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Abstract

Di�erential interferometric SAR is a popular remote sensing technique to mon-

itor deformations of the earth surface. However, the atmosphere disturbs in-

terferograms and therefore a�ects the deformation estimate. The disturbance

is reduced, by using a time series analysis of interferograms. The quality of

the deformation estimate depends on the magnitude of the disturbance and

the time series length. Correspondingly, the quality increases, or the necessary

time series length is reduced to achieve a certain quality level, by reducing the

disturbance magnitude. In order to achieve this, Numerical weather predic-

tions (NWP) can be utilised to hindcast the atmospheric states during SAR

acquisitions which in turn are mapped into disturbance estimates. Such a

disturbance map is denoted in research publications and in this work as atmo-

spheric phase screen (APS). APS estimates are subtracted from interferograms

to reduce the perturbation and improve the starting conditions for time series

analysis. However, the quality of the hindcast and respectively the quality of

the APS estimate depends on the NWP setup and the quality of the initial-

ization data.

An important NWP characteristic is the forecast duration and the related APS

estimate quality. This cumulative dissertation reports a best forecast duration

of between 6 - 12 hours. Further, the digital initialization technique that re-

duces initial imbalances, improves the forecasts exclusively within the �rst 4

hours. Correspondingly, the additional computational e�ort is not justi�ed for

the desired application.

The structure functions of estimated APSs and interferograms show a discrep-

ancy in the research publications. This cumulative dissertation explains the

discrepancy that results from the much coarser resolution of the forecasts com-

pared to interferograms and the noise that is present in interferograms. An

alternative statistical analysis is provided that overcomes the structure func-

tion limitations. The derived characteristics indicate an agreement between

predicted APSs and observed interferograms and allow the e�ective resolution

of numerical weather predictions for APS mitigation to be determined. Fur-

ther, the derived characteristics from predicted APSs can be used to support

the time series analysis.

Ensemble NWPs re�ect the uncertainties of hindcasts. Correspondingly, a



weighted ensemble mean represent the expected atmospheric state, if the weights

are related to the uncertainties of the ensemble members. An algorithm is pro-

posed, in this cumulative dissertation, that �ts predicted atmospheric phase

screens to the interferogram in a root mean square sense. This technique im-

proves the atmospheric phase screen mitigation by about 40 % compared to

the straight forward technique and improves the pressure prediction by using

the derived coe�cients for the weighted ensemble mean.

The peer reviewed full-paper publications

1. [Ulmer and Balss, 2016] Spin-up time research on the weather research

and forecasting model for atmospheric delay mitigations of electromag-

netic waves published in Journal of Applied Remote Sensing

2. [Ulmer, 2016] On the accuracy gain of electromagnetic wave delay pre-

dictions derived by the digital �lter initialization technique published in

Journal of Applied Remote Sensing

3. [Ulmer and Adam, 2017] Characterisation and improvement of the struc-

ture function estimation for application in psi published in ISPRS Jour-

nal of Photogrammetry and Remote Sensing

4. [Ulmer and Adam, 2015] A synergy method to improve ensemble weather

predictions and di�erential sar interferograms published in ISPRS Jour-

nal of Photogrammetry and Remote Sensing

sum up this cumulative dissertation.

Keywords: atmopheric phase delay, APS compensation, high resolution

weather model, NWP, water vapour
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Chapter 1

Introduction

Di�erential interferometry is a very sensitive remote sensing technique that is

commonly used to observe deformations of the Earths surface. A short electro-

magnetic wave is transmitted by an SAR satellite which is scattered back to

the SAR sensor. The phase information of the received electromagnetic wave

is related to the distance of a scatterer to the SAR sensor. Unfortunately, the

wave propagation velocity is a�ected by the refractive index of air which can

be characterised by pressure, temperature and humidity. Therefore, the atmo-

sphere a�ects the phase information and disturbs the distance measurement.

To be precise, di�erential interferometry subtracts two phase measurements.

The measurements may come from two SAR sensors which acquire the surface

simultaneously or from one SAR sensor that acquires the surface repeatedly.

In the �rst scenario, the atmospheric disturbance is corrected automatically,

because both measurements are a�ected by the disturbance in the same way.

Unfortunately, the measurements are a�ected di�erently in the second scenario

because the atmospheric conditions di�er. Hence, the atmospheric disturbance

should be compensated. This can be done by time series analysis and prepro-

cessing steps that utilize numerical weather predictions (NWP) to estimate

the disturbance and correct the interferograms. However, this preprocessing is

not straight forward due to the chaotic nature of the atmosphere, the various

available NWP models and initialization data sets, and various parametriza-

tions of the NWP. This work lists di�erent NWP models, describes their aim

and goals and provides an overview of initialization data sets and investigates

how to deal with this large degree of freedom and provides a cost e�ective

1
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setting for operational usage.

The work is structured as follows. Firstly, the theory of the refractive index

and the related time delay estimation is described. Secondly, an introduction

to numerical weather prediction models and its initialisation data is given.

Thirdly, an overview is provided of the literature dealing with APS compen-

sation utilising NWPs. Fourthly, an overview of my published works is given.

Fifthly, the synoptic discussion links these works together and describes how

a cost e�ective operational service for atmospheric phase screen correction can

be achieved.



Chapter 2

Delay theory of the atmosphere

The atmosphere causes time- and space-variant delay variations of electro-

magnetic waves and therefore e�ects di�erential interferograms. Physically,

this process is described by the refractive index which is de�ned by the frac-

tion of speed of light and wave propagation velocity within a matter. In our

case, this matter is air and is in this area of expertise separated into two parts.

Firstly, the non-polar gas component and secondly the polar gas component.

The refractive index of the non-polar gas component is approximated by a

linear function while the polar gas component is approximated by a quadratic

polynomial of temperature and pressure. Both approximations together form

a �nal approximation named as refractivity. In satellite interferometry the

refractivity is integrated along the line of sight of the SAR satellite to derive

an estimate of the atmospheric delay for electromagnetic waves.

Several approximations are reported in research publications and are easily

confused. Therefore, the di�erent refractivity approximations are now derived

to distinguish and to discuss them.

2.1 Dielectric spectroscopy

Starting with the physical cause, the di�erent approximations of the refractiv-

ity are now derived. A dielectric material is an electrical isolator which can be

polarized. It could be a gas, a �uid or a solid matter. If an electromagnetic

�eld goes through this material, no electrons will �ow as is known from con-

ductors.

3
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Figure 2.1: Electromagnetic polarization without an electromagnetic �eld.

Graphic from Wikipedia [uploaded by Kakashi-Madara, 2009a].

Figure 2.2: Electromagnetic polarization with an electromagnetic �eld.

Graphic from Wikipedia [uploaded by Kakashi-Madara, 2009b].

A reduction of the electromagnetic �eld occurs and is measured by permittivity.

The dielectric spectroscopy measures the dielectric characteristics dependent

on the frequency expressed by permittivity. The result of an electromagnetic

�eld is a polarization of the penetrated material which could be divided into

four classes.

1. Electromagnetic polarization occurs if the electron hull is shifted (see

Figures 2.1 vs. 2.2)

2. Atomic polarization occurs if the electron hull is deformed (see Figure

2.3)

3. Dipole relaxation occurs if the electromagnetic �eld orders the atoms

(see Figures 2.5 vs. 2.6)

4. Ionic relaxation occurs if the electromagnetic �eld changes the ionic

distribution (see Figures 2.7 vs. 2.8)

The whole interaction of these e�ects in�uences the permittivity which is

described by the following theorem. For this, the dielectric constant (ε) is

de�ned by the fraction of the permittivity of the corresponding material and

the vacuum. The following theory is from Bean and Dutton [1966].
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Figure 2.3: Bent electron hull of a water molecule (polar shape). Graphic

from Wikipedia [uploaded by Mills, 2006].

Figure 2.4: Carbon dioxide has two bond dipole moments which are canceled

out because of the linear geometry of the molecule. Graphic from Wikipedia

[uploaded by Benji9072, 2010].

Figure 2.5: Electromagnetic polarization without an electromagnetic �eld.

Graphic from Wikipedia [uploaded by Kakashi-Madara, 2009c].

Figure 2.6: Electromagnetic polarization with an electromagnetic �eld.

Graphic from Wikipedia [uploaded by Kakashi-Madara, 2009d].
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Figure 2.7: Electromagnetic polarization without an electromagnetic �eld.

Graphic from Wikipedia [uploaded by Kakashi-Madara, 2009e].

Figure 2.8: Electromagnetic polarization with an electromagnetic �eld.

Graphic from Wikipedia [uploaded by Kakashi-Madara, 2009f].

Scienti�c law 2.1.1 (See Bean and Dutton [1966]:). The polarization, P,

of a polar matter under the in�uence of a high-frequency radio �eld is given

by:

P (ω) =
ε− 1

ε+ 2

M

ρ
=

4πN

3

(
α0 +

µ2

3kT

1

1 + iωτ

)
where ε is the dielectric constant,

M is the molecular weight,

ρ is the density of the matter,

N is Avogadro's number,

α0 is the average polarizability of the molecules in the matter, assuming no

interaction between molecules,

µ is the permanent dipole moment,

k is Bolzmann's constant,

T is the absolute temperature,

τ is the relaxation time required for external �eld-induced orientations of

the molecules to return to random distribution after the �eld is removed,

ω = 2πf where f is the frequency of the external �eld.
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Which is written for frequencies less than 100 GHz (ωτ << 1) to

ε− 1

ε+ 2

M

ρ
=

4πN

3

(
α0 +

µ2

3kT

)
. (2.1)

Polar molecules have a deformed electron hull whereas non-polar molecules

have no dipole moment (compare Figures 2.4 and 2.3). Hence, non-polar gases

are characterized by µ = 0 and polar gases by µ > 0. Therefore, the following

equations describe the more complex case of polar gases and are �nally sim-

pli�ed for non-polar gases.

For simplicity, Equation 2.1 is shortened to

ε− 1

ε+ 2

M

ρ
=

4πN

3

(
α0 +

κ
T

)
. (2.2)

where κ = µ2

3k
. Since air has a dielectric constant of about one (ε ≈ 1), the

following approximation is valid

ε− 1 ≈ 4πNρ

M

(
α0 +

κ
T

)
. (2.3)

For the next step we have to use the ideal gas law.

Scienti�c law 2.1.2 (See Moran and Shapiro [2009]:). The ideal gas law is

described by:

PV = nRT

where P is the pressure,

V is the volume,

n is the amount of substance,

R is the universal gas constant,

T is the absolute temperature.
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Let m be the mass, then equation 2.3 becomes with theorem 2.1.2 to

ε− 1 ≈ 4πNρ

M

(
α0 +

κ
T

)
(2.4)

= 4π
N
m

V
M

(
α0 +

κ
T

)
(2.5)

= 4π
N
m

M
V

(
α0 +

κ
T

)
(2.6)

= 4π
Nn

V

(
α0 +

κ
T

)
(2.7)

= K
P

T

(
α0 +

κ
T

)
(2.8)

= K1
P

T
+K2

P

T 2
(2.9)

where K = 4πN
R
, K1 = Kα0 and K2 = Kκ are constants. For non-polar gases

(κ = 0) this approximation is simpli�ed to

ε− 1 ≈ K1
P

T
. (2.10)

Next, for a mixture of polar and non-polar gases Dalton's law of partial

pressures is assumed.

Scienti�c law 2.1.3 (See Silberberg [2009]:). Dalton's law of partial pres-

sures states that the sum of the partial pressures equals the total pressure:

Ptotal =
∑

i Pi

where Pi is the partial pressure of each component. It is assumed that the gases

do not react with each other.

In doing so, this results in the fact that the dielectric constant can be the

sum of polar and non-polar gases and hence obtain

ε− 1 ≈
∑
i

K1i

Pi
T︸ ︷︷ ︸

non-polar mixture

+
∑
j

(
K1j

Pj
T

+K2j

Pj
T 2

)
︸ ︷︷ ︸

polar mixture

. (2.11)

Commonly, pressure of air is divided into the partial pressures of non-polar

gases dry air (Pd), CO2 (Pc), and the polar gas water vapour (e). This leads

to

ε− 1 ≈ K1d

Pd
T

+K1c

Pc
T

+K1e

e

T
+K2e

e

T 2
. (2.12)
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The CO2 concentration in the air varies depending on the position on Earth.

However, for simplicity, a �xed CO2 concentration is often assumed, thus the

two non-polar gas terms are combined. In doing so, the equation is simpli�ed

to

ε− 1 ≈ K1dc

Pdc
T

+K1e

e

T
+K2e

e

T 2
(2.13)

where Pdc is the partial pressure of dry air with a �xed CO2 concentration

ratio.

2.2 Refraction

An approximation of the dielectric constant was derived in 2.1 dependent on

partial pressures and temperature. The dielectric constant is related to the

refractive index that allows a �rst representation of the refractive formula

depending on partial pressures and temperature to be derived.

2.2.1 First representation of the refractive formula

The refractive index describes the relative velocity of an electromagnetic wave

within a material relative to the vacuum.

De�nition 2.2.1 (Hecht [2002]). The refractive index of an material m is

de�ned by:

nm =
c

vm

where vm is the velocity of the wave propagation through the material and the

speed of light.

The relationship between the refractive index and the dielectric constant is

[see Bean and Dutton, 1966]

n =
√
µε (2.14)

⇔ n2 = µε (2.15)

⇔ ε =
n2

µ
(2.16)
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where µ is the permanent dipole moment. It is not surprising, that the re-

fractive index of air is approximately 1 since the wave propagation in air is

nearly c. Because of this, a Taylor series approximation of second degree of ε

for supporting point n = 1 is derived from Equation 2.16. It is

ε ≈ 1

µ
+

2

µ
(n− 1) (2.17)

=
1

µ

(
1 + 2(n− 1)

)
(2.18)

=
1

µ
(2n− 1) (2.19)

⇔ εµ ≈ 2n− 1 (2.20)

⇔ εµ

2
≈ n− 1

2
(2.21)

⇔ εµ− 1

2
≈ n− 1. (2.22)

Using equation 2.12 and assuming µ = 1 which is very close to the actual value

µ ≈ 1.00000037 [see Cullity and Graham, 2008], the �rst representation of the

refractivity follows 1

N = (n− 1)× 106 = K1
Pd
T

+K2
e

T
+K3

e

T 2
+K4

Pc
T

(2.23)

where K1, K2, K3 and K4 are new constants. N is named as refractivity or

scaled refractivity because of the 106 factor.

Since the derived Equation 2.23 is based on an acknowledged physical model,

one can expect that the presented formula �ts well to the reality. On the

one hand, measured delay variations, temperatures and partial pressures allow

to be adjusted. On the other hand, known coe�cients, partial pressures and

temperature allow the delay caused by the atmosphere to be estimated. A

detailed description of the estimation of this delay will be presented later.

2.2.2 Extended formula with compressibility factors

An extended version of equation 2.23 was introduced by Owens [1967]. Com-

pressibility factors were added, allowing the ideal gas law assumption to be

1Here, N is not the avogadro number already used above. This notation was chosen to

maintain a notation with other literature.
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overcome. Accordingly, a more accurate model of refractivity is achieved

whereby a more accurate estimate of the atmospheric delay can be achieved.

