domain and its boundaries, establish a system of gov-
erning equations for the whole problem domain without the use of a predefined
mesh. Since no information is required on the relationship between the particles
for the interpolation or approximation of the unknown functions of field variables,
these methods are attractive in dealing with problems which are difficult for mesh-
based methods. Another worth-noting feature of meshfree methods is that it is easy
to obtain the time history of the field variables at a given material point as the par-
ticle following the moving material point. Also, mesh-free methods have advantage
when dealing with multi-physics problems [21] as different materials in a system
can be defined by their own sets of particles.

Recently, several meshfree methods, e.g. the smoothed particle hydrodynamics
(SPH) method [8, 9], the moving particle semi-implicit method (MPS) [10] and the
discrete element method (DEM) [11], are proposed for analyzing fluid and solid dy-
namics. This thesis will be focusing on the SPH method due to its fully Lagrangian
features and well-established theory and fundamentals.

1.2 Review on SPH

As a fully Lagrangian meshfree method, the SPH method has been widely studied as
a promising tool in computational modeling of fluid and solid dynamics. The theory,
fundamentals and applications are addressed in comprehensive review articles [12,
13, 14]. As the SPH method is the main focus of the present thesis, here we will
briefly review the SPH method.

As a meshfree Lagrangian approach, the SPH method was first proposed by
Lucy [8] and Gigold and Monaghan [15] for astrophysical applications. In the SPH
method, the computational domain is represented by a set of arbitrarily distributed
particles and this principle determines its meshfree nature. The partial differen-
tial equations (PDE) are expressed in integral form and the integral representation
method is used for function approximation which is called kernel approximation.
Having the computational domain discretized by particles, the kernel approxima-
tion is further approximated, which is known as particle approximation. It is done
by replacing the integration in the integral representation, using finite summations
over the corresponding values of all neighboring particles in the support domain as
shown in Figure 1.2. Here, we refer to Section 2.2 for more details of the theory and
fundamentals of the SPH method. The particle approximation is performed every
time step, and depends on the local distribution of particles. As the local distribution
of particles depends on the nature and the features of the corresponding problem,
the SPH method adapts to the simulated problem. As a result, the SPH method is
especially suited for problems with large deformations, such as free-surface flows,
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complex moving interface and large material deformation, offering a good perfor-
mance in the problems addressed in this thesis. The SPH method has been success-

.Qj=inﬂuence domain

/ target particle x \

neighboring particle § of particle i

FIGURE 1.2: Particle interaction and the kernel function.

fully extended to a wide range of problems in solid mechanics, e.g. Refs. [16, 17,
18], fluid dynamics, e.g. Refs. [19, 20, 21, 22, 23] and fluid-structure interactions
[24]. Many researchers have conducted investigations on the SPH method on the
numerical aspects, e.g. accuracy, stability, convergence and efficiency [25].

Despite the aforementioned developments, there are several issues of SPH method
to be addressed. Concerning the modeling of fluid dynamics, in particular the free-
surface flows where violent events such as impact and breaking are involved, the
weakly-compressible SPH (WCSPH) method exhibits spurious pressure oscillations
as shown in Figure 1.3 and the inherited numerical instability. A Neumann—-Richtmeyer
type artificial viscosity has been proposed by Monaghan [26] to dampen the pres-
sure oscillations. However, this explicit artificial viscosity may lead to excessive
dissipation which effects the physical flow characteristics. Instead of using the ex-
plicit artificial viscosity, the WCSPH method based on Riemann solver introduces
implicit numerical dissipation by solving Riemann problem along interacting par-
ticles. However, they are generally more dissipative than those based on artificial
viscosity. Ferrari [27] proposed to add an artificial diffusion into the continuity equa-
tion. Although this method is able to recover violent free-surface flows reasonably,
it is not compatible with the hydrostatic solution, which results in unphysical free-
surface motion and expansion as shown in Figure 1.4. Another well-known issue
of the SPH method is that it suffers from tensile instability. This instability leads
to particle clumping in the simulation of fluid dynamics problems, and results in
unphysical structure fragmentation in the simulation solid dynamics problems as
shown in Figure 1.5.

1.3 Aims and objectives

The fundamental objective of the present thesis is to address the aforementioned
issues of the SPH method for fluid and solid dynamics.
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FIGURE 1.3: Pressure oscillations in the simulation of two dimensional dam break flow.
Note that the artificial viscosity [26] with &« = 0.01 is also applied.
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FIGURE 1.4: Hydrostatic test with the artificial diffusion term proposed by Ferrari [27]
(Reproduced from Ref. [28]).
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FIGURE 1.5: The tensile instability of SPH method for fluid and solid dynamics (Repro-
duced from Ref. [17]).
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Concerning the simulation of fluid dynamics, in particular the examples exhibit
violent events such as impact and breaking, we present a WCSPH method based on
a low-dissipation Riemann solver. The key idea is to modify a Riemann solver which
determines the interaction between particles by a simple limiter to decrease the in-
trinsic numerical dissipation. In the proposed method, the modified Riemann solver
is also extended for imposing wall boundary conditions. The proposed method is
expected to be compatible with hydrostatic solution, and able to resolve the violent
free-surface flows with sufficient accuracy. This work is detailed in Paper I [29]

e C. Zhang, X. Y Hu, N. A. Adams, A weakly compressible SPH method based
on a low-dissipation Riemann solver. J. Comput. Phys. 335, 605-620, 2017

which has been attached in Appendix A.1.

As the method proposed in Paper I [29] is based on the Godunov’s scheme which
is a lst-order construction, therefore, further improvement is expected if a high-
order reconstruction scheme is exploited. The next objective is to develop a high-
order reconstruction scheme to increase the accuracy of WCSPH method based on
Riemann solver by decreasing the numerical dissipation. The key idea is to construct
along each interacting particle pair a 4-point stencil and to apply a WENO recon-
struction for determining the particle interaction with the proposed low-dissipation
Riemann solver [29]. The proposed method achieves second-order accuracy and ex-
hibits very small numerical dissipation. This work is detailed in Paper II [68]

e C.Zhang, G. M. Xiang, B. Wang, Xiangyu Y. Hu, Nikolaus A. Adams, A weakly
compressible SPH method with WENO reconstruction. |. Comput. Phys. 392,
1-18, 2019

which is attached in Appendix A.2.

The last but not least objective of the thesis is to address the long-standing prob-
lem of the SPH method, e.g., tensile instability. This tensile instability leads to par-
ticle clumping and void regions when negative pressure occurs in modeling fluid
dynamics, and results in unphysical structure fragmentation in simulating solid dy-
namics where structures experience large deformation. The transport-velocity for-
mulation of Adami et al. [30] is generalized to provide a solution for this long-
standing problem. Other than imposing a global background pressure, a variable
background pressure is used to modify the particle transport velocity and eliminate
the tensile instability completely. Also, such a modification is localized by defining
a shortened smoothing length. The generalized formulation is suitable for fluid and
solid materials with and without free surfaces. This work is detailed in Paper III [6]

e C.Zhang, X. Y Hu, N. A. Adams, A generalized transport-velocity formulation
for smoothed particle hydrodynamics. J. Comput. Phys. 337, 216-232, 2017

which is attached in Appendix A.3.

1.4 OQOutline

The following is the structure of the remainder of the present thesis. Chapter 1 pro-
vides an introduction to the theory and fundamentals of the SPH method, the SPH
discretization of the conservation equations of fluid and solid dynamics, the SPH
method based on Riemann solver and the corresponding high-order reconstructions
and the generalized transport-velocity formulation. Equation of state and time inte-
gration scheme and treatment of wall boundary condition of WCSPH method are
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also discussed. Particularly, as detailed in Chapter 3, a low-dissipation WCSPH
method based on Riemann solver is proposed, a simple WENO reconstruction is de-
veloped to improve the accuracy of WCSPH method based on Riemann solver and
a generalized transport-velocity formulation is presented for eliminating the tensile
instability. Finally, in Chapter 4 the conclusions are summarized and recommenda-
tions for future work are given.



Chapter 2

Governing equations and methods

In this chapter, we briefly summarize the governing equations of fluid and solid dy-
namics, and introduce the theory and fundamentals of the SPH method. Then the
traditional SPH method, the SPH method based on Riemann solver and the corre-
sponding high-order reconstruction and the generalized transport-velocity formula-
tion are reviewed. Finally, the equation of state, the treatment of boundary condition
and the time integration of WCSPH are also discussed.

2.1 Governing equations

The governing equations for continuum mechanics in a Lagrangian reference frame
include the equations for conservation for mass and momentum. The mass-conservation
equation is

dp
e S v 2 2.1
T pV v, 2.1)
and the momentum-conservation equation is
dv 1
— =-V- . 2.2
TR V.o+g (2.2)
Here, p is the density, v the velocity, ¢ the time, g the body force, o the stress tensor
nd d(e) _ a(s)
[ J [}
ar ~ o TV 23)

refers to the material derivative. Note that Eqs. (2.1) and (2.2) allow a common
description of both fluid and solid dynamics.
For elastic solid materials, the stress tensor o can be decomposed into isotropic
and deviatoric parts
c=—pl+c, (2.4)

where p is the hydrostatic pressure, I identity matrix and ¢’ the deviatoric stress.
Using Jaumann'’s formulation of the Hooke’s law, the rate of change of the deviatoric
stress can be described as

do’
dt

1
:2G(e—§e~l)+o"-0+0-¢r’, (2.5)

where G is the shear modulus, € is the strain tensor

€:;<V®V+(V®V)T>, (2.6)
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and Q) is the rotation tensor
1
0:2(V®v—(V®v)T). 2.7)

For a weakly-compressible or incompressible fluid, the deviatoric stress vanishes
and a viscous force is added to the stress tensor:

o= —pl+2yv, (2.8)

where v is the dynamic viscosity.

2.2 Theory and fundamentals of the SPH method

Before introducing the discretizations of the governing equations, we first summa-
rize the theory and fundamentals of the SPH method.

2.2.1 Integral interpolation and particle approximation

Using the definition of unconnected and arbitrarily distributed computation points,
any quantity can be calculated by the following equation

/ f(r)o(r— r (2.9)

where r is the spatial coordinate, f(r) an arbitrary function of r, §(r — r') the Dirac
delta function and () the volume of the integral domain. This integral interpolation
re-produces the quantity of f(r) exactly as the Dirac delta function is applied. How-
ever, Eq. (2.9) can’t be used to establish a discrete model as the Dirac delta function
is only supported by a point. Gingold and Monaghan [9] and Lucy [8] defined a
kernel approximation of the function f by introducing a smoothing kernel

f(1) :/Qf(r,)W(r—rl,h)dr,, (2.10)

where f/(\r) is the kernel approximation of f(r), W the smoothing kernel with & being
the smoothing length which determines the effective width of the smoothing kernel.

If the computational domain is discrete by a set of N particles (points) ry, 12, - - - 1y,
and the value of f(r) is only known at particles, the approximation of f(r) can be

written as
N

f(x) =Y f(x)W(r—1x;,h)dV, (2.11)

i=1

where the notation f(r) is used instead of f/(\r), the index i denotes the particle label
and the particle has the mass m and the density p at r position, and dV denotes
the differential volume element around the particle. If we use % to express the

differential volume element dV;, then the approximation of f(r) can be written as

0-),

i=1

Lf(ry —1;,h). (2.12)

p@

This summation is over particles which lie within a circle of radius k& centered at
particle i with position r as shown in Figure 2.1.



2.2. Theory and fundamentals of the SPH method 9

FIGURE 2.1: Sketch of particle approximation of SPH method. Here kh presents the
support length of the smoothing kernel W.

Using the SPH kernel approximation defined in (2.10), the gradient of a scalar
function f can be rewritten as

v f(r) = /Q TF(E YW — £, )V (r). 2.13)

The right hand of Eq. (2.13) can be Integrated by parts, and then applying Gauss
theorem gives

vim =] F(XYW(r—r,h)ndS(r) — /Q fEYTWE—r,h)dV(r), (214)

where d() denotes the domain surface and n the corresponding outward normal.
If we assume that a particle located at r which is entirely inside the computational
domain, for example the distance from the boundary is much larger than the support
length kh of the smoothing kernel W, then the first term in the right hand of Eq.(2.14)
can be ignored. In this case, the gradient of a function f can be approximated as

Vi == [ F) vy W= mav(r) 215)
_ /Q F(E)Y e W(r—r1,h)dV(r) (2.16)

Applying particle approximation, described by Egs. (2.10 - 2.12), Eq. (2.15) can be
rewritten in SPH form as

N
V() =Y Lf(x) viW(xi —1j,h). (2.17)
=1 P
- _ € aW,] . Ii—1;
where V;W(r; — 1, h) = V;W;; = 7 o with e;; = =
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Similarly, the SPH approximation of divergence of a vector function F(r) can be
derived as

vEm) = [ [V FEOWE—r,nav(r)
:/aQF(r’)W(r—r’,h)ndS(r’)— [ F() oW —f mav(e)  @1s)
= /O F(r) - Ve W(r— r, h)dV(r)

= /QF(r’) 7 W(r—r,h)dV(r)
N
Z*] (1)) Vi Wi. (2.19)
Pj

j=1

2.2.2 The smoothing kernel

In the SPH method, the smoothing kernel determines consistency and accuracy of
kernel and particle approximations. Therefore, it is of utmost importance to choose
an appropriate function in SPH simulations. According to Liu and Liu [31] and
Monaghan [12], the smoothing kernel must be normalized over its support domain

/ W(r— 1, h)dr =1, (2.20)
Q
and also should be compactly supported

W(r—r) =0,for|r—r| > kh. (2.21)

Here, k is the smoothing factor, |r — r/| < «xh defines the support domain. Besides,
the smoothing kernel must satisfy the symmetry condition which is crucial for the
conservation property, and behave as a delta function as the smoothing length ap-
proaches zero. We refer to Ref. [32] for more details.

As various smoothing kernels have been proposed for SPH method [15, 33, 34,
12, 32, 31], the most commonly used smoothing kernels are briefly summarized in
the following. In the original SPH paper [8], Lucy used a bell-shaped kernel which

take the form
, —g) ifg <
W(r—r,h) = ay (1+3q)(1—q)" ifg<1 (2.22)
0 ifg>1

where g = |r — t' | /h and the constant «, is equal to 5/4h, 5/th? and 105/167th® in
one, two and three dimensions, respectively.

In another original SPH calculation of Gingold and Monaghan [15], the Gaussian
kernel was applied to simulate the non-spherical stars and it takes the form

W(r,h) = agexp(—q?), (2.23)

where a; is equal to 1/ /21, 1/ 7th? and 1/773/2h3 in one, two or three dimensions,
respectively. The Gaussian kernel is sufficiently smooth even for high orders of
derivatives and regards as a "gold" selection since it is very stable and accurate es-
pecially for disordered particles. However, the interpolation of the Gaussian kernel
extends across the entire computation domain due to the fact that it does not have
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a compact support. In the fact, the relative contribution from neighboring parti-
cles quickly become negligible as the distance increase. Therefore, this disadvantage
makes it a poor choice for practical applications [35].

Monaghan and Lattanzio [33] proposed the cubic spline kernel, which has simi-
lar shape with Gaussian kernel but with compact support, to improve the computa-
tional efficiency. This cubic spline kernel reads

- +3g if0<g<1
W(r—r1,h)=a;{ }(2—gq) if1<g<2, (2.24)
0 if2<gq

where ay is equal to 1/h, 15/ 7rth? and 3/27h3, in one, two and three dimensional
space, respectively. As it resembles a Gaussian kernel while having a narrow com-
pact support, the cubic spline kernel has been widely used in the SPH literatures.
However, this kernel may leads to the so-called tensile instability.

Wendland [36] proposed a class of smoothing kernels for SPH method to address
the issue of particle clustering and numerical instability. A fifth-order Wendland
kernel reads

4
wu—ﬁmy:%{“+awa_q) if0sq=2 (2.25)
0 if2<gq
where the constant a; is equal to 7/647h? and 21/2567th® in two or three dimen-
sions, respectively.

2.3 SPH method for fluid and solid dynamics

In this part, the SPH method will be implemented for hydrodynamics and the ap-
propriate discretized form of the governing equations of fluid and solid dynamics
will be derived.

