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Abstract

Road crashes are one of the critical issues in the road transportation. The crash studies
are done to estimate the likelihood of a crash on a road section, whereas crash impact has
received relatively less attention. The focus of the most studies is to establish relationship
of crashes with the factors mainly traffic effects. The analysis of microscopic factors such as
individual driving intention/ maneuver has not received that attention due to requirement of
a large disaggregate data. Identification and prediction of driving intention is fundamental for
avoiding collisions as it can provide useful information to drivers and vehicles in their vicinity.

This study utilizes a large real traffic dataset Highway Drone Dataset (HighD Dataset)

.

collected on German Freeways. A driving intention prediction model using clustering for au-
tomatic labelling and supervised deep learning for real time prediction is introduced and val-
idated. The model is able to predict the lane change intention on an average 3 seconds before
the vehicle crosses the lane. This study introduces a new Surrogate Safety Measures (SSM)

.

to
estimate rear-end crash severity and uses it along with likelihood indicator - Modified Time
to Collision (MTTC)

.

to determine the total crash risk. This study analyzes the effects of traffic
conditions and driving intention on the estimated crash risk. The results of the study indicate
that the traffic congestion plays a significant role in increasing the likelihood and severity of the
rear-end crashes. As far as driving intention is concerned, lane changing is found to be asso-
ciated with increase in likelihood and severity of a rear-end crash during free-flow conditions.
This study is an attempt to develop a comprehensive risk estimation method and analyze its
dependence on macroscopic and microscopic factors of the crash. The utilization of large un-
labeled and disaggregate data increases the prospects of transferability of the approach and its
practical application for highway safety by researchers and practitioners.
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1. Introduction

Road crashes are one of the most critical issues in the transportation sector. According to
WHO (2018

.

), Road crashes are the number one cause of injury related deaths in the world.
This results in loss of millions of lives each year as well as incurs social and economic costs
associated with such crashes. Every year more than 1.35 million people die in road accidents
whereas between 20 million - 50 million suffer injuries and in some cases life-long disabilities
(WHO, 2018

.

). These accidents cause significant social and economic costs to the society. WHO
(2018

.

) estimated that for most countries, road crashes related costs can reach upto 3% of the
GDP and therefore countries all around the world are trying to bring down the road crash
related fatalities and injuries. For example, the European Union has adopted ”Vision Zero”
approach to eliminate the deaths and injuries in the road accidents and make European roads
safer (European Union, 2019

.

).

In case of a vehicle collision, the terms ”crash” and ”accident” are used interchange-
ably, but the term accident implies something which was accidental and not preventable. Thus,
crash is a preferred term to imply something which can be prevented, unlike accidents. Treat
et al. (1979

.

) categorized the crash causing factors under three categories namely, Human, En-
vironment and Vehicular factors. Human factors refer to the crash causes attributable due to
driver inattention, wrong maneuver, improper driving, etc. Later, Oh et al. (2005

.

) introduced
Traffic dynamics also as one of the contributing factors to the road crashes. Out of these crash
factors, Treat et al. (1979

.

) identified driver factors as the most probable cause of crashes. Even
today, 94% of the road accidents are related to human errors and bad decisions (National High-
way Traffic Safety Administration, 2016

.

).

The driver behaviour and traffic characteristics are highly dynamic factors and thus
significant from the point of view of real-time road safety. On the aggregated level, certain
traffic patterns or states can also be found to be pre-cursor to crash conditions (Abdel-Aty
and Pande, 2007

.

). Traffic state refers to characteristics of the traffic flow, speed and density
on a road segment. Oh et al. (2005

.

) argued that instabilities in the traffic state causes road
accidents and preventing such traffic conditions can help in reducing the chances of a crash.
Detection of such dangerous traffic states such as congestion can help to decide appropriate
traffic management strategies and reduce the chances of a crash. This has found applications
in Intelligent Transportation Systems (ITS) such as Variable Speed Limits and Ramp Metering
which are found to have significant safety benefits by reducing the likelihood of a crash (Abdel-
Aty and Pande, 2008

.

).

2



1. Introduction

The availability of the traffic data is crucial factor in crash studies and these studies
can be classified based on the data collection methods into three categories, 1) Epidemiological
driving studies, 2) Naturalistic Driving studies and 3) Empirical Driving studies (Fitch and
Hanowski, 2012

.

). The Epidemiological driving studies use crash databases for assessment of
crash risk. The Empirical studies are done in controlled environments with the help of simula-
tors or test track. In empirical studies, safety surrogates are used for crash risk estimation. The
Naturalistic Driving Studies (NDS)

.

are based on the in-situ driver behaviour investigation us-
ing cameras and sensors and have more validity than empirical studies (Fitch and Hanowski,
2012

.

).

Traditionally, the researchers used data from historical crash records and traffic loop
detectors to obtain road section parameters such as average speed, traffic flow, etc. These pa-
rameters are aggregated over space and time and that’s why the studies using this data are
referred to as aggregate studies (Abdel-Aty and Pande, 2007

.

, Xu et al., 2013

.

). In these stud-
ies, limited information about the pre-crash driver behaviour is available. The study of driver
behaviour has benefited from the relatively new and advanced methods of traffic data collec-
tion such as video cameras Alexiadis et al., 2004

.

, Light Detection and Ranging (LIDAR)

.

(Zyner
et al., 2018

.

, Herty and Visconti, 2018

.

), drone videography (Krajewski et al., 2018

.

, Chen, Zeng,
et al., 2017

.

), smartphones (Guido et al., 2012

.

), on-board devices (McCall and Trivedi, 2007

.

),
etc. These new methods help in obtaining detailed naturalistic driving data at disaggregate
level. The naturalistic driving refers to the driver performance and behaviour in real world
scenario. The disaggregate data has made possible to conduct traffic analysis at the vehicle
level by utilizing data such as vehicle motion, steering, braking, speed, driver’s alertness, etc.
These attributes from this data can be utilized to estimate or predict the vehicle trajectory, ma-
neuver or collision risk (Lefèvre, Vasquez, et al., 2014

.

) in immediate future for tactical and
operation driving decisions. The tactical and operational decisions are decision for short-term
or instantaneous future such as braking, acceleration, lane changing, etc. Since the the unit of
analysis is a vehicle, these study of human/ driver factors can be referred to as individual/
disaggregate studies (Abdel-Aty and Pande, 2007

.

).

The disaggregate studies play an important role in understanding and modelling the
driver behaviour under different driving context such as lane changing (Zheng, 2014

.

). This
has played a significant role in the design of vehicle safety systems and other advanced road
safety applications such as Cooperative and Autonomous driving which relies on informa-
tion about surrounding vehicle behaviour (V2V: Vehicle-To-Vehicle systems) and infrastruc-
ture (V2I: Vehicle-To-Infrastructure systems) (Andrews, 2012

.

, Özgüner et al., 2007

.

). Some of
the applications of V2V systems are intersection collision warning, lane change warning, pre-
crash sensing. The real time traffic management infrastructure is now more advanced than
ever which has applications in V2I systems such as traffic congestion, accident, road closure
warning, etc. These systems also called as intelligent safety system, enhance the safety by
increasing the driver’s situation awareness and predicting their actions (McCall and Trivedi,
2007

.

). The identification of the driver behaviour in the context of traffic dynamics and its
effect on crash risk can help in gaining further insights in the driving behaviour for appli-

3



1. Introduction

cations in real-time safety.

1.1. Problem Definition

As discussed in the previous section, the dynamic factors such as driver behaviour and traffic
conditions are important determinants of crashes. The identification of these factors is crucial
for making safe driving decisions in real-time and estimating the prevailing risk. Risk is de-
fined as the product of probability and severity of a collision for the subject vehicle (Lefèvre,
Vasquez, et al., 2014

.

). The analysis of impact of driver and traffic factors on crash risk is impor-
tant to understand the underlying interactions, in view of highly complex driving behaviours
and traffic situations.

The disaggregate data has found multiple applications in driver behaviour identifica-
tion and prediction. The driver behaviour is manifested on the road by the driving intentions.
Driving intention is the preference of one driving maneuver over the available set of driving
maneuvers. For example, Lane changing and lane keeping are the most common lateral driv-
ing maneuvers on a freeway (Gayko, 2012

.

). The study on these maneuvers usually follows
these steps: 1) Selection of maneuvers, 2) Collection of naturalistic driving data, 3) Manual La-
belling of the data in terms of maneuvers/ intentions, 5) feature extraction and formulation of
the classification problem and 4) Model building to predict the driving intentions and model
evaluation (Mandalia and Salvucci, 2005

.

, Morris et al., 2011

.

).

On one hand, availability of the large naturalistic driving data-sets has become rela-
tively easier, but the manual labeling of driving maneuvers is a roadblock towards use of large
data-sets due to associated labelling costs and time. This slows the applications of large data-
sets for driver behaviour analysis. Therefore, there is a need for unsupervised classification
which can help to automate the maneuver labeling process. Labeling of maneuvers can help
to analyze the crash risk with respect to driving intentions using a large data. This can also
help to study the interactions effects of driving intention and traffic state on crash risk which
has not been investigated much before. Data driven labeling based on unsupervised classifica-
tion also holds the promise for its application in real time prediction models with much easier
validation and transferability of results, which is difficult with manual labeling.

The crash studies use regression or a classification formulation of the risk. In either
formulation, the aim of the studies is to identify when a crash is likely to occur based on
the past crash data and the conditions prevailing at that time (Abdel-Aty and Pande, 2007

.

).
The main emphasis of the crash data based studies is estimation of the risk in terms of the
likelihood whereas crash severity has not received as much attention. This could be due to
issues related to under reporting of less severe accidents in developed countries and develop-
ing countries (Naji and Djebarni, 2000

.

), which makes the fatal/ severe accidents as the main
focus the studies. Further, the less frequency of the crashes necessitate long duration of the
data collection, which has attracted the use of micro-simulations or naturalistic driving data
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for safety evaluation via SSM

.

(Mahmud et al., 2017

.

). The SSM are the measure of the temporal
and spatial proximity of the two or more vehicles and are used to estimate a crash risk. Similar
to data based studies, SSM

.

are also mainly focused on the crash likelihood. By treating all the
likely conflicts with equal severity, this could lead to over representation of the high impact
conflicts. The SSM

.

formulations used by Ozbay et al. (2008

.

) and Chan (2006

.

) combine the
likelihood and severity factor in one indicator, but the SSM

.

to measure the severity separately
(independent of likelihood) are not found in the available literature, especially for rear-end
conflicts. Marchesini and Weijermars (2010

.

) also emphasized the need to further investigate
the traffic effects on the crash severity.Therefore, there is a need to introduce a new surrogate
for rear-end crash severity.

In view of the introduction of a fresh surrogate for crash severity and automatically
labelled driving maneuvers, there is a need to holistically determine the aggregate crash risk
and analyze its correlation with driving intention. This is identify if certain driving intentions
are associated with higher risk in a particular traffic scenario. The method to estimate aggre-
gated crash risk in terms of separate likelihood and severity surrogates is needed. This can
help to better understand the interaction effects of the traffic state and driving intention,
which have not been investigated before using a large dataset.

1.2. Research Questions, Aim and Objectives of the study

Based on the problems discussed above, there are three research questions of this study:

• Can unsupervised classification methods help to label the raw data accurately for its
utilization in predicting real time driving intention?

• How to take into account crash severity using surrogate measures for risk assessment?

• Which driving intentions and traffic conditions are more risky?

To answer these research questions, The primary aim of this study is to extract driving ma-
neuvers from naturalistic driving data to automatically label the driving data and evaluate
the labelling by building a prediction model for the driving intention. The secondary aim is
to develop a method for crash risk estimation by considering severity and then evaluate the
correlation of risk with the driving intention and traffic conditions. The research aim will be
achieved through objectives listed in table 1.1

.
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1. Introduction

1.3. Contributions

This study has attempted to make following contributions towards achieving its aims:

• Data-driven approach for unsupervised labeling of lateral driving maneuvers into lane
keeping and lane-changing from a large naturalistic driving data. The approach is envi-
sioned to reduce effort of manually labeling driving manoeuvres, in order for them to be
classified efficiently.

• An efficient real-time intention prediction using deep learning model to proactively pre-
dict lane-changing intentions.

• Development of an aggregated crash risk indicator for rear-end collision in terms of like-
lihood and severity surrogates and its application on the freeway driving data.

• Analysis of rear-end crash risk for lane changing intention and traffic congestion.

1.4. Research Framework and Thesis Outline

The research framework developed for this study is shown in figure 1.1

.

. Firstly, a prelimi-
nary study (Current chapter 1) is conducted for problem identification, framing of the research
question and objectives. Afterwards, a detailed literature review (Chapter 2) on driving inten-
tion prediction and crash risk estimation methods. The review is aimed to identify research
gaps. The is followed by methodology (Chapter 3). The first and second part of the methodol-
ogy deals with generic machine learning pipeline which is adapted for prediction of date for
driving maneuvers and identifying traffic states. The third part presents the method for aggre-
gate risk estimation by selection/ formulation of likelihood and severity surrogates to estimate
rear-end crash. The last part of methodology describes the method for hypothesis testing for
significance of traffic and intention for increased risk. Thereafter, Data collection and analysis
section (Chapter 4,5) describes the data-set used to this study and results of the Exploratory
Data Analysis (EDA)

.

. The results (Chapter 6) of the driving maneuver labeling and inten-
tion prediction model are shown and compared with the literature. Thereafter, results from
estimated crash risk and significance of intention and traffic state is presented. Finally, the
findings of the study are summarized and its applications, limitations and future research di-
rections are presented (Chapter 7).
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2. Literature Review

This chapter on literature review is aimed to comprehend the research gaps in the area of
driving intention and crash risk estimation. It encompasses definitions, state of art methods
on these topics and shortcomings faced by the researchers. The chapter starts with a brief
introduction of the concepts related to driving, methods for driving intention estimation and
prediction. This is followed by a second section on crash risk estimation wherein methods and
the tools have been discussed. Lastly, the relevant surrogates for measuring the crash risk for
a rear-end crash are discussed for identification of areas of further improvement.

2.1. Driving Intention

Driving is a skilled task which needs understanding of the environment to make suitable driv-
ing decisions. A driver perceives the environment and processes the information in the brain
to make a logical decision. FHWA (2004

.

) describes driver behaviour and decision making at
five different levels:

1. Pre-trip: Decisions made before starting a trip such as destination choice, mode choice,
departure time choice

2. Strategic en-route: Decisions made during a trip at the time scale of minutes such as
route choice. These decisions are executed at a time scale of minutes.

