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Abstract: In the development of software-intensive systems in a vehicle, like an autonomous
driving system, defects are often only recognized during trials on the physical vehicle. In contrast
to a simulation environment, a physically executed maneuver does not offer the possibility to
pause and debug critical code sections or to reproduce and repeat faulty trials. Furthermore,
development space and capacities are limited inside the car. Therefore, it is best practice to
analyze faults observed during a physical execution offline and to reproduce faulty trials in a
simulation environment. The repetition in a simulation environment is a time consuming effort
but necessary for pushing the software component towards a state in which it showed the faulty
behavior. This paper shows an approach for executing the faulty state again in a simulation
environment by serializing the exact state of the software system and summarizes practical

experience gained by this approach.
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1. INTRODUCTION

In the last couple of years, the development of advanced
driver assistant systems up to highly-automated driving
gains more and more weight in the automotive industry.
This trend should decrease the traffic injuries and fatalities
and offer comfort to the driver and passengers of a car.
However, the complexity of automated driving necessitates
increasingly large software systems to handle all possible
situations. The growing size causes more possible errors
that can occur during the runtime and thus increases the
time invested for testing and debugging.

When developing such kind of systems, it is common
practice to first implement and test the desired behavior
of a software component within a simulation environment.
First, each software component is considered separately
and then the interaction between all necessary modules
is tested. This approach allows to pause the simulation at
any time a defect occurs in order to attach a debugger and
have a look at the internal state of a piece of software.

Unfortunately, when deploying the system to a real vehicle,
this approach is not possible anymore. This is especially
true for dynamic test cases, where the situation cannot just
be stopped or has to be repeated multiple times to find
the error. Furthermore, most of the time, the testing of
the complete system might be done by developers without
the knowledge of how to debug all the programs. Thus,
it is necessary to gather data in order to reproduce the
failure within a controlled environment by an expert, but
the question remains how much data is needed?

There are many influences depicted in Fig. 1 that might
cause the occurrence of a defect besides only the input to
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Fig. 1. Different influences on the execution of a software
component.

a software component. In a non-realtime runtime environ-
ment (which is usually used for predevelopment), timing is
a big part that might alter the internal states. For example,
results may depend on the order and time of incoming
data. This order and time is further influenced by some
operating system due to threading, file access, etc. Thus
a method is needed in order to reproduce the conditions
when the defect occurs as closely as possible and eliminate
the influence of the hardware and operating system of the
computer in the car.

We propose a framework for serializing internal states of
software components to achieve a decoupling of most of
the influences presented which lead to a failure within one
cycle of a software component.

The structure of the paper is as follows: First, we show the
state of the art approach and present approaches from re-

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2016.07.612



Pascal Minnerup et al. / IFAC-PapersOnLine 49-15 (2016) 044-049 45

cent literature to debug complex software systems in gen-
eral, or automotive functions in particular. Subsequently,
we introduce our method of serializing and deserializing of
software components and the offline test tools used to find
defects. Last, we report some practical experience gained
during an industry project applying this solution.

2. RELATED WORK

In industrial projects, failures occurring on physical vehi-
cles are mainly reproduced by recording measured sensor
values, actor commands, and debug signals emitted by
the software components. In the following, these will be
referred to as signal traces. These traces are created with
pre development tools like dSpace Control Desk!, the
harddisk recorder in Elektrobit’s Automotive Data and
Time-Triggered Framework (EB Assist ADTF)? or Bags
of the Robot Operating System (ROS) 3.

Teams researching autonomous driving for the DARPA
urban challenge (Defense Advanced Research Projects
Agency (2007)) had to cope with failures occurring in the
physical vehicle. They dealt with them by recording com-
munication data during the failure event and reproducing
the failure by replaying the data. Two of the eleven teams
explicitly describe how they reproduced failures (Bacha
et al. (2008); Patz et al. (2008)) and seven mention that
they are able to record and playback communication data
(Chen et al. (2008); McBride et al. (2008); Rauskolb et al.
(2008); Bohren et al. (2008); Leonard et al. (2008); Miller
et al. (2008); Urmson et al. (2008)) most likely also used
for reproducing failures. The remaining two teams do not
explain how they dealt with failures (Montemerlo et al.
(2008); Kammel et al. (2008)).

