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Chapter 1.
Introduction

When in the year 1054 Chinese astronomers observed a “guest star” in the constellation Taurus
(Clark and Stephenson, 1977), they could hardly envision what we know today: the life of a massive
star had ended in a tremendous explosion, outshining its entire host galaxy in visible light and
appearing so bright in the sky that astronomers on Earth could mistake the distant explosion
for a visiting star (see, for example, Hester 2008 and Blandford and Biihler 2017). It took many
hundreds of years, before Lundmark (1921) identified the matter that was expelled during this
ancient explosion as the Crab Nebula, which had already been discovered by English astronomers
in the 18" century. It was Baade and Zwicky (1934a,b) who speculated for the first time about the
“transition of an ordinary star into a neutron star” at the end of a star’s lifetime, taking place in
an explosive event they termed “supernova”. A few decades later, Staelin and Reifenstein (1968)
found the associated compact remnant that survived the explosion seen in 1054 (Comella et al.,
1969)—the Crab Pulsar, a neutron star spinning at a frequency of approximately 30 Hz today (Lyne
et al., 2015).

The Current Understanding of Supernovae Since these early days of supernova research, our
knowledge about stellar explosions has grown a lot. While accreting or merging white dwarfs
that approximate the Chandrasekhar mass limit (Chandrasekhar, 1931, 1935) fade away in a
thermonuclear explosion that disrupts the whole star (see, e.g., the reviews by Hillebrandt and
Niemeyer 2000 and Hillebrandt et al. 2013), more massive stars with masses larger than approximately
8 Mg explode as core-collapse supernovae (CCSNe), leaving behind a compact remnant that is
either a neutron star or a black hole. On their way to core collapse, these massive stars run through
several successive burning stages, in which lighter elements are fused to heavier ones. Consisting
of mostly hydrogen (= 75 %) and some helium (= 25 %) in the beginning, these stars develop iron
cores that eventually become unstable against the gravitational collapse (see, e.g., the historical
review by Bethe 1990). During core collapse, the matter is compressed to central densities exceeding
the nuclear density (=~ 2.7 x 10 gem™3, see, e.g., Janka 2012), at which the short-range forces
of the strong interaction start to strongly repel nucleons from each other. While adjusting to
a new equilibrium state, the inner core rebounds, abruptly halting the collapse, and emitting a
shock wave that begins to run outwards through the still infalling outer core. Contrary to the
initial conjecture (Colgate and Johnson, 1960), this prompt shock does not instantly break out,
but instead stalls because of energy losses mainly due to the dissociation of the iron-group nuclei
into neutrons and protons. The shock turns into an accretion shock. It was Colgate and White
(1966) who first accounted for the important role of neutrinos, which are generated in vast amounts
during the collapse by electron captures on protons and nuclei, and which carry away 99 % of the
released gravitational binding energy (= 1053 erg) of the emerging proto-neutron star. By proposing
that a small fraction of these neutrinos are reabsorbed by the stellar matter and, thus, power
the explosion by depositing their energy, Colgate and White laid the foundations of the present
theoretical understanding of the CCSN mechanism.
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The Delayed Neutrino-Heating Mechanism Based on that previous research, Bethe and Wilson
(1985) worked out the delayed neutrino-heating mechanism, according to which the stalled shock
wave is revived after a few hundreds of milliseconds due to the continuous heating of the post-
shock matter by neutrinos that stream out of the hot proto-neutron star (see also the reviews
by Kotake et al. 2006, Janka et al. 2012, Burrows 2013, and Foglizzo et al. 2015). During this
phase, hydrodynamic instabilities play an important role in supporting the shock revival. On the
one hand, convection in the gain layer (i.e., the region behind the shock where neutrino heating
processes dominate the cooling reactions) is triggered by a negative entropy gradient that arises due
to the heating by neutrinos. As a consequence of convective overturn, fresh, low-entropy matter is
transported down to the regions of strong heating, and buoyant bubbles with high-entropy material
rise up to the shock front, instead of being accreted onto the proto-neutron star. On the other
hand, the standing accretion shock instability (SASI) reveals itself as large-scale oscillation of the
shock front, most commonly in the form of dipolar sloshing or spiral modes (Blondin et al., 2003;
Blondin and Shaw, 2007; Foglizzo et al., 2007). Besides helping the shock revival by pushing the
shock farther out, both convection and SASI cause non-radial flows that increase the dwell time of
matter in the gain layer.

The delayed neutrino-heating mechanism provides the currently most promising explanation of
the final fate of most massive stars (see, for example, Janka 2012, who also discusses alternative
mechanisms). It is consistent with the only measurement of neutrinos from a supernova (SN 1987A),
which was observed in February 1987 in the Large Magellanic Cloud (Hirata et al., 1987; Bionta
et al., 1987; Alexeyev et al., 1988). Still, various open questions regarding CCSNe need to be finally
answered, for example: what are the properties of the emerging compact remnant, such as the
mass, spin, and kick velocity? Which elements are produced by nucleosynthesis, and then expelled
during the explosion? Which progenitor stars fail to explode and instead collapse to black holes?
For all of these questions, a detailed understanding of the neutrino-heating mechanism is inevitable.
Although we have learned a lot through observations of optical and other electro-magnetic radiation,
these measurements are rather limited with respect to the central explosion engine because the
inner regions of stars are not transparent to photons. A lot more information could be obtained
from neutrino measurements, but with the exception of SN 1987A, from which two dozen neutrinos
were detected on Earth, we do not have any observational data for neutrinos from supernovae. In
addition, up to now we have not measured any gravitational-wave signal from a supernova (Abbott
et al., 2016).

Modeling Core-Collapse Supernovae For this reason, most of our knowledge about the neutrino-
heating mechanism of CCSNe originates from first-principle simulations of the collapse and post-
bounce phase of massive stars. Starting from initial conditions describing the progenitor star,
these simulations model the temporal evolution of the stellar fluid by solving the equations of
hydrodynamics, which correspond to conservation laws for the density, momentum, and total
energy of the matter. The hydrodynamics equations are self-consistently coupled to a neutrino
radiation-transport scheme, including neutrino-matter interactions like absorption, emission, and
scattering processes. They further account for the gravitational self-interaction of the stellar medium,
and are completed by a microphysical equation of state which describes the behavior of nuclear
matter.

Simulations in one dimension (i.e., assuming spherical symmetry; 1D) fail to explode most of the
stars (see, e.g., Thompson et al. 2003) because they neglect important non-radial flows induced by
hydrodynamic instabilities. Nevertheless, the delayed neutrino-heating mechanism has been shown
to work in many two-dimensional (i.e., assuming axial symmetry; 2D) and an increasing number



of three-dimensional (i.e., using no symmetry assumptions; 3D) simulations (see, e.g., Janka et al.
2012; Takiwaki et al. 2012, 2014; Lentz et al. 2015; Miiller 2015; Janka et al. 2016; Bruenn et al.
2016; Roberts et al. 2016; Summa et al. 2016; Ott et al. 2018; Vartanyan et al. 2019b,a). However,
2D simulations are restricted by the symmetry assumption, which influences the development of
hydrodynamic instabilities, and 3D simulations do not result in robust explosions (see, e.g., Hanke
et al. 2013; Melson et al. 2015a; Miiller et al. 2017; Summa et al. 2018; O’Connor and Couch 2018b)
or cannot explain the observed explosion energies (Burrows et al., 2019).

Neutrino Transport Another important aspect of modeling CCSNe is the transport of neutrinos,
which in general is governed by the seven-dimensional Boltzmann equation describing the temporal
evolution of the particle distribution function in the six-dimensional phase space (i.e., depending
on three spatial and three momentum space coordinates, and time). However, a direct solution
of the time-dependent Boltzmann equation in its full complexity and with high resolution is
computationally not feasible at the moment. For this reason, several approximations have been
introduced to reduce the complexity of the full Boltzmann equation. One class of approximations
is based on the angular moments (i.e., integrals over the solid angle in momentum space) of the
particle distribution function or the closely related specific intensity. In particular, two-moment
schemes evolve the energy density and the energy-flux density of neutrinos, which correspond to the
zeroth and first angular moments, respectively. The system of moment equations needs to be closed
by relating the neutrino-pressure tensor (corresponding to the second moment) to the low-order
moments, for example via an analytic expression. Such two-moment schemes (often also called “M1”
methods) are commonly employed in the literature (see, for example, Foucart et al. 2015, Just et al.
2015, O’Connor and Couch 2018a, Skinner et al. 2016, Roberts et al. 2016 and Kuroda et al. 2016).

The RbR+ Approximation Another widely used approximation is ray-by-ray-plus (RbR+) trans-
port (Rampp and Janka, 2002; Buras et al., 2006b), for which the specific intensity is assumed to
be spherically symmetric around the radial direction of the spherical polar coordinate system. A
direct consequence of the RbR+ approximation in a two-moment scheme are vanishing non-radial
(i.e., polar and azimuthal) components of the neutrino flux, whereas in a fully multidimensional
(FMD) transport scheme all three flux components are evolved. Because of its parallel efficiency,
RbR+ is employed in several recent simulations (Takiwaki et al., 2014; Lentz et al., 2015; Summa
et al., 2018).

There have been speculations about the influence of the RbR+ approximation on the neutrino-
heating mechanism in 2D (see Section 3.1.2 for an extensive summary). In particular, the RbR+
approximation has been shown to foster shock revival in 2D models that featured strong SASI-
sloshing modes in the polar directions, when compared to a FMD transport scheme (Skinner et al.,
2016; Just et al., 2018). However, hydrodynamic instabilities in 2D are constrained by the symmetry
assumption, which even prevents the growth of some modes of instabilities, like the spiral mode of
SASI (Blondin and Shaw, 2007). Furthermore, the transport of turbulent energy in 2D simulations
has been found to be unphysical (Hanke et al., 2012; Couch, 2013; Couch and Ott, 2015). For
these reasons, the self-consistent modeling of CCSNe must ultimately proceed to the general 3D
case, and it is therefore indispensable to assess the influence of the RbR+ approximation on the
neutrino-heating mechanism also in 3D simulations.

LESA Further speculations about the RbR+ approximations concern the lepton-number emission
self-sustained asymmetry (LESA), a phenomenon that was first found by Tamborra et al. (2014a) in
their 3D simulations with RbR+ transport. The key feature of LESA is a global, dipolar asymmetry
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of the lepton-number flux, i.e. the hemispheric number-flux difference of electron neutrinos ()
minus electron antineutrinos (7). In particular, the dipolar component of the lepton-number
flux can rise to values as large as the monopole component for some models, and the direction of
the dipole vector remains relatively stable over time periods of tens to hundreds of milliseconds.
LESA has possible consequences on the nucleosynthesis of the neutrino-heated ejecta and on the
neutron-star kick velocities (Janka et al., 2016); the detailed impact of LESA on these aspects,
however, needs still to be determined in future studies.

Shortly after the discovery of LESA, Sumiyoshi et al. (2015) speculated that it may be an artifact
of the RbR+ approximation. Only in recent studies, O’Connor and Couch (2018b) and Vartanyan
et al. (2019a) have ended these speculations by identifying LESA also in some of their 3D simulations
with FMD neutrino transport. Nevertheless, the influence of the RbR+ approximation on the effects
of LESA remained to be examined.

Overview of This Thesis

Goals In this thesis, we assess the influence of the RbR+ approximation for neutrino transport
on the delayed neutrino-heating mechanism of CCSNe. After previous studies in axial symmetry
found the RbR+ approximation to facilitate shock revival for some progenitor stars, we satisfy the
need for an evaluation in the general 3D case by comparing—for the first time—self-consistent 3D
simulations with RbR+ transport and a FMD scheme that does not make use of RbR+. To this end,
we conducted in total eight 3D simulations with angular resolutions of roughly 4° (“low resolution”)
and 2° (“high resolution”) for an exploding 9 Mg progenitor model and a 20 M model that does
not explode with the employed simplified set of neutrino rates. Furthermore, we analyze our set of
3D simulations for LESA, a phenomenon that was found by Tamborra et al. (2014a) in their 3D
simulations using RbR+ transport. We use the unique possibility to evaluate the dependencies of
LESA on the employed neutrino-transport method (FMD or RbR+) and reveal a global, dipolar
flow pattern in the neutron star that is associated with LESA.

Organization We start in Chapter 2 by describing the framework that we use to simulate CCSNe,
including detailed expressions of the underlying equations of neutrino radiation transport (Sec-
tion 2.2), an overview of the numerical methods that we use to solve these equations (Section 2.4),
a comparison of the RbR+ approximation and the FMD scheme (Section 2.5), as well as the
setup of our 2D and 3D simulations (Section 2.6). We continue in Chapter 3 with a recapitulation
of previous studies employing various neutrino-transport approximations and investigating the
influence of RbR+ in 2D simulations (Section 3.1), followed by a summary of our own 2D simulations
(Section 3.2). The main results for our comparison of 3D simulations with RbR+ and FMD neutrino
transport are discussed in Section 3.3 for the 20 My progenitor model and Section 3.4 for the 9 Mg
progenitor model, concluded by a summary in Section 3.5. In Chapter 4, we present the analysis of
our 3D models for LESA. Starting with a general overview of the LESA phenomenon in Section 4.1,
we discuss the key features of LESA that we find in our 3D simulations in Section 4.2, with a focus
on the differences between models with RbR+ and FMD transport methods. In Section 4.3, we
analyze the flow patterns in the neutron star that are associated with LESA, and in Section 4.4
we briefly summarize our attempt in Glas et al. (2019a) to connect the LESA phenomenon to
Chandrasekhar’s linear theory of thermal instability in spherical shells (Chandrasekhar, 1961). After
summarizing our findings for LESA in Section 4.5, we conclude this thesis in Chapter 5.



Chapter 2.

Core-Collapse Supernova Simulations with the
Alcar Code

This chapter deals with the basic principles of our CCSN simulations, which were conducted with
the AENUS-ALCAR! code (Obergaulinger, 2008; Just et al., 2015, 2018). In these simulations, the
evolution of the stellar fluid is modeled by the hydrodynamics equations (see Section 2.1), and
the neutrino transport is approximated by a system of two-moment equations (see Section 2.2).
The interactions between neutrinos and the stellar matter are described in Section 2.3. We use
Godunov-type finite-volume methods in spherical polar coordinates to solve both the equations of
hydrodynamics and neutrino transport (see Section 2.4). The ALCAR code is capable of employing
both the FMD neutrino-transport scheme and the RbR+ approximation (see Section 2.5), which is
a great advantage for the main goal of this thesis—the comparison of 3D simulations with FMD
and RbR+ transport—because complicated code-to-code comparisons (concerning all other aspects)
can be avoided. Finally, the setup of our simulations is discussed in Section 2.6. For a detailed
description of the ALCAR code and its application to CCSN simulations we refer the reader to
Just et al. (2015) and Just et al. (2018). The following sections (in particular Sections 2.1 to 2.5)
represent a summary of these two publications.

Throughout this thesis, we employ spherical polar coordinates for variables both in position space
(with radius r, polar angle #, and azimuthal angle ¢) and in momentum space (with neutrino energy
g, polar angle ¥, and azimuthal angle ). Depending on the context, the vector indices i, j, and k
run over the components of either position space or momentum space, respectively.

2.1. Equations of Hydrodynamics
The equations of hydrodynamics describe the temporal evolution of the stellar fluid. They are based

on conservation laws for the baryonic density p, the electron fraction Y,, the momentum density pv’
(with v’ being the fluid velocity), and the total (i.e., internal plus kinetic) energy density ey:

Op +V; (pvj) =0, (2.1a)

O (pYe) + Y (pYer?) = Qn, (2.1b)

O (pv') + Y (pv'? + By) = =pV'éy + Qhy, (2.1c)
Orev + Vi (v7 (0 + By)) = —pu;VIgy + Qu + v, Q. (2.1d)

'The AENUS-ALCAR code consists of a hydrodynamics module called AENUS (Obergaulinger, 2008), and a neutrino-
transport module called ALCAR (Just et al., 2015), with ALCAR being the short form of “algebraic local closure
approach for radiation”. Throughout this thesis, however, the name ALCAR refers to the complete AENUS-ALCAR
code.
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Here, 0; and V; represent derivatives with respect to time and position, respectively. The electron
fraction is defined by the difference of electron number n,- and positron number n.+, divided by
the number of baryons ng, i.e.,

Y, = Mez — Met (2.2)

np

The gravitational self-interaction of the stellar matter enters the hydrodynamics equations through
source terms that depend on the gravitational potential ¢,. For the calculation of ¢; we solve
Poisson’s equation, assuming Newtonian gravity but taking into account general-relativistic cor-
rections as described by Marek et al. (2006, case A). The gravitational potential is obtained from
spherically averaged radial profiles, i.e. we assume spherical symmetry for ¢,. The hydrodynamics
equations are closed by a microphysical equation of state, which expresses the gas pressure P,
as a function of p, Y., and the internal energy. For this study, we employ the “SFHo” equation
of state by Steiner et al. (2013), which we extended to a minimum temperature of 1072 MeV to
describe also the low-temperature regions that we encounter in a low-mass progenitor model. The
neutrino-matter interactions are included in the hydrodynamics equations by source terms for the
electron number (Qy), momentum (Q%,), and total energy (Qg). The calculation of the source
terms is described in Section 2.3 (see, in particular, Equations (2.21)), including a list of all neutrino
interactions that are taken into account (see Table 2.1). The equations of hydrodynamics are a
system of hyperbolic differential equations, which we solve by Godunov-type finite-volume methods.
The detailed numerical methods are described in Section 2.4.

2.2. Two-Moment Neutrino Radiation Transport

In this section, we derive the equations of two-moment neutrino radiation transport. In general, two-
moment schemes evolve the energy density and energy-flux density of neutrinos, which correspond
to the first two angular moments of the specific intensity. The system of moment equations is closed
by relating the high-order moments (like the neutrino-pressure tensor) to the low-order moments
via an analytic expression. The derivations in this section are mostly based on the publications by
Munier and Weaver (1986a,b) and Just et al. (2015, 2018).

2.2.1. Radiation Transfer Equation

In general, the transport of neutrinos is governed by the Boltzmann equation, which describes the
temporal evolution of the particle distribution function f in the six-dimensional phase space. In the
framework of neutrino radiation transport, we instead often use the specific intensity I = I(t, z, n,¢),
depending on time ¢, position x, neutrino energy ¢, and the unit vector in momentum direction n.
It is related to the distribution function by (compare Munier and Weaver 1986a, Equation (173),
where v = ¢/h is the neutrino frequency)

h
I(xz,t,n,c) = = s f(z,t,n,e), (2.3)

with the speed of light ¢, and Planck’s constant h. The evolution of I in time is governed by the
radiation transfer equation (Munier and Weaver, 1986b, Equation (112)),
(2.4)

coll »

1 .
E&J%—n’ Vil =[]

which corresponds to the Boltzmann equation assuming no external field and a neutrino velocity of
c. The collision term on the right hand side of Equation (2.4) includes all source terms describing
the interactions between neutrinos and matter.
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In the context of CCSN simulations it is convenient to solve Equation (2.4) in a mixed-frame
approach, in which spatial coordinates (concerning x) are defined in the lab frame (short for labora-
tory frame; often referred to as “Eulerian frame”), and momentum space coordinates (concerning
n and ¢) are defined in the co-moving frame of the stellar fluid (often referred to as “Lagrangian
frame” or “fluid frame”). Because the distribution function is isotropic in the co-moving frame,
we can exploit symmetries in the collision integral and, thus, describe the source terms in a much
simpler way. After performing the transformations into the co-moving frame (accurate to order
v/c), the radiation transfer equation in the mixed-frame approach reads (compare Just et al. 2015,
Equation (4); Munier and Weaver 1986b, Equation (153))

Uﬂ”LZ

1 . J
—OT + “ T + VT + T
C C C

ey 1 .
— 0, [Ie (azg + n’nkvjvkﬂ
c c

i

i e
+ Vi [I (a]n n' — Z—Q + En’n]nkvjvk (2.5)

c2

1 . . o 1 . A
INT .0 AN N | i 1]
- Vo' =T";n/n —Efﬂnv )]

Ty 2‘”—?
C

1 ) ) 1 .
+ Evivl + Flunl + annkvj”k] = Ueon-

Here, Fijk are the Christoffel symbols associated with the spatial coordinates, a = J; v is the particle
acceleration, and V,,; is the derivative in momentum space.
2.2.2. Angular Moments and Evolved Moment Equations

Instead of solving Equation (2.5) directly, we construct the angular moments of the specific intensity
by integrating over the solid angle in momentum space? d2,,,

E :% /dQn I, (2.6a)
F' = /dQn In' (2.6b)
PY :% /dQn In'n/, (2.6¢)
QUk = /dQn I ninink. (2.6d)

We restrict ourselves here to the first four moments, but the integration scheme of Equations (2.6)
could, in principle, be continued until one ends up with an infinite series of angular moments. We
identify E with the neutrino energy density (zeroth moment), F? with the neutrino energy-flux
density (first moment), and P¥ with the neutrino pressure tensor (second moment). In Appendix A,
we provide for the sake of completeness also the expressions for the energy-integrated moments,
together with the corresponding transformations into the lab frame.

By analogy with Equations (2.6a) and (2.6b), the first two angular moments of the radiation
transfer equation (accurate to order v/c) are obtained by integrating Equation (2.5) over df2,, and

2We distinguish between the solid angle in position space, dQ2 = sin 6 df d¢, and the solid angle in momentum space,
dQ), = sin ¥ dd de.
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dropping terms that are effectively of order v?/c? (compare Just et al. 2015, Equations (7a) and

(7b)),
OE+V; (FI + v E) + PUV; - 0. (ePYV0;) = Ca, (2.7a)
OF +V; (PP 40 F') + FIV 0l = 0. (cQ7*Vju) = Ci. (2.7b)

Here, C and C% correspond to the zeroth and first moment of the collision integral, respectively.
Detailed expressions for Cg and C% can be found in Equations (2.17).

In order to take into account general-relativistic redshift and time dilation effects in the moment
equations, we correct Equations (2.7) by including dependencies on the lapse function «. In
particular, when compared to the general-relativistic moment equations (see, e.g., Shibata et al.
2011 and Cardall et al. 2013), we assume the lapse function to be the only general-relativistic metric
component. The corrected moment equations read (compare Just et al. 2018, Equations (3a) and

(3b))

O E + V, (Osz + UjE) + Pijvivj + FiVia
g : (2.8a)
—0; [6 (PUVZ"U]' + FZVia)} =a Cg,

OF' +V; (ac?PT + 0/ F) 4+ FIV 0 + PEVia
g y | (2.8b)
—0; [e (Q”kvjvk + CQP”Vja)] =aCp.

The lapse function is calculated by integrating the general relativistic Euler equation (see, for
example, Rampp and Janka 2002, Section 3.7.2),
Oln o 1 (8]) QM>

or pc+ et +p

or r (2.9)

from the surface to the center. Here, e;y is the internal energy density. At the surface, we apply
the boundary condition a = T' (van Riper, 1979) with the metric function I' (see Rampp and Janka
2002).

The Equations (2.8) represent the system of two-moment neutrino-transport equations that are
solved in the ALCAR code. Instead of evolving separate equations for the higher moments P% and
Q¥* which also appear in Equations (2.8), we truncate the (otherwise infinite) series of moment
equations via a closure relation (see next section). Essentially, by integrating over the solid angle in
momentum space and introducing a closure relation, the dimensionality of the radiation transfer
equation (2.4) is effectively reduced by two, because the dependencies on the momentum space
angles ¥ and ¢ are eliminated. While two-moment closure schemes (often called “M1 schemes”
in the literature) evolve the first two moments (i.e., the energy density and energy-flux density
of neutrinos), other schemes truncate the system of equations at a different order. For example,
in flux-limited diffusion schemes (see, e.g., Bruenn 1985; Bruenn et al. 2013; Zhang et al. 2013)
the energy-flux density is not separately evolved, but is obtained from the gradient of the energy
density:.

2.2.3. Analytical Closure Relation

The system of two-moment equations (2.8) describes the evolution of the first two moments, £ and
F'. Instead of solving separate equations for the higher moments P¥ and Q%*, which also appear



2.3. Neutrino-Matter Interactions

in Equations (2.8), we introduce an analytical relation to close the system of moment equations. In
the ALCAR code, this analytical relation expresses the higher moments P¥ and Q%* as functions of
the evolved first two moments E and F*, i.e.,

P =P (E, F"), (2.10a)
QUk =QUF(E, FY). (2.10b)

The closure for the neutrino-pressure tensor P¥ can be parametrized as (see Just et al. 2015,
Equation (30); but also Levermore 1984 and Pennisi and Trovato 1987)

g l—v .. 3v—1 . .
PW:E< 2X5U+ X2 n};n%), (2.11)

with the Kronecker delta 6%/, the normalized flux direction n%,
) F
= 2.12
and a parameter X, which corresponds to the generalization of the Eddington factor. Similarly, the
closure for the third moment Q% can be parametrized as (see Just et al. 2015, Equation (32); but
also Pennisi 1992)

J—q

Qz]k:CE |:2 (nZF'(S]k_‘_nJF’(SZk‘i’n%(SZ])—F q f i j

npnnk| . (2.13)

Here, ¢ is a parameter, and f is the flux factor,

_IF]

f== (2.14)

The detailed expressions for both x and ¢ depend on the choice of the closure relation. For this
study, we use the analytical closure by Minerbo (1978), which is based on the principle of maximum
entropy from statistical mechanics. In a study of the radiation field around spherically symmetric
proto-neutron star models, Murchikova et al. (2017) found the closure by Minerbo (1978, “ME” in
their terminology) to yield better results than other closures in most cases and, thus, they conclude
that it is the most attractive closure for problems involving neutrino transport around proto-neutron
stars. Using the expressions from Minerbo (1978), we obtain (see also Just et al. 2015, Equation
(28a))

1 1

T S PSR 4
() =5+ 5 (672 =2/ +61%). (2.15)
and (see the derivation by Just et al. 2015, Equation (33) and Appendix A)
a(f) = % (45+ 10f — 12f% — 123 + 384 — 1245 + 18f6) . (2.16)

2.3. Neutrino-Matter Interactions

In this section, we describe the neutrino-matter interactions that we include in our simulations. After
providing an overview of the neutrino interactions in Section 2.3.1, we discuss some implementation
details in Section 2.3.2, and explain the coupling of the interaction source terms to the hydrodynamics
equations in Section 2.3.3.
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Table 2.1.: Neutrino interactions included in our simulations. The top part of the table lists all neutrino
interactions, divided into groups of absorption and emission processes, scattering, pair production and
annihilation, and nucleon-nucleon bremsstrahlung. The symbols denote neutrons (n), protons (p), nucleons
(N, either n or p), heavy nuclei with nucleon number (A) and proton number (Z), electrons (e™), positrons
(e'1), electron neutrinos (v,), electron antineutrinos (7, ), heavy-lepton neutrinos (v,,), and any neutrino kind
(v;). In the bottom part of the table, we provide comments and the corresponding references for the neutrino
interactions (compare the numbers in square brackets).

Absorption and emission (v, and 7, only)
1

n+rve = p+te 1], [2]
p+ie = n+tet 1], 2]
(AVZ)+ve = (AJVZ4+1)+e [1]
(AZ)+v. = (AJZ-1)+e" 1]
Scattering
n+v, = n+y [1], [2]
ptvi = ptuy 1], 2]
(A, Z) +uv = (A, Z) +v; [1], [3]
ettty = et 4y [4], 5]

Pair production and annihilation (v, only)
e t+et = vt [6], [8]

Bremsstrahlung (v, only)
N;i +No = Nj; 4+ No4vp+1y, [7]7 [8]

References
1] Bruenn (1985); Mezzacappa and Bruenn (1993)

[

[2] Weak-magnetism and nucleon-recoil corrections (Horowitz, 2002)

[3] Ion-screening corrections (Bruenn and Mezzacappa, 1997; Horowitz, 1997)
[4]  Yueh and Buchler (1977); Bruenn (1985); Cernohorsky (1994)

[5] Damping of source terms for p > 5 x 102 gecm ™ (O’Connor, 2015)

[6] Bruenn (1985); Pons et al. (1998)

[7] Hannestad and Raffelt (1998)

[8] Simplified description (like absorption and emission, see O’Connor 2015)

2.3.1. Overview

Table 2.1 provides an overview of all neutrino-matter interactions for the three different evolved
neutrino species: electron neutrinos v, electron antineutrinos 7., and a third species v, that
represents all heavy-lepton neutrinos. The set of interactions contains absorption and emission
processes of neutrinos both by nucleons (i.e., neutrons and protons) and by nuclei. Because
absorption and emission of heavy-lepton neutrinos are suppressed due to the large rest mass of muon
and tau leptons, we include these processes only for electron-type neutrinos, v, and 7., respectively
(see, however, Bollig et al. 2017, who demonstrate the possible influence of muons in 2D CCSN
simulations). We further take into account the following scattering processes for all three neutrino
species: isoenergetic scattering of neutrinos on nucleons, coherent scattering of neutrinos on nuclei
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with ion-screening corrections due to medium correlations (Bruenn and Mezzacappa, 1997; Horowitz,
1997), and inelastic scattering of neutrinos off electrons e~ and positrons e™ (Yueh and Buchler,
1977; Bruenn, 1985; Cernohorsky, 1994). All interactions of neutrinos with nucleons (i.e., absorption,
emission, and scattering) include weak-magnetism and nucleon-recoil corrections (Horowitz, 2002).
Detailed information about the calculation of all interactions with nucleons and nuclei can be found
in the publications by Bruenn (1985) and Mezzacappa and Bruenn (1993). For neutrino scattering
off electrons and positrons we follow a suggestion by O’Connor (2015) in damping the source terms
at densities larger than 5 x 102 gem ™3 (see Section 2.3.2 for details). The heavy-lepton neutrinos
are produced (and annihilated) in neutrino-antineutrino pairs via nucleon-nucleon bremsstrahlung
(Hannestad and Raffelt, 1998) and e~ e™ annihilation (and creation) (Bruenn, 1985; Pons et al.,
1998). Both the nucleon-nucleon bremsstrahlung and the e~e*-pair processes are implemented
with a simplified description, in which these interactions are treated similarly to absorption and
emission terms (following O’Connor 2015; see Section 2.3.2 for details). Because the production
and annihilation of electron-type neutrinos are by far dominated by the emission and absorption
on nucleons and nuclei, we include neither the nucleon-nucleon bremsstrahlung, nor the e~ e*-pair
processes for v, and .