3. Tactical route execution: These are small and multi-part decisions executed at a time scale
of few seconds. This includes decisions such as lane changing and overtaking.

4. Operational Driving: Decisions made at near-instantaneous scale for immediate actions
during the trip such as acceleration.

5. Vehicle Control: The instantaneous decisions to control the vehicle such as steering.

The driver behaviour modelling for microscopic traffic models and real-time safety
applications is done at the tactical route execution and operational driving level (Hamdar,
2012

.

). According to Hamdar (2012

.

), the models for freeway traffic at the tactical level cor-
respond to lane changing, merging, overtaking, etc. Driver behaviour prediction at tactical
level is significant for real-time motion planning (Katrakazas et al., 2015

.

). The tactical decision
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2. Literature Review

making is also relevant for crash risk analysis since these decisions correspond to the driving
actions with consequences in immediate future (few seconds).

The vehicle motion at the tactical level consists of driving maneuvers. Lefèvre, Vasquez,
et al. (2014

.

) defines driving maneuver as ”the physical movement or series of moves requiring
skill and care”. Vehicle manoeuvres can also be understood as characterizations of a vehi-
cles motion on road with regards to its position and speed attributes (Katrakazas et al., 2015

.

).
While driving, a human or autonomous driver constantly estimates the probable maneuvers
of other drivers in order to take the decision to select the best possible maneuver. For example,
when a driver notices the turn indicators of the preceding vehicle, he will become aware of the
preceding driver’s intention to change lane or turn, and accordingly plan his manoeuvre such
as braking or steering around. Therefore, Driving intention can be defined as the maneuver
preferred by the driver over a set of available manoeuvres based on the perceived surround-
ings. According to Lefèvre, Vasquez, et al. (2014

.

), maneuver level reasoning extracts high level
characteristics which leads to reliable estimation of long-term motion and risk and also easier
to generalize.

With regards vehicle lateral control on highways, lane keeping and lane changing
are fundamental aspects of highway driving and are mutually exclusive maneuvers (Gayko,
2012

.

). Lane keeping describes the task of driving within the current lane without any intention
of leaving it. In other words, if the vehicle stays in the same lane, it will belong to the lane
keeping maneuver. On the other hand, lane changing is the manoeuvre associated with leaving
the current lane and entering into new lane. A vehicle’s manoeuvre is referred to as lane
changing if during the recorded trajectory, a full lane change manoeuvre takes place. Figure
2.1

.

illustrates a lane changing process so as to distinguish between the two classes. A vehicle is
moving straight on the highway in a specific lane, and then decides to change. At Point B, the
vehicle starts executing a lane change maneuver which is described by its lateral movement. At
point C, the lane changing event occurs as the vehicle crosses from one lane to the other, while
at point D, the driver completes the lane change process returns to lane keeping. Therefore,
the trajectory of the vehicle consists of two lane keeping stages (AB and DE) and one lane
changing stage (BD). A lane change is fully executed if all points (i.e. B, C and D) lie within the
observed section of the highway.

Figure 2.1.: Illustration of lane keeping (AB and DE) and lane changing processes (BD) of a
vehicle

Execution of a lane changing requires inter-related decisions among drivers in a def-
inite hierarchy which are affected by the necessity and desirability of changing the lane in
which a vehicle is moving (Gipps, 1986

.

). Lane changes can be discretionary or mandatory

10



2. Literature Review

depending on how the driver perceives conditions on the current and target lanes as well as
environmental conditions which influence the decision of changing lanes (Ahmed, 1999

.

). The
examples of discretionary lane change can be overtaking or passing whereas the mandatory
lane change might be necessitated due to lane closures, merging, etc. During lane changing
usually the speed of the subject vehicle increases, but disturbances in the adjacent lane might
be observed e.g., if the lane change manoeuvre is aggressive (Ioannou and Stefanovic, 2005

.

).
To counteract for these disturbances, and enable safe lane changing, drivers interacting for a
lane change should be alert and attentive. However, this is not always a fact as in (Lee, Olsen,
et al., 2004

.

) it was indicated that turn indicators are used for 44% of performed lane changes.

The table 2.1

.

lists the details of the reviewed literature for the data driven intention
prediction. The study of the driver intention is studies using the microscopic data at the indi-
vidual driver or vehicle level. The microscopic data usually consists of the GPS traces (Yang
et al., 2018

.

), or vehicle sensor such as radars and cameras are used (Morris et al., 2011

.

; Özgüner
et al., 2007

.

). For this purpose, data from traffic videos or real-world driving is used to capture
the naturalistic driving. The studies by Hu et al. (2018

.

) and Woo et al. (2017

.

) used real world
vehicle trajectories extracted from the video recordings. The data-sets from traffic videos ob-
serve a limited section of a road for some time and thus capture the real world behaviour of
the vehicles driving on that road section.These data-sets are generally large and capture the be-
haviour of neighbouring vehicles and traffic interactions also. Some studies use driving data
captured by observing certain/ selected drivers over a period of time. Some of the examples
of studies using data from selected drivers are Leonhardt and Wanielik (2017

.

), Mandalia and
Salvucci (2005

.

), Morris et al. (2011

.

), and Wang, Murphey, et al. (2016

.

) with the advantages that
driver behaviour is observed for a long period of time, but it does not include interactions with
neighbouring vehicles (Fitch and Hanowski, 2012

.

). The simulated or controlled environments
such as fixed driving simulators and traffic simulation are also used to study the intentions.
In studies by Dang et al. (2017

.

), Wissing et al. (2017

.

), and Xing and Xiao (2018

.

), the vehicle/
trajectory data extracted from the simulated environment is used for intention analysis.

The driving intention prediction tasks, can be formulated as a regression or a classi-
fication problem as mentioned in table 2.1

.

. The classification formulation is mostly common
among the intention prediction. It is applied by discretizing vehicle states in terms of manoeu-
vres, such as lane changing and lane keeping, which enables faster real-time discrimination
between maneuver intentions. Sometimes, regression formulation is also combined with the
classification set-up to predict indicators such as time to lane change (Dang et al., 2017

.

; Wiss-
ing et al., 2017

.

). The trajectory prediction also uses regression formulation to predict position
and speeds values, so as to map vehicle motion on the road as in trajectory prediction. But the
literature on trajectory prediction is not discussed here, since intention estimation is indirectly
estimated from the predicted trajectories as a secondary step.

Machine learning and data-driven approaches are popular for maneuver prediction.
It can be seen form the table that Support vector machines (Mandalia and Salvucci, 2005

.

; Woo
et al., 2017

.

), Relevant vector machines (Morris et al., 2011

.

), Neural networks (Leonhardt and
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Wanielik, 2017

.

), Convolutional neural networks (Beglerovic et al., 2018

.

; Wang, Murphey, et
al., 2016

.

), Recurrent Neural networks (Beglerovic et al., 2018

.

; Dang et al., 2017

.

; Xing and Xiao,
2018

.

) and probabilistic models (Hu et al., 2018

.

) are used for driving intention detection and
prediction. These models have been able to accurately detect the driving intention namely,
lane changing with a prediction horizon varying from 0.4 to 3 seconds. The prediction horizon
is usually the time between the detection of lane changing intention and actual lane change
(vehicle crossing the lane marking and entering a new lane). Mandalia and Salvucci (2005

.

)
presents prediction results in terms of the time before a maneuver is even executed and thus
cannot be directly compared with other studies.

The performance of machine learning depends on the quality of the labelled data
which is used for the model training. Therefore, adequate time and cost is invested to ensure
the quality of the labelled data. The studies in table 2.1

.

usually use manually labelled data.
The data is labelled for lane changing intentions by considering the position of vehicle with
respect to the road layout or lane markings. The majority of the studies in table 2.1

.

use the
lane markings as a reference to identify the lane change intention and subsequently label the
data into lane changing and lane keeping classes. Morris et al. (2011

.

) uses partially automated
labelling but it also uses information about the deviation of the vehicle with respect to the lane
marking. Wissing et al. (2017

.

) and Woo et al. (2017

.

) annotate the data under controlled exper-
iment settings under manual supervision. The consideration of the road layout for labelling
the lane changing intention can slowdown the generalization of the models to new or arbitrary
layouts due to additional data processing. Therefore, the use of features corresponding to only
vehicle motion to identify maneuver to change the lanes needs further investigation.

Research Gaps: Driving Intention

Based on the above literature review on driving intention, It is observed that the prominent
practice is that the data are either manually annotated and labelled into lane keeping or lane
changing instances based on the information such as lane position. This limits the develop-
ment of lane change detection models from large naturalistic traffic data-sets. Consequently,
there is a gap in the literature with regards to the utilization of large naturalistic driving data-
sets and automatic unsupervised labelling of data, for lane change detection for real-time ap-
plications. The automatic labelling would also enable use of large data-set for studying the
driving intention for other applications such as crash risk, traffic conditions, etc.

2.2. Crash risk

Crash risk signifies the likelihood and the consequences of a crash for the subject vehicle.
Therefore, estimation of crash requires estimation of both the likelihood and impact/ sever-
ity of a crash. The likelihood of a risk refers to the chances of the occurrence of a particular
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event. Here, probability, frequency and likelihood are used interchangeably to signify the
chances of the happening of an event or a crash. The severity refers to the consequences or the
impact of an event. Therefore, an crash of low likelihood and low severity implies a low risk
crash. Furthermore, risk in high likelihood and high severity is extreme. The risk due to high
likelihood-low severity and low likelihood-high severity crashes can be interpreted between
levels of low risk and extreme risk.

2.2.1. Factors of a Crash

Crash risk in a particular situation depends on the four factors of a crash (Chapter 1

.

). In this
section, a more detailed study of the crash factors and their impact on safety is presented.
According to Oh et al. (2005

.

), the crash factors and their components are listed below:

1. Driver characteristics: Behaviour, driving skill, etc

2. Environment: Geometric design of the road, road safety furniture, weather conditions

3. Traffic dynamics: Traffic state characterized by traffic flow, speed and density

4. Vehicle characteristic: type, shape, size and condition of the vehicle

These four causal factors can also be understood in terms of their scale. The individu-
alistic or microscopic factors such as driver or vehicle characteristics depend on the interactions
of the one or two vehicles. In other words, If a crash happens strictly due to these factors, only
the related vehicles are affected and the impact is generally localized. On the other hand, envi-
ronment and traffic factors can impact the crash risk over a road link or even network. Due to
this reason, the impact of these factors is global or macroscopic as it has an affect over all the
vehicles in that situation.

The crash factors can also be classified based on its relationship with time. The factors
such as road geometry, intersection, etc do not change with time on a daily basis and thus road
safety analysis involving such static factors is referred to as off-line studies (Hourdos et al.,
2006

.

). The traditional crash investigation and road safety analysis such as accident studies,
before-after studies and road safety audits also fall in this category. These studies are con-
ducted by associating crash frequency with the geometric design to identify dangerous road
sections.

The dynamic factors especially traffic state can vary greatly with time and thus the
aim of the studies is the analysis of real time crash risk (Abdel-Aty and Pande, 2007

.

). The
traffic characteristics and dynamics such as congestion, speeds and type of the surrounding
vehicles, etc are significant in determining the driver behaviour (Hamdar, 2012

.

). Due to this
reason, impact of traffic characteristics on crash likelihood has been extensively studied due to
its applications in real time traffic control and management. Hourdos et al. (2006

.

) described
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these studies as as online studies since they use real time measurements of the crash factors
i.e., traffic state.

2.2.2. Crash-risk studies

These crash factors through complex interactions determine the crash risk. The risk is studied
to understand, estimation or predict the risk under prevailing conditions on road. This under-
standing helps to implement traffic management measures such as variable speed limits, ramp
metering, etc. to ensure that the risk is within the desirable limits and likelihood of an crash is
reduced (Abdel-Aty and Pande, 2008

.

).

In these studies, risk is assessed in a time varied manner i,e., identification of traffic
conditions which might be collision prone. The table 2.2

.

summarizes the crash risk studies
based on the objective of the study, components of risk, type of crash factors and input data.
The detailed about these studies follows in the next paragraph.From the table, it can be seen
that the main objective of the crash risk studies is the estimation, prediction or forecasting or
classification. The estimation studies are aimed at the analysis and explanatory investigation
of the risk of a crash. The crash studies are done at aggregated or disaggregate level of crash
risk. The aggregated crash risk is defined for the road section or link, whereas disaggregate
risk corresponds to individual vehicle, generally for a specific crash type.

Aggregate Studies

The studies on aggregated crash risk are most common for freeways or highways and are
mostly done using crash data. Wang, Quddus, et al. (2009

.

) and Zheng (2012

.

) used the crash
data to establish the association of the aggregated crash likelihood with the traffic dynamics.
Few studies like the one by Stipancic et al. (2018

.

) have used both the crash data and driving
data, which is not found to be common probably due to data availability issues. The predic-
tion of crash risk can be formulated as a regression or a classification problem. In regression
formulation, the objective is the prediction of the crash occurrence by assigning a likelihood or
probability to the prevailing traffic conditions (Hossain and Muromachi, 2013

.

; Lee, Hellinga,
et al., 2003

.

; Oh et al., 2005

.

; Xu et al., 2013

.

; Zheng et al., 2010

.

). In the classification formulation,
the traffic conditions are assigned a discrete binary class such as crash vs no-crash conditions
(Hourdos et al., 2006

.

; Pande, Abdel-Aty, and Miyake, 2010

.

). A study by Russo et al. (2016

.

) de-
veloped off-line severity prediction models with features related to road geometry and average
traffic volumes.

The aggregate risk analysis based on crash data is possible only if enough data is
available which necessitates long periods of data collection. Then there is also a problem with
synchronization of the crash occurrences and traffic flow data from loop detectors at differ-
ent locations (Hourdos et al., 2006

.

). The crash studies are commonly conducted for the crash
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prone sections due to sufficient availability of data which might limit the generalization of
the results to sections with less frequent accidents. The crash data also lacks attributes corre-
sponding driver behaviour or intention before the crash. Due to this reason, the consideration
of drivers intention is not common in aggregated studies since crash data is aggregated and
therefore analysis at individual level is not possible (Abdel-Aty and Pande, 2007

.

). Therefore,
disaggregate studies rely on data from individual vehicle for a more detailed analysis.

Disaggregate Studies

At disaggregate level, studies are mostly done for analysis of crash risk rather than actual
crash. This is why, the risk is generally estimated using safety surrogates (discussed on section
2.3

.