2.3.1 The continuity equation

Using the summation equation given by Eq. (2.12), the SPH calculation of density
for particle can be derived straightforwardly as [14]

pi = ijwij/ (2.26)

where W;; = W(r;;, ). The density summation equation shows good performance
when dealing with the problems involve two or more fluids with large density ratio
[37]. Alternatively, the density can be evaluated from its rate of change in time.
Following the work of Monaghan [12], the continuity equation can be written as

dp _
=T (2.27)

Using the Divergence theorem, the 1/ - v term in the right hand of Eq. (2.27) can be

re-written as ,

v V= g[v (Pv) —v- D (2.28)
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Following Ref. [34], Substituting Eq. (2.28) into Eq. (2.27) with the assumption
D =1 gives
dp
o5 = Pl (v) =v- 1. (2.29)
Using the previous SPH approximations, we have
N
dpl _ Z’Z oW, (2.30)

j=1
Eq. (2.30) has been widely used in the simulation of free-surface flows where violent
events such as impact and breaking are involved.
2.3.2 The momentum equation

The SPH discretization of the momentum equation can be derived by using Lagan-
gian mechanics. For the non-dissipative motion of a fluid without considering po-
tential, the Lagrangian L is defined as [38]

1
L= /(EPMZ — pe)dr, (2.31)

where e is the internal energy. Following the work of Monaghan [39, 12], the SPH
form of Eckart’s Lagrangian can be re-written as

N

Z [ V> —e p)] (2.32)

For particle i, the Lagrange’s equation satisfies

d (oL oL
4 (av> -5 (233)
Then we can find N ()
9= _ iy (2.34)
81‘1- ]21 8p] (51‘1'

where ¢ is the change of the Lagrangian. Following first law of thermodynamics
with the assumption of no heat exchange, we have

de p
i E (2.35)

By differentiating the SPH summation of density Eq. (2.26), we have

N

m
(Spj = pj}; ?:(51‘]' — (Srk) Vi W]'k. (2.36)

By using the Kronecker delta §;; which is 1 if i = j and zero otherwise, Eq. (2.36) can
be rewritten as

)
5‘; L=p; Z —0i) Vi W, (2.37)
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Substituting Eq. (2.37) into Eq. (2.34) gives

dVi -
mlﬁ_ ZZ P]P — 0ki) V]W
- (Pi X T i Wi + Py Wji> (2.38)
Then Eq. (2.38) can be re-written as [12]
ar  Wij. (2.39)
; oy )

If a viscous fluid is taken into account, the viscous terms could be estimated
directly using the SPH approximation as [12]

VijaTjj
Iy = — Sl Vi (2.40)
Pip; Tij
where I1;; represents the viscous force between interacting particles, y the dynamic
viscosity and ( an arbitrary positive parameter. Hu and Adams [40] proposed that

¢ = d + 2 with d denotes the spatial dimension. Then, the momentum equation of a
viscous fluid can be written as

@:_Z < p]+n)vawab. (2.41)
=1 PiP;j

Accordingly, the momentum-conservation equation for an elastic solid can be
derived as [41, 42]

/! !/
dva__z [(Pa+l?b>l_<0a+0b>]viwﬁ+gu‘ (2.42)

PaPo PaPp

Here, subscripts a and b are sued for denoting the solid particles.

2.4 SPH method based on Riemann solver

Different from the aforementioned traditional SPH discretizations, the SPH method
based on Riemann solver introduces a Riemann problem to determines the particle
interaction. The advantage of this method is that no explicit artificial viscosity is
used and the numerical dissipation is introduced implicitly. Another worth noting
feature is that a high-order reconstruction, e.g. Monotonic Upwind Scheme for Con-
servation Laws (MUSCL) and Weighted Essentially Non-Oscillatory (WENO), may
be applied.

2.4.1 Baseline scheme

The SPH method based on Riemann solver can be derived by constructing an inter-
particle Riemann problem alonging a unit vector e;; = —r;;/r;; pointing form par-
ticle i to particle j, as shown in Fig. 2.2. In this Riemann problem the initial left
and right states are on particles i and j, respectively, and the discontinuity is at the
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Y Interface
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FIGURE 2.2: Construction of Riemann problem along the interacting line of particles i
and j.

middle point ¥;; = %(ri + rj). The L and R states are

{ (oo, UL, P) = (pi, vi - ey, pi) (2.43)

(or, UR, Pr) = (pj, vj - €ij, pj)
It is worth noting that such a Riemann problem is based on a piece-wise constant
assumption, i.e. 1st-order reconstruction (denoted as "Baseline" scheme).

The solution of the Riemann problem results in three waves emanating from the
discontinuity [44], as shown in Fig. 2.3. Two waves, which can be shock or rar-

t 4

FIGURE 2.3: Simplified Riemann fan with two intermediate states.

efaction wave, traveling with the smallest or largest wave speed. The middle wave
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is always a contact discontinuity and separates two intermediate states, denoted
by (p;, U}, P;') and (pg, Uk, P). By assuming that the intermediate state satisfies
Uf = Uy = U* and P} = P; = P*, a linearised Riemann solver [44] for smooth
flows or with only moderately strong shocks can be written as

* _ 77 o 1(PL=Pr)
u _H i , (2.44)
P* =P+ Lpco(Uy — Ug)

where U = (Up + Ug)/2 and P = (P + Pg)/2 are inter-particle averages. With

the solution of the Riemann problem, i.e. U* and P*, the discretization of the SPH
method is

@ = 2pi Z m] (Vi - V*) . V,‘W,‘]', (245)
dt 7 p]

dVl‘ ( p* )

dt ; "\ pipj 4

where v* = U%e;; + (Vz-j — Ueij). This indicates that the inter-particle average ve-
locity and pressure in Eqs. (2.30) and (2.41) are simply replaced by the solution of
the Riemann problem. By comparing both it can be seen that the intermediate ve-
locity and pressure in Eq. (2.44) from the inter-particle averages amount to implicit
dissipation, i.e. density regularization and numerical viscosity, respectively.

2.4.2 MUSCL reconstruction

The Baseline scheme can be modified by adopting a MUSCL reconstruction with
a slope limiter according to Total Variational Diminishing (TVD) constraint. Intro-
ducing the the MUSCL reconstruction [45], the left and right states of the Riemann
problem in Baseline scheme are reconstructed from

o) = ; + 1AD;

PO e (2.47)

where A®; and A®; are limited slopes. In a typical SPH formulation [46] the limited
slopes are defined as

o e | max[0,min(BAD;, AD;), min(AD;, BAD;)], AD; > 0
AD;, AD; = { max[0, min(BAD;, AD;), min(AD;, pAD))], Ad; <0 ©  Z4D)
where
AD; = /D - 1ji
and = 1.5. 2.49

Note that many other slope limiters, e.g. Minmod, Superbee, Sweby, which are
widely used in Eulerian mesh method [45] , may be applied. For example, Iwasaki et
al. [47] and Murante et al. [48] use a van Leer slop limiter for modeling compressible
MHD flow problems.

2.4.3 A WENO-based reconstruction

The WENO reconstruction has been widely used in Eulerian Godunov-method to
achieve higher accuracy and less numerical dissipation. For this reason, we apply
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a WENO reconstruction to the SPH method based on Riemann solver to increase
accuracy through decreasing numerical dissipation. Based on the concept inherited
from the schemes in Refs. [49, 50], a modified WENO reconstruction, by which
the full 4-point stencil (4 points with indices from —1 to 2 as shown in Fig. 2.4), is
constructed from a set of small stencils with incremental size.

@ @ {} @ ®
—1 0 1/2 1 2
5@ @
S5,@ @
S;@ @ ®
S51,@ ® )

FIGURE 2.4: Full stencil and candidate stencils, i.e. Si,k = 1,2,3, for the incremental-
stencil WENO reconstruction of g7 /5. Note that S; and S, are subsets of the original
stencil S1, for WENO-JS reconstruction [51].

In the present reconstruction, the mid-point value, i.e. 41,2, is predicted by the
non-linear weighted average

qi2 = Zwkqi'})z, (2.50)
k

where qy;)z and wy, k = 1,2,3, are the reconstructed values from the candidate sten-

cils and their non-linear weights. These reconstructed values are

1
”lg/)z = %‘lo + %fh
N VN 2.51)
9 = S0+ g1 — Lo

Following Wang et al. [50], the non-linear weights are defined as

mo=dy (1 + e 5124—%8>
Ky — d2 <1 + 52118 : ﬁlz':s) ’ (252)

X3 — d3 (1 + ﬁ;[i€>

Xk

3 4
Zs:l “s

Wy =
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where the linear weights are determined as d; = 1/3,d, = 1/6 and d3 = 1/2. By,
k =1,2,3,and By, are the smoothness indicators for the candidate stencils,

B1 = (91 — q0)

B2 = (90 —q-1) (2.53)
B2 = 3(q-1—q)* + 15391 — 290 + q)* '
Bs = 13(q0 — 291 + g2)* + 1 (340 — 441 + 42)?

¢ = 107% as in WENO-JS, and 14 is a global reference smoothness indicator [49] given
as

74 = [q_1(547q_1 — 252240 + 19221 — 4944>)
+40(342340 — 596641 + 16024;)

+41(2843q1 — 16427>)

12675 /240.

(2.54)

To implement the modified WENO reconstruction into the SPH method based
on Riemann solver, the 4-point stencil for interacting particle pair, such as particle i
and j, can be constructed. For particle 7, the values at the stencil points are calculated
as
q-1= (Di - Vq)i . Ti]'
f0 = Pi ) (2.55)
n1 =P
q2 = CD]' + V(I)] . 1"1']'

where ®; and ®; represent the primitive values, p, P and v - ¢;;, at particle i and
J respectively. Note that V®; and V®; are the corresponding gradients calculated
from the SPH approximation as

m‘
Vo, =) p%(cpj — ®;)V,Wj;. (2.56)
j F

The left state ®; of the Riemann problem for the interacting particle pair of i and
j is defined as
DL = q1/2, (2.57)
by applying Eq. 2.50 based on the 4-point stencil calculated as Eq. 2.55. The right
state ®r is also obtained from by Eq. 2.50, but based on the mirrored stencil given
by
g-1= CI)]‘ + VCI)]' " Tij
qo = P;
7 = P
g2 = i — V; - 1y

(2.58)
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2.5 Generalized particle transport velocity

With the transport-velocity formulation [30] the momentum velocity for particle
transport is modified, and we can redefine the material derivative of a particle mov-
ing with the transport velocity v as

d(e) d(e) | _
= TV V(e). (2.59)

The mass-conservation equation for a Lagrangian particle is modified accordingly
to

i _
- _ . 2.
7 pV v (2.60)
and the momentum equation to
dv 1 1
- _V. V- A 2.61
7 pV o+ pV + g, (2.61)

where the extra stress tensor A = pv ® (V — V) is a consequence of the modified
transport velocity.
In Adami et al. [30], instead of the momentum velocity the transport velocity v

is used for particle transport

dr -
d—: =V, (2.62)

The transport velocity at every time step is obtained by modifying the momentum
velocity, i.e.,

Va(t 4 6t) = v, (t) + ot (‘Z’: - 1Vp0) , (2.63)
Oa
where the term éwo is discretized as
EV;? =p Zb:mb (p% + p%) s e = | K (2.64)

where p? in Adami et al. [30] is a globally constant background pressure whose
exact gradient vanishes. In SPH, however, the conservative approximation of the
gradient for constant background pressure results in a residual force due to the lack
of zero-order consistency. This residual force leads to a self-relaxation mechanism
which regularizes the particle distribution such that they assume approximately a
configuration with low consistency error [52].

If we consider the right-hand-side of Eq. (2.64) as a general correction of the

particle acceleration such that d;“ is proportional to p”, we are free to choose

c
different p° for different particles, or a different influence radius of such a correction.

In this paper, we propose to modify Eq. (2.64) as

dva\ 1 0W,,
<dt>c = Pa ;mb(gﬁeah’ (2.65)
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where W, = W(rub,ﬁ) and h = 0.5h, which indicates that only the nearest-neighbor
particles within the distance 2/ affect the correction. Here, pg is chosen as

pg = min(10|pa|/ pref)/ (266)

where p,.f is a reference pressure to avoid excessive time-step size limitation. For
a weakly-compressible fluid or solid, p,.s = K. For compressible fluid or solid,
Pref = max(|p|max, K) , where |p|max is the maximum pressure magnitude in the
entire domain. While Eq. (2.65) implies that the correction is proportional to the
local particle pressure, it also implies that there is no, or only a very slight correction
for a particle near a free fluid or solid material surface due to the surface boundary
condition. Note that the factor of |p,| in Eq. (2.66) and the size of I in W,;, may
affect the correction effectiveness. By preliminary numerical tests we found that the
parameters of 10 and 0.5/ are generally suitable.

2.6 Weakly-compressible SPH method

2.6.1 Equation of state

To close the system of conservation equations, one further relation is required for
pressure. In the WCSPH method [43], the material is assumed to be weakly com-
pressible and an appropriate equation of state (EoS) is used to link the pressure with
the density. The most common EoS used in WCSPH takes the form [19]

p=pocl(1) =1, 2.67)
00
where p is the reference density.
For fluid dynamics, the speed of sound should be

¢ = 10Vyax (2.68)

where V,;,x is the anticipated maximum velocity inside the flow to ensure incom-
pressibility in the liquid. For solid dynamics, the sound speed is calculated by

E
= \3sT "z, (2.69)

where E is the Young’s modulus and v the Poisson ratio.

2.6.2 Wall boundary treatment

Treating the wall-boundary conditions is one of most challenging parts of the WC-
SPH method and many different approaches have been developed [53, 23]. In the
following we briefly summarize three techniques proposed in the literature for the
treatment of wall-boundary condition.

1. Ghost particle technique as shown in Figure 2.5 (a) has been widely used in
particle methods to impose different boundary conditions. By using artificial
particles with prescribed physical quantities (such as pressure and velocity),
one fills the empty area of the kernel support in the boundary. The ghost par-
ticle method shows advantage in preventing nonphysical behavior. However,
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FIGURE 2.5: Solid boundary treatment: (a) ghost particles, (b) dummy particles, (c)
repulsive force

the positioning of ghost particles can be hard to implement in three dimen-
sional complex geometries.

2. The dummy particle method has been developed by Adami et al. [23]. In
this method, the boundaries are represented by several layers of fixed particles
with the same spacing as the initial fluid particles to ensure the convolution
of the nearby fluid particles as shown in Figure 2.5 (b). The dummy particles
are governed by the same continuity and momentum equations as the fluid
particles.

3. Monaghan and Kajtar [53] proposed to use one single layer fixed particles,
which interact with the fluid particles through radial forces, to imposed solid
wall boundary condition as shown in Figure 2.5 (c). This method is easy to im-
plement for complex boundary geometries and computationally cheap. How-
ever, this treatment is impossible to maintain particles stationary in hydrostatic
condition.

In addition to the three broad categories of boundary treatment, some new bound-
ary treatments have been developed , such as, the unified semi analytical boundary
condition [54].

As for the WCSPH method based on Riemann solver, the interaction between
an fluid particle and a wall particle is determined by solving a one-sided Riemann
problem [55] along the wall-normal direction.

In the one-sided Riemann problem the left state is defined from the fluid particle
corresponding to the local boundary normal,

(or, UL, PL) = (pf, =1y - vy, Pf) (2.70)

where the subscript f represents the fluid particles, n,, is the local wall-normal di-
rection as shown in Fig. 2.6. According to the physical wall boundary condition the
right-state velocity Ug is assumed as

Ur = —Uy + 2uy, (2.71)

where 1, is the wall velocity. Similarly to Adami et al. [23] the right-state pressure
is assumed as
Pr =P+ 058 Tfu, (2.72)
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FIGURE 2.6: Sketch of fluid particles interacting with fixed wall boundary particles
along the wall normal direction through the one-side Riemann problem.

where g is the gravity force, Try = Ty — If, and the right-state density is obtained
by applying the artificial equation of state. Note that, unlike Adami et al. [23], since
the Riemann problem is solved in a particle-by-particle fashion no interpolation of
states for the wall particles is required. The wall normal direction is calculated for
each wall particle by

m‘
, ®(r)=-Y LW, (2.73)
() P =L v

where the summation is over wall particles only. A more accurate calculation would
be to apply the reproducing-kernel correction [18, 56]. For problems with static walls
ny is pre-computed before the numerical simulation. If there is a moving wall the
wall-normal direction should be updated according to its rotation.

