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Abstract—Ensuring safe operation of autonomous vehicles
requires testing them including critical combinations of obstacle
configurations plus sensor and actuator inaccuracies. A method
for testing inaccuracy combinations has already been published
by the authors. This paper enhances the capabilities of the
method by automatically collecting scenarios from physical
vehicle drives that are relevant for further analysis. For such
situations, a state trace including all variables of the whole
planning and control system is stored together with environment
information. The stored data is the input for further analysis.
An implementation of this approach is demonstrated using a
simulation and a full size vehicle.

I. INTRODUCTION

As driver assistance systems become more complex the set

of possible behaviors consequently increases. Some behaviors

are explicitly undesired, like a collision with an obstacle.

Testing the system strives to ensure that such behavior does not

occur. This paper focuses on testing the planning and control

system, as it has a significant impact on the actual behavior

of the vehicle. The planning and control system receives the

obstacle map and the current vehicle state as input and has

to output commands for the motor, the brake and the steering

wheel leading to some specified behavior of the vehicle. It

plans these commands based on an abstract model of the car

and its environment. All three: the input, the reaction to the

output and the actual behavior of the car deviate from the

ideal model. The planning and control system has to cope

with these differences by putting out commands that lead to

desired behavior even in the worst case combination of these

deviations.

Testing, whether the planning and control system fulfills

this requirement is challenging, as there are many different

scenarios to be tested and for each scenario there is a number

of sensor and actuator inaccuracy combinations growing ex-

ponentially with the length of the simulation. Coping with

the exponentially large set of inaccuracy combinations has

been regarded in [1]. The effectivity of the concept proposed

in that paper depends on the right scenarios being tested.

Therefore, the present paper investigates a way to find these

scenarios. Each scenario consists of the initial configuration

of the vehicle, the obstacle distribution and potentially other

factors like the currently followed reference path. Additionally

to using requirement specifications, the present paper advo-

cates to automatically collect relevant scenarios from physical
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Fig. 1: Passing an obstacle scenario: The actually driven path

(yellow) deviates from the planned path (green) but the worst

case would have been the red path

drives performed with the target vehicle. The applied recording

mechanism allows to set up a simulation in which sensor and

actuator responses are variated for a systematic test.

Fig. 1 shows an example of a scenario that can be extracted

from a physical test drive. The green curve and the green

area are the planned path and the area the vehicle covers

when following exactly the planned path. Due to sensor and

actuator inaccuracies, the car actually follows the yellow path

and therefore almost violates the safety distance (hatched

circle) around a pedestrian (red rounded rectangle). An offline

analysis shows that with worse inaccuracies (red covered area),

the car might have actually entered the pedestrians safety

distance. Thus in the worst case the vehicle would have hit

the pedestrian.

II. RELATED WORK

Prior research includes work to extract scenarios that are

worth analyzing from different sources like

• requirements specifications,

• detailed accident information or

• vehicle test drives.

A. Requirements specifications

The first available source of information for extracting

simulation scenarios is the requirements specification. In the

Darpa challenge, the competitors were required to navigate in
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a pre defined environment. This environment was distributed

to the research team who based their simulation environments

on it. For example the simulator of [2] was able to load these

files and enhance the simulation by further details.

Other teams conduct research about simulation in the re-

quirements phase. The authors of [3] propose to analyze sce-

narios in the requirement specification phase and use Novelty

Search in order to find maximally different behaviors of the

software system.

The method proposed in the present paper includes ana-

lyzing scenarios based on the requirement specification and

additionally collects scenarios from other sources.

B. Vehicle test drives

Additionally to requirements specifications, data can be

collected in physical test drives. Automotive development soft-

ware like EB Assist ADTF1 or dSPACE ControlDesk2 offer

tools to record data from physical test drives and replay it in

an offline environment. This is one of the standard procedures

in industrial development projects. Similar techniques are

applied in research projects. The authors of [4] highlight the

ability to recreate environments in which their planning system

failed. This does not include the state of the planning system.

Their competitors ([5]) also focused on replaying and solving

situations showing defects without varying collected scenarios.

Another use case for collecting data for autonomous vehicles

in physical test drives are benchmark suites like KITTI [6].

Physical test drives are also the foundation of the method

described in the present paper. The collected data is used

to simulate different variations of the observed scenario. In

contrast, the approaches listed above are limited to replaying

the exactly same scenario.