2.3.2. Details of the Implementation

The neutrino interactions enter the moment equations (2.8) via the source terms Cg and C% for
the energy density and energy-flux density, respectively. These source terms can be separated into
contributions from absorption, emission, and iso-energetic scattering processes (subscript “aes”),
and from inelastic scattering processes (subscript “is”),

Cg = C’E,aes + CE,is; (2173)
Cj’ = Cé’,aes + C%,is' (2'17b)
We follow the formalism of Bruenn (1985) and Rampp and Janka (2002) and rewrite the source

terms Cp aes and C’Eaes as functions of an effective absorption opacity k, (corrected for stimulated
absorption) and an effective scattering opacity ks, (see also Just et al. 2018, Equations (A2a) and

(A2b)),

CE,aes = CRa (Eeq - E) ) (218&)
C%',aes = —C (/{a + K‘s) F'. (218b)

Here, E° is the equilibrium energy density, given by the Fermi-Dirac distribution (see, e.g., Just
et al. 2015, Equation (15)),

eq € 3 €~ Hy -1
E°Ye,puy, T) = 47 (hc> [exp ( T ) + 1] ) (2.19)
for neutrinos with chemical potential p, and energy ¢, and for a fluid temperature 7' (with kg being
the Boltzmann constant).

The computation of the opacities k, and kg follows the explanations given in the appendix of
Rampp and Janka (2002), but additionally includes corrections to interactions with nucleons due to
weak magnetism and nucleon recoil (Horowitz, 2002). Furthermore, we use a simplified description
for both the nucleon-nucleon bremsstrahlung and the e~ e™-pair processes, which are treated as
absorption and emission terms. Specifically, these two processes enter the absorption opacity by
means of an isotropic emissivity (see O’Connor 2015 for details, in particular in their Section 2.6.2).
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Similarly to O’Connor (2015), we include the nucleon-nucleon bremsstrahlung and the e~ e*-pair
processes only for heavy-lepton neutrinos, because the production and annihilation of v, and 7,
are by far dominated by charged-current interactions (i.e., the emission off and the absorption on
nucleons and nuclei).

For the calculation of the source terms Cg aes and Cfpyaes (Equations (2.18)), the opacities k,
and kg are treated explicitly in time, i.e., they are computed from quantities that are given at the
old time step. In contrast, the neutrino energy density E and energy-flux density F' are treated
implicitly in time, which means that we have to invert the system of equations to obtain values for
E and F" at the new time step. In most cases, the equilibrium energy density is calculated from
quantities u, and T defined at the old time step, i.e., £ is treated explicitly in time. However, in
some rare cases where the values for £°? strongly differ between two time steps, we obtain improved
values for p,, and T by an intermediate, implicit step (see the appendix of Just et al. 2018 for
details). In practice, we encounter strongly differing values for E®? between two time steps only
in regions of strong neutrino-matter coupling and, therefore, apply the intermediate step only for
densities larger than 10 gcm™3.

In addition to the source terms for absorption, emission, and iso-energetic scattering processes, the
source terms in Equations (2.17) also take into account contributions from the inelastic scattering of
neutrinos off electrons and positrons. The corresponding source terms Cg i and C’}yis are calculated
explicitly in time to avoid computationally expensive inversions of the two-moment equations. In
order to retain a stable evolution when the scattering rates become too high to be followed properly
with an explicit treatment, we follow a suggestion by O’Connor (2015, inspired by Thompson et al.
2003) in damping the source terms for the inelastic scattering by a factor of

3
P 2
fiS = max |fL <5 % 1012gcm3> ] . (220)

In other words, the source terms Cgjs and C%’,is are damped only for densities larger than
5x 102 gem™3.

In the following, we briefly compare the set of neutrino interactions between this work and the
study by Just et al. (2018), who conducted 2D CCSN simulations with the ALCAR code, comparing
different approximations and corrections to the neutrino physics. Our set of neutrino interactions
corresponds to their “pp” and “rbr-pp” models, respectively, depending on whether the FMD or
the RbR+ neutrino transport was employed. This means, in particular, than in contrast to the
reference models of Just et al. 2018, we include nucleon-nucleon bremsstrahlung and the e~ e™-pair
processes (“pp” is the short form of pair processes) only for heavy-lepton neutrinos and with the
aforementioned simplified description. However, we neither include strangeness corrections to the
axial-vector coupling in neutral-current interactions (Horowitz 2002 and Horowitz et al. 2017; as in
models “str” of Just et al. 2018), nor axial response corrections to the neutrino-nucleon scattering
cross section due to many-body effects (Horowitz et al. 2017; as in models “mb” of Just et al. 2018).
Moreover, in contrast to models “nones” and “norel” of Just et al. 2018, we do take into account
inelastic neutrino-electron scattering as well as velocity-dependent and gravitational redshift terms.

2.3.3. Coupling to the Hydrodynamics Equations

The neutrino-matter interactions are included in the hydrodynamics equations (2.1) by source terms
for the electron number (@), momentum (Q)};), and total energy (Qg). They are computed from
the source terms Cg and C% (Equations (2.17)) of the two-moment system for neutrino transport
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via (see also Just et al. 2018, Equations (2a) to (2c))

QN =—amp / (Cep. — CE'pe)é"_l de, (2.21a)
i i 7

Qu =— a5 ;/CF,V de, (2.21Db)

Qp = — aZ/CE,V de. (2.21c)

Here, mp is the atomic mass unit, and the sums run over all neutrino species v with v € {ve, Ve, v }.

2.4. Numerical Methods

In this section, we describe the numerical methods that we use to solve the equations of hydrodynam-
ics (2.1) and the system of two-moment neutrino-transport equations (2.8). Both the hydrodynamics
and neutrino-transport equations represent hyperbolic differential equations, which are commonly
solved by conservative finite-volume methods. In these methods, the physical quantities are dis-
cretized as cell-volume averages, i.e., the discretized representation @ of a quantity u in a cell with

volume AV is given by
1

AV Jav
Using this representation, the divergence terms that appear in the differential equations can be
rewritten as surface integrals (by means of Gauss’s divergence theorem) over the interface fluxes
between adjacent cells.

In the ALCAR code, we use a Godunov-type (Godunov, 1959) finite-volume scheme to solve
both the equations of hydrodynamics and the equations of neutrino transport. The cell-interface
fluxes between adjacent cells are obtained by the approximate “HLLC” Riemann solver (Toro et al.
1994; based on the fundamental “HLL” two-wave solver by Harten et al. 1983). In the vicinity of
coordinate-aligned shocks, we switch to the “HLLE” Riemann solver (Einfeldt 1988; Einfeldt et al.
1991; see also Toro 1997). To compute the cell-interface fluxes of a quantity u, the Riemann solver
requires the values of u at the cell interfaces, which need to be reconstructed from the cell averages
@. For the reconstruction of the interface values, we employ the piecewise-parabolic method (PPM;
Colella and Woodward 1984) in the cell-centered “PPM5” version of Mignone (2014).

For the time integration of both the hydrodynamics and neutrino-transport equations we use an
explicit, directionally unsplit second-order Runge-Kutta scheme, with the same time stepping for
the two set of equations. The global time step At is constrained by the Courant-Friedrichs-Lewy
condition (CFL; Courant et al. 1928). It is computed by

u dV. (2.22)

u =

At = fCFL X min (Athydrm Attransport) ) (223)

where Atpydro and Atgransport are the minimum time steps of the hydrodynamics and the neutrino-
transport equations, respectively, and fcpr, < 1 is the CFL factor.

For further details of the numerical methods that are employed in the ALCAR code we refer the
reader to the extensive documentation provided by Just et al. (2015, in particular Section 3).

2.5. FMD versus RbR+ Neutrino Transport

One of the main goals of this thesis is the comparison of 3D CCSN simulations with two differ-
ent neutrino-transport methods: the FMD transport scheme on the one hand, and the RbR+
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Figure 2.1.: Symmetry assumption of the RbR+ approximation (Rampp and Janka, 2002; Buras et al.,
2006b). For RbR+ transport, the specific intensity I is assumed to be symmetric around the radial direction
r of the spherical polar coordinate grid.

approximation on the other hand. For RbR+ transport (Rampp and Janka, 2002; Buras et al.,
2006b), the specific intensity is assumed to be symmetric around the radial direction of the spherical
polar coordinate grid (see the illustration in Figure 2.1). One direct consequence of the RbR+
approximation are vanishing non-radial flux components, F? and F?, and vanishing off-diagonal
pressure-tensor elements, P¥ with i # j. For this reason, with the RbR+ approximation only the
radial flux component F" is evolved, while in the FMD transport scheme all three flux components
Fr, F% and F? are evolved (compare the moment equation for F* in Equation (2.8b)). In the
ALCAR code, the FMD scheme is implemented as default transport method, and the RbR+ ap-
proximation can easily be employed by explicitly setting F = F¢ = 0. Throughout this thesis, we
use the advanced version® of RbR+ (Buras et al., 2006b), which means that we include the lateral
neutrino-pressure contributions in the hydrodynamics equations (in particular, Equations (2.1c)
and (2.1d)) for densities larger than 10'2gcm™ via the source term Q9 (see the discussion in
Buras et al. 2006b, Section 2.2.3, and Equation (18); but also Equation (5) in Just et al. 2018),

9 . « 1
QM RbR+ = -3 ZI;/ e OpE de. (2.24)

3

For densities smaller than 102 gcm™ we set Q?M,RbR 4+ = 0. In contrast, in the FMD scheme we

use the general expression from Equation (2.21b) to calculate @9, (independently of the density).

2.6. Setup of Simulations

In this section we describe the setup of our 2D and 3D CCSN simulations, including the settings of
the neutrino-transport solver (Section 2.6.1), the grids and the numerical resolution employed in our
runs (Section 2.6.2), a simplification (“1D core”) that allows us to use a larger time step and hence to
make our simulations consume less computational resources (Section 2.6.3), the initialization of our
simulations (Section 2.6.4) together with the progenitor models used in this thesis (Section 2.6.5),
and a summary of the set of eight 3D simulations that we use to analyze the differences between the
neutrino-transport methods FMD and RbR+ in 3D (Section 2.6.6). Most contents of this section

3The original version of the transport approximation from Rampp and Janka (2002) is called ray-by-ray (RbR), and
the advanced version that was introduced in Buras et al. (2006b) is called ray-by-ray-plus (RbR+).
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Table 2.2.: Grid parameters for 2D and 3D simulations. We distinguish between “polar” (coarser resolution
at the poles), “equatorial” (coarser resolution at the equator), and “uniform” (uniform resolution) angular
grid structures. This table is taken from Glas et al. (2019b, Table 1).

Label  Angular Grid Structure N, x Ny (xNy)

3D L polar 320 x 40 x 80
3D H polar 640 x 80 x 160
2D pol/40 polar 320 x 40
2D pol/80 polar 640 x 80
2D equ/80 equatorial 640 x 80
2D uni/80 uniform 640 x 80

(in particular, Sections 2.6.2 to 2.6.5) have already been published in Glas et al. (2019b, see also the
information on already published material on page 73).

2.6.1. Neutrino Transport

ALCAR’s neutrino-transport module solves the system of energy-dependent two-moment equations
(2.8), which describes the evolution of the energy density E and the energy-flux density F* of
neutrinos (see Section 2.2 for an extensive summary). We evolve E and F* (both measured in the
co-moving frame of the fluid) for three neutrino species: electron neutrinos v, electron antineutrinos
Ve, and a third species v, that represents all four heavy-lepton neutrinos. For the discretization of the
neutrino energy €, we employ 15 bins that are logarithmically spaced in the interval 0 < e < 400 MeV.
The discretization of the neutrino-transport equations and the hydrodynamics equations in position
space is based on the same spatial grids (see next section).

2.6.2. Grids and Numerical Resolution

To assess the influence of numerical grid resolution, we vary the number of grid cells (N,, Ny, and
Ny, respectively). A summary for our 2D and 3D simulations can be found in Table 2.2. In general,
we differentiate between “low” and “high” resolutions. For 2D simulations our naming convention is
based on the number of lateral zones (i.e., “40” for low resolution, and “80” for high resolution),
whereas for 3D simulations we simply abbreviate low (“L”) and high (“H”) resolutions. In both 2D
and 3D simulations, the radial grid ranges from 0 to 10? cm and contains N, € {320,640} zones.
The cell sizes in radial direction increase logarithmically, starting with 10* cm in the center of the
star. In radial direction, we use a reflecting inner boundary (at r = 0) for all evolved quantities,
and at the outer boundary (at r = 10 cm) we use an inflow condition for hydrodynamic quantities
with time-independent values for density, infall velocity, and total energy (all obtained from the
progenitor model) and prescribe a free outflow condition for the neutrinos.

In 3D simulations, the polar grid is composed of two large zones at each pole (6 = 0° and § = 180°,
respectively) and Ny — 4 zones around the equatorial plane with equal sizes. For low-resolution
grids with Ny = 40 zones (high with Ny = 80) the first cell measures 12° (10°) and the second cell
6° (4°), leading to a cell size of 4° (2°) for the remaining equally sized zones to cover the entire
180° range. Using this particular arrangement with coarser angular resolution at the poles, we
are able to sustain a computationally affordable time step by avoiding exceedingly small cell sizes
in azimuthal direction, which are proportional to sin 6, and which dictate the time step in our
3D simulations according to the CFL criterion. In azimuthal direction (relevant only in 3D), the
grid cells have constant size over the whole 360° domain, leading to a cell size of 4.5° (2.25°) for
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Ny =80 (N4 = 160) zones. We use a reflecting boundary in lateral direction (at angles § = 0° and
6 = 180°) for 2D and 3D simulations, and periodic boundary conditions in azimuthal direction (at
the interface where ¢ = 0° or, equivalently, ¢ = 360°) for 3D simulations.

In our 2D simulations, we assess the influence of the polar grid by varying the number and
arrangement of angular grid cells. First, we performed 2D simulations on a polar grid with Ny = 80
uniformly distributed cells (labeled ‘uni/80’, see Table 2.2), leading to a polar grid resolution of
2.25°. Second, we tested the polar grid structure that we apply in the 3D simulations (with coarser
angular resolution at the poles to alleviate time step constraints) also in 2D simulations (labeled
‘pol/40’ for Ny = 40, and ‘pol/80’ for Ny = 80 zones, respectively). Third, to further assess the
influence of partially coarsened angular resolution, we conducted one 2D simulation on a polar
grid with coarse resolution at the equator (labeled ‘equ/80’ with Ng = 80 zones). Specifically,
the ‘equ/80’ grid consists of two 10°-zones symmetrically arranged around the equator (6 = 90°),
surrounded by two 4°-zones and 76 remaining zones with 2° to cover the entire 180° range.

2.6.3. 1D Core

In both 2D and 3D simulations, further constraints on the time step arise near the center of
the spherical coordinate system, where cell sizes in lateral and azimuthal directions are smallest
because of their dependence on the radial coordinate. We alleviate these constraints by evolving
the innermost 10 cm in spherical symmetry (“1D core”) and, thus, neglecting angular variations
in the (spherically symmetric) innermost region of the proto-neutron star. This is an acceptable
approach as long as the central core of r < 10 cm remains convectively stable, which is practically
fulfilled until about 100 ms after bounce but can become marginally valid afterwards. While the
violation of this condition has some influence on the evolution of proto-neutron star convection (see
Section 4.3.3), the consequences are irrelevant for the results discussed in Chapter 3.

2.6.4. Initialization

Because there is no growth of hydrodynamic instabilities during core collapse until bounce, we
simulate the collapse of the iron core in 1D and start our 2D and 3D simulations from the 1D
data at 15ms after core bounce. The 1D simulations are performed on the same radial grid (with
N, = 640) that we use in 2D and 3D simulations. To trigger hydrodynamic instabilities in the
post-bounce phase, we initialize the multi-dimensional simulations with random seed perturbations
in the density with an amplitude of 0.1 %.

2.6.5. Progenitor Models

We conducted CCSN simulations for two different non-rotating, solar-metallicity progenitor models
(see Figure 2.2 for the radial profiles of density, electron fraction, radial velocity, and temperature
at the onset of collapse). The first model, a 20 M star from Woosley and Heger (2007, labeled s20
in the following), has already been extensively studied in literature. In 2D, both successful (Bruenn
et al., 2016; Summa et al., 2016) and failed explosions (Skinner et al., 2016; Vartanyan et al., 2018)
have been reported. Other groups have found successful and failed explosions in dependence on the
simulation setup (e.g., the employed set of neutrino-interaction rates) when performing 2D (see,
e.g., Bollig et al., 2017; Kotake et al., 2018; O’Connor and Couch, 2018a; Just et al., 2018) and
3D (Melson et al., 2015a) simulations of the s20 progenitor model. Thus, the s20 progenitor model
seems to reside at the threshold between successful and failed explosions.
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Figure 2.2.: Radial profiles at the onset of collapse of the spherically symmetric progenitor models s20 (blue
lines) and 9.0 (green lines). We show, in dependence on the radius r, the densities p (top left), electron
fractions Y, (top right), radial velocities v, (bottom left), and temperatures T (bottom right). This figure is
a slightly rearranged version of Figure 1 from Glas et al. (2019b).

In order to additionally compare the explosion dynamics of 2D and 3D simulations, we chose the
second progenitor model such that we expect robust successful explosions. The 9 Mg progenitor
model from Woosley and Heger (2015, labeled s9.0 in the following)* has been shown to rather
readily explode in 2D simulations by Radice et al. (2017) and Just et al. (2018). As most models at
the low-mass end of iron-core progenitors, the s9.0 star exhibits a very steep density gradient at the
edge of the degenerate core (see the radial density profile in Figure 2.2). As a consequence of the
steep density gradient, the mass accretion rate drops rapidly during the first few 100 ms after core
bounce, leading to favorable conditions for shock runaway. This can be seen from Figure 2.3, which
shows the mass accretion rate, evaluated at a radius of r = 400 km, for the 1D simulations of the
$9.0 and s20 progenitor models. Here, the mass accretion rate at any radius r is defined by the
surface integral,

M(r) = r2/ p vy d€Q, (2.25)
4m

with baryonic mass density p and radial velocity component v,.

2.6.6. Overview of All 3D Simulations

For this work, we conducted in total eight 3D CCSN simulations. Table 2.3 summarizes the key
features of these simulations: first, we performed simulations of two different progenitor models

4We use a slightly modified version of the 9Mg progenitor model, which is described by Sukhbold et al. (2016).
Data are available at https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/data/SEWBJ_2015/index.html.
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Figure 2.3.: Mass accretion rates as functions of the time after bounce for 1D simulations of the progenitor
models s20 (blue line) and $9.0 (green line). The mass accretion rates M (see Equation (2.25)) are evaluated
at a radius of r = 400 km. Note that M shows excellent agreement between 1D, 2D, and 3D simulations
(until the time of shock revival in the case of successful explosions). This figure is a slightly rearranged
version of Figure 2 from Glas et al. (2019Db).

Table 2.3.: Summary of all 3D simulations. This table is taken from Glas et al. (2019a, Table 1).

Model Name  Progenitor Transport Resolution N, x Ny xNg Explosion

s20 FMD L s20 FMD L 320 x 40 x 80 no
s20 RbR+ L s20 RbR+ L 320 x 40 x 80 no
s20 FMD H s20 FMD H 640 x 80 x 160 no
s20 RbR+ H s20 RbR+ H 640 x 80 x 160 no
$9.0 FMD L 9.0 FMD L 320 x 40 x 80 yes
s9.0 RbR+ L $9.0 RbR+ L 320 x 40 x 80 yes
s9.0 FMD H 9.0 FMD H 640 x 80 x 160 yes
s9.0 RbR+ H $9.0 RbR+ H 640 x 80 x 160 yes

(s20 and $9.0; see Section 2.6.5), four simulations in each case. Second, we varied the numerical grid
resolution (see Section 2.6.2) by changing the number of grid cells in radial (IV,), lateral (Ng), and
azimuthal (Ng) direction for both progenitor models. For high resolution (“H”), we employ twice as
many cells in each direction as compared to the low resolution (“L”). Third, we employed either the
FMD neutrino-transport scheme, or made use of the RbR+ approximation (see Section 2.5). As the
table indicates, we obtain successful explosions only for the $9.0 model (see Section 3.4), while all
simulations of the s20 model fail to explode (see Section 3.3).
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Chapter 3.

Simulations with FMD and RbR+4 Neutrino
Transport

One of the main goals of this thesis is to assess the influence of the RbR+ approximation on the
delayed neutrino-heating mechanism in 3D CCSN simulations. For this purpose, we performed in
total eight 3D simulations (see Table 2.3) with either the FMD neutrino-transport scheme or the
RbR+ approximation. Before we discuss the results of our 3D simulations including the comparison
of FMD and RbR+ neutrino-transport methods, we recapitulate the status of modeling the neutrino
transport in CCSN on the basis of previous studies. We start with a brief overview of different
transport approximations used in the literature (Section 3.1), with a focus on the influence of the
RbR+ approximation in previous 2D simulations (Section 3.1.2), and complemented by a summary
of the 2D simulations that we performed with our ALCAR code (Section 3.2). Our main results
regarding the comparison of 3D simulations are presented in Section 3.3 for the s20 progenitor
model, and in Section 3.4 for the s9.0 progenitor model. We conclude the comparison of FMD and
RbR+ neutrino transport in Section 3.5. The contents of this chapter have already been published
in Glas et al. (2019b, see also the information on already published material on page 73).

3.1. Transport Methods in the Literature

In general, the transport of neutrinos is governed by the seven-dimensional (three spatial and three
momentum dimensions plus time) Boltzmann transport equation describing the time evolution
of the single-particle distribution function in the six-dimensional phase space (see Section 2.2.1).
Solving it in its full complexity, for example by the discrete-ordinate (.S,,) method (Sumiyoshi
and Yamada, 2012), is currently computationally only feasible for selected temporal snapshots
(Sumiyoshi et al., 2015), or for time-dependent axisymmetric hydrodynamic simulations with low
resolution in momentum space (Nagakura et al., 2018). Alternatively, a Monte Carlo solver (Sedonu)
has been applied for comparison with the S, solutions on a 2D stationary background (Richers
et al., 2017).

3.1.1. Overview of Transport Approximations

For this reason, a variety of approximations have been introduced to reduce the complexity of the full
Boltzmann equation. The isotropic diffusion-source approximation is based on the decomposition
of the neutrino distribution function into a trapped particle and a streaming particle component,
which are separately evolved (Liebendorfer et al., 2009; Pan et al., 2016). Other schemes evolve
the angular moments (i.e., integrals) of the specific intensity of neutrinos, instead of the particle
phase-space distribution function itself. In flux-limited diffusion schemes, for example, the neutrino
energy density (corresponding to the zeroth angular moment) is evolved, and the neutrino flux
density (first moment) is obtained from the gradient of the energy density (Bruenn, 1985; Bruenn
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et al., 2013; Zhang et al., 2013). Two-moment transport schemes, which also evolve the neutrino
flux density, need to close the system of moment equations by relating the Eddington tensor (second
moment) to the low-order moments (often called “M1” methods and used in many published codes;
Foucart et al. 2015; Just et al. 2015; O’Connor and Couch 2018a; Skinner et al. 2016; Roberts
et al. 2016; Kuroda et al. 2016; see also Section 2.2). Another widely-used approximation is RbR+
transport, which assumes the specific intensity to be symmetric around the radial direction of the
spherical polar coordinate grid (Rampp and Janka, 2002; Buras et al., 2006b; Bruenn et al., 2013).
A direct consequence of RbR+ are vanishing lateral and azimuthal (i.e., non-radial) flux components
(see Section 2.5). All of these approximations require tests of their viability by mutual comparison
and, ultimately, comparison with full Boltzmann solutions.

3.1.2. Influence of the RbR+ Approximation

There have been speculations about the influence of RbR+ on the neutrino-heating mechanism in 2D,
mostly based on studies that neglect time-dependent effects, leaving the temporal evolution unclear.
Dolence et al. (2015) analyzed neutrino fluxes based on a temporal snapshot of a two-dimensional
CCSN simulation. They found larger angular variations of the radiation fluxes for RbR+ compared
to their multi-group, flux-limited diffusion scheme in 2D, and they speculated that RbR+ might
exaggerate angular variations because of an unphysically high correlation between matter and the
neutrino field. Another study by Sumiyoshi et al. (2015) investigated neutrino-heating rates in
the gain layer (i.e. where neutrino-matter interactions result in net heating), based on temporal
snapshots of 3D CCSN simulations. When comparing results from solving the Boltzmann equation
directly to results with the RbR+ approximation, they found differences in the local heating rates
of 20%. However, the rates integrated spatially over the gain layer differed by only 2% (a similar
conclusion was reached by Buras et al., 2006b). A time-dependent investigation was carried out
by Skinner et al. (2016), who performed self-consistent, two-dimensional CCSN simulations of
the post-bounce phase of various progenitor models. They hypothesize that there may be an
unphysically strong feedback between the axial sloshing of the standing accretion shock instability
(SASI, Blondin et al., 2003) and the neutrino field, leading to explosions in axisymmetric simulations
with RbR+ more readily, compared to applications employing a multi-group, fully multi-dimensional
two-moment transport solver. In addition, Just et al. (2018) found the RbR+ approximation to
be conducive to explosions in time-dependent 2D CCSN simulations in particular for models that
exhibit violent activity of SASI, when compared to a fully multi-dimensional two-moment transport
scheme. The 2D behavior, however, turned out to be highly stochastic and very sensitive to minor
variations of the applied input physics, for which reason the 2D results were hard to interpret in a
clear way.

So far, time-dependent studies have investigated the influence of RbR+ only in 2D simulations,
in which hydrodynamical instabilities are constrained by the imposed symmetry axis. Furthermore,
3D simulations allow for different modes of instabilities (e.g. the spiral mode of the SASI, Blondin
and Shaw, 2007), and they show a different transport of turbulent energy compared to the 2D case
(Hanke et al., 2012; Couch, 2013; Couch and Ott, 2015).

For these reasons, it is indispensable to assess the influence of the neutrino-transport treatment
on the heating mechanism also in time-dependent 3D simulations. We fulfill this need by comparing
self-consistent, time-dependent CCSN simulations in 3D with a FMD neutrino-transport scheme
and with the RbR+ approximation.
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3.2. Summary of 2D Simulations

Before we start to discuss our main 3D results, we summarize in this section the results of our 2D
simulations for the s20 and s9.0 progenitor models. We will make use of these results in Sections 3.3
and 3.4, where we will, i.a., compare 2D and 3D simulations. Since this thesis mainly focuses on
3D results, we refer the reader to Just et al. (2018), who performed a detailed comparison of 1D
and 2D CCSN simulations using the ALCAR code and varying the physics inputs in a large set of
models. Their results regarding the comparison between FMD and RbR+ neutrino transport in 2D
simulations are consistent with our 2D results summarized in this section.