2.6.3 Time integration

Any stable time integrating algorithm for ordinary differential equations can be used
to integrate the WCSPH sets of governing equations. Similarly to Adami et al. [30],
the kick-drift-kick scheme [12] is used for time integration in this thesis. First the
momentum velocity and transport velocity are calculated at the half time step,

At (dv\"
e S 5 <d¥> ) (2.74)
Vit =yt 4 At(dv>n. (2.75)
2 \dt ),

Then the time derivatives of density and deviatoric stresses for solid dynamics are
calculated using the transport velocity. The new time step density, deviatoric stresses
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and particle position are updated by

dp\""2
o = 4 At<d€> , (2.76)
T Vl+2
ot = g + Ai’(do.) , (2.77)
dt
= AR, (2.78)

Finally, at new time-step particle position, the momentum velocity is updated

At JV nl
ntl _yny 2020 2.79
v \AREIE > <dt> (2.79)

Note that if the transport velocity is not applied, vt equals to v"*2 and the present
time integration will resolve the traditional counterpart.

For numerical stability several time step criteria should be satisfied, including
the CFL condition

h
At <025( ——= |, 2.80
<035y 250
where |U]| is the maximum velocity magnitude, the viscous condition
h?
At <0.25 <v>’ (2.81)
and the body-force condition
At <0.25\/h/g. (2.82)

For solid dynamics, the elastic stress condition is

h
\/E+yu|)'

At < 0.25< (2.83)

where E denotes the Young’s modulus.

2.7 Summary

In this chapter, the fundamentals and theoretical aspects of the SPH method were
presented. The integral interpolation and particle approximation were introduced.
The traditional SPH discretizations of the continuity and the momentum equation of
fluid and solid dynamics were presented. The SPH based on Riemann solver and the
corresponding high-order reconstruction, namely MUSCL and WENO, were briefly
summarized. Also, the equation of state, the treatment of wall boundary conditions
and time integration of WCSPH were discussed.
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Chapter 3

Summaries of publications

In this chapter, the relevant publications of this thesis are briefly summarized.

3.1 A weakly compressible SPH method based on a low dis-
sipation Riemann solver

C. Zhang, X. Y. Hu and N.A. Adams

3.1.1 Summary of the publication

In modeling fluid dynamics, in particular free-surface flows involving breaking and
impact events, the WCSPH method exhibits spurious pressure oscillations, which
may lead to numerical instability [43, 28], due to the fact that the pressure is evalu-
ated through density by using an artificial equation of state.

In this paper, we propose a WCSPH method based on a low-dissipation Riemann
solver for simulating violent free-surface flows. The key idea is to modify a Riemann
solver which determines the interaction between particles by introducing a simple
limiter to decrease the intrinsic numerical dissipation other than applying the classic
Riemann solvers directly [57, 58, 59, 60].

We propose to limit the intermediate pressure in Eq. (2.44) as

* ) 1 —
P :P+§,Bp(uL—UR), (31)
where the limiter is defined as
B = min (17 max(Uy — LIR,O),E). (3.2)

The present limiter ensure that zero and decreased numerical dissipation for expan-
sion and compression waves, respectively. Unlike using explicit diffusive terms as
in Refs. [27, 61], the present method regularizes the density profile implicitly by
the Riemann solver. In addition, a wall boundary condition based on the one-sided
Riemann solver is developed to handle violent breaking-wave impact. Several nu-
merical examples, e.g. Taylor-Green vortex, hydrostatic test and three-dimensional
dam-break problem involving violent free-surface breaking and impacting, are used
to validate the present method. The hydrostatic test, as shown in Figure 3.1, shows
that the proposed method is compatible with the hydrostatic solution which ensures
the numerical stability in long-time simulations. The low-dissipation feature of the
present method is validated by comparing the dissipation of mechanical energy of
two-dimensional dam break flow with the numerical results of Marrone et al. [62]
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with §-SPH method. Extensive numerical examples shown that without tuning pa-
rameters the method is able to resolve violent wave breaking and impact events
accurately, produces smooth pressure field and predicts reasonable pressure peaks.

T 4

PlpgH: 0 025 05 0.75 PlpgH: 0 025 05 075

0 0.25 0.5 075 x 1 0 0.25 0.5 0.75 ¥ 1

Iy — — — — Standard
Present

(c)

FIGURE 3.1: The hydrostatic test where the initial free surface is denoted by solid
line. The standard WCSPH method with artificial viscosity term (a), the present method
(b) and the evolution of kinetic energy (c).

3.1.2 Individual contributions of the candidate

This article [29] was published in the international peer-reviewed journal journal
of computational physics. My contribution to this work was the development of the
method and the corresponding computer code for its implementation. I have per-
formed simulations, analyzed the results, and wrote the manuscript for the publica-
tion.
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3.2 A weakly compressible SPH method with WENO recon-
struction

C. Zhang, G.M. Xiang, B. Wang, X. Y. Hu and N.A. Adams

3.2.1 Summary of the publication

The proposed WCSPH method based on low-dissipation Riemann solver [29] has
shown good performance in modeling free-surface flows. It is noted that the Rie-
mann solver is based on a 1st-order construction only. Therefore, the application of
higher-order reconstruction may lead to even less numerical dissipation.

High-order reconstruction, such as weighted essentially non-oscillatory (WENO),
used in Eulerian Godunov-method is able to achieve higher accuracy and less nu-
merical dissipation [63]. The first WENO reconstruction for computing multi-dimensional
problems is proposed by Avesani et al. [65], in which the directionally-biased multi-
dimensional candidate stencils with high-order Moving-Least-Squares (MLS) recon-
structions are combined with the WENO weighting strategy. Although this method
achieves higher accuracy than those using linear reconstructions, it exhibits much
lower computational efficiency due to a large number of multi-dimensional candidate-
stencil evaluations.

10" [] Baseline T~
F v MUSCL scheme -~
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FIGURE 3.2: One dimensional acoustic wave: the convergence of the density error as a
function of particle resolution.

In this paper we proposed a simple and computationally efficient WENO re-
construction to increase accuracy and to decrease numerical dissipation for multi-
dimensional WCSPH simulation of hydrodynamic problems. Similarly to Avesani
et al. [65], the main objective of applying the WENO reconstruction here is to in-
crease accuracy by decreasing the numerical dissipation other than increasing the
formal approximation order of the SPH method, which depends on many factors
and is quite difficult to achieve in practice. It is shown that a general SPH method
applying Gaussian-like kernel achieves only 2nd-order convergence even when the
integration error is sufficiently small [34, 67]. The construction is applied to the low-
dissipation Riemann solver of Paper I. [29]. The proposed WENO construction does
not apply multi-dimensional candidate stencils [65]. Rather it operates in a one-
dimensional fashion along each interacting particle pair, similarly as that used for
MUSCL reconstructions [57]. As shown in Figure 3.2, numerical simulation of one
dimensional acoustic wave demonstrates that the proposed method exhibits consid-
erably smaller errors due to less numerical dissipation compared with Baseline wich
achieves first-order convergence only and MUSCL reconstruction. Also, numerical
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simulations of violent free-surface flows shown that the proposed method exhibits
considerably less numerical dissipation of mechanical energy while maintains ro-
bustness and efficiency.

3.2.2 Individual contributions of the candidate

This article [68] was published in the international peer-reviewed journal journal
of computational physics. My contribution to this work was the development of the
method and the corresponding computer code for its implementation. I have per-
formed simulations, analyzed the results, and wrote the manuscript for the publica-
tion.
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3.3 A generalized transport-velocity formulation for smoothed
particle hydrodynamics

C. Zhang, X. Y. Hu and N.A. Adams

3.3.1 Summary of the publication

The SPH method suffers from tensile instability. In fluid-dynamics simulations this
instability leads to particle clumping and void regions when negative pressure oc-
curs. In solid-dynamics simulations, it results in unphysical structure fragmentation
as shown in Figure 3.3.
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FIGURE 3.3: Unphysical structure fragmentation in the simulation of the oscillating
plate using standard SPH method.

In this paper, we extend the transport-velocity formulation proposed by Adami
et al. [30] to address the tensile-instability problem for accurate modeling of solid
and fluid dynamic problems. Instead of using a globally constant background pres-
sure the present method uses a variable background pressure for the transport ve-
locity correction. According to this modification the correction is proportional to the
local pressure and can be implemented to problems with free fluid or solid material
surfaces. Additionally, the background pressure correction is localized by involving
only nearest-neighbor particles due to a shortened smoothing length. Extensive nu-
merical examples, including free-surface flow, elastic—solid dynamics, high-velocity
impact and Taylor-Green vortex flow, are studied to demonstrate effectiveness of
the proposed method for eliminating the tensile instability. By reproducing the sim-
ulation of the Taylor-Green vortex, the present method preserves the accuracy of
the original transport-velocity formulation. Furthermore, numerical results of both
fluid and solid dynamics problems show that the present method generally elim-
inates the tensile instability. In particular, the proposed method has shown good
performance in modeling solid dynamics where material has high Poisson ratio as
shown in Figure 3.4. Generality and stability of the present method suggest that it
has the potential to supersede current standard SPH method.
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FIGURE 3.4: Collision of rubber rings with Poisson ratio v = 0.49 using the present
method and particles are coloured by oy, stress field: (a) t = 0.0s,(b) t = 0.03s, (c)
t =0.12s,(d) t = 0.19s,(e), t = 0.25s, (f) t = 0.34s.

3.3.2 Individual contributions of the candidate

This article [6] was published in the international peer-reviewed journal journal of
computational physics. My contribution to this work was the development of the
method and the corresponding computer code for its implementation. I have per-
formed simulations, analyzed the results, and wrote the manuscript for the publica-
tion.
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Discussion and outlook

The motivation behind this thesis was three—fold: to develop an accurate and robust
WCSPH method based on Riemann solver for modeling free-surface flows where
violent breaking and impact events are involved, to improve the accuracy of the pro-
posed method by exploiting WENO reconstruction scheme, and to derive a gener-
alized transport-velocity formulation for SPH to address the tensile instability prob-
lem. These objectives have been accomplished successfully by exploiting the pro-
posed methods to several applications. Here, I wrap—up this thesis with discussions
and remarks regarding future research.

4.1 Discussions

To dampen the pressure oscillations of WCSPH method in simulating violent free-
surface flows, a wide range of numerical approaches have been proposed in the
literature. Monaghan and Gingold [26] proposed an Neumann-Richtmeyer type ar-
tificial viscosity term in the momentum equation. While a moderate artificial viscos-
ity is able to stabilize the computation, it may lead to excessive dissipation which
affects the physical flow characteristics. Colagrossi and Landrini [37] suggested to
use a Mean Least Squares (MLS) interpolation to filter the density field. This ap-
proach gives good results while is computationally rather expensive [28]. Vila [57]
and Moussa [58] developed a SPH method based on solving a Riemann problem
along interacting particles. The advantage of this method is that no explicit artificial
viscosity is used and the numerical dissipation is introduced implicitly [57, 58]. Un-
fortunately, this method is very dissipative even when an exact Riemann solver is
applied [27]. Similar ideas of enhancing numerical stability using Riemann solvers
are also proposed in Refs. [9, 59, 60]. While these methods have been applied to
solve shock tube problems [69], solid mechanics problems [60], interface instability
[70, 71] and Magnetohydrodynamics (MHD) [47] problems, they are generally more
dissipative than those based on artificial viscosity, and do not reproduce violent free-
surface flows reliably.

In Paper I, we have proposed a WCSPH method based on a low-dissipation Rie-
mann solver for modeling free-surface flows. To reduce the intrinsic numerical dis-
sipation of the Riemann solver, a simple limiter is proposed and a wall-boundary
condition by applying one-sided Riemann problem is also developed. Compared
with the previous numerical approaches [27], the proposed method is compatible
with the hydrostatic solution. This is an important feature to ensure the numerical
stability in long-time simulations which are common countered in engineering ap-
plications, for example in the study of wave-structure interactions. Another worth
noting feature of the proposed method is that it exhibits considerably less numerical
damping of the mechanical energy. This feature is validated by comparison with the
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result given by Marrone et al. [62] with J-SPH method. Several numerical exam-
ples, where violent free-surface flows and fluid-solid interactions are involved, are
investigated by the proposed method. Numerical results shown that without tuning
parameters the present method is able to resolve violent wave breaking and impact
events accurately, produces smooth pressure fields and predicts reasonable pressure
peaks. In summary, the proposed method has shown comprising potential in the
simulation of engineering applications where free-surface flows are involved.

One notable feature of the SPH method based on Riemann solver is that it can
apply high-order reconstruction for further improvement. For example, Vila [57]
proposed a weighted particle method based on the well-known techniques of Mono-
tonic Upwind Scheme for Conservation Laws (MUSCL) developed by Van Leer [72].
More recently, several innovative efforts have been devoted to developed a high-
order SPH method based on weighted essentially non-oscillatory (WENO) recon-
struction. Avesani et al. [65] proposed a class of MLS-WENO-SPH methods where
the directionally-biased multi-dimensional candidate stencils with high-order MLS
reconstructions are combined with the WENO weighting strategy.

Different from the work of Avesani et al. [65], the main objective of Paper II is
to develop a modified WENO reconstruction to improve the accuracy of the method
developed in Paper I through decreasing the numerical dissipation. The proposed
WENO reconstruction is based on the concept inherited from the schemes in Ref.
[50]. A 4-point stencils is constructed from a set of small stencils with incremen-
tal size. Different from Ref. [50], the minimum-size stencil here has 2 points and
the full stencil 4 points in the proposed WENO reconstruction. Using the proposed
modified WENO reconstruction, the physical variables are reconstructed for inter-
particle Riemann problem which determines the interaction of particles. Compared
with the work of Avesani et al. [65], the proposed method is simple and easy for
implementation in both 2D and 3D. Also, to the best knowledge of the author, this
is the first time that WENO scheme is adopted in WCSPH method for free-surface
flows. The numerical results of one dimensional acoustic wave shown that the pro-
posed method is able to achieve second-order convergence. This is reasonable due
to the fact that second order is the formal accuracy of a general SPH method with
Gaussian-like smoothing kernels when the particle integration error is negligible.
Compared with the results obtained with a MUSCL reconstruction, the proposed
method exhibits considerably smaller errors due to less numerical dissipation. Also,
the present method is applied for simulation of violent free-surface flows, namely
dam-break flow, non-linear liquid sloshing and dam-break flow impact on a sharp-
edged obstacle. Extensive numerical examples shown that the proposed method
looks promising in achieving considerably less numerical damping of mechanical
energy, and meanwhile maintains the feature of predicting the pressure peak rea-
sonably.

To tackle the tensile instability of the SPH method, several attempts have been
carried out to address this problem since its first observation. Schussler and Schmitt
[73] proposed a new kernel function which can produce a repulsive force when neg-
ative pressure occurs. However, this function does not satisfy the requirement of
continuous first-order derivatives. Jonson and Beissel [74] used a modified non-zero
quadratic kernel function to reduce this instability. The problem of this kernel is
that it does not have a continuous second-order derivative. Randles and Libersky
[18] used a conservative smoothing approach to add stabilizing dissipation for re-
moving the tensile instability. Mandell et al. [75] commented that this approach is
good in some cases but only qualitatively correct in other cases. Dilts [76] proposed
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MLS particle hydrodynamics (MLSPH) method which replaces the SPH approxima-
tion with MLS formulation to reduce tensile instability. While MLSPH is not locally
conservative, it increases substantially computational cost compared with standard
SPH. Dyka et al. [77] developed a stress-point algorithm which uses stress points
located in the mid-way between particles to calculate the stress and maps it to SPH
particles. Randles and Libersky [78] showed that this algorithm is stable but complex
and computationally inefficient. Since SPH is a particle-based numerical method, a
straightforward concept is to eliminate tensile instability by mimicking atomic forces
rather than changing the kernel function [17]. Monaghan [16] and Gray et al. [17] de-
veloped an artificial stress algorithm to prevent particle clumping and successfully
simulated the cases of an oscillating plate and colliding rubber rings. However, as
pointed out by Lobovsky and Kren [79], this algorithm fails when the material has
comparably high Poisson ratio. Adami et al. [30] proposed a transport-velocity for-
mulation to address particle clumping and void-region problems in WCSPH simula-
tions of high Reynolds number flows. With the original transport-velocity formula-
tion [30], the momentum equation is reformulated by moving particles with a trans-
port velocity [22, 80]. Using a globally constant background pressure for regulation,
the transport velocity leads to favorable particle distribution and reduces numerical
error [52]. A problem of the original transport-velocity formulation is that there is no
straightforward applicability to problems with fluid or solid material free surfaces.
This is due to the fact that a constant correcting background pressure may introduce
a large artificial velocity at such boundaries.