De�nition 2.2.2 (Davis et al. [1985]:). The compressibility factor of gas i is

de�ned by

Zi =
Pi

ρiRiT

where Pi is the partial pressure, ρi mass density, Ri speci�c gas constant and

T is the temperature. Furthermore is Ri =
R

Mi

where R is the universal gas

constant and Mi the molar mass.

This equation is rewritten to

Zi =
MiPi
ρiRT

(2.24)

which leads to

ρi =
MiPi
RT

Z−1i . (2.25)

By substituting ρ into equation 2.3 by equation 2.25 and add the index i to

distinguish di�erent gases, the approximation 2.9 becomes to

εi − 1 ≈ 4πN

Mi

MiPi
RT

Z−1i

(
α0i +

ci
T

)
= Ki1

Pi
T
Z−1i +Ki2

Pi
T 2
Z−1i (2.26)

By doing this and reevaluating Equations 2.9 to 2.23 leads to the refractivity

Equation with compressibility factors

N = (n− 1)× 106 = K1
Pd
T
Z−1d +K2

Pc
T
Z−1c +K3

e

T
Z−1e +K4

e

T 2
Z−1e (2.27)

where Zd, Zc, Ze are the compressibility factors of dry air, CO2 and water

vapour respectively.
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2.2.3 The dry and wet term separation

As already mentioned, to derive Equation 2.13, the dry term and the CO2

term are often combined. By doing this the refractivity is separated into a

non-polar and a polar gas component. In literature, these two terms commonly

are marked as the dry and the wet term respectively. The refractivity in its

general form is now

N = (n− 1)× 106 = K1
Pdc
T
Z−1dc︸ ︷︷ ︸

dry

+K2
e

T
Z−1e +K3

e

T 2
Z−1e︸ ︷︷ ︸

wet

(2.28)

where Pdc = Pc + Pd and Zdc is the corresponding compressibility factor. The

constant K1 di�ers to those in equation 2.27 and 2.23.

2.2.4 The hydrostatic and non-hydrostatic term separa-

tion

Another common representation of the refractivity is the hydrostatic and

non-hydrostatic term separation. The hydrostatic term depends on the total

pressure (P ) (for an ideal gas) or total density (for a non-ideal gas) (ρ) instead

of partial pressure (Pdc) or partial density (ρdc). Correspondingly, the non-

hydrostatic component follows from the hydrostatic term de�nition which is

described in detail now.

The hydrostatic and non-hydrostatic term separation for an ideal

gas

Equation 2.28 is rewritten and an ideal gas is assumed (Z−1dc = 1, Z−1e = 1)

that

N = K1
Pdc
T

+K2
e

T
+K3

e

T 2
(2.29)

= K1
P − e
T

+K2
e

T
+K3

e

T 2
(2.30)

= K1
P

T
−K1

e

T
+K2

e

T
+K3

e

T 2
(2.31)

= K1
P

T︸ ︷︷ ︸
hydrostatic

+K ′2
e

T
+K3

e

T 2︸ ︷︷ ︸
non-hydrostatic

. (2.32)
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Note, K ′2 = K2 − K1 represents a new variable and should not be confused

with K2.

The hydrostatic and non-hydrostatic term separation for a non-ideal

gas

For a non ideal gas, Davis et al. [1985] introduced this formula by rewriting

the �rst two terms of 2.28 using de�nition 2.2.2

K1
Pdc
T
Z−1dc +K2

e

T
Z−1e = K1Rdcρdc +K2Reρe (2.33)

= K1Rdcρ+K ′2
e

T
Z−1e (2.34)

where ρ = ρdc + ρe is the total mass density. Again, K ′2 is di�erently de�ned

and is this time

K ′2 = K2 −K1
Rdc

Re

. (2.35)

Finally equation 2.28 becomes

N = (n− 1)× 106 = K1Rdcρ︸ ︷︷ ︸
hydrostatic

+K ′2
e

T
Z−1e +K3

e

T 2
Z−1e︸ ︷︷ ︸

non-hydrostatic

. (2.36)

Because of the di�erent representations of the refractivity (dry / wet, hydro-

static / non-hydrostatic for (non-) ideal gasses) di�erent constants with same

nomenclature are present in literature [for example Rüeger, 2002, Davis et al.,

1985, Smith and Weintraub, 1953, Thayer, 1974] and are therefore easy to mix

up.

2.2.5 Model decision and parametrisation

The total delay of the electromagnetic wave in air is independent of the sep-

aration chosen for representation of refractivity. Therefore, the separation /

representation which is used to derive the total delay is a personal design deci-

sion. However, there are two advantages of the hydrostatic / non-hydrostatic

separation compared to the dry / wet separation. This is because the total

pressure (P = Pdc + e) is nearly constant within a short range at the same

altitude, but the water vapour partial pressures e vary therein because of the

chaotic nature of convection. Correspondingly, the dry / wet delay terms of two

close range-azimuth positions vary while the hydrostatic delay term is much
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more stable compared to the dry term. Another advantage of the hydrostatic

delay term is that it could be estimated robustly from the surface pressure [see

Davis et al., 1985]. Because of these two advantages of the hydrostatic delay

term, the hydrostatic / non-hydrostatic delay separation is used within this

work. The corresponding coe�cients are

K1 = 77.6890K / mbar (2.37)

K ′2 = −6.3938K / mbar (2.38)

K3 = 3.75463× 105K2/mbar (2.39)

and where taken from [Rüeger, 2002].

2.3 The ray path through the atmosphere

If an electromagnetic wave propagates through the atmosphere, it is diverted

and delayed because of the refractive index. Both e�ects are now described.

2.3.1 The ray bending e�ect

If an electromagnetic wave is passing the transition between two medias with

di�erent refractive indices, then the direction of the electromagnetic wave will

be changed. The direction change depends on the entrance angle and the

di�erence between the refractive indices. The following theorem describes this

relationship.

Scienti�c law 2.3.1 (See Feynman et al. [2011]:). Snell's law states that:

sin θ2
sin θ1

=
v2
v1

=
n1

n2

where θi, vi and ni is the corresponding angle, speed of light and the refractive

index of the respective medium (see �gure 2.9).

The refractive index of air is changing within the atmosphere. Therefore,

the ray path through the atmosphere is not a straight line. The lengthening of

the ray delay compared to the line of sight delay is denoted as geometric delay

δg in research publications. It can approximated by the elevation angle θe (see

[Kouba, 1979] and [Mendes, 1999]). [Kouba, 1979] derive the simple formula

δg =
1.92

θ2e + 0.6
(2.40)
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Figure 2.9: Graphic from Wikipedia [uploaded by Alexandrov, 2007]. Refrac-

tion of light with n2 > n1.

while [Mendes, 1999] derive the formula

δg = 2.256 exp

(
−θe

2.072

)
. (2.41)

The unit is meter and describes the distance an electromagnetic wave would

travel in a vacuum within the expected time. Both functions are plotted in

Figure 2.10 and show a mismatch. However, it is a matter of fact, that [Kouba,

1979] underestimated the geometric delay e�ect for small elevation angles and

overestimated it for large elevation angles resulting in the observed mismatch

[see van der WAL, 1995]. Therefore, the ray bending e�ect can be neglected

for remote sensing applications since the elevation angles are larger than 15

degree commonly. For example, the TanDEM-X satellites have a maximal

incident angle of 55 degree which depicts an elevation angle of 35 degree that

is mapped to the overestimated 1.6 mm and 1.e-4 mm derived from [Kouba,

1979] and [Mendes, 1999], respectively. The geometric e�ect in interferograms

is even more insigni�cant, because commonly the incident angles of the master

and the slave acquisition are almost the same, so that the geometric delay

has shortened itself out of the interferograms. However, the function derived

of [Mendes, 1999] indicate that the geometric delay e�ect is nearly zero (see

lower plot in �gure 2.10). Correspondingly, the actual ray path is almost equal

to the line of sight between the range-azimuth position and the SAR satellite.
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Hence, the geometric delay e�ect does not result in a mis-registration of the

interferogram.
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Figure 2.10: The lenghtening of the electromagnetic wave related to the

bending e�ect is plotted depending on the elevation angle.
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2.3.2 The delay e�ect

Now, the delay e�ect caused by the atmosphere is derived. For the sake of

simplicity, the bending e�ect is neglected and the delay e�ect is estimated by

integrating along the line of sight between the SAR satellite and a target over

the refractive index. The following theory is adopted from Davis et al. [1985].

2.3.3 Model description

The delay e�ect corresponds to the time di�erence that an electromagnetic

wave needs to cross the atmosphere compared to the vacuum

τa =

∫
atm

1

vatm(s)
ds−

∫
vac

1

c
ds =

1

c

(∫
atm

natm(s)ds−
∫
vac

1ds

)
. (2.42)

The purpose of the delay estimation is to correct SAR satellite measurements.

Therefore, the delay e�ect is translated into a distance representing the corre-

sponding error

δa =

∫
atm

natm(s)ds−
∫
vac

1ds. (2.43)

The path through the atmosphere equals the path through the vacuum since

the bending e�ect is neglected. Correspondingly, both integrals can be con-

tracted thus

δa =

∫
vac

natm(s)ds−
∫
vac

1ds =

∫
vac

(natm(s)− 1)ds = 10−6
∫
vac

Natm(s)ds

(2.44)

where N = 106 × (n− 1) is a representation of the refractivity.

2.3.4 Atmospheric delay separation

The atmospheric delay is often divided into di�erent parts in literature. These

separations follow from the refractivity separations which were derived in sec-

tions 2.2.3 and 2.2.4. Practically, the corresponding delays of the separated
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terms are calculated and afterwards added. This is formulated by

N = N1 +N2 (2.45)

where N1, N2 is the dry / wet or the hydrostatic / non-hydrostatic refractivity

separation. In doing so, the corresponding atmospheric delay is separated into

δa = δ1 + δ2 (2.46)

where

δ1 = 10−6
∫
atm

N1(s)ds (2.47)

δ2 = 10−6
∫
atm

N2(s)ds. (2.48)



Chapter 3

Numerical weather prediction

Predicting tomorrow's weather was of interest 100 years ago, and the weather

proverb was developed. Numerical weather prediction (NWP) began histor-

ically in the 1920s when Richardson produced a 6-hours forecast by using

numerical methods by hand [see Lynch, 2008]. A milestone achievement was

reached by the Electronic Numerical Integrator and Computer (ENIAC) in

Aberdeen Maryland which computed a 24-hours forecast in about 24 hours

[see Lynch, 2008]. This was the �rst time that there was a weather forecast in

real time and it was just a matter of time until real and operational forecasts

became normality.

However, NWP is also suitable for providing 3-dimensional hindcasts that can

be used to estimate the electromagnetic wave delay variations described in

section 2. That is why now NWP models are described, most common models

listed, their aims and goals described as well as most common initialisation

data given.

3.1 Numerical Weather Prediction (NWP)

Vilhelm Bjerknes developed the idea of a weather forecast and described it

in the German article [Bjerknes, 1904] that was later translated into English

[see Bjerknes, 2009]. Richardson developed the associated algorithm and pub-

lished it in the book [Richardson, 1922]. Basically, a set of non-linear, partial

di�erential equations have to be solved for a NWP. The reader interested in a

comprehensive historical summary is redirected to [Lynch, 2008].

19
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De�nition 3.1.1 (basic set of equations). The basic set of non�linear, partial

di�erential equations for the description of a closed atmospheric system is [see

Ho�mann, 1988, Nagel, 1996]

p =ρRT gas law (3.1)

dρd
dt

=−∇ · (ρdv) continuity equation for dry air

(3.2)

dρw
dt

=−∇ · (ρwv) + S continuity equation for moist air

(3.3)

cp
dT

dt
−Rdp

dt
=Q �rst law of thermodynamics (3.4)

d

dt
v =

1

ρ
∇p− g − 2Ω× v + F equation of motion. (3.5)

(3.6)

where v (u, v, w)velocity vector relative to the earth,

T temperature,

p pressure,

ρd density of dry air,

ρw density of water vapour,

ρ = ρd + ρw density of moist air,

F dissipation of momentum,

S water vapour source / sink term,

Q diabatic heating,

R gas constant for moist air,

cp speci�c heat at constant pressure,

Ω earth angular velocity,

g local gravity acceleration.

So called "primitive equations" are derived out of the general equations

by a number of assumptions to simplify the solution [see Nagel, 1996]. For

example, the hydrostatic assumption

(
1

p

∂p

∂z
+ g = 0

)
is adequate for a very

coarse resolution. In numerical weather prediction, these equations are numer-

ically solved for every time step. The non-linear terms ρdv, ρwv and
1

ρ
∇p of
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Equations 3.2, 3.3 and 3.5 respectively make the computational e�ort to de-

rive a solution very expensive. The amount of necessary arithmetic operations

are conveniently handled exclusively by a computer, so that only in 1950 the

practical bene�ts could be demonstrated by Von Neumann [see Lynch, 2008].

3.2 Model summary

Several NWP systems exist and are specialized for di�erent tasks. A list of the

most common models is given now, but, before, the necessary nomenclature is

de�ned to describe the NWP systems adequately.

3.2.1 Nomenclature

Now, the nomenclature is introduced which is necessary to understand the de-

scription of the di�erent models. For this purpose the Glossary of Meteorology

of the American Meteorology Society (AMS) [see Glossary of Meteorology of

the American Meteorological Society ams] is utilised. First, the AMS pub-

lished 1959 the Glossary with 7900 terms. The second published version of the

year 2000 contained more than 12000 terms. Recently, it was converted into

an electronic "Wiki-like" living document.

Scales

NWP is performed in di�erent scales, depending on the application:

• Synoptic scale: The area of interest is very large, ranging from several

hundred kilometers to several thousand kilometers. In other words, the

weather of a continent is predicted and the weather trend is the point of

interest. Therefore, mainly high and low pressure systems are predicted.

• Micro scale or Micrometeorology: The points of interest are very

small scale atmospheric phenomena. So, the area of interest is smaller

than one kilometer and forecast duration is less than one day. Therefore,

local processes are predicted or investigated. For example, the wind on

mountain slopes is a point of interest for paragliders.
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• Mesoscale meteorology: This time, the point of interest is smaller

than the synoptic scale and larger than the micro scale. Hence, the range

is from several kilometers to several hundreds of kilometers. Points of

interest are thunderstorms, squall lines, fronts, precipitation bands as

well as topographically generated weather systems such as mountains

waves, sea and land breezes. In other words, the weather of a country is

predicted for an average citizen.

Limited-area

Instead of simulating the whole world, just the area of interest is simulated.

Hence, the required computational power to calculate the prediction is largely

reduced.

Hydrostatic versus non�hydrostatic model

Hydrostatic equilibrium states that the force between pressure and gravity is

equal. This assumption works �ne if the horizontal scale is large in compar-

ison to the vertical scale which is obvious in the case for synoptic scales. A

hydrostatic model uses the hydrostatic equilibrium assumption while a non�

hydrostatic model does not.