In a broader scope of software engineering additional tech-
niques for reproducing failures have been developed. Many
approaches are also based on recording and replaying
communication data. Clause and Orso (2007) address the
problem that communication data logs can be quite large
and take as much time to replay as it took to record
them. Therefore, they apply techniques for reducing the
required size and increasing replay speed. Zamfir et al.
(2013) work with still larger amounts of data of data
center applications and record only a reduced set of the
communication. Plus, they address some sources of non
determinism caused by network and scheduler timing. The
effect of such non determinism is increased for long replay
scenarios. Artzi et al. (2008) eliminate this problem by
storing the arguments of all methods called in an an-
notated java program. This approach works well if the
method depends mainly on its arguments. The approach of
RoBler (2013) does not depend on recorded data, but tries
to reproduce program crashes based on process dumps
and randomized test methods. Finally, Yuan et al. (2010)
infer information about execution paths for reproducing
a failure by matching emitted log messages to lines in
the source code. In a following publication (Yuan et al.
(2012)), they reduce the number of possible executions
by extending the log messages in the source code with
additional variables.

I http://www.dspace.com
2 https://www.elektrobit.com
3 http://www.ros.org/

The main drawback of recording and replaying signal
traces is, that the inputs and outputs of a software
component only give a hint on the internal states. Many
influences mentioned in the introduction in Fig. 1 are not
regarded. Thus, due to randomness and other influence
factors, the internal states of a replay may drift apart from
the previously observed run that lead to a defect.

In contrast, the method presented in this paper:

e allows to exactly reproduce the internal state of a
software component at any time

e only needs data of one time instant to reproduce an
error as it is not necessary to replay the sequence up
to this time instant

e prevents the influence of timing, by decoupling the
communication and the cyclic execution

e allows to quickly find executions that clearly lead to
an error

e needs less disk space and overhead than capturing
signal traces

3. SERIALIZING AND DESERIALIZING SOFTWARE
COMPONENTS

The procedure for transferring the state of the software
system to an offline simulation environment requires two
parts:

e A method to store and restore the state of the
software system

e An offline simulation environment to analyze the
stored software state.

This section describes the method for storing and restoring
the states of the simulation system. First the chosen
serialization format is motivated. Section 3.2 describes how
the source code is annotated for serialization, followed by
a discussion on how the development process is adoped in
section 3.3. The final section 3.4 describes when and how
the serialization is triggered.

3.1 Choosing the serialization format

Storing the state of a software component means to serial-
ize it. There are several widely used formats for serialized
data. For example, Sumaray and Makki (2012) list “XML,
JSON, Thrift, and ProtoBuf”. For these formats, there
are tools for different programming languages to create
serialized data. The debugging approach described in this
paper has been applied to a component written in C++.
Therefore, the selected format has to be supported by
tools available in C++. Furthermore, the whole software
component is more complex than the data usually trans-
ferred over a network connection. Typical tools for creating
xml or json files require to explicitly set or read every
single data item. Plus, methods for reading and writing
potentially hidden information have to be implemented.
Google Protocol Buffer* additionally requires to write a
separate specification of the serialized data. This would be
difficult to maintain for a whole software component. In
contrast, boost serialization supports complex and nested

4 https://developers.google.com /protocol-buffers/
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data structures. It is designed for persisting data struc-
tures and recreating them in “another program context” ° .
In our case, the stored data structure is the entire planning
component considered in this paper.

Using boost serialization, any C++ class can be serialized
using the command:

Listing 1: Serializing a C++ class

1 std::stringstream ss;
2 boost::archive::binary_oarchive oa(ss);
3 o0a << planning_component;

In this and the following examples, “planning_component”
is an instance of the class “PlanningComponent” that is
serialized.

In order to make this command work, the serialized
software components need to define boost serialization
methods. These methods are explained in the next sub
section.

3.2 Annotating the source code

Boost serialization offers three options for providing seri-
alization methods for C++ classes:

e Defining serialization methods separately of the class,

e defining serialization methods in the header files, or

e declaring serialization methods in the header files but
defining them in a separate file.