) at level of individual vehicle. Further the studies focus at a specific crash type, which could
possibly due to lack of detailed accident data by crash type. Since disaggregate studies need
vehicle motion data to analyze the crash risk, these studies generally use naturalistic driving
data or micro-simulations. The two types of crashes have received much attention namely
rear-end crash and lane-change crashes. The study by Dimitriou et al. (2018

.

), Kuang et al.
(2017

.

), and Weng and Meng (2014

.

) estimated the rear-end crash likelihood using trajectory
data or loop-detectors data. Chen, Shi, et al. (2019

.

), Herty and Visconti (2018

.

), and Park et al.
(2018

.

) estimated the likelihood of a lane change crash using the trajectory data.

Risk estimation is also done by using the vehicle motion characteristics to associate
the driver behaviour or style with certain level of risk. These studies generally use classifica-
tion methods to identify driver on the scale of safe to dangerous, compliant drivers-violating
drivers on freeway or intersections (Aoude et al., 2011

.

; Cheung et al., 2018

.

; Xue et al., 2019

.

). A
recent study by Chen, Liu, et al. (2018

.

) has tried to estimate the crash risk for driving intentions
at the intersections.

The disaggregate studies generally use micro-simulations or naturalistic driving data
for data collection to conduct risk assessment. The SSM

.

are used to identify near crash or crash
like events from this data (Johnsson et al., 2018

.

). The detailed discussion on SSM

.

follows in
next section 2.3

.

. The naturalistic driving data offers higher validity since the in-situ driver
behaviour is captured.

Research Gaps: Crash Risk

From the above discussion on crash studies, it is clear that crash likelihood is the main focus
during the estimation and prediction of the crash risk. The other equally important component
i.e., severity has not received equal attention. Marchesini and Weijermars (2010

.

) also suggested
that the impact of traffic flow interactions on the severity needs further investigation.The other
observed trend is that the aggregated and disaggregated studies using the crash data attempt
to establish the effects of traffic on the crash occurrences or risk. The studies on crash risk due
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to a driving intention under a particular traffic conditions are not prevalent.

2.3. Surrogate measures for Rear-end conflicts

SSM

.

are widely used to estimate the conflicts and help to undertake the safety assessment
without actual crashes (Johnsson et al., 2018

.

). The indicators are the measure of the temporal
and spatial proximity and in some cases the severity or kinetic energy of the conflict. SSM

.

are
based on the principle that during/ before the occurrence of a conflict event, one vehicle must
take an evasive action to avoid a collision (Gettman and Head, 2003

.

).

SSM

.

are helpful in capturing the likelihood and severity of an accident in an objec-
tive way. Since there is no actual collision, certain thresholds of proximity in time and space
or evasive action such as braking/ deceleration are defined to indicate the critical events. The
hypothesis made in the use of SSM

.

is that the vehicle conflicts will possibly result into crashes
if the thresholds are exceeded. The use of SSM

.

done in both online and offline road safety
studies. The SSM

.

and validate the crash risk using trajectory data from micro-simulation tools
or naturalistic driving. The studies in table 2.2

.

using trajectory data rely on SSM

.

for estima-
tion of the crash risk. Different types of conflicts such as rear end, lane changing, right angle
conflicts, road run off, etc can be captured by SSM

.

(Azevedo et al., 2018

.

; Ozbay et al., 2008

.

).

As the name suggests, Proximity based measures are function of the separation be-
tween the vehicles on a conflicting trajectory in terms of distance or time. The smaller is the
distance or time separation between them, Higher is the risk of collision. Proximity based
measures have been widely used for risk estimation for rear conflicts on lane driving as well
as intersection conflicts. Distance Headway (DH)

.

is a simple indicator used to measure the
spatial proximity. It is defined as the distance gap between the two vehicles in car follow-
ing scenario as shown in fig. 2.2

.

. Similarly, Time Headway (TH)

.

is the measure of temporal
proximity between two vehicles. It is defined as the time it takes for the following vehicle to
reach the position of preceding vehicle at a specific point of time. It can be calculated using
equation 2.1

.

. In the context of rear-end crash, it can capture the rear-end crash if the preceding
vehicle suddenly applied hard braking and comes to halt immediately. The drawback of Time
headway is that it is independent of the velocity of the preceding vehicle.

TTC =
D

(vf )
(2.1)

Time to Collision (TTC)

.

is one of the commonly used surrogate safety measure for
rear-end conflicts. TTC

.

is defined as the time which remains to the occurring of a collision
between two vehicles, if the collision course and relative velocity between the two vehicles is
maintained (Hyden, 1996

.

). The formula for calculation of TTC

.

is given in 2.2

.

. It can be seen
that TTC

.

depends on the relative velocities of the approaching vehicles and the distance be-
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tween them. TTC

.

is meaningful when the following vehicle is faster than preceding vehicle.
When the preceding vehicle is faster than the approaching vehicle, TTC

.

is a negative value
and not of practical meaning. Therefore, a low non-negative value of TTC

.

indicates higher
risk of collision. The TTC

.

-Relative speed plot of two vehicles at different spacings is shown in
figure 2.3

.

. From a practical perspective, TTC

.

is an indicator of the available time to collision
avoidance manoeuvre such as braking or lane change (Mahmud et al., 2017

.

) and thus can be
used to indicate the urgency of such manoeuvre (Lee, Olsen, et al., 2004

.

). Due to this character-
istic, TTC

.

is widely used for analysis of rear-end type collision scenarios by analyzing the TTC

.

values during the real or simulated motion of a vehicle. The TTC

.

values are compared with a
minimum or desired TTC

.

which is defined on the basis of perception time, reaction time of a
driver and the driving conditions, to identify the critical driving events (Mahmud et al., 2017

.

).
There is a wide spectrum of the desired values of TTC

.

used by researchers varying from 0.9 to
4 seconds depending on the road configuration such as intersections or highways, frequency
of conflict, among others (Meng and Qu, 2012

.

; Sayed et al., 1994

.

). In case small relative veloc-
ities between vehicles, the TTC

.

can approach very high values or infinity. Due to this reason,
Inverse TTC

.

is used for many practical purposes. Inverse TTC

.

, as the name suggests is defined
as the reciprocal of the TTC

.

.

Figure 2.2.: Car following scenario

TTC =
D

(vf − vp)
, if vf > vp (2.2)

Where,
D = xp − xf − lp
vf is the speed of the following vehicle
vp is the speed of the preceding vehicle as shown in fig. 2.2

.

TTC

.

is defined at a particular point of time and by this very definition, it ignores the
past behaviour. To overcome this, Several other extensions have been proposed by researchers.
Time Exposed TTC

.

and Time Integrated TTC

.

take into account the the past driving behaviour
by using the accumulated values of TTC

.

during the safety critical time i.e., when TTC

.

is below
the threshold over a period of time (Minderhoud and Bovy, 2001

.

).
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Figure 2.3.: TTC - Relative Velocity (vf−vp) Plot (The curves indicate constant spacing between
vehicles)

TTC

.

has a drawback when the preceding vehicle is faster than the following vehicles,
as in that case TTC

.

is a negative value. Ozbay et al. (2008

.

) proposed MTTC

.

which addresses
this drawback. It considers accelerations of the preceding and following vehicle along with
their relative velocities (equation 2.3

.

, 2.4

.

) as shown in fig. 2.4

.

. The consideration of vehicle ac-
celeration alongside its velocity helps MTTC

.

to account for the conflict cases where preceding
vehicle is faster than the following vehicle. Thus, MTTC

.

can cover more collision scenarios.
Similar to TTC, Small values of MTTC

.

suggests high risk of potential conflict. Ozbay et al., 2008

.

used MTTC threshold of 4 seconds to represent potential conflicts and Yang, 2012

.

further used
MTTC in an exponential decay function to estimate the potential conflict risk. In their study,
Yang, 2012

.

also validated the use of MTTC lane merging/ lane following situation. As in the
case of TTC, MTTC indicates the collision proximity at a point of time and it does not gives an
idea about the past. But it is also possible to devise integrated MTTC which takes into account
the accumulated MTTC using methods similar to Time Exposed TTC or Time Integrated TTC,
as discussed above. This aspect has been addressed in this study in the Methodology section.

Figure 2.4.: Car following scenario
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t1 =
−∆v −

√
∆v2 + 2∆aD

∆a
t2 =

−∆v +
√

∆v2 + 2∆aD

∆a
, if ∆a 6= 0 (2.3)

MTTC =


min(t1, t2) if t1 > 0, t2 > 0,

max(t1, t2) if t1 ∗ t2 < 0,

D/∆v if ∆a = 0

(2.4)

Where, ∆v = vf − vp
∆a = af − ap
D = xp − xf − lp

From the above discussion on time based surrogate measures, it is found that MTTC is
appropriate for analyzing potential rear-end conflict situations as it can take into account wide
range of conflict possibilities in case of varying relative velocities and relative accelerations of
the following vehicles. But one drawback of TTC or MTTC is that it only gives an indication
of the likelihood of an accident and not the impact or severity of the accident because it is
possible for a pair of vehicles to have an equal MTTC for different combinations of relative
velocities and relative accelerations. But is it obvious that crashes at high speed will have
different consequences from the crash at low speed.

There are some non-temporal surrogate safety measures which which can be used to
estimate the accident danger. Deceleration Required to Avoid Collision (DRAC)

.

is a commonly
used SSM which is used to estimate the danger of a rear end crash by using the formulation
in equation 2.5

.

(Mahmud et al., 2017

.

). This formulation can be seen also in a different way
as made of the product of relative velocities of preceding-following vehicle and inverse of the
TTC as shown in equation 2.6

.

. Therefore, although it considers differential speeds, but does
not give an impact measurement since different combinations of differential speed is possible
for same value of DRAC

.

, but the impact at high speeds might be different than those at low
speeds as stated above.

DRAC =
(vfollowing − vpreceding)2

Xfollowing −Xpreceding − lpreceding
(2.5)

DRAC =
(vfollowing − vpreceding)

TTC
(2.6)

where, TTC = D/∆v

D = Xfollowing −Xpreceding − lpreceding
∆v = vfollowing − vpreceding

There are few SSMs which take into account the severity and likelihood of a crash
in single formulation. Crash Index (CI)

.

uses MTTC to indicate the combined severity and
likelihood of the possible crash. Ozbay et al., 2008

.

used the equation 2.7

.

to indicate the severity
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as well as the likelihood of the the conflict by using adapted formulations from kinetic energy
and MTTC.

CI =
(vp + ap ∗MTTC)2 − (vf + af ∗MTTC)2

2 ∗MTTC
(2.7)

Another measure called Criticality Index Function (CIF)

.

introduced by Chan (2006

.

)
also takes into the conflict severity into consideration by using follwing two hypothesis:

1. Crash consequences are more severe at high speeds

2. longer the available time to a collision, the crash can be avoided

Accordingly, the formulation given by Chan (2006

.

) is given in equation 2.8

.

. The equation given
by him has two components i.e., CIF

.

is directly proportional to the square of the velocity and
inversely proportional to the TTC. Thus the main difference between the CI and CIF

.

is that the
numerator in CIF

.

depends only on the vehicle speed rather than the relative speed of following
and preceding vehicle, which is the case in CI.

CIF =
(v)2

TTC
(2.8)

Although, CI and CIF give a total measure of the crash risk i.e., its likelihood and
severity., but it is not possible to study the crash likelihood and crash severity separately using
CI and CIF. Therefore, there is a need to introduce a SSM which estimates the severity for rear-
end crash separately. A surrogate to quantify severity separately can help to better understand
the relationship of crash severity with traffic conditions and driving intentions and improve
the risk estimation/ prediction models.

2.4. Conclusions and Research Gaps

From the above literature review, the following research gaps are summarized:

1. The methods for lane changing prediction mainly use manually labelled dataset. The
methods to automatically label maneuvers from a large naturalistic driving data are not
found in the literature. Thus, there is a need to develop an automatically maneuver
labeling method which is efficient for real-time prediction settings.

2. The effects of traffic dynamics and driving intention on crash risk are generally studied
separately. Impact of driving intention along with traffic conditions on crash risk has not
been fully explored.

3. A greater emphasis is towards crash likelihood in both aggregate and disaggregate stud-
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ies. Crash severity is investigated in off-line studies but not enough literature is found
for the on-line studies. Lack of SSMs for explicit investigation of crash severity also sup-
ports the need to develop severity surrogates and investigate the relation with traffic
conditions and intentions.
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Method and Analysis
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3. Methodology

This chapter presents the methodology for achieving the objectives of this study. Contextually,
the methodology consists of three modules namely methods for driving maneuver identifica-
tion and intention prediction, traffic state identification and crash risk estimation. An overview
of the complete methodology is given in fig. 3.1

.

.

The methodology is motivated by the data driven analysis and use of statistical and
Machine Learning (ML)

.

tools. These methods are used in above mentioned three modules of
the study to different extent i.e., driving intention module consist of classification and predic-
tion tasks whereas traffic state module consists of only classification task. This is why the core
of each of these module is a machine learning pipeline. A ML

.

pipeline is basically a process
consisting of steps, but not limited to, such as data collection and processing, features extrac-
tion, modeling and evaluation (Liu et al., 2017

.

). This ML

.

pipeline is adapted to the objectives of
each module i.e., estimation and/ or prediction. This chapter contains three sections. The first
section describes the generic ML

.

pipeline. The subsequent sections demonstrate the approach
for application of ML

.

pipeline for driving intention prediction, traffic state identification and
crash risk estimation from the disaggregate data.

3.1. Machine Learning Pipeline

Oxford Dictionary (2019

.

) defines Machine learning as ”a type of artificial intelligence in which
computers use huge amounts of data to learn how to do tasks rather than being programmed to do
them”. This is done by tuning a model to learn the data distribution from the available data.
The flowchart of the ML

.

pipeline adopted for this study is shown in fig. 3.2

.

. The black arrows
represent the normal work-flow while the grey-dotted arrows represent the feedback wherein
the project steps are revisited during the ML work-flow due to unsatisfactory results. This
characteristic of the ML pipeline makes it an iterative process at different levels. The steps in
ML pipeline are discussed in below:

1. Defining project goal: This is the first step for the ML

.

project/ task. This step is ded-
icated to defining the goals of the machine learning project and accordingly allocating
resources for the project. The project goals may need to be revisited if they are found to
be unrealizable during the project.
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2. Data Collection: In this step, researchers look for the data required for the ML project.
Open data is available free of cost whereas proprietary data needs to be purchased. In
case the suitable data for ML project is not available, then the project stakeholders (re-
searchers or practitioners) have to collect data either through in-house resources or by
outsourcing the data collection process. During data collection, it is to be kept in mind
that the data coverage should account for all the scenarios expected during inference/
testing of model. This is because theoretically the ML model cannot make accurate pre-
dictions for the data which was not seen during modeling and thus will give unreliable
predictions.