Sigma coordinate

Topography has a signi�cant in�uence on the convective �ow. Hence, it is

essential for a mesoscale or a micro scale model for physically correct simu-

lations. Commonly, this is achieved by using a terrain-following coordinate

system like the sigma level system which was introduced by Phillips [1957].

De�nition 3.2.1 (sigma level). The sigma level σi of level i is de�ned by

σi =
Pi
PS

(3.7)

where Pi is the pressure at level i and PS the surface pressure.

State of the art NWPs use generalized versions of the original de�nition.

Nevertheless, the general idea behind a terrain-following coordinate system

stays the same (see �gure 3.1).
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Figure 3.1: Illustration of the terrain following σ coordinate system.

Assimilation

Weather observations are derived from di�erent systems with various charac-

teristics. This means, the quality, the spatial as well as the temporal resolution

and the coverage are very di�erent. For example, a weather station provides

the surface temperature with high temporal resolution but exclusively at one

speci�c location. In contrast, a weather balloon provides a high vertical res-

olution at one speci�c time. However, both kinds of observations are helpful

to improve a prediction. It is not applicable to derive the current state of

the atmosphere exclusively from the weather observations because of the inho-

mogeneous distribution of weather observations in space and time. Hence, a

NWP model run is pushed towards such observations which is known as data

assimilation [see ams].

3.2.2 PSU/NCAR mesoscale model

The PSU/NCAR mesoscale model (MM5) is one of the prominent NWP mod-

els in history. It was developed by Penn State University and the National

Center for Atmospheric Research NCAR. Major increments were nested do-

mains, nonhydrostatic dynamics and platform independent parallelisation. A
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short description is given by [see UCAR, 2018a]:

"The PSU/NCAR mesoscale model (known as MM5) is a limited-area,

nonhydrostatic, terrain-following sigma-coordinate model designed to

simulate or predict mesoscale atmospheric circulation."

3.2.3 Weather Research and Forecast

An advancement of the MM5 was essential for better research possibilities. For

this reason a partnership of NCAR, the National Oceanic and Atmospheric

Administration (NOAA), the National Centers for Environmental Prediction

(NCEP), the Forecast Systems Laboratory (FSL), the Air Force Weather

Agency (AFWA), the Naval Research Laboratory, the University of Oklahoma

and the Federal Aviation Administration (FAA) built a new model which is

known as the weather research and forecast (WRF) model. The following

description was stated on the o�cial website [see UCAR, 2018b]:

"The Weather Research and Forecasting (WRF) Model is a next-generation

mesoscale numerical weather prediction system designed for both

atmospheric research and operational forecasting applications. It features

two dynamical cores, a data assimilation system, and a software architecture

supporting parallel computation and system extensibility. The model serves a

wide range of meteorological applications across scales from tens of meters to

thousands of kilometers."

3.2.4 COSMO

The Consortium for Small-scale Modeling (COSMO) project is a counterpart

to WRF and was built by di�erent organizations from Germany, Switzerland,

Italy, Greece, Poland, Romania and Russia. The o�cial website describes the

model by [see COSMO, 2018]:

"Its general goal is to develop, improve and maintain a non-hydrostatic

limited-area atmospheric model, to be used both for operational and for

research applications by the members of the consortium."
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3.2.5 HIRLAM

The High Resolution Limited Area Model (HIRLAM) was developed within a

programme of the European meteorological institutions of Denmark, Estonia,

Finland, Iceland, Ireland, Netherlands, Norway, Spain, Sweden, Lituania and

France. The aim of this model is described, on the o�cial website, by [see

HIRLAM, 2018]:

"HIRLAM's prime long-term goal is to provide its members with a

state-of-the-art operational short and very short range numerical weather

prediction system, and the expertise associated with it. The main application

for the NWP system is the production of operational weather forecasts for

the member services, with particular emphasis on the detection and

forecasting of severe weather and services related to public safety."

3.2.6 Model decision

Water vapour, temperature and pressure �elds are derived by each NWP

model. Therefore, in principle all models can be used to hindcast the APS.

However, WRF is the favoured NWP model by the research community. This

can be seen in table 3.1. The number of hits on Google Scholar shows a clear

lead of the WRF model compared to the other models. This becomes even

clearer when one considers that WRF is the successor model of MM5, so the

hit counts can be added. Another advantage of WRF is that no administrative

e�ort is necessary to get the source code of it compared to the HIRLAM and

the COSMO model. WRF can be downloaded directly while the HIRLAM

and the COMSO model require some paperwork in advance.

The unique feature of WRF is that the model focuses on research needs which

is explicitly mentioned in the aims and goals of it. Another disadvantage of

COSMO and HIRLAM is that the community is limited by their nationality.

Therefore and because of the clear leadership in the research community, WRF

is the model chosen for these studies.
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Administrative e�ort Google Schoolar hits

MM5 free download 7.180

WRF free download 11.500

COSMO agreement necessary 2.870

HIRLAM agreement necessary 3.430

Table 3.1: The e�ort to get the NWP model source code is di�erent. Some of

the models can be downloaded for free, while other models require an agree-

ment to be signed. In addition, the presence in research publications is quite

di�erent. The research impact of each model is illustrated by the amount of

results found in Google Scholar, where the model name was combined with

�NWP� and used for searching.

3.3 WRF details

A detailed description for the WRF setup is now given to highlight the com-

plexity of NWP models, to show the data dependencies and to explain the

work�ow.

3.3.1 The WRF Preprocessing system (WPS)

The WRF preprocessing system (WPS) uses terrestrial as well as gridded data

to derive an initial state for the NWP prediction. Terrestrial data are for ex-

ample terrain, landuse, and soil types. This information is downloaded once

and used for each NWP prediction in the same way. Gridded data are time

depending data and must be downloaded for each NWP prediction separately.

The WPS system is composed of three programs and the data �ow between

these programs is illustrated in �gure 3.2. The geogrid program de�nes the

model domains, reads a static geographic data set (terrestrial data) and inter-

polates them spatially. The ungrib program reads the gridded data (meteoro-

logical data), decompresses them and converts them into the correct format.

The metgrid program uses the output of geogrid and ungrib to interpolate hor-

izontally the meteorological �elds. Finally, the so-called real program reads the

output of metgrid and interpolates the meteorological �elds vertically. The so-

called namelist.wps �le is the con�gurations �le of geogrid, ungrib and metgrid.

A subset of these parameters is for example the number of nesting, the start
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The data flow between the programs of the WPS is shown in the figure above. Each of 
the WPS programs reads parameters from a common namelist file, as shown in the figure. 
This namelist file has separate namelist records for each of the programs and a shared 
namelist record, which defines parameters that are used by more than one WPS program. 
Not shown in the figure are additional table files that are used by individual programs. 
These tables provide additional control over the programs’ operations, though they 
generally do not need to be changed by the user. The GEOGRID.TBL, METGRID.TBL, 
and Vtable files are explained later in this document, though for now, the user need not 
be concerned with them. 

The build mechanism for the WPS, which is very similar to the build mechanism used by 
the WRF model, provides options for compiling the WPS on a variety of platforms. 
When MPI libraries and suitable compilers are available, the metgrid and geogrid 
programs may be compiled for distributed memory execution, which allows large model 
domains to be processed in less time. The work performed by the ungrib program is not 
amenable to parallelization, so ungrib may only be run on a single processor. 

 

Function of Each WPS Program 

The WPS consists of three independent programs: geogrid, ungrib, and metgrid. Also 
included in the WPS are several utility programs, which are described in the section on 
utility programs. A brief description of each of the three main programs is given below, 
with further details presented in subsequent sections. 

 

Figure 3.2: The WRF preprocessing system (WPS) is a collection of programs

to uncompress data, interpolate data and to combine data sets. This o�cial

illustration of the WPS system is from the WRF manual [see Wei Wang et al.,

2019].

/ end date, grid ratios, grid positions, grid resolution and the map projection.

Most of them are related to geogrid and de�ne the simulated domains. The do-

main related parameters are described now to provide a better understanding

of the simulation and the setup process.

The map projection

The WRF system is a limited area NWP system. This means, only a section

of the Earth is simulated. For simplicity, the sphere section of the Earth is

mapped onto a plain. This can be done in di�erent ways and the mappings

are illustrated in the �gure 3.3. The interested reader is directed to the WRF

manual [see Wei Wang et al., 2019].
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Figure 3.3: Di�erent projections of the Earths surface on a plain are illustrated.

This is the o�cial illustration of the WRF manual [see Wei Wang et al., 2019].
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The domains

The simulated domains are sampled by a three dimensional grid. The horizon-

tal resolution is equidistant but may be di�erent in the dimensions, i.e. the

resolution in the x-direction is not necessarily the same as in the y-direction.

The vertical layering is not equidistant and can be de�ned explicitly or by

de�ning the number of vertical layers. The grid extent multiplied with the

resolution equals the size of the simulated area.

The domain nesting

The domain simulation depends on the ambient weather conditions that are

not simulated. These ambient conditions are just interpolated in time and

space using the initial grid data. Therefore, it is very important to addition-

ally simulate a much larger domain, than the desired domain, to consider the

e�ect of ambient weather conditions. However, commonly it is not possible

to simulate the expanded domain with the same resolution as the desired do-

main, because of the computational e�ort. Therefore, the desired very high

resolution domain is nested inside this much larger so-called parent domain

with a coarser resolution. Each simulation is integrated by discrete time steps

that depend on the spatial resolution of the domains. This makes it possible

to provide good ambient conditions with little additional computational e�ort.

The resolution relation of the nested domains must be an integral number to

align the grid cells. The placement de�nition is illustrated in Figure 3.4.

3.3.2 The WRF Program

The WRF program takes the output of the so-called real program (see section

3.3.1) and computes the actual forecast. The forecast is parameterised by the

namelist.input con�guration �le. The parameter set size is quite large, which

is why no detailed description is provided here. However, the most important

parameter set categories and settings are listed now.

The time control category

The �rst parameter category de�nes the start time, the duration of the pre-

diction, the time frame of the output data, the format of the input and output
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coarse domain. Having determined the number of nests, all of the other affected namelist 
variables must be given a list of N values, one for each grid. The only other change to the 
“share” namelist record is to the starting and ending times. Here, a starting and ending 
time must be given for each nest, with the restriction that a nest cannot begin before its 
parent domain or end after its parent domain; also, it is suggested that nests be given 
starting and ending times that are identical to the desired starting times of the nest when 
running WPS. This is because the nests get their lateral boundary conditions from their 
parent domain, and thus, only the initial time for a nest needs to be processed by WPS, 
except when grid nudging, also called analysis nudging, is used in WRF. It is important 
to note that, when running WRF, the actual starting and ending times for all nests must be 
given in the WRF namelist.input file. 

The remaining changes are to the “geogrid” namelist record. In this record, the parent of 
each nest must be specified with the parent_id variable. Every nest must be a child of 
exactly one other nest, with the coarse domain being its own parent. Related to the 
identity of a nest's parent is the nest refinement ratio with respect to its parent, which is 
given by the parent_grid_ratio variable; this ratio determines the nominal grid 
spacing for a nest in relation to the grid spacing of the its parent. 

 

Next, the lower-left corner of a nest is specified as an (i, j) location in the nest’s parent 
domain; this is done through the i_parent_start and j_parent_start variables, and 
the specified location is given with respect to the unstaggered grid. Finally, the 
dimensions of each nest, in grid points, are given for each nest using the s_we, e_we, 
s_sn, and e_sn variables. The nesting setup in our example namelist is illustrated in the 
figure above, where it may be seen how each of the above-mentioned variables is 
determined. Currently, the starting grid point values in the south-north (s_sn) and west-
east (s_we) directions must be specified as 1, and the ending grid point values (e_sn and 
e_we) determine, essentially, the full dimensions of the nest; to ensure that the upper-
right corner of the nest's grid is coincident with an unstaggered grid point in the parent 
domain, both e_we and e_sn must be one greater than some integer multiple of the 
nesting ratio. Also, for each nest, the resolution (or list or resolutions; see the description 

Figure 3.4: Domain two (2) is nested in parent domain one (1). The integral

grid ratio number ensures that the bounding box of domain two (2) is aligned

to grid cells of domain one(1). This is the o�cial illustration of the WRF

manual [see Wei Wang et al., 2019]

as well as the number of input and output �les.

The domains category

The forecast is computed iteratively, by using a time step whereby the time

step size is related to the horizontal resolution. As a rule of thumb, a factor

of six seconds per km resolution is recommended, i.e. a 900 m resolution im-

plicates a time step size of 0.9km ∗ 6 s
km

= 5.4s. If the time step size is too

large, then the forecast will fail because the Courant-Friedrichs-Lewy (CFL)

condition is violated [see Courant et al., 1928]. This condition takes care, that

no information will travel more than one voxel within the grid at each time

step. Smaller time steps are valid but increase the computational e�ort.

It is also possible to use an adaptive time step that is adjusted at each time

step so that the CFL condition is not violated. This improves the computa-

tional performance and reduces the computational time.

The number of domains, their size, their nestings and positions must be spec-

i�ed again. It is even possible to move nested domains over time. This is

especially of interest if some moving extreme weather events should be simu-

lated in very high resolution. However, this is commonly not of interest in this
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research area.

The ambient weather conditions �ow from parent domains into nested do-

mains. But it is also possible to switch on a feedback option, so that the

nested domain has an impact on the parent domain.

The digital �ltering initialization technique control category

The initial weather conditions commonly are spatially interpolated from syn-

optic scale weather data. That is why the weather conditions are physically

unbalanced at the beginning of a model run. Hence, the simulation needs time

to reach a balanced state. The required time to reach that balanced state is

denoted as spin up time in research papers. However, the digital �ltering ini-

tialization (d�) technique allows the imbalance at the beginning to be reduced,

by integrating back and forward in time and by �ltering unrealistic frequencies.

The physics category

This category is the most confusing category. Various physics parameter sub-

categories must be speci�ed related to radiation processes, surface related pro-

cesses, boundary layer processes, cumulus physics and micro physics. A rea-

sonable con�guration depends on the resolution and is very complex, because

the di�erent parameters have in�uences on each other. However, good start-

ing points are listed in the WRF manual [see Wei Wang et al., 2019] on page

36 for di�erent resolutions. Here, recommended parametrisations de�ne some

test cases.

The dynamics category

This category is related to the turbulence / di�usion processes within the

atmosphere and speci�es also the damping at the top of the model domain

which is necessary because of the limited vertical space that models provide.

Additionally, the algorithm that solves partial di�erential equations is de�ned

and parameterised here.
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3.4 NWPmodel initialisation using gridded data

A NWP model uses the current state of the atmosphere to compute the future

state. Therefore, each NWP must be initialised. The corresponding input data

are obtained from synoptic scale forecast systems. This is necessary, because

observations alone are too inhomogeneous in time and space for an initializa-

tion. In case of limited area NWPs, the ambient weather of the simulation

domain is not simulated. This is a problem, because the ambient weather

contributes to the simulated atmosphere. This disadvantage of limited area

models is reduced by supporting the simulation with time discrete ambient

weather states. Therefore, the synoptic forecasts provide the necessary data

and are interpolated in time for simplicity.