In Paper III, we have proposed a generalized transport-velocity formulation to
address the tensile instability of SPH method. Compared with the original one [30],
the proposed generalized formulation implies that the correction is proportional to
the local particle pressure, it also implies that there is no, or only a very slight cor-
rection for a particle near a free fluid or solid material surface due to the surface
boundary condition. By reproducing the simulation of the Taylor-Green vortex flow,
the present formulation preserves the accuracy of the original one. Furthermore,
the proposed method demonstrates that it generally eliminates the tensile instabil-
ity for both fluid and solid dynamics. For example, in the simulation of oscillat-
ing elastic plate and colliding rubber rings, where large structure deformations are
experienced, no unphysical structure fragmentation is observed. Compared with
the artificial stress algorithm [17], the proposed method has good performance in
the simulation of problem where material has considerable high Poisson ratio, e.g.
v = 0.49. For some challenge simulations, e.g. high-velocity impact and interac-
tion involving realistic rubber material, the robustness and accuracy of the present
method are also validated. Again, generality and stability of the present method
suggest that it has the potential to supersede the current standard SPH method.

4.2 Outlooks

The present work can be further improved in several directions and some of them
are related to both numerical features and physical modeling. Several possibilities
for future work are :

e The present generalized transport-velocity formulation suggests that it has
the potential to supersede current standard SPH method. Therefore, it is of
great benefit to understand whether present method can be extended to sim-
ulate compressible flow. Furthermore, the numerical results have shown that
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the present method can be employed for modeling fluid-structure interaction
problems straightforwardly.

The proposed WCSPH method based on a low-dissipation Riemann solver is
based on particle pair-wise solution of the Riemann problem. It is suggested
that future efforts may be done to improve the computational efficiency by
solving the Riemann problem only once for each particle and its neighbors.

It is known that including turbulence models has a significant effect on the sim-
ulation of violent free-surface flows. Therefore, it is of great benefit to under-
stand how the inclusion of SPH turbulence model can influence the accuracy
and stability of the proposed WCSPH method based on Riemann solver.

In this thesis, the modified WENO reconstruction is implemented for the WC-
SPH simulation of incompressible free-surface flows. Its straightforward that
the present method may be extended to simulate compressible flows.

Other high resolution approximations, such as RKPM [81], can be incorpo-
rated into the present WENO reconstruction by a MOOD-type approach [66]
to increase the overall numerical accuracy.
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1. Introduction

As a meshless Lagrangian approach, the smoothed particle hydrodynamics (SPH) method was first proposed by Lucy
[1], Gigold and Monaghan [2] for astrophysical applications. It has been successfully extended to a wide range of problems
in solid mechanics, e.g. Refs. [3-5], fluid dynamics, e.g. Refs. [6-10] and fluid structure interactions [11]. Comprehensive
reviews can be found in Refs. [12,13].

Concerning the computation of hydrodynamic problems, the weakly compressible SPH (WCSPH) method assumes that
the fluid is weakly compressible with a small variation of density [6,7]. When simulating violent free surface breaking
and impact problems with WCSPH the pressure which is evaluated through density by using an artificial equation of state
exhibits spurious oscillations which may lead to numerical instability [14,15].

Monaghan and Gingold [16] proposed an Neumann-Richtmeyer type artificial viscosity term in the momentum equation
to dampen the pressure oscillations. While a moderate artificial viscosity is able to stabilize the computation, it may lead to
excessive dissipation which affects the physical flow characteristics. Colagrossi and Landrini [17] suggested to use a Mean
Least Squares (MLS) interpolation to filter the density field. This approach gives good results while is computationally rather
expensive [15].

Vila [18] and Moussa [19] developed a SPH method based on solving a Riemann problem along interacting particles. The
advantage of this method is that no explicit artificial viscosity is used and the numerical dissipation is introduced implicitly
[18,19]. Unfortunately, this method is very dissipative even when an exact Riemann solver is applied [20]. Similar ideas of
enhancing numerical stability using Riemann solvers are also proposed in Refs. [21-23]. Monaghan [21] pointed out that
the artificial viscosity [16] is analogous to the intrinsic numerical dissipation of the Riemann solver, which scales with the
wave speed and the velocity jump between interacting particles. While these methods have been applied to solve shock

* Corresponding author.
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tube problems [24], solid mechanics problems [23], interface instability [25,26] and MHD [27] problems, they are generally
more dissipative than those based on artificial viscosity, and do not reproduce violent free-surface flows reliably.

To cope with the excessive dissipation introduced by directly applying a Riemann solver, Ferrari [20] proposed to add an
artificial diffusion into the continuity equation. Molten and Colagrossi [28] pursued a similar idea but still applied a small
amount of artificial viscosity [16]. Although both methods are able to recover violent free-surface flows with reasonably
smooth pressure profiles, they are not compatible with the hydrostatic solution, which results in unphysical free-surface
motion and expansion. A computationally quite involved correction [29] is proposed to decrease such artifacts.

In this paper we propose a low-dissipation Riemann solver for the WCSPH method to simulate violent free-surface
flows. Other than applying the classic Riemann solvers directly [18,19,22,23], the present method introduces a simple low-
dissipation limiter to a classic Riemann solver ensuring no or decreased numerical dissipation for expansion or compression
waves, respectively. Unlike using explicit diffusive terms as in Refs. [20,28], the present method regularizes the density
profile implicitly by the Riemann solver. In addition, a wall boundary condition based on the one-sided Riemann solver
is developed to handle violent breaking-wave impact. To test the robustness and accuracy of the low-dissipative Riemann
solver, a number of two and three-dimensional tests, including the Taylor-Green vortex, a hydrostatic test and several dam-
break problems, are carried out and the results are compared to analytical and previous results.

2. Method

The conservation of mass and momentum in the Lagrangian frame for inviscid flow can be written as

d
F=-pV-v
dv 1 ’ (1)

where p is density, v is velocity, t is time, P is pressure and % = % + v -V refers to the material derivative. Applying the

weakly compressible assumption, the fluid pressure is evaluated through density from an artificial equation of state

P =c5(p — po), (2)
where cg is the speed of sound and determined by co = 10V,0x Where V4 represents the maximum anticipated flow
speed.

Following Refs. [8,12,13,18], a standard WCSPH discretization of the continuity equation is

dpi m; m; _

—E =iy vy ViWg =201y = (i — Vi) - ViWij. (3)

dt T P 7P

Here, m; is the particle mass, vjj =v; —v; and V;; = (v; +v;)/2 are the relative and average velocities, between particle
i and j, respectively. V;W;; is the gradient of the kernel function W (|rjj|, h), where rjj =r; —rj, and h is the smoothing
length with respect to r;, position of particle i. A standard discretization of the momentum equation without taking account
artificial viscosity [13,16] is

dv; Pi+P; Pjj
E:—?Tﬂj( V,-W,-jz—ZijpiijiW,-j, (4)

PiP; ;

where ﬁ,-j = (P; + Pj)/2 is the average pressure between particle i and j. In standard WCSPH the discretized momentum
equation also includes an artificial viscosity term

dV,’ ) hCo V,'j . l'l'j
— =—) moe———-V;Wj;
( de ) Z oo Y )
where p = (pr + pr)/2, and o < 1.0 is a tunable parameter.

2.1. WCSPH method based on a Riemann solver

For an SPH method based on Riemann solvers [18,19] an inter-particle Riemann problem is constructed along a unit
vector e;j = —r;;/rjj pointing form particle i to particle j, as shown in Fig. 1. In this Riemann problem the initial left and

right states are on particles i and j, respectively, and the discontinuity is at the middle point r;; = %(l‘i +r;). The L and R
states are

(o1, UL, Pr) = (pi, Vi - €jj, Py)
(or, Ug, Pr) = (0j,V;j - &, Pj)

(6)
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Fig. 1. Construction of Riemann problem along the interacting line of particles i and j.
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Fig. 2. Simplified Riemann fan with two intermediate states.

It is worth noting that such a Riemann problem is based on a piece-wise constant assumption, i.e. 1st-order reconstruction.

The solution of the Riemann problem results in three waves emanating from the discontinuity [30], as shown in Fig. 2.
Two waves, which can be shock or rarefaction wave, traveling with the smallest or largest wave speed. The middle wave
is always a contact discontinuity and separates two intermediate states, denoted by (o;, Uy, P}) and (pg,Ug, P}). By
assuming that the intermediate state satisfies Uj = Uy = U* and P} = P} = P*, a linearised Riemann solver [30] for smooth

flows or with only moderately strong shocks can be written as
(7)

U*=0U + % (P’b_C;)R)

P*=P + 3pco(UL — Ug)
where U = (U + Ug)/2 and P = (P, + Pg)/2 are inter-particle averages. With the solution of the Riemann problem, i.e. U*

and P*, the discretization of the SPH method is
dpi m;j
—T =200 L V) VW, (8)
dt = P
9)

dv; P*

dvi :_zzmj( )v,.w,,,
dt ; PiPj

where v* = U*ej; + (Vjj — Ueij). This indicates that the inter-particle average velocity and pressure in Eqgs. (3) and (4)

are simply replaced by the solution of the Riemann problem. By comparing both it can be seen that the intermediate

velocity and pressure in Eq. (7) from the inter-particle averages amount to implicit dissipation, i.e. density regularization

and numerical viscosity, respectively.
2.2. Dissipation limiter
Since the above discretization is very dissipative a straightforward modification is to apply a limiter to decrease the

implicit numerical dissipations introduced in Eq. (7). We propose to limit the intermediate pressure as
(10)

— 1 _
P*=P+ EﬁP(UL —Ug),

where the limiter is defined as
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Fig. 3. Sketch of fluid particles interacting with fixed wall boundary particles along the wall normal direction through the one-side Riemann problem.

B =min (nmax(Uy — Ug, 0),7). (11)

Note that B ensures that there is no dissipation when the fluid is under the action of an expansion wave, i.e. U; < Ug,
and that the parameter 7 is used to modulate dissipation when the fluid is under the action of a compression wave, i.e.
U > Ug. We suggest n = 3 according to numerical tests and use it throughout this paper. Also note that the dissipation
introduced by the intermediate velocity as in Eq. (7) is not limited.

2.3. Wall-boundary condition

Similarly to Adami et al. [10] fixed wall-boundary particles are used, as shown in Fig. 3, to impose the wall-boundary
condition. The interaction between a fluid particle and a wall particle is determined by solving a one-sided Riemann problem
[31] along the wall-normal direction.

In the one-sided Riemann problem the left state is defined from the fluid particle corresponding to the local boundary
normal,

(oL, UL, PL) = (pf, —ny - Vg, Py) (12)

where the subscript f represents the fluid particles, n,, is the local wall-normal direction as shown in Fig. 3. According to
the physical wall boundary condition the right-state velocity Ug is assumed as

Ur=-UL+ 2uy, (13)
where u,, is the wall velocity. Similarly to Adami et al. [10] the right-state pressure is assumed as
Pr=PL+ pfg-Tfy, (14)

where g is the gravity force, rgy, =1y —ry, and the right-state density is obtained by applying the artificial equation of state.

Note that, unlike Adami et al. [10], since the Riemann problem is solved in a particle-by-particle fashion no interpolation of

states for the wall particles is required. The wall normal direction is calculated for each wall particle by

_ ®(ry)
|®(r;)|’

oy =-Y “gwy, (15)

jew J

w

where the summation is over wall particles only. A more accurate calculation would be to apply the reproducing-kernel
correction [5,32]. For problems with static walls n,, is pre-computed before the numerical simulation. If there is a moving
wall the wall-normal direction should be updated according to its rotation.

2.4. Time integration

A kick-drift-kick time-integration scheme [33,34] is applied. The half-time-step velocity is updated first, and then new
time-step particle position is obtained as

Nty n o 1 dviyn

v 2=+ 58t(GH) (16)
1 )

il =r] +8tv?+2

1
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where the superscript n represents the old time step. After that the time-derivative of density (%)

the updated flow states, the new-time-step particle density is updated by

dpi\n+1
Pt =pfl +at(~ )"

Then, the pressure is calculated through the updated particle density and the new-time-step rate of velocity (

computed. Finally, the new-time-step velocity is updated by

n+1

)Tl+1

is calculated through

(17)

is
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For numerical stability, the CFL condition should be satisfied

h
At50.25<—), (19)
co+ |U|

where |U| is the maximum particle speed.
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Fig. 8. Two-dimensional dam-break problem: snapshots of the free-surface profile at several time instances obtained with dp = H/60.

3. Numerical examples

In this section, Taylor-Green vortex, hydrostatic test and several dam-break problems involving violent free-surface break-
ing and impacting are used to validate the present method. The 5th-order Wendland kernel [35] with a smoothing length
h = 1.3dp, where dp is the initial particle spacing, and a support radius 2.6dp, are used in all test cases. The physical pa-
rameters density p = 1000 kg/m> and gravity g =9.8 m/s® are applied. For all hydrodynamic cases, the maximum velocity
is approximated as Vqx = 2+/gH, where H is the initial water depth, according to the shallow-water theory [36], for set-
ting the speed of sound cg. Note that for simplicity the water with zero initial pressure is released immediately when the
computation starts instead of being released from a gate holding the pressure-relaxed water as in the experimental setup.

3.1. Taylor-Green vortex
The two-dimensional viscous Taylor-Green problem gives a periodic array of vortices with the velocity field given by

ux,y,t)= —Uebt cos(2mx) sin(2mw y) (20)

v(x, y,t) = Uebt sin(2x) cos2m y)

where b = —872/Re is the decay rate, U is the initial maximum flow speed, Re is the Reynolds number and here we set
Re = 100. The computation is performed on a square domain with unit length L =1, and a periodic boundary condition is
applied in both coordinate directions. The computation is carried out with three different particle resolutions, i.e. dp = L/50,
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Fig. 10. Sketch of the three-dimensional dam-break problem with locations of free-surface and pressure sensors. Dimensions in millimeter.

dp =L/100 and dp = L/200 for convergence study. Similarly to Hu and Adams [9], to avoid the start-up effect a relaxed
initial particle distribution is used.



C. Zhang et al. / Journal of Computational Physics 335 (2017) 605-620 613

PlegH:

1.

Fig. 11. Three-dimensional dam-break problem simulated with dp = H/30 (the total fluid particle number Ny = 27000): free-surface profile compared with
experiment.

Fig. 4 gives the computed time evolution of the total kinetic energy and the corresponding analytical solution. It can be
observed that the linear Riemann solver of Eq. (7) is too dissipative to predict a reasonable kinetic energy decay. Compared
to the standard WCSPH with artificial viscosity (o = 0.02), the present method achieves less dissipation and better agree-
ment with the analytical solution. Also note that the present method achieves 2nd-order convergence for the total kinetic
energy with increasing particle resolution.

3.2. Hydrostatic test

We consider a simple two-dimensional hydrostatic test, i.e. a tank is partially filled with water at rest. The tank has a
length L =1 and the initial water depth H = 0.5 denoted by a free-surface line as shown in Figs. 5(a) and (b). Initially, the
particles are placed on a Cartesian lattice with a particle spacing of dp = H/50. For comparison, this test is also computed
by the standard WCSPH with artificial viscosity (o« = 0.02) and the boundary condition as proposed by Adami et al. [10].

Figs. 5(a) and (b) show the obtained particle distribution and dimensionless pressure field at t = 30. Compared with
the initial free-surface, no notable unphysical motion of free-surface particles is observed for both methods. Note that the
present method produces a much smoother pressure field than the standard WCSPH. Fig. 5(c) shows the evolution of kinetic
energy. After early-stage oscillations due to the weak compressibility the kinetic energy decays to a very small value quickly.
It is also observed that the present method produces much less oscillations than the standard WCSPH, especially for late
times. Note that the standard WCSPH using the small artificial-viscosity parameter o = 0.02 is unable to compute other
cases involving breaking waves due to numerical instability. This simple test shows that, without introducing the quite
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Fig. 12. Three-dimensional dam-break problem: the water-level recorded at H1, H2 and H3. Convergence study and comparison against experiment inves-
tigated by Lobovsky et al. [41].

elaborate correction approach [37], the present method is compatible with the hydrostatic solution, which is difficult for the
density diffusion methods [20,28].

3.3. Two-dimensional dam break

We consider a two-dimensional dam-break problem which was studied by the methods using both artificial viscosity [10]
and density diffusion [15,37]. The sketch of the configuration is shown in Fig. 6 where a pressure probe PO located at the
downstream wall is used to record pressure signals. Note that the probe position does not exactly match the experimental
setup as Greco [38] suggested that a shift produces a better agreement [10]. We follow these suggesters.