Here, we present only a small sample of 2D simulations with either FMD neutrino transport
or the RbR+ approximation. To assess the influence of grid resolution, we varied the number of
radial and angular grid zones (the labels of our simulations contain the number of angular grid
zones, see Section 2.6.2 and Table 2.2). For the s20 progenitor model, we also varied the type of
the polar grid. Besides uniform angular cell spacing (labeled ‘uni’), coarser resolution at the poles
(labeled ‘pol’ and copying the lateral grid structure applied to 3D simulations to alleviate time
step constraints) was tested. Moreover, we performed one simulation on a polar grid with coarser
resolution at the equator (labeled ‘equ’). Except for using different neutrino-transport methods
and the aforementioned grid parameters, all physical and numerical inputs are identical in our
simulations.

3.2.1. The s20 Model in 2D: FMD versus RbR+

We present an overview of all 2D simulations for the s20 progenitor model in Figure 3.1. The top
panel of Figure 3.1 shows the temporal evolution of the angle-averaged shock radii Rs, which indicate
successful shock revival for two of the RbR+ simulations between 400 ms and 500 ms after core
bounce. In these simulations, shock revival occurs shortly after the Si/Si-O interface falls through
the shock, leading to a significant drop in the mass accretion rate at ~ 200 ms (compare Figure 2.3).
As the bottom left panel of Figure 3.1 shows, successful shock revival is accompanied by a drop
in the neutrino luminosities, which is a direct consequence of the reduced mass accretion onto the
neutron star. We define the luminosity L, for any neutrino species v at a radius r in the co-moving
frame of the stellar fluid by integrating over the radial neutrino flux F)(r) (see Equation (2.6b)),

L,(r)= rz/F,f(r) de dQ. (3.1)

In contrast, non-exploding models exhibit almost constant neutrino luminosities after 200 ms post
bounce (p.b.) because of continuing mass accretion. From the evolution of the shock radii we also
conclude that none of the 2D simulations with FMD neutrino transport results in an explosion until
at least 700 ms after bounce.

As already argued by Dolence et al. (2015) and Skinner et al. (2016), this discrepancy between
2D simulations with RbR+ and FMD neutrino transport may be explained by a stronger feedback
between the neutrino field and the axial sloshing of the SAST in the case of the RbR+ approximation.
For this reason, we analyzed the time-dependent neutrino-heating rates at the poles, and we found
deviations from the angle-averaged values to be significantly larger in RbR+ simulations. We will
come back to a discussion of this behavior in our comparison between differences of 2D and 3D
heating rates (see Section 3.3). This analysis confirms that in 2D simulations with strong SASI
sloshing along the axis, the RbR+ approximation can amplify local variations at the poles and,
therefore, may lead to conditions that are more beneficial for shock revival than corresponding
results with an FMD neutrino-transport scheme.
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Figure 3.1.: Comparison of 2D simulations of the s20 progenitor model. We show, as functions of the
time after bounce, the angle-averaged shock radii Rs, gain radii R,, and neutron-star radii Ry (all in the
top panel; see labels), the neutrino luminosities L, (bottom left panel) for v., 7., and v, (see labels), and
the ratios of advection to heating timescales Taqy/Theat (bPottom right panel). The neutrino luminosities L,
are evaluated at a radius of r = 400 km in the co-moving frame of the stellar fluid. The simulations differ
in the neutrino-transport scheme (line style), and in the grid type and resolution (line color), see legend
and Table 2.2 for an overview. Note that the neutrino luminosities and the ratios of advection to heating
timescales were smoothed by running averages of 5 ms, and that some lines were shifted vertically to facilitate
readability of the plot. These lines are marked with labels indicating the number by which they are shifted
in units of the ordinate. This figure is a slightly rearranged version of Figure 3 from Glas et al. (2019b).

3.2.2. The s20 Model in 2D: Influence of the Polar Grid

In addition to discrepancies between 2D simulations with RbR+ and FMD neutrino transport, we
find further differences in dependence on the polar grid. As the top panel of Figure 3.1 shows, we
find successful shock revival only for RbR+ simulations with high angular grid resolution at the
poles (labels ‘uni/80” and ‘equ/80’). In contrast, simulations that were performed on a grid with
coarse polar resolution (labels ‘pol/40’ and ‘pol/80’) do not exhibit shock revival.

These discrepancies do not seem to be caused by differences in the time-dependent evolution of
the angle-integrated neutrino quantities. Until the time when exploding models experience shock
runaway, we find the neutrino luminosities, mean energies, and root mean square energies for all
neutrino species to be in good agreement between all 2D simulations. The bottom left panel of
Figure 3.1 shows only, for an example, the temporal evolution of the neutrino luminosities for all
neutrino species.

To assess the influence of the angular grid resolution, we analyze the conditions for shock revival
in our 2D simulations. Favorable conditions for an explosion arise when matter remains in the
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gain layer for a time that is long enough for neutrinos to deposit sufficient energy to cause shock
expansion. The total binding energy of matter in the gain layer, E2  , is calculated from the specific
internal energy ey, specific kinetic energy v?/2, and gravitational potential Ggrav as

'U2
Etgot = / p (eint + b} + ¢grav dv, (3.2)
gain

with velocity magnitude v. The volume of the gain layer, Vgain, encompasses the region from the
average gain radius R, at which the angle-averaged net neutrino energy transfer turns from cooling
into heating, to the angle-dependent shock radius Rs(f, ¢). The characteristic timescale for neutrino
heating is then given by (Buras et al., 2006a; Miiller et al., 2012b; Summa et al., 2018)

_ B

o)

Theat = Q% , (33)

with Q% being the total neutrino-heating rate in the gain layer,

Q=[] Qpav. (3.4)

Vgain
Here, Qg is the energy source term (energy exchange rate per volume), which couples the hydrody-
namics and neutrino-transport equations (see Equation (2.21c)). The typical timescale for matter

residing in the gain layer is given by the advection timescale, which we approximate (assuming
steady-state conditions, Marek and Janka, 2009; Miiller et al., 2012b) by

M
Tadv R Mg (3.5)
with M, being the total mass in the gain layer,
M= [ pav, (3.6)
Vgain

and M being the mass accretion rate (see Equation (2.25)), evaluated at a radius of r = 400 km.
In the case when the ratio of advection to heating timescale, Tagy/Theat, €xceeds unity, neutrino
heating leads to beneficial conditions for shock expansion and may ultimately power an explosion
(Janka, 2001; Thompson et al., 2005; Ferndndez, 2012).

We show the ratios Taqy/Theat in the bottom right panel of Figure 3.1. At 400 ms p.b., approxi-
mately when shock expansion sets in, we find exploding models to reach and exceed ratios of unity.
Non-exploding simulations with RbR+ (‘pol/40” and ‘pol/80’) exhibit slightly larger timescale ratios
than the exploding models in the phase between 200 ms and 300 ms p.b., reaching values close to
unity in this phase without, however, leading to successful shock revival. This strongly suggests that
the explosions are caused by pole effects in models with fine resolution at the poles. In contrast, the
values for T,gy/Theat Stay well below unity in all (non-exploding) simulations with FMD neutrino
transport. This confirms that RbR+ simulations exhibit more favorable conditions for successful
shock revival than their FMD counterparts, but the differences between successful and unsuccessful
RbR+ simulations (corresponding to high and low polar resolutions, respectively) are caused by
pole effects.

In order to understand the subtle differences that determine the explosion behavior of some 2D
RbR+ models while other RbR+ models fail to explode, we consider the evolution of relevant
quantities in the immediate vicinity of the poles. We do not find any discriminative differences until
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Figure 3.2.: Lateral kinetic energies Eyip o(r) for three different 2D RbR+ simulations of the s20 progenitor
model. We show FEii, ¢(7), averaged over a time interval ¢ € [300 ms, 350 ms], as functions of radius r. The
total lateral kinetic energies (dashed lines) are obtained by integrating the kinetic energy over spherical shells
at each radius r (see Equation (3.7)). For polar kinetic energies (solid lines), the shell integral includes only
regions close to the poles with polar angles 8 € [0,10°] and 6 € [170°,180°]. To facilitate comparison, the
polar energies are rescaled by the ratio of the total shell volume to the polar volume at each radius. Notice
that the radial grids of all three simulations are identical, so we can compare integrals over radial shells in a
straightforward manner. This figure is a slightly rearranged version of Figure 4 from Glas et al. (2019b).

350 ms p.b. in the polar neutrino luminosities and energies, nor in the polar neutrino heating and
cooling rates. However, we find turbulent motions at the poles to be suppressed in models with
coarse polar resolution. This can be seen in Figure 3.2, where we plot the lateral kinetic energies
near the poles for three different 2D high-resolution simulations with the RbR+ approximation. The
lateral kinetic energy at a radius 7 is obtained by integrating over the radial shell volume Ve (r),

Bring(r) = /V 0 %8 qy, (3.7)

shetl (1)

with vg being the polar velocity component. We differentiate between total lateral kinetic energies
(dashed lines), for which we integrate over the entire radial shell with polar angles 6 € [0°,180°], and
lateral kinetic energies near the poles (solid lines), for which the volume Vghen(7) includes only the
regions of the radial shell in the vicinity of the poles for polar angles 6 € [0,10°] and 6 € [170°,180°].
To facilitate comparison, we rescale the polar energies by the ratio of total shell volume to polar
volume at each radius. Figure 3.2 shows the lateral kinetic energies averaged over the time interval
t € [300 ms, 350 ms|, which corresponds to the phase of violent turbulent motions in the gain layer
shortly before exploding models exhibit shock runaway. In the region behind the shock, i.e. between
120 km and 220 km, the polar kinetic energies are significantly suppressed in the simulation with
coarser polar grid resolution (‘pol/80’, solid blue line), when compared to the other two simulations
(solid orange and green lines), but also when compared to the total kinetic energy (dashed blue
line). For simulations with high polar resolution (‘equ/80’ and ‘uni/80’), the polar energies exceed
the total energies (dashed orange and green lines) for radii between 170 km and 220 km.

Since all our successful explosions of the s20 progenitor model in 2D are driven by strong SASI
sloshing motions in polar directions, we suspect that in simulations with coarser angular resolution
at the poles the suppression of turbulent motions leads to conditions that are less favorable for a
successful explosion because of weaker turbulent effects (see, e.g., Murphy et al. 2013; Miiller and
Janka 2015; Radice et al. 2016; Mabanta and Murphy 2018) in particular around the grid axis. For
2D simulations of the s20 model, this suffices to turn a successful explosion into a failed one.
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Figure 3.3.: Comparison of 2D simulations of the $9.0 progenitor model. Similarly as for Figure 3.1, we
show, as functions of the time after bounce, the angle-averaged shock radii Ry, gain radii R, and neutron-star
radii Rys (all in the left panel; see labels), and the neutrino luminosities L, (right panel) for v, 7., and v,
(see labels). The neutrino luminosities are evaluated at a radius of » = 400km in the co-moving frame of
the stellar fluid. We differentiate the 2D simulations of the $9.0 model by color (see legend). Note that the
luminosities were smoothed by running averages of 5 ms, and some lines were shifted vertically to facilitate
readability of the plot. These lines are marked with labels indicating the number by which they are shifted
in units of the ordinate. This figure is a slightly rearranged version of Figure 5 from Glas et al. (2019b).

3.2.3. The s9.0 Model in 2D

In order to compare simulations with the RbR+ approximation and FMD neutrino transport in
the case of successful CCSN explosions, we chose the low-mass iron-core progenitor star s9.0 for
our second set of 2D and 3D simulations (compare Radice et al. 2017 and Just et al. 2018, who
found explosions for the 9.0 model in 2D simulations with FMD neutrino transport). For the 2D
simulations of the $9.0 model, we restricted ourselves to the polar grids that we use in our 3D
simulations (‘pol/40’ and ‘pol/807).

In Figure 3.3 we present an overview of all 2D simulations of the $9.0 progenitor model. As
the temporal evolution of the angle-averaged shock radii (left panel) shows, all simulations exhibit
shock revival within 300 ms — 400 ms after core bounce. Apart from stochastic fluctuations, we find
only minor differences in the evolution of the shock radii and perfect agreement for gain radii and
neutron-star radii. Simulations with low grid resolution and with the RbR+ approximation tend to
exhibit slightly larger shock radii, when compared to simulations with high resolution and with
FMD transport, respectively. The time-dependent evolution of the neutrino properties agrees very
well between all 2D simulations. The right panel of Figure 3.3 displays, as an example, the neutrino
luminosities (evaluated at a radius of 7 = 400 km in the co-moving frame), which steadily fall due
to the decline of mass accretion onto the neutron star. The slightly more pronounced drop in the
luminosities between 350 ms and 420 ms corresponds to Doppler-shift effects in the co-moving frame
quantities associated with the absolute increase of the radial velocity at 400 km when the shock
passes this radius.

3.2.4. Summary of the 2D Simulations

We find our 2D simulations for both progenitor models, s20 and s9.0, to be consistent with results
by other groups. For a detailed assessment of 2D simulations of the s20 and $9.0 progenitor models
with the ALCAR code, including comparisons to results from other codes, we refer the reader to Just
et al. (2018). We will come back to our 2D simulations in some parts of the next sections when
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comparing results between 2D and 3D simulations.

3.3. Results from 3D Simulations: s20 Model

In this section, we present the results of our 3D simulations of the s20 progenitor model. The results
for the s9.0 progenitor model can be found in Section 3.4 (for an overview of all 3D simulations
that we performed, see Table 2.3).

3.3.1. General Overview: FMD versus RbR+

We carried out four 3D simulations of the s20 progenitor model and followed the post-bounce phase
for at least 500 ms. For a general overview of our simulations, we present the temporal evolution of
several diagnostic quantities in Figure 3.4. The top panel shows the angle-averaged shock radii Ry
(solid lines), the average gain radii R, (dashed lines), and the neutron-star radii Rps (dotted lines),
which are defined as the radii at which the angle-averaged density drops below 10! gcm™3. Both
neutron-star radii and gain radii show an essentially identical behavior in all four simulations (see
legend in the top right), indicating that the influence of the neutrino-transport method and the
grid resolution on the neutron-star contraction are negligible.

The evolution of the shock radii reveals various features that are present in all four simulations:
In the first 100 ms after bounce, the stalled shock (having experienced energy drain by nuclear
photodisintegration and neutrino losses) expands to roughly 150 km, pushed outward by the accreted
mass that assembles itself around the nascent neutron star. Subsequently, the shock begins to
retreat as the neutron star contracts in response to neutrino losses. Shortly after 200 ms, the
Si/Si-O interface falls through the shock, accompanied by a steep decrease in the mass accretion
rate (compare Figure 2.3), which causes an almost immediate increase of the shock radius. The
subsequent evolution depends strongly on the influence of hydrodynamic instabilities, in particular
SASI mass motions, which lead to alternating phases of shock expansion and shock retraction until
the end of our simulations. For the low-resolution simulations we find slightly stronger oscillations
and larger values of the shock radius in the case of the RbR+ approximation. For the high-resolution
simulations, however, the differences in the evolution of the shock radii between RbR+ and FMD
are only minor and, when disregarding fluctuations that arise due to the stochastic nature of
hydrodynamic instabilities, the RbR+ and FMD simulations are in very good agreement with each
other. Without any indications of shock runaway, the average shock radii decrease to 80 km or less
at the end of all 3D simulations. In contrast to some of the 2D cases (compare Figure 3.1), we do
not find any successful explosion in 3D simulations of the s20 model.

As already discussed in Section 3.2, successful shock revival depends on the conditions in the
gain layer. Favorable conditions for an explosion arise when the advection timescale T,q, exceeds
the heating timescale Teat, resulting in a ratio Tadqy/Theat =, 1. The center left panel of Figure 3.4
shows the ratio of advection to heating timescale for all 3D simulations of the s20 progenitor
model. Corresponding to phases of shock expansion and shock retraction, all simulations exhibit
phases with conditions that are more and less favorable for shock revival, i.e. where Taqy/Theat iS
close to unity, or much smaller than unity, respectively. In low-resolution simulations, the RbR+
approximation leads to conditions that are more beneficial for shock revival than results with FMD
transport at most times. This is consistent with the larger shock radii that we observe in the RbR+
simulation. In contrast, the high-resolution simulations exhibit quite similar conditions for shock
revival throughout the whole simulated evolution with considerably smaller differences between
RbR+ and FMD than in the low-resolution cases.
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Figure 3.4.: Overview of all 3D simulations of the s20 progenitor model. Shown are, as functions of the
time after bounce, the angle-averaged shock radii R (solid lines), average gain radii R, (dashed lines), and
neutron-star radii Ry,s (dotted lines; all in the top panel), the ratios of advection to heating timescales
Tadv/Theat (center left panel), the non-radial kinetic energies in the gain layer El%in,@, 4 (center right panel),
the y parameters (bottom left panel), and the dipole moments of the angle-dependent shock radii R/=1,
normalized to corresponding values of the monopole moments R (bottom right panel). The different line
colors correspond to low- (suffixes “L”) and high-resolution (suffixes “H”) simulations with either the FMD
neutrino-transport scheme or the RbR+ approximation (see legend). Note that x and R~ were smoothed
by running averages of 5ms. This figure is a slightly rearranged version of Figure 6 from Glas et al. (2019b).
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3.3.2. Influence of the Grid Resolution in 3D

In addition to the aforementioned differences between simulations with RbR+ and FMD, we find the
high-resolution simulations to exhibit larger shock radii (roughly 10 km difference) between 100 ms
and 220 ms after bounce, when compared to the low-resolution cases. Consequently, the masses
in the gain layer and, therefore, the advection timescales are larger in high-resolution simulations,
leading to higher timescale ratios in these cases. These differences between low- and high-resolution
simulations are caused by hydrodynamic instabilities in the post-shock region, which are slightly
stronger and, thus, push the shock further outward in the high-resolution simulations. This can
be seen from the center right panel of Figure 3.4, which shows the non-radial kinetic energies in
the gain layer, ;o ,, as functions of the time after bounce. We calculate £, , ; by the volume

2 2
Vg T v
Einpp = /V | p( 5 ¢>dV, (3.8)
gain

with polar and azimuthal velocity components vy and vy, respectively. The high-resolution simula-
tions exhibit a slightly earlier rise and larger values of the lateral kinetic energies until 200 ms p.b.,
after which they start oscillating in all simulations in a similar manner as the angle-averaged shock
radii.

integral

A possible explanation for the different behavior between low- and high-resolution simulations in
these first 200 ms is provided by Ferndndez and Thompson (2009), who show that higher (radial)
grid resolution is beneficial for the growth of SASI, and results from 3D CCSN simulations by
Fernandez (2015) reveal higher kinetic energies in the gain layer for simulations with higher angular
resolution (see Figure 7d there). In order to assess the evolution of hydrodynamic instabilities in
the post-shock layer in more detail and, in particular, to distinguish between SASI-dominated and
convection-dominated phases in our simulations, we analyze two additional diagnostic quantities.

First, we consider the x parameter (Foglizzo et al., 2006), which provides information about the
conditions for the growth of convection in the post-shock layer. Favorable conditions arise when
buoyant mass motions can set in faster than seed perturbation get advected out of the gain layer,
i.e., when the timescale for the growth of convective activity is short compared to the advection
timescale. The y parameter essentially measures the ratio of advection timescale to convective

growth timescale in the gain layer,
_ / wsv) g, (3.9)

[(vr)]

with the Brunt-Viiséld frequency wpy and the angle-averaged radial velocity (v,). We apply linear
averaging of wpy as described in Appendix B2, and we only take into account regions in the gain
layer with Ry < r < Rs(0, ¢) that are locally unstable for convection, i.e. where wpy > 0. According
to Foglizzo et al. (2006, assuming the linear regime for the growth of perturbations), a value of
X 2 3 is necessary for the development of convective activity in the gain layer.

Short advection timescales (corresponding to small values of ) disfavor the growth of convection
in the post-shock layer, but they have been shown to amplify the linear growth rates of SASI (see,
e.g., Foglizzo et al., 2006; Scheck et al., 2008; Miiller et al., 2012a). Thus, we can at least very
roughly discriminate between conditions that are beneficial for convective growth (y 2 3), and

'Note that Equations (3.7) and (3.8) define two different types of lateral kinetic energies. Equation (3.7) defines
FEin,o(r) for radial shells (see Section 3.2), whereas Equation (3.8) defines Ey, , , for the whole gain layer.

2For a detailed discussion of the various methods to calculate the y parameter and the definition of the Brunt-Vaisals
frequency, see Appendix B.

28



3.3. Results from 3D Simulations: s20 Model

conditions that favor the development of SASI activity (x < 4)3.

Second, we perform a multipole analysis and decompose the angle-dependent shock radii Rs(, ¢)
into real spherical harmonics Y, (0, ¢) of degree | and order m (see, e.g., Burrows et al., 2012; Ott
et al., 2013),

V2 NP/ (cos 6) cos me m >0,
Y"(0,¢) = { NOPP(cos 0) m =0, (3.10)
V2 Nl|m|Pl‘m‘(cos 6) cos Im|¢ m <0,

with the associated Legendre polynomials P and

2041 (1 —m)!
N = — 11
! dr (I +m)! (3:11)

The multipole coefficients read (Hanke et al., 2013)

"(0,¢)dQ. (3.12)

|m|
Ry(
\/47‘(‘ 2l +1) /

With this normalization, the monopole moment (I = 0) is trivially given by the angle-averaged
shock radius, Rézo = a8 = Ry, and the dipole moment (I = 1) is obtained by

(3.13)

For later reference, we identify the components of the dipole vector in Cartesian coordinates to
coincide with a, = a}, a, = a; ', and a, = af. The large-scale motions of SASI sloshing and spiral
modes are reflected in large amplitudes of dipolar or quadrupolar character, whereas convective
overturn can both result in smaller-scale deformation of the shock (i.e. excitation of higher [-modes,
[ > 2, of shock asymmetry) and in large-scale deformation when large high-entropy plumes ascend
toward the shock surface.

Figure 3.4 shows the temporal evolution of the y parameters in the bottom left panel and the
dipole moments of the shock deformation, normalized by the angle-averaged shock radii, in the
bottom right panel. Starting at 100 ms after bounce, we find high-resolution simulations because of
larger shock radii to exhibit more favorable conditions for convective growth, i.e. systematically
larger values of y than in the low-resolution cases until 250 ms after bounce. The increasing dipole
moments of the shock deformation reveal that convective overturn in high-resolution simulations
becomes more violent with time, with the dipole moments reaching up to 3% of the monopoles’
amplitudes at ~ 250 ms. In contrast, the low-resolution simulations exhibit only weak convective
activity with x < 4 and stay SASI-dominated until at least 250 ms after bounce. They develop
their first violent SASI activity with a combination of sloshing and spiral modes between 200 ms
and 300 ms, which cause the angle-averaged shock radii to exhibit large oscillations and the dipole
amplitudes of the shock deformation to reach up to 8% of the average shock radii. Due to the
infall of the Si/Si-O interface shortly after 200 ms p.b., the shock rapidly expands in both low- and

3Note that in addition to analyzing the y parameter, we inspected the time-dependent evolution of the entropy
distribution to discriminate between phases of convection and SASI. The sloshing and spiral modes of SASI can be
identified by large-scale motions of the entropy-jump at the shock, whereas the appearance of low- and high-entropy
plumes indicates convective overturn. We found that the x parameter matches the phases of SASI growth (x < 4)
and of growth of convection (x 2 3) quite well for all our 3D simulations.
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Figure 3.5.: Neutrino luminosities L, (left panel) and neutrino mean energies (g,) (right panel) as functions
of time after bounce for all 3D simulations of the s20 progenitor model. Luminosities and mean energies are
measured at a radius of = 400 km in the co-moving frame of the stellar fluid for electron neutrinos v, (solid
lines), electron antineutrinos 7, (dashed lines), and heavy lepton neutrinos v, (dotted lines). Note that some
lines were shifted vertically to facilitate readability of the plot. These lines are labeled with the number by
which they are shifted in units of the ordinate in parentheses. This figure is a slightly rearranged version of
Figure 7 from Glas et al. (2019b).

high-resolution simulations, leading to an increase of the mass in the gain layer and, consequently,
of the advection timescale. As a result, all simulations experience a convection-dominated phase at
around 300 ms after bounce.

The subsequent evolution after 300 ms p.b. is similar in all simulations with alternating phases of
convection and SASI, which represent repetitions of the following cycle: During a shock-retraction
phase, small shock radii and short advection timescales amplify the growth rates of SASI. Com-
binations of SASI sloshing and spiral modes evolve and expand the shock front, leading to larger
advection timescales, which favor the growth of convective motions and damp the further growth of
SASI. With the shock reaching a maximal radius, the cycle enters a convection-dominated phase,
before the shock recedes again and SASI growth sets in once again.

3.3.3. Surface-Integrated Neutrino Luminosities and Energies

The evolution of hydrodynamic instabilities in the post-shock region with alternating phases of
SASI and convection and shock expansion and contraction influences the mass accretion rate onto
the neutron star. As a consequence, temporal fluctuations in the angle-averaged densities and
temperatures occur at the surface of the neutron star. Since electron-type neutrinos (v, and v,)
energetically decouple from the stellar matter in this region, their luminosities and energies reflect
the time-dependent fluctuations of the thermodynamic conditions at the neutron-star surface. The
left panel of Figure 3.5 shows corresponding fluctuations of the order of 10% to 20% in both the
ve and 7, luminosities starting at roughly 400 ms after bounce. On a much smaller scale, these
variations also exist in the mean energies of v, and v, (see right panel of Figure 3.5). The mean
energies of the radial neutrino fluxes are defined for any species v at a radius r by

FJ(r) de dQ2
) = s an

The luminosities and mean energies of heavy-lepton neutrinos (v,) are hardly affected by fluctuations
in the density and temperature at the neutron-star surface, because they are produced only much
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Figure 3.6.: Lateral variations of energy-integrated radial neutrino fluxes F), relative to their angular

averages (F7) (see Equations (3.15a) to (3.15¢)) and normalized by the angle-averaged fluxes, as functions
of the polar angle # for various simulations of the s20 progenitor model (see legends in the bottom panels,
indicative for each column) for v, (solid lines), v, (dashed lines), and v, (dotted lines). We compare 2D
simulations (left panels) and 3D simulations (right panels). For the latter the fluxes are averaged over
the azimuthal angle ¢ (i.e., (FI), and (F})g 4, respectively). The top panels show flux deviations for
temporal snapshots of each simulation at a post-bounce time of ¢, = 250 ms, whereas the bottom panels
show time-averaged deviations in the time interval 240ms < t,, < 260ms. All fluxes are measured at a radius
of r = 400 km in the co-moving frame of the stellar fluid. Note that the range of the ordinate changes from
left to right panels. This figure is taken from Glas et al. (2019b, Figure 8).

deeper inside the neutron star by thermal pair creation and bremsstrahlung processes, and scattering
of v, on electrons and nucleons does not suffice for v, to stay in thermodynamic equilibrium with
the stellar fluid in the accretion layer.

Because the evolution of hydrodynamic instabilities is very similar in all simulations with only
phase shifts in the cyclic shock expansion and contraction phases due to the stochastic nature of
SASI and convection, there are also no significant differences between the neutrino luminosities and
mean energies of all our 3D simulations of the s20 progenitor. In particular, although the dynamical
evolution exhibits some differences between low-resolution and high-resolution simulations in the
first 300 ms after bounce, the neutrino properties still agree to an excellent degree. We conclude
that surface-integrated luminosities and mean energies of neutrinos are very robust and do not
sensitively depend on the neutrino-transport method or the numerical grid resolution.