For serializing a planning component, the third method
is most suitable. The first method requires no changes
to the original C++ class. However, it does not allow
serialization of private data members and can therefore
not be used for all planning classes. The second method
results in little implementation effort, but significantly
increases compilation time and the length of the header
files. This decreases code readability, which should not
be necessary for adding debug information. The third
method declares serialization methods in the header files,
but defines them in a separate file. This way only three
lines of code need to be added and compilation increases
only negligible. Thefore, we chose it for serializing the
planning component.

The three lines of code consist of including a header file,
declaring the class to be exported using a boost macro and
declaring the serialization method using a custom macro
that can be expanded to:

Listing 2: Annotation of the classes to be serialized

1 friend class boost::serialization::access;
2 template<class Archive>
3 void serialize(Archive & ar, const uint32_t version);

This method can then be implemented in a separate cpp
file. Its body is basically a list of member variables of the
annotated class.

Finally, there are some components of the software system
that should not be serialized because they depend on
the current execution environment. For our software, this

5 www.boost.org/libs/serialization

is the case for the logger and the visualization. Plus,
for the clock and the communication middleware some
information is serialized, but the deserialization depends
on the environment. For example, on the real car, the
clock is based on the system clock. During serialization,
the current time of the clock is stored. When deserializing
it in a simulation environment, the time is restored in
a simulated clock. For the communications middleware,
unprocessed messages are also serialized.

3.8 Development process

After creating the initial serialization code, it has to be
maintained in the development process. If class members
of the system’s components are added or removed, the
serialization method has to be adapted as well. This causes
two challenges:

e Compatibility between different versions of the plan-
ning system
e Incorrect serialization functions

Boost serialization addresses the first challenge by a ver-
sion attribute. This attribute allows to serialize an early
version of a component and deserialize it to a later version.
In particular, this is useful for checking, whether some
system state provoking faulty behavior in an early version
still produces this behavior in the improved version of a
component.

The second challenge to cope with are incorrect serializa-
tion functions. Defects in serialization functions can be
categorized into two classes:

e Defects leading to crashes of the serialization function
e Defects leading to incomplete serialization

The first class of defects reveals itself and therefore leads
only to limited loss of logging data. The second class
of defects is more difficult to detect, as the only visible
result might be different behavior of the original and the
deserialized version of the system component. In order
to detect these defects a test suite can compare the
behavior of the autonomous driving system with and
without serialization. For both classes of defects, the
effect is limited, as they are typically unrelated to the
phenomenon to be analyzed.

3.4 Triggering Serialization

In our project, three different triggers for serialization can
be set up:

e manual trigger for serialization,
e serialization each time, an error message is logged
e serialization before each cycle

The manual trigger can be used to store a state that a
test driver considers worth further analysis. For example,
without an apparent reason, the car might refuse to
continue driving. Instead, if the system recognized that
something does not work, the logged error message can
be used as a trigger. This is particularly useful to find an
example of an already known error pattern. For example
situations in which the planning component is unable
to find a path. In practice, serialization is performed
just before the cycle is executed. If no error occurs in
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the cycle, the serialized data is discarded. This way the
exact situation in which the error occurs can be repeated.
Finally, serialization in each cycle means that the serialized
data is never discarded. This setting allows to trace back a
faulty system state to the point in time in which it became
faulty. This setting produces a larger amount of data but
still less than a signal trace.

In either of the three triggers for serialization a software
engineer notices that some behavior of the vehicle needs
further investigation and files a ticket in a bug tracking
system. To these tickets they attach the corresponding
serialized software components.

4. OFFLINE SIMULATION

The serialized software components can be reconstructed
in either a standalone environment for a single software
component or in a simulation of the whole planning and
control system.