A variety of synoptic scale models exists and two well-known centres who pro-

vide initialisation data are described now in detail.

3.4.1 ECMWF

The European Centre for Medium-Range Weather Forecasts

(ECMWF) was founded in 1975 and has 21 member states and 13 Co-operating

states. The main objective is the medium range weather forecast and it there-

fore produces up to 10 day and beyond predictions [see Thorpe and Adrian,

2013]. It is the acknowledged world leader in this area of expertise [see Thorpe

and Adrian, 2013]. For a fair comparison, the World Meteorological Organiza-

tion (WMO) has de�ned standards for this rating.

Di�erent types of forecasts are o�ered e.g. deterministic forecasts, ensemble

forecasts, seasonal forecasts and so on. A deterministic forecast is unique and

does not provide any information about the uncertainty of the forecast. In

contrast, an ensemble forecast consists of several deterministic forecasts while

the spread of these forecasts re�ects the uncertainty. Seasonal forecasts are

not of interest in this research area, because this kind of forecast provides

statistical information in time and not in space. The application area of atmo-

spheric delay correction commonly requires data sets of the past. Here, two

kinds of datasets must be distinguished. First, analysis datasets and second,

reanalysis datasets. Both can be interpreted as a space-time interpolation.

However, the quality of analysis datasets varies over time as they are derived
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ERA-interim ERA5

Period 1979 - now Current: 1979 - now

Future: 1950 - now

Resolution 79 km globally, 31 km globally,

60 levels to 0.1 hPa 137 levels to 0.01 hPa

Frequency 6-hourly analysis, Hourly analysis and forecast �elds,

3-hourly forecast �elds 3-hourly for the Ensemble of

Data Assimilations

Table 3.2: Comparison between the state of the art initialization data set and

the next gen initialization data set from ECMWF.

from di�erent versions of the forecasting system. The versions can di�er by

their parametrisation, their input data or by the source code. The reanaly-

sis datasets are derived from the same forecasting system and thus guarantee

consistent quality. The ERA-interim reanalysis data set covers the time pe-

riod 1979 to the present and is therefore very useful for the atmospheric delay

correction. The ERA5 reanalysis dataset covers the time period 1979 to the

present [see ECMWF, 2018b]. However, the covered time period will be ex-

tended back to 1950 and will replace the ERA-interim data set in the future. It

is expected that the extended ERA5 reanalysis dataset will be available for use

by early 2019 [see ECMWF, 2018a]. The main improvements are listed in the

table 3.2 [see ECMWF, 2018b]. However, the ungrib program of WPS uses by

default the same parameters from the ERA5 as well as from the ERA-interim

data set. For completeness, the used parameters are listed in tables 3.3, 3.4

and 3.5.
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Name Short description

Geopotential This parameter is the gravitational potential energy

of a unit mass, at a particular location, relative to

mean sea level. It is also the amount of work that

would have to be done, against the force of gravity, to

lift a unit mass to that location from mean sea level.

Temperature This parameter is the temperature in the atmosphere.

U component of wind This parameter is the eastward component of the

wind. It is the horizontal speed of air moving towards

the east, in metres per second. A negative sign thus

indicates air movement towards the west.

V component of wind This parameter is the northward component of the

wind. It is the horizontal speed of air moving towards

the north, in metres per second. A negative sign thus

indicates air movement towards the south.

Relative humidity This parameter is the water vapour pressure as a

percentage of the value at which the air becomes

saturated (the point at which water vapour begins to

condense into liquid water or deposition into ice).

10 metre U wind

component

This parameter is the eastward component of the 10

m wind. It is the horizontal speed of air moving

towards the east, at a height of ten metres above the

surface of the Earth, in metres per second.

10 metre V wind

component

This parameter is the northward component of the 10

m wind. It is the horizontal speed of air moving

towards the north, at a height of ten metres above the

surface of the Earth, in metres per second.

2 metre temperature This parameter is the temperature of air at 2m above

the surface of land, sea or in-land waters.

Table 3.3: Listed are the used parameter of the ERA5 and ERA-interim

data set. The supplementary lists can be seen in table 3.4 and 3.5. The

names and the short descriptions were taken from the parameter database at

https://apps.ecmwf.int/codes/grib/param-db.

https://apps.ecmwf.int/codes/grib/param-db
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Name Short description

2 metre dewpoint

temperature

This parameter is the temperature to which the air,

at 2 metres above the surface of the Earth, would

have to be cooled for saturation to occur.

Land-sea mask This parameter is the proportion of land, as opposed

to sea or in-land waters, in a grid box.

Geopotential This parameter is the gravitational potential energy

of a unit mass, at a particular location, relative to

mean sea level. It is also the amount of work that

would have to be done, against the force of gravity, to

lift a unit mass to that location from mean sea level.

Surface pressure This parameter is the pressure (force per unit area) of

the atmosphere on the surface of land, sea and in-land

water.

Mean sea level pressure This parameter is the pressure (force per unit area) of

the atmosphere adjusted to the height of mean sea

level.

Skin temperature This parameter is the temperature of the surface of

the Earth.

Sea ice area fraction This parameter is the fraction of a grid box which is

covered by sea-ice. Sea-ice can only occur in a grid

box which is de�ned as ocean according to the land

sea mask at the resolution being used. Sea-ice cover

can also be known as sea-ice fraction or sea-ice

concentration.

Sea surface

temperature

This parameter is the temperature of sea water near

the surface.

Snow density This parameter is the mass of snow per cubic metre in

the snow layer.

Snow depth This parameter is the depth of snow from the

snow-covered area of a grid box.

Table 3.4: This is the �rst supplementary list of table 3.3.
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Name Short description

Soil temperature level

1

This parameter is the temperature of the soil in layer

1 (0 - 7cm, the surface is at 0cm).

Soil temperature level

2

This parameter is the temperature of the soil in layer

2 (7 - 21cm, the surface is at 0cm).

Soil temperature level

3

This parameter is the temperature of the soil in layer

3 (21 - 72cm, the surface is at 0cm).

Soil temperature level

4

This parameter is the temperature of the soil in layer

4 (72 - 189cm, the surface is at 0cm).

Volumetric soil water

layer 1

This parameter is the volume of water in soil layer 1

(0 - 7cm, the surface is at 0cm).

Volumetric soil water

layer 2

This parameter is the volume of water in soil layer 2

(7 - 21cm, the surface is at 0cm).

Volumetric soil water

layer 3

This parameter is the volume of water in soil layer 3

(21 - 72cm, the surface is at 0cm).

Volumetric soil water

layer 4

This parameter is the volume of water in soil layer 4

(72 - 189cm, the surface is at 0cm).

Table 3.5: This is the second supplementary list of table 3.3.
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3.4.2 NOAA

The national oceanic and atmospheric administration (NOAA) provides syn-

optic scale as well as mesoscale forecasts and is therefore the American pendant

to ECMWF and a national meteorological institute together. Again, historical

reanalysis or analysis data are points of interest. The Climate Forecasts Sys-

tem (CFS) of NOAA provides a reanalysis data set (CFSR) covering the period

January 1979 to March 2011 [see NOAA, 2018]. In addition, the CFS Version 2

(CFSv2) model provides analysis data from January 2011 [see NOAA, 2018] to

the present and is denoted by CFSv2 Operational Analysis dataset. However,

the spatial resolution varies over time for both initialisation data sets.

3.4.3 Resolution limitation for an operational service

NWPs are commonly operated by meteorological institutions of states utilising

supercomputers to compute the prediction within a reasonable time. Nowa-

days, a resolution of 2.8 km is denoted as very high resolution and is used for

the operational forecast over Germany for example. In contrast, the resolu-

tion of a SAR sensor is much higher and therefore also the resolution of the

desired prediction to mitigate atmospheric disturbances. First, the computa-

tional complexity and second a benchmark is shown to illustrate the limitations

for an operational service for atmospheric disturbance mitigation. The hor-

izontal grid cell count depends quadratically on the resolution. Further, the

integration time step that is used to compute the prediction is also related to

the horizontal resolution. Correspondingly, the computational complexity is

O( 1
r3
) with respect to the horizontal resolution r. If the vertical resolution is

also adjusted with respect to the horizontal resolution the computational com-

plexity is O( 1
r4
). This means, if the spatial resolution of an operational service

will be doubled, the computational power must be multiplied by the factor

of 8 or 16 respectively, to keep the computational time constant. This is the

case, because the computational time scales inversely linearly with the compu-

tational power [see Nagel, 1996]. This is not surprising, but also not obvious,

since due to synchronisation caused by parallelism, computational overhead is

incurred. Fortunately the overhead is negligibly low compared to the NWP

calculations. A benchmark demonstrates a reasonable resolution that can be
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achieved by using the technologies that are available today. For this purpose,

a dual socket server with two AMD Opteron (TM) 6380 2.5 GHz CPUs was

used, while each CPU has 32 cores and thus a total of 64 cores were available.

With this hardware setting I was able to run a 60 km× 60 km large test case

with a horizontal resolution of 300 m in real time, i.e. a 6 hour forecast by

WRF took 6 hours to compute. The interesting thing about this resolution

order is that large eddy simulations become meaningful. WRF for this purpose

has therefore two parameters that have to be adapted. di�_opt is related to

the air mixing due to turbulences while km_opt is related to the method that

computes the eddy coe�cient. The topography of the underlying terrain has

a large in�uence onto the simulation. Unfortunately, WRF is shipped with a

digital elevation model that merely has about 30-arc-seconds resolution which

is about 900 m. Therefore, the WRF resolution was about three times higher

than the used digital elevation model. To overcome this, the digital elevation

model of the Shuttle Radar Topography Mission (SRTM) with a resolution

of 90 m was used instead of the conventional digital elevation model of WRF

in a second attempt. Unfortunately, all WRF runs even with much smaller

time step sizes crashed because the CFL condition was harmed in mountain

areas with rough terrain. Correspondingly, it was necessary to smooth the

SRTM model to guarantee the CFL condition. However, a closer look into

the derived pressure �elds revealed unrealistic pressure �uctuations again on

rough terrains. These pressure �uctuations have an impact into the mapped

APS because the pressure is used to estimate the APS. Finally, I came to the

conclusion to use a 900 m resolution instead of a 300 m resolution because the

900 m resolution simulations saves much computational e�ort, no additional

digital elevation model must be included, the WRF predictions are much more

robust and predict no obviously unrealistic pressure �uctuations compared to

the 300 m simulations.



Chapter 4

State of the art

The APS correction of interferograms can be supported by knowledge about

pressure, temperature and water vapour (see for example [Doin et al., 2009,

Cong, 2014]) or by other measurements which correlate with the APS (see for

example [Delacourt et al., 1998, Wadge et al., 2002]). A detailed description

of the error analysis of interferograms is given in [Hanssen, 2001]. The knowl-

edge about pressure, temperature and water vapour �elds is derived commonly

from meteorological measurements or gridded data can be downloaded which

come from global weather models. Unfortunately, the measurements are com-

monly inhomogeneous in space and time, while the gridded data like ERA5

data provide space homogeneous data but with a very bad resolution and the

temporal sampling is large. Measurements that correlate with the APS are also

commonly inhomogeneous in space. In contrast, NWP provide high resolution

knowledge about pressure, temperature and water vapour that is homogeneous

in space and time. The focus of this thesis is on the adaptation of high res-

olution NWP which is why publications that do not deal with NWP are not

further described in detail.

A brief overview of publications related to APS correction utilising high reso-

lution NWP models, is now given. The order of this discussion is chronological

with respect to the year of publication.

Chapter 5 provides summaries of the publications of this thesis and is linked

to this chapter to embed them into the related publications.

39
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[Hanssen et al., 1999] is a prominent topic related publication. It is not

linked to NWP but provides a comprehensive overview of meteorological phe-

nomena that a�ect interferograms. The mentioned meteorological phenomena

are precipitating clouds, a partly precipitating cold front and horizontal con-

vective rolls. It is also suggested that interferograms can be used for forecasting

and to study atmospheric dynamics.

[Webley et al., 2004] used the non-hydrostatic three-dimensional (NH3D)

model to hindcast the atmospheric state at the Mount Etna in Sicily. The

NH3D model does not simulate clouds and precipitation that is why it is not

a NWP model. However, the objective of the paper is a comparison of the

quality of the predicted APS resulting from di�erent input data. Radiosonde

data and NWP output data were used for the initialisation. It is stated that

the NWP output data have a clear advantage compared to the radiosonde data

because the spatial sampling is much denser and does not depend on the wind

that a�ects radiosonde positions. An ERS-2 interferogram was corrected by

using the hindcasted APS resulting from di�erent input sources. By doing so,

the radiosonde related residual image shows a slope while the NWP related

residual image is not a�ected by this slope. Therefore, the NWP related pre-

dicted APS �ts much better to the interferogram compared to the radiosonde

related predicted APS.

[Foster et al., 2006] demonstrated to use the MM5 high resolution NWP

to hindcast the APS, i.e. to forecast the past APS, and to compensate the

disturbing e�ect in interferograms. The MM5 model was used with a resolu-

tion of 3 km and a timing accuracy of 0.5 h with respect to the acquisition

time. This means that the hindcast time is about 0.5 hours from the actual

acquisition time. By doing so, the APS compensation bene�t was only valid

for wavelengths larger than 30 km. Unfortunately, it is not known if a higher

resolution than 3 km results in better APS compensation for shorter wave-

lengths than 30 km.

[Perissin et al., 2010] investigated the MM5 NWP model for operational

APS correction. The NWP resolution reaches from 1 km down to 500 m in the
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surrounding area of Rome. The corrected interferograms were derived from

ERS1 and ENVISAT data. The turbulent term could not be well resolved

by the MM5 model while topography related water vapour distributions have

been found quite in accordance with the interferograms. However, the authors

state that the MM5 model was not yet ready for operational APS compensa-

tion due to the problem with turbulent water vapour distribution.

[Gong et al., 2010] investigated the performance of the WRF model for APS

compensation. The signi�cant in�uence of the WRF parametrization was re-

vealed. To be exact, the count of vertical model layers and the spin-up time

were identi�ed as very important setup properties. Radiosonde data and In-

SAR data from ENVISAT ASAR were compared to WRF model runs.

A structure function comparison between predicted APS and the InSAR shows

a mismatch that could be explained by the diverse resolution of the data

sources. That is described later in 5.2. The best possible spin-up time is

not provided by the paper but can be found in 5.1.

[Nico et al., 2011] used the WRF model to hindcast the APS for the Pico

Island volcano and over Lisbon. It turns out that the spatial lower frequency,

starting from several km, can be predicted very well and used to correct the

interferograms derived from Envisat-ASAR data. The remaining phase resid-

uals have a Gaussian distribution and it is stated that the standard deviation

is close to typical InSAR phase noise. Unfortunately, it is not explained what

typical phase noise means, i.e. it could still include atmospheric related resid-

uals.