The author of [7] tries to directly prevent unsafe trajectories

online using an abstract vehicle model. By supporting an

arbitrary simulation environment, the method in the present

paper aims to reduce the reality gap. This is also intended by

the online simulation used in [8] for identifying faulty robots.

C. Detailed accident information

Finally, scenarios from previously physically driven situ-

ations can be obtained from detailed accident information

gathered by different countries. One such data base is the

GIDAS [9] (German In- Depth Accident Study) database in

Germany. Other countries maintain similar databases, which

the project described in [10] tries to harmonize.

The authors of [11] describe how to use the GIDAS data

base for extracting information about what happened several

seconds before a crash occured. This information is then used

in a simulation in order to evaluate, whether different sensors

would have been able to detect the opposing vehicle. Based

on this method, [12] simulates the same accident scenarios

with a different sensor equipment. In order to improve the

quality of scenario reconstruction, [13] applies a Monte-Carlo

1http://automotive.elektrobit.com/products/eb-assist/adtf/
2http://www.dspace.com

analysis for a better estimation of parameters necessary for the

simulation environment.

A disadvantage about current accident databases is the small

amount of information available compared to data recorded in

test drives.

III. SCENARIO EXTRACTION

In test drives or daily usage, a vehicle can encounter

situations that might lead to an accident but do not because

the sensors and actuators perform better than the worst case.

As sensors and actuators do not deliver their worst case

performance in most cases, it is reasonable to assume that

such scenarios occur more often than actual accidents. Hence,

if such scenarios can be detected without a following accident,

many defects can be resolved before an accident occurs.

As mentioned in the previous section, reviewing recorded

data from test drives and checking it for unusual behavior

is best practice in the automotive industry. However, the

critical scenarios described above are not necessarily unusual

concerning the occurred controller errors or steering activity.

Plus, if the car moved close to an obstacle it might still

have been within the planned safety distance and thus have

behaved as specified. Finally, just from typically recorded data

it is difficult to tell, whether the car might have behaved

worse than observed provided slightly different conditions.

The goal of the concept presented in this paper is to collect

these scenarios, store information about them, reproduce the

scenario in a simulation environment and systematically check

how the system would have behaved in the presence of worse

sensor and actuator inaccuracies. The collected scenarios can

also be replayed with later or other versions of the planning

and control system.

A. Sources for scenario extraction

There are various situations in different levels of the devel-

opment process of the autonomous vehicle providing scenarios

worth further analysis. Some groups of such situations are:

• Test drives executed by developers

• Test drives according to requirement specifications

• Drives performed in a prototype testing program

• Regular usage by customers

Developers regularly drive the experimental vehicle in order

to test functions they are currently developing. The test drives

are usually less systematic than independent vehicle tests but

based on knowledge and experience that is not necessarily

available during requirements specification or test drives by

independent test experts.

The second group mentioned above are test drives based on

the requirements specification. These test drives systematically

cover the requirements and can be additionally supported by

reference sensor systems or known environment maps.

Furthermore, before the final customers use the product, a

limited set of almost final prototypes is produced and used.

These prototypes can still contain some extra devices for

gathering development data. Plus, the prototypes are used in
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a similar way as by end customers and hence create similar

data before market start.

Finally, scenarios can be gathered during usage by the final

customers in an anonymized form. Data collected from this

source cannot prevent the distribution of faulty vehicles, but

it can help eliminating defects before they lead to undesired

behavior experienced by a customer. This source is particularly

useful, as it provides the largest amounts of data.

This paper focuses on collecting scenarios in which all

sensors and actuators work properly, except for inaccuracies.

Another usage of the proposed concept is to collect scenarios

in which some sensors or actuators failed completely. Software

engineers can then analyze, whether the fail safe concept

would also have worked with different inaccuracies of the

remaining sensors and actuators. The same principle can be

applied to unexpected behaviors of other traffic participants:

Was the autonomous driving function still in control of the

situation?

For all groups mentioned above, the process for extracting

scenarios suggested in this paper consists of four stages:

1) Record all necessary data

2) Identify relevant scenarios

3) Update the error model

4) Analyze the identified scenarios

These stages are explained in the following sub sections.