3.3.4. Angular Variations of the Neutrino Fluxes

In addition to the analysis of surface-integrated luminosities, we also consider the angular variations
of the neutrino fluxes. Figure 3.6 shows the deviations of energy-integrated radial neutrino fluxes
F] to their angular averages (F]) as functions of the polar angle 8. In general, the angular averages
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Figure 3.7.: Relative variations between energy-integrated radial neutrino fluxes F and their angular
averages (F7)g 4 (see Equation (3.15¢)), normalized by the angle-averaged fluxes, for the 3D high-resolution
simulations of the s20 progenitor model. We show the results in a plane (y-z) that contains the polar axis of
our spherical polar grid. Results with FMD neutrino-transport scheme (top panels) are compared to the
RbR+ approximation (bottom panels) for v, (left panels), 7. (central panels), and v, (left panels). All fluxes
are measured in the co-moving frame of the stellar fluid. Similar to Figure 3.6, we show flux variations for
temporal snapshots at a post-bounce time of ¢,, = 250 ms. The inner (central, outer) green, dashed circles
indicate the average neutrino spheres (average gain radii, maximum shock radii). Note that rings composed
of dark red and dark blue parts just inside the maximum shock radii result from the discontinuous behavior
of the co-moving radial fluxes at the angle-dependent shock radii. To facilitate comparisons, the color bar is
limited to a range of [—40%, 40%)] and values outside of this interval are indicated by black color. This figure
is taken from Glas et al. (2019b, Figure 9).

of an arbitrary quantity x are calculated by

_ [z sinfdo
d
m¢=%£, (3.15b)
_ Jxsin0dode
oo = Tanodrds (3.15¢)

The energy-integrated radial fluxes for any neutrino species v are obtained by (compare Equa-
tion (A.3b))

= / FT de. (3.16)

Because most variations of radial fluxes occur in phases of strong hydrodynamic instabilities, we
analyze the fluxes for a temporal snapshot at a post-bounce time of ¢,;, = 250 ms (top panels), when
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the low-resolution simulations experience strong shock expansion due to violent SASI activity, and
the high-resolution simulations exhibit strong convective overturn®. The deviations of the radial
fluxes from their angular averages are significantly larger in both 2D (left side) and 3D (right side)
simulations with the RbR+ approximation, when compared to the FMD neutrino-transport scheme.
This observation also holds for flux variations that have been averaged over a time interval of
240ms < tpp < 260ms (see bottom panels). However, the amplitude of variations is significantly
smaller in 3D simulations than in 2D models, e.g., it is less than 15% for RbR+ and 3% for FMD
results for the temporal snapshot in 3D compared to up to 45% for RbR+ and 20% for FMD
for the 2D case (notice that the range of the ordinate changes from left to right panels). The
time-averaged deviations decrease to 5% or less in all 3D simulations, although in particular the
low-resolution RbR+ simulation exhibits strong SASI sloshing and spiral motions during this phase.
The time-averaged deviations reach up to 30% in 2D simulations with the RbR+ approximation,
with the largest excursions for all neutrino species appearing at the poles (where 6 ~ 0° and 6 ~ 180°,
respectively). This observation strengthens our argument from Section 3.2, where we suspected
that in 2D simulations the RbR+ approximation together with axial sloshing motions of SASI can
amplify local variations at the poles which are already visible in the simulations with FMD transport.
In contrast, we do not find this behavior in 3D simulations with RbR+ where time-averaged results
of RbR+ and FMD models are much more similar (see bottom right panel of Figure 3.6). We
further remark that we do not observe any significant dependence of angular variations of radial
fluxes on the grid resolution, neither in 2D, nor in 3D simulations.

In simulations with the RbR+ approximation, the non-radial flux components F and F? are not
evolved. One consequence of this treatment can be seen in Figure 3.7, which displays the deviations
of F from the angular averages (F)/)g 4 for v, (left), 7. (center), and v, (right) with color coding
in a plane (y-z) that contains the polar axis of the spherical polar grid. The high-resolution RbR+
simulation (bottom panels) shows radial “streaks” for all neutrino species between the shock and
the neutrino energy sphere, at which neutrinos decouple energetically from the stellar matter, i.e.
where the energy-averaged effective optical depth fulfills 7(r) = 2/3. The optical depth is defined as

()= [ Rl v, (3.17)
with keg the effective opacity,

Reff = 4/ KabsKtot, (318)

calculated from the absorption and total opacities, kaps and kior, and energetically averaged as
in Buras et al. (2006b). For v., e.g., the region between neutrino sphere (inner green, dashed
circle) and maximum shock radius (outer green, dashed circle) approximately extends from 44 km
to 129km. In contrast, local variations in the radial neutrino fluxes are smoothed out by lateral
flux components in the simulation with FMD neutrino-transport scheme (top panels), leading to a
“patch-like” structure in the region between the neutrino sphere and the maximum shock radius
(e.g., between 44km and 135km for v,). The FMD simulation exhibits a “streak-like” pattern, as
it is seen in the RbR+ case, only outside this region, where non-radial neutrino flux components
are approaching zero and, therefore, both neutrino-transport methods behave identically. Apart
from these observations, we find maximal flux deviations for v, and v, to be of the same order
between RbR+ and FMD simulations, and for v, to be even smaller for the RbR+ simulation when
compared to the FMD case.

4Since we compare to 2D simulations, we remark here that also the 2D simulations exhibit shock expansion caused
by SASI sloshing motions in this phase (see Section 3.2).
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Figure 3.8.: Relative neutrino-flux variations as in Figure 3.7, but only for electron neutrinos, and for both
low-resolution (left panels) and high-resolution (center and right panels) simulations of the s20 progenitor
model at temporal snapshots that differ from Figure 3.7. The corresponding post-bounce times ¢y, are noted
in each panel. The flux variations in the right panel are averaged over time intervals of 20ms. The inner
(outer) green, dashed circles indicate the average gain (maximum shock) radii, respectively. To facilitate
comparisons, the color bar is limited to a range of [—80%, 80%)] and values outside of this interval are indicated
by black color. The time-averaged values in the right panels were scaled by a factor of 3. This figure is taken
from Glas et al. (2019b, Figure 10).

Previous findings from 2D simulations suggest that the RbR+ approximation can amplify local
deviations in particular in combination with strong axial sloshing activity of the SASI (see, e.g.,
Skinner et al., 2016; Just et al., 2018). For this reason, we further investigate fluctuations of
radial fluxes in our 3D simulations in phases of violent SASI mass motions. Figure 3.8 again shows
variations of Flfe relative to the angular averages, but for low- (left panels) and high-resolution (central
panels) simulations in phases of strong SASI-activity (the corresponding post-bounce times t}, are
noted in each panel). We restrict ourselves to analyze only fluxes of v,, since Figure 3.7 revealed
no fundamental differences in the behavior of v, and v, and relatively less prominent differences
between RbR+ and FMD results for v,. In both simulations with the RbR+ approximation we find
local “hot spots” at which the radial neutrino fluxes are high and, thus, significantly deviate from
the angular averages. These deviations reach up to 80% and more, e.g. in the top left sector for
the low-resolution RbR+ simulation (bottom left panel), and in the bottom right sector for the
high-resolution RbR+ simulation (bottom center panel). In contrast, the FMD simulations (upper
left and center panels) exhibit much lower variations. The time-averaged deviations of Flfﬁ are much
smaller than corresponding instantaneous values for both high-resolution simulations, e.g., when
averaged over a 20 ms time interval (right panels; the values in the right panels are scaled up by a
factor of 3), and are more similar between high-resolution RbR+ and FMD simulations.
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Figure 3.9.: Relative variations between the local net neutrino heating rates Qg and their angular averages
(Qu)o,s (see Equation (3.15¢)), normalized by the angle-averaged values, for our 3D simulations of the s20
progenitor model. Correspondingly to Figure 3.8, the panels show data for temporal snapshots (left and
center) and time-averaged values (right) in the same y-z-plane and for the same selection of simulations.
The inner (outer) green, dashed circles indicate the average gain (maximum shock) radii, respectively. To
facilitate comparisons, the color bar is limited to a range of [—150%, 150%] and values outside of this interval
are indicated by black color. The time-averaged values in the right panels were scaled by a factor of 1.5. Dark
blue regions in the vicinity of the maximum shock radii are outside the gain layer and, thus, do not experience
strong neutrino heating, whereas dark red and black regions are still inside the gain layer. Variations outside
the maximum shock radii are irrelevant since the (absolute) heating rates are very small in these regions.
This figure is taken from Glas et al. (2019b, Figure 11).

3.3.5. Neutrino-Heating Rates

In order to estimate the influence of locally amplified neutrino fluxes as seen in the RbR+ simulations
on the neutrino heating in the gain layer, we consider deviations of the local net neutrino heating
rates, which are given by the energy source term Qg (see Equation (2.21c)), from their angular
averages (Qr)g,¢ (see Equation (3.15c)). Figure 3.9 presents such deviations for low- and high-
resolution 3D simulations for the same temporal snapshots as in Figure 3.8, i.e., during phases of
violent SASI activity in all simulations. The amplitudes of fluctuations of the local heating rates
are of the same order in all 3D simulations. Dark blue regions in the vicinity to the maximum
shock radii are outside the gain layer and, therefore, do not experience strong neutrino heating,
whereas dark red and black regions are still inside the gain layer. The spatial scales of regions
with locally enhanced or reduced neutrino heating are large in low-resolution simulations, whereas
high-resolution simulations resolve finer structures in the gain layer. However, the results do not
show any significant differences in the spatial scales between simulations with RbR+ and FMD.
Furthermore, the time-averaged heating rates, which are scaled up by a factor of 1.5, reveal very
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Figure 3.10.: Net neutrino heating rates, integrated over the gain layer, Q¢ (see Equation (3.4)), as functions
of the time after bounce, for 2D and 3D simulations of the s20 progenitor model. 2D simulations are shown
in the left panels, 3D simulations with low-resolution in the central panels, and high-resolution results in the
right panels. The top (bottom) panels display simulations with the FMD neutrino-transport scheme (with
the RbR+ approximation), respectively. Total heating rates (labeled “total”; black lines) are compared to
the heating rates in a 19° cone around the north pole (i.e., where § = 0°; labeled “pole”; red lines), and to
the heating rates in a 19° cone around the instantaneous SASI dipole direction (labeled “sasi”; orange lines),
respectively. To facilitate comparisons, the heating rates at the poles and in the SASI directions are rescaled
by the ratios of the total volume of the gain layer to the volumes of the constrained cones of integration.
This figure is taken from Glas et al. (2019b, Figure 12).

similar patterns in RbR+ and FMD simulations. Regions with enhanced time-averaged heating rates
(dark red and black regions) at a radius of roughly 100 km to 120 km indicate maximal excursions
of the shock radii due to SASI motions.

In addition to instantaneous and time-averaged neutrino heating rates, we further investigate
the time-dependent evolution of the total (net) neutrino heating rates in the gain layer, Q¢. In
Figure 3.10 Q% is compared for 2D simulations (left panels) and 3D simulations with low (central
panels) and high resolution (right panels), respectively. The total heating rates (black lines), which
result from integrating the local energy source terms Qg over the entire volume of the gain layer (see
Equation (3.4)), agree to high degree between all 2D and 3D simulations. In contrast, a different
behavior is observed for the polar heating rates (red lines), for which the integral was carried out only
over regions of the gain layer in the vicinity of the north pole, i.e., where the polar angle 6 € [0, 19°].
To facilitate comparison, the heating rates at the pole are rescaled by the ratio of total volume to
polar volume. In the 2D simulation with the RbR+ approximation (lower left panel) the polar
heating rates are significantly larger than in the corresponding 2D simulation with FMD neutrino
transport (upper left panel). Furthermore, the polar heating rates are enhanced in comparison to
the total rates in the 2D RbR+ simulation, whereas they fluctuate around the total rates in the 2D
FMD simulation with considerably lower amplitudes. These findings support our argument, that in
2D simulations the RbR+ approximation overestimates polar variations in feedback with strong
axial SASI sloshing motions and, thus, it leads to conditions that are more favorable for successful
shock revival than those obtained in 2D simulations with an FMD neutrino-transport scheme.
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However, in 3D simulations with FMD and RbR+ the polar heating rates show much less
differences. The low-resolution simulation with RbR+ exhibits slightly larger polar heating rates
(central panels), whereas the differences between FMD and RbR+ almost vanish for high-resolution
simulations (right panels). In general, we find the polar heating rates in 3D simulations to fluctuate
much less around the total rates. Since, in contrast to 2D simulations, SASI sloshing and spiral
modes are not restricted to a prescribed direction in 3D simulations, we also analyze the heating
rates in the gain layer within a cone of half-opening angle of 19° around the instantaneous direction
of the SASI mass motions, i.e., the dipole direction of the shock deformation, see Equations (3.12)
and (3.13), and the associated explanations. The neutrino heating rates near the SASI direction
(orange lines; we again rescale the heating rates by the ratio of total volume to cone volume)
exhibit a very similar behavior as the polar heating rates, with the RbR+ simulations showing only
insignificantly larger heating rates in the SASI direction than the corresponding FMD simulations,
in particular in the high-resolution 3D simulations.

3.3.6. Summary

We find only minor differences between 3D simulations of the s20 progenitor model with the
RbR+ approximation and an FMD neutrino-transport scheme, in particular when considering
local deviations of neutrino fluxes and heating rates from their angular averages in the case of
time integration over periods of typically 10ms or longer (see, e.g., Figures 3.6, 3.8 and 3.9).
Moreover, surface-integrated fluxes and mean energies of neutrinos show excellent agreement (see
Figure 3.5), and also the overall post-bounce evolution with alternating phases of dominant SASI or
convective activity is similar in all of our 3D simulations of the s20 progenitor model (see Figure 3.4).
Considering gain-layer integrated neutrino-heating rates, we find only minor differences between
FMD and RbR+ (see Figure 3.10), which contrasts results from 2D simulations, in which polar
heating rates are significantly amplified in the case of RbR+.

3.4. Results from 3D Simulations: s9.0 Model
3.4.1. General Overview: FMD versus RbR+

In this section we discuss the results of our 3D simulations of the $9.0 progenitor model. As in our
3D simulations of the s20 model, we used either the RbR+ approximation or the FMD scheme
for neutrino transport, and performed simulations with low as well as high grid resolution. For a
general overview, the temporal evolution of a selection of several diagnostic quantities is presented in
Figure 3.11. We find successful shock revival at roughly 300 ms after bounce for all four simulations,
which can be seen from the evolution of the angle-averaged shock radii (top panel) and the ratios of
advection timescale to heating timescale (center left panel), which considerably exceed 1 at that
time. The agreement in the evolution of the average positions of shock, gain radius®, neutron-star
radius, and of the timescale ratios is excellent between all four 3D simulations of the s9.0 progenitor
model.

Similar to our findings for 3D simulations of the s20 model (see Figure 3.4), we observe an earlier
rise and larger values of the non-radial kinetic energies in the gain layer for the high-resolution
simulations (center left panel). Because of the steep density gradient at the edge of the degenerate
core in the 9.0 progenitor model (see Figure 2.2) and the resulting low mass advection rate (see

At late times (i-e., after about 500ms), the exact position of the boundary between heating and cooling layers
sensitively depends on highly time-variable local downflows onto the neutron star. For this reason, the gain radii
start to slightly differ between simulations in that phase.
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Figure 3.11.: Overview of all 3D simulations of the s9.0 progenitor model. Shown are, as functions of
the time after bounce, the angle-averaged shock radii Rs (solid lines), gain radii R, (dashed lines), and
neutron-star radii R,s (dotted lines; all in the top panel), the ratios of advection to heating timescale
Tadv/Theat (center left panel), the non-radial kinetic energies in the gain layer EEin,G, é (center right panel),
the x parameters (bottom left panel), and the dipole moments of the angle-dependent shock radii R\=1,
normalized to corresponding values of the monopole moments Ry (bottom right panel). The different line
colors correspond to low- (suffix “L”) and high-resolution (suffix “H”) simulations with either the FMD
neutrino-transport scheme or the RbR+ approximation (see legend). This figure is a slightly rearranged
version of Figure 13 from Glas et al. (2019b).
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Figure 3.12.: Neutrino luminosities L, (left panel) and neutrino mean energies (¢,,) (right panel) as functions
of the time after bounce for all 3D simulations of the 9.0 progenitor model. Luminosities and mean energies
are measured at a radius of r = 400 km in the co-moving frame of the stellar fluid. Different line styles show
electron neutrinos v, (solid lines), electron antineutrinos 7, (dashed lines) and heavy lepton neutrinos v,
(dotted lines). To facilitate readability of the plot some lines were shifted vertically indicated by the numbers
giving the shifts in units of the ordinate. This figure is a slightly rearranged version of Figure 14 from Glas
et al. (2019D).

Figure 2.3), we find relatively long advection timescales and, thus, favorable conditions for the
growth of convection in all simulations of the $9.0 model. Correspondingly, all simulations exhibit
X parameters considerably larger than the critical value of 3 starting at roughly 100 ms after
bounce (bottom left panel). For this reason, all simulations of the $9.0 progenitor model stay
convection-dominated and do not exhibit any obvious SASI activity until the end of the simulations.
Remarkably, we observe the dipole moments of the shock deformation to reach amplitudes up to
10 % of the monopole moments (bottom right panel), triggered mainly by large-scale convective
plumes in the post-shock layer. All in all, we do not find any major differences between all four 3D
simulations of the 9.0 progenitor model, neither between low- and high-resolution simulations, nor
between RbR+ and FMD neutrino transport.

Figure 3.12 shows the co-moving frame neutrino luminosities (left panel) and mean energies (right
panel) for all three neutrino species at a radius of » = 400 km. Again, the agreement between all
four simulations is excellent. Shortly after shock expansion at about 300 ms p.b., both neutrino
luminosities and mean energies significantly drop due to the decline of the mass accretion onto
the neutron star. As a result of continued cooling of the hot proto-neutron star, both neutrino
luminosities and mean energies exhibit almost constant values (decreasing only slowly with time)
until the end of our simulations.

Compared to our 2D simulations of the 9.0 model (see Section 3.2 and Figure 3.3), the 3D
models exhibit a slightly earlier drop of the neutrino luminosities, i.e., at ~ 320ms p.b. instead of
~ 380ms — 420 ms p.b. in 2D simulations, resulting from slightly earlier shock expansion and a
larger shock radius in 3D, which correlate with initially higher turbulent kinetic energies in the gain
layer pushing the shock farther out. Furthermore, the shock radii show larger variations between
simulations in 2D, whereas 3D simulations display a very good agreement.

3.4.2. Diagnostic Explosion Energies

Additional differences between 2D and 3D simulations of the 9.0 progenitor model appear in
the diagnostic explosion energies. These are defined as the total energy in the gain layer (see

39



Chapter 3. Simulations with FMD and RbR+ Neutrino Transport

20 T T T T T T T T T T T ; 48
02D | 9.03D ]
= 1.6 s9.0 ] s9.03 4.0(@&
: i 432558
g 12f FMD pol/40 1 1 FMD L 15, -
S (8| — FMD pol/g0 | [ — FmDH 15
i% o RbR+ pol/40 i RbR+ L 116 g
“|" — RoR+ pol/80 1 | — RoR+H {os <
L ] ] 1 ] | \ . | l

.0 0.0
0 100 200 300 400 500 600 700 O 100 200 300 400 500 600 700
time after bounce [ms] time after bounce [ms]

Figure 3.13.: Diagnostic explosion energies ES;?)% in dependence on the time after bounce for all 2D (left
panel) and 3D (right panel) simulations of the 9.0 progenitor model. The range of the ordinate differs
between top and bottom panels. This figure is a slightly rearranged version of Figure 15 from Glas et al.
(2019D).

Equation (3.2)),

2
i v
ES;?)% = /V p <€int + ? + ¢grav> dv, (3.19)
ps

with the difference that the integral over the post-shock volume Vs extends from Ry to Rs(6, ¢),
and that only zones where the total energy is positive are included in the integral. Figure 3.13
shows the diagnostic explosion energies for all 2D (left panel) and 3D (right panel) simulations
of the 9.0 model. Our 3D simulations result in diagnostic explosion energies that almost reach
(models ‘FMD L’ and ‘FMD H’) and even exceed (model ‘RbR+ L’) a value of 4 x 10*° erg, when
measured at roughly 600ms after bounce (note that explosion energies have not attained their
terminal values at that time, and that model ‘RbR+ H’ was not simulated that long). In contrast,
2D simulations exhibit explosion energies that are systematically smaller by a factor 2 to 3 and
start rising slightly later (in correspondence to the later outward acceleration of the shock in 2D).
A similar trend of lower explosion energies in 2D than in 3D simulations was found by Melson et al.
(2015b), who performed CCSN simulations of a low-mass progenitor model with a mass of 9.6 Mg
and zero metallicity, and by Miller (2015) for simulations of an 11.2 Mg model.

Furthermore, the diagnostic explosion energies in 2D are higher in the low-resolution compared
to the high-resolution simulations by almost 0.8 x 10*’ erg, which is a result of larger post-shock
volumes in the low-resolution models after roughly 400 ms (compare the evolution of angle-averaged
shock radii in Figure 3.3). With the small sample of 2D simulations for the $9.0 model available, it
is not clear to us whether this 2D difference is connected to resolution differences per se, or to the
non-equidistant angular grid. In 3D, the considerably smaller differences of the diagnostic explosion
energies stem from the morphology of the post-shock layer, while the angle-averaged shock radii
are very similar between simulations (see Figure 3.11). Model ‘FMD H’ exhibits the most extreme
shock deformation, which is evident from the fact that the dipole mode in this model is larger than
in all other models (see Figure 3.11). This difference is probably caused by stochastic variations,
and leads to the smallest post-shock volume and, therefore, the lowest diagnostic energy in model
‘FMD H’.
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3.4.3. Summary

We find an excellent agreement of the post-bounce evolution of the 9.0 progenitor model for all
of our 3D simulations. Only small differences exist between simulations with low and high grid
resolutions with respect to the initial growth of the non-radial kinetic energies in the gain layer and
concerning the evolution of the diagnostic energies. Differences between 3D simulations with the
RbR+ approximation and the FMD neutrino-transport scheme are negligible for the s9.0 progenitor
model.

3.5. Conclusions: FMD versus RbR+

For the first time, we directly compared self-consistent CCSN simulations in 3D with the RbR+
approximation for neutrino transport and an FMD transport scheme to assess the influence of the two
transport methods on the neutrino-heating mechanism in 3D. Our time-dependent simulations with
“low” and “high” grid resolution (roughly 4.5° and 2.25° non-equidistant angular spacing, respectively)
for a 9 Mg and a 20 Mg progenitor model were performed with the radiation-hydrodynamics code
AENUS-ALCAR, which implements an energy- and velocity-dependent, FMD two-moment neutrino-
transport scheme with an algebraic “M1” closure relation for v, e, and v,, and which is able to
employ the RbR+ approximation by setting all non-radial flux components to zero.

For both progenitor models we found very good agreement of the post-bounce evolution between
3D simulations with RbR+ and the FMD neutrino-transport scheme. Our 3D simulations of
the 9 M model result in successful shock revival at roughly 300 ms after bounce with diagnostic
explosion energies reaching 4 x 10%° erg (and still growing by ~ 10°0 erg) when evaluated at 600 ms
after bounce. In contrast, with our simplified neutrino opacities and small initial seed perturbations
(used to initiate the growth of hydrodynamic instabilities), all 3D simulations of the 20 Mg model
fail to revive the stalled shock wave until at least 400 ms after bounce.

These findings contrast results from 2D simulations in which the RbR+ approximation has been
shown to foster shock revival in models that featured strong sloshing motions of SASI along the
polar symmetry axis (Skinner et al., 2016; Just et al., 2018). While our 2D simulations of the 20 M
model are dominated by such axial sloshing motions, the 3D simulations exhibit alternating phases
of convective and SASI activity and, thus, show a substantially different post-bounce evolution
than corresponding 2D simulations. In contrast, simulations of the 9 M model are dominated by
convection in both 2D and 3D and do not exhibit any obvious SAST activity.

Considering surface-integrated neutrino luminosities and mean energies, we found very good
agreement of the results for all neutrino species between the 3D simulations of each progenitor model.
Although angular variations of the radial neutrino fluxes differ between simulations with RbR+ and
FMD, as a detailed analysis of the 20 My model revealed (confirming previous investigations by
Sumiyoshi et al. 2015), the 3D simulations systematically exhibit significantly smaller variations
than corresponding 2D cases. Furthermore, the time-averaged (over typically 10ms or longer)
deviations of the radial fluxes and the neutrino-heating rates from their angular averages are in good
agreement between 3D simulations with RbR+ and FMD. Moreover, the neutrino-heating rates
near the instantaneous SASI direction agree considerably better between 3D simulations with RbR+
and FMD than in 2D models, in which fluctuations of the heating rates in the polar directions
are much larger with RbR+ transport. Therefore, aside from stochastic fluctuations in the shock
radius, the overall evolution for both progenitor models is very similar in 3D with FMD and RbR+
transport. Our results show that the differences between 3D models with different resolution is
larger than the differences with the two transport treatments.
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In conclusion, the post-bounce evolution of 3D simulations with the RbR+ approximation and the
FMD neutrino-transport scheme agrees much better than between corresponding 2D models. These
results back up the use of RbR+ as transport description in 3D supernova modeling. The RbR+
approximation is beneficial regarding the parallel efficiency, because the individual rays can be
calculated almost independently with only small communication overhead between MPI (Message
Passing Interface) tasks. However, the preferred choice of neutrino-transport approximation strongly
depends on the physical question that should be answered. For example, the FMD scheme provides
approximative representations of the non-diagonal elements of the neutrino-pressure tensor, which
may be relevant for some problems but cannot be directly extracted from a RbR~+ treatment.
Another example are fast rotating progenitor models, where the use of the RbR+ approximation is
disfavored, when the proto-neutron star becomes strongly deformed and non-radial flux components
cannot be neglected in the neutrino-decoupling region near the neutron-star surface. In the study
by Summa et al. (2018) the rotation rate and neutron-star deformation were not sufficiently extreme
to worry about deficiencies of the RbR+ treatment. A clear picture of shortcomings in dependence
of the neutron-star rotation will require future comparisons of rapidly rotating models with RbR+
transport versus FMD transport. However, the good physical accuracy of the “M1” FMD scheme in
such situations is also not guaranteed and needs to be verified by full Boltzmann neutrino transport.

In general, an ultimate assessment of the consequences of transport approximations entering both
the FMD as well as RbR+ two-moment treatments will require future, computationally much more
demanding time-dependent 2D and 3D CCSN simulations with Boltzmann neutrino transport. For
first low-resolution steps in this direction, see Sumiyoshi et al. (2015) and Nagakura et al. (2018).
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Chapter 4.
Effects of LESA in 3D Simulations

In this chapter, we analyze our set of eight 3D simulations of CCSNe for the consequences of the
two neutrino-transport methods (FMD and RbR+) on the recently discovered LESA phenomenon.
After a description of the key features of LESA in Section 4.1, we compare the behavior of LESA in
FMD and RbR+ models in Section 4.2. In Section 4.3 we discuss a global, dipolar flow pattern
in the proto-neutron star associated with LESA, followed by a short summary in Section 4.4 of
our attempt in Glas et al. (2019a) to establish a connection between LESA and Chandrasekhar’s
linear theory of thermal instability in spherical shells. We conclude this chapter in Section 4.5. The
contents of this chapter have already been published in Glas et al. (2019a, see also the information
on already published material on page 73).

4.1. The LESA Phenomenon

Tamborra et al. (2014a) and Janka et al. (2016) reported the discovery of a large hemispheric
asymmetry of the total electron lepton-number emission from the newly formed neutron star in
a set of 3D CCSN simulations, which made use of the RbR+ approximation to treat the multi-
dimensionality of the neutrino transport, thereby ignoring the non-radial components of the neutrino
flux vector. They termed this stunning, new phenomenon “lepton-number emission self-sustained
asymmetry” (LESA). It is characterized by a substantial amplitude of the dipole component (in
some cases and phases even exceeding the monopole) of the lepton-number flux, which is defined by
the difference of the radial number flux of electron neutrinos and antineutrinos at spatial point 7,

Flng(r) = Fy,, (r) = Fiy 5, (7). (4.1)

The radial number flux of any neutrino species v is given by (compare Equation (A.4b))
i, = / Frel de, (4.2)

with the radial energy-flux density F}, (see Equation (2.6b)) and the neutrino energy . Both the
dipole amplitude and the direction of this dipole were observed to exhibit basically stationary or
slowly migrating behavior over time intervals of at least several hundred milliseconds covered by
the simulations.

In contrast, Dolence et al. (2015) did not observe any evidence for LESA when carrying out
2D CCSN simulations with a multi-group, flux-limited diffusion scheme for neutrino transport.
For this reason, Sumiyoshi et al. (2015) speculated that LESA may be an artifact of the RbR+
approximation. In a later study, Vartanyan et al. (2018) also did not find indications of LESA
when conducting 2D simulations with a fully multi-dimensional two-moment scheme. However,
Tamborra et al. (2014a) argued that the behavior of LESA was considerably different between their
2D and 3D models. While in the 2D case the LESA dipole direction, which can only be aligned
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with the artificial axis of symmetry, flips between both polar directions on a time scale of some
10 ms, strongly affected by SASI mass motions around the proto-neutron star, only their 3D models
showed a persistent and directionally stable LESA dipole.

Roberts et al. (2016) also investigated their 3D simulations with a fully multi-dimensional
two-moment neutrino-transport scheme for effects of LESA, but could not trace any evidence of
this phenomenon. Although their models did not take into account velocity-dependent terms in
the neutrino-moment equations and ignored inelastic neutrino scattering on electrons, this group
interpreted the absence of LESA in contrast to the supernova models of Tamborra et al. (2014a) not
necessarily as a consequence of these differences in the neutrino treatment. Instead, Roberts et al.
(2016) hypothesized that it could be linked, for example, to the fact that neutron-star convection
showed up rather late in their simulations.