[Perissin et al., 2011] compared di�erent water vapour estimates against each

other, derived from the MEdium Resolution Imaging Spectrometer (MERIS),

GPS and MM5. It is stated that the absolute amount of water vapour esti-

mates are similar. However, the accuracy is not good enough to compensate

the spatial variability of APSs observed in interferograms. Nevertheless, NWPs

seem to be promising to hindcast long wave water vapour distributions that

con�rms the conclusion of [Nico et al., 2011]. The best short wave performance

was derived by GPS. Unfortunately, the GPS technique is based on GPS sta-
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tions and is therefore limited by their spatial coverage.

[Pierdicca et al., 2011] compared di�erent ground based (microwave ra-

diometers, radiosoundings, GPS) and spaceborne observations (AMSR-E,

MERIS, MODIS) of columnar water vapour with NWP model runs in Central

Italy during a 15-day experiment. The integrated precipitate water vapour of

the di�erent observations show a signi�cant consistency with the NWP model

runs. However, two open issues are mentioned. First, the optimisation of high

resolution NWP models for APS compensation is missing. That means, an al-

gorithm is missing, that maximizes the consistency between the hindcast and

the interferogram to compensate the APS as much as possible. Second, the

assimilation of interferograms into NWP models is missing, too.

In fact, there is a synergy between both issues which is described in section 5.3.

[Gong et al., 2013] investigated the operational High Resolution Rapid Re-

fresh over the Alaska region (HRRR-AK) model performance for APS correc-

tion. The model is based on WRF and tuned for the climatic situation present

in Alaska. Radiosonde data were compared to model runs. The authors came

to the conclusion that the HRRR-AK model shows a better performance in

winter compared to the summer time with an factor of two of the residual

standard deviation. This is not surprising, since the water vapour content

causes the greatest variability of the APS and it is much lower in winter than

in summer time. Further, they state that InSAR data can be corrected with

residual errors of about 20 mm.

[Foster et al., 2013] investigated the hypothesis, that a �nal assimilation of

weather data improves the APS correction of interferograms. The Meteoro-

logical Assimilation Data Ingest System (MADIS) data, GPS delay estimates

and water vapour products from the Geostationary Operational Environmen-

tal Satellite (GOES) were assimilated to improve the hindcast over the test

area around Mount St. Helens (Amboy, Washington, USA). They came to the

conclusion, that the APS correction ability can be improved slightly if GPS

time delay data are assimilated additionally to MADIS. On the contrary, the

APS correction ability becomes worse if GOES satellite data are assimilated
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too. This illustrates that the assimilation process is not straight forward. How-

ever, the author states it might be possible to signi�cantly improve the APS

correction abilities if more spatially dense meteorological data are available.

[Jung et al., 2014] used the WRF model to hindcast the APS and to correct

the interferograms for a persistent scatterer analysis of the Kirishima volcano

cluster. This made it possible to reduce the height correlated APS e�ect, the

so-called strati�cation e�ect. The PSI estimate with the initial APS correction

�ts much better to a ground truth GPS measurement than the PSI estimate

without the initial correction. This demonstrated the practical application of

NWP models for APS correction, especially to correct the strati�cation e�ect.

[Pichelli et al., 2015] demonstrated that interferograms and Edium Reso-

lution Imaging Spectrometer (MERIS) data can be assimilated by the MM5

model using a 3DVAR technique. Radio soundings, meteorological radar, and

raingauge observations were available as ground truth data. The authors came

to the conclusion that the weak to moderate precipitation forecast quality can

be improved while it had an negative e�ect on convective cells at the subgrid

scale.

[Gong et al., 2015] describes a statistical framework that uses predicted APS

to derive statistical properties in order to support the time series analysis.

Therefore, the variance of the simulated APS is computed. A conclusion of

the paper is, that the predicted APS is usually underestimated by WRF.

The underestimation results from the diverse resolution of the NWP and the

interferogram which is described in detail in section 5.2.



Chapter 5

Summary of results

The NWPs provide information about the atmospheric states during SAR ac-

quisitions. This information is then mapped into corresponding delay maps

which are then used to correct interferograms derived by SAR data. Some

questions and problems arise which are investigated in this work. First, a

NWP needs time to build up structure and to overcome initial imbalances.

How long this takes and how these imbalances disturb the delay map was un-

known. Second, it was unknown whether the predicted delay map frequencies

re�ect the reality. Third, NWPs have uncertainties which have to be consid-

ered.

These topics are addressed in the following full-paper peer reviewed publica-

tions

1. [Ulmer and Balss, 2016] Spin-up time research on the weather research

and forecasting model for atmospheric delay mitigations of electromag-

netic waves published in Journal of Applied Remote Sensing

2. [Ulmer, 2016] On the accuracy gain of electromagnetic wave delay pre-

dictions derived by the digital �lter initialization technique published in

Journal of Applied Remote Sensing

3. [Ulmer and Adam, 2017] Characterisation and improvement of the struc-

ture function estimation for application in psi published in ISPRS Jour-

nal of Photogrammetry and Remote Sensing

4. [Ulmer and Adam, 2015] A synergy method to improve ensemble weather

predictions and di�erential sar interferograms published in ISPRS Jour-

44
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nal of Photogrammetry and Remote Sensing

and result in this cumulative dissertation. An overview of the �ndings are given

now. However, the interested reader is redirected to the original publication

for further details and the methodology used to derive the results.

5.1 Spin-up time and initial imbalances

Two publications investigate the spin-up time and a technique to reach a bal-

anced state of the initialisation faster.

5.1.1 [Ulmer and Balss, 2016] Spin-up time research on

the weather research and forecasting model for at-

mospheric delay mitigations of electromagnetic wa-

ves published in Journal of Applied Remote Sens-

ing

After initialisation, the models need time to derive a physical valid state. This

is called the spin-up time, and it a�ects delay predictions. Figure 5.1 illustrates

the derived accuracy related to the forecast duration and shows that the best

accuracy is achieved by the 12th forecast hour. This positive impact of a 12-

h spin-up time on delay mitigation has been reported in [Ulmer and Balss,

2016]. Hence, four independent experiments are considered, revealing the best

accuracy in the case of 12-h predictions and showing the best consistency of

spatial frequencies. The results of the four experiments are now presented.

The reader interested in a more detailed description of these experiments is

referred to [Ulmer and Balss, 2016].
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(a) (b)

best spin-up time I

Figure 5.1: This �gure shows the derived accuracy as a function of the duration

of the prediction. The initialisation weather data form the starting point of

the forecast and therefore refer to the zero forecast hour. The best spin-up

time is marked by I and reached by the 12 hour forecast time. This means

that the best delay reduction is achieved by using initialisation data referring

to the 12-hour time before the actual SAR acquisition. A detailed explanation

is published in [Ulmer and Balss, 2016].

Global Navigation Satellite System Experiment

First, global positioning system zenith path delay (ZPD) series are compared

with model-predicted ZPD series, which reports a 28 % reduction of the root

mean squared error. The histogram of the residuals show a Gaussian cen-

tered distribution, that is why the RMSE equals the standard deviation of

the residuals (see Figure 5.2). However, it is important to mention that the

downward trend within the �rst 12 hours in Figure 5.1 does not come from a

time-of-day correlated e�ect. This is true because the time-of-day-dependent

e�ect, shown in Figure 5.3, indicates an upward trend within the �rst 12 hours.

The observed RMSE trends in Figure 5.3 and 5.1 are both signi�cant with a

signi�cance level of 95 %.
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advantage derived by the best spin-up time configuration I. Fourth, the APS mitigation experi-
ment illustrates the second application of I and confirms this result again.

3.1 Global Navigation Satellite System Experiment

The GNSS experiment provides the best spin-up time configuration I. For this, two RMSE fig-
ures are derived to distinguish between the day time–dependent effect and the spin-up time–
dependent effect.

3.1.1 Time of day–dependent root mean squared error

All in all, 39 days were simulated. As shown in Fig. 6(a), the 6-h time window of Sec. 2.4 is big
enough to generate reliable statistics and small enough to see daily trends.

The following describes the significance of the derived RMSE figure; the histogram of the
residuals zgðtÞ − zaðtÞ is shown in Fig. 5. It shows that the residuals follow a Gaussian-centered
distribution. Consequently, the RMSE equals the sample standard deviation s of this distribution.
Commonly, the sample standard deviation s is close to the real standard deviation. The confi-
dence interval u is an estimate of the interval that inherits the real standard deviation to a given
confidence level (1 − α) and is given as

EQ-TARGET;temp:intralink-;e008;116;328u ¼

2
64s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂

χ2ð1−α
2
;n̂Þ

vuut ; s

ffiffiffiffiffiffiffiffiffiffiffi
n̂

χ2ðα2;n̂Þ

vuut
3
75; (8)

where n̂ equals the number of observations and χ2ðp;n̂Þ is the p-quantile of the χ
2 distribution with

n̂ degrees of freedom. In our case, n̂ is at least 1003, because each RMSE in Fig. 6(a) was derived
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Figure 5.2: This �gure shows the residual between the GNSS derived ZPD and

the hindcasted ZPD. A detailed explanation is published in [Ulmer and Balss,

2016].

(a) (b)

best spin-up time I

Figure 5.3: This �gure shows time-of-day-dependent accuracy. A detailed

explanation is published in [Ulmer and Balss, 2016].
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from at least 1003 observations. The absolute error is defined by the half width of the confidence
interval u and provides an estimate of the quality of the RMSE. For the accuracy estimation, a
95% confidence level is assumed in the following. In doing so, the absolute error of each RMSE
estimate is better than 0.87 mm.

3.1.2 Spin-up time–dependent root mean squared error

A 6-h time window is used to see the spin-up time effect in Fig. 6(b). Accordingly, each RMSE
estimate in this figure was derived from at least 284 observations. During the first 12 h, the
RMSE estimates are below 15 mm; thus, the error is better than 1.2 mm in this time slot.
Of course, the daily trends are also included in Fig. 6(b). Figure 6(a) is generated such that
it is comparable to the first 24 spin-up time hours of Fig. 6(b). This means that the used
time window for the RMSE computations of Figs. 6(a) and 6(b) is the same for each correspond-
ing point. In Wettzell, an accuracy increase of about 28% (RMSE goes down) is visible within
the first 12 h. This is significant because the RMSE decrease is about 4 mm, whereas the error is
below 1.2 mm. This effect is related to the spin-up time because the time-of-day–dependent
RMSE goes up.

3.2 Absolute Ranging Application

For the absolute ranging technique, the position of a corner reflector is measured within an SAR
image, which is influenced by the atmospheric path delay. For improved estimates of the position
of the corner reflector in SAR images, the atmospheric delay is predicted from WRF and is used
to correct SAR signals. A more precise prediction of the atmospheric delay is equivalent to a
more precise estimate of the corner reflector position.

A total of 46 radar acquisitions of the TerraSAR-X (TSX-1)/TanDEM-X (TDX-1) satellites,
covering different geometries, were used to derive the bias and the standard deviation of the
estimated position. The 5- and the 11-h predictions of WRF provide an accuracy of −24.0�
27.6 mm and −24.0� 21.9 mm, respectively. The bias remains stable, whereas the standard
deviation goes down for the 11-h prediction. Due to the small accuracy gain and the relatively
small sample count (n ¼ 46), the improvement is only significant for a confidence level of 0.7.
Nevertheless, the accuracy increase of about 21% confirms the observation of the first experi-
ment. Further, the benefit of knowledge about the intersection point I is demonstrated. The main
advantage of the 11-h prediction lies in an outlier correction caused by erroneous precipitation
prediction. The range offsets corresponding to the outlier are highlighted by the red circles in
Fig. 7. Jankov et al.15 investigated the precipitation depending on the spin-up time and came to
the conclusion that too-wet predictions are characteristic for the 6-h spin-up time. A 12-h spin-up
time reduces this bias, such that the 11-h prediction performs better for this technique.
Accordingly, the authors assume that the region for the 12-h intersection point I can be gen-
eralized if similar conditions are present, i.e., in temperate climate regions with high quality
initialization data.
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Figure 5.4: Absolute range displacement for (a) the 5-h prediction and (b)

the 11-h prediction. A detailed explanation is published in [Ulmer and Balss,

2016].

SAR absolute ranging technique experiment

Second, for the absolute ranging technique, the position of a corner re�ector is

measured within an SAR image, which is in�uenced by the atmospheric path

delay. For improved estimates of the position of the corner re�ector in SAR

images, the atmospheric delay is predicted from WRF and is used to correct

SAR signals. A more precise prediction of the atmospheric delay is equivalent

to a more precise estimate of the corner re�ector position.

The SAR absolute ranging technique as an application of the delay prediction

reports a 21 % standard deviation decrease of position estimates. Here, the

residuals show a bias, whereby this bias remains stable for di�erent forecast

durations. The unchanged bias behaviour is expected since the �rst experiment

shows a centered Gaussian distribution. However, this experiment shows an

improved outlier correction by using a 11 hour prediction rather than a 5 hour

prediction resulting from the fact that WRF predictions within the �rst 6 hours

are too wet [see Jankov et al., 2007]. The range o�set, caused by erroneous

precipitation is highlighted by the red circle in Figure 5.4 (a) whereby this

outlier is corrected by using a 11 hour prediction shown in Figure 5.4 (b).
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Spatial frequencies experiment

Third, a comparison of spatial frequencies between APS predictions and inter-

ferograms shows a closer consistency using a 12-h rather than a 6-h spin-up

time. An example of an interferogram and the corresponding APS predic-

tion is shown in Figure 5.5. The interferogram and the predicted APS are

transformed into the wavelet domain the spatial frequencies to be analysed.

Di�erent wavelet domains provide di�erent spatial frequencies and act like a

�lter in our approach. Frequencies below the NWP resolution are �ltered out

in order to keep only those frequencies for comparison that are resolved by the

interferogram as well as by the predictions. The log variances of the wavelet

domain coe�cients are used to derive scatter plots shown in Figure 5.6. The

6-h prediction shows a structural over- or underestimation of the variances

because the dots lie beneath or on top of the red line. This is not the case

for the 12-h prediction, which illustrates the advantage of the longer spin-up

time and is consistent with the kinetic energy spectra investigation [see Ska-

marock, 2004]. Additionally, the linear relationship is close to 1 in both cases

but slightly better for the 12-h predictions.