3. Data Labelling: This is done to annotate the data with respect to the ground truth. Gen-
erally the data labelling is kept in mind during data collection and both are done simul-
taneously. Data labeling is a critical step in a ML project because the accuracy of the data
labelling plays a crucial role in determining the accuracy of the machine learning model.
Generally, there is a trade off between the quality of the data labelling and the costs in-
volved since good labeling will need high quality control and more resources. In case the
collected data is unlabelled, Manual labelling is a common yet expensive practice.

Alternatively, unsupervised ML methods such as clustering are applied to identify the
different groups and subsequently label the data. This is equivalent to a classification
ML project in itself, that is why clustering is preceded and succeeded by feature extrac-
tion and model evaluation respectively. Few clustering algorithms are briefly discussed
below:

a) K-means: This algorithm clusters data into specified number of groups of equal
variance by minimizing ”within-cluster sum-of-squares criterion”. This is a first
choice because of its simple algorithm but it performs poorly on clusters with un-
equal variance or uneven shapes. Also the number of clusters are to be manually
specified and thus it is highly sensitive to interpretation.

b) Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

.

: This al-
gorithm can separate areas of high density points from low density points. The
DBSCAN is effective in discovering clusters of arbitrary shape with least domain
knowledge (Daszykowski and Walczak, 2009

.

; Schubert et al., 2017

.

). The tunable pa-
rameters for this type of clustering are maximum distance for neighborhood point
(eps), minimum number of points to be considered in neighborhood to define a core
point (minimum samples) and metric for calculating distances.

c) Gaussian Mixtures (GM)

.

: This algorithm assumed that the data comes from a mix-
ture of finite number of normal distributions. Like k-means algorithm, the number
of clusters are to be specified manually, but GM is an improvement over k-means
because ”it can generalize over varying shapes because it incorporates informa-
tion about the covariance structure of the data and centers of the latent Gaussians”
(Scikit-learn, 2019a

.

). The main parameters for GM

.

models are number of clusters
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and covariance type. The covariance-type parameter specifies whether the Gaussian
components have a shared or a unique covariance matrix.

d) Agglomerative clustering: This is a type of bottom-up hierarchical clustering wherein
clustering starts from bottom and successively merges the clusters (Scikit-learn,
2019b

.

). The main parameters is the linkage criteria which specifies which metric
is used for merging strategy. Agglomerative clustering can capture clusters of un-
even shapes but it is a computationally expensive algorithm.

Different algorithms and parameters settings are tried until good clustering is achieved.
In case all the above methods for data labeling fail to achieve good clustering, then data
may need to be either manually labelled or collected again with labels or more features.

4. Data Processing: This is an important step to ensure the quality of the data for modelling.
The crucial steps in data processing are mentioned below:

a) EDA

.

: To obtain various insights about the data through visualization and calculat-
ing summary statistics such as mean, median, variance and quantiles.

b) Data cleaning: This is used to discard the outliers, incomplete, erroneous, irrelevant,
etc. data.

c) Feature Selection: The important features are selected based on their significance in
model performance and the correlated features are dropped. In cases where labels
are estimated from the data using clustering, feature selection is done simultane-
ously with clustering.

d) Feature Compression: If the data is high dimensional, feature compression or di-
mensionality reduction technique such as Principal Component Analysis (PCA)

.

is
used. This is necessitated due to the need for visualizing the clusters and selecting
only the significant features for clustering.

e) Feature Scaling: Certain ML models including deep learning models need all the
features to be scaled before modeling. This process called as feature scaling is used
to feature-wise transform the data to a common range of [-1, 1] or [0, 1] for effective
performance. This is generally done by using Min-Max scaling or Standardization.

5. Modeling: During modeling, Machine learning model/ algorithm is selected and it is
trained on the labelled data. Deep learning is a relatively new branch of machine learn-
ing which consists of computation models with multiple layers, which are capable of
learning representations at different hierarchical levels (LeCun et al., 2015

.

). Few super-
vised classification algorithm from classical machine learning and deep learning domain
are discussed below:

a) SVM

.

: It is used to separate a multidimensional data into different classes by gener-
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ating a boundary called ”hyper plane” (Vapnik, 1998

.

). The parameters for SVM are
the kernel function and regularization term C.

b) Random forest (RF)

.

: This a decision tree based classifier. RF fits a number of deci-
sion trees to the data and averages the results for the final prediction. This is why,
RF is effective against over-fitting. Gini impurity is used to measure the quality of
the split in RF. (Breiman, 2001

.

). The main parameters for random forests classifier
are number of estimators, maximum depth of the tree and measurement criteria for
quality of the split.

c) Recurrent Neural Networks: RNNs are a special kind of neural network (Rumelhart
et al., 1986

.

) consist of chain like structure consisting of multiple neural networks.
This chain like structure can be quite used for modelling temporal dependencies in
a sequence. RNN can model temporal dependencies well but in practice they face
difficulties in modelling long dependencies (Bengio et al., 1994

.

; Hochreiter, 1991

.

).

d) Long Short Term Memory: LSTMs networks are special kind of Recurrent Neural
Networks which are capable of learning long term dependencies (Hochreiter and
Schmidhuber, 1997

.

). LSTMs also have a chain like structure similar to RNN but
with modifications in the individual unit. LSTMs consist of a memory cell shown in
figure 3.3

.

and control the flow of information by using input, forget and output gate
layers which discard the non-essential information and memorize only essential in-
formation for the purpose. These operations in the LSTM cell can be represented by
the following set of equations (Olah, 2019

.

):

forget gate, ft = σ(Wf · [ht−1, xt] + bf ) (3.1)

input gate, it = σ(Wi · [ht−1, xt] + bi) (3.2)

C̄t = tanh(Wc · [ht−1, xt] + bc) (3.3)

cell update, Ct = ft ∗ Ct−1 + it ∗ C̄t (3.4)

output gate, ōt = σ(Wo[ht−1, xt] + bo) (3.5)

h̄t = ot ∗ tanh(Ct) (3.6)
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Figure 3.3.: LSTM Cell. Source: Olah (2019

.

)

where Wf ,Wi,Wo,Wc and bf , bi, bo, bc represent the weights and biases during the
LSTM operations.

These cells are stacked in a layer like RNN to learn the sequential dependencies.
Due to this reason, LSTMs have been successful in many tasks such as language
translation (Sutskever et al., 2014

.

), handwriting recognition (Graves and Schmid-
huber, 2008

.

) and image captioning (Kiros et al., 2014

.

). The main tunable parameters
of RNN/ LSTM are mentioned below:

i. Number of LSTM layers and dense layers stacked in the model. A dense layer
is a fully connected layer in which all the inputs are connected with all the
outputs.

ii. Number of Memory cells in each LSTM layer

iii. Learning rate: This determines the step-size while changing the weights of
the model parameters based on the value of cost function. Large learning rate
might not lead to discovery of local minima, whereas small learning rate might
real to a very slow convergence.

iv. Optimizer: The optimization function used to train the data. For example
Stochastic Gradient Descent (SGD), ADAM (Kingma and Ba, 2014

.

), etc .

Advantages and Disadvantages of deep learning models Deep learning models
offer advantages such as reduced focus on hand designing the features which takes
some skill and time (LeCun et al., 2015

.

). Deep learning models learns the underly-
ing data distributions faster using the concept of distributed representations due to
increased computing (LeCun et al., 2015

.

). The deep learning models like RNN

.

and
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LSTM

.

are certainly more complicated than the classical/ common ML models like
SVM and RF, which makes it harder to train and tune these models. These models
are also computationally expensive and take more time during modeling since they
require large data to train.

The model selection is followed by model training to find the best model parameters
which can represent the data distribution. The domain knowledge and state-of-the-art
can help to narrow down the possible models for application. This can also help to avoid
starting from the scratch and help to evaluate the results with respect to the established
baselines in literature.

Before training, the dataset is divided into 2 parts namely training data and validation
data. The training data is used to fit the model to the underlying distribution. The val-
idation data comes in play to avoid over-fitting i.e., model should fit the training data
distribution instead of the training data. Model training and validation is done using
a measure of model performance called as cost or error function. A cost function is a
mathematical formulation of difference between the true value and predicted value of
the model. The aim of the model training is to achieve the optimum (lowest) value for
this cost function by changing the model parameters. The choice of cost function is based
on the nature of the problem and priorities. For example. for a regression problem, loss
function can be Root Mean Squared error whereas for a classification problem, the cost/
error function can be Logarithmic loss or Categorical Cross Entropy (equation 3.7

.

). The
selection of cost function can also be done with the help of literature to identify the most
suitable.

If model training and validation fails to achieve good results, model selection, feature
selection, data labelling or even data collected may need to be re-investigated.

CE = −
C∑
i

Ci ∗ log(si) (3.7)

where Ci and si are the ground truth and model prediction for each target class i in C.

6. Evaluation: During clustering, the ground truth or true labels are not available, therefore
the evaluation of the clusters is performed using one of the internal indices which mea-
sure the goodness of the clustering structure without external information (Tseng and
Wong, 2005

.

; Wang, Wang, et al., 2009

.

. One such internal index is the silhouette coeffi-
cient, with which each cluster is described by its silhouette based on the comparison of its
separation and tightness (Rousseeuw, 1987

.

). The silhouette coefficient is calculated us-
ing the mean intra-clustering distance and mean nearest-cluster distance for each sample.
Silhouette score has a range of -1 to 1, with scores closer to 1 indicating good clustering
performance.

The classification algorithms such SVM/RF/LSTM are evaluated using the precision,
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recall and accuracy scores as defined in equations 3.8

.

, 3.9

.

and 3.10

.

.

Precision =
TP

TP + FP
(3.8)

Recall =
TP

TP + FN
(3.9)

Accuracy =
TP + TN

TP + TN + FP + FN
(3.10)

Where,TP: True Positive,TN: True Negative,FP: False Positive, FN: False Negative

The trained is model is evaluated on the new data or test data. If the model fails on the
test data, there might be problems related to model over fitting or the data used might
not be fully representative of the phenomenon to be learned.

3.2. Driving Intention Estimation and Prediction

The method flowchart is shown in 3.4

.

. The dicussions on the steps in the flowchart follows in
subsequent subsections.

3.2.1. Goal Definition

The goal is to develop a ML model for estimating and predicting the driving intention from
disaggregate traffic data using automatic labelling. The lateral driving maneuvers namely
lane keeping and lane changing are selected for the study. Thus, the ML task is to classify
disaggregate traffic data into these two binary classes of maneuvers.

3.2.2. Data Collection

The disaggregate/ trajectory data is collected generally using GPS, ground based video cam-
eras, drone video recording, etc. The raw data from the vehicle sensors contains multiple time
series for different features, also referred as a multi-variate time series for each of the vehicle.
The features in the trajectory data generally characterizes vehicle motion through its position,
velocity and acceleration. In the disaggregate data, the state (Snt ) of a vehicle n at time t can
be represented by equation 3.11

.

. When these states are collected over a period of equal time
intervals, it becomes a time series data as shown in equation 3.12

.

. The n simply denotes the
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index of the vehicle and does not represent any mathematical power operation.

(St)
n = (t, f1

t , f
2
t , . . . f

k−1
t , fkt )n (3.11)

Where, t: time, fkt : feature/ variable of time series at time t, k: number of features in time
series, n: index of the vehicle

Tn = (S1, S2, S3, . . . St−2, St−1, St)
n, (3.12)

In addition to the vehicle motion features, the data may contain additional infor-
mation such as vehicle dimensions, vehicle type (car/ truck), other details like surrounding
vehicles, road layout, etc.

3.2.3. Data Labelling

The data labelling can be done on the raw disaggregate data as well as aggregated data. If the
labeling is done on the disaggregate data, the the labelling can be shown by equation 3.13

.

. This
equation shows that the state at for each vehicle at time t can be mapped to a unique maneuver
label (lane changing or lane keeping).

(St)
n → (lt)

n, (3.13)

Where (lt)
n is the maneuver assigned to state S of vehicle n at time t

Data labelling can also be done on the spatially or temporally aggregated features as well. For
example, if vehicle is labelled in terms of whether it changed lane or not during observation.
In this case, temporally aggregated features from the trajectory of vehicles are used and can be
represented as equation 3.14

.

. This equation represents the mapping of the trajectory of each
vehicle to a unique label. The trajectory data is not labeled in terms of driving maneuvers (lane
changing. lane keeping).Therefore data labelling using clustering need to be explored.

Tn → Ln, (3.14)

Where: Ln is the label assigned to the Trajectory features of vehicle n.

3.2.4. Feature Selection

The high frequency of trajectory data collection and nature of vehicle dynamics/ traffic fea-
tures can cause the features as well as the time series points to be correlated. EDA is used to
estimate descriptive statistics and identify such correlation, if any.
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Instant/ disaggregate speed and acceleration of a vehicle can be used as features.
The aggregated features can also be calculated from data. A lane change maneuver can be
observed through lateral displacement of a vehicle due to its lateral acceleration and velocity.
This behaviour may also be visible in the aggregated features such as mean (equation 3.15

.

) and
standard deviation (equation 3.16

.

) of the speed and accelerations.

µnk =
1

Nn

t=te∑
t=tb

(fkt )n (3.15)

σnk =

√√√√√ 1

Nn

t=tne∑
t=tnb

((fkt )n − µnf )2 (3.16)

Where: Nn is the length of bi-variate time series for vehicle n,
tnb is the time when the nth vehicle enters the area/ section under observation,
tne is the time when the nth vehicle exits.

If needed, a dimensionality reduction technique such as PCA

.

is applied to compress
the m raw features into k compressed features as shown by equation 3.17

.

.

P1, P2 . . . Pd = F (f1, f2, f3, . . . fk) (3.17)

Where: F (x) is the dimensionality reduction algorithm,
d is the number of compressed features,
k is the number of raw features form the dis-aggregate or aggregate data,
d < k,

3.2.5. Unsupervised Classification

Clustering, a type of unsupervised ML is used here to identify patterns and groups in the data
as shown in equation 3.18

.