The first independent confirmation of the LESA phenomenon in 3D CCSN models with detailed
neutrino transport different from those of the Garching group has recently been reported by
O’Connor and Couch (2018b), and it has been witnessed in 3D simulations by Vartanyan et al.
(2019a) and, possibly, Vartanyan et al. (2019b). Both groups also applied a fully multi-dimensional
two-moment scheme, for which reason their results provide support for LESA not being an artifact of
the RbR+ transport approximation. Although O’Connor and Couch (2018b) observed a substantial
LESA dipole only in their single full-sphere calculation including velocity-dependent terms in the
transport, they argued that the appearance of LESA is not directly linked to this improvement but
appears to be a consequence of the stronger proto-neutron star convection seen in the model with
velocity dependence. This conclusion may offer an explanation why LESA was absent in the models
of Roberts et al. (2016), and it is consistent with the finding by Janka et al. (2016) that LESA is
weaker in rotating and further diminished in rapidly rotating models, because angular momentum
gradients in the neutron star suppress convective activity.

In order to shed more light on the rather unclear situation pictured by the diverse (but not
necessarily conflicting) results of the presence or absence of LESA in models reported in the literature,
we also evaluate our 3D simulations for signatures of LESA. We can exploit the unique possibility
to directly assess the influence of the neutrino-transport schemes, FMD vs. RbR+, by analyzing
our set of eight new 3D simulations for an exploding 9 M progenitor and a non-exploding 20 Mg
star (see Table 2.3 for an overview, and Chapter 3 for a discussion of the post-bounce dynamics of
all models). In all of these eight simulations, we find clear evidence for the LESA with all of its
characteristic properties described by Tamborra et al. (2014a) and Tamborra et al. (2014b).

4.2. LESA in FMD and RbR+ Models

4.2.1. Amplitude and Direction of the Dipole Mode

We first perform a multipole analysis and decompose the radial lepton-number flux in the laboratory
frame (i.e., the rest frame of the stellar center),

lab n n
F’h?f = F‘]’,\‘f,lab,ye - F]T\,f,lab,ﬁy (43)
into real spherical harmonics, Y}, of degree [ and order m (see Equation (3.10)). The radial number
fluxes of neutrinos v in the lab frame are obtained by the transformation (dropping the subscript v;

compare the general case in Equation (A.6b))

F]Q,lab - F](f + 0" N? (4'4)
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Figure 4.1.: Monopole (I =0, dotted lines) and dipole (I = 1, solid lines) moments of the electron
lepton-number flux, evaluated at a radius of r = 400 km and transformed into the lab frame at infinity, as
functions of time after core bounce for all 3D simulations of the s20 (left panel) and the 9.0 (right panel)
progenitor models. The multipole amplitudes Aj,¢ are defined as given in Equation (4.7). While for [ =0
the corresponding amplitude agrees with the total electron lepton-number flux, the plot shows the dipole
amplitude of Equation (4.7) scaled by a factor of 3 for consistency with the normalization used by Tamborra
et al. (2014a): Ag + A cos with Ag and A; being the monopole and dipole amplitudes, respectively, and ¢
the angle relative to the dipole direction. This figure is a slightly rearranged version of Figure 1 from Glas
et al. (2019a).

where v" is the radial fluid velocity and N is the number density of neutrinos in the co-moving
frame (compare Equation (A.4a)),

N = /Es_1 de. (4.5)

The multipole coefficients at a given radius r are calculated by integrating the flux over the whole

spherical surface:
4
) =[5y [ R as. (4.6)

The moments of the lepton-number flux are then obtained as

(4.7)

Here, we use a normalization for which the monopole moment, Aj,¢(r,0), is identified with the total
lepton-number flux through the surface of a sphere with radius r!.

Figure 4.1 displays the time-dependent evolution of the amplitudes of the monopole (I = 0, dotted
lines) and of the dipole (I = 1, solid lines, scaled by a factor of 3 compared to Equation (4.7)) of the

total electron lepton-number flux (evaluated as lab-frame quantities at a radius of r» = 400 km) for

"We point out that the normalization of the spherical harmonics coefficients in the present case differs from what
we used for the decomposition of the shock radius in Section 3.3 (see Equations (3.12) and (3.13)). There, all
coefficients Ré are rescaled by a factor of 1/(4w) compared to Ame(r,l). With this normalization the monopole
moment stands for the mean shock radius.
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Figure 4.2.: Time evolution of the direction of the electron lepton-number flux dipole (i.e., of the amplitude
of the I = 1 moment plotted in Figure 4.1) for all 3D simulations in terms of the polar angle i,¢ (green dots
connected by shaded lines) and the azimuthal angle ¢in¢ (blue dots connected by shaded lines) of the dipole
vector. The top panels shows the FMD runs with low and high resolution for the s20 and s9.0 progenitors,
and the bottom panels show the corresponding RbR+ results. For better readability the values of the polar
angle are transformed to range within the interval 6, € [—90°,90°], which implies that the equator is located
at O, = 0° (dashed black line). Moreover, some values of the periodic azimuthal angle are shifted by adding
or subtracting 360° in some panels. The z and y directions of an associated Cartesian coordinate system
correspond to ¢p,r = 0° (or, equivalently, ¢,r = 360°, solid black lines) and ¢p,¢ = 90° (dotted black lines),
respectively. Note that for directions very close to the poles, i.e. f1,¢ ~ £90°, variations of the azimuthal
angle ¢u¢, e.g. in model ‘s20 FMD H’ between ~ 350 ms and ~ 500 ms after bounce, describe migrations
within a small area around the poles. This is obvious from Figure 4.3, where the evolution of the dipole
directions for all high-resolution simulations is visualized in terms of Aitoff projections of the angle space.
The time intervals marked by orange horizontal bars roughly indicate SASI episodes. This figure is taken
from Glas et al. (2019a, Figure 2).
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all our 3D simulations. To visualize the evolution of the dipole direction, the polar and azimuthal
angles of the dipole vector? are shown as functions of time after bounce in Figure 4.2.

All our simulations, both with RbR+ and FMD neutrino transport, exhibit dipole components
that grow with time and reach between ~ 10 % and more than 30 % (keeping in mind the scaling in
Figure 4.1 by a factor of 3) of the monopole amplitude at the end of the calculations. While the
individual characteristics of the evolution differ from model to model, a clear correlation can be
observed in all cases between the time when the dipole amplitude reaches a substantial fraction of
the monopole and the time when the direction of the dipole approaches a fairly stable state with
only slow and modest subsequent migration. This can be most clearly seen in the CCSN runs for
the 89.0 progenitor, for example around 200 ms p.b. in models ‘s9.0 FMD L’ and ‘s9.0 RbR+ H’,
and at ~ 350ms in ‘s9.0 FMH H’, whereas in model ‘s9.0 RbR+ L’ the latitudinal angle reaches a
well-defined value after about 100 ms while the azimuthal angle continues to drift until ~ 350 ms
p.b. But this motion takes place in a rather small region around the pole of the grid since 6y, = 70°
(compare Figures 4.1 and 4.2).

In the s20 runs the dipole direction also has the tendency to evolve more slowly after an initial
phase of basically random motion during the period when the amplitude still grows. However,
different from the convection-dominated post-shock layer in the 9.0 models, the post-bounce
dynamics of the s20 runs is characterized by repeated episodes of violent SASI activity. As shown
by Tamborra et al. (2014a), the LESA dipole is mostly formed in the convective layer interior of the
proto-neutron star and further enhanced by the lepton-number loss from the accretion layer around
the neutrinosphere, where the electron fraction develops a pronounced hemispheric asymmetry. For
this reason Tamborra et al. (2014a), Tamborra et al. (2014b), and Walk et al. (2019) observed
that SASI-induced variations of the accretion flow between stalled shock and neutron star and the
associated time- and direction-dependent modulations of the accretion luminosity (mostly v, plus
v.) can have a considerable impact on the evolution of the LESA dipole. This influence of SASI
on LESA is strongest when the LESA direction coincides with the plane or even the direction of
the SASI sloshing or spiral motions. Regarding the interplay between SASI and LESA, we do not
witness any obvious dependence on the employed transport method.

The corresponding effects can be clearly spotted in the s20 runs, see Figure 4.1 (upper panel)
and Figure 4.2, where phases exist when both the dipole amplitude and the direction angles exhibit
pronounced oscillations. These oscillations correlate with episodes of strong SASI activity in the
post-shock layer (see Section 3.3 and Figure 3.4). The overlap of SAST and LESA directions is
particularly evident in model ‘s20 RbR+ H’, where between about 200 ms and 450 ms after bounce
the LESA dipole and the SASI direction are roughly aligned as visible in the upper right panel of
Figure 4.3. Exactly during this time interval the LESA dipole amplitude (Figure 4.1) shows large
quasi-periodic modulations and both direction angles of the LESA dipole exhibit a major shift by
~ 90° instead of the usual temporal fluctuations, which seem to be a consequence of the time- and
directional variability of the massive accretion flows to the neutron star in the non-exploding s20
models (Figure 4.2). While the ubiquitous temporal fluctuations of the direction angles are also
present in model ‘s20 FMD H’, this case does not display any quasi-monotonic large-scale migration
of the LESA direction at ¢, 2 250 ms except for local motions around the pole at 6,y = 90°,
signaled by large excursions of ¢p,¢ between ~ 350 ms and ~ 500 ms after bounce. This is compatible
with the fact that in model ‘s20 FMD H’ the LESA dipole direction is far off the main plane of

2For the dipole direction of the lepton-number flux, we use the multipole coefficients c*(r) as components of the
direction vector, which we then transform into spherical polar coordinates. This procedure is equivalent to the
analysis of the dipole direction of the shock radius (see Equations (3.12) and (3.13) and the associated explanations
in Section 3.3).
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Figure 4.3.: Time evolution of the directions of the electron lepton-number flux (LESA) dipole and of
the dipole vector of the deformed shock surface for all high-resolution 3D simulations visualized by Aitoff
projections of the angle space. In the case of the s20 progenitor the shock dipole mainly corresponds to an
asphericity of the shock caused by violent SASI sloshing and spiral motions, which also lead to direction-
dependent modulations of the neutrino luminosity due to asymmetric accretion of the neutron star. The
dots mark the location of the dipoles at certain times with the colors from blue to yellow for the LESA
dipole and dark gray to light gray for the shock dipole indicating the direction of time (see color bars).
The time intervals of the displayed evolution differs between the different panels, covering in each case the
phase of the most pronounced LESA dipole. The axis directions x, y, and z of the Cartesian coordinate
system, underlying the definition of the direction angles used in Figure 4.2, are marked by red crosses. In
the convection-dominated $9.0 models (bottom panels) SASI plays no role. The dipole deformation mode of
the shock is caused by asymmetric convection and has hardly any influence on the LESA dipole. In model
‘s20 FMD H’ (upper left panel) SASI mass motions and accretion asymmetries occur in a plane roughly
perpendicular to the LESA dipole, whose amplitude and orientation are therefore affected less strongly by
the SASI-induced neutrino-emission modulations than in model ‘s20 RbR+ H’ (upper right panel), where
the LESA and SASI dipole directions coincide temporarily. The alignment of the dipole direction with the
y-axis in model ‘s9.0 FMD H’ (lower left panel) is just accidental, because the transformation from spherical
polar coordinates to Cartesian coordinates in the z-y-plane is arbitrary. This figure is taken from Glas et al.
(2019a, Figure 3).
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SAST activity during most of the time (see upper left panel in Figure 4.3). For the Aitoff projections
of the SASI direction in the latter figure we consider the dipole vector associated with the shock
deformation®, following Tamborra et al. (2014a). Alternatively, Tamborra et al. (2014b) employed
the dipole of the neutrino-energy flux, summed over all six neutrino species. The spatial motions of
both direction vectors are closely correlated, and both can therefore be used equally well as tracers
of the SASI motions and of the associated accretion-modulated anisotropic neutrino emission, which
then has an impact on the LESA dipole.

In contrast, the runs of the s9.0 progenitor explode rather early (¢,, ~ 300 ms) and do not possess

3We use the multipole coefficients a, = al, ay = al_l, and a, = a? from the decomposition of the angle-dependent
shock radius into real spherical harmonics (see Equations (3.12) and (3.13) and the associated explanations in
Section 3.3) as components of the direction vector, which we then transform into spherical polar coordinates.
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Figure 4.4.: Aitoff projections of the electron lepton-number flux, Fl2P (see Equation (4.3)), evaluated at
a radius of r = 400 km, transformed into the lab frame at infinity, and normalized by the angular average,
(FlabYg 4 (see Equation (3.15¢)). The results are displayed for all high-resolution 3D runs (arrangement
of panels analogous to Figure 4.3) at the end of each simulation (given by ¢, in the figure labels). The
directions of the LESA dipole moments (see final results in Figures 4.2 and 4.3) are marked by circles, the
opposite directions by stars. The dominance of a dipole asymmetry is visible in all cases, but the spottiness of
the RbR+ results suggests more important contributions also from higher-order multipoles. This is confirmed
by the “spectrograms” shown in Figure 4.5. The exceptionally clear hemispheric difference in model ‘s9.0
FMD H’ (and the very stable dipole direction seen in Figure 4.3) result from (1) the absence of SASI and the
low mass-accretion rate in downflows in this exploding model, (2) the “smearing” of angular variations by
the non-radial flux components that are evolved in the FMD scheme, but neglected in the RbR+ transport,
and (3) the fact that ‘s9.0 FMD H’ is shown at a time of evolution when the LESA dipole mode is largest
and strongly dominates the higher multipoles (see Figures 4.1 and 4.5). For orientation, also the z, y, and
z directions of the Cartesian coordinate system for the measurement of the dipole angles of Figure 4.2 are
indicated by black crosses. This figure is taken from Glas et al. (2019a, Figure 4).

any preceding SASI activity. Moreover, convective fluctuations of the mass-accretion rate also
have a much reduced influence on the neutrino emission in these simulations because of the low
mass-accretion rate of this low-mass progenitor. For these reasons the LESA amplitude (Figure 4.1,
lower panel) and direction angles (Figure 4.2, two right columns and Figure 4.3, bottom panels) do
not show any phases of quasi-periodic oscillations as in the s20 models, and the LESA vector is
more stationary or shifts only slowly on longer timescales.

4.2.2. Analysis of the Higher Modes

Figure 4.4 presents the variations of the local electron lepton-number flux densities in all emission
directions for all high-resolution 3D simulations at the times when the runs were terminated. The
dominance of a dipolar mode is visible in all cases, but also contributions from higher multipolar
models can be recognized. This is confirmed by Figure 4.5, which provides “spectrograms” for the
temporal evolution of the moments A, from order [ = 1 up to I = 10 for the same set of simulations.
Both of the models with FMD transport exhibit an early phase between ~ 50 ms p.b. and ~ 200 ms
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Figure 4.5.: “Spectrograms” for the time evolution of the multipole moments A, ¢ of the electron lepton-
number flux (as defined in Equation (4.7)) for orders I =1 to [ = 10 (evaluated at a radius of r = 400 km
for an observer in the lab frame at infinity). Results from all our four high-resolution 3D simulations are
displayed (arranged analogously to the panels in Figures 4.3 and 4.4). The color intensity scales with the
multipole amplitude (see color bars). To optimize the visualization of the relative strengths of the moments
for I > 1, the monopole (I = 0), which would far dominate the early post-bounce evolution, is not displayed.
This figure is taken from Glas et al. (2019a, Figure 5).

p.b. in which only the multipole modes around [ = 4 are excited. The growth of these asymmetries
coincides with the time when convective activity inside of the proto-neutron star sets in (¢, ~ 40 ms
— 50 ms), whereas non-radial instabilities in the gain layer start only some 10ms later (at 2 70 ms —
80ms p.b., see the non-radial kinetic energies given in Figure 3.4). A dominant dipole begins to
appear in ‘s20 FMD H’ at t,, 2 250ms, at which time ‘s9.0 FMH H’ develops most strength in
the quadrupole mode, before after ~ 450 ms of post-bounce evolution also in this model the dipole
becomes the clearly dominant mode, as prominently visible in the lower left panel of Figure 4.4. At
the end of both runs the dipole has by far the highest amplitude of all modes with [ > 1.

Also in the simulations with RbR+ transport the modes of higher orders between | =4 and [ = 6
appear first, the quadrupole mode reaches a dominant amplitude several 10 ms afterwards, and
the dipole mode even ~ 150 ms — 200 ms later. And also similar to the FMD runs, as time goes
on there is an obvious tendency that the power in the mode spectrum shifts to lower and lower
modes until the dipole has the highest amplitude. Different from the FMD runs, for which the
lepton-flux asymmetry at tp, 2 250 ms — 300 ms is distinctly concentrated in the [ =1 and [ = 2
modes, the RbR+ models possess a broader distribution of power in the spectrograms. The higher
moments, [ > 1, always yield visible contributions and their power decreases gradually with higher
values of [. This is fully compatible with the flux variations seen in Figure 4.4, where the RbR+
cases exhibit a fragmented pattern of larger and smaller spots (i.e., of lower and higher multipole
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orders), superimposed on the hemispheric (dipolar) asymmetry.

This observation, however, is not really astonishing in view of the fact that the RbR+ approxima-
tion ignores non-radial components of the neutrino fluxes and therefore variations in the directions
perpendicular to the radius vector remain more localized on smaller scales. In contrast, the non-local
behavior of radiative transfer with the FMD scheme, which couples spatial volumes over a neutrino
mean free path, leads to a “smearing” of angular variations by the non-radial flux components.
This produces much smoother radiation characteristics around the neutrinosphere and above it,
as discussed in Section 3.3 and as visible in Figures 3.7 and 3.8. Therefore large-scale or global
directional variations of the neutrino emission such as accretion-induced hemispheric asymmetries
and the LESA phenomenon can be captured in their basic properties by both FMD and RbR+
transport treatments, whereas small-scale variations are stronger with RbR+ transport.

4.2.3. Assessment: FMD versus RbR+

A more detailed comparison reveals further differences between the results from the two treatments,
though none of these differences is of fundamental nature. For example, the simulations with RbR+
show a somewhat earlier rise of the LESA dipole component for both progenitor models than in the
corresponding FMD cases. Moreover, in the s9.0 models the dipole amplitudes reach somewhat
higher maximal values in the RbR+ calculations. Although this does not apply to the s20 runs, the
SASI-induced modulations of the LESA dipole seem to be more extreme in the RbR+ cases, in
particular in model ‘s20 RbR+ H’ (Figure 4.1). But these modulations depend sensitively on the
orientation of the LESA dipole relative to the SASI direction, which is stochastic and differs from
model to model and can also vary during the post-bounce evolution of a single run. The migration
of the dipole (or its directional stability), although difficult to compare in detail, does not reveal
any qualitatively different behavior between RbR+ and FMD simulations.

Overall, we conclude that the LESA phenomenon with its characteristic features is shared
by all of our 3D models. This disproves speculations that LESA is a numerical artifact of the
RbR+ approximation. Our results are consistent with those reported by Tamborra et al. (2014a),
Tamborra et al. (2014b), and Janka et al. (2016), where LESA was discussed as a lepton-number
emission self-sustained asymmetry first. Since a key feature of LESA is a dipole emission component
that grows relative to the monopole, it shall be noted that during the phases when the dipole
dominates the higher-order multipoles, the absolute value of the total electron lepton-number flux
(the monopole) in our s20 models is higher by a factor of 2 2 than in the simulations with the
VERTEX code presented by Tamborra et al. (2014a). This discrepancy might stem from differences
in the neutrino-interaction rates, which are considerably more elaborate in many aspects in the
calculations with VERTEX. It could also be a consequence of a different contraction behavior of
the neutron star in response to different energy and lepton-number loss through neutrino radiation.
Moreover, proto-neutron star convection is substantially stronger in calculations with the ALCAR
code as discussed by Just et al. (2018). All of these aspects can directly or indirectly influence the
production and the convective and radiative transport of lepton number inside of the neutron star
and can thus have an effect on the relative strength of the monopole and dipole of the electron
lepton-number emission.

The detailed temporal evolution of LESA strongly depends on the simulation setup, including the
neutrino-transport method, the grid resolution, and the progenitor model. Although the onset of
lepton-emission asymmetries is seen at roughly the same time in all our models, with [ ~ 4-6 modes
showing the fastest growth, the subsequent evolution that leads to the emergence of a dominant
LESA dipole could depend also on stochastic initial seeds and a stochastically-triggered complex
feedback mechanism between asymmetric neutron-star convection and mass accretion of lepton-rich
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material as described by Tamborra et al. (2014a) and Janka et al. (2016). Further analysis is
needed, based on a future, larger pool of 3D simulations with varied physics inputs and numerical
treatments of hydrodynamics and neutrino transport. In this context it is assuring that O’Connor
and Couch (2018b) and Vartanyan et al. (2019b,a) also observed the LESA phenomenon in their
3D simulation with two-moment transport including velocity-dependent terms.

4.3. LESA and Proto-Neutron Star Convection

A detailed description of the characteristic empirical features of the LESA phenomenon was provided
by Tamborra et al. (2014a) and Janka et al. (2016), whose results were confirmed by the analysis of
our current models in Section 4.2 (see also O’Connor and Couch 2018b; Vartanyan et al. 2019b,a). As
mentioned above and discussed in the previous works, the major contribution to the dipole emission
originates from the convective layer inside of the neutron star, whose hemispheric differences in the
lepton-number loss rate can be further amplified by an asymmetry in the mass-accretion flow from
the SN shock to the neutron star.

4.3.1. Visualization of the Asymmetries and Cell Patterns

The directional dependence of the convective cell pattern and of the lepton-number flux density in
the interior of the neutron star can be seen in the volume renderings of Figure 4.6. Both fiducial
high-resolution models with FMD transport (‘s20 FMD H’, top panels, and ‘s9.0 FMD H’; bottom
panels) show a pronounced hemispheric asymmetry for large (red) and small (blue) values of the
lepton-number flux density around the spherical region at roughly 10 km (red sphere in the center),
measured at the times when the LESA dipole mode resides at the maximum value for each model.
The volume rendering was performed for the lepton-number flux density in the lab frame, ﬂffb,
which connects to the co-moving frame lepton-number flux density via Equations (4.3) and (4.4).
Since in the neutrino-diffusion regime (which well applies to the convective layer in the proto-neutron
star) the second term on the right hand side of Equation (4.4) dominates by far, the red bubbles in
Figure 4.6 mainly visualize the velocities of the convective cells, demonstrating a clear hemispheric
asymmetry. Because these asymmetries in the proto-neutron star are quite similar between the two
fiducial simulations, we pick only one of them (model ‘s20 FMD H’) for the following analysis.

In the volume-rendered images of Figure 4.6, the lepton-number flux density is displayed through
semitransparent isosurfaces that are picked by choosing non-vanishing transparency for selected
flux-density values (see the grey markers at the color bar of each panel). The inner red sphere
corresponds to the spherical lepton-number flux that diffuses out from the non-convective central
core. The red plumes visualize the pattern of small-scale convective cells that fill the convection
layer of the proto-neutron star and become visible because Flffb depends on the radial fluid velocity
through the second term on the right hand side of Equation (4.4). Stronger convection in the
hemisphere pointing in the LESA direction (which is indicated by the green arrows in the tripod of
each panel) and weaker convection in the opposite direction are obvious from the larger red plumes
in the former case and the smaller and less distinct plumes in the latter case. These hemispheric
differences in the strength of overturn activity in the proto-neutron star convection layer lead to the
pronounced dipolar asymmetry of the lepton-number flux exterior to the convective shell, which is
visualized by the enveloping, cap-like blue surfaces.

The bottom panels of Figure 4.6 together with Figure 4.7 demonstrate that the LESA direction
has no obvious correlation with the deformation that develops in the expanding post-shock ejecta.
This can be understood by the fact that the LESA asymmetry is large (of order tens of percents)
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Figure 4.6.: Volume renderings of the electron lepton-number flux density in the lab frame, F%P (see
Equations (4.3) and (4.4), in units of s~ cm~2 and scaled down by a factor of 10%%), in the interior of the
neutron star (see yardstick in the lower right corner of each panel). For model ‘s20 FMD H’ (top panels)
we show data at 374 ms after bounce, and for model ‘s9.0 FMD H’ (bottom panels) we pick a snapshot at
600 ms, which is close to the end of the simulation. At these times, the LESA dipole mode resides near its
largest value for each model (compare Figure 4.1). The LESA dipole direction, indicated by a green arrow in
the tripod in the lower left corner of each panel, roughly aligns with the +z-direction in model ‘s20 FMD
H’, and the 4y-direction in model ‘s9.0 FMD H’ (compare Figure 4.3). The left and right panels depict
different planes, which in all cases contain the LESA vector (see the tripods). Since in the neutrino-diffusion
regime the visualized lepton-number flux densities are vastly dominated by the velocity-dependent term in
Equation (4.4), the images display the hemispheric differences of the small-scale convective cells (visible as red
plumes) that fill the convection layer in the proto-neutron star. The convective cells are much more extended,
and convectively enhanced lepton-number transport is much stronger (visible by the blue, hemispheric “caps”),
on the side of the higher lepton-number emission. Opposite to this LESA dipole, convection is weaker and
the convective cells are less distinct, indicating less efficient convective lepton-number transport. Our volume
renderings are therefore 3D visualizations of the situation displayed by cross-sectional images in Figure 10 of
Tamborra et al. (2014b). This figure is taken from Glas et al. (2019a, Figure 6).
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Figure 4.7.: Visualization of the explosion geometry by means of the entropy per baryon (in units of
kg) for model ‘s9.0 FMD H’. The volume renderings show the shock front (turquoise layer) and plumes
of neutrino-heated matter in the post-shock layer (yellow and orange surfaces) for a temporal snapshot at
600 ms close to the end of the simulation. The left and right panels depict different planes (see the tripod in
the lower left corner of each panel). We emphasize that the LESA direction nearly coincides with the y-axis
(indicated by the green arrows in the tripods), and that there is no correlation between the LESA direction
(see Figure 4.6) and the global deformation of the expanding post-shock material. The streak-like pattern in
the center of the right panel is a well-known artifact for viewing directions along the polar axis, arising from
the transformation from spherical polar coordinates to the Cartesian coordinate system of the visualization
tool. This figure is taken from Glas et al. (2019a, Figure 7).

in the lepton-number flux, but small (on the level of a few percent only) in the total number and
energy flux of v, plus 7. (see Tamborra et al. 2014a,b). Therefore, since (v, plus 7. )-emission
asymmetries due to accretion have mostly a larger amplitude, LESA has no dominant direct impact
on the growth of neutrino-heated bubbles, and therefore on explosion asymmetries.

Figure 4.8 displays a zoom of the interior of the neutron-star and its immediate surroundings in our
3D model ‘s20 FMD H’. The cross-sectional plane chosen for the plots is close to the axis of the LESA
dipole. The upper left panel shows the radial component of the lepton-number flux in the laboratory
frame (i.e., the rest frame of the stellar center), Fi3P (see Equation (4.3)), scaled with the surface
area 47?2, at tph = 374 ms, which is about the time when the LESA dipole reaches its maximum
(see Figure 4.5, upper left panel). The higher lepton-number flux in the northern hemisphere is
correlated with an excess of the electron fraction, Y., compared to its angular average at each radius
(upper right panel). This pattern associated with LESA (Tamborra et al., 2014a) grows within the
convective layer, which extends from the edge of the white circular region indicating the 10 km core
that is computed in 1D, to the outer boundary of the convective layer, which roughly coincides with
the effective energy sphere of muon and tau neutrinos (dotted black circle in the upper right panel).
The LESA v-emission and Y, asymmetries continue within the overlying radiative shell, where faster
neutrino diffusion carries the leptons to the neutrinospheres of v, and 7, (solid and dashed black
circles, respectively), and persist into the accretion layer exterior to the neutrinospheres.
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Figure 4.8.: Asymmetries associated with the LESA phenomenon inside and around the neutron star in
3D model ‘s20 FMD H’. The six panels provide different quantities in the cross-sectional y-z-plane, which
contains the polar axis of our spherical polar grid and cuts through the neutron star very close to the axis
of the LESA dipole (see Figure 4.3). The LESA direction points (roughly) to the 12 o’clock position in
all panels. The upper left panel displays the radial component of the electron lepton-number flux Fllrf‘f’,
transformed to an observer in the rest frame of the stellar center (see Equation (4.3)) and scaled by the surface
area 4mr2. The upper right panel shows spatial variations of the electron fraction Y., normalized by the
angular average (Y.(r))e,4 (see Equation (3.15¢)). The white circular region around the center corresponds
to the innermost 10 km, which are computed in spherical symmetry. Both plots show a post-bounce time
of t,, = 374ms. Black circles indicate the effective energy spheres of all neutrino species (as defined in
Equation (3.17)), solid for v., dashed for v., and dotted for v,. The middle panels visualize the z-component
of the mass-flux density, pv,, averaged over the time interval of ¢,, € [369ms, 379 ms|. The white arrows in
the middle right panel sketch the underlying flow pattern, forming a dipolar mode within the convective
layer of the neutron star. The lower panels show the cell structure in the convective layer by means of the
turbulent radial velocity vf,,,, (left) and the absolute turbulent velocity |veu| (right), both averaged over the
time interval of ¢y, € [369ms, 379 ms]. Values that exceed the range of the corresponding color bar of each
panel appear in black. The global dipolar flow pattern visible in the middle panels, which encompasses the
whole proto-neutron star convection layer, is superimposed on the familiar pattern of smaller-scale convective
cells filling the convective shell as visible in the lower panels. These convective cells possess a hemispheric
asymmetry in the LESA dipole direction with larger and more extended outflow structures on the side of the
higher lepton-number flux, which is obvious from the bottom panels and which can also be concluded from
the visualization of the lab-frame lepton-number flux density in Figure 4.6 and in the cross-sectional plots of
Figure 10 in Tamborra et al. (2014a). This figure is taken from Glas et al. (2019a, Figure 8).
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4.3.2. Global Dipolar Flow Pattern in the Neutron Star

The effective flow pattern that is responsible for these hemispheric differences in the lepton-number
transport out from the deep inner core of the proto-neutron star is displayed in the middle panels of
Figure 4.8, where the component of the mass flux in the north-south (z) direction, pv,, is visualized
by color coding.