APS mitigation experiment

Fourth, APS mitigation in interferograms as an application of APS prediction

is twice as good with respect to the 12-h spin-up time as with the 6-h spin-up

time. Therefore, the same interferograms of the last experiment were corrected

by the predicted APS of the 6-h and the 12-h prediction. The covered area is

east of Mexico City, and it is known that this area has no linear subsidence

[see Chaussard et al., 2014]. The interferometric digital elevation model error

signal is related to the spatial baseline, which varies from 8.1 to 45.3 m. Conse-

quently, the standard deviations of the interferograms Φi with small baselines

are mainly related to the APS. However, the predicted APS of the NWP has

a much lower spatial frequency than the digital elevation model error. There-

fore, the derived signal reduction is independent of the high-frequency digital

elevation model error, which is present in interferograms with large spatial

baselines. The standard deviations of the residuals Φ̂6
i and Φ̂12

i are presented

in Table 5.1. On average, the APS mitigation reduces the APS disturbance by
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3.3 Spatial Frequency Comparison

For the spatial frequency comparison, four short-term interferograms of Mexico City derived
from Sentinel-1 data are compared with the predicted APSs (a sample is presented in
Fig. 8). To do so, the predicted distance deviations zaðtÞ were computed for each range-azimuth
position ~z0 of the interferogram. For this application of APS prediction,~zs denotes the position of
the SAR satellite. A limitation of the wavelet transform is that the number of pixels has to be a
power of two with respect to the width and the height of an image. Therefore, only a 149 km ×
143 km clipped section of the interferograms are compared. For the predicted APSs, the sim-
ulation duration of about 6 and 12 h allows the model to spin-up, i.e., to generate structure while
a 900-m horizontal resolution is used. The utilized wavelet is provided by Selesnick27 of length
12 with three vanishing moments and with a specified degree of three, because it estimates the
Hurst exponent H of the synthetic data at best in preliminary tests. Sample variances of domains
representing larger spatial frequencies than the NWP resolution, of the predicted APS, and of the
interferogram are compared to each other. In doing so, high-frequency signals like the digital
elevation model error, which could disturb this comparison, are not considered. The resulting
scatter plot with respect to different scales and orientations is shown in Fig. 9. The linear

Fig. 8 (a) The interferogram of the acquisitions December 2, 2014, and November 8, 2014, east of
Mexico City and (b) the corresponding predicted APS using a 12-h spin-up time.
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Figure 5.5: (a) The interferogram of the acquisitions December 2, 2014, and

November 8, 2014, east of Mexico City and (b) the corresponding predicted

APS using a 12-h spin-up time. A detailed explanation is published in [Ulmer

and Balss, 2016].

3.3 Spatial Frequency Comparison

For the spatial frequency comparison, four short-term interferograms of Mexico City derived
from Sentinel-1 data are compared with the predicted APSs (a sample is presented in
Fig. 8). To do so, the predicted distance deviations zaðtÞ were computed for each range-azimuth
position ~z0 of the interferogram. For this application of APS prediction,~zs denotes the position of
the SAR satellite. A limitation of the wavelet transform is that the number of pixels has to be a
power of two with respect to the width and the height of an image. Therefore, only a 149 km ×
143 km clipped section of the interferograms are compared. For the predicted APSs, the sim-
ulation duration of about 6 and 12 h allows the model to spin-up, i.e., to generate structure while
a 900-m horizontal resolution is used. The utilized wavelet is provided by Selesnick27 of length
12 with three vanishing moments and with a specified degree of three, because it estimates the
Hurst exponent H of the synthetic data at best in preliminary tests. Sample variances of domains
representing larger spatial frequencies than the NWP resolution, of the predicted APS, and of the
interferogram are compared to each other. In doing so, high-frequency signals like the digital
elevation model error, which could disturb this comparison, are not considered. The resulting
scatter plot with respect to different scales and orientations is shown in Fig. 9. The linear

Fig. 8 (a) The interferogram of the acquisitions December 2, 2014, and November 8, 2014, east of
Mexico City and (b) the corresponding predicted APS using a 12-h spin-up time.
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Fig. 9 Scatterplot of variances of wavelet domains between interferograms and simulated APS
with (a) 6-h spin-up (b) and 12-h spin-up.
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Figure 5.6: Scatterplot of log variances of wavelet domains between interfer-

ograms and simulated APS with (a) 6-h spin-up (b) and 12-h spin-up. A

detailed explanation is published in [Ulmer and Balss, 2016].
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about 9 % and 18 % with respect to the 6-h and 12-h spin-up times, respec-

tively. The accuracy gain results from the closer frequency consistency, which

was revealed by the last experiment.

Φi Φ̂6
i Φ̂12

i spatial baseline

16.6 14.6 10.6 17.6

14.7 15.4 13.9 9.1

12.0 10.7 8.6 45.3

16.9 14.3 16.5 8.1

Table 5.1: Standard deviation in mm of the interferograms Φi, the residuals

after APS correction derived by 6 hour Φ̂6
i and 12 hour Φ̂12

i predictions and

the related spatial baselines of the interferograms in m.

5.1.2 [Ulmer, 2016] On the accuracy gain of electromag-

netic wave delay predictions derived by the digital

�lter initialization technique published in Journal

of Applied Remote Sensing

After initialisation, the model needs time to reach a balanced state, such that

�rst prediction steps contain errors. The imbalance causes false predicted

precipitation, which then a�ects the water vapour distribution resulting in

an erroneous APS map. The digital �ltering initialisation (DFI) technique

reduces these imbalances and the ZPD prediction disturbances, respectively.

The DFI technique reduces this undesirable behaviour by integrating back-

ward and/or forward in time, and removes nonphysical high frequencies by

using a digital �lter [see Huang et al., 2007]. In [Ulmer, 2016] the accuracy

gain for ZPD predictions is reported, which is achieved by this technique. For

the accuracy gain investigation, predicted ZPD time series of the WRF model

with and without DFI are compared against Global Navigation Satellite Sys-

tem (GNSS)-derived time series from 233 GNSS stations mainly located in

Germany. Two conclusions are drawn: First, the experiment con�rms that the

DFI technique improves the precipitation forecast. Second, the corresponding

accuracy gain, i.e., the bias of ZPD predictions, improves by about 13 %, but
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EQ-TARGET;temp:intralink-;e004;116;735Wi ¼ 6.4Ri: (4)

Since Rc
i < Rd

i is mainly valid and because of Eq. (4), Wc
i < Wd

i is mainly valid, where Wc
i and

Wd
i are the wet ZPD components of the common and the DFI technique, respectively.

Additionally, the hydrostatic component can be approximated by22,23

EQ-TARGET;temp:intralink-;e005;116;677Hi ¼ 10−6K1

Rd

gm
Ps; (5)

where Rd ¼ 287.053 JK−1 kg−1, gm ¼ 9.8 m∕s2 and Ps is the surface pressure in hPa. Similar
to R̂i, the surface pressure difference P̂si ¼ Pc

si − Pd
si is computed, where Pc

si and Pd
si are related

to the common initialization and the DFI, respectively. The corresponding histogram is shown
in Fig. 3(b) and displays a centered Gaussian distribution with variance of 0.05 hPa2.
Correspondingly, the hydrostatic ZPD change due to the DFI technique is negligible because
of the tiny variance and Eq. (5). Consequently, the ZPD delay differences F̂i ¼ Fc

i − Fd
i , where

Fc
i and Fd

i are related to the common initialization and the DFI, respectively, result mainly from
PWV differences R̂i. Therefore, the F̂i histogram in Fig. 3(c) has the same shape as the R̂i histo-
gram in Fig. 3(a), and Fc

i < Fd
i is mainly valid. In other words, the DFI ZPD predictions are

inclined toward larger values than the common ZPD predictions.

3.1.3 Digital filtering initialization effect on the biased zenith path delay
prediction

Up to now, it has been shown that the DFI prevents a stronger condensation of water vapor than
that of the common initialization, and results mainly in a higher ZPD prediction. The following
shows that the structural higher DFI ZPD prediction reduces the bias of common ZPD predic-
tion. Therefore, the residual Di sample means are shown in Fig. 4(a) depending on the forecast
duration. The DFI sample mean is about 13% better than its counterpart during the first hour.
This means that the bias is reduced if the DFI is used instead of the common initialization. This is
also illustrated by the residual Di histogram in Fig. 4(b). The gray-colored histogram corre-
sponds to the common initialization and the over-plotted histogram to the DFI technique.
This shows that the gray histogram is more negatively biased than the over-plotted histogram.

I do not compare the sample mean and standard deviation in time, because the accuracy is
related to a time of day which influences the prediction accuracy. This is because heating or
cooling effects are differently well presented relative to the time of day by WRF.

3.2 Significance of the Bias Difference

The following describes the significance of the sample means related to the first integration hour
in Fig. 4(a). Commonly, the sample means are close to the real means. This is expressed by a
confidence interval around the sample mean that contains the real mean. Unfortunately, this is
only true for a given confidence level (1 − α), i.e., in 100α% of test cases the confidence interval
does not include the real mean. The confidence interval is given by
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Figure 5.7: The mean and standard deviation of the residual between the

predicted ZPD and the GNSS derived ZPD with respect to the integration

hour and (b) the histogram of them for the �rst hour. A detailed explanation

is published in [Ulmer, 2016].

the accuracy gain is only valid for the �rst 4 h of the prediction. The bias cor-

rection can be seen in Figure 5.7 (a) where the absolute mean function related

to the DFI technique is closer to zero compared to its counterpart related to

the common initialisation. However, the biases are very close together after

the fourth hour of the prediction. Another illustration of the bias correction

is shown in Figure 5.7 (b), where the histograms of the residuals relating to

the �rst 4 hours of the forecast are shown. The associated centre of mass of

the DFI technique is closer to zero than with the common initialisation. The

bias correction results from a better PWV prediction. This is true because the

histogram shapes of the PWV di�erences (Figure 5.8 (a)) and the ZPD dif-

ferences (Figure 5.8 (c)), derived from the DFI and the common initialisation,

have the same shape. In contrast, the histogram of pressure di�erences show

a symmetry that is presented in Figure 5.8 (b).
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prediction. This point illustrates the average pressure tendency spin-up time of predictions
without DFI.

The following accuracy gain investigation is divided into three parts. First, it is shown that the
DFI results in a higher water vapor concentration than that of the common initialization. Second,
it is shown that this DFI characteristic leads to higher ZPD predictions and, third, that this results
in a lower ZPD bias.

3.1.1 Digital filtering initialization effect on the water vapor concentration

It is known that WRF predicts too wet forecasts during the first 6 h of integration.21 It is also
known that the threat score of precipitation forecasts is better if the DFI is used instead of the
common initialization.13 In other words, the precipitation forecasts get better if the DFI is used
instead of the common initialization. After the initialization, the model builds up clouds, i.e.,
water vapor condenses. The common initialization results in a higher cloud density and, cor-
respondingly, in a lower water vapor concentration than the DFI. This is illustrated by the histo-
gram in Fig. 3(a). Therefore, the precipitable water vapor (PWV) differences R̂i ¼ Rc

i − Rd
i of

the first prediction hour are computed, where Rc
i and R

d
i are the PWV data from the common and

the DFI technique, respectively. This histogram shows that the PWV Rd
i is mostly slightly larger

than Rc
i (Rc

i < Rd
i ), because R̂i is mainly negative and close to zero. In other words, the DFI

results mainly in higher water vapor concentrations than those of the common initialization.

3.1.2 Digital filtering initialization effect on the zenith path delay prediction

The ZPD Fi can be divided into a hydrostatic Hi and wet component Wi by

EQ-TARGET;temp:intralink-;e003;116;446Fi ¼ Hi þWi; (3)

whereHi is related to the first term andWi to the next two terms in Eq. (2). Thereby,Wi is related
to the PWV Ri by the rule of thumb16
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Fig. 3 Difference histogram between the common initialization and the DFI predictions with
respect to (a) PWV, (b) pressure, and (c) ZPD.
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Figure 5.8: Di�erence histogram between the common initialisation and the

DFI predictions with respect to (a) PWV, (b) pressure, and (c) ZPD. A de-

tailed explanation is published in [Ulmer, 2016].
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5.2 [Ulmer and Adam, 2017] Characterisation

and improvement of the structure func-

tion estimation for application in psi pub-

lished in ISPRS Journal of Photogram-

metry and Remote Sensing

The structure function (variogram) estimated on the InSAR data and on the

NWP data is a statistical characteristic which is very useful in the processing

and the analysis of the data. For example, the structure function (typically

the semivariogram) estimated on InSAR data is fundamental for the Kriging

interpolation of the atmospheric phase screen (APS) based on irregular PSI

estimates. The required parameters are the nugget, the range and the slope

of the structure function. The practical implementation has shown that the

NWP predicted structure function and the InSAR estimated structure function

based on the conventional semivariogram equation do not match as expected.

Possible straightforward explanations are wrongly estimated APSs due to an

insu�cient number of interferograms or hindcasts that fail to capture the tur-

bulent water vapour signal. However, in [Ulmer and Adam, 2017] the e�ects of

noise in interferograms and truncated resolution of the NWP on the structure

function estimation, resulting in the observed mismatch, is explained. Noise

causes a �attening of the derived function for short ranges. This can be seen

by comparing the dashed lines with the solid lines in Figure 5.9 (a). The trun-

cated resolution however resulting in a changed slope. This can be seen in

Figure 5.9 (b) by comparing the dashed lines with the solid lines. To clarify,

the truncated resolution is the resolution of the NWP compared to the much

higher resolution of interferograms. It is clear that no NWP can capture the

turbulent water vapour signal at subgrid scales. However, the mismatch of

the structure function can be easily misinterpreted that no frequencies at all

of the NWP can capture the water vapour signal correctly. In order to avoid

the mismatch, an alternative implementation based on wavelets is suggested

and demonstrated using real Sentinel-1 data. The advantage of the proposed

technique is illustrated in Figure 5.10. It compares the variance estimations
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proposed wavelet based estimation analysis is tested on the Mex-
ico City test case using Sentinel-1 data.

3.1. Experiment using synthetic data sets

In order to demonstrate the estimation effects, a noise free frac-
tal (representing the ideal APS) is generated and additionally
down-sampled depicting the hindcast coarse resolution APS from
NWP (see Fig. 3(a) and (c)). For the noise free fractal and the sim-
ulated NWP APS, the structure function plot is presented in Fig. 4
(b). Second, the noise free fractal is deteriorate by additional noise
(see Fig. 3(b)) and the structure functions of disturbed and undis-
turbed fractals are displayed in Fig. 4(a).

3.1.1. The noise issue
First, the flattening effect caused by white noise is demon-

strated and a SNR of 7.28 and a Hurst exponent H ¼ 0:7 are simu-
lated. Therefore, the fractal is deteriorated by white noise (see
Fig. 3(b) for H ¼ 0:7) and the corresponding conventional structure
functions of the noisy and the noise free fractal are compared. For
short range scales, the noise term 2r2 in Eq. (11) dominates the lin-
ear dependency term s2Hr2

X and results in a flattened structure
function. This is illustrated in Fig. 4(a) and confirms the noise
effect. In contrast, the wavelet based alternative is much less
affected by noise. A scatterplot is shown to illustrate this robust-

ness. The biasing effect would result in a bent scatterplot while a
perfect affine relationship y ¼ x and ideal correlation coefficient
R ¼ 1 reports the equality of the compared estimates. Here, the
equality y ¼ x is interpreted as perfect affine relationship. The
robustness is shown in Fig. 5(a) which compares the variance esti-
mations of the fractal and the noisy fractal. The affine relationship
y ¼ 0:94xþ 0:59 of this scatterplot demonstrates that there is no
bias which significantly disturbs the perfect affine relationship
y ¼ x. Further, the very good correlation R ¼ 0:998 between the
variance estimations of nearly one illustrates the variance estima-
tion independence in the presence of noise. To be exact, the first
two wavelet domains are dominated by noise and are for this rea-
son not considered. However, this separation of signal and noise
demonstrates the advantage of the wavelet based alternative com-
pared to the conventional structure function.