B. Record data

Without the concept proposed in this paper, the typically

recorded data includes data visible at the components’ in-

terfaces. This includes the position and velocity of the car,

the applied actuator actions or the information sent over the

vehicle network, like CAN messages. This information can

be replayed in a simulation environment in order to review

how the system components behave in the exactly same

scenario. However, it is more challenging to use this data to

create modified scenarios, which is necessary for systemati-

cally analyzing the effect of sensor and actuator inaccuracies.

Therefore, we suggest to use the concept proposed in [1]

for recording data. In this concept, the whole state of the

planning and control system including internal variables is

stored and can be restored in a simulation environment. This

way, no state variable that might be important is missed. Plus,

when initializing the simulation no default values for non

stored information have to be found. Fig. 2 shows the scenario

also depicted in Fig. 1. At every marker position (small gray

circles), the state of all planning components is saved.

In the pure analysis usage of the cited concept, the saved and

loaded components are identical. For scenario extraction, the

saved and restored configurations differ in the representation

of the environment as depicted in Fig. 3. During the recorded

drive, the environment is the Physical Environment (bottom

left green box) of the car. During analysis it is a Simulation En-
vironment (top left red box). Therefore the Scenario Extractor
(bottom red box) distinguishes between saving and restoring

of the Planning and Control system (right boxes) and the

Perceived/Simulation Environment. The Planning and Control

O1

Fig. 2: Points (gray) at which the planning and control system

is saved while following the path described in Fig. 1. The dark

grey states are regarded by the analysis, as the car is close to

the obstacle.

Vehicle
Sensors

Reference
Sensors

Ground
Truth

Physical Environment

Perceived Environment

Planning
and
Control

Scenario Extractor

Planning
and
Control

Simulation Environment

Fig. 3: The software system and its environment during the

physical drive (green) are converted to a representation in the

simulation environment (red). The perceived environment can

be converted based on different sensor measurements or prior

known ground truth information.

system can be stored and restored the same way as for a pure

analysis usage. The state of the Simulation Environment has

to be computed corresponding to the perceived environment.

The main information needed for recreating the simulation

state is

• the vehicle state and

• the environment obstacle map.

The vehicle state consists of the position, the orientation,

the speed and the acceleration of the vehicle. Additionally it

includes dynamic effects like drift and more detailed prop-

erties, like for example the exact motor state. Some of this

information is not available for the scenario extraction and

some information can not be used by a specific simulation

environment. The remaining information is extracted and used

to set the simulation state. Furthermore, the environment

obstacle map is needed, which tells where the obstacles are.

There are three potential sources of this information:

2917

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 01,2022 at 19:06:39 UTC from IEEE Xplore.  Restrictions apply. 



• The vehicle sensor system,

• a reference sensor system or

• some ground truth information.

The vehicle sensor system is available in all scenarios

described at the beginning of section III. It can measure the

basic vehicle state and detect static and dynamic obstacles.

The disadvantage is that the quality including the level of

detail of the measured values is limited. The effect of slightly

wrong measurements is that a slightly different scenario will

be analyzed which might still produce valuable results. The

second source of information is a reference sensor system.

For example, prototype vehicles may be equipped with high

quality laser sensors, better differential GPS or other highly

accurate sensors. These sensor values are not available for the

tested planning and control system, but can be used for storing

the current vehicle state. Finally, for some tested scenarios, the

exact environment map is available, for example, because the

map of the surrounding building is known or the whole test

drive happened in a controlled environment. This is the most

accurate information, but available only for a limited set of the

tested scenarios. Additionally, for many locations, 3D-geodata

can be used for scenario reconstruction as suggested in [14].

The previous paragraphs regard different sources for extract-

ing environment information. Additionally, the environment

can be modeled in different levels of abstraction. For example,

the red rounded rectangle in Fig. 1 depicts a pedestrian.

This pedestrian can be represented by a complex pedestrian

simulation. Alternatively, it can be modeled as an entity that

can randomly move 2 m in any direction before the driver

assistance system reacts. This would be the same effect as a

static circle shaped obstacle with a radius of 2 m.