In Fig. 7(a) we compare the computed propagation of surge-wave front with experimental data from Buchner [39],
Martin and Moyce [40] and an analytical solution derived from the shallow-water equation [36]. It is observed that the
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Fig. 13. Three-dimensional dam-break problem: history of pressure signals recorded at probes P1, P2 and P3. Convergence study and comparison against
experiment investigated by Lobovsky et al. [41].

present results agree well with the analytical solution but, similarly to previous simulations [10,20,37], overestimate the
front speed obtained from the experiments. Note that the computed propagation of the surge-wave front achieves about
2nd-order convergence with increasing particle resolution. Fig. 7(b) shows the history of pressure signals recorded at PO.
It is observed that the main pressure plateau agrees well with the experimental data [39] and previous numerical results
[20,37,17]. Several snapshots of the computed free surface at different time in stances are shown in Fig. 8. Compared with
the results of Adami et al. [10] which applied the standard WCSPH, a higher rejected jet is produced by the present method.

In Marrone et al. [37] the numerical dissipation of mechanical energy is defined as

. Ekin + Epot - Egot

0
Epot

— E®©

pot

(21)
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Fig. 15. Snapshots of 3-D free-surface flows impact at an obstacle at specific time in stances.
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et al. [44].

where Ey;, is the kinetic energy, Epo¢ the potential energy, Egot the initial potential energy and E7, the potential energy
when the flow reaches a hydrostatic state finally. Fig. 9 shows AE obtained with increasing particle resolution. It is observed
that, while in good agreement with those of Marrone et al. [37], the present results show slightly higher dissipation before
the impact but considerably less at later time for the computations with the same particle resolution, see Fig. 9(b). Note
that Marrone et al. [37] use a Gaussian kernel with a support radius of 4.5dp (shown in their Fig. A31), which leads to
much larger number of neighbor particles and higher computational cost.

3.4. Three-dimensional dam-break problem

We test a three-dimensional dam-break problem which is also studied in experiments [41,39,40,42] and numerical sim-
ulations [20,43]. Following the experimental setup of Lobovsky et al. [41], the configuration is given in Fig. 10. There are
three measurement points H1, H2 and H3 for recording the height of free surface and three probes P1, P2 and P3 for
recording the pressure signals.

Fig. 11 gives several snapshots at different time in stances which show the evolution of the free surface. The main
features are similar to that obtained in the previous section and are in good agreement with experimental [41] and previous
numerical results [20]. Note that the present method produces quite smooth pressure fields even when intensive impact and
splashing events occur. The water level is recorded at H1, H2 and H3 are compared with the experiment [41] in Fig. 12.
It is observed that, the present results generally are in agreement with the experiment. Note that the simulation predicts
a slightly faster wave front and a considerably higher run-up waves, especially when the spatial resolution is high. Such
discrepancies also have been found in previous studies such as in Ref. [20] and probably due to the inviscid model used
in the simulations. Also note that the water level at H1 obtained with high-resolution simulation shows some oscillations
after t = 8 due to the particle splashing. The history of pressure signals recorded at P1, P2 and P3 are shown in Fig. 13.
Generally the present results agree well with the experiment [41] except for the signal at P3, which also may be due to
the inviscid model. Compared with the two-dimensional results from [43], the present results show much less fluctuations
at later times during the entry of plunging breaker.
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Fig. 17. History of pressure signals recorded at probes P1 and P2 located at the obstacle. Comparison with experimental data and numerical results with
VOF method from Kleefsman et al. [44].

3.5. Three-dimensional dam break with an obstacle

We consider a three-dimensional dam-break problem with a cuboidal obstacle placed on the downstream horizontal bed.
This test case was first simulated by Kleefsman et al. [44] with an Eulerian volume-of-fluid (VOF) method, then by Lee et al.
[45] with the standard WCSPH and incompressible SPH (ISPH) method, and by §-SPH [37]. The computational domain and
measurement positions are briefly described in Fig. 14. There are water-level measuring points H1 and H2 and pressure
recording probes P1 and P2 located at the front surface of the obstacle. To discretize the computational domain, the initial
particle space is set as dp = H/36.

Fig. 15 shows the snapshots of free-surface profile colored by the pressure field at several time stances. The present
free-surface profiles are in good agreement with experiment and the numerical results in Ref. [44] and previous simulations
in Refs. [45,37]. Note that a splash-up is produced after the surge waves impacts the obstacle which is in agreement with
the experimental observation [44].

Fig. 16 shows the history of water level recorded at H1 and H2. Again, being in general agreement with the experiment
the simulation over-predicts the run-up and water level peak, due to the inviscid model. Note that the first reflected wave
observed in the experiment at H2 and t = 12, is reproduced by present simulation but smeared entirely by the VOF simu-
lation. The history of pressure signals recorded by probes P1 and P2 are shown in Fig. 17. The present results show a good
agreement with averaged experimental data, except for the first peak. Note that the VOF method predicts a pressure peak
around t = 5.8 which is not found by either the present method or the experiment. Note that the results of Ref. [45] show
that standard WCSPH results in strong pressure fluctuations and that ISPH is unable to capture the pressure peak when the
surge wave impacts at the obstacle.

4. Conclusions

In this paper we have proposed a weakly compressible SPH method based a low-dissipation Riemann solver for modeling
free-surface flow problems with violent wave-breaking and impact events. A simple limiter is proposed to reduce the intrin-
sic numerical dissipation of the Riemann solver and a wall-boundary condition by applying one-sided Riemann problem is
developed. The present method is compatible with the hydrostatic solution and produces very small damping of mechanical
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energy. Extensive numerical examples show that without tuning parameters the method is able to resolve violent wave
breaking and impact events accurately, produces smooth pressure fields and predicts reasonable pressure peaks. It is noted
that the present Riemann solver is based on a 1st-order construction only. The application of higher-order reconstruction,
which may lead to even less numerical dissipation, will be studied in the future work.
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(WENO) reconstruction. The key idea is to construct along each interacting particle pair a
4-point stencil and to apply a WENO reconstruction for determining the particle interaction
with a low-dissipation Riemann solver. Several numerical examples on Taylor-Green vortex

Keywords: flow, dam break and non-linear liquid sloshing demonstrate that the method preserves the
Smoothed particle hydrodynamics (SPH) capability of producing smooth and accurate pressure fields of the original method and
Riemann solver now achieves also very small numerical dissipation.

WENO reconstruction © 2019 Elsevier Inc. All rights reserved.

Free-surface flows

1. Introduction

Smoothed particle hydrodynamics (SPH) is a purely mesh-free Lagrangian method developed by Lucy [1], Gingold and
Monaghan [2] for astrophysical applications. Since these pioneering works, the SPH method has been successfully applied
for numerical simulations of solid mechanics [3-5], fluid dynamics [6-10] and fluid-structure interactions [11]. Different
SPH algorithms that have been developed recently are comprehensively reviewed in Refs. [12-14].

The weakly-compressible SPH (WCSPH) method, which assumes that the fluid is weakly compressible with controlled
density variation [6,7], is widely applied for computing hydrodynamic problems. In order to stabilize simulations involving
violent free-surface wave breaking and impacting, very often artificial viscosity is added to the discretized momentum equa-
tion [15,16]. Similarly to introducing implicit numerical dissipation by Eulerian Godunov-methods [17], Vila [18] proposed
to determine the interaction by solving a Riemann problem along interacting particle pair. While this Riemann-solver based
method originally has been proposed for computing compressible flow [19-23], it also has been applied to the WCSPH
simulation of hydrodynamic problems [24-26]. It is found that this method, in the latter case, generally exhibits excessive
numerical dissipation compared with that based on artificial viscosity, and does not reliably reproduce violent free-surface
flows [27,28].

The issue of numerical dissipation has been addressed before by the artificial-diffusion methods [27,29] which add arti-
ficial density diffusion in the discretized continuity equation other than implement the traditional Riemann-solvers directly.
They introduced, however, another problem of incompatibility with the hydrostatic solution. Recently, we have proposed
a simple low-dissipation Riemann solver to decrease numerical dissipation [30]. Without resorting to the computationally
elaborate corrections [31], this solver is compatible with the hydrostatic solution.

* Corresponding author.
E-mail address: xiangyu.hu@tum.de (X.Y. Hu).
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High-order reconstruction used in Eulerian Godunov-method is able to achieve higher accuracy and less numerical
dissipation [32]. For this reason, it has also been explored with Riemann-solver based SPH methods. While earlier im-
plementations use second-order linear reconstructions, such as the MUSCL scheme [18,19,33,34], more recent attempts have
been aimed at higher-order, such as weighted essentially non-oscillatory (WENO), reconstructions. Zhang et al. [35] have
considered a fifth-order WENO reconstruction for computing one-dimensional problems, the multidimensional extension,
however, is not straightforward. The first WENO reconstruction for computing multi-dimensional problems is proposed by
Avesani et al. [36], in which the directionally-biased multi-dimensional candidate stencils with high-order Moving-Least-
Squares (MLS) reconstructions are combined with the WENO weighting strategy. Although this method achieves higher
accuracy than those using linear reconstructions, it exhibits much lower computational efficiency due to a large number of
multi-dimensional candidate-stencil evaluations. Nogueira et al. [37] proposed a SPH-MOOD-MLS method which uses a MLS-
based approximation and a posteriori Multidimensional Optimal Order Detection (MOOD) approach for numerical stability.
This method shows considerable improvement for modeling compressible flows with shock and blast waves. We point out
that several approaches, e.g., reproducing kernel particle method (RKPM) [38], corrective smoothed particle method (CSPM)
[39], decoupled finite particle method (DFPM) [40], have been developed to improve accuracy and consistency of the SPH
method.

In this paper we propose a simple and computationally efficient WENO reconstruction to increase accuracy and to de-
crease numerical dissipation for multi-dimensional WCSPH simulation of hydrodynamic problems. Similarly to Avesani et
al. [36], the main objective of applying the WENO reconstruction here is to increase accuracy by decreasing the numeri-
cal dissipation other than increasing the formal approximation order of the SPH method, which depends on many factors
and is quite difficult to achieve in practice. It is shown that a general SPH method applying Gaussian-like kernel achieves
only 2nd-order convergence even when the integration error is sufficiently small [41,42]. The construction is applied to the
low-dissipation Riemann solver of Ref. [30]. The proposed WENO construction does not apply multi-dimensional candidate
stencils [36]. Rather it operates in a one-dimensional fashion along each interacting particle pair, similarly as that used
for MUSCL reconstructions [18]. To test the robustness and accuracy of the reconstruction, a number of two and three-
dimensional tests, including the Taylor-Green vortex flow and several dam-break problems, are carried out, and the results
are compared to analytical solutions and data from literature.

2. Method

The conservation of mass and momentum in the Lagrangian frame for inviscid flow can be written as

d
d/t) = —pV v, (1)
v 1

Lo @

where p is density, v is velocity, t is time, P is pressure and % = % + v -V refers to the material derivative. Applying the

weakly compressible assumption, the fluid pressure is evaluated through density from an artificial equation of state

P =c5(p — po), (3)

where cg = 10V 4y is the speed of sound and V4 represents the maximum anticipated velocity inside the flow.
2.1. Riemann-solver based WCSPH method

Similarly to previous work on Riemann-solver based WCSPH methods [18-20,30], Egs. (1) and (2) can be discretized as

dp; m;j N m;j o OWij

=2 ) WiV VW =2y (Ui U (4)
dt ; Pj ; Pj orij

dv; P*

— =-2) mj——V;Wj. (5)
dt XJ: Toip; Y

Here, m is particle mass, V;W;; = %eu is the gradient of kernel function with respect to particle i, where, as shown in
Fig. 1, e;; is the unit vector pointing form particle i to particle j, and rjj is the distance between them. U; =v; - e;; and
U* =v* - e;;. Note that U* and P* are the solution of the inter-particle Riemann problem constructed at the mid-point of
particle i and j as shown in Fig. 1.

In this Riemann problem the discontinuous left and right states, i.e. (o, U, P1) and (pg, Ug, Pg), are assigned to each
side of the mid point. We apply the low-dissipation Riemann solver [30]

17 1 (PL—PpR)
Ut=Uts T (6)
P*=P + 3pcof(UL — Ug)
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Fig. 1. Construction of Riemann problem along the interacting line of particles i and j.
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Fig. 2. Full stencil and candidate stencils, i.e. Si,k =1, 2, 3, for the incremental-stencil WENO reconstruction of q,,. Note that Sy and S; are subsets of the
original stencil S1; for WENO-]JS reconstruction [45].

where p = (p. + pr)/2, U= (Uy 4+ Ug)/2 and P = (P, + Pg)/2 and B = min(3max[(U; — Ug,0)/co, 1] is a numerical
dissipation limiter. If the initial states of the Riemann problem are the same as that of particle i and particle j, i.e.
(o1, UL, P) = (pi, Ui, P)), (pr,Ug, Pr) = (pj,Uj, Pj), (7)

a piece-wise constant reconstruction (denoted as “Baseline”) is applied.
2.2. WENO reconstruction

Based on the concept inherited from the schemes in Refs. [43,44], we introduce a modified WENO reconstruction, by
which the full 4-point stencil (4 points with indices from —1 to 2 as shown in Fig. 2), is constructed from a set of small
stencils with incremental size. Note that the differences between the present candidate stencils and those in Refs. [43,44] are
that the minimum-size stencil here has 2 points and the full stencil 4 points. In the present reconstruction, the mid-point
value, i.e. qq/2, is predicted by the non-linear weighted average

k
Q1/2=Zqug/)2, (8)
k

where qgk/)z and wy, k=1, 2, 3, are the reconstructed values from the candidate stencils and their non-linear weights. These
reconstructed values are

1
45y = 340 + 341
2
qﬁ/’z =—14-1+ 340 . 9)

3
qﬁ/’z = %QO + g(h - %fh

Following Wang et al. [44], the non-linear weights are defined as
— T T.
a1 =di (] + /3118 ' ﬂlzﬁr€>
_ T. T
oy =da (1 + /3218 ' ﬂ12i—5> > (10)

o3 =d3<1+%>

where the linear weights are determined as d; =1/3, d, =1/6 and d3 =1/2. B, k=1,2,3, and B2 are the smoothness
indicators for the candidate stencils,

oy

Wi = 3
Zs:l s
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B1 = (q1 — qo)*
B2 = (qo — q-1)*
1 2, 13 2 ’ (11)
B12=z(q-1 —q1)° + 1539-1 —2q0 +q1)
B3 = 130 — 21 +q2)* + 1 (3q0 — 441 + 42)?
& =105 as in WENO-JS, and 74 is a global reference smoothness indicator [43] given as
T4 = [q-1(547q_1 — 2522q0 + 1922q1 — 494q>)
+q0(3423q0 — 596641 + 1602q3) (12)

+q1(2843q1 — 1642q3)
+267q3]/240.
To implement the modified WENO reconstruction into the SPH method, we construct the 4-point stencil for interacting
particle pair, such as particle i and j. For particle i, the values at the stencil points are calculated as
q-1=®i =V -rj
qo = i
q1=;
P=P;j+VP;-rj

: (13)

where ®; and ®; represent the primitive values, p, P and v - e;;, at particle i and j respectively. Note that V®; and V®;
are the corresponding gradients calculated from the SPH approximation as

m
Vo= p—{(cbj — D) ViWij. (14)
i J
J

The left state ®; of the Riemann problem for the interacting particle pair of i and j is defined as

&L =q1/2, (15)
by applying Eq. (8) based on the 4-point stencil calculated as Eq. (13). The right state ®p is also obtained from by Eq. (8),
but based on the mirrored stencil given by
q1=®;+VP;-rj
qo=D;
q1=P;
@2 =i =V -1y

(16)

2.3. Time integration

Following Refs. [46,47], a kick-drift-kick scheme is employed for time advancement. The half time-step velocity is updated
first followed by the new time-step particle position by

1 n
3 _on 1 dv;
Vi —Vi + jgt a
n+34
i

(17)
' =1 4 8tv

where the superscript n represents the time step. After that the change rate of density is calculated through the half
time-step velocity and the new time-step particle position. The new time-step particle density is updated by

doi\ 172
py+1=py+at(§) . (18)

Then, the pressure is updated through the equation of state, and the particle force is calculated at the new time-step. Finally,
the velocity is updated for the new time step as

1 1 dvs n+1
vt =TT S R} 19
i AT (19)

For numerical stability, a CFL condition is employed



C. Zhang et al. / Journal of Computational Physics 392 (2019) 1-18 5

. h h? h
At <min ( 0.25 ,0.125—,0.25. | — |, (20)
c+|U| % gl

where |U| is the maximum velocity inside the flow, v is the kinetic viscosity and v = 1/ p.