3.1.2. The coarse resolution issue
Commonly, APS with distances larger 2 km are characterised by

the Hurst parameter H � 0:7 (see Hanssen, 2001). In this demon-
stration, three fractals of size 1024� 1024 samples with Hurst
parameters 0.3, 0.5 and 0.7 are generated using the power-law
spectral technique (see Fig. 3(a) for H ¼ 0:7). They represent the
noise free APS of interferograms. The corresponding hindcast APS
from the NWP has a 8� 8 samples dimension, assuming a resolu-
tion of 10 m for the SAR acquisition and a resolution of 1280 m for

Fig. 3. Synthetic data with H ¼ 0:7 (a) noise free APS (b) noisy APS (c) down-sampled noise free APS i.e. simulated NWP.

(a) (b)

Fig. 4. Solid lines are the structure functions estimated from noise free fractals. Dashed lines illustrate the effect on the structure function estimation caused by (a) additional
noise and (b) lower resolution hindcasts. Since APS are characterised by the Hurst parameter H � 0:7 (see Hanssen, 2001), the corresponding lines are bold and red.
Theoretical straight lines (� � �) representing a Hurst exponent are plotted in the corresponding colour.
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Figure 5.9: Solid lines are the structure functions estimated from noise free

fractals. Dashed lines illustrate the e�ect on the structure function estimation

caused by (a) additional noise and (b) lower resolution hindcasts. Since APSs

are characterised by the Hurst parameter H = 0.7 [see Hanssen, 2001], the

corresponding lines are bold and red. Theoretical straight lines (- · -) repre-
senting a Hurst exponent are plotted in the corresponding colour. A detailed

explanation is published in [Ulmer and Adam, 2017].

of the fractal and the noisy / truncated resolution fractal. The a�ne rela-

tionships y = 0.94x + 0.59 and y = 1.16x + 2.9 of scatterplots in Figure 5.10

are close to the perfect a�ne relationship y = x. Further, the very good

correlations R = 0.998 and R = 0.999 between the variance estimations of

nearly one illustrate the variance estimation independence in the presence of

noise and truncated resolution. Application of the proposed structure func-

tion alternative based on NWP data are the master selection, the estimation

of the e�ective NWP data resolution, and a statistical consistency check of

the estimated InSAR APS. The comparison between real Sentinel-1 data and

hindcasted APS maps is shown in Figure 5.11. Figure 5.11 (a) demonstrates

that the water vapour signal can be captured by WRF at frequencies that are

covered by the WRF resolution. The e�ective resolution can be derived by

analyzing Figure 5.11 (b). The �rst three wavelet domains causing a bend in

this scatterplot whereas the break of slope de�nes the e�ective resolution that

is in agreement with the used WRF resolution of 900 m.
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the NWP (see Fig. 3(c) for H ¼ 0:7). This is achieved by averaging
128� 128 pixels of the fractal. The structure functions from the
simulated APS and the hindcast APS are displayed in Fig. 4(b).
The term VðXsS Þ of Eq. (19) causes an offset of the structure func-
tion which is nicely visible for H ¼ 0:5. Additionally, the term
2CovðXsS ;XsL Þ from Eq. (19) causes an overestimation (black) of
the slope for H ¼ 0:3, an underestimation (red) of the slope for
H ¼ 0:7 and confirms therefore the statistical framework.

Next, it is illustrated that the wavelet based alternative can sup-
press spatial frequencies which are not resolved by a NWP. There-
fore, the variance estimations of the fractal and the coarse
prediction are compared. The first 7 wavelet domains are skipped
and the lower resolution wavelet domains compared. The resulting
scatter plot is shown in Fig. 5(b). Again, the affine relationship
y ¼ 1:16x� 2:9 is close to the perfect affine relationship y ¼ x
and the correlation coefficient R ¼ 0:999 is very close to the ideal

correlation R ¼ 1. Both characteristics testify that there is no bias-
ing effect. For this comparison, a larger fractal of dimension
4096 � 4096 have to be considered, because otherwise too less
wavelet domains would be present. However, the ability to sup-
press unresolved frequencies demonstrates the advantage of the
wavelet based alternative analysis compared to the conventional
structure function.

3.2. Demonstration of wavelet based estimation using Sentinel-1 data

For the experimental validation of the predicted APS from the
WRFmodel, four short term interferograms (U1;U2;U3;U4) of Mex-
ico City generated from Sentinel-1 data are compared with respect
to the predicted APS (an example is presented at Fig. 6). Therefore,
the predicted APSs are computed from hindcasts which are
described in detail in Section 2.4. In this demonstration, a clipped

(a) (b)

Fig. 5. Scatter plots of the wavelet domain variances between the fractal, (a) the noisy fractal and (b) the coarse prediction. A biasing effect would result in a bent curve while
perfect matching estimates would result in an affine relationship y ¼ x and correlation coefficient R ¼ 1.

Fig. 6. (a) The interferogram of the acquisitions 2014-12-02 and 2014-11-08 and (b) the corresponding predicted APS derived by two WRF hindcasts of the
corresponding dates.
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Figure 5.10: Scatter plots of the wavelet domain variances between the fractal,

(a) the noisy fractal and (b) the coarse prediction. A biasing e�ect would result

in a bent curve while perfect matching estimates would result in an a�ne

relationship y = x and correlation coe�cient R = 1. A detailed explanation is

published in [Ulmer and Adam, 2017].

area of the full Sentinel-1 scene is considered, because the wavelet
analysis needs a 2m � 2m interferogram size wherem is an arbitrary
natural number. In this particular case, it corresponds to a spatial
area of about 149 km � 143 km and is located eastwards of Mexico
City. The date of the master scene is 2014-12-02 whereas the dates
of the slave scenes are 2014-10-27, 2014-11-08, 2014-12-14 and
2014-12-26. For the hindcast APS, the NWP has been set up to a
900 m horizontal resolution. The utilized wavelet provided by
Selesnick (2002) is of length 12 with three vanishing moments
and with specified degree of three. It best estimated the Hurst
exponent H of the synthetic data in previous tests. The first three
wavelet scales were skipped, which match a resolution of 429 m
in our case. Sample variances of the remaining wavelet domains
of the predicted APSs and the interferograms (U1;U2;U3;U4) are
compared with respect to each other. The corresponding scatter
plot based on different scales and orientations is shown in Fig. 7
(a). The slope of the linear relationship is close to one and therefore
unbiased, reflecting physical correctness of the NWP hindcast and
demonstrates the advantage of this technique compared to the
straightforward variogram analysis. Furthermore, the effective res-
olution sS for the APS mitigation is measured, by skipping the first
wavelet domain scales until the linear relationship is close to one.
The relationship between a wavelet domain and its resolution is
now described. A wavelet domain represents a wavelet with a spa-
tial coverage and that coverage is doubled at each stage. The spatial
resolution Ri of the wavelet domain i is derived by

Ri ¼ 2iw0R ð25Þ
where w0 is the count of non-zero numbers of the starting one-
dimensional wavelet and R is the resolution of the DInSAR. Corre-
spondingly, the sharp curvature in Fig. 7(b) defines the effective res-
olution; in our case, 858 m.

The proposed structure function estimation has two valuable
applications in PSI. First, it enables a statistical consistency check

of the estimated InSAR APS. For this, the log(V̂ðWiÞ) of the predic-
tions and the interferogram are compared. Second, the effective
resolution of the NWP hindcast is confirmed.

4. Discussion

The wavelet based estimation of the structure function allows
estimating the physically correct fractal dimension independent
of additive noise and input data resolution. As a result, it provides

compatible estimates based on InSAR and NWP input data. For
example, in practice, the proposed technique resolves the limita-
tions of the conventional variogram estimation. The conventional
variogram estimation requires noise free InSAR data and an aver-
aging of the APS to the NWP resolution in order to provide match-
ing structure functions between InSAR and NWP.

A by-product of the wavelet based estimation is the effective
resolution of the input data. The algorithm applied on the NWP
data verifies the quality of the used weather model software, ini-
tialisation data and parameter setting. Applied on the Kriged PSI
APS data, the effective resolution is of value because the APS is esti-
mated from an irregular grid of PSs which are given by chance.
Depending on the PS density and quality, the resolution is a char-
acteristic of the actual test site.

An application of the wavelet based estimator is the master
scene selection for PSI. Based on an APS prediction from NWP data,
the domain variances of the first resolution domains can be used to
compare the impact of the actual atmosphere effect. The best
choice is the APS with the largest wavelet domain for which the
variance is below a threshold. The threshold corresponds to the
variance allowing to correctly estimate the topography update
and velocity between two persistent scatterers. The difficulty in
comparing interferograms and NWP APSs is caused partly by noise
in the interferograms but mainly by the NWP data due to the much
coarser resolution. Of course, the resolution of the NWP can be
improved, however, the computational effort becomes too large.
For example, if the desired resolution is 300 m instead of 900 m,
the temporal integration step size has to be a third of the 900 m
resolution computation. Furthermore, the grid size increases by
at least a factor of 9. Therefore, the computation for the 300 m res-
olution takes about 27 times longer than for the 900 m resolution.
Unfortunately, the benefit for APS mitigation is not clear, because
WRF uses a digital elevation model (DEM) with a resolution of a
maximum 30 arc seconds which is about 900 m. This DEM can
be exchanged by one with a better resolution but then the hindcast
becomes more unstable.

A practical implementation of the proposed technique could be
as follows. The NWP resolution is chosen depending on the compu-
tational resources and the threshold for unbiased wavelet domains
of the NWP APSs is given by Eq. (25). An example is our test case
where the effective resolution of 858 m is approximately 900 m,
which equals the NWP resolution. The effective resolution may
vary for other weather models, parametrisations or input weather
data. The proposed technique is demonstrated using Sentinel-1

Fig. 7. Scatterplot of the sample variances from different wavelet domains between the observed interferograms APSs (U1;U2;U3;U4) and the hindcast APSs. (a) First three
wavelet domains are skipped; (b) all wavelet domains are considered.
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the NWP (see Fig. 3(c) for H ¼ 0:7). This is achieved by averaging
128� 128 pixels of the fractal. The structure functions from the
simulated APS and the hindcast APS are displayed in Fig. 4(b).
The term VðXsS Þ of Eq. (19) causes an offset of the structure func-
tion which is nicely visible for H ¼ 0:5. Additionally, the term
2CovðXsS ;XsL Þ from Eq. (19) causes an overestimation (black) of
the slope for H ¼ 0:3, an underestimation (red) of the slope for
H ¼ 0:7 and confirms therefore the statistical framework.

Next, it is illustrated that the wavelet based alternative can sup-
press spatial frequencies which are not resolved by a NWP. There-
fore, the variance estimations of the fractal and the coarse
prediction are compared. The first 7 wavelet domains are skipped
and the lower resolution wavelet domains compared. The resulting
scatter plot is shown in Fig. 5(b). Again, the affine relationship
y ¼ 1:16x� 2:9 is close to the perfect affine relationship y ¼ x
and the correlation coefficient R ¼ 0:999 is very close to the ideal

correlation R ¼ 1. Both characteristics testify that there is no bias-
ing effect. For this comparison, a larger fractal of dimension
4096 � 4096 have to be considered, because otherwise too less
wavelet domains would be present. However, the ability to sup-
press unresolved frequencies demonstrates the advantage of the
wavelet based alternative analysis compared to the conventional
structure function.

3.2. Demonstration of wavelet based estimation using Sentinel-1 data

For the experimental validation of the predicted APS from the
WRFmodel, four short term interferograms (U1;U2;U3;U4) of Mex-
ico City generated from Sentinel-1 data are compared with respect
to the predicted APS (an example is presented at Fig. 6). Therefore,
the predicted APSs are computed from hindcasts which are
described in detail in Section 2.4. In this demonstration, a clipped

(a) (b)

Fig. 5. Scatter plots of the wavelet domain variances between the fractal, (a) the noisy fractal and (b) the coarse prediction. A biasing effect would result in a bent curve while
perfect matching estimates would result in an affine relationship y ¼ x and correlation coefficient R ¼ 1.

Fig. 6. (a) The interferogram of the acquisitions 2014-12-02 and 2014-11-08 and (b) the corresponding predicted APS derived by two WRF hindcasts of the
corresponding dates.
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Figure 5.11: Scatterplot of the sample variances from di�erent wavelet domains

between the observed interferograms APSs and the hindcast APSs. (a) First

three wavelet domains are skipped; (b) all wavelet domains are considered. A

detailed explanation is published in [Ulmer and Adam, 2017].
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5.3 [Ulmer and Adam, 2015]A synergy method

to improve ensemble weather predictions

and di�erential sar interferograms pub-

lished in ISPRS Journal of Photogram-

metry and Remote Sensing

NWPs are solutions of partial di�erential equations which never can be pre-

cise due to model or initialisation uncertainties. In order to deal with the

chaotic nature of the solutions, ensembles of predictions are computed, e.g.

also in climate models. From a stochastic point of view, the ensemble mean

is the expected prediction, if all ensemble members have an equal likelihood.

This corresponds to the typical assumption that all ensemble members are

physically correct solutions of the set of partial di�erential equations and that

all ensemble member initialisations are equally likely. DInSAR allows adding

to this knowledge. Observations of refractivity can now be utilised to check

the likelihood of a solution and to weight the respective ensemble member to

estimate a better expected prediction.

The synergy between ensemble weather predictions and di�erential interfer-

ometric atmospheric correction is shown in [Ulmer and Adam, 2015]. A new

method is demonstrated �rst to compensate better for the atmospheric e�ect

in DInSAR and second to estimate an improved numerical weather prediction

(NWP) ensemble mean. Practically, a least squares �t of predicted atmo-

spheric e�ects with respect to a di�erential interferogram is computed. The

coe�cients of this �t are interpreted as likelihoods and used as weights for the

weighted ensemble mean. Finally, the derived weighted prediction has minimal

expected quadratic errors which is a better solution compared to the straight-

forward best-�tting ensemble member. Furthermore, we propose an extension

of the algorithm which avoids the systematic bias caused by deformations. It

makes this technique suitable for time series analysis, e.g. persistent scat-

terer interferometry (PSI). We validate the algorithm using the well known

Netherlands-DInSAR test case (see Figure 5.12 and corresponding DInSAR in

Figure 5.13) and �rst show that the atmospheric compensation improves by
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real interferogram real interferogram

+ deformation

uncompensated APS 18.01

blind NWP 15.72

unweighted ensemble 16.04

single best-�tting 13.09 13.09

weighted ensemble 9.83 10.09

weighted ensemble (relaxed to ≈ 1) 9.04 9.36

weighted ensemble (without constraint) 8.34 8.85

Table 5.2: Root mean squared error in [mm] of non-compensated APS.

nearly 40 % compared to the straightforward technique. A comparison of the

residual APS compensations root mean squared errors can be seen in Table 5.2.