C. Identify relevant scenarios

Not all recorded scenarios need to be analyzed when

searching for a specific undesired behavior. For the undesired

behavior “collision with an obstacle”, scenarios need to be

considered, in which the vehicle gets close to any obstacle. In

the analysis framework proposed in [1], the same mechanism

used to identify undesired behaviors can be used for identi-

fying scenarios relevant for further analysis. For recognizing

scenarios that get close to an obstacle, the Scenario Extractor
performs a collision check between the obstacle map and the

vehicle shape enlarged by a parameterizable distance. The

distance should be chosen large enough to avoid sorting out

relevant scenarios. A larger distance leads to more scenarios

being analyzed, but not to wrong results. Being close to an

obstacle is one example of an event triggering further analysis.

If such an event is triggered, the Scenario Extractor stores the

time at which the event happened. In Fig. 2 the event occurred

in the middle of the dark gray states. The analysis will then

consider some seconds before and after this stored time. This

is depicted by the dark gray circles.

The behavior “collision with an obstacle” is a typical

analysis goal. However, other undesired behaviors can be

specified as well. For example an aborted parking attempt or

excessive steering in a non dangerous situation. Furthermore,

different triggers for identifying scenarios relevant for these

behaviors can be used. One example is the amount of steering

applied per second.

D. Update Error model

The analysis is based on an error model. For example, the

performed acceleration might happen later and with a different

intensity than requested. Both, the delay and the intensity are

limited by a parameter of the error model. The first step after

recording relevant scenarios is to check, whether the observed

behavior of the vehicle can be explained by the vehicle model

and the currently assumed error model. If not, the model needs

to be updated and scenarios analyzed based on the previous

error model need to be analyzed again.

E. Analyze identified scenarios

After recording relevant scenarios and updating the error

model, the recorded scenarios are analyzed using the frame-

work proposed in [1]. For doing this, the framework loads the

search tree built while recording the scenarios. This is possible,

because the recording step described previously stores the full

state of the planning and control system using the mentioned

framework. The states included in the search tree are put

into an “Open States” data structure deciding which states are

restored and analyzed first. This data structure can for example

be grid based. The proposed algorithm will restore each node

to a state for the planning and control system and for the

simulation environment. Then, it will command the simulation

environment to show a new kind of error pattern. After a

specified time interval, the resulting state of the planning and

control system and the simulation environment is stored and

put into the “Open States” data structure. This method allows

to efficiently test the planning and control system against

combinations of sensor and actuator inaccuracies. Further

details are explained in [1]. For the nodes already stored

during the scenario extraction, the state of the simulation

environment has to be extracted from sensor measurements.

For this process, the simulation components can set their states

based on sensor information. The analysis framework derives

this information from the measurements during the physical

test drive. For example, the vehicle model simulation can set

its state based on the position information derived from vehicle

sensors.

Additionally to analyzing the exact obstacle configuration

experienced in the physical test drive, a future step would be to

vary the extracted scenarios based on optimization algorithms

as suggested in [15].

The result of running the analysis framework is the po-

tentially empty set of sensor and actuator error combinations

leading to undesired behaviors. The software engineer can use

this information as pointed out in the next section.

IV. USING THE GAINED INFORMATION

If the analysis finds no undesired behavior, the system

could have coped with worse error combinations and no

further action is required. If it determines that some error
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Event: Vehicle moves close to obstacle

Scenario Analysis
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Fig. 4: A vehicle experiences a relevant scenario, which is

analyzed by some computing center. The results are distributed

to all vehicles.

combination could have provoked undesired behavior some

reaction is necessary: On the one hand, the problem has to be

fixed by adjusting either the planning and control system or

the error model. On the other hand, the gained information

can be useful for other vehicles. Fig. 4 depicts how the

information can be spread: Some vehicle recognizes a relevant

situation and uploads the recorded data about this situation to

a central computer cluster, which analyzes the scenario. If this

cluster determines that the encountered situation might have

been dangerous it generates a suggested counter measure. The

generation of the counter measure may happen either fully

automatically or be supported by human decisions. Reasonable

counter measures include

• updating the vehicle software,

• adapting parameters of the vehicle software

• warning of the particular geographic position, or

• deactivating the corresponding function

Updating the vehicle software or software parameters is the

solution if the situation was dangerous due to some software

defect or wrongly calibrated parameters. For development ve-

hicles, this will typically be the case. For production vehicles,

the dangerous situation might be due to the specific geographic

properties. For example a road curve might be very slippery.

In this case other vehicles should be warned of this position.