4.1 Trajectory planner debugging environment

We mainly use a standalone environment for reconstruct-
ing a serialized software component of the Trajectory
Planner. Fig. 2 shows a screenshot of this application.
The inputs can be defined using a graphical user interface.
In the main area of the window the Trajectory Planner
visualizes its results using the following concept. Each
software component uses a logging and a visualization
interface to emitting information about its computations.
This visualization interface is implemented differently de-
pending on the current execution environment. The stan-
dalone environment provides an own implementation of
the visualization interface. In the standalone environment,
the user can accurately control the inputs of the Trajectory
Planner including the time of the simulated clock and
trigger the execution of another cycle. On the real car
the Trajectory Planner is typically executed using a speed
optimized release build. The same planner is deserialized
in the debugging environment using a debug build. Due to
the controlled environment and the debug compilation, the
software engineer can step through each line of code of the
Trajectory Planner execution using standard debugging
software. If the reason for further analysis of this particular
state is an error message that has been logged, finding the
problem is particularly simple. In this case, the software
engineer adds a break point to the corresponding line of
code producing the error message and analyzes the state
of the component when the debugger hits the break point.

4.2 Full simulation

Some cases require to execute the particular situation
in a full analysis. For example, if the deviation between
the planned path and the driven path is unusual high it
can be relevant to analyze whether known inaccuracies of
sensors and actuators that are modeled in the simulation
environment can explain these deviations. In this case,
instead of a single component, the whole planning system
is deserialized in the simulation environment. Physical
systems like the vehicle itself and black-box software
components have to be replaced by sufficiently accurate
models. Minnerup et al. (2015) describe this process based
on the methods published by Minnerup and Knoll (2014).

.......

Fig. 2. Deserialized planner in a standalone environment.
The main area visualizes the planned path and the
current position known by the planner.

5. PRACTICAL EXPERIENCE

We apply the debugging concept presented in this paper
in a project with Audi. In this project, we develop a
planning and control system that is integrated in several
sub projects, for example an autonomous parking garage
(Lenz et al. (2014)). For each of these projects there is an
integration team that executes the planning and control
system developed by our team together with components
from other teams. If the integration team encounters some
undesired behavior, it files a ticket in a bug tracking tool
and attaches the log messages produced by the planning
and control system. Several problems were solved by re-
executing the problematic situation based on a serialized
planning component. Section 5.2 describes one such prob-
lem. Section 5.1 shows that the size of serialized software
components is smaller than the size of ADTF signal traces.
For some tickets the serialized planning components were
also useful for understanding that the planning component
worked correctly.

Additionally to the bug reports we perform own tests on
the physical vehicle. For each test day, we store the serial-
ized planning components and analyze unusual behavior.
This unusual behavior includes not only faulty behavior,
but also patterns that we did not expect and need to
understand. This leads to finding defects that affected the
performance of the planning components but did not lead
to obviously wrong behavior.

5.1 Stmulation Results

The first test performed for validating the concept pre-
sented in this paper is to run it in a simulation envi-
ronment. During the simulation, the Trajectory Planner
is serialized each cycle and all inputs of the Trajectory
Planner are stored as a signal trace using the ADTF Hard-
diskRecorder. In a seven minute simulation, the Trajectory
Planner executed multiple parking maneuvers. For this
time, the ADTF signal trace required 812 MB of storage,
while all serialized Trajectory Planning components re-
quired only 10 MB. The maximal size of a single Trajectory
Planning instance was 0.016 MB. Hence, this experiment
demonstrates that the serialization concept requires less
storage than a signal trace, although it provides more
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information for debugging purposes as shown in the next
sub section. The computation time necessary for serializing
a local planner was always less than 1 ms.

5.2 Case Study

Figures 2-6 illustrate the process of tracing back a soft-
ware failure to a fault and fixing this fault. During an
integration test, the integration team notices that the car
drives less smooth than usually. Therefore they send the
corresponding log files to the team developing the plan-
ning and control component for further analysis. We start
by identifying the uncomfortable driving situation in the
recorded acceleration data included in the logs and shown
in Fig. 3. It depicts the measured acceleration and the
acceleration computed by the planning component. Based
on interior system knowledge, we know that at the marked
point, this planned and measured acceleration should al-
most meet, which they do not. This difference indicates
that the planning component emits a wrong acceleration.

----Acceleration Planner
— Acceleration Measured

0.51

acceleration [m/sz]
o

16:29:25.376
time

Fig. 3. Planner assumed the wrong current acceleration:
At the marked point in time the planned and the
measured acceleration should be identical.

Analyzing the log messages written by the planning com-
ponent at the detected point in time indicates that the
planning component assumed a wrong initial acceleration
as Fig. 4 shows. The difference to the value highlighted in
Fig. 3 is due to an interpolation.