). The data in the identifiable groups is labelled according to its
respective class. Clustering algorithms mentioned in 3.1

.

are used to discover the clusters by
hit and trial approach. The clustering method which is able to discover the cluster groups with
a good quality is selected as the candidate.

C = G(P1, P2 . . . Pk) (3.18)

Where: G(x) is the classification algorithm ,
C belongs to the set of clusters corresponding to the target maneuver class.

36



3. Methodology

3.2.6. Automated Data labelling

A supervised classifier such as SVM is trained on the identified clusters to learn the cluster
boundaries so that the classifier can be used for online/ automated data labelling. After ob-
taining the labels from either of the methods discussed above, the disaggregate/ aggregate
data is labelled as shown in equation 3.19

.

.

[X, y]n = [(x(t1), x(t2) . . . x(t−1), x(t)), (L(t1), L(t2) . . . L(t−1), L(t))]n] (3.19)

Where, X is the set of independent features,
y is the dependent/ target variable/ labels

3.2.7. Modeling

The next step is to formulate a time series prediction problem such that the temporal relation-
ships among the features and labels can be learned. Since the maneuver label is a discrete
variable, the prediction is formulated as a time series classification problem, in which the part
or complete time series is used to assign a class. A moving window time series classification
can be defined with the help of following parameters:

1. Frame frequency, F is the frequency at which the raw data has been collected.

2. Frame granularity, f is the sampling rate of the time series data for using as an input for
the model. If f=2, this means the effective frame frequency is F/2 Hz.

3. Prediction horizon time, pt is the time in future at which the prediction is being made.

4. Prediction horizon length, p is the time series steps corresponding to pt and f. Thus, p =
F*pt/f

5. Look-back time, kt is the past time (and corresponding data) used to make the prediction.

6. Look-back length, k is the time series steps corresponding to kt and f. Thus, k = F*kt/f

7. Discard Threshold, T is the length below which data is not considered for training. Fur-
ther T > p+k or T = p+k+b where b is the buffer length.

Based on the above parameters, the time-series data (equation 3.20

.

) is transformed
into rolling window data such that for time t = αf where α is an integer. The resulting training
data is formulated as equation 3.21

.

. In other words, the past time series data of constant
length is used to predict the class label at a future time step. The data is split into training and
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validation data set so that vehicles in the training data are not included in the validation data.

[X, y]n = [(x(tb), x(tb+f) . . . x(tb+N−2f), x(tb+N−f)), (L(tb), L(tb+f) . . . L(tb+N−2f), L(tb+N−f))]n]

(3.20)
Where: N = F ∗ (te − tb + 1)

[X, y]n = [(x(tb−k∗f), x(t−(k−1)∗f) . . . x(tb−2f), x(t−f), xt)n, (M (t+p∗f))n] (3.21)

Model selection and training

The RNN

.

/LSTM

.

are suitable for the sequence prediction problem as seen during the previous
discussion in 3.1

.

. Further LSTM is more capable than RNN in learning long-term dependen-
cies, therefore LSTM is selected as the primary prediction model. Adam optimizer is used for
adapting the learning rate of LSTM. The training is stopped when validation accuracy does not
improve over 5 consecutive iterations/ epochs to avoid over-fitting problem. The maneuver
class with higher probability score is the predicted class.Categorical cross entropy (equation
3.7

.

) is used as the cost function during LSTM training. Random Forest is selected as the base-
line model for comparison with LSTM model.

3.2.8. Evaluation

The machine learning pipeline for intention prediction consists of multiple steps such as clus-
tering, labeling and prediction. Thus, the performance of the complete model is dependent
on the performance of these individual stages. Clustering, label classification and time-series
prediction are evaluated independently based on the common performance metrics for these
algorithms as discussed above in section 3.1

.

. The performance of the complete model is also
evaluated based on the correct classification and detection of the maneuvers in the trajectory.

In addition to aforementioned classification metrics, Advance detection time is used
to assess the predictive range of the model, as it shows the how much in advance a prediction
is made before a vehicle actually crosses the lane line (i.e. Point C in Figure 2.1

.

). It should be
noted here that advance detection time is different from the aforementioned prediction horizon
time in subsection 3.2.7

.

. The advance detection time measures the performance of labeling and
prediction model, which in turn is governed by both the SVM and LSTM models respectively.

38



3. Methodology

3.2.9. Model testing

Model testing is a two-stage process. First the learned labelling classifier is used for learning
the target maneuver classes and subsequently used for labelling the raw measurements in real
time. The labeled data is used to predict the intention using the predictor model.

3.3. Traffic State Identification

The method flowchart is shown in fig. 3.5

.

. The discussion on the steps in the flowchart follows
in subsequent subsections.

3.3.1. Goal Definition

The goal is to develop a ML model for identifying and labeling the traffic states into free-flow
and congestion from aggregate data. A free-flow traffic state is a state where driver experiences
no constrains from other drivers on the road and travel at free speeds which is determined
according to the road design, speed limits, etc. At congestion state, queuing of vehicle starts,
and vehicles can no longer travel at free speeds resulting in link speed drop. The traffic state
labeling is to be achieved by using clustering algorithms to identify the groups corresponding
to different traffic states.

3.3.2. Data Collection

The procedure for data collection is similar as discussed in subsection 3.2.2

.

. The trajectory data
is used to calculate the aggregate traffic flow parameters such as traffic flow rate, density and
average velocity for individual lane as well as complete link/ section. The traffic flow rate is
calculated by placing a virtual detector in the middle of the section being observed. In case
of longer sections, the virtual detectors can be placed on more than one places to capture the
variation along the length of the section.

The traffic related features are estimated by temporal and spatial aggregation of the
disaggregate data. The lane traffic flow is equal to the number of vehicles of a given lane
passing a particular cross-section of a road in a time interval as shown in equation 3.22

.

. The
total traffic flow is simply the summation of the traffic flow of the individual lanes. Using this
equation, lane flow and total flow can be calculated.

q =
n

T
(3.22)

Where: n is the number of vehicles passing the lane/ road section, T is the duration
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of the time interval

The lane traffic density traffic density is calculated by simply counting the number of
vehicles on a particular lane at a given time instant divided by the length of the road. This is
shown in equation 3.23

.

. The total traffic density is simply the summation of the traffic density
of individual lanes. The average lane density is the average of the traffic density of individual
lanes. The average density over a time interval is calculated by taking an average of the traffic
densities during that time, as shown in equation 3.24

.

.

k =
n

L
(3.23)

Where: n is the number of vehicles passing the detector, L is the distance of the section

K =

∑te
t=tb

kt

(te − tb + 1)
(3.24)

The lane/ link speed is calculated by taking the average of speeds of vehicles on that
particular lane/ link at a given time instant. This is shown in equation 3.25

.

. The average link
speed over a time interval is calculated by taking an average of the link speeds during that
interval as shown in equation 3.26

.

.

vtaverage =

∑N
t=1 vi
(N)

(3.25)

Where: n is the number of vehicles on a road lane/ link

v∆t
average =

∑∆t vtaverage
(∆t)

(3.26)

3.3.3. Data Labelling

The aggregated traffic flow features calculated from the data are to be labelled. The labelled
data is represented as equation 3.27

.

.

(v∆t, k∆t, q∆t)→ L∆t, (3.27)

Where: Q∆t are the aggregated traffic parameters during the time interval ∆t.
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3.3.4. Feature Selection

The parameters in traffic Fundamental Diagram (FD)

.

namely, density and average road link
speed are used as features for clustering because the characteristics of these parameters are
distinct in free and congestion flow.

3.3.5. Unsupervised Classification

The method is same as mentioned in subsection 3.2.5

.

. The traffic data is labelled in terms of
the traffic states- free-flow and congestion by using clustering algorithms.

3.4. Crash Risk Estimation

The flowchart is for risk estimation is shown in fig. 3.6

.

. The discussion on the steps in the
flowchart follows in subsequent subsections.

3.4.1. Goal Definition

The goal is to develop a ML model for identifying the levels of rear-end crash risk such as
high risk and low risk from the data. The risk quantification is done in terms of likelihood and
severity of a crash.

3.4.2. Data Collection

The procedure for data collection is similar as discussed in subsection 3.2.2

.

.

3.4.3. Feature Estimation

The data does not contain the features for aggregate crash risk and therefore, it is calculated
from the trajectory data. The aggregate crash risk is composed of two components i.e, Crash
likelihood and Crash severity. Two Surrogate safety measures are used to quantitatively esti-
mate each of these components.
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Crash Likelihood

Surrogate safety measure - MTTC

.

is estimated between the subject vehicle and preceding ve-
hicle at each time step. The crash likelihood is defined as a negative exponential function of
the the modified time to collision as shown in equation 3.28

.

. A similar function to calculate the
likelihood of a crash has been used by Weng and Meng (2014

.

) and Yang (2012

.

). According to
this equation, high positive values of MTTC will lead to low chances of a crash and vice-versa.

pcrash =

e−MTTC/λ if preceding vehicle is present and MTTC > 0,

0 otherwise,
(3.28)

where, λ is a parameter and its value is 3.5 seconds for this study based on Yang (2012

.

)

The crash likelihood is calculated at each time step from the disaggregate trajectory
data. The crash likelihood of all the vehicles observed during the time interval is summed
to obtain an aggregate indicator of the crash likelihood for a highway section as shown in
equation 3.29

.

. The obtained Pcrash is divided by the flow of vehicles on the road section to
obtain the Average Crash Likelihood (ACL)

.

per vehicle on a road section for a given duration
as shown in equation 3.30

.

. This formulation is inspired by Ozbay et al. (2008

.

) and Kuang et al.
(2017

.

) for estimating the crash index density and average risk respectively.

Pcrash =
N∑
n

t=te∑
t=tb

(pcrash · δtn) (3.29)

ACL =
Pcrash∑N

n

∑t=te
t=tb

(δtn)
(3.30)

where, δtn = 1 if vehicle n is within the observed section during the time interval (tb, te),
else δtn = 0

Crash Severity

A safety surrogate to calculate the severity/ impact of a crash (independent of the likelihood)
is not found in the literature as already discussed in section 2.3

.

. A severity surrogate called
CRash IMpact (CRIM)

.

is defined as shown in equation 3.31

.

. The impact of rear-end crash
is a product of speed of following vehicle and the speed differential between following and
preceding vehicle. This is based on the similar hypothesis used by Chan (2006

.

) that high speed
of the following vehicle will lead to a severe crash. The use of differential term is incorporated
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in context of a rear-end crash. In case speed of the following vehicle is much greater than
preceding vehicle, the crash will have more impact as compared to the case when the difference
of velocities is smaller. This concept is somewhat similar to the differential term in the DRAC
formulation which was discussed in section 2.3

.

. In an extreme case scenario, a high speed
vehicle rear crashing into a stopped vehicle will cause maximum damage. If the following
vehicle is slower than the preceding vehicle, then the value of CRIM is negative which implies
no impact. It is to be noted that the impact of a crash depends on the product of velocity terms,
which is proportional of the kinetic energy per unit mass.

CRIM = vfollowing · (vfollowing − vpreceding) (3.31)

A positive exponential function is used to calculate the crash severity for a front col-
lision (equation 3.32

.

). Here the assumption is made that the severity of the crash increase
exponentially with the increase in CRIM. The CRIMmax is the maximum possible value of
CRIM as shown in equation 3.33

.

and is used to normalize the CRIM. The CRIMmax corre-
sponds to the impact when a vehicle is travelling at the maximum speed (free speed) and the
front vehicle is stationary.

Scrash =

eCRIM/CRIMmax if preceding vehicle is present,

0 otherwise,
(3.32)

CRIMmax = vmax · vmax (3.33)

where, vmax is a parameter for a usual maximum speed on the freeway. Its value is selected as
108 km/h for this study.

The crash severity of all the vehicles observed during the time interval is summed to
obtain an aggregate indicator of the crash severity for a highway section as shown in equation
3.34

.

. The obtained Slink is divided by the flow of vehicles on the road section to obtain the
Average Crash Impact (ACI)

.

per vehicle on a road section for a given duration as shown in
equation 3.35

.

.

Slink =

N∑
n

t=te∑
t=tb

(Scrash · δtn) (3.34)

ACI =
Slink∑N

n

∑t=te
t=tb

(δtn)
(3.35)
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Total Risk

The total risk can be calculated by the product of average likelihood and average severity as
shown in equation 3.36

.

.

Total Risk = ACL ·ACI (3.36)

3.4.4. Classification and Labelling

Clustering is attempted on the aggregate crash likelihood and severity indicators (ACL

.

and
ACI

.

) to group the data into risk classes. In case, the clustering is not feasible, classes are labeled
by applying manual thresholds/ boundaries based on the data distribution. This study only
considers binary classification of the risk into high and low for both the likelihood ad severity.

The four scenarios depicting the likelihood and severity of a rear-end crash on a high-
way are shown in fig. 3.7

.

. When the preceding and following vehicles are travelling at almost
same low speeds and/or are farther from each other, the crash has low likelihood and low
severity (1). If the vehicles have small value of TTC but they are traveling at low speeds, the
crash likelihood high but the severity is still low (2). Whereas if the speed of following vehicles
is high along with large speed differential, the severity of the conflict is also high (3). As the
following vehicles closes in on the preceding vehicle with a large speed differential, both the
likelihood and severity of a crash is high (4).

3.5. Statistical tests for Analysis

The data is labelled in terms of aggregate crash risk, traffic states and driving maneuvers.
The analysis is conducted by calculating risk difference and odds ratios for classes of crash
likelihood and crash severity. The effect of the driving intention (lane changing) and traffic
state (congestion) on the change of risk from low class to high class is compared and tested
for significance of proportions. The method for testing proportions is based on the concepts
of case-control study Kirkwood and Sterne (2003

.

). It is important to define few relevant terms
before discussing the proportion tests. The definitions are given below:

1. Outcome variable: The subject of the study. In this study, outcome variable is the crash
likelihood and crash severity with binary possibilities for each of them i.e., high or low.

2. Exposure Variable: The factor whose effect is to be studied i.e., driving intention and
traffic condition. The exposure variable in terms of driving intention is lane changing
i.e., lane changing vehicle vs lane keeping vehicle (which did not changes lanes). The
exposure for traffic condition is congestion i.e., congestion vs no congestion (free-flow).
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3. Methodology

Figure 3.7.: Different scenarios of crash likelihood and crash severity: 1. Low likelihood and
low severity, 2. High likelihood and low severity, 3. Low likelihood and high
severity and 4. High likelihood and high severity
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Table 3.1.: Contingency Table: source :Kirkwood and Sterne, 2003

.