The bottom panels of Figure 4.8 show the familiar cell pattern of the convective layer in the proto-
neutron star. The characteristic convective feature associated with LESA is stronger outflow in the
hemisphere pointing in LESA direction and stronger convective inflow in the opposite hemisphere,
visible in the bottom left panel from the positive and negative radial components of the turbulent
velocities, which are defined by

Uiq;urb =Ur — <,UT>97¢7 (48)

where (v.)g 4 is the angular average of v, (see Equation (3.15c)). In contrast, the absolute values of
the convective velocities,

Uturb = \/(Ur - <Ur>9’¢)2 + ’Ug + U;, (49)

may not display any clear correlation with the LESA dipole direction (see bottom right panel of
Figure 4.8; but also Walk et al. 2019).

Superimposed on the smaller-scale convective variations (see the pattern of convective cells in the
upper left panel and in the bottom panels of Figure 4.8), a global dipolar flow can be identified,
indicated by the white arrows in the middle right panel: Around the north pole lepton-rich plasma
rises through the convective layer, transporting electron-lepton number from the inner core to regions
closer to the neutrinospheres, where the high electron abundance causes enhanced v, emission.
Matter with decreasing Y, streams along the outer edge of the convective layer from the north
pole towards the south pole, further losing lepton number by radiating v.. Near the south pole
the flow of neutron-rich, specifically (i.e., per nucleon) heavier and thus denser matter submerges
again to deeper layers, where it is channeled into currents that stream back towards the northern
hemisphere along the inner border of the convective layer. On its way from south to north, the
plasma is refueled with fresh leptons by absorbing neutrinos diffusing out from the high-density
core.

4.3.3. Influence of the 1D Core

A deficiency of the present models in connection to this analysis of LESA should be mentioned
here. The 1D core with a chosen radius of 10 km, which is employed in our 2D and 3D simulations
for reasons of computational efficiency (see Section 2.6.3), turned out to be too large during the
later post-bounce evolution of our models. At times beyond about 200 ms after bounce, the inner
boundary of the convective layer hits the radius of the 1D core (see Figure 4.9), and correspondingly,
the spherically symmetric treatment of the 1D core prevents the convective shell to grow deeper.
The 2D calculations of Just et al. (2018), where the s20 progenitor was run with the same input
physics but with a considerably smaller 1D core, demonstrate that the inner boundary of the
convective shell reaches a radius of ~ 10km already after about 150 ms and becomes as small as ~
7km after 500 ms.

We confirm this finding in a similar analysis of two 2D simulations. Figure 4.9 shows the inner
boundary of the neutron star convection layer, r;, which is defined as the radius at which the
angle-averaged, non-radial velocities exceed 107 cms™!. In addition to data from the 3D model ‘s20
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Figure 4.9.: Influence of the 1D core on the convective layer in the proto-neutron star. We show, as a
function of the post-bounce time, the inner radius of the convective region, r;, for the 3D model ‘s20 FMD H’
(blue line), and for two 2D reference simulations with spherical symmetric cores of 10km (red solid line) and
1km (red dotted line), respectively. The horizontal dashed lines at 1km and 10 km indicate the boundary of
the core that is computed in spherical symmetry instead of 2D or 3D for reasons of numerical efficiency. This
figure is inspired by the upper left panel of Figure 9 from Glas et al. (2019a).

FMD H’ (blue line), we show r; also for two 2D reference simulations of the s20 progenitor model,
one with a spherically symmetric core of the same size of 10km as in the 3D simulations (red solid
line), and the other one with a much smaller core of only 1km (red dotted line). In the latter case,
the region of convection moves only very slowly into the neutron star down to 7km to 7.5 km by
the end of the simulation at 600 ms after bounce. In contrast, the 2D simulation with a 10 km core
behaves similarly to the 3D simulation, with r; touching 10 km starting from 200 ms.

It is therefore clear that the use of the spherical core has constrained the later growth of the
proto-neutron star convection layer in the simulations of the present work. Potentially, this might
even have prevented a growth of the LESA dipole beyond the amplitudes obtained in our models.
Nevertheless, the basic features of the LESA phenomenon agree well with the results reported by
Tamborra et al. (2014a) and Janka et al. (2016) from calculations with the PROMETHEUS-VERTEX
code, where the 1D core was as small as ~ 1.5km and had no impact on the development of
neutron-star convection. Evaluating the available set of 3D models from the PROMETHEUS-VERTEX
runs, Stockinger (2015) also observed a dipolar flow pattern that encompasses the convective layer
in the neutron star and transports electron lepton-number from one hemisphere to the other, very
similar to the one visible in Figure 4.8.

4.4. Chandrasekhar’s Theory of Thermal Instability

The presence of a dipolar flow pattern through and around the convection zone of the proto-neutron
star motivated us to investigate whether this finding can be understood under the paradigm of
Chandrasekhar’s linear stability analysis for spherical shells (Chandrasekhar, 1961). In this section,
we summarize our study presented in Glas et al. (2019a), which aimed at establishing a connection
between the growth of neutron-star convection and Chandrasekhar’s theory. We refer the reader to
Section 5 of Glas et al. (2019a) and Section VI of Chandrasekhar’s book (Chandrasekhar, 1961) for
more details.

In his work, Chandrasekhar determined the critical conditions for the onset of thermal instability
in fluid spheres and spherical shells on the basis of a linear stability analysis for a variety of situations.
He concludes that a given system becomes unstable against convection for perturbations of the
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spherical harmonics mode [ with the lowest value of the critical Rayleigh number. This means
that at marginal stability the convective pattern will manifest itself in a certain /-mode, when the
Rayleigh number of the system exceeds the critical Rayleigh number R¢; for this mode. It further
means that for Rayleigh numbers lower than the critical Rayleigh number for a mode [, disturbances
of this mode are expected to be stable, while such disturbances will become unstable when the
Rayleigh number exceeds Rc .

Bearing in mind Chandrasekhar’s theory, we analyzed the conditions for convective instability
inside the neutron star in our 3D model ‘s20 FMD H’, and compared the growth behavior of different
multipoles against the predictions from Chandrasekhar’s linear stability analysis. This assessment
can, of course, only be tentative because of the substantial differences between the complex physical
conditions in the Ledoux-unstable neutron-star layer compared to the idealized terrestrial setups
investigated by Chandrasekhar. Despite these limitations, the growth behavior of the different
multipoles of the lepton-number flux (which we relate to multipoles of the flow in the convective
layer) follows amazingly well the expectations from Chandrasekhar’s theory. We conclude this from
comparing the Rayleigh numbers for different I-modes of the system*—which we estimate at the
center of the convective layer, at the times when we identify the initial rise of an [-mode emission
asymmetry—with the corresponding critical Rayleigh numbers R¢; derived by Chandrasekhar. In
agreement with the mathematical analysis, we witness the onset of modes around [ = 4 first. The
growth of the other multipole modes sets in at times when the Rayleigh numbers for the conditions
of the system follow the critical curve for R¢,; adopted from Chandrasekhar (1961). Since the
Rayleigh number of the convective layer continues to rise monotonically even after the dipole mode
(I = 1) appears for the first time, one can expect its presence also at later times. Hence, the
existence of a dipolar flow pattern in the proto-neutron star convection layer seems compatible with
Chandrasekhar’s analysis of thermal instability in spherical shells.

4.5. Conclusions for LESA

We presented an in-depth analysis of the effects of LESA in our set of eight 3D CCSN runs for two
progenitors. LESA was first witnessed as a dipolar electron lepton-number emission asymmetry
by Tamborra et al. (2014a) in their 3D simulations with RbR+ neutrino transport, which neglects
the non-radial components of the neutrino fluxes. Recently, LESA was also seen in various 3D
simulations with FMD neutrino transport performed by O’Connor and Couch (2018b, one model),
Vartanyan et al. (2019b, possibly one model), and Vartanyan et al. (2019a, all eleven simulations).
We observed the appearance of a strong LESA dipole mode after some 100 ms p.b. in all of our
models, for exploding 9 My and non-exploding 20 My, cases, both with lower and doubled grid
resolution, and with FMD as well as RbR+ neutrino transport.

All characteristic features of LESA reported by Tamborra et al. (2014a) and Tamborra et al.
(2014b) were also diagnosed in the present models: (1) phases where the dipole component of the
lepton-number flux clearly dominates all higher-order multipoles and can reach even the strength
of the monopole; (2) a relatively stable position or only slow migration of the dipole direction
during the phases of a strong dipole; (3) corresponding hemispheric differences in the strength
of proto-neutron star convection and in the electron and lepton fractions in the convection layer
and above it; (4) a hemispheric asymmetry of the accretion layer between deformed shock and
neutron star with greater accretion on the side of the higher lepton-number flux; (5) SASI-induced

4Calculating the Rayleigh number requires the specification of the kinematic viscosity of the fluid. In our current
models, viscous effects are far dominated (by a factor of ~ 10 to 100) by numerical viscosity. This needs to be
kept in mind when numerical simulations are evaluated for the growth of LESA multipole modes.
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modulations of the LESA dipole in periods of strong SASI activity, when the LESA dipole is located
close to the direction of SASI sloshing or close to the plane of SASI spiral motions.

Our results clearly prove that LESA is not an artifact of the RbR+ approximation. Nevertheless,
there are interesting differences between the FMD and RbR+ results in certain aspects. The LESA
dipole amplitudes with RbR+ neutrino transport tend to grow noticeably faster, reach higher
amplitudes earlier, and their maximum amplitudes can, at least temporarily, be higher than those
obtained with FMD transport. However, the dipole, once fully developed, dominates the multipole
spectra of the lepton-number flux in the FMD cases in a much cleaner way than in the RbR+
runs (although it can be somewhat lower compared to the monopole). The spectrograms of the
RbR+ models typically show prominent quadrupoles as well, and significant power over a wider
range of higher-order multipoles. This patchiness of the directional variations of the lepton-number
emission is expected as a natural consequence of the more localized neutrino effects in the RbR+
approximation (see the discussion in Chapter 3, in particular Section 3.3.4). In contrast, the
neutrino field leaving the convective layer is smoothed in the surrounding radiative shell by non-local
radiation-transport effects of FMD.

Closely inspecting the mass flows in and around the convection layer interior to the proto-neutron
star during phases of a strong LESA dipole, we reveal a global, volume-filling dipolar pattern that
streams around the central, convectively stable core. These currents effectively transport lepton-rich
matter from the hemisphere opposite to the LESA dipole direction to the hemisphere in the LESA
dipole direction, and from deeper regions to layers closer to the neutrinospheres. An important
effect is the gain or loss of electron lepton-number by these currents through exchange with diffusion
fluxes (via neutrino absorption or emission) when the gas flow moves along the inner and outer
boundaries between the convective layer and the diffusive central core on the one side and the
enveloping shell on the other side. This exchange process fuels and defuels the lepton content of the
currents.

Our reported work has attempted to achieve progress towards a better understanding of the
puzzling LESA phenomenon. Despite the assuring result that the existence of a dipolar flow pattern
in the neutron-star convection layer seems compatible with Chandrasekhar’s linear stability analysis
of thermal instability in spherical shells (Chandrasekhar, 1961), the detailed reason for the dominance
of the [ = 1 mode remains unclear. Previous speculations that it is driven by feedback effects with
a hemispheric accretion asymmetry around the neutron star (Tamborra et al., 2014a), or by an
amplifying feedback cycle connected to Yiep-dependent differences of Ledoux convection in opposite
neutron star hemispheres (Janka et al., 2016), require corroboration by future investigations.

Moreover, plenty of future work will have to address the consequences of LESA in the context
of supernova explosions and their detectable neutrino emission. Interpreting our present results
(and those of previous reports of LESA in the literature) we would not think that LESA has any
significant impact on the supernova mechanism and the “explodability” of progenitor stars. On the
one hand, the LESA asymmetry concerns mainly the lepton-number flux but much less the total
(number and energy) flux of electron neutrinos and antineutrinos (see Tamborra et al. 2014a,b), for
which reason the emission asymmetry has a subordinated consequence on the neutrino heating in the
post-shock layer. LESA effects in this respect seem to be overruled by SASI- and convection-induced
perturbations and modulations, which is reflected by the fact that SASI activity in our 20 Mg
runs has considerable implications for the stability of the LESA direction and amplitude (see also
Tamborra et al. 2014b). The assessment of probable implications of LESA for neutron star kicks and
supernova nucleosynthesis (as mentioned already by Tamborra et al. 2014a) and possible implications
for explosion energies will require much longer simulations than performed in our work. While
consequences of LESA for the detectable neutrino signal have been addressed by Tamborra et al.
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(2014Db) as well as Walk et al. (2019), a potential connection of LESA and the gravitational-wave
emission of newly formed proto-neutron stars will have to be investigated in the future (but for a
first glimpse, see Powell and Miiller 2019).
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Chapter 5.
Conclusions

A challenging problem in core-collapse supernova (CCSN) theory is the modeling of the neutrino
transport in self-consistent simulations. Because the governing Boltzmann equation cannot be
solved in its full complexity, several approximations have been introduced. One of them is the
ray-by-ray-plus (RbR+) approximation (Rampp and Janka, 2002; Buras et al., 2006b), which
assumes the specific intensity of neutrinos to be symmetric around the radial direction of the
associated spherical polar coordinate system. The RbR+ approximation has been employed by
several groups in recent, sophisticated CCSN simulations (see, for example, Takiwaki et al. 2014,
Lentz et al. 2015, and Summa et al. 2018). However, with RbR+ transport the non-radial (i.e.,
lateral and azimuthal) components of the neutrino flux vanish, whereas in a fully multidimensional
(FMD) transport scheme the non-radial components are also evolved. After simulations in axial
symmetry (2D) found the RbR+ approximation to foster shock revival for some progenitor stars
(Skinner et al., 2016; Just et al., 2018), an evaluation of RbR+ in the general three-dimensional
(3D) case is desperately needed.

In this thesis, we close this gap and assess—for the first time—the influence of the RbR+
approximation on the delayed neutrino-heating mechanism in self-consistent 3D CCSN simulations.
To this end, we conducted in total eight 3D simulations with angular resolutions of ~ 4° (“low
resolution”) and & 2° (“high resolution”; using twice as many grid cells as for the low resolution
cases) for two different progenitor models with masses of 9 Mg and 20 Mg, respectively. For all
these simulations we made use of the AENUS-ALCAR code (Obergaulinger, 2008; Just et al., 2015,
2018), which implements an energy-dependent two-moment neutrino-transport scheme with an
analytical closure relation (“M1 scheme”) for electron neutrinos (v.), electron antineutrinos (7.),
and heavy-lepton neutrinos (v,; representing all four other neutrino species). In addition to the
FMD transport scheme, the code is capable of employing the RbR+ approximation by setting all
non-radial flux components to zero.

Results For both progenitor models, we find a very good agreement of the post-bounce evolution
between 3D simulations with RbR+ and FMD neutrino transport. While all runs of the 9 Mg
model lead to successful shock revival, the 3D simulations of the 20 M, progenitor model fail to
revive the stalled shock wave in all cases until at least 400 ms after bounce. In contrast to our 2D
simulations, in which the 20 M model is dominated by violent sloshing motions of the standing
accretion shock instability (SASI; Blondin et al. 2003) in the polar directions, our 3D simulations
of the 20 My model show a substantially different behavior with alternating phases of convective
and SASI activity (consisting of both sloshing and spiral motions). For this reason, we do not
reproduce the results from 2D simulations, in which the RbR+ approximation has been found
to facilitate shock revival in particular in models with the strong axial sloshing motions of SASI.
Instead, we find a much better agreement in 3D between simulations with RbR+ and FMD. For
the convection-dominated 9 Mg model, the agreement between RbR+ and FMD is even better.
This model exhibits successful shock revival in all 3D simulations at roughly 300 ms after bounce,
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without developing any SASI activity. The diagnostic explosion energies in both RbR+ and FMD
cases reach ~ 4 x 10*° erg when measured at 600 ms, and are still growing by ~ 10°? ergs™1.

A detailed analysis of the 20 M progenitor model revealed further differences in the neutrino
fluxes and heating rates. In agreement with a previous study by Sumiyoshi et al. (2015), we find
larger angular variations of the radial neutrino fluxes with the RbR+ approximation, when compared
to the FMD scheme. However, in 3D simulations these variations are systematically smaller than in
corresponding 2D runs. Furthermore, the polar heating rates in 2D exhibit much larger fluctuations
in simulations with the RbR+ approximation, when compared to 2D runs with the FMD scheme.
In contrast, 3D models with both FMD and RbR+ transport show significantly less fluctuations of
the heating rates in polar directions as well as in the instantaneous SASI direction. In view of these
results, it is not surprising that we find a much better overall agreement in 3D between simulations
with FMD and RbR+ neutrino transport.

LESA We further used our set of 3D models to evaluate the influence of the two neutrino-transport
methods on the lepton-number emission self-sustained asymmetry (LESA)—a phenomenon that was
first found by Tamborra et al. (2014a) in their self-consistent 3D CCSN simulations employing the
RbR+ approximation. The key feature of LESA is a hemispheric, dipolar asymmetry of the electron
lepton-number flux, i.e., the difference in number flux of v, and v.. Consistent with the original
observations by Tamborra et al. (2014a,b), we found the dipole component of the lepton-number
flux to rise up to a significant fraction of the monopole value (about 10 % to 30 % in our cases) for
all of our models, i.e. with both FMD and RbR+ transport. The direction of the dipole vector
remained roughly stable, only slowly migrating, during several tens to hundreds of milliseconds in
all cases. Furthermore, we confirm SASI-induced modulations of the LESA dipole during phases of
strong SASI activity, when the LESA dipole points nearly in the direction of SASI sloshing or the
plane of spiral motions. Based on these results, we disprove speculations by Sumiyoshi et al. (2015)
that LESA is a numerical artifact of the RbR+ approximation (compare recent results by O’Connor
and Couch 2018b and Vartanyan et al. 2019a, who also witnessed LESA in their 3D simulations
using FMD neutrino transport).

Although all our 3D simulations share the characteristic features of LESA listed above, we also
noticed interesting differences regarding LESA between models computed with FMD and RbR+
transport. For both progenitor models, the dipole component of the lepton-number flux tends to grow
faster with the RbR+ approximation, and reaches slightly larger maximum values, when compared
to the corresponding FMD cases. However, the fully developed LESA dipole clearly dominates all
higher modes in FMD simulations, whereas the RbR+ runs exhibit large contributions from the
quadrupole moment and higher-order multipoles. The resulting “spottiness” of the spectrograms
appears as a natural consequence of the RbR+ approximation: while in the FMD scheme non-radial
neutrino fluxes smooth the angular variations of the radial fluxes, these angular variations remain
more localized with the RbR+ approximation because non-radial flux components are neglected.

Furthermore, we attempted to improve the understanding of the physical origin of LESA by
analyzing the transport of lepton number in the convective layer inside the proto-neutron star.
We revealed a global, volume-filling dipolar flow around the convectively stable core. This flow
effectively transports material with high lepton number to the hemisphere in direction of the LESA
dipole. Finally, we discussed LESA as a possible consequence of Chandrasekhar’s linear theory of
thermal instability in spherical shells (Chandrasekhar, 1961).

Summary In this thesis, we demonstrated that 3D simulations with a RbR+ transport description
result in the same overall post-bounce evolution as comparable models with a FMD neutrino-
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transport scheme. We further showed that the LESA phenomenon is shared by all our 3D simulations
with both FMD and RbR+ transport, thus proving that LESA is not an artifact of the RbR+
approximation. Hence, our results back up the use of the RbR+ approximation in 3D supernova
simulations.

The preferred choice of neutrino-transport approximation depends on several aspects. Simulation
codes with RbR+ transport benefit from a high parallel efficiency, because individual rays can be
computed almost independently with only small communication overhead between MPI (Message
Passing Interface) tasks. The FMD scheme, however, provides approximate representations of the
non-diagonal elements of the neutrino-pressure tensor, which may be relevant for some physical
problems, but are not directly available with a RbR+ treatment. Moreover, the RbR+ approximation
is disfavored for fast rotating progenitor models, when non-radial neutrino fluxes at the strongly
deformed neutron-star surface cannot be neglected. Nevertheless, the FMD scheme has yet to be
tested in cases of fast rotating models.

Outlook In the end, two-moment closure schemes (in either FMD or RbR+ form) in general
represent only approximations to the neutrino-transport problem and, thus, need to be tested
against direct solutions of the full Boltzmann equation. Due to its computational complexity,
however, such comparisons for time-dependent 2D and 3D simulations will be possible only with
the next generation of supercomputers (see Sumiyoshi et al. 2015 and Nagakura et al. 2018 for first
attempts with low resolution). Regarding the LESA phenomenon, future simulations need to cover
a much longer time period than performed in this work in order to assess the consequences of LESA,
like its impact on neutron-star kicks or on the nucleosynthesis in supernovae. The physical origin of
LESA, and the detailed reason for the dominance of the dipole mode in particular, remain elusive.
Future investigations of LESA can build up on the results presented in this thesis.
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Appendix A.
Expressions for the Energy-Integrated Moments

For the sake of completeness, we provide in this appendix the expressions for the first four energy-
integrated moments of the specific intensity. For the first three energy-integrated moments, we
further specify the transformations from the co-moving frame into the lab frame.

In general, the energy-dependent angular moments of the specific intensity I, measured in the
co-moving frame of the stellar fluid, are obtained by integrating I over the solid angle in momentum
space df2,, (see also Equations (2.6) in Section 2.2.2),

E = % / e, I, (A.la)
Fi= / a0, I n', (A.1b)
P = i/dﬂn I nind, (A.1c)
Qik = / dQ, I nin/n*. (A.1d)

In addition to the angular moments of energy transport (Equations (A.1)), we define the angular
moments of number transport by dividing the specific intensity by the neutrino energy ¢,

N— i/dQn | _lE, (A.22)
Fi, = /dQn etrn = FY, (A.2D)
P]i\; = i/dQn el Inind =gt PY, (A.2¢)
1k — / dQ, e M I n'nink =1 QU (A.2d)

Energy-Integrated Moments

The energy-integrated moments of energy transport (corresponding to Equations (A.1)) are given
by

E= / de E, (A.3a)
Fi = / de F, (A.3D)
PY = / de PY, (A.3c)
Qik = / de QUF. (A.3d)
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For the moments of number transport (corresponding to Equations (A.2)), we find

N = / de e E, (A.4a)
Fi = / dee ! FY, (A.4Db)
P]i\,j :/ds el P9, (A.4c)
_%k :/ds el Quk, (A.4d)

Transformations into the Lab Frame

The energy-integrated moments of energy transport in the lab frame are obtained from the moments
in the co-moving frame to order v/c by (see, for example, Just et al. 2015, Equations (10a) to (10c))

_ 9

By = E + v ", (A-a)
C

Fiy = F' + v E + v, P, (A.5b)

11—

P9 =Pl 4 S P+ S (A.5¢)

The corresponding expressions for the moments of number transport in the lab frame, accurate to
order v/c, read

_ _ 1

N =N + cigviF]ZVv (A.6a)
Fijab = Fiy +0'N, (A.6b)
. PP R T B
Py = Py + CngzZv'Uj + ?F]‘ifvl + gka% . (A.6¢)

While Equations (A.6a) and (A.6b) can be found in Just et al. (2015, Equations (11a) and (11b)),
we provide the derivation of Equation (A.6c) in the following section.

Derivation of Py in the Lab Frame

In this section, we derive the expression for P]i[jJab (see Equation (A.6¢)). To improve the readability,
we change the notation of variables throughout this section as follows: variables with tilde (e.g. &)
are defined in the lab frame, and variables with hat (e.g. &) are defined in the co-moving frame.
Furthermore, since we only deal with energy-integrated quantities here, we omit the bar (indicating
energy integration) from variables, so that ]5;\? = ]3;\? lab- For Lorentz transformations we use the
Lorentz factor ~, 7

Y= (1 B 52)—1/2 7 (A7)
where v

with the speed of light ¢, the fluid velocity v;, and its absolute value v. To an accuracy of order v/c,
we can use the approximation v ~ 1.
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We start with the general expression for P]i\? in an arbitrary frame, which can be found from
combining Equation (A.4c) and Equation (A.lc),

| o
Py = /571 n'n! I de dQ, (A.9a)

h 20 ]
=5/ n’ f de dp de. (A.9b)

Here, € is the neutrino energy, p = cos ¢, with ¥ and ¢ being the angles in momentum space, so
that dQ,, = du dy; n' and n’ are the normal vectors in momentum space, and I is the specific
intensity, which relates to the invariant particle distribution function f by means of Equation (2.3).
The expression for Py} in the lab frame then reads

.. h L
45:25 E2n'wl f de dp de. (A.10)

To obtain an expression for 15;3 depending only on quantities in the co-moving frame, we need to
transform all quantities one by one.
The particle distribution function f is invariant,

f=1 (A.11)

The neutrino energy ¢ transforms as (Munier and Weaver, 1986a, Equation (40))

5:5y<1+w”>. (A.12)
C

With the relations

vin
w= lv L (A.13)
fu="" (A.14)

and the approximation v ~ 1 we obtain
s~ ¢ (14 60). (A.15)

The transformation for n’ reads (Munier and Weaver, 1986a, we use the back transformation of
Equations (49) and (79), and again v ~ 1 was assumed)

; A.16
1+ B0 ( )
so we find -
A+
~ AT
Tl e (A.17)
Using Equations (A.15) and (A.17), together with ¢ = ¢, the differentials transform (accurate to

order v/c) as

A& djp dp ~ dé dp d. (A.18)

1+ Bp

67



Appendix A. Expressions for the Energy-Integrated Moments

Putting everything together, we obtain

~.ih At vt/e A+l /e
PY == [& (1+pp)? dé djp dg A.19
hof oo/ o .1
_ 6—3/5 (A + o/e) (79 +i/c) g 2 dg (A.19b)
~ e (" +v'/c) (W7 +vi/e) [ (1-Bp) dé djp dg (A.19¢)
3 e (n+vjc) (W +v'/c n) dé dp de .19c¢
1 r1 o J o i AR
~ 7/7 <nnJ b Spip Lpg BT J) I dé d, (A.19d)
C £ C C C
where in Equation (A.19¢) we used
1 .
~ (1-Bp) (A.20)

1+ Bp

for small §/i, and in Equation (A.19d) we dropped terms with quadratic or higher order in v/¢, and
reintroduced the specific intensity by means of Equation (2.3). We identify several angular moments
of number transport (see Equations (A.4) together with Equations (A.1)), and finally obtain

Pl =PI 4 FN’UJ + F}Vu’ + —ka”’“. (A.21)
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Appendix B.

Calculation of the x Parameter

In this appendix we present and compare several methods to calculate the y parameter (see
Equation (3.9)). In particular, we focus on the computation of the Brunt-Vaisala frequency, which
enters the definition of y, and the various possible ways to perform the angular averages and the
radial integral. The contents of this chapter have already been published in the Appendix of Glas
et al. (2019b, see also the information on already published material on page 73).

The x Parameter

The x parameter (Foglizzo et al., 2006) is used to analyze the conditions for the growth of convection
in the post-shock layer. It essentially relates the advection timescale, which can be approximated
by the ratio of the radial cell width dr over the radial velocity v,, to the timescale of convective
growth, given by the inverse of the Brunt-Viisila frequency wgy,
w
X :/ BV ar. (B.1)

|vr |

The radial integral in Equation (B.1) extends over the gain layer, i.e., from the gain radius to the
shock radius. According to Foglizzo et al. (2006, assuming the linear regime for the growth of
perturbations), the x parameter must exceed a critical value of ~ 3 for the growth of convection in
the gain layer. In formulating this criterion, Foglizzo et al. (2006) considered a spherically symmetric
gain-layer configuration. However, since in reality the gain layer has a complex multi-dimensional
structure for most of the time, non-trivial ambiguities arise as to how to compute and angle
average the quantities entering Equation (B.1). As a consequence, as was already demonstrated by
Ferndndez et al. (2014), different calculation methods may lead to significantly different values of .
In order to assess the sensitivity of x with respect to its practical computation, in this appendix we
systematically compare various possible methods for computing . All following tests are based on
the 3D model ‘S20 FMD L’ of the present study (for a discussion of this model, see Section 3.3).