If neither a software adjustment, nor avoiding geographic

positions can avoid a significant danger, the final option is to

deactivate the corresponding driver assistance function until a

solution is found.

Additionally, the gained information can support the de-

velopment process of the next vehicle generation. Critical

scenarios can be added to a regression test suite of the

development branch. Plus, for large changes it can be checked,

whether the system still produces satisfactory results in all

previously analyzed scenarios. The tests can also be applied

to vehicles with different hardware including different vehicle

dynamics and different sensor and actuator sets.

V. EXPERIMENTAL RESULTS

The proposed system has been tested by recording a 188 s
test sequence and analyzing the data in a simulation environ-

ment. For this sequence, a full size vehicle with a planning

and control system based on [16] was used. In the first step,

the vehicle is commanded to execute the tasks depicted in

50 m

start

Fig. 5: Sequence with three consecutive moves (blue, green,

red) around some obstacle (hatched area) in which the scenario

extraction is tested.

Fig. 6: Visualization of the data recorded on a physical vehicle

and loaded into a simulation environment. The covered area of

the vehicle (yellow) never intersects with the obstacles (gray

area), but sometimes gets close to it (red circles).

Fig. 5. The hatched gray area represents the obstacle map. The

blue, green and red colored lines are the trajectory followed

by the vehicle in the first, second and third move. At first the

vehicle drives 50 m (blue dotted line) at a low speed without

any nearby obstacles until it reaches the obstacle area and

turns left (blue line). After some waiting time, it parks into

a broad parking lot (green line) and, finally, it parks into a

narrow parking lot (red line). The executed actions correspond

to a non systematic test sequence that might be executed by a

developer. The stored data requires 9.16MB hard disk storage.

Fig. 6 shows the visualization of the physical vehicle driving

sequence loaded into the simulation environment. The yellow

area has been covered by the car during the test drive. At the

depicted point in time, the distance between the vehicle and

the obstacle map (gray area) is lower than 0.4m, therefore this
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Fig. 7: Actuator inaccuracies lead to different trajectories (blue

lines) covering the yellow area and leading to a collision in

the narrow parking lot.

point in time is identified to be relevant for further analysis

(compare Section III-C). One second later is still identified

to be relevant as depicted by the red circle behind the car.

Additionally to these states two more time intervals have been

identified as relevant (red circles): One at the first left turn

and one in the narrow parking lot. For each of these time

intervals 15 s before and 5 s after the interval are analyzed

using different combinations of inaccuracies. This is depicted

by the black lines before and after the red circles.

Next, the recorded data is analyzed as explained in Section

III-E. The stored states include the correct internal states

of all planning and control components. For the controller,

this includes the current reference trajectory and the tracking

status. The planning components remember the planned path

and also the previously computed reference trajectory. Hence,

no initial state has to be specified manually and the state of

the planning and control system in the replaying environment

equals the state in the recording environment. Based on these

saved states, the framework takes 1.5 h to simulate 100.000 s
around time points that have been identified as relevant. The

blue lines in Fig. 7 represent the trajectories the vehicle

followed for different combinations of actuator inaccuracies. In

the narrow parking lot, one of these inaccuracy combinations

result in the collision depicted in Fig. 7. For the other two

situations, the algorithm finds no collision, hence the area

covered by the vehicle during the analysis (yellow) does not

intersect with the obstacle map.

VI. CONCLUSION AND OUTLOOK

In the present paper we presented a new concept for

generating test scenarios that are useful for the development

of autonomous vehicles. The method helps to monitor both

prototype and consumer vehicles. In these scenarios, the

autonomous driving system is tested against combinations of

sensor and actuator inaccuracies. This way, critical scenarios

can be detected, even if they did not results in undesired

behavior in the observed case. The concept can also be used

to mark dangerous locations for other vehicles. The proposed

method was demonstrated based on a real vehicle test and a

simulation environment.

This paper focuses on analyzing the possible effect of in-

accurate, but well working sensors and actuators on situations

collected in test drives. Additionally, the effect of sensor

failures could be analyzed. If one sensor fails, the remaining

sensors and actuators are still inaccurate leading to different

possible results. This could be investigated systematically.

Furthermore, unexpected behavior of pedestrians could trigger

a more detailed analysis, whether this might have lead to an

accident.
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