Exposure = congestion or lane changing
Outcome = high likelihood or severity Exposed Not Exposed Total
Experience Event d1 d0 d
Did not Experienced Event h1 h0 h

Total n1 n0 n

3. Sampling Condition: The condition to satisfy while sampling the data for proportion
tests. For example, select only the risk outcomes during Free-flow conditions, select only
risk outcomes for lane changing vehicles

4. Contingency table: This a table wherein the samples are tabulated depending on the
binary outcomes and exposure as shown in table 3.1

.

.

5. Risk Difference: It is defined as the difference of high crash likelihood or severity pro-
portions between exposed and unexposed samples as shown in equation 3.37

.

. It gives
an indication of the outcome due to the exposure.

Risk difference = p1 − p0 (3.37)

where p1 = d1/n1 and p0 = d0/n0

6. Odds Ratio (OR)

.

: It is the ratio of the odds of the outcome event (high likelihood/ sever-
ity) in the exposed group to the odds of the outcome event in the unexposed group, as
shown in equation 3.38

.

Odds ratio,OR =
d1h0

d0h1
(3.38)

The Confidence Interval (CI) are calculated for Risk difference and Odds ratio. The
null hypothesis for testing is formulated as: ”there is no difference between the proportions in the
population from which the sample was drawn” (Kirkwood and Sterne, 2003

.

). The formulae for CI
and hypothesis testing (z) for risk difference are based on Kirkwood and Sterne (2003

.

) and are
presented in 3.39

.

, 3.40

.

and 3.41

.

.

standard error, s.e. =

√
(
p1(1− p1)

n1
+
p0(1− p0)

n0
) (3.39)

CI = (p1 − p0)± z′ · s.e. (3.40)
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where z’= 1.96 for 95% CI

z =
p1 − p0√

(p(1− p)(1/n1 + 1/n0)
(3.41)

where p = d/n

The formulae for CI and hypothesis testing for OR

.

are based on Kirkwood and Sterne
(2003

.

) and are presented in 3.42

.

, 3.43

.

and 3.44

.

.

standard error, s.e.(log(OR)) =
√

1/d1 − 1/n1 + 1/d0 − 1/n0 (3.42)

CI(OR) = exp(log(OR)± z′ · s.e.) (3.43)

where z’= 1.96 for 95% CI

z =
log(OR)

s.e.(log(OR))
(3.44)

3.6. Conclusion

The methodology presented here provides the general methods and formulation to identify/
predict the driving intention, traffic state and crash risk from the disaggregate data, for fur-
ther statistical analysis. The methods are motivated by the data-driven and machine learning
approaches which makes it an iterative process, till the objectives are achieved.
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4. Data Collection

This study uses the HighD trajectory dataset (Krajewski et al., 2018

.

). The dataset is freely
available for non-commercial purposes. The dataset can be obtained by sending a request
form to the data owners (Dataset, 2019

.

). The Chair of Transportation Systems Engineering,
Technical University Munich provided the data to the author for this study.

4.1. Meta-details of the data

HighD Dataset

.

is a naturalistic vehicle trajectory dataset collected on German highways using
drone videography. The dataset consists of 60 recordings over 16.5 hours from six locations
(labelled 1 to 6) at a frame frequency of 25 Hz. The dataset covers 4 lane (2 per direction) and
6 lane (3 per direction) highways with central dividing median and hard shoulders on outer
edge. HighD dataset is recorded on highways with either no speed limit or with limit of 120
Km/h and 130 Km/h. Recording of the data took place on weekdays between 08:00 in the
morning and 19:00 in the evening. In the dataset, each recording has a meta file which has
the information on the location, time, duration and other characteristics of the recording. The
attributes in the meta file are listed out in Table 4.1

.

. The meta file gives an overview of the
recordings and some relevant statistics of the highD dataset are shown in Table 4.2

.

, which are
extracted from the meta-data of each recording with features. The total distance driven by
110,000 vehicles (81% Cars and 19% trucks) in the dataset is 45,000 Km with 5600 complete
lane changes (Krajewski et al., 2018

.

).

4.2. Data attributes

Krajewski et al. (2018

.

) applied tracking algorithms and post processing to retrieve smooth
position, velocities and accelerations in both x (longitudinal/ driving direction) and y (lateral/
perpendicular to the driving direction) axes. The list of attributes in the dataset is shown in
Table 4.3

.

. At vehicle level, the data has trajectory and physical features. The trajectory of the
vehicle is characterized by its position, velocity and acceleration in longitudinal and lateral
direction. The physical features in the data are the width and the length of the vehicle.

The data has attributes which tell us about the surroundings of the subject vehicle.
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Table 4.1.: Attributes in the Meta file (Source: Krajewski et al., 2018

.

)

Attributes Description Unit

id The id of the recording. Every recording has a unique id.
frameRate The frame rate which was used to record the video. [hz]
locationId The id of the recording location.
speedLimit The speed limit of the driving lanes [m/s]
month The month the recording was done.
weekDay The week day the recording was done.
startTime The start time at which the recording was done. [hh:mm]
duration The duration of the recording.
totalDrivenDistance The total driven distance of all tracked vehicles.
totalDrivenTime The total driven time of all tracked vehicles. [s]
numVehicles The number of vehicles tracked including cars and trucks.
numCars The number of cars tracked.
numTrucks The number of trucks tracked.
upperLaneMarkings The y positions of the upper lane markings. [m]
lowerLaneMarkings The y positions of the lower lane markings. [m]

Table 4.2.: Summary of the highD dataset

Location
id

No. of
recordings

Speed Limit
(Km/h)

Duration
(min.)

Total
vehicles

Cars Trucks Lanes

1 37 120 664 85962 69751 16211 3+3
2 3 No limit 49 3074 2400 674 2+2
3 3 130 57 3747 2710 1037 3+3
4 4 No limit 56 4751 3799 952 3+3
5 10 No limit 143 10079 8192 1887 2+2
6 3 120 30 2903 2287 616 4+3
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Table 4.3.: Attributes in the trajectory data (Source: Krajewski et al., 2018

.

)

Name Description Unit

frame current frame [-]
id vehicle’s id [-]
x x position of the upper left corner of the vehicle’s bounding box. [m]
y y position of the upper left corner of the vehicle’s bounding box. [m]
width width of the bounding box of the vehicle (length of the vehicle) [m]
height height of the bounding box of the vehicle (width of the vehicle) [m]
xVelocity longitudinal velocity in the image coordinate system. [m/s]
yVelocity lateral velocity in the image coordinate system. [m/s]
xAcceleration longitudinal acceleration in the image coordinate system. [m/s]
yAcceleration lateral acceleration in the image coordinate system [m/s]

frontSightDistance
distance to the end of the recorded highway section in driving
direction from the vehicle’s center.

[m]

backSightDistance
distance to the end of the recorded highway section in the opposite
driving direction from the vehicle’s center.

[m]

dhw distance Headway (= 0, if no preceding vehicle exists) [m]
thw time Headway (= 0, if no preceding vehicle exists) [s]
ttc Time-to-Collision (= 0, if no preceding vehicle or valid TTC exists) [s]
precedingXVelocity longitudinal velocity of the preceding in the image coordinate system [-]
precedingId id of the preceding vehicle in the same lane [-]
followingId id of the following vehicle in the same lane [-]
leftPrecedingId id of the preceding vehicle on the left adjacent lane in driving direction [-]
leftAlongsideId id of the adjacent vehicle on the left adjacent lane in driving direction [-]
leftFollowingId id of the following vehicle on the left adjacent lane in driving direction [-]
rightPrecedingId id of the preceding vehicle on the right adjacent lane in driving direction [-]
rightAlsongsideId id of the adjacent vehicle on the right adjacent lane in driving direction [-]
rightFollowingId id of the following vehicle on the right adjacent lane in driving direction [-]
laneId id start at 1 and are assigned in ascending order [-]

There are 8 attributes for the id of the vehicles surrounding the subject vehicle namely, front-
preceding, rear-following, left (preceding, along, following) and right (preceding, along and
following). In case, there is no vehicle present for a particular position, it is assigned a value of
0 in the data. The lane position of the vehicle can also be ascertained from the attribute ’laneId’
from the dataset. Some additional attributes have been already calculated in the data namely
distance headway, time headway and time-to-collision with respect to the front preceding ve-
hicle. There is a aerial photograph of the road section for each recording in the data and one
such photograph is shown in figure 4.1

.

.

Figure 4.1.: Aerial snapshot the road section for recording no. 25 in the highD dataset
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Table 4.4.: Comparison of HighD and NGSIM based on Krajewski et al. (2018

.

)

Feature NGSIM dataset HighD dataset

Total duration 1.5 hours 16.5 hours
Number of locations 2 6
Average duration of recording 45 minutes 15 - 20 minutes
Lanes per direction 5-6 2-3
Total vehicles 9206 110,000
Truck percentage 3% 23%
Mean speeds < 75 km/h Cars(120 km/h), trucks (80 km/h)
Lane changes per vehicle 0.45 0.10
Average traffic density higher lower
Recording frame frequency (Hz) 10 25
Length of road section 0.50 - 1.00 km 0.42 Km

4.3. Comparison with similar dataset

A comparison of the HighD dataset with the Next Generation SIMulation (NGSIM)

.

dataset
(FHWA, 2019

.

) has been already done and the same is reflected in table 4.4

.

. The HighD dataset
is larger as compared to NGSIM in terms of number of observed vehicles and duration of the
recordings. The length of the observed road section and average recording duration is shorter
in HighD when compared to NGSIM. The average number of lane changes are less in HighD
possibly due to lesser number of lanes per direction and lesser congestion. The average speeds
in HighD are much greater than NGSIM. HighD dataset has low errors in trajectories due to
use high resolution cameras and application of advanced post processing algorithms.In the
area of driving intention and traffic risk, there are multiple examples of NGSIM use-cases (Hu
et al., 2018

.

; Kuang et al., 2017

.

; Woo et al., 2017

.

), but similar studies on HighD Dataset

.

are not
found.

4.4. Conclusion

The HighD dataset has large number of recordings of vehicles over different time and days
of the week. This captures driving behaviour at different times of traffic and their interaction
with other vehicles, which is significant for the intention and risk analysis. The HighD data
is a relatively new dataset and as per the knowledge of author, this dataset has not been used
for the investigation of driving intention and rear-end crash risk estimation. Therefore, this
dataset offers a good opportunity for this study.

53



5. Data Analysis

This chapter provides details on the tools, programming language and libraries used to per-
form the analysis. Subsequently, it shows the results of the preliminary analysis/ EDA on the
data to gain some insights about the data.

5.1. Software and Tools

Python programming language has been used to perform most of the analysis in this study.
Python has an extensive collection of libraries for data handling, computation and visualiza-
tion. The machine learning frameworks are mature in python and its use is commonly among
the scientific community. The list of the prominent python libraries and tools used in this study
is given below:

1. Computation: Numpy

2. Data handling and manipulation: Pandas

3. Parallel processing: Pathos, Multiprocessing

4. Visualization and plotting: Matplotlib, Seaborn

5. Machine learning: Scikit-learn, Keras (Tensorflow backend) (Chollet et al., 2015

.

)

The hardware used for the study is a 2018 MacBook Pro with i7 processor and 16 GB
RAM with occasional use of a Desktop PC with same specifications.

5.2. Exploratory Data Analysis

EDA helps in gaining preliminary understanding of the data, discovering patterns and con-
firming assumptions. The detailed microscopic, macroscopic and criticality analysis of the
highD dataset is done by Kruber et al. (2019

.

), and is recommended to the reader for an elabo-
rate understanding of the highD data. In this report, the first sub-section: Microscopic Traffic
Analysis shows the results of EDA on disaggregate trajectory data. The second sub-section:
Macroscopic Traffic Analysis presents the results for the traffic flow parameters from the data.

54



5. Data Analysis

Figure 5.1.: Road section for track 4

5.2.1. Microscopic Traffic Analysis

The HighD dataset consists of multiple recordings corresponding to different locations and
duration of the day (Table 4.2

.

). A individual recording is referred to as a ”track” for further
analysis. A track contains the data at a location and is continuous without any recording inter-
ruptions. The ”track 4” is selected as a sample to explore the microscopic traffic variables and
understand the data. The road section corresponding to track 4 along with adopted coordinate
system is shown in shown in figure 5.1

.

. This track has 3 lanes in each direction with right
direction (longitudinal) as positive x-axis and bottom direction (lateral) as positive y-axis. The
positions of all the vehicles are positive due to this coordinate system. Since Germany follows
a right side driving rule, the vehicles travelling in right direction (bottom 3 lanes) have posi-
tive longitudinal velocities whereas the vehicles travelling in left direction (top 3 lanes) have
negative longitudinal velocities. When a vehicle makes a lateral maneuver such that it moves
towards in positive y-axis, it has a positive y velocity and vice-versa.

The summary statistics of the vehicle features are shown in Table 5.1

.

and 5.2

.

. Each
of these tables correspond to the two driving directions i.e., positive x (bottom 3 lanes) and
negative x (top 3 lanes), respectively. Since the data is recorded at a frame frequency of 25 Hz,
one second of data for a vehicle would generate 25 data points for all the features. This tracks
has data for 1163 vehicles and the count represents the number of the data points correspond-
ing to all these vehicles. The x position varies between 0 to 415 m (length of the road section).
The y-values range from 12 m to 35 m corresponding to top lane and bottom lane respectively.
These x and y position in the data correspond to the top left corner of the vehicle bounding
box. The longitudinal speeds range from 73 km/h to 177 km/h with a mean close to 110 km/h.
The statistics for lateral speeds, longitudinal acceleration and lateral acceleration can also be
seen in these tables. The length and width of vehicles also varies between (2.9 m, 21 m) and
(1.7 m, 3.0 m) which shows different types of vehicle such as cars and trucks in the data.

The plot of the trajectory of a vehicle with Id. no. 200 on the track is shown in figure
5.2

.