162925376 LocalPlannerfs... DEBUG

R e d,s:zanﬁsa
Fig. 4. The log message of the planning component confirm
the wrong acceleration assumption (red circle).

From the serialized planning components we now load
the one that was serialized just before the cycle emitting
the suspicious log message was executed. This file is
deserialized in the standalone environment shown in Fig.
2. It visualizes the current state of the planning component
including its current position, the current reference path
and the plan for the next seconds. In this case the
visualization does not indicate any problem.

Stepping through the execution of the planning cycle
with a debugging tool attached finally leads to the code
fragment shown in Fig. 5. The shown values of the local

variables indicate that an interpolation function does not
return the expected result. The expected interpolated
value is in between the two input values.

const fortiss::common::real scalar = (static_cast<fortiss::common::
state = it_before-»second;
state.interpolateState(it_after-»second, scalar);

Q@ [}

100% - 4
Nare Wert
F @ it_after (149099, {_pose={..} x_v=#5076174 x_acc=018526441 ...}
+ @ it_before (149089, {_pose={...} x k23076174 x acc=-0070335343 ..])

# @ state {_pose={...} x_v=2.30761 Mg acc=0.46642411 ..}

Fig. 5. The standalone environment allows to re-run the
cycle using a debug build of the planner based on
the serialized state. Using a standard debugging tool
allows to quickly find the line of code and variable
values leading to a bad acceleration interpolation.

After correcting the corresponding code fragment, the
same serialized state can be executed with the corrected
planning component. At the regarded position, the debug-
ging tool shows that the wrong behavior does not occur
anymore.

const fortiss::common::real scalar = (static_cast<fortiss::common:
state = it before-»second;
state.interpolateState(it_after->second, scalar);
2 [}
00% = ¢
Name Wert
B @ it_after (149009, {_pose={..} x v=28T0174 x acc=018526441
W @ it_before (145088, {_pose={...} x_vgf2.3076174 _x_acc=-0070335343 .3

& @ state {_pose={...} x v=2.30761 8 x acc=018526441 ...}

Fig. 6. After fixing the corresponding function, the serial-
ized situation can be repeated with a different version
of the planner showing the problem does not occur
anymore.

As this example shows, we have been able to trace back an
inaccurate error description (the vehicle acts uncomfort-
able) to a specific defect (incorrect implementation of an
interpolation function) in the planner code. An additional
unit test avoids further problems in this piece of code. Here
a signal trace would have been less useful:

e It would require significantly more time until the
planning component would have reached the exact
same state as in the vehicle,

e the error was strongly related to the timing of the
components: A few milliseconds difference let the
problem disappear,

e A signal trace would have been very large and might
not have been transferred on the internet

5.8 Discussion

The concept presented in this paper performs best for
components with significant state information. In this
case it is more useful than a signal trace. The storage
advantages compared to a signal trace are maximized if
the cycle frequency is low compared to the frequency of the
input data. Signal traces are still useful, if the change of
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a variable needs to be visualized, which is often necessary
for controller development.

6. CONCLUSION

In this paper, we have demonstrated a method for debug-
ging failures occurring during a test drive with a physical
vehicle in an offline test environment. Using the serial-
ization features of the boost C++ library we are able to
completely save and reload the system state, to reproduce
the observed error afterwards, and find a defect in the
source code.

The demonstrated strategies have been developed and
are used by our development team in an industry scale
project implementing several autonomous driving scenar-
ios on multiple test vehicles. The initial and continuing
overhead maintaining the serialization code for the whole
planning system has proven to be beneficial as tests drives
can mainly be used for data acquisition and parameter
optimization. Bug fixing can be shifted to the office.

Furthermore the development cycle is accelerated as the
maximum amount of information during a test drive is
persisted for further analysis by an expert and additional
test drives are avoided. Even timing aspects and internal
system states can be analyzed afterwards. Note that, as
also seen in the case study 5.2, logging error messages and
recording characteristic signals can be beneficial.

Currently, the serialization concept is used for the planning
components of an autonomous vehicle running on PC-like
hardware. We aim to implement a similar concept for the
control system executed on rapid prototyping real-time
hardware which brings along tighter restrictions.
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