3. Numerical examples

In this section, test cases on one dimensional acoustic wave, two- and three-dimensional dam-break, non-linear liquid
sloshing and Taylor-Green vortex flow are considered to validate and demonstrate the SPH method with WENO reconstruc-
tion (denoted as “WENO-SPH”). The 5th-order Wendland kernel [48] with a smoothing length h = 1.3dp, where dp is the
initial particle spacing, and a support radius 2.6dp, are used in hydrodynamic test cases. The physical parameters density
o = 1000 kg/m3 and gravitational acceleration g =9.8 m/s? are applied. For all hydrodynamic cases, the maximum fluid
velocity is approximated as Vo = 2./gH, where H is the initial water depth, according to the shallow-water theory [49],
for setting the speed of sound cy. Water with zero initial pressure is released immediately when the computation starts
instead of being released from a gate holding the water column with a hydrostatic pressure field as in the experimental
setup. Also note that the Riemann solver with a low-dissipation limiter and the solid boundary treatment in Ref. [30] are
applied.

We compare numerical results with those obtained by the baseline scheme in which a piece-wise constant reconstruction
is applied [30] (denoted as “Baseline”) and a scheme with MUSCL reconstruction [17,50] (denoted as “MUSCL”). In the
MUSCL reconstruction [17], the left and right states are reconstructed from

Dy =d; + 3AD;

__, (21)
Pr=d;— JAD;
where A®; and A®; are limited slopes. In a typical SPH formulation [50] the limited slopes are defined as
N max[0, min(BA®;, AD;), min(AD;, BAD;)], AD; >0
AdD;, ACDj _ ' [ (B i ]) ( i, B ])] j= ’ (22)
min[0, max(BA®;, A®;), max(Ad;, BAD;)], Ad; <0
where
AD; =vyd; -1
P=VPINE nd g=1.5. (23)
AD;=vyP;-rjj

Note that many other slope limiters, e.g. Minmod, Superbee, Sweby, which are widely used in Eulerian mesh method [17],
may be applied. For example, Iwasaki et al. [33] and Murante et al. [34] use a van Leer slop limiter for modeling compress-
ible MHD flow problems.

3.1. One-dimensional acoustic wave

Following Refs. [51,52], we test the convergence of WENO-SPH with a case of sound-wave propagation. The one-
dimensional acoustic wave travels in an ideal gas with y = 5/3, unity density oo = 1.0 and sound speed ¢ = 1.0 inside
a periodic domain. The sound wave is defined by a sinusoidal perturbation

27 X;
) (24)

Pi = po + i, Vi = Csi, pi = po + di, i = Asin(
2
where A =10° and wavelength A = 1.0. The background pressure pg = % = % is determined by the ideal gas equation
of state. We simulate this case at different resolutions with N = 32, 64, 128, 256, 512, and 1024 particles. The L error of
density is given as

1
Lip) =5 D _1pi— P (25)

Here p(x;) is sampled from the analytical solution. Note that using Eq. (4) to evaluate the density, exact consistency between
mass and density is not satisfied [53,41]. In order to avoid this problem and demonstrate the formal convergence order of
different reconstruction schemes, a fully compressible SPH formulation is applied here with density summation equation
(number of neighbors Npg, =4), variable smoothing length and internal energy equation, and an exact Riemann solver as
in Refs. [51,52]. Note that the number of neighbors Npg, =4 is consistent with the setup h =1.3dp in other tests.

Fig. 3 gives the density error, at t =1 when the wave propagated back to the original position, with increasing particle
resolution. It is observed that WENO-SPH and MUSCL achieve second-order convergence, which is the formal accuracy of a
general SPH method with Gaussian-like smoothing kernels when the particle integration error is negligible [54]. Note that,
compared with WENO-SPH, while Baseline achieves first-order convergence only, MUSCL exhibits considerably larger errors
due to numerical dissipation.
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Fig. 4. Two-dimensional dam-break flow: mechanical energy damping obtained by using Baseline, WENO-SPH and MUSCL for R, = 400 (top-left panel),
Re =800 (top-right panel), R, = 1600 (bottom-left panel), and inviscid flow (bottom-right panel), respectively.

3.2. Dam-break flows

In this section, we compute several cases of dam-break flow in two- and three-dimensions. These classical test cases are
characterized by different evolution stages involving violent free-surface wave impacting, breaking and reconnect.

3.2.1. Two-dimensional dam break

The sketch of the initial configuration is the same as that in Refs. [55,30], where the water column initially covers a
rectangle of size H=0.6 and L = 2H. The right wall of the tank is located at L,q; = 5.366H.

Mechanical energy damping can be defined as AE = (Exin + Epor — E®)/(E® — E*°), where Ejin and Epe are kinetic
and potential energies, respectively. E® and E* are the initial and final energies, respectively, with the contribution of
potential energy only. Three cases with different Reynolds numbers R, = 400, R, = 800 and R, = 1600 are considered.
For comparison, the reference energy-damping data are obtained by numerically converged SPH simulations, which are
computed with Baseline at much higher resolutions. As shown in Figs. 4 (the top-left, top-right and bottom-left panels),
WENO-SPH achieves considerably less numerical dissipation compared to the Baseline and MUSCL. Compared with Baseline,
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Fig. 5. Two-dimensional dam-break flow: convergence study of mechanical energy damping obtained with WENO-SPH for inviscid flow, and comparison
with state of art result by using §-SPH method.
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Fig. 6. Three-dimensional dam-break flow: the propagation of the surge-wave front compared with experimental data [57] and analytical solution [49].

MUSCL only slightly decreases the numerical dissipation. Fig. 4 (the bottom-right panel) also gives the numerical damping
for the inviscid dam break flow. Again, mechanical energy is better preserved by WENO-SPH. Fig. 5 gives the damping
of mechanical energy for the inviscid problem with increasing resolution. It is observed that at the same resolution of
dp = H/80 the present method has less numerical dissipation than the §-SPH method. [56]. The results show that MUSCL
does not improve notably the energy loss. This can be explained by the fact that, unlike the WENO reconstruction, MUSCL
may enforce the zero gradient condition in Eq. (22) too frequently due to very complex flow structures.

3.2.2. Three-dimensional dam break

The setup of this case follows the experimental setup of Lobovsky et al. [57]. We consider a viscous flow with a Reynolds
number of R, = 3.8 x 105,

Fig. 6 gives the propagation of the surge wave front compared with experimental data [57] and the analytical solution
of shallow-water equation [49]. Similarly with previous SPH simulations [10,55,27,56], both results obtained by Baseline
and WENO-SPH agree well with the analytical solution which slightly overestimates the propagation speed. Note that the
analytical solution obtained by shallow-water theory is not applicable at the initial time [58]. Fig. 7 shows the recorded
water levels and the comparison with experimental data [57]. The numerical results generally are in agreement with the
experiment except for a slightly faster wave front propagation and a considerably higher reflected jet. Such discrepancies
also have been found in previous studies [27,59] and may be due to wall roughness which is neglected in the simulations.
Compared with Baseline, WENO-SPH produces a slightly higher reflected wave due to less damping of mechanical energy.
The predicted histories of pressure signals are shown in Fig. 8. Generally, both results agree well with the experimental
data [57]. Note that WENO-SPH improves the capability of resolving the first impacting pressure at probe P3. The measured
losses of mechanical energy (not shown here) for the results computed with Baseline, MUSCL and SPH-WENO resemble that
in Fig. 4.
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Fig. 7. Three-dimensional dam-break flow: the time histories of free surface recorded at H1 (top panel), H2 (middle panel) and H3 (bottom panel) and
comparison against experimental data [57].

3.3. Dam break flow against a sharp-edged obstacle

We compute a two-dimensional inviscid dam break flow impacting at a sharp-edged obstacle according to the setup
shown in Fig. 9. This test case is taken from Ref. [60], where the numerical solution is obtained by a finite-difference solver
combined with a single-phase level-set method. One pressure probe is placed at the front surface of the obstacle. Note that
this test case is also studied by Marrone et al. [56] to validate their §-SPH method as this case consists of a wave impact
which is more violent than previous dam break tests and requires good numerical stability of SPH method.
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Fig. 9. Dam break flow against a sharp-edged obstacle: the schematic of the initial configuration with a pressure probe located at the midpoint of the front
surface of the obstacle.
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Fig. 13. Snapshots of the non-linear liquid sloshing obtained by WENO-SPH.
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Fig. 14. The time history of pressure signals of the liquid sloshing: P1 (top panel), P2 (middle panel) and P3 (bottom panel).

Fig. 10 shows the snapshots of free-surface at different time instances obtained by WENO-SPH with a spatial resolution of
dp = H/50. The fluid motion, before impact on the obstacle, is similar to that of typical dam break flow, and is characterized
by a violent fluid injection due to the sharp edge as shown in Fig. 10 (top panels). Later, a large reflected jet is generated
and impacts at the left wall. After that the flow becomes very complex and the free surface fragments as shown in Fig. 10
(bottom panels). Compared with the results obtained by Marrone et al. [56], a good agreement is noted in reproducing
the violent free-surface motion by the present WENO-SPH method. Also note that WENO-SPH shows more small-scale
structures (splash) at time instances t(g/H)%> =3.54 and t(g/H)?> = 5.8 compared with Ref. [56]. Fig. 11 (top panel) gives
the evolution of mechanical energy. Compared with Baseline and MUSCL, WENO-SPH produces less damping, especially
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Fig. 15. The evolution of total mechanical energy for the non-linear liquid sloshing problem.
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Fig. 16. Snapshots of particle distribution of Taylor-Green vortex flow at R, = 100 with a spatial resolution of dp = L/50: Baseline (top panel) and WENO-
SPH (bottom panel).

after the flow impacts on the sharp-edged obstacle, which implies considerable less numerical dissipation. Again, it is
observed that MUSCL only slightly decreases the numerical dissipation compared to Baseline. Fig. 11 (bottom panel) also
gives the time history of pressure signal sampled by probe P, which indicates the results are in good agreement with that
in Ref. [60], except for a large magnitude of impact pressure due to the assumption of weakly compressible fluid. Again, the
main pressure plateau agrees well with that obtained by §-SPH method [56].

3.4. Non-linear liquid sloshing

This test case concerns liquid sloshing inside a partially filled tank, which is taken from the experimental study of Rafiee
et al. [61]. The resonant sloshing phenomenon, which is highly non-linear and occurs when the tank-motion frequency is
close to the natural frequency of the inside fluid, may lead to a very violent free-surface motion and risks structure stability
[62].

We consider the non-linear liquid sloshing at a low filling ratio (d/H = 0.2), as shown in Fig. 12. A sinusoidal excitation
motion of the tank, x = Ag sin(27 fot), is defined by a large amplitude Ag = 0.1 m and resonance frequency fo=0.496 s~ !.
Similarly to the experimental setup [61], the pressure variations at three locations, as shown in Fig. 12, are recorded. We
are computing a viscous flow with the dynamics viscosity = 1.0 x 107® kg-m~! . s~1. The particles initially were placed
on a regular lattice with spacing dp = L/260.

Fig. 13 shows several snapshots of free-surface and particles colored by pressure field during sloshing. After the onset of
excitation, a traveling wave with a crest is generated and then subsequently hits the left wall of the tank. The wave climbs
up along the left wall and then falls back and results a bore. The bore travels in the tank, breaks and impacts at the right
wall and then forming a high run-up. Fig. 14 gives the time history of pressure signals compared with experimental data
from Ref. [61]. Generally, all numerically predicted main pressure plateaus are in close agreement with the experimental
data, but the maximum pressure peaks are larger than that of the experiment. This discrepancy may be due to the fact that
the presence of air phase in the experiment reduces impact pressure. Another reason is associated to the three-dimensional
nature of the sloshing flow. Note that there are some fluctuations in the numerical results. These are a consequence of the
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Fig. 18. Numerical results of the Taylor-Green vortex flow at R, = 100 with a relaxed initial particle distribution. Decay of the maximum kinetic energy.
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(bottom panel).

high Reynolds number, which leads to noisy pressure signal due to the very complex free-surface splashing and impact.
Fig. 15 gives the evolution of relative total mechanical energy defined as AE = (Eyin + Epor — E®)/E®, where E? is the initial
mechanical energy. WENO-SPH predicts considerably mechanical energy than Baseline and MUSCL due to less numerical
damping.

3.5. Taylor-Green vortex flow

In the previous sections, we have shown that WENO-SPH improves the Baseline reconstruction on simulating violent
free surface flows. Here, we show that it also improves the Baseline reconstruction on computing hydrodynamic problems
without involving free surface. We consider a viscous two-dimensional Taylor-Green vortex flow, which is a periodic array
of vortices with the velocity field given by

u(x, y,t) = —UeP cos(2mrx) sin2m y),
vix,y,t) = Uelt sin(2rx) cos2m y), (26)

where b = —872/R,, U is the maximum fluid velocity, R, is the Reynolds number. The computation is performed on a
square domain with unit length L =1, and a periodic boundary condition is applied in both coordinate directions. The
initial velocity distribution is obtained by setting t =0 and U =1 in Eq. (26), and the corresponding decay rate of the total
kinetic energy is —1672/Re.

We consider first the case with R, = 100, and the simulation starts from a regular lattice particle distribution with
a spatial resolution of L/dp = 50. The particle distributions at several time instants are shown in Fig. 16. At t =0.2 s
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Fig. 20. Numerical results of the Taylor-Green vortex flow at different Reynolds number with a spatial resolution of dp = L/100: Decay of the maximum
velocity and the kinetic energy.

both Baseline and WENO-SPH produce a particle distribution aligned with the stagnation lines of the flow as observed in
the work of Adami et al. [47] where a transport-velocity formulation is proposed. At the later times, the ordered particle
distribution is broken and WENO-SPH produces more uniform particle distribution than the Baseline (see the panels for
t =0.6 and 0.8 s in Fig. 16), similar to that obtained in the work of Refs. [47,63]. Fig. 17 gives the decay of maximum
velocity and total kinetic energy over time. Similarly to Ref. [47], the decay rate is predicted correctly but with a shift. This
shift is due to the rearrangement of the particle at early time, as shown in the panels for t =0.2 s and 0.4 s in Fig. 16.
Fig. 19 (top panel) gives the L, error defined as L, = \/Z,N:l ||uf"t — u,-||2/\/ZlN:] ||u;?’“||2 where uf’“ is the analytical fluid
velocity at sampled at particle i. Compared with the Baseline and MUSCL, WENO-SPH generates relatively small errors of
velocity at the same resolution. To avoid initial particle rearrangement, similarly to Ref. [47], we also simulate this test case
by using a relaxed particle distribution generated by the final particle distribution from previous computation. As shown in
Fig. 18, the initial overshoot in maximum velocity is eliminated and the results for three resolutions agree well with the
analytical solution. From the error plot presented in Fig. 19 (bottom panel), it is observed that numerical results converge
to the analytical solution.

To demonstrate the advantage of WENO-SPH, three more test cases at higher Reynolds numbers, i.e. R, =200, R, = 400
and R, = 800, are computed with a spatial resolution of L/dp = 100. Fig. 20 gives the time evolution of maximum velocity
and total kinetic energy. Again, good agreements with analytical solutions is observed.
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4. Conclusions

In this paper we have developed a WENO reconstruction scheme to improve a low-dissipation Riemann-solver based
SPH method. We proposed a procedure utilizing the gradient of primitive variables to construct a 4-point stencil. This pro-
cedure is simple and easy to implement into existing SPH code for two and three-dimensions. Using the proposed WENO
reconstruction, physical variables are reconstructed for the inter-particle Riemann problem which is used to determine the
inter-particle interaction. A number of test cases have been computed with comparisons to previous numerical and experi-
mental results. The proposed method exhibits considerably less numerical dissipation of mechanical energy while maintains
robustness and efficiency. The present WENO reconstruction for the weakly-compressible simulation of free-surface flows
can be extended for modeling fully compressible flows which is a subject of future work. Also other high resolution approx-
imations, such as RKPM [38], can be incorporated into the WENO reconstruction by a MOOD-type approach [37] to increase
the overall numerical accuracy.
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regions when negative pressure occurs. In solid-dynamics simulations, it results in unphys-
ical structure fragmentation. In this work the transport-velocity formulation of Adami et al.
(2013) [14] is generalized for providing a solution of this long-standing problem. Other

Keywords: than imposing a global background pressure, a variable background pressure is used to
Weakly-compressible SPH modify the particle transport velocity and eliminate the tensile instability completely. Fur-
Transport-velocity formulation thermore, such a modification is localized by defining a shortened smoothing length. The
Tensile instability generalized formulation is suitable for fluid and solid materials with and without free sur-

faces. The results of extensive numerical tests on both fluid and solid dynamics problems
indicate that the new method provides a unified approach for multi-physics SPH simula-
tions.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

As a fully Lagrangian, mesh-less method, smoothed particle hydrodynamics (SPH) was proposed by Lucy [1], Gingold
and Monaghan [2] independently. SPH was originally developed for simulating astrophysical problems and has been applied
successfully to a wide range of solid and fluid dynamic problems. For the simulation of solid dynamics SPH offers significant
advantages in terms of handling large deformations in a purely Lagrangian frame. SPH uses a kernel function to approximate
field quantities at arbitrarily distributed Lagrangian discretization elements (particles) in the form of particle interactions.
For example, the particles repel or attract each other under the action of compression or tension, respectively. Subjected
to tension, the mutual attraction of particles may result in a so-called tensile instability which can lead to unphysical
fractures [3]. For the simulation of fluid dynamics tensile instability occurs when the static pressure becomes negative and
results in particle clumping or void regions.