The Brunt-Vaiisala Frequency

Before considering the y parameter itself, we start by comparing two possibilities for the numerical
evaluation of the local Brunt-Viisila frequency wpy. We use a definition that is based on the
criterion for Ledoux convection,

. a rav
wpy = sign (Cleq) \/%ﬂp‘l |Clea| >0, (B.2)
with the gravitational potential ¢gray and the density p. The Ledoux criterion is given by
ap 0s op ) aY.
Cled = | = — 0, B.3
ted (as)pvye ar " (aY;, e 0T (B:3)
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Figure B.1.: Radial profiles of the Brunt-Vaiséld frequency wgy (left panel), evaluated at arbitrarily chosen
angles of # = 6° and ¢ = 2.25° for a snapshot of model ‘S20 FMD L’ at a post-bounce time of ¢, = 400 ms,
and the x parameter as a function of time after bounce (right panel) for the same model. The line colors
and line styles correspond to different methods that we use to calculate the Brunt-Véiséla frequency and
the x parameter (see labels and Table B.1). The horizontal lines depict the critical values for wpy = 0 (left
panel) and x = 3 (right panel), and the dashed lines in the left panel display the gain and shock radii, Ry
and Ry(0 = 6°, ¢ = 2.25°), respectively. The large peak in wpgy just in front of the shock is nonphysical (see
text) and is not included in the radial integral for the calculation of x. The x parameter was smoothed by
running averages of 5ms. This figure is taken from Glas et al. (2019b, Figure 16).

with entropy per baryon s, electron fraction Y., and pressure p. For this definition of the Ledoux
criterion convectively unstable regions fulfill the condition Cjeq > 0 or wgy > 0. The thermodynamic
derivatives in Equation (B.3) with respect to entropy and electron fraction need to be calculated
from the equation of state. Another way to calculate the Ledoux criterion is given by (see, e.g.,
Hiidepohl 2014, Equation (2.35) and Appendix B therein)

dp 10p

Cled - E - 0725 > 0, (B4)

with the local speed of sound ¢;. This analytically identical alternative definition is based on
radial gradients of density and pressure and, therefore, does not need additional information from
the equation of state. Both definitions of Cleq result in basically identical values for the Brunt-
Viiséla frequency, as can be seen in the left panel of Figure B.1, which shows radial profiles of
wpy for method 1 (orange line, based on Equation (B.3)) and for method 2 (blue line, based on
Equation (B.4)). The large peak in wgy for method 2 just in front of the shock (right dashed line)
is a physically irrelevant numerical artifact because it results from the numerical description of the
shock front as a discretized flow structure. For this reason, we do not include this region in the
radial integral in Equation (B.1). The results of the above comparison, first, support the correct
implementation of both computation methods in our analysis routines, and second, confirm that
numerical differences between both methods are small enough to render both methods equivalent
for the practical evaluation of y.

Three Different Classes for the Calculation of x

We now consider different computation methods for the y parameter. The right panel of Figure B.1
shows the y parameter as a function of the time after bounce, obtained using the variations of
calculation methods that are described in the following (see Table B.1 for an overview of the
methods). We identify three different classes of possible outcomes (corresponding to the three
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distinct groups of lines), which result from different realizations regarding the angular average and
the radial integral in Equation (B.1). In the first class (consisting of methods “linear (1)”, “linear
(2)”, “rms”, and “mass”) y is computed as

_ <va(7“, 97 ¢)> r
= [Tt (B:5)

where angle brackets denote angular averaging over angles 6 and ¢. Instead of averaging the
three-dimensional Brunt-Vaisald frequency wpy(r, 0, ¢), it is possible to obtain a radial profile
wpy(r) from angle-averaged quantities (¢grav), (p), (¢s), and (p). Using the radial profile wgy ()
we obtain the second class (consisting of methods “sep-mean” and “sep-max”) by

WBV
d B.
= / [(wp (10 ¢ " (B.6)
The third class (method “instant”) is obtained by performing the angle average after the radial
integral,
wiy(r,0,9) >
X = < ———dr). B.7
00,0, 6) .

In addition to these three main classes we investigated further variations of the calculation of x.
We describe these variations in great detail in the following paragraphs. An overview of all seven
methods that we used to calculate the y parameter can be found in Table B.1.

Class 1: Equation (B.5)

Starting with the first class (Equation (B.5)), we investigate the influence of the calculation method
for the Ledoux criterion (see discussion above). The excellent agreement between both calculation
methods for Cleq can also be seen from results for the xy parameter: the values for method 1
(orange line; see Equation (B.3)) agree very well with those obtained from method 2 (blue line;
see Equation (B.4)). Both results for y have been calculated with “linear” angular averaging
of the Brunt-Vaisald frequency as expressed in Equation (B.5). When performing the angular
average over wpy(r, 8, ¢) we only take into account regions (a) that lie in the gain layer with radii
R, < r < R¢(6,¢) and, thus, we exclude the nonphysical shock artifact mentioned above, and
(b) that are locally unstable for convection, i.e. where wgy(r,6,¢) > 0. In contrast, the angular
average of the radial velocity, (v.(r,0, ¢)), is calculated from all zones with Ry < r < R with the
maximum shock radius R*** to capture the mean properties of the entire low. We apply volumetric
angular averaging for wgy and v,, i.e., we weight all values with the volume of the corresponding
cells and normalize the sum by dividing through the total volume. Since possibly not all zones of a
radial shell contribute to the angular average of wpy due to the constraints wpy(r,6,$) > 0 and
R, <1 < Rs(8,¢), also the total volume that is used for the normalization of wgy is calculated only
from contributing zones. After angular averaging, the radial integral in Equation (B.5) is formally
carried out from the gain radius R to the maximum shock radius Rg"**.

For root-mean-squared averaging of wpy (“rms” in Table B.1) as described in Ferndndez et al.
(2014) we replace in Equation (B.5) the linear angular average (wpy) by the root-mean-squared
angular average (w3 )1/ 2. As shown in the right panel of Figure B.1, root-mean-squared averaging
increases the y parameter by values of at most 1 (red line) with respect to the “linear” averaging.
Even smaller differences with respect to the “linear” angular averaging method with volumetric
weighting are found when the weighting is performed with the mass of each zone (“mass” in
Table B.1, brown dashed line in Figure B.1).
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Appendix B. Calculation of the x Parameter

Table B.1.: Possible methods to calculate the y parameter. The volume that is considered for angle averaging
and radial integration is given as a range between the gain radius R, and the angle-dependent shock radius
R4(0, ¢), the angle-averaged mean shock radius Rg, or the maximum shock radius RI"®*. For the analysis
in the main text of this thesis, we use the method “linear (2)”. This table is taken from Glas et al. (2019b,
Table 2).

Method Name Class Angle Averaging = Weighting Considered Volume Method for Cieq

linear (1) Eq. (B.5) linear volume R, <7< Rs(6,¢) 1-Eq. (B.3)
linear (2) Eq. (B.5) linear volume Ry <r < Rs(0,¢) 2-Eq.(B.4)
rms Eq. (B.5) root-mean-squared  volume R, <r <Ry (6,¢) 2-Eq. (B.4)
mass Eq. (B.5) linear mass R, <1 < Ry(0,9) 2 - Eq. (B4)
sep-mean Eq. (B.6) separate volume Ry <r < Ry 2 - Eq. (B.4)
sep-max Eq. (B.6) separate volume R, <1 < R 2 - Eq. (B.4)
instant Eq. (B.7) instantaneous volume Ry <71 < Ry(6,¢) 2 - Eq. (B.4)

Class 2: Equation (B.6)

The second class for the calculation of x (Equation (B.6)) employs separately angle-averaged
quantities (@grav), (p), (¢s), and (p) to compute a spherically symmetric radial profile wgy (1) (see
Equations (B.2) and (B.4)). Here, the angular averages are again computed with volumetric
weighting and include all zones with R, < r < Rg or R, < r < R, depending on the method:
We compare values for x where the radial integral (including only regions where wpy(r) > 0) was
performed up to the mean shock radius Ry (“sep-mean” in Table B.1) and the maximum shock
radius R (“sep-max” in Table B.1), respectively. Separately averaging the quantities leads to
significantly reduced values of x not exceeding 2 (for “sep-mean”, purple line in Figure B.1) or 3
(for “sep-max”, pink line in Figure B.1). Since both Summa et al. (2016) and Just et al. (2018) use
similar methods as the “sep-mean” one, this could explain the rather small values that both studies
find for the x parameter in their 2D simulations for the same s20 progenitor. The values of the y
parameter in this case are slightly below the critical level suggested by Foglizzo et al. (2006).

Class 3: Equation (B.7)

Last, with the third class (Equation (B.7)) we consider an “instantaneously” averaged x parameter
(similarly to Fernandez et al. 2014), which is obtained by angle averaging the y parameter after
performing the radial integral (“instant” in Table B.1). In this case, only zones with wpy(r,0,¢) > 0
and Ry < r < Rs(0, ¢) are considered for the radial integral. We find for this method significantly
larger values for the x parameter (green line) than for all other methods, with a temporal average
as large as 9.1 (green dashed line). This result roughly agrees with the findings by Fernandez et al.
(2014), who argue that the instantaneously averaged y parameter does not capture the properties
of the mean flow and, thus, is not suitable to analyze the conditions for convective growth in the
gain layer.

Concluding Remarks

For the analysis in Chapter 3 of this thesis we use the “linear (2)” method, which matches best our
observations regarding the phases of growth of convection (x 2 3 in agreement with the critical
value from the linear analysis by Foglizzo et al. 2006) and of SASI growth (small values of the x
parameter, roughly x < 4).
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List of Abbreviations

1D one dimensional, i.e. spherically symmetric.
2D two dimensional, i.e. axially symmetric.

3D three dimensional.

CCSN core-collapse supernova.

FMD fully multidimensional.

LESA lepton-number emission self-sustained asymmetry.
p.-b. post bounce, i.e., after the core bounce.

RbR+ ray-by-ray-plus.

SASI standing accretion shock instability.

75






List

2.1.
2.2.
2.3.

3.1.
3.2.
3.3.
3.4.
3.9.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12.
3.13.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.

B.1.

of Figures

Symmetry assumption of the RbR+ approximation . . . . . . ... .. ... ..... 14
1D simulations: radial profiles at the onset of collapse . . . . . . ... .. ... ... 17
1D simulations: mass accretion rates . . . . . ... ..o 18
2D simulations (s20 model): overview . . . .. ... 22
2D simulations (s20 model): lateral kinetic energies . . . . . . . .. ... ... ... 24
2D simulations (s9.0 model): overview . . . . .. ... Lo Lo 25
3D simulations (s20 model): overview . . . . ... ... Lo 27
3D simulations (s20 model): neutrino quantities . . . . . . . ... ... L 30
2D and 3D simulations (s20 model): variations of radial neutrino fluxes . . . . ... 31
3D simulations (s20 model): variations of radial neutrino fluxes . . . . . . ... ... 32
3D simulations (s20 model): variations of radial neutrino fluxes . . . . . .. .. ... 34
3D simulations (s20 model): variations of neutrino heating rates . . . . . ... ... 35
2D and 3D simulations (s20 model): neutrino heating rates in the gain layer . . . . . 36
3D simulations (s9.0 model): overview . . . . ... ... Lo 38
3D simulations (s9.0 model): neutrino quantities . . . . . ... ... ... ... 39
2D and 3D simulations (s9.0 model): diagnostic explosion energies . . . . ... ... 40
LESA: monopole and dipole moments . . . . . . ... .. .. .. ........... 45
LESA: dipole directions . . . . . . . . . .. 46
LESA: dipole directions in Aitoff projections . . . . . .. ... ... ... . ..... 48
LESA: lepton-number flux in Aitoff projections . . . . . . ... ... ... ... ... 49
LESA: spectrograms of lepton-number flux . . . ... ... ... ... ... ... .. 50
LESA: volume renderings of the lepton-number flux . . . . ... .. ... ... ... 53
LESA: volume renderings of the explosion geometry . . . . .. ... ... ... ... 54
LESA: Asymmetries inside and around the neutron star . . . . . ... ... ... .. 55
LESA: influence of the 1D core . . . . . . . . . . . ... . 57
Calculation of the y parameter . . . . . . . . . . . . . .. ... .. .. .. .. ..., 70

77






List of Tables

2.1. Neutrino interactions included in our simulations . . . . . . ... ... .. ... ... 10
2.2. Grid parameters for 2D and 3D simulations . . . . . ... ... ... ... ... ... 15
2.3. Summary of all 3D simulations . . . . . . . . . ... ... 18
B.1. Methods to calculate the x parameter . . . . . . .. . ... ... ... ... .... 72

79






Bibliography

B. P. Abbott, R. Abbott, T. D. Abbott, et al. First targeted search for gravitational-wave bursts
from core-collapse supernovae in data of first-generation laser interferometer detectors. PhRvD,
94(10):102001, 2016. doi:10.1103/PhysRevD.94.102001.

E. N. Alexeyev, L. N. Alexeyeva, I. V. Krivosheina, and V. I. Volchenko. Detection of the neutrino
signal from SN 1987A in the LMC using the INR Baksan underground scintillation telescope.
Physics Letters B, 205(2-3):209-214, 1988. doi:10.1016,/0370-2693(88)91651-6.

W. Baade and F. Zwicky. On Super-novae. Proceedings of the National Academy of Science, 20(5):
254-259, 1934a. doi:10.1073/pnas.20.5.254.

W. Baade and F. Zwicky. Cosmic Rays from Super-novae. Proceedings of the National Academy of
Science, 20(5):259-263, 1934b. doi:10.1073/pnas.20.5.259.

H. A. Bethe. Supernova mechanisms. Reviews of Modern Physics, 62:801-866, 1990.
doi:10.1103 /RevModPhys.62.801.

H. A. Bethe and J. R. Wilson. Revival of a stalled supernova shock by neutrino heating. ApJ, 295:
14-23, 1985. doi:10.1086/163343.

R. M. Bionta, G. Blewitt, C. B. Bratton, et al. Observation of a neutrino burst in coinci-
dence with supernova 1987A in the Large Magellanic Cloud. PhRvL, 58(14):1494-1496, 1987.
doi:10.1103 /PhysRevLett.58.1494.

R. Blandford and R. Biihler. Supernova of 1054 and its Remnant, the Crab Nebula. Springer, Cham,
2017. doi:10.1007/978-3-319-21846-5_ 46.

J. M. Blondin and S. Shaw. Linear Growth of Spiral SAST Modes in Core-Collapse Supernovae.
ApJ, 656:366-371, 2007. doi:10.1086/510614.

J. M. Blondin, A. Mezzacappa, and C. DeMarino. Stability of Standing Accretion Shocks, with an
Eye toward Core-Collapse Supernovae. ApJ, 584:971-980, 2003. doi:10.1086/345812.

R. Bollig, H.-T. Janka, A. Lohs, et al. Muon Creation in Supernova Matter Fa-
cilitates Neutrino-Driven Explosions.  Physical Review Letters, 119(24):242702, 2017.
do0i:10.1103 /PhysRevLett.119.242702.

S. W. Bruenn. Stellar core collapse - Numerical model and infall epoch. ApJS, 58:771-841, 1985.
doi:10.1086,/191056.

S. W. Bruenn and A. Mezzacappa. lon screening effects and stellar collapse. PhRvD, 56:7529-7547,
1997. doi:10.1103/PhysRevD.56.7529.

S. W. Bruenn, A. Mezzacappa, W. R. Hix, et al. Axisymmetric Ab Initio Core-collapse Supernova
Simulations of 12-25 Mg, Stars. ApJL, 767:L6, 2013. doi:10.1088/2041-8205/767/1/L6.

81


http://dx.doi.org/10.1103/PhysRevD.94.102001
http://dx.doi.org/10.1016/0370-2693(88)91651-6
http://dx.doi.org/10.1073/pnas.20.5.254
http://dx.doi.org/10.1073/pnas.20.5.259
http://dx.doi.org/10.1103/RevModPhys.62.801
http://dx.doi.org/10.1086/163343
http://dx.doi.org/10.1103/PhysRevLett.58.1494
http://dx.doi.org/10.1007/978-3-319-21846-5_46
http://dx.doi.org/10.1086/510614
http://dx.doi.org/10.1086/345812
http://dx.doi.org/10.1103/PhysRevLett.119.242702
http://dx.doi.org/10.1086/191056
http://dx.doi.org/10.1103/PhysRevD.56.7529
http://dx.doi.org/10.1088/2041-8205/767/1/L6

Bibliography

S. W. Bruenn, E. J. Lentz, W. R. Hix, et al. The Development of Explosions in Axisymmetric Ab
Initio Core-collapse Supernova Simulations of 12-25 M Stars. ApJ, 818:123, 2016. doi:10.3847,/0004-
637X /818/2/123.

R. Buras, H.-T. Janka, M. Rampp, and K. Kifonidis. Two-dimensional hydrodynamic core-collapse
supernova simulations with spectral neutrino transport. II. Models for different progenitor stars.
AEA, 457:281-308, 2006a. doi:10.1051/0004-6361:20054654.

R. Buras, M. Rampp, H.-T. Janka, and K. Kifonidis. Two-dimensional hydrodynamic core-collapse
supernova simulations with spectral neutrino transport. I. Numerical method and results for a 15
Mg star. AE&A, 447:1049-1092, 2006b. doi:10.1051,/0004-6361:20053783.

A. Burrows. Colloquium: Perspectives on core-collapse supernova theory. Reviews of Modern
Physics, 85:245-261, 2013. doi:10.1103/RevModPhys.85.245.

A. Burrows, J. C. Dolence, and J. W. Murphy. An Investigation into the Character of Pre-explosion
Core-collapse Supernova Shock Motion. ApJ, 759:5, 2012. doi:10.1088/0004-637X/759/1/5.

A. Burrows, D. Radice, D. Vartanyan, et al. The Overarching Framework of Core-Collapse
Supernova Explosions as Revealed by 3D FORNAX Simulations. MNRAS, page 2925, 2019.
doi:10.1093 /mnras/stz3223.

C. Y. Cardall, E. Endeve, and A. Mezzacappa. Conservative 3+1 general relativistic
variable Eddington tensor radiation transport equations. PhRvD, 87(10):103004, 2013.
doi:10.1103 /PhysRevD.87.103004.

J. Cernohorsky.  Symmetries in neutrino-electron scattering.  ApJ, 433:247-249, 1994.
doi:10.1086/174639.

S. Chandrasekhar. The highly collapsed configurations of a stellar mass. MNRAS, 91:456-466,
1931. doi:10.1093/mnras/91.5.456.

S. Chandrasekhar. The highly collapsed configurations of a stellar mass (Second paper). MNRAS,
95:207-225, 1935. doi:10.1093 /mnras,/95.3.207.

S. Chandrasekhar. Hydrodynamic and hydromagnetic stability (International Series of Monographs
on Physics). Oxford University Press, 1961.

H. Childs, E. Brugger, B. Whitlock, et al. Vislt: An End-User Tool For Visualizing and Analyzing
Very Large Data. In High Performance Visualization—Enabling Extreme-Scale Scientific Insight,
pages 357-372. Chapman and Hall/CRC, 2012.

D. H. Clark and F. R. Stephenson. The historical supernovae. Pergamon, Oxford, 1977.

P. Colella and P. R. Woodward. The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simu-
lations. Journal of Computational Physics, 54:174-201, 1984. doi:10.1016/0021-9991(84)90143-8.

S. A. Colgate and M. H. Johnson. Hydrodynamic Origin of Cosmic Rays. PhRvL, 5(6):235-238,
1960. doi:10.1103/PhysRevLett.5.235.

S. A. Colgate and R. H. White. The Hydrodynamic Behavior of Supernovae Explosions. ApJ, 143:
626, 1966. doi:10.1086/148549.

82


http://dx.doi.org/10.3847/0004-637X/818/2/123
http://dx.doi.org/10.3847/0004-637X/818/2/123
http://dx.doi.org/10.1051/0004-6361:20054654
http://dx.doi.org/10.1051/0004-6361:20053783
http://dx.doi.org/10.1103/RevModPhys.85.245
http://dx.doi.org/10.1088/0004-637X/759/1/5
http://dx.doi.org/10.1093/mnras/stz3223
http://dx.doi.org/10.1103/PhysRevD.87.103004
http://dx.doi.org/10.1086/174639
http://dx.doi.org/10.1093/mnras/91.5.456
http://dx.doi.org/10.1093/mnras/95.3.207
http://dx.doi.org/10.1016/0021-9991(84)90143-8
http://dx.doi.org/10.1103/PhysRevLett.5.235
http://dx.doi.org/10.1086/148549

Bibliography

J. M. Comella, H. D. Craft, R. V. E. Lovelace, and J. M. Sutton. Crab Nebula Pulsar NP 0532.
Nature, 221(5179):453-454, 1969. doi:10.1038/221453a0.

S. M. Couch. On the Impact of Three Dimensions in Simulations of Neutrino-driven Core-collapse
Supernova Explosions. ApJ, 775:35, 2013. doi:10.1088/0004-637X/775/1/35.

S. M. Couch and C. D. Ott. The Role of Turbulence in Neutrino-driven Core-collapse Supernova
Explosions. ApJ, 799:5, 2015. doi:10.1088/0004-637X/799/1/5.

R. Courant, K. Friedrichs, and H. Lewy. Uber die partiellen Differenzengleichungen der mathema-
tischen Physik. Mathematische Annalen, 100:32-74, 1928. doi:10.1007/BF01448839.

J. C. Dolence, A. Burrows, and W. Zhang. Two-dimensional Core-collapse Supernova Models with
Multi-dimensional Transport. ApJ, 800:10, 2015. doi:10.1088,/0004-637X/800/1/10.

B. Einfeldt. On Godunov-Type Methods for Gas Dynamics. SIAM Journal on Numerical Analysis,
25(2):294-318, 1988. doi:10.1137/0725021.

B. Einfeldt, P. L. Roe, C. D. Mungz, and B. Sjogreen. On Godunov-Type Methods near Low Densities.
Journal of Computational Physics, 92(2):273-295, 1991. doi:10.1016/0021-9991(91)90211-3.

R. Fernidndez. Hydrodynamics of Core-collapse Supernovae at the Transition to Explosion. I.
Spherical Symmetry. ApJ, 749:142, 2012. doi:10.1088/0004-637X/749/2/142.

R. Ferndndez. Three-dimensional simulations of SASI- and convection-dominated core-collapse
supernovae. MNRAS, 452:2071-2086, 2015. doi:10.1093/mnras/stv1463.

R. Ferndndez and C. Thompson. Stability of a Spherical Accretion Shock with Nuclear Dissociation.
ApJ, 697:1827-1841, 2009. doi:10.1088/0004-637X/697/2/1827.

R. Fernandez, B. Miiller, T. Foglizzo, and H.-T. Janka. Characterizing SASI- and convection-
dominated core-collapse supernova explosions in two dimensions. MNRAS, 440:2763-2780, 2014.
d0i:10.1093 /mnras/stud08.

T. Foglizzo, L. Scheck, and H.-T. Janka. Neutrino-driven Convection versus Advection in Core-
Collapse Supernovae. ApJ, 652:1436-1450, 2006. doi:10.1086/508443.

T. Foglizzo, P. Galletti, L. Scheck, and H. T. Janka. Instability of a Stalled Accretion Shock:
Evidence for the Advective-Acoustic Cycle. ApJ, 654(2):1006-1021, 2007. doi:10.1086/509612.

T. Foglizzo, R. Kazeroni, J. Guilet, et al. The Explosion Mechanism of Core-Collapse Supernovae:
Progress in Supernova Theory and Experiments. PASA, 32:¢009, 2015. doi:10.1017/pasa.2015.9.

F. Foucart, E. O’Connor, L. Roberts, et al. Post-merger evolution of a neutron star-black hole
binary with neutrino transport. PhRvD, 91(12):124021, 2015. doi:10.1103/PhysRevD.91.124021.

R. Glas, H. T. Janka, T. Melson, G. Stockinger, and O. Just. Effects of LESA in Three-dimensional
Supernova Simulations with Multidimensional and Ray-by-ray-plus Neutrino Transport. ApJ, 881
(1):36, 2019a. doi:10.3847/1538-4357 /ab275c¢.

R. Glas, O. Just, H. T. Janka, and M. Obergaulinger. Three-dimensional Core-collapse Super-
nova Simulations with Multidimensional Neutrino Transport Compared to the Ray-by-ray-plus
Approximation. ApJ, 873:45, 2019b. doi:10.3847/1538-4357/ab0423.

83


http://dx.doi.org/10.1038/221453a0
http://dx.doi.org/10.1088/0004-637X/775/1/35
http://dx.doi.org/10.1088/0004-637X/799/1/5
http://dx.doi.org/10.1007/BF01448839
http://dx.doi.org/10.1088/0004-637X/800/1/10
http://dx.doi.org/10.1137/0725021
http://dx.doi.org/10.1016/0021-9991(91)90211-3
http://dx.doi.org/10.1088/0004-637X/749/2/142
http://dx.doi.org/10.1093/mnras/stv1463
http://dx.doi.org/10.1088/0004-637X/697/2/1827
http://dx.doi.org/10.1093/mnras/stu408
http://dx.doi.org/10.1086/508443
http://dx.doi.org/10.1086/509612
http://dx.doi.org/10.1017/pasa.2015.9
http://dx.doi.org/10.1103/PhysRevD.91.124021
http://dx.doi.org/10.3847/1538-4357/ab275c
http://dx.doi.org/10.3847/1538-4357/ab0423

Bibliography

S. K. Godunov. A difference method for numerical calculation of discontinuous solutions of
the equations of hydrodynamics. Mat. Sb. (N.S.), 47(89)(3):271-306, 1959. URL http://mi.
mathnet.ru/msb4873.

F. Hanke, A. Marek, B. Miiller, and H.-T. Janka. Is Strong SASI Activity the Key to Successful
Neutrino-driven Supernova Explosions? ApJ, 755:138, 2012. doi:10.1088/0004-637X/755/2/138.

F. Hanke, B. Miiller, A. Wongwathanarat, A. Marek, and H.-T. Janka. SASI Activity in Three-
dimensional Neutrino-hydrodynamics Simulations of Supernova Cores. ApJ, 770:66, 2013.
doi:10.1088,/0004-637X/770/1/66.

S. Hannestad and G. Raffelt. Supernova Neutrino Opacity from Nucleon-Nucleon Bremsstrahlung
and Related Processes. ApJ, 507:339-352, 1998. doi:10.1086/306303.

A. Harten, P. D. Lax, and B. van Leer. On upstream differencing and godunov-type schemes for
hyperbolic conservation laws. SIAM Review, 25(1):35-61, 1983. doi:10.1137/1025002.

J. J. Hester. The Crab Nebula: An Astrophysical Chimera. ARAE&A, 46:127-155, 2008.
doi:10.1146 /annurev.astro.45.051806.110608.

W. Hillebrandt and J. C. Niemeyer. Type IA Supernova Explosion Models. Annual Review of
Astronomy and Astrophysics, 38:191-230, 2000. doi:10.1146 /annurev.astro.38.1.191.

W. Hillebrandt, M. Kromer, F. K. Ropke, and A. J. Ruiter. Towards an understanding of Type
Ia supernovae from a synthesis of theory and observations. Frontiers of Physics, 8(2):116-143,
2013. doi:10.1007/s11467-013-0303-2.

K. Hirata, T. Kajita, M. Koshiba, et al. Observation of a neutrino burst from the supernova
SN1987A. PhRuvL, 58(14):1490-1493, 1987. doi:10.1103 /PhysRevLett.58.1490.

C. J. Horowitz. Neutrino trapping in a supernova and the screening of weak neutral currents.
PhRvD, 55:4577-4581, 1997. do0i:10.1103/PhysRevD.55.4577.

C. J. Horowitz. Weak magnetism for antineutrinos in supernovae. PhRvD, 65(4):043001, 2002.
doi:10.1103 /PhysRevD.65.043001.

C. J. Horowitz, O. L. Caballero, Z. Lin, E. O’Connor, and A. Schwenk. Neutrino-nucleon
scattering in supernova matter from the virial expansion. PhRvC, 95(2):025801, 2017.
doi:10.1103/PhysRevC.95.025801.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):
90-95, 2007. doi:10.1109/MCSE.2007.55.