. The evolution of its longitudinal and lateral motion (position, velocity and acceleration) is
shown in figure 5.3

.

and 5.4

.

respectively. It can be seen from these plots that the velocity and
acceleration have first order and second order differential relationship respectively with the
position data. The plots for other tracks are not shown here to avoid repetition.
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Table 5.1.: Disaggregate features: Positive longitudinal Direction

x y w (m) L (m) vx (Km/h) vy (Km/h) ax (m/s2) ay (m/s2)

count 193375
mean 206.62 31.84 2.17 8.48 110.68 -0.05 0.03 -0.02
std 117.72 2.64 0.30 5.27 20.13 0.75 0.18 0.09
min 1.58 26.33 1.72 2.93 73.26 -5.00 -1.36 -0.53

25% 104.94 30.54 1.92 4.65 90.11 -0.29 -0.06 -0.06
50% 206.32 31.13 2.02 5.05 112.10 -0.04 0.03 -0.01
75% 308.34 34.53 2.50 14.25 128.38 0.18 0.11 0.03

max 414.50 35.84 3.03 20.62 177.05 5.18 1.53 0.56

x, vx, ax: longitudinal position, velocity and acceleration; y, vy, ay: lateral position,
velocity and acceleration, w: width of vehicle, L: length of vehicle; 25%, 50% and
75% represent the first, second and third quartiles respectively

;

Table 5.2.: Disaggregate features: Negative longitudinal Direction

x y w (m) L (m) vx (Km/h) vy (Km/h) ax (m/s2) ay (m/s2)

count 197312
mean 196.25 16.57 2.18 8.68 -105.66 -0.03 0.05 -0.02
std 117.41 2.64 0.28 5.46 20.37 0.86 0.26 0.11
min -20.88 12.44 1.72 3.39 -176.80 -7.49 -1.57 -1.02

25% 94.83 13.80 1.92 4.65 -122.58 -0.29 -0.07 -0.06
50% 195.45 17.32 2.02 5.05 -101.95 0.00 0.03 -0.01
75% 297.38 17.83 2.50 15.06 -87.30 0.25 0.14 0.03

max 407.33 22.04 2.93 21.02 -74.52 6.30 2.42 1.18

x, vx, ax: longitudinal position, velocity and acceleration; y, vy, ay: lateral position,
velocity and acceleration, w: width of vehicle, L: length of vehicle

Figure 5.2.: Sample trajectory of a vehicle
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Figure 5.3.: Longitudinal motion variables of a sample vehicle

Figure 5.4.: Lateral motion variables of a sample vehicle
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Safety Surrogates

In the data, safety surrogates namely, TTC, time headway (TH) and distance headway (DH)
are already available in the data as mentioned in table 4.3

.

. In addition to these, likelihood and
severity indicators i.e., MTTC

.

and CRIM

.

are calculated for comparison. The pair plot of these
indicators is shown in fig. 5.5

.

. Only, the instances with MTTC between 0 and 5 seconds is used
for this plot. The negative MTTC are not significant for safety analysis of rear-end crashes. The
values higher than 5 seconds are less critical and thus dropped to make the plots clean and
readable.

The TH and DH are linearly correlated with Pearson correlation coefficient close to
1. MTTC and TTC are also positively correlated but the correlated is not strong. It can be
seen that for the MTTC values upto 5s, TTC varies upto 20s with most of the values in the
range upto 10s. This reiterates the fact that MTTC covers more conflict scenarios. The CRIM

.

has a high positive correlation with TH and DH. The possible reason is following vehicles
have large speed differences when they are far from one another. The correlation of MTTC

.

and CRIM

.

is not very strong which points to the fact that they measure separate aspects of a
conflict i.e., likelihood and severity. The distribution of MTTC is uni-modal and skewed to the
left, indicating that instances of low MTTC (high likelihood) are fewer. On the other hand, the
distribution of CRIM is skewed to the right with multiple peaks which indicate the instances
of high severity are fewer. This makes sense because high risk instances are lesser compared
to the normal or low risk instances. Crash severity has few negative values in case where
preceding vehicle is faster than the following vehicle.

5.2.2. Macroscopic Traffic Analysis

The macroscopic traffic analysis is carried only for the 6 lane freeway sections with 3 lanes
in each direction. This selection is done because data for 6 lane (3+3) road section constitute
majority of the recordings (44 locations) as compared to other road configurations (2+2, 3+4) in
the highD data. This also allows for uniformity in terms of road geometry for the comparison
of macroscopic traffic parameters. The summary of the selected data is given in table 5.3

.

. In
terms of speed limit, location 4 has no speed limit, whereas data from location 1 and 3 has a
speed limit of 120 km/h and 130 km/h respectively.

Table 5.3.: Details of the data used for Macroscopic traffic characteristics

Location
id

No. of
recordings

Speed Limit
(Km/h)

Duration
(min.)

Total
vehicles

Cars Trucks Lanes

1 37 120 664 85962 69751 16211 3+3
3 3 130 57 3747 2710 1037 3+3
4 4 No limit 56 4751 3799 952 3+3
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Figure 5.5.: Pair plot of the Safety Surrogates for disaggregate data
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The traffic flow is calculated at the approximate middle of the road section at x =
200 m. The vehicles crossing are aggregated for 30 s interval for each lane to get the Traffic
flow. The obtained traffic flow is scaled to hourly values by multiplying with a factor of 120
(3600/30). Similarly, lane density, total density, average lane speeds and average speed are
calculated for 30 s data aggregation by applying the procedure in 3.3.2

.

.

The pair-plots of the fundamental diagram (FD) is shown in fig. 5.6

.

. In figure, it can
be seen that at low densities ranging from 0-60 vehicles/km, the average speed is close to the
speed limit in the range of 100-120 km/h. The maximum traffic flow of around 7000 vehicles/h
occurs at a speed between 80-100 km/h. The flow in high speed regime ranges between 1000-
6000 vehicles/h whereas the flow decreases when there is a drop in the speed. The relationship
between flow and density is also evident. Initially, the flow increases upto the road capacity
with increase in density, but a further increase in traffic density results in a drop in the traffic
flow.

The analysis of the track-wise/ location wise trends of the macroscopic traffic param-
eters is not possible in the fig. 5.6

.

. To analyze the location wise trends, the box plots in fig.
5.7

.

, 5.8

.

and 5.9

.

shows the variation of total flow, total density and average speeds for differ-
ent tracks. The mean section speed in majority of the tracks is between 100 km/h - 120 km/h
indicating high speed traffic conditions (free-flow). The few tracks such as track no. 11, 12,
13, 14, 25, 26, 27 and 46 shows significant drop in the average speeds which change in traffic
conditions. In these few tracks, increase in traffic density also points to the development of
congestion like conditions. The mean flow in the track nos. 04, 05, 06, 07, 08, 09 and 10 is lower
than than the mean flow in other tracks. Majority of the recordings correspond to high speed
traffic flow. A few recordings capture the lower speeds as well. The pre-domianance of the
free-flow states in the highD data was also found by Kruber et al. (2019

.

). Only few recordings
have high variation in the traffic parameters. This may be due to the reason that the recordings
correspond to a short duration (< 20 minutes) with majority showing no traffic transition.

The box plots in fig. 5.10

.

,5.11

.

and 5.12

.

shows the variation of lane flow, lane density
and average lane speeds for different tracks for both the driving directions. The average speeds
on the right lanes in both directions is lower than the average speeds on the middle and left
lanes. This is because left lane is normally reserved for over-taking purposes only. Another
reason is that the heavy vehicles like trucks generally prefer to use right lanes due to their low
speeds compared to the cars. The average lane flow on right lane is observed to be lower than
other lanes due to lower speeds and longer vehicles (trucks).

The recordings showing large variation in the speed are further analyzed to see the
trend of the parameters with time. The time series plot of the traffic density, flow and velocity
for the selected recordings showing large variation i.,e recording no 12, 25, 26 and 46 is further
inspected. The plots of traffic parameters for upper (Westward direction) and lower lanes
(Eastward) are shown in fig. 5.13

.

and 5.14

.

. It can be seen that upper lanes in tracks no. 12 and
46 show speed increase from around 50 km/h to 100 km/h. In lower lanes on tracks no 25 and
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5. Data Analysis

Figure 5.6.: Pair plots of the Traffic FD
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5. Data Analysis

26, initially a speed increase is observed which is follower by the speed drop towards the end.
The lower lanes in track no. 46 show a consistent increase in speed 25 km/h to around 125
km/h. These trends give an indication of the flow transition from free-flow to congestion or
vice-versa.

5.3. Conclusion

The data analysis has brought out some interesting insights about the data. MTTC and Crash
severity are found to be not correlated as intended for separate estimation of likelihood and
severity at disaggregate level. The data corresponds majorly to free-flow traffic but contains
few tracks during which transition of traffic state is observed, which shows that there is some
variability in the traffic conditions.
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6. Results

This chapter starts with the results of the driving maneuver labeling and intention prediction.
Thereafter, the results of traffic state clustering are presented. Finally, the chapter deals with
crash risk estimation and hypothesis testing results.

6.1. Driving Intention

Only the track no. 45 with 3 lane configuration in each direction is selected for the labeling
of driving maneuver i.e., lane changing or lane keeping. This dataset contains 2449 vehicles
recorded in 18 minutes and contains 334 vehicles which executed a lane change. The selection
of this is made randomly but the results of this track are tested on tracks from other locations
in the dataset to ensure transferability of results.

6.1.1. Maneuver analysis on aggregated data

The results of PCA to obtain two Principal components (PCs) on the aggregated features of
vehicle motion (velocity and acceleration) for longitudinal motion, lateral motion and Net mo-
tion are shown in table 6.1

.

. The two principal components explain 97% of the variance in
aggregated lateral motion and the principal component PC1 explains up for 94% of the vari-
ance. The obtained PCs are plotted with respect to the ground truth of lane change from the
data i.e., If vehicle executed at least one lane change or Did not execute a lane change at all.
The plots are shown in figures 6.1

.

, 6.2

.

and 6.3

.

, where it can be seen that lateral motion explains
the distinction of lane changing from No-lane changing more clearly as evident from the sep-
aration of the two groups in fig. 6.1

.

. This trend is also confirmed on other tracks as shown in
figure 6.4

.

. This shows that lateral velocity and lateral acceleration are significant features to
distinguish between lane changing and no lane changing maneuvers. This forms the basis of
the selection of only the lateral motion for further analysis for driving intention identification
from the disaggregate data.
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6. Results

Table 6.1.: PCA on aggregated metrics

Motion type Features
No. of aggregated
features (µ and σ)

Variance
PC1 (%)

Variance
PC2 (%)

Lateral motion vy, ay 4 94 3
Longitudinal motion vx, ax 4 52 24
Net motion vy, ay, vx, ax 8 49 24

Figure 6.1.: PC obtained from aggregate features of lateral motion

Figure 6.2.: PC obtained from aggregate features of longitudinal motion
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6. Results

Figure 6.3.: PC obtained from aggregate features of net motion

Figure 6.4.: Scatter plot of the Principal components of the Trajectories: At least one lane
change (red) and No lane change (Blue)
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6.1.2. Driving Maneuver clustering from real-time motion

The results of the different clustering algorithms K-means, agglomerative clustering, GM and
DBSCAN on the two lateral motion features vy and ay are shown in fig 6.5

.

. The agglomerative
clustering is used for different linkage algorithms (single, complete, ward). The DBSCAN clus-
tering is used with eps = 0.05 and different values of minimum samples of for clustering (10,
50 and 80). The DBSCAN and GM algorithms show good results. The GM is able to identify
two clusters but the boundaries are not well defined since lot of points of high density region
are lying outside the inner cluster. The reason DBSCAN performs well is that the points of low
density on the outside represents extreme values of vy and ay during lane change whereas the
region of high density core corresponds to the points when the vehicle is not changing lanes,
thus exhibiting negligible lateral motion. The change of DBCAN parameters also does not sig-
nificantly changes the clustering (fig. 6.5

.

) which points to the fact that it is less sensitive and
more robust for the current task.

The result of the density-based clustering of the manoeuvres on the bi-variate time
series of vy and ay are labelled as shown in fig. 6.6

.

. The low density points (in red) are labelled
as lane changing maneuver and high density core ( blue) is labelled as lane keeping maneu-
ver. The parameters for clustering are eps =0.05 and minimum samples = 80 with Euclidean
metric for distance calculation. These parameters are obtained by tuning the clustering with
respect to Silhouette score. The Silhouette score for the two identified clusters corresponding
to two manoeuvre classes is 0.77 which indicates good clustering performance. Each point
in this scatter plot corresponds to the lateral acceleration and lateral velocity of a vehicle at a
time instant. The distribution plot of transverse acceleration and transverse velocity for lane
keeping manoeuvre follow a uni-modal distribution with a mean close to 0 and narrow devia-
tion. This is due to the reason that during lane keeping there are small deviations with respect
to the intended path. The distribution of lane changing has bi-modal distribution with wide
deviation. This is due to the reasons that a lane change manoeuvre involves a significant accel-
eration and velocity during the lateral movement. The two peaks on the velocity distribution
for lane changing is due to the left and right-side lane changes.
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Figure 6.5.: Results of the different clustering algorithms
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Table 6.2.: Evaluation metrics of the SVM in manoeuvre classification
Manoeuvre Class Precision Recall
Lane Changing 0.99 0.99
Lane Keeping 1 1

Figure 6.6.: Top: Density-based clustering of the manoeuvres: Lane change (red) and Lane
Keeping (blue); Bottom: Distribution of the Lane keeping and Lane changing Ma-
noeuvres

The data is split into training and validation data (80:20) for training the maneuver
labelling classifier. A SVM classifier is trained on the clustered labels to learn the representa-
tions of the two manoeuvres and thus label the bi-variate time series data during the inference
stage. The best parameters for SVM are C = 0.5 with a radial basis function as kernel. Table
6.2

.

shows the performance of the SVM manoeuvre classifier on the validation data. The ma-
noeuvre classifier achieves an accuracy of 99.8% with high recall and precision, which shows
the excellent performance of the SVM in distinguishing both classes. Based on the labelling,
the average duration of a full lane change is about 5.68 seconds with a standard deviation of
0.77 seconds.
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6.1.3. Driving Intention Prediction

The data for the prediction model is split in 80:20 proportion for training and validation in
terms of the vehicle trajectories. The test data consists of 10715 trajectories (6198 trajectories
with full lane change and 4517 trajectories with no lane change), sampled from all the six
locations in the data-set.

In this study, the best configuration of the LSTM predictor was identified by its per-
formance on the validation dataset and the training time. The adopted model consists of two
LSTM layers, each containing 50 units as shown in fig. 6.7

.