Several attempts have been carried out to address this problem since its first observation. Schussler and Schmitt [4]
proposed a new kernel function which can produce a repulsive force when negative pressure occurs. However, this function
does not satisfy the requirement of continuous first-order derivatives. Jonson and Beissel [5] used a modified non-zero
quadratic kernel function to reduce this instability. The problem of this kernel is that it does not have a continuous
second-order derivative. Randles and Libersky [6] used a conservative smoothing approach to add stabilizing dissipation
for removing the tensile instability. Mandell et al. [7] commented that this approach is good in some cases but only qual-
itatively correct in other cases. Dilts [8] proposed a moving-least-square particle hydrodynamics (MLSPH) method which

* Corresponding author.
E-mail address: xiangyu.hu@tum.de (X.Y. Hu).
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0021-9991/© 2017 Elsevier Inc. All rights reserved.
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replaces the SPH approximation with moving-least-square formulation to reduce tensile instability. While MLSPH is not lo-
cally conservative, it increases substantially computational cost compared with standard SPH. Dyka et al. [9] developed a
stress-point algorithm which uses stress points located in the mid-way between particles to calculate the stress and maps it
to SPH particles. Randles and Libersky [10] showed that this algorithm is stable but complex and computationally inefficient.
Since SPH is a particle-based numerical method, a straightforward concept is to eliminate tensile instability by mimicking
atomic forces rather than changing the kernel function [11]. Monaghan [12] and Gray et al. [11] developed an artificial
stress algorithm to prevent particle clumping and successfully simulated the cases of an oscillating plate and colliding rub-
ber rings. However, as pointed out by Lobovsky and Kren [13], this algorithm fails when the material has comparably high
Poisson ratio.

Adami et al. [14] proposed a transport-velocity formulation to address particle clumping and void-region problems in
weakly-compressible SPH simulation of flow at high Reynolds number. With the original transport-velocity formulation [14],
the momentum equation is reformulated by moving particles with a transport velocity [15,16]. Using a globally constant
background pressure for regulation, the transport velocity leads to favorable particle distribution and reduces numerical
error [17]. A problem of the original transport-velocity formulation is that there is no straightforward applicability to prob-
lems with free fluid or solid material surfaces. This is due to the fact that a constant correcting background pressure may
introduce a large artificial velocity at such boundaries. We emphasis that the idea of moving particles with a transport
velocity which may differ from the momentum velocity was first proposed with the XSPH scheme to prevent penetration in
impact problems [18]. Hu and Adams [15] utilized the transport velocity obtained from an intermediate projection step to
impose fluid incompressibility. Xu et al. [19] developed a shifting approach in the incompressible SPH method for homoge-
nized particle distribution. Lind et al. [20] extended this approach to simulate free surface flow with a surface-identification
algorithm. Very recently, Vacondio et al. [21] modified this approach for a variable-resolution SPH method. Monaghan [22]
developed an SPH turbulence model in which the used smoothed transport velocity can be related to the Lagrangian av-
eraged Navier Stokes equations (LANS) [23]. However, none of these approaches was used to address the tensile-instability
issue in SPH simulation of solid dynamics to the best knowledge of the authors.

In this paper, we extend the original transport-velocity formulation to solve the tensile instability problem of SPH for
solid and fluid dynamic problems. Instead of a globally constant background pressure the present method uses a variable
background pressure for the transport velocity correction. According to this modification the correction is proportional to
the local pressure and can be implemented to problems with free fluid or solid material surfaces. Additionally, due to a
shortened smoothing length, the background pressure correction is localized by involving only nearest-neighbor particles.
The numerical results show that the present method eliminates the tensile instability completely in simulations of both
solid and fluid dynamics. The remainder of this paper is arranged as follows: in the Section 2 and 3, the details of the
method are described. A wide range of classical problems is tested in Section 4 and brief concluding remarks are given in
Section 5.

2. Governing equations

The governing equations for continuum mechanics in a Lagrangian reference frame include the equations for conservation
for mass and momentum. The mass-conservation equation is

dp

—=—pV.v 1

T P (1)
and the momentum-conservation equation is

Y _lyeq (2)

at — p 8
Here, p is density, v is velocity, ¢t is time, g is the body force, o is the stress tensor and

d(e) d(e)

i or TVVE® 3)

refers to the material derivative. Note that Egs. (1) and (2) allow a common description of both fluid and solid dynamics.
For elastic solid materials, the stress tensor ¢ can be decomposed into isotropic and deviatoric parts
o =—pl+0a’, (4)

where p is the hydrostatic pressure, I is identity matrix and o is the deviatoric stress. Using Jaumann’s formulation of the
Hooke’s law, the rate of change of the deviatoric stress can be described as

do’ 1
dit=2c(e—§Tr(e)l)+a/-szT+52-<r/, (%)

where G is the shear modulus, € is the strain tensor
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e=%<V®v+(V®V)T), (6)

and € is the rotation tensor

SZ:%(V@V—(V@V)T). (7)

For a weakly-compressible or incompressible fluid, the deviatoric stress vanishes and a viscous force is added to the stress
tensor:

o = —pl+ 2ne, (8)
where 1 is the dynamic viscosity.

3. Numerical method

With the transport-velocity formulation [14] the momentum velocity for particle transport is modified, and we can
redefine the material derivative of a particle moving with the transport velocity V as

de) d(e)
at ot

The mass-conservation equation for a Lagrangian particle is modified accordingly to

+V- V(o). (9)

~

do _
dt

and the momentum equation to

—pV -V (10)

v 1 1
—=—-V.0+—-V-A+g, (11)
a p P

where the extra stress tensor A= pv® (V— V) is a consequence of the modified transport velocity.
3.1. Evolution of density
Following the standard SPH method, the density evolution equation is discretized as

E,OQ mp oWy ~
— = — €ab ‘- Vab, 12
dt LPa . 05 OTab ab * Vab (12)

where m is the particle mass, Vg, =V, —Vj, is the relative transport velocity between particles a and b, 88%” e, is gradient of
a

the kernel function W (rgp, h). Here, h is the smoothing length, ry, =rq — 1y =rgp€y and ey, is a normalized vector pointing
from particle b to particle a. Note that when density evolution equation is applied for the simulation of weakly-compressible
or incompressible fluid dynamics, it may lead to large density errors when the Reynolds number of the flow is large [24].
Therefore, similarly to Colagrossi and Landrini [24], the density field in fluid-dynamics simulation is reinitialized at each
time-step by

2 ympWep
- . % )
min(1, 3, Wap 52)

Pa (13)

where p* is the density before reinitialization. Note that, limiting of the denominator is due to the fact that Zb Wab% ~

JW(r—rq, hydr <1, eg. when a free surface passes through the support of W (r — rq, h). To calculate the divergence of
deviatoric stresses of elastic solid dynamics, the velocity gradient can be approximated as

~ mp OWgp
<V®v> N M OWae e (14)
a
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3.2. Momentum equation

The momentum-conservation equation for an elastic solid material can be written as [25,26]

EV 3Wb p Db o) o,
@ Ty, o [( poiil Lol bbb ) -2 (15)

dTab Pa Py Pd Py

For fluid particles, the viscous force is obtained from the inter-particle-averaged shear viscosity in SPH form [27,15]

21NaNp
Nab = . (16)
¢ Na + Mp
The discretized momentum-conservation equation for fluid particle is
dv, ow Ap Vgp OW
_a__Z my Wb g Pa Pb [— ﬁ-i-— +Zmb NabVab Wb g (17)
dTap P2 /Ob pd pb b PaPbTab OTab

The extra-stress term A is not present in the momentum equation for solid dynamics as our numerical tests show that
its influence is negligible due to the well resolved velocity field. This is consistent with the observation that, for flows up
to moderate Reynolds numbers (0(102)), the influence of this term is negligible [16]. Actually, this correction term has
notable influence only when the flow is at high Reynolds number [16] or is inviscid, see Sec. 4.7. Although the viscous
term in Eq. (17) does not strictly conserve angular momentum, it is generally accurate even for rotational flow as shown
in Refs. [27,15]. Similarly to the viscous force term the present form of the extra-stress term in Eq. (17) does not strictly
conserve the angular momentum either. As will be shown in Sec. 4.5, the angular-momentum conservation errors generally
are very small. Following the weakly-compressible SPH (WCSPH) approach [28,27], pressure is calculated from an artificial
isothermal equation of state:

p:K(ﬁ—l), (18)
o

where K = ,ooc% is the bulk modulus. Here, the constants cg and pg are the reference sound speed and density, respectively.
Note that, since Eq. (18) gives zero pressure at reference density, negative pressure occurs when p < pp.

3.3. Particle transport velocity

In Adami et al. [14], instead of the momentum velocity the transport velocity V is used for particle transport

drg -
— =V 19
ar = Ve (19)
The transport velocity at every time step is obtained by modifying the momentum velocity, i.e.,
Ev 1
Va(t + 8t) = vq(t) + 5t (— - —Vp°>, (20)
dt  pa

where the term %Vpo is discretized as

oWgp dvg
2 :m =2, 21
Ve =»p b ( plf) A ap €ab ( dt )C 1)

where p® in Adami et al. [14] is a globally constant background pressure whose exact gradient vanishes. In SPH, however,
the conservative approximation of the gradient for constant background pressure results in a residual force due the lack of
zero-order consistency. This residual force leads to a self-relaxation mechanism which regularizes the particle distribution
such that it assumes approximately a configuration with low consistency error [17].

If we consider the right-hand-side of Eq. (21) as a general correction of the particle acceleration such that <ddlt“>
c

is proportional to p% we are free to choose different p° for different particles, or a different influence radii of such a
correction. In this paper, we propose to modify Eq. (21) as

dVa ] awab
(I) _PaXb: b— ot ——€g, (22)



220 C. Zhang et al. / Journal of Computational Physics 337 (2017) 216-232

where Wab = W(rg, E) and h = 0.5h, which indicates that only the nearest-neighbor particles within the distance 2h affect
the correction. Here, p? is chosen as

P2=min(10Ipa|,pref), (23)

where pref is a reference pressure to avoid excessive time-step size limitation. For a weakly-compressible fluid or solid, a
typical choice is pref = K. For compressible fluid or solid, pref = max(|p|max, K), where |p|max is the maximum pressure
magnitude in the entire domain. While Eq. (22) implies that the correction is proportional to the local particle pressure, it
also implies that there is no, or only a very slight correction for a particle near a free fluid or solid material surface due to
the surface boundary condition. Note that the factor of |ps| in Eq. (23) and the size of R in Wab may affect the correction
effectiveness. By preliminary numerical tests we found that the parameters of 10 and 0.5h are generally suitable. Therefore,
we use the same values for all numerical tests of solid and fluid dynamics throughout this paper.

3.4. Time integration scheme

Similarly to Adami et al. [14], the Kick-drift-kick scheme [29] is used for time integration. First the momentum velocity
and transport velocity are calculated at the half time step,

n+l dv,
Vo P=Vit— (d_ta) (24)
3 n+l dvg
Va =Vq + dt (25)

Then the time derivatives of den51ty and deviatoric stresses are calculated using the transport velocity by Eq. (12). The new
time step density, deviatoric stresses and particle position are updated by

d I’H‘j
st e(2)"
dt
da 2
oI+ g At( ) , (27)
dt
1
O =1 4 A, 2. (28)
Finally, at new time-step particle position, the momentum velocity is updated
1At fdvg\" !
Vit =y 2 (22 ) 29
‘ 2 \ dt (29)
For numerical stability several time step criteria should be satisfied, including the CFL condition
h
At <0.25 , (30)
c+|U|
where |U| is the maximum velocity magnitude, the viscous condition
h2
At§0.25<—>, (31)
v

and the body-force condition

At <0.25\/h/g. (32)

For solid dynamics, the elastic stress condition is

h
At < 0.25<7>, (33)
= +U|

where E denotes the Young’s modulus.
4. Numerical examples
A wide range of classical test problems, including free-surface flow, elastic-solid dynamics, high-velocity impact and

Taylor-Green vortex flow, are studied. The Wendland C2 [30] kernel function and a constant smoothing length, h = 1.3 x Ax,
where Ax is the initial particle distance are used for all tests.
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Fig. 1. Computational domain of the oscillating plate.

01}F

r o, (Pa)

[ 1.80E+05
0.08 |-

[ 1.40E+05
0.06 1.00E+05
0.041 6.00E+04

i 2.00E+04
0.02

S—_— -2.00E+04
ofses .",...-' ‘ -6.00E+04
002k l -1.00E+05

: 1 L 1 1 L 1 1

0 0.05 0.1 0.15 0.2

Fig. 2. Simulation of the oscillating plate using standard SPH method and particles are colored by oy stress field (L=0.2 m, H=0.02 m and V; =
0.05 m/s) at t = 0.03 s.

4.1. Oscillating plate

Landau and Lifshits [31] studied theoretically the oscillation of a thin plate with one edge fixed. Gray et al. [11] inves-
tigated the 2D model numerically using SPH method with artificial stresses for suppressing tensile instability. As shown in
Fig. 1, the plate is clamped between layers of SPH particles which are not allowed to move and the motion of plate particles
is initialized by a velocity profile, which is perpendicular to the plate and given by

F(x)
=Vrcg—, 34
vy (X) fCOF(L) (34)
where, the constant of V¢ varies for the different cases, L is the length of plate,
F(x) = (coskL + coshkL)(coshkx — coskx) + (sinkL — sinhkL)(sinhkx — sinkx), (35)

where k is the wave number which can be derived from kL = 1.875. We set the plate properties as follows: Young’s modulus
E =2.0 x 108 Pa, density o = 1000.0 kg/m> and Possion ratio v = 0.3975. In our simulation, the initial particle spacing is

set as Ax =0.002 m, and the reference sound speed cop = /m. Because of the tensile instability of standard SPH

unphysical fracture results, and the plate breaks where the maximum tensile stress appears, as shown in Fig. 2. With the
present method the tensile instability is eliminated and the simulation is stable as shown in Fig. 3. A highly nonlinear case
with large value of V¢ is also simulated, as shown in Fig. 4. The results show that the simulation is stable even though
the plate is strongly deformed. Note that these results are in good agreement with those obtained by the artificial stress
algorithm in Gray et al. [11].

A convergence study and a comparison between numerical and analytical results are performed to demonstrate the
accuracy of present method. For the convergence study, different resolutions are tested by varying initial particle spacing.
The amplitude, as a function of time, of the mid-point in thickness direction at the end of plate is shown in Fig. 5. This study
indicates that the period and amplitude of the oscillations converge rapidly with increasing resolution. The comparison of
the first period of oscillations for a wide range of values of Vy obtained from numerical and analytical results is shown
in the Table 1. The errors are around 13%, as the analytical results are based on a thin plate model, and in our simulation
H/L =0.1. Results of other cases at H/L = 0.05 are shown in the Table 2 and the errors decease to around 2.5% confirming
previous numerical studies [11].