L. Hiiddepohl. Neutrinos from the Formation, Cooling and Black Hole Collapse of Neutron Stars.
PhD thesis, TUM, 2014.

H.-T. Janka. Conditions for shock revival by neutrino heating in core-collapse supernovae. A&A,
368:527-560, 2001. doi:10.1051/0004-6361:20010012.

H.-T. Janka. Explosion Mechanisms of Core-Collapse Supernovae. Annual Review of Nuclear and
Particle Science, 62:407-451, 2012. doi:10.1146/annurev-nucl-102711-094901.

84


http://mi.mathnet.ru/msb4873
http://mi.mathnet.ru/msb4873
http://dx.doi.org/10.1088/0004-637X/755/2/138
http://dx.doi.org/10.1088/0004-637X/770/1/66
http://dx.doi.org/10.1086/306303
http://dx.doi.org/10.1137/1025002
http://dx.doi.org/10.1146/annurev.astro.45.051806.110608
http://dx.doi.org/10.1146/annurev.astro.38.1.191
http://dx.doi.org/10.1007/s11467-013-0303-2
http://dx.doi.org/10.1103/PhysRevLett.58.1490
http://dx.doi.org/10.1103/PhysRevD.55.4577
http://dx.doi.org/10.1103/PhysRevD.65.043001
http://dx.doi.org/10.1103/PhysRevC.95.025801
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1051/0004-6361:20010012
http://dx.doi.org/10.1146/annurev-nucl-102711-094901

Bibliography

H.-T. Janka, F. Hanke, L. Hiidepohl, et al. Core-collapse supernovae: Reflections and
directions. Progress of Theoretical and Experimental Physics, 2012(1):01A309, 2012.
doi:10.1093 /ptep/pts067.

H.-T. Janka, T. Melson, and A. Summa. Physics of Core-Collapse Supernovae in Three Dimen-
sions: A Sneak Preview. Annual Review of Nuclear and Particle Science, 66:341-375, 2016.
do0i:10.1146 /annurev-nucl-102115-044747.

O. Just, M. Obergaulinger, and H.-T. Janka. A new multidimensional, energy-dependent
two-moment transport code for neutrino-hydrodynamics. MNRAS, 453:3386-3413, 2015.
do0i:10.1093 /mnras/stv1892.

O. Just, R. Bollig, H.-T. Janka, et al. Core-collapse supernova simulations in one and
two dimensions: comparison of codes and approximations. MNRAS, 481:4786-4814, 2018.
do0i:10.1093 /mnras/sty2578.

K. Kotake, K. Sato, and K. Takahashi. Explosion mechanism, neutrino burst and gravitational wave
in core-collapse supernovae. Reports on Progress in Physics, 69:971-1143, 2006. doi:10.1088,/0034-
4885/69/4/R03.

K. Kotake, T. Takiwaki, T. Fischer, K. Nakamura, and G. Martinez-Pinedo. Impact of Neutrino
Opacities on Core-collapse Supernova Simulations. ApJ, 853:170, 2018. doi:10.3847/1538-
4357 /aaa716.

T. Kuroda, T. Takiwaki, and K. Kotake. A New Multi-energy Neutrino Radiation-Hydrodynamics
Code in Full General Relativity and Its Application to the Gravitational Collapse of Massive
Stars. ApJS, 222:20, 2016. doi:10.3847/0067-0049/222/2/20.

E. J. Lentz, S. W. Bruenn, W. R. Hix, et al. Three-dimensional Core-collapse Supernova Simulated
Using a 15 Mg Progenitor. ApJL, 807:L31, 2015. doi:10.1088/2041-8205/807/2/L31.

C. D. Levermore. Relating Eddington factors to flux limiters. JQSRT, 31:149-160, 1984.
doi:10.1016,/0022-4073(84)90112-2.

M. Liebendérfer, S. C. Whitehouse, and T. Fischer. The Isotropic Diffusion Source Approximation for
Supernova Neutrino Transport. ApJ, 698:1174-1190, 2009. doi:10.1088/0004-637X/698/2/1174.

K. Lundmark. Suspected New Stars Recorded in Old Chronicles and Among Recent Merid-
ian Observations. Publications of the Astronomical Society of the Pacific, 33(195):225, 1921.
doi:10.1086,/123101.

A. G. Lyne, C. A. Jordan, F. Graham-Smith, et al. 45 years of rotation of the Crab pulsar. Monthly
Notices of the Royal Astronomical Society, 446(1):857-864, 2015. do0i:10.1093 /mnras/stu2118.

Q. A. Mabanta and J. W. Murphy. How Turbulence Enables Core-collapse Supernova Explosions.
ApJ, 856:22, 2018. doi:10.3847/1538-4357 /aaaecT.

A. Marek and H.-T. Janka. Delayed Neutrino-Driven Supernova Explosions Aided by the Standing
Accretion-Shock Instability. ApJ, 694:664—-696, 2009. doi:10.1088/0004-637X/694/1/664.

A. Marek, H. Dimmelmeier, H.-T. Janka, E. Miiller, and R. Buras. Exploring the relativistic regime
with Newtonian hydrodynamics: an improved effective gravitational potential for supernova
simulations. A& A, 445:273-289, 2006. doi:10.1051/0004-6361:20052840.

85


http://dx.doi.org/10.1093/ptep/pts067
http://dx.doi.org/10.1146/annurev-nucl-102115-044747
http://dx.doi.org/10.1093/mnras/stv1892
http://dx.doi.org/10.1093/mnras/sty2578
http://dx.doi.org/10.1088/0034-4885/69/4/R03
http://dx.doi.org/10.1088/0034-4885/69/4/R03
http://dx.doi.org/10.3847/1538-4357/aaa716
http://dx.doi.org/10.3847/1538-4357/aaa716
http://dx.doi.org/10.3847/0067-0049/222/2/20
http://dx.doi.org/10.1088/2041-8205/807/2/L31
http://dx.doi.org/10.1016/0022-4073(84)90112-2
http://dx.doi.org/10.1088/0004-637X/698/2/1174
http://dx.doi.org/10.1086/123101
http://dx.doi.org/10.1093/mnras/stu2118
http://dx.doi.org/10.3847/1538-4357/aaaec7
http://dx.doi.org/10.1088/0004-637X/694/1/664
http://dx.doi.org/10.1051/0004-6361:20052840

Bibliography

T. Melson, H.-T. Janka, R. Bollig, et al. Neutrino-driven Explosion of a 20 Solar-mass Star in Three
Dimensions Enabled by Strange-quark Contributions to Neutrino-Nucleon Scattering. ApJL, 808:
L42, 2015a. doi:10.1088/2041-8205/808/2/1.42.

T. Melson, H.-T. Janka, and A. Marek. Neutrino-driven Supernova of a Low-mass Iron-core
Progenitor Boosted by Three-dimensional Turbulent Convection. ApJL, 801:1.24, 2015b.
doi:10.1088/2041-8205/801/2/1.24.

A. Mezzacappa and S. W. Bruenn. Type II supernovae and Boltzmann neutrino transport - The
infall phase. ApJ, 405:637-668, 1993. doi:10.1086/172394.

A. Mignone. High-order conservative reconstruction schemes for finite volume methods in
cylindrical and spherical coordinates. Journal of Computational Physics, 270:784-814, 2014.
doi:10.1016/j.jcp.2014.04.001.

G. N. Minerbo. Maximum entropy Eddington factors. JQSRT, 20:541-545, 1978. doi:10.1016,/0022-
4073(78)90024-9.

B. Miiller. The dynamics of neutrino-driven supernova explosions after shock revival in 2D and 3D.
MNRAS, 453:287-310, 2015. doi:10.1093/mnras/stv1611.

B. Miiller and H.-T. Janka. Non-radial instabilities and progenitor asphericities in core-collapse
supernovae. MNRAS, 448:2141-2174, 2015. doi:10.1093/mnras/stv101.

B. Miiller, H.-T. Janka, and A. Heger. New Two-dimensional Models of Supernova Explosions by
the Neutrino-heating Mechanism: Evidence for Different Instability Regimes in Collapsing Stellar
Cores. ApJ, 761:72, 2012a. doi:10.1088/0004-637X/761/1/72.

B. Miiller, H.-T. Janka, and A. Marek. A New Multi-dimensional General Relativistic Neutrino
Hydrodynamics Code for Core-collapse Supernovae. II. Relativistic Explosion Models of Core-
collapse Supernovae. ApJ, 756:84, 2012b. doi:10.1088,/0004-637X/756/1/84.

B. Miiller, T. Melson, A. Heger, and H.-T. Janka. Supernova simulations from a 3D progenitor
model - Impact of perturbations and evolution of explosion properties. MNRAS, 472:491-513,
2017. doi:10.1093/mnras/stx1962.

A. Munier and R. Weaver. Radiation transfer in the fluid frame: A covariant formulation. Part
I: Radiation hydrodynamics. Computer Physics Reports, 3:127-164, 1986a. doi:10.1016/0167-
7977(86)90007-9.

A. Munier and R. Weaver. Radiation transfer in the fluid frame: A covariant formulation. Part II:
The radiation transfer equation. Computer Physics Reports, 3:165-208, 1986b. doi:10.1016/0167-
7977(86)90008-0.

E. M. Murchikova, E. Abdikamalov, and T. Urbatsch. Analytic closures for M1 neutrino transport.
MNRAS, 469:1725-1737, 2017. doi:10.1093/mnras/stx986.

J. W. Murphy, J. C. Dolence, and A. Burrows. The Dominance of Neutrino-driven Convection in
Core-collapse Supernovae. ApJ, 771:52, 2013. doi:10.1088/0004-637X/771/1/52.

H. Nagakura, W. Iwakami, S. Furusawa, et al. Simulations of Core-collapse Supernovae in Spatial
Axisymmetry with Full Boltzmann Neutrino Transport. ApJ, 854:136, 2018. d0i:10.3847/1538-
4357 /aaac29.

86


http://dx.doi.org/10.1088/2041-8205/808/2/L42
http://dx.doi.org/10.1088/2041-8205/801/2/L24
http://dx.doi.org/10.1086/172394
http://dx.doi.org/10.1016/j.jcp.2014.04.001
http://dx.doi.org/10.1016/0022-4073(78)90024-9
http://dx.doi.org/10.1016/0022-4073(78)90024-9
http://dx.doi.org/10.1093/mnras/stv1611
http://dx.doi.org/10.1093/mnras/stv101
http://dx.doi.org/10.1088/0004-637X/761/1/72
http://dx.doi.org/10.1088/0004-637X/756/1/84
http://dx.doi.org/10.1093/mnras/stx1962
http://dx.doi.org/10.1016/0167-7977(86)90007-9
http://dx.doi.org/10.1016/0167-7977(86)90007-9
http://dx.doi.org/10.1016/0167-7977(86)90008-0
http://dx.doi.org/10.1016/0167-7977(86)90008-0
http://dx.doi.org/10.1093/mnras/stx986
http://dx.doi.org/10.1088/0004-637X/771/1/52
http://dx.doi.org/10.3847/1538-4357/aaac29
http://dx.doi.org/10.3847/1538-4357/aaac29

Bibliography

M. Obergaulinger. Astrophysical magnetohydrodynamics and radiative transfer: numerical methods
and applications. PhD thesis, TUM, 2008.

E. O’Connor. An Open-source Neutrino Radiation Hydrodynamics Code for Core-collapse Super-
novae. ApJS, 219:24, 2015. doi:10.1088/0067-0049/219/2/24.

E. P. O’Connor and S. M. Couch. Two-dimensional Core-collapse Supernova Explosions Aided by Gen-
eral Relativity with Multidimensional Neutrino Transport. ApJ, 854:63, 2018a. doi:10.3847/1538-
4357 /aaa893.

E. P. O’Connor and S. M. Couch. Exploring Fundamentally Three-dimensional Phenomena in
High-fidelity Simulations of Core-collapse Supernovae. ApJ, 865:81, 2018b. doi:10.3847/1538-
4357 /aadctT.

T. E. Oliphant. Python for scientific computing. Computing in Science Engineering, 9(3):10-20,
2007. ISSN 1521-9615. doi:10.1109/MCSE.2007.58.

C. D. Ott, E. Abdikamalov, P. Mésta, et al. General-relativistic Simulations of Three-dimensional
Core-collapse Supernovae. ApJ, 768:115, 2013. doi:10.1088/0004-637X/768/2/115.

C. D. Ott, L. F. Roberts, A. da Silva Schneider, et al. The Progenitor Dependence of Core-collapse
Supernovae from Three-dimensional Simulations with Progenitor Models of 12-40 M 4. ApJL,
855:13, 2018. doi:10.3847/2041-8213 /aaa967.

K.-C. Pan, M. Liebendoérfer, M. Hempel, and F.-K. Thielemann. Two-dimensional Core-collapse
Supernova Simulations with the Isotropic Diffusion Source Approximation for Neutrino Transport.
ApJ, 817:72, 2016. doi:10.3847/0004-637X/817/1/72.

S. Pennisi. On third order tensor-valued isotropic functions. International Journal of Engineering
Science, 30(5):679 — 692, 1992. ISSN 0020-7225. doi:https://doi.org/10.1016,/0020-7225(92)90011-
5.

S. Pennisi and M. Trovato. On the irreducibility of professor g.f. smith’s representations for isotropic
functions. International Journal of Engineering Science, 25(8):1059 — 1065, 1987. ISSN 0020-7225.
doi:https://doi.org/10.1016,/0020-7225(87)90097-8.

F. Pérez and B. E. Granger. IPython: a system for interactive scientific computing. Computing in
Science and Engineering, 9(3):21-29, 2007. ISSN 1521-9615. doi:10.1109/MCSE.2007.53. URL
https://ipython.org.

J. A. Pons, J. A. Miralles, and J. M. A. Ibanez. Legendre expansion of the /. A6AS, 129:343-351,
1998. doi:10.1051/aas:1998189.

J. Powell and B. Miiller. Gravitational wave emission from 3D explosion models of core-
collapse supernovae with low and normal explosion energies. MNRAS, 487(1):1178-1190, 2019.
do0i:10.1093 /mnras/stz1304.

D. Radice, C. D. Ott, E. Abdikamalov, et al. Neutrino-driven Convection in Core-collapse Supernovae:
High-resolution Simulations. ApJ, 820:76, 2016. doi:10.3847/0004-637X/820/1/76.

D. Radice, A. Burrows, D. Vartanyan, M. A. Skinner, and J. C. Dolence. Electron-capture and
Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations.
ApJ, 850:43, 2017. doi:10.3847/1538-4357/aa92c5h.

87


http://dx.doi.org/10.1088/0067-0049/219/2/24
http://dx.doi.org/10.3847/1538-4357/aaa893
http://dx.doi.org/10.3847/1538-4357/aaa893
http://dx.doi.org/10.3847/1538-4357/aadcf7
http://dx.doi.org/10.3847/1538-4357/aadcf7
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1088/0004-637X/768/2/115
http://dx.doi.org/10.3847/2041-8213/aaa967
http://dx.doi.org/10.3847/0004-637X/817/1/72
http://dx.doi.org/https://doi.org/10.1016/0020-7225(92)90011-5
http://dx.doi.org/https://doi.org/10.1016/0020-7225(92)90011-5
http://dx.doi.org/https://doi.org/10.1016/0020-7225(87)90097-8
http://dx.doi.org/10.1109/MCSE.2007.53
https://ipython.org
http://dx.doi.org/10.1051/aas:1998189
http://dx.doi.org/10.1093/mnras/stz1304
http://dx.doi.org/10.3847/0004-637X/820/1/76
http://dx.doi.org/10.3847/1538-4357/aa92c5

Bibliography

M. Rampp and H.-T. Janka. Radiation hydrodynamics with neutrinos. Variable Eddington factor
method for core-collapse supernova simulations. A&A, 396:361-392, 2002. doi:10.1051,/0004-
6361:20021398.

S. Richers, H. Nagakura, C. D. Ott, et al. A Detailed Comparison of Multidimensional Boltz-
mann Neutrino Transport Methods in Core-collapse Supernovae. ApJ, 847(2):133, 2017.
doi:10.3847/1538-4357 /aa8bb2.

L. F. Roberts, C. D. Ott, R. Haas, et al. General-Relativistic Three-Dimensional Multi-group
Neutrino Radiation-Hydrodynamics Simulations of Core-Collapse Supernovae. ApJ, 831:98, 2016.
doi:10.3847,/0004-637X/831/1/98.

L. Scheck, H.-T. Janka, T. Foglizzo, and K. Kifonidis. Multidimensional supernova simulations

with approximative neutrino transport. II. Convection and the advective-acoustic cycle in the
supernova core. A&A, 477:931-952, 2008. doi:10.1051/0004-6361:20077701.

M. Shibata, K. Kiuchi, Y. Sekiguchi, and Y. Suwa. Truncated Moment Formalism for Radiation
Hydrodynamics in Numerical Relativity. Progress of Theoretical Physics, 125:1255-1287, 2011.
doi:10.1143 /PTP.125.1255.

M. A. Skinner, A. Burrows, and J. C. Dolence. Should One Use the Ray-by-Ray Approximation in
Core-collapse Supernova Simulations? ApJ, 831:81, 2016. doi:10.3847,/0004-637X/831/1/81.

D. H. Staelin and I. Reifenstein, Edward C. Pulsating Radio Sources near the Crab Nebula. Science,
162(3861):1481-1483, 1968. doi:10.1126/science.162.3861.1481.

A. W. Steiner, M. Hempel, and T. Fischer. Core-collapse Supernova Equations of State Based on
Neutron Star Observations. ApJ, 774:17, 2013. doi:10.1088/0004-637X/774/1/17.

G. Stockinger. - Features of LESA - A Study on the Lepton-Number Emission Self-Sustained
Asymmetry as a new Phenomenon in Supernova Explosions. Master’s thesis, TUM, 2015.

T. Sukhbold, T. Ertl, S. E. Woosley, J. M. Brown, and H.-T. Janka. Core-collapse Supernovae from 9
to 120 Solar Masses Based on Neutrino-powered Explosions. ApJ, 821:38, 2016. doi:10.3847/0004-
637X/821/1/38.

K. Sumiyoshi and S. Yamada. Neutrino Transfer in Three Dimensions for Core-collapse Supernovae.
I. Static Configurations. ApJS, 199:17, 2012. doi:10.1088/0067-0049/199/1/17.

K. Sumiyoshi, T. Takiwaki, H. Matsufuru, and S. Yamada. Multi-dimensional Features of Neutrino
Transfer in Core-collapse Supernovae. ApJS, 216:5, 2015. doi:10.1088,/0067-0049/216/1/5.

A. Summa, F. Hanke, H.-T. Janka, et al. Progenitor-dependent Explosion Dynamics in Self-
consistent, Axisymmetric Simulations of Neutrino-driven Core-collapse Supernovae. ApJ, 825:6,
2016. doi:10.3847/0004-637X/825/1/6.

A. Summa, H.-T. Janka, T. Melson, and A. Marek. Rotation-supported Neutrino-driven Supernova
Explosions in Three Dimensions and the Critical Luminosity Condition. ApJ, 852:28, 2018.
doi:10.3847/1538-4357 /aa9ceS.

T. Takiwaki, K. Kotake, and Y. Suwa. Three-dimensional Hydrodynamic Core-collapse Super-
nova Simulations for an 11.2 Mg Star with Spectral Neutrino Transport. ApJ, 749:98, 2012.
doi:10.1088,/0004-637X/749/2/98.

88


http://dx.doi.org/10.1051/0004-6361:20021398
http://dx.doi.org/10.1051/0004-6361:20021398
http://dx.doi.org/10.3847/1538-4357/aa8bb2
http://dx.doi.org/10.3847/0004-637X/831/1/98
http://dx.doi.org/10.1051/0004-6361:20077701
http://dx.doi.org/10.1143/PTP.125.1255
http://dx.doi.org/10.3847/0004-637X/831/1/81
http://dx.doi.org/10.1126/science.162.3861.1481
http://dx.doi.org/10.1088/0004-637X/774/1/17
http://dx.doi.org/10.3847/0004-637X/821/1/38
http://dx.doi.org/10.3847/0004-637X/821/1/38
http://dx.doi.org/10.1088/0067-0049/199/1/17
http://dx.doi.org/10.1088/0067-0049/216/1/5
http://dx.doi.org/10.3847/0004-637X/825/1/6
http://dx.doi.org/10.3847/1538-4357/aa9ce8
http://dx.doi.org/10.1088/0004-637X/749/2/98

Bibliography

T. Takiwaki, K. Kotake, and Y. Suwa. A Comparison of Two- and Three-dimensional Neutrino-
hydrodynamics Simulations of Core-collapse Supernovae. ApJ, 786:83, 2014. doi:10.1088/0004-
637X/786/2/83.

I. Tamborra, F. Hanke, H.-T. Janka, et al. Self-sustained Asymmetry of Lepton-number Emission:
A New Phenomenon during the Supernova Shock-accretion Phase in Three Dimensions. ApJ,
792:96, 2014a. doi:10.1088,/0004-637X/792/2/96.

I. Tamborra, G. Raffelt, F. Hanke, H.-T. Janka, and B. Miiller. Neutrino emission characteristics
and detection opportunities based on three-dimensional supernova simulations. PhRvD, 90(4):
045032, 2014b. do0i:10.1103/PhysRevD.90.045032.

T. A. Thompson, A. Burrows, and P. A. Pinto. Shock Breakout in Core-Collapse Supernovae and
Its Neutrino Signature. ApJ, 592:434-456, 2003. doi:10.1086/375701.

T. A. Thompson, E. Quataert, and A. Burrows. Viscosity and Rotation in Core-Collapse Supernovae.
ApJ, 620:861-877, 2005. doi:10.1086/427177.

E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction.
Springer-Verlag Berlin Heidelberg, 1997. doi:10.1007/978-3-662-03490-3.

E. F. Toro, M. Spruce, and W. Speares. Restoration of the contact surface in the HLL-Riemann
solver. Shock Waves, 4:25-34, 1994. doi:10.1007/BF01414629.

K. A. van Riper. General relativistic hydrodynamics and the adiabatic collapse of stellar cores. ApJ,
232:558-571, 1979. doi:10.1086/157314.

D. Vartanyan, A. Burrows, D. Radice, M. A. Skinner, and J. Dolence. Revival of the fittest:
exploding core-collapse supernovae from 12 to 25 Mg. MNRAS, 477:3091-3108, 2018.
d0i:10.1093 /mnras/sty809.

D. Vartanyan, A. Burrows, and D. Radice. Temporal and Angular Variations of 3D Core-
Collapse Supernova Emissions and their Physical Correlations. MNRAS, page 2235, 2019a.
do0i:10.1093 /mnras/stz2307.

D. Vartanyan, A. Burrows, D. Radice, M. A. Skinner, and J. Dolence. A successful 3D core-collapse
supernova explosion model. MNRAS, 482(1):351-369, 2019b. doi:10.1093/mnras/sty2585.

L. Walk, I. Tamborra, H.-T. Janka, and A. Summa. Effects of the standing accretion-shock instability
and the lepton-emission self-sustained asymmetry in the neutrino emission of rotating supernovae.
PhRvD, 100(6):063018, 2019. doi:10.1103/PhysRevD.100.063018.

S. E. Woosley and A. Heger. Nucleosynthesis and remnants in massive stars of solar metallicity.
PhR, 442:269-283, 2007. doi:10.1016/j.physrep.2007.02.009.

S. E. Woosley and A. Heger. The Remarkable Deaths of 9-11 Solar Mass Stars. ApJ, 810:34, 2015.
doi:10.1088,/0004-637X/810/1/34.

W. R. Yueh and J. R. Buchler. Neutrino transport in supernova models - Sy method. ApJ, 217:
565577, 1977. doi:10.1086/155605.

W. Zhang, L. Howell, A. Almgren, et al. CASTRO: A New Compressible Astrophysical Solver. III.
Multigroup Radiation Hydrodynamics. ApJS, 204:7, 2013. doi:10.1088/0067-0049/204/1/7.

89


http://dx.doi.org/10.1088/0004-637X/786/2/83
http://dx.doi.org/10.1088/0004-637X/786/2/83
http://dx.doi.org/10.1088/0004-637X/792/2/96
http://dx.doi.org/10.1103/PhysRevD.90.045032
http://dx.doi.org/10.1086/375701
http://dx.doi.org/10.1086/427177
http://dx.doi.org/10.1007/978-3-662-03490-3
http://dx.doi.org/10.1007/BF01414629
http://dx.doi.org/10.1086/157314
http://dx.doi.org/10.1093/mnras/sty809
http://dx.doi.org/10.1093/mnras/stz2307
http://dx.doi.org/10.1093/mnras/sty2585
http://dx.doi.org/10.1103/PhysRevD.100.063018
http://dx.doi.org/10.1016/j.physrep.2007.02.009
http://dx.doi.org/10.1088/0004-637X/810/1/34
http://dx.doi.org/10.1086/155605
http://dx.doi.org/10.1088/0067-0049/204/1/7




Acknowledgments (Danksagung)

Nach mehr als drei Jahren intensiver Arbeit an meinem Dissertationsthema méchte ich gerne einigen
Personen danken, ohne deren Unterstiitzung diese Doktorarbeit nicht moglich gewesen ware.

Zunéchst danke ich meinem Betreuer, Hans-Thomas Janka, zum einen fiir die Gelegenheit, zu
diesem spannenden Thema im Rahmen einer Doktorarbeit forschen zu kénnen, und zum anderen fiir
seine immerwéhrende Unterstiitzung meiner Arbeit — sowohl durch wertvolle Ideen und Anregungen
zum Thema, als auch die Moglichkeit, auf internationalen Konferenzen kostbare Erfahrungen zu
sammeln.

AuBlerdem danke ich meinem Mentor, Oliver Just, von dem ich schon wahrend meiner Zeit als
Masterand sehr viel lernen durfte: Ich bedanke mich fiir zahlreiche Erkldrungen zur Physik von
Kernkollaps-Supernovae im Allgemeinen, und zu den Details des Neutrino-Transports im Speziellen,
sowie fiir die Einfiihrung in sémtliche numerische Methoden, die wir im ALCAR-Code verwenden.

Ich danke zudem meinen Kollaborateuren, Hans-Thomas Janka, Oliver Just, Tobias Melson und
Georg Stockinger fir die hervorragende Zusammenarbeit an unseren zwei Publikationen (Glas et al.
2019b und Glas et al. 2019a).

Ich danke Shaoming Zhang fiir die Hilfe beim Erstellen der Visualisierungen in Abbildungen 4.6
und 4.7, und Robert Bollig fiir die Erweiterung der ,,SFHo“-Zustandsgleichung.

Weiterer Dank gebiihrt den Administratoren am Max-Planck-Institut fir Astrophysik (MPA),
am Rechenzentrum der Max-Planck-Gesellschaft (MPCDF') und am Leibniz-Rechenzentrum der
Bayerischen Akademie der Wissenschaften (LRZ) fiir die Hilfe bei technischen Problemen. Besonders
hervorheben mochte ich Andreas Weiss vom MPA, der mir bei Computer-Problemen aller Art immer
hilfreich zur Seite stand.

I am grateful to Thomas Ertl, Naveen Yadav, and Martin Schlecker for proofreading parts of this
thesis and providing many useful comments on the manuscript, and to Daniel Kresse for lots of
inspiring discussions concerning this dissertation.

Moreover, I thank all my colleagues from our group for very enjoyable coffee breaks and lunchtimes,
for stimulating discussions about both scientific and non-scientific topics, and, in general, for a very
pleasant working environment at our institute.

A special thanks goes to my former and current (long-term) office mates, Hai Liang Chen, Ninoy
Rahman, and Daniel Kresse, who contributed to a very pleasant atmosphere in our office.

Zu guter Letzt danke ich meiner Frau, Carlotta Glas, fiir ihre groflartige Unterstiitzung wéahrend
der kompletten letzten dreieinhalb Jahre.

91



	Introduction
	Core-Collapse Supernova Simulations with the Alcar Code
	Equations of Hydrodynamics
	Two-Moment Neutrino Radiation Transport
	Neutrino-Matter Interactions
	Numerical Methods
	FMD versus RbR+ Neutrino Transport
	Setup of Simulations

	Simulations with FMD and RbR+ Neutrino Transport
	Transport Methods in the Literature
	Summary of 2D Simulations
	Results from 3D Simulations: s20 Model
	Results from 3D Simulations: s9.0 Model
	Conclusions: FMD versus RbR+

	Effects of LESA in 3D Simulations
	The LESA Phenomenon
	LESA in FMD and RbR+ Models
	LESA and Proto-Neutron Star Convection
	Chandrasekhar’s Theory of Thermal Instability
	Conclusions for LESA

	Conclusions
	Expressions for the Energy-Integrated Moments
	Calculation of the chi Parameter
	Additional Information
	List of Abbreviations
	List of Figures
	List of Tables
	Bibliography
	Acknowledgments (Danksagung)