The rows list di�erent competing techniques while the columns de�ne two sce-

narios of a DInSAR without and with arti�cial deformation respectively. The

weighted ensemble techniques result always in the lowest residual error that

can be seen by comparing the rows. The arti�cial deformation that was added

to the DInSAR does not disturb the compensation a lot and that can be seen

by comparing the columns. Second, we compare our results with independent

sea level pressure data. In our test case, the mean squared error is reduced

by 29 % compared to the averaged ensemble members with equal weights.

The derived competing pressure results are shown in Figure 5.14. Figure 5.14

(a) has much more structure than Figure 5.14 (b) because the unweighted

ensemble blurs out higher spatial frequencies. An application demonstration

using actual Sentinel-1 data and a typical test site with signi�cant subsidence

(Mexico City) completes the paper. The Mexico City subsidence, highlighted

by the black circle in Figure 5.15 (b), of 25 mm/month [see Chaussard et al.,

2014] is better estimated in Figure 5.15 (b) compared to 5.15 (a). Additionally,

the vertical strati�cation e�ect, i.e. the APS correlation with height is now

completely mitigated (highlighted in Figure 5.15 (a)).
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which is a significant and large feature of the atmospheric state to
fit.

3.1.2. With deformation
In order to demonstrate the robustness of this approach with

respect to typical deformation, a subsidence signal is simulated
into the differential interferogram. Using these data, the test case

above is repeated. In column three of Table 1, the APS mitigation
improvement is always in the same order as the undisturbed
experiment. A deformation interferes with the optimal solution
since a best fit was computed including the deformation. The root
mean squared error increases only insignificantly, illustrated by
the difference between the two rows of Table 1. For completeness,
Table 2 provides the estimated coefficients within the ‘‘disturbed”
column. Practically, only very small changes of these coefficients
can be observed. The experiment data are visualised in Fig. 4.

The robustness of the estimation in the presence of deformation
improves, if exclusively the hydrostatic component is considered.
Evidently, the hydrostatic component has a different spatial char-
acteristic (much smoother) compared to the deformation signal.
In contrast, the characteristic of the wet component is of higher
spatial frequency and is consequently closer to the spatial fre-
quency of the deformation. We demonstrate this robustness with
an illustrative experiment. The starting points are the original /O

I

and with a deformation modified differential interferogram /M
I .

The APS is estimated for both (/0M
a ;/0O

a ) based on the total delay
and on only the hydrostatic delay. We assume the differential
phase is composed of deformation and atmosphere

/I ¼ /d þ /a ð39Þ
and the original interferogram is free of deformation. The simulated
deformation can now be recovered by

/d ¼ /M
I � /0M

a

� �� /O
I � /0O

a

� � ð40Þ
in cases where the deformation does not infer with the estimation
(/0O

a ¼ /0M
a ). The similarity with respect to the simulated deforma-

tion describes the robustness of the estimation. We provide the
recovered deformation phase /d for the estimation based on the
total delay (see Fig. 6(a)) and the estimation based on the hydro-
static delay (see Fig. 6(b)). A straightforward visual inspection
demonstrates the clear advantage with respect to robustness of
using only the hydrostatic delay.

Fig. 1. Illustration of test site. The outer rectangle is the finest domain of NWP while the inner rectangles illustrate the SAR coverage of the acquisitions on 3rd and 4th
October 1995. Weather stations are illustrated by yellow pins. The DInSAR image corresponds to the intersection of inner rectangles.

Fig. 2. DInSAR of 3rd and 4th October 1995 at 21:41 UTC is shown (see Hanssen
et al., 1999 for a detailed description).
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Figure 5.12: Illustration of test site. The outer rectangle is the �nest domain of

NWP while the inner rectangles illustrate the SAR coverage of the acquisitions

on 3rd and 4th October 1995. Weather stations are illustrated by yellow pins.

The DInSAR image corresponds to the intersection of inner rectangles. A

detailed explanation is published in [Ulmer and Adam, 2015].



60

which is a significant and large feature of the atmospheric state to
fit.

3.1.2. With deformation
In order to demonstrate the robustness of this approach with

respect to typical deformation, a subsidence signal is simulated
into the differential interferogram. Using these data, the test case

above is repeated. In column three of Table 1, the APS mitigation
improvement is always in the same order as the undisturbed
experiment. A deformation interferes with the optimal solution
since a best fit was computed including the deformation. The root
mean squared error increases only insignificantly, illustrated by
the difference between the two rows of Table 1. For completeness,
Table 2 provides the estimated coefficients within the ‘‘disturbed”
column. Practically, only very small changes of these coefficients
can be observed. The experiment data are visualised in Fig. 4.

The robustness of the estimation in the presence of deformation
improves, if exclusively the hydrostatic component is considered.
Evidently, the hydrostatic component has a different spatial char-
acteristic (much smoother) compared to the deformation signal.
In contrast, the characteristic of the wet component is of higher
spatial frequency and is consequently closer to the spatial fre-
quency of the deformation. We demonstrate this robustness with
an illustrative experiment. The starting points are the original /O

I

and with a deformation modified differential interferogram /M
I .

The APS is estimated for both (/0M
a ;/0O

a ) based on the total delay
and on only the hydrostatic delay. We assume the differential
phase is composed of deformation and atmosphere

/I ¼ /d þ /a ð39Þ
and the original interferogram is free of deformation. The simulated
deformation can now be recovered by

/d ¼ /M
I � /0M

a

� �� /O
I � /0O

a

� � ð40Þ
in cases where the deformation does not infer with the estimation
(/0O

a ¼ /0M
a ). The similarity with respect to the simulated deforma-

tion describes the robustness of the estimation. We provide the
recovered deformation phase /d for the estimation based on the
total delay (see Fig. 6(a)) and the estimation based on the hydro-
static delay (see Fig. 6(b)). A straightforward visual inspection
demonstrates the clear advantage with respect to robustness of
using only the hydrostatic delay.

Fig. 1. Illustration of test site. The outer rectangle is the finest domain of NWP while the inner rectangles illustrate the SAR coverage of the acquisitions on 3rd and 4th
October 1995. Weather stations are illustrated by yellow pins. The DInSAR image corresponds to the intersection of inner rectangles.

Fig. 2. DInSAR of 3rd and 4th October 1995 at 21:41 UTC is shown (see Hanssen
et al., 1999 for a detailed description).
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Figure 5.13: DInSAR of 3rd and 4th October 1995 at 21:41 UTC is shown. A

detailed explanation is published in [Ulmer and Adam, 2015].

in Fig. 9(a)). Third, the standard deviations of the differential inter-
ferograms as a measure for uncompensated line of sight effects (i.e.
the digital elevation model update, the deformation and the APSs)
are reduced and provided in Table 3. The proposed method reduces
the APS caused standard deviations by about 33 and 46 percent.

4. Discussion

In this section, our results are generalised and the impact of the
algorithm on the PSI technique is illustrated. The basic estimation
of PSI can be traced back to a time series analysis. In principle, it is
a frequency estimation problem. For the error propagation assess-
ment, a linear regression of interferometric phase versus acquisi-
tion time ti can be used instead of a frequency estimation (see
Rocca, 2004). The precision of the velocity estimation rd depends

on the number of acquisitions (N) and the interferometric phase
noise ra:

rd ¼ ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N VarðtiÞ

s
: ð45Þ

Assuming persistent scatterers with a high signal to clutter ratio are
used, the APS dominates the interferometric phase noise and the
atmosphere mitigation directly reduces ra. Our algorithm reduces
the APS standard deviation by a factor of 0.55. Assuming a test case
with an estimation precision of 1 mm per year, the estimation pre-
cision improves using compensated differential interferograms to
about 0.55 mm per year. In cases where the processing objective
is to achieve a precision of 1 mm per year, the number of scenes
can be reduced by a factor of 0:552 i.e. by about 70%. Of course, it
directly maps into a data cost reduction of 70%.

Fig. 6. (a) Recovered deformation phase /d using (a) total delay and (b) hydrostatic delay.

Fig. 7. Surface pressure prediction at October 4th of (a) WEM (b) unweighted ensemble at 21:40 UTC.

F.-G. Ulmer, N. Adam / ISPRS Journal of Photogrammetry and Remote Sensing 109 (2015) 98–107 105

Figure 5.14: Surface pressure prediction at October 4th of (a) WEM (b) un-

weighted ensemble at 21:40 UTC. A detailed explanation is published in [Ulmer

and Adam, 2015].
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5. Conclusion

The objective of this paper is to show the synergy between
ensemble weather predictions and differential interferometric
atmosphere correction. The basis is the joined analysis of two inde-
pendent data sets (DInSAR and ECMWF) which both include the
information of the atmospheres refractivity. A practical framework
is presented which enables useful applications in differential inter-
ferometry and NWP. The differential interferometry and time ser-
ies techniques benefit by a reduction of the APS by 45%. This
achievement can be transformed into improved precision or into
a data cost reduction. The presented technique is robust with
respect to deformations. The NWP benefits from improved

precision which is demonstrated by the atmosphere pressure.
The test case shows 29% improvement.

The framework applications are demonstrated using the
Netherlands test site. Due to the existence of only nearly flat ter-
rain, the atmosphere mitigation in DInSAR is based on the wet
effect and the respective timing correction. In contrast, in the pres-
ence of strong topography, the atmosphere stratification is the
dominant effect and is typically straightforward to mitigate.
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Fig. 8. Temperature prediction at October 4th of (a) WEM (b) unweighted ensemble at 21:40 UTC.

Fig. 9. Linear deformation estimations of (a) uncompensated interferograms and (b) compensated interferograms.

Table 3
Standard deviation [mm] of interferograms.

Slave dates Uncompensated APS Compensated APS

2015-10-27 16.35 10.93
2015-12-26 21.95 11.72
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Figure 5.15: Linear deformation estimations of (a) uncompensated interfero-

grams and (b) compensated interferograms. A detailed explanation is pub-

lished in [Ulmer and Adam, 2015].



Chapter 6

Discussion

The �ndings of the author's publications are now combined, with the com-

mon central goal to mitigate the APS as much as possible and keeping the

computational e�ort as low as possible. [Ulmer, 2016] reports that the digital

�lter initialization technique reduces falsely predicted precipitation within the

�rst 4 hours of the prediction while [Ulmer and Balss, 2016] reports that the

best accuracy is reached after 12 hour spin-up time. This means that the time

frame of the DFI improvement and the optimal accuracy related read out time

frame do not overlap which is illustrated by the yellow and the blue rectangle

in Figure 6.1. Correspondingly, the additional e�ort for the application of the

digital �lter initialization technique is not justi�ed. The initialization data

have a temporal sampling of 6 hour commonly. This is illustrated by the two

possible read out marks in Figure 6.1. Therefore, it is not always possible to

use a 12 hour prediction. Hence, I recommend a setting that the prediction

time lies between 6-12 hour to reach a good accuracy while keeping the com-

putational cost low. That is illustrated by the green time frame in Figure 6.1.

However, if computational power is available, then the blue illustrated time

frame in Figure 6.1 should be used.

Ensemble predictions are quite computationally expensive because a couple of

6-12 or 9-15 hour predictions have to be computed. Di�erent ensemble pre-

diction settings are possible. First, di�erent physical parametrizations of the

WRF model are possible. Second, di�erent initialization data sets can be used.

Third, initialization data sets can be slightly modi�ed. Last but not least, the

timing of a prediction can be also seen as uncertain because of wrongly ini-
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tialized convection. The ensemble members of the �rst approach describe the

uncertainties with respect to the parameter setting. The ensemble members

of the other approaches represent the uncertainties with respect to the initial-

ization data. The combination of all approaches cover the overall uncertainty

and result in a best weighted ensemble mean that �ts as well as possible the

observed APS. The computational cost to predict all these ensembles is quite

high, but the bene�t is large. In [Ulmer and Adam, 2015] it is shown that

the required number of scenes can be reduced by 70 % to reach an accuracy

of 1 mm, over an arbitrary scale, for the deformation estimation, by using

exclusively ensemble members of the �rst and the last approach. However, if

the computational cost is too large the NWP resolution can be reduced, e.g.

by omitting the nested domain with the highest resolution, by changing the

resolution ratios of the nested domains or by rede�ning the resolution of the

outer domain. This is recommended, because of the complexity of the NWP

which is at least O( 1
r3
) and the fact that most of the APS power is related to

low frequencies [see Ulmer and Adam, 2017].

If the recommended setting is applied, most of the energy of the strati�cation

e�ect, low frequency APS and other APS patterns related to well predictable

atmospheric conditions is mitigated. However, residual APS is still present due

to the chaotic nature of convection and needs to be reduced by using time series

analysis of interferometric images. This analysis can be supported by adding

the statistical characterization of the residual APS. The APS characterisation

can be derived from a single NWP as it is shown in [Ulmer and Adam, 2017].

Correspondingly, it is recommended, that the ensemble members are computed

in a lower resolution while keeping the resolution for a single prediction high.
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Figure 6.1: This �gure illustrates the di�erent �ndings of the author's publi-

cations. The yellow time frame illustrates the time where the DFI technique

improves the forecast. The green time frame illustrates the best trade-o� be-

tween computational e�ort and accuracy. The blue time frame illustrates the

time frame that provides the best accuracy.



Chapter 7

Outlook

Currently, a lot of interesting developments are in progress that have the ability

to improve the APS correction further. First, the computational power is

becoming larger and new techniques like GPU computations are implemented

for NWP. This allows the computational time to be reduced, the resolution of

the NWP to be improved or the number of ensemble members to be enlarged.

Second, new grid types are investigated for NWP. Commonly, the grids are

based on equally sized rectangles. Alternatives are for example hexagonal or

triangle based grids with varying sizes of grid elements. This is especially of

interest to adapt the resolution depending on the surface complexity or on the

area of interest. However, some problems must be solved to become applicable.

So the CFL criterion must remain ful�lled, which is why the time step size

depends on the highest resolution in the grid, which makes it unpractical for

large grids. Third, the temporal resolution of input data may become better

in future. This allows the spin up time to be better adjusted, the quality to

be improved and the computational e�ort to be reduced. Last but not least,

new remote sensing techniques allow information to be derived that have the

ability to improve the NWP quality. For example, the Aeolus mission provides

wind pro�les that can be assimilated by weather forecasts. This is especially

of interest because convection distributes water wapour and that is why it has

a direct impact on the derived APS quality.
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Chapter 8

Conclusion

The combination of NWPs with interferograms is useful for both sides: First,

the interferograms can be corrected by using NWPs. Second, the NWPs can

be improved by using interferograms. The correction of interferograms is sup-

ported by two approaches. First, by computing the best �tting APS to the

interferogram and by subtracting the �tted APS from the interferogram. Sec-

ond, by using the statistical characterization of an APS derived from a single

very high resolution NWP. The NWP resolution of the �rst approach can be

reduced to save computational power or to predict more ensemble members

for the least square �t. However, each prediction shall cover at least 6 hours,

but preferable 12 hours, to reach a balanced state and to build up realistic

structures.
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