4.2. Colliding rubber rings
The collision of rubber rings was first investigated by Swegle et al. [3]. Our aim here is to show that, with the present

method, the “numerical fracture” produced by the standard SPH the simulation does not occur. Monaghan [12] and Grey
et al. [11] simulated this problem with artificial stresses to suppress tensile instability.
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Fig. 3. Simulation of the oscillating plate using the present method and particles are colored by oy stress field (L =0.2 m, H=0.02 m and V; =0.05 m/s):
(@) t=0.01s,(b)t=0.05s,(c) t=0.07s,(d) t=0.22s.
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Fig. 4. Highly nonlinear case of an oscillating plate using the present method and particles are colored by oy stress field (L =0.2 m, H=0.01 m and
Vy=0.05m/s): (a) t=0.25s, (b) t=0.51s.

As shown in Fig. 6 (a) the inner ring radius is ryj; = 0.03 m and the outer ring radius is rmqx = 0.04 m. The rings have
the same material properties: Young’s modulus E = 0.01 GPa and density p = 1.2 x 10°> kg/m>. We set the rubber ring
relative velocity as vo = 0.12cp and the initial particle spacing as Ax =0.001 m.

The first test is with a Poisson ratio v = 0.3975. The results are shown in Fig. 6, which are in agreement with those of
Grey et al. [11]. To show the improvement due to the present method, a case with v = 0.447 is also simulated. The results,
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Fig. 5. Convergence study of the present method for the oscillating plate (L =0.2 m, H=0.01 m and V; =0.05 m/s).

Table 1

Comparison between analytical and numerical result
for the first period of the oscillating plate at L =0.2 m
and H =0.02 m for various V.

Vy 0.001 0.01 0.03 0.05

Tspu 0284 0283 0284  0.285
Tanaytics 0254 0252 0254  0.254

Table 2

Comparison between analytical and numerical result
for the first period of the oscillating plate at L =0.2 m
and H =0.01 m for various V.

Vy 0.001 0.01 0.03 0.05

Tspu 0521 0520 0522  0.520
Tanaiytic 0508 0508 0508  0.508

(@) (b) (@

o,, (Pa)
& 1.02E+06
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-2.64E+05
(d) (E) (f) -6.92E+05
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-1.55E+06

-1.97E+06
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Fig. 6. Collision of rubber rings with v = 0.3975 using the present method and particles are colored by oy stress field: (a) t =0.0 s, (b) t =0.02 s,
(c)t=0.05s, (d)t=0.07 s, (e) t=0.12 s, (f) t =0.15 s.

as shown in Fig. 7, exhibit no structure fragmentation. Note that Lobovsky and Kren [13] point out that the method of Grey

et al. [11] produces “numerical fracture” for this case if the same parameters as for the case with v =0.3975 are used.
Furthermore, a challenging case with Poisson ratio A = 0.49, i.e. the value of real rubber, is simulated. The results, as

shown in Fig. 8, indicate that no “numerical fracture” is produced. Note that, we have run this case with an even larger
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Fig. 7. Collision of rubber rings with v =0.47 using the present method and stress field profile: (a) oxx, (b), oxy, (C) Oyy.
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Fig. 8. Collision of rubber rings with v = 0.49 using the present method and particles are colored by oy stress field: (a) t=0.0's, (b) t =0.03 s, (¢c) t =
0.12s,(d)t=0.195s, (e) t=0.25s, (f) t =0.34 s.

Poisson ratio A = 0.499 to demonstrate numerical stability. As the results do not exhibit visible difference from those at
A =0.49 we refrain from showing them additionally.

4.3. Interaction involving realistic rubber material

Here, we consider another interesting problem, a low-velocity ball impact on a rubber target. Again, our aim here is to
show that, with the present method, the “numerical fragmentation” does not occur. To simulate this problem in 2D, the ball
is represented by a circular object with radius r =5 mm and the target is modeled by a rubber filament with two ends
fixed and has size of 2 x 50 mm, as shown in Fig. 9 (a). Ball and target have the same material property, Young’s modulus
E =0.01 GPa, density p = 1.2 x 10> kg/m> and Poisson ratio v = 0.49. In this simulation, the initial velocity of the ball is
set as vg = 0.15¢q, and the initial particle spacing is Ax =0.5 mm.

Fig. 9 shows the process of the impact. As expected, the target experiences a significant tensile deformation during the
impact and then rebounds the ball as the elastic force increases. During the impact a wave propagating from the impact
point can be observed and results in a bow-shaped deformation, as shown in Fig. 9 (b), (d). The simulation reproduces the
complex impact dynamics, and tensile instability is completely eliminated. To our knowledge, this is the first successful SPH
simulation of ball-target impact involving realistic rubber materials.

4.4. High-velocity impact (HVI)

High-velocity impact on a structure is a challenge for spacecraft design [32,33]. The HVI problem results in large defor-
mation of structures [34,35], thus a robust and accurate numerical method is required for prediction.

Here, we consider a high-velocity aluminum projectile impacting on a thin target of the same material. The com-
putational domain is shown in Fig. 10. The projectile is 10 mm in diameter, and the rectangular target has a size of
2 x 50 mm. The projectile and the target both have the following material properties: density p = 2785 kg/m?3, sound
speed co = 5328 m/s, shear modulus G = 2.76 x 107 kPa, yield modulus Yo = 3.0 x 10° kPa. The impact velocity is set
as Vo =3100.0 m/s. The initial particle spacing is Ax = 0.5 mm, and the simulation is started at the moment of impact.
By using an elastic-perfectly plastic constitutive model [36,37], the deviatoric stress ¢’ in Eq. (10) is bounded by a factor
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Fig. 9. Rubber projectile impact on target using the present method: (a) t =0.0 ms, (b) t =0.33 ms, (c) t =0.88 ms, (d) t =1.20 ms, (e) t = 1.88 ms,
(f) t =4.08 ms.

Target

Projectile

——
3.1km/s

Fig. 10. Computational domain of the high velocity impact problem.

a= min(%, 1), where J, is calculated from |, = 107 : ¢’. As the pressure generated by the high-velocity impacting is
much larger than the yield stress of aluminum, a highly localized plastic deformation is expected.

Fig. 11 shows the material geometry at several time instances after initial impact as predicted by the present method. As
expected, the strong compression generated by the impact produces extreme pressures. A shock wave of about 1.0 x 107 kPa
is observed to travel leftward to the projectile, closely followed by a rarefaction formed at the rear face of the target. As
consequence, a large tensile force is produced. While the tensile force can lead to “numerical fracture” for the standard
SPH method due to tensile instability [38,39] the present method does not produce such an artifact. Also note that, al-
though using a much simpler material model, the target deformation is in qualitative agreement with previous SPH and
free-Lagrangian simulations [38]. Furthermore, the progress of the projectile through the target, about 20.9 mm, and the
width of the hole, about 19.8 mm, at t =8 s are also close to those obtained by Ref. [38], as the evolution is dominated
by inertial effects and much less effected by details of the material model [38].

4.5. Circular patch

We consider the evolution of a circular patch of an inviscid fluid with a nonuniform initial vorticity distribution. A very
similar case has been studied by Antuono et al. [40]. The configuration is considered as a circular cylinder with radius R =1
rotating with an angular velocity w = w(r) as shown in Fig. 12 (a). The circular patch is subjected to a radial force given by
g = —B2rr where B is a constant parameter, r is the radial coordinate and r is the radial unit vector. The initial profiles of
angular velocity and pressure are given by
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Fig. 11. Instantaneous results illustrating the deformation of structures in a HVI problem simulated by the present method: (a) t =1 ps, (b) t =2 ps,
(c)t=3ps,(d)t=4ps, (e)t=5ps, (f)t=6ps,(g) t=7nps, (h)t=8 ps.

re?(r,0) = o 3 4 g%

2 2 (36)
w(r, 0) =w0{l2’? +2(,2’+$)2r}.

The constant parameters are [>=0.2 m?, wo=1s"' and B =% s~', and the computational setup follows Ref. [40].

Fig. 12 shows the numerical results obtained with the present method and with standard SPH with and without artificial
viscosity. While the present method and the standard SPH without artificial viscosity dissipate less kinetic energy, Y %vlz at
the early times, the standard SPH with artificial viscosity dissipates less kinetic energy at longer times, as shown Fig. 12 (b).
This may be related to the fact that artificial viscosity supports solid-body rotation behavior. The kinetic energy decays
obtained by the present method with and without the extra-stress term A, as shown in Fig. 12 (b), differ only slightly.

Fig. 12 (c) gives the evolution of the angular momentum obtained by different methods. Standard SPH with or without
artificial viscosity conserves the angular momentum while the present method loses conservation because particles move
with the transport velocity other than the momentum velocity. However, the conservation errors are very small as shown
in Fig. 12 (c).

Fig. 12 (d) gives the evolution of circulation along the ring r = 0.5 and the circulation I' is calculated through I' =
0.5> v; - (Xj+1 — X;—1), where i denotes the label of a particle on the ring and x;_1, and X;;1 represent the positions of
the two nearest particles on the same ring. It is observed that the present method and the standard SPH with artificial
viscosity conserve circulation better than the latter without artificial viscosity. None of the three methods conserves the
circulation exactly. As particles move with the transport velocity in the present method one may rather approximate the
circulation as I'yy = 0.5 V; - (X;11 — X;_1), which is damped considerably less compared with the circulation obtained by
momentum velocity. Note that more demanding tests are also discussed in Antuono et al. [40], and further investigation of
the circulation conservation of the present method with such tests is subject of future work.

4.6. Dam-break problem
The dam-break problem is taken from Ref. [41]. A liquid column of height H =1 and length L =2H is located at the left

side of a tank which has a length | =5.366H and height h = 2H. The liquid has a density p =1 and the gravity is set as
g =1. A wall boundary condition proposed by Adami et al. [41] is implemented.
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Fig. 12. Evolution of a circular patch of an inviscid fluid: (a) Configuration of circular patch; (b) Evolution of kinetic energy; (c) Evolution of angular
momentum; (d) Evolution of circulation.

We consider the liquid as viscous and inviscid, respectively. For viscous flow the Reynolds number is set as Re =
400, where Upgy = 24/gH, reproducing the same case as in Adami et al. [41]. If the liquid is considered as inviscid this prob-
lem is very challenging, and the standard SPH requires artificial viscosity or diffusion to stabilize the simulation. The problem
was simulated previously by Colagrossi and Landrini [24]| with several stabilization approaches, such as moving-least-square
density re-normalization, artificial viscosity and the XSPH method for transporting particles [18].

Fig. 13 (a) presents snapshots of the particle distribution and pressure profiles at different time instances for the viscous
flow. Note that these results are in good agreement with those (their Fig. 14) of Adami et al. [41]. Quite similar run-up
along the downstream wall after impact and reflected jet following the re-entry of backward wave can be observed in both
simulations. Fig. 13 (b) shows the evolution of the particle distribution for the inviscid flow. The enlarged views of the fluid
particles at t = 6.2, as shown in Fig. 14, suggest very regular pressure distribution is obtained by both viscid and inviscid
simulations. It can be observed that the present results for the inviscid flow share several typical features with those in
Ref. [24], such as a high run-up along the downstream wall, a large reflected jet and a large void in the downstream flow
due to the re-entry of backward wave. A different feature obtained for the inviscid flow by the present method is the more
intense splashing which agrees with experimental observations, such as in Lobovsky et al. [42] and other simulations such
as that of Ferrari et al. [43].

UYTIGXH —
%
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Fig. 13. Several snapshots of the particle distribution and pressure profile (colored by the pressure field) in the simulation of the dam-break problem with
5000 fluid particles: (a) Viscous flow solution; (b) Inviscid flow solution.

Fig. 15 (a) shows the water front location compared with experimental data [44,45] and theoretical result [46]. The
inviscid solution, while overestimating the velocity of the liquid-front obtained from experiment, converges to the theoretical
result. The viscous solution, similar to that of Adami et al. [41], achieves a better agreement with the experiment. We should
point out that the present Reynolds number is much smaller than that (estimated as 5 x 10°) in the experiment. Fig. 15 (b)
shows the pressure profile on the right wall at yo = 0.2H obtained from both the inviscid and viscous solutions. Note that
the probe position is the same as in Adami et al. [41] and Greco [47], not exact match the setup as in experiment. Similarly
to Adami et al. [41] and Greco [47], the jump is well predicted and the numerical impact peak (around t = 6.5) is slightly
delayed due to the fact that the air cushion is not considered here. Note that, compared with the viscid simulation, the
inviscid simulation shows strong pressure fluctuations, e.g. spikes during the flow impact at the downstream wall.

4.7. Taylor-Green vortex

The 2D viscous Taylor-Green vortex flow has been simulated by SPH with the original transport-velocity formulation. As
the standard SPH method leads to over-dissipation in simulation of Taylor-Green flow problems, and the original transport-
velocity formulation solved this difficulty, we show that the present method recovers the original formulation for flows
without free surface. Taylor-Green flow is a periodic array of vortices with the velocity of analytical solution given by

ux, y,t) = —Uelcos@mx)sin2m y),
v(x, y,t) = UePlsin2mx)cos(2 y), (37)



C. Zhang et al. / Journal of Computational Physics 337 (2017) 216-232 229

] (a) i (b)
R p : i p
] 1.00 i 1.00
25 [ | 25 [ | .
E — 0.75 E — 0.75
21 1 0.50 21 = 0.50
> | [ 025 d = 1 [/ 025 '

3.5
i SPH-Invsic(dp=0.04)
= = SPH-Invisc(dp=0.02)
= = = SPH-Invisc(dp=0.01)
o5 Shallow-water Equation
| —&— SPH-Visc(dp=0.04)
—+— SPH-Visc(dp=0.02)
< 2| 4 SPH-Viso(dp=0.01) |
(a) X ®  Experimental data
15 |
] |
0.5 |
[ 1
0 05 1 1.5 2
t/(H/g)*®
2

= SPH-Visc(dp=0.01)
= = = SPH-Invisc(dp=0.01)
1.5 ® Experimental data

P/pgH

_05 L L 1 L L Il L Il

4
t/(H/g)°®

Fig. 15. Results for the dam-break problem: (a) Time evolution of the liquid-front from inviscid and viscous solutions compared with theoretical and
experimental data [44]; (b) Comparison of pressure profile between numerical simulations and experimental data [45].

where b = —872 /R, is the decay rate of the velocity field, U is the maximum velocity, R, is the Reynolds number and here
we set R, = 100 corresponding to the work of Adami et al. [14].

In this simulation, the computation is performed on a square domain with unit length L =1, and a periodic boundary
condition is applied in both coordinate directions. The initial velocity distribution is given by setting t =0 and U = 1. The
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Fig. 16. Particle snapshots for the Taylor-Green problem at R, = 100 with a resolution of 50 x 50 particles: (a) t =0.0 s, (b) t =0.2 s, (c) t =0.4,
(d)t=0.8s.
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Fig. 17. Numerical results of the Taylor-Green problem: (a) Decay of the maximum velocity (R, = 100); (b) Relative error of the maximum velocity (R, =
100); (c) Decay of the kinetic energy (R, = 100 and R, = 1000).
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convergence study is performed by three different resolutions, Ax =0.02 (50 x 50 particles), Ax =0.01 (100 x 100 particles)
and Ax =0.005 (200 x 200 particles).

The particle distributions at several time instants with a resolution of 50 x 50 particles are shown in Fig. 16. It can be
observed that a homogeneous particle distribution without clustering is produced. As the simulation starts from a regular
lattice particle distribution, particles assume a relaxed configuration at t =0.2 s, as also observed in Adami et al. [14].

Figs. 17 (a) and 17 (c) give the time evolution of the maximum velocity and the total kinetic energy with three resolu-

L (F)—_[] b
tions and the analytical solutions. Fig. 17 (b) shows the relative error defined by Lo, = |%{,,Uet)|. It can be observed

that these results are in quite good agreement with that (see their Fig. 5) obtained by the original transport-velocity formu-
lation [14]. Figs. 17 (c) also gives the evolution of the total kinetic energy for the flow with Re = 1000 suggesting correct
decay rate with increasing resolution.

5. Conclusions

While many approaches have been proposed to address the well-known tensile instability of the SPH method, none of
them is generally effective. In this work, we propose such a method as simple generalization of the previously proposed
transport-velocity formulation. The generalization leads to transport-velocity correction which is proportional to the mag-
nitude of the particle pressure, and a restriction of the correction so that it is only affected by the nearest neighbors. By
reproducing the simulation of the Taylor-Green vortex, the present method preserves the accuracy of the original transport-
velocity formulation. Furthermore, numerical results for a range of fluid and solid dynamics problems show that the present
method generally eliminates the tensile instability. Generality and stability of the present method suggest that it has the
potential to supersede current standard SPH.
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