. The layers are stacked on top of
each other to enable the model to learn higher level temporal dependencies. The second LSTM
layer return its output to a dense layer with 20 neurons. This dense layer is further connected
with two dense layers with 20 and 10 neurons. The final layer is also a dense layer but with
softmax activation and the output of the final layer is the probability of the two manoeuvre
classes. The random forest classifier is trained with estimators=10 and maximum depth of the
tree=15.

Figure 6.7.: Architecture of the LSTM model

The look back period greater than 1 second did not seem to have a significant im-
provement on the performance of the model. It was found that sampling the data with frame
granularity, f > 1 results in longer training times, whereas training the model at the raw frame
frequency i.e., f =1 is faster and achieves the convergence much earlier. Thus, values of f =1
and kt = 1 second are used for the model training and evaluation. The loss and accuracy curves
of LSTM model for training data and validation data for different values of prediction horizon
time pt is shown in Figure 6.8

.

. It can be seen that accuracy decreases with increase in pre-
diction horizon since the dependencies are too long to be learned even by the LSTM model.
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Table 6.3.: Evaluation metrics for LSTM and Random Forest model

Look-back
time (sec)

Prediction
horizon(s)

Accuracy (%)

Random
Forest

LSTM

1 0.5 97.2 98.8
1 1 94.5 97.6
1 2 88 93
1 3 83 88

Table 6.3

.

compares the results of intention prediction from the RF and LSTM models. At small
prediction horizons, it can be seen that RF is as accurate as LSTM. However, when the predic-
tion horizon increases, LSTM performs better than RFs. This is because LSTM is better capable
to model the sequence or temporal dependencies. The LSTM model achieves an accuracy of
above 97% for prediction horizon upto 1 second which is very significant for highway driving
scenarios. The accuracy drops significantly for prediction time greater than 1 second. As a
result, the LSTM model with prediction horizon of 0.5 seconds is used for the test data due to
its high accuracy. Thus, the LSTM model can predict the lane change manoeuvre 0.5 seconds
before the start of manoeuvre with high accuracy.

Figure 6.8.: Loss and accuracy during training and validation of LSTM model for different pre-
diction horizons

The complete lane change detection model is evaluated on the test data by using
recall, precision and advance detection time. The model is able to detect the lane change ma-
neuver with a recall of 0.99 and precision of 0.98. The advance detection time has a mean of
3.18 seconds and standard deviation of 0.98 seconds. The distribution of the advance detection
time is shown in Figure 6.9

.

. The 90th and 99th percentile time for advance detection is 4.04
s and 6 s respectively. Few examples of the manoeuvre prediction are shown in Figure 6.10

.

.
In these figures, the actual trajectory is color coded as per the prediction and actual status of
the manoeuvre. The initial length of trajectory is colored in black since no data is available to
make the predictions for this length. The correct prediction for lane changing and lane keeping
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is shown in green and blue color respectively. It can be seen in fig. 6.10

.

that model performs
accurately for different lane change scenarios, such as left lane change, right lane change, pass-
ing or return, etc. The few instances of misclassifications of lane change and lane keeping are
shown in red and orange color. Thus, the model is able to predict the lane changing intention
very well in advance before the vehicle crosses into adjacent lane. The mean detection of about
3 seconds achiever after automatic labeling is better/ comparable to the ones established in the
previous studies as shown in Table 2.1

.

.

Figure 6.9.: Distribution and cumulative distribution of advance detection time

6.2. Traffic State

The results of the traffic state clustering using GM algorithm on speed and density data is
shown in the fig. 6.11

.

. The parameters for clustering are covariance type (’tied’) and number
of components (2). Based on the clustering, the boundary between the free and the congestion
state is identifiable at the average speed of 70 km/h. The traffic flow above this speed falls in
free-flow cluster and vice-versa for congestion cluster. The labeled traffic state pair-plots are
shown in fig. 6.12

.

.

The summary statistics of the two traffic states are shown in table 6.4

.

and table 6.5

.

.
The mean speeds in free-flow and congestion flow are 107 km/h and 46 km/h respectively.
The minimum traffic speed in congestion is 17 km/h whereas the maximum speed in the free-
flow state is 154 km/h. The count of free-flow is about 29 times the count of congestion states
as the occurrence of congestion states is way less than the free flow states in the HighD Dataset

.

.
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Figure 6.10.: Examples of model predictions of the manoeuvre class on test data

Table 6.4.: Summary of Free flow Cluster
Flow
(veh/h)

Speed
(km/h)

Density
(veh/km)

count 2958 2958 2958
µ 3594 107 32
σ 1057 9 13
min 600 70 2
median 3600 107 30
max 7320 154 83
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Figure 6.11.: Results of GM clustering for Traffic state

Table 6.5.: Summary of Congestion Cluster

Flow
(veh/h)

Speed
(km/h)

Density
(veh/km)

count 102 102 102
µ 4091 46 86
σ 941 15 22
min 1800 17 37
median 3960 46 85
max 6600 74 149
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Figure 6.12.: Pair plots of the traffic state clustering
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Table 6.6.: Crash Risk Estimates

PCrash SCrash Flow ACL ACI Total Risk

µ 217.14 8927.87 30.09 6.91 287.48 3.45E+03
σ 342.21 4896.25 8.81 12.40 127.78 2.04E+04
min 0.49 460.58 5.00 0.07 92.12 1.02E+01
Median 146.75 8142.09 30.00 5.01 270.06 1.31E+03
max 5470.90 46882.26 61.00 251.89 2350.61 5.92E+05

6.3. Crash Risk

The minimum value of MTTC

.

is 0.02s and is observed in track no. 25. The maximum value of
CRIM

.

is observed track no 10, when the subject vehicle no. 845 is traveling at a speed of 205
km/h whereas the speed of preceding vehicle is 115 km/h. The maximum values of the ACL

.

and ACI

.

is 251 and 2350 and both are observed in track no. 25 during a lane change event. The
summary statistics of the aggregate crash likelihood and crash severity for all the traffic states
is shown in table 6.6

.

. The ACL and ACI have a mean 7 and 287 respectively.

The pair-plot of the crash likelihood and severity is shown in fig. 6.13

.

. In the plot,
the ACL, ACI and total risk are scaled down by dividing each one of them by its maximum
obtained values. It can be seen that the value of the ACL and ACI have high values in the
congestion traffic state, whereas they have low values in the free-flow states. The ACL and ACI
have a strong positive correlation with each other. The correlation of the likelihood, severity
and total risk with speed is negative, implying higher crash risk during speed drops on a
freeway.

The distribution of the crash likelihood and crash severity is analyzed for extraction
of low/ normal vs high risk cases. There are not distinct clusters in the likelihood and severity
distribution due to the reason that their formulation is based on continuous mathematical
functions and hence the discrete risk groups cannot be clustered. The manual thresholds are
defined to divide the likelihood and severity distribution into two groups of high vs low. The
likelihood and severity show uni-modal distributions with a long right tail (left skewed). This
is evident in the pair-plots in fig. 6.13

.

. It is assumed that normal behaviour or low risk cases
follows a symmetrical normal distribution and the instances in the long tail belong to abnormal
behaviour or high risk cases. Using this approach, a threshold is identified to separate the low
risk cases from high risk cases. The thresholds for crash likelihood is at scaled ACL = 0.2 and
that for crash severity is at scaled ACI = 0.4. The distribution for the crash likelihood and crash
severity below these thresholds follows close to a symmetrical distribution i.e., with equal left
and right tails. The instances above the selected thresholds show a decreasing trend. The
distribution of the crash likelihood and severity after dividing into two classes is shown in fig.
6.14

.

and 6.15

.

.

80



6. Results

Figure 6.13.: Pair plots of the likelihood, Severity and risk of a crash. The ACI, ACL and total
risk values are divided by their maximum.

Figure 6.14.: Distribution of crash likelihood classes
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Figure 6.15.: Distribution of crash severity classes

The grouping of the estimated risk into high and low class for both the likelihood
and severity gives four combinations of the crash risk. These combinations are high crash
likelihood & high crash severity (HL-HS), low crash likelihood & high crash severity (LL-
HS), high crash likelihood & low crash severity (HL-LS) and low crash likelihood & low crash
severity (LL-LS). These four risk categories are plotted on the speed-flow diagram as shown
in 6.16

.

. Here, the four risk classes are assigned an overall risk i.e., Extreme, High, Medium
and Low for for the combinations HL-HS, LL-HS, HL-LS and LL-LS respectively. It can be
seen that total risk increases as the speed on the highway drops which implies congestion like
conditions. Now, it also is possible to analyze the risk dependence on the driving intention
and traffic states. The crash likelihood and severity is separately analyzed with respect to its
correlation with the traffic states and individual driving intention in the nexts section.

6.4. Effect of Intention and Traffic on risk

There are significant differences in the distribution of the crash risk across the driving intention
and traffic states. Firstly, due to the same aggregation level of 30s used for the estimation of
crash estimate and traffic states, it is possible to visualize them on the same plot. The speed-
flow diagram for the traffic classes and the crash classes (likelihood and severity) is shown is
shown in fig 6.17

.

. It can be seen that majority of the high crash likelihood and all the high crash
severity instances fall in the congestion/ unstable traffic flow conditions. A few instances of
high crash likelihood fall in the free flow traffic conditions.

The sample occurrences of the crash risk classes with respect to the state of the traffic
are shown in table 6.7

.

. Further, the sample occurrences are also shown by traffic state for lane
changing vehicles and lane keeping vehicles separately in table 6.8

.

and 6.9

.

.

The sample occurrences of the crash risk classes with respect to the driving intention
are shown in table 6.10

.

. Further, the sample occurrences are also shown for free traffic state
and congestion traffic state separately in table 6.11

.

and 6.12

.

.

The proportion of the crash likelihood and crash severity from the sample are ana-
lyzed for the (risk) difference and odds ratio and their 95% confidence interval and its signifi-
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Figure 6.16.: Distribution of Risk classes

Figure 6.17.: Crash classes on speed-flow diagram
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Table 6.7.: Crash classes for all vehicles by Traffic State

Crash risk class Free-flow Congestion

High Likelihood and High Severity 0 97
High Likelihood and Low Severity 147 4
Low Likelihood and High Severity 0 1
Low Likelihood and Low Severity 2811 0

Table 6.8.: Crash classes for Lane Changing vehicles by Traffic State

Crash risk class Free-flow Congestion

High Likelihood and High Severity 34 76
High Likelihood and Low Severity 1247 16
Low Likelihood and High Severity 7 2
Low Likelihood and Low Severity 1570 2

Table 6.9.: Crash classes for lane keeping vehicles by Traffic State

Crash risk class Free-flow Congestion

High Likelihood and High Severity 0 98
High Likelihood and Low Severity 90 3
Low Likelihood and High Severity 0 1
Low Likelihood and Low Severity 2868 0

Table 6.10.: Crash classes for all traffic states by driving intention

Crash risk class Lane changing Lane keeping

High Likelihood and High Severity 110 98
High Likelihood and Low Severity 1263 93
Low Likelihood and High Severity 9 1
Low Likelihood and Low Severity 1572 2868

Table 6.11.: Crash classes for free-flow state by driving intention

Crash risk class Lane changing Lane keeping

High Likelihood and High Severity 34 0
High Likelihood and Low Severity 1247 90
Low Likelihood and High Severity 7 0
Low Likelihood and Low Severity 1570 2868
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Table 6.12.: Crash classes for congestion state by driving intention

Crash risk class Lane changing Lane keeping

High Likelihood and High Severity 76 98
High Likelihood and Low Severity 16 3
Low Likelihood and High Severity 2 1
Low Likelihood and Low Severity 2 0

cance. The hypothesis testing for the crash likelihood and crash severity is done. The exposure
variable are the traffic congestion and lane change intention. In case of outcome variable as
crash likelihood and exposure as traffic congestion, the null hypothesis is: Traffic congestion
does not effects the likelihood of crashes. In case the lane change intention is selected as exposure,
the null hypothesis for testing is: Crash likelihood is same during lane changing and lane keeping.
Similarly, In case of outcome variable as crash severity and traffic congestion as exposure, the
null hypothesis is: Traffic congestion does not effects the severity of crashes. In case the individual
intention is selected as exposure, the null hypothesis for testing is: Lane changing maneuvers
does not cause increase in the severity of the crashes. The contingency tables for hypothesis testing
are obtained using the data in table 6.7

.

to table 6.12

.

. These tables are reproduced in Appendix
A.2

.

.

The table 6.13

.

shows the results of the hypothesis testing for the crash likelihood.
From the table, it can be seen that that the effect of traffic congestion is significant for all inten-
tions although the magnitude of the effect is different as reflected in risk difference and odds
ratio. The traffic congestion results in increased crash likelihood overall, i.e., for all the vehi-
cles. The reason might be that during a congestion, there is formation of a shock-wave and
there is a high chance of a crash due to speed difference between the congestion flow and flow
at the upstream of the congestion. During congestion, the odds for the increased likelihood
for the lane keeping vehicles are more than those for the lane changing vehicles. The fig. 6.18

.

shows the risk classes for the lane keeping and lane changing vehicles on two different plots.
It can be seen that effect of congestion is more prominent for lane keeping vehicles as evident
by the increase of risk with capacity drop. The reason might be that the lane keeping vehicles
reduce their speeds upto the congestion speed at the upstream end of the congestion whereas
the lane changing vehicles change their lanes to select the optimum lane (if possible) during
a congestion flow. Therefore, the speed differences between following and preceding vehicles
exists for a longer duration for the lane keeping vehicles.

The lane changing intention is found to be significant for increased crash likelihood.
The effects of the lane changing is more pronounced during free flow conditions as compared
to that during congestion as shown in fig. 6.18

.

. The reason could be the larger variability in
lane speeds during free conditions because the left lane is used for overtaking purposes in
Germany whereas the right lane is used otherwise. Thus, a lane changing vehicle will need to
increase or decrease its speed from its initial lane to the final lane due to which there is more
friction and higher chances of a rear crash. The variability in lane speeds and the required
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Figure 6.18.: Risk for Lane Keeping (Left) and Lane Changing (Right) intention

Table 6.13.: Crash Likelihood: risk difference and odds ratio

Sample Control Exposure
Outcome: Crash Likelihood

Risk Difference Odds Ratio

Difference 95% CI p value Ratio 95% CI p value

- Traffic congestion 0.94 0.92-0.96 <0.001 1931 267-13941 <0.001
Intention: Lane changing Traffic congestion 0.51 0.46-0.55 <0.001 28 10-77 <0.001
Intention: Lane Keeping Traffic congestion 0.96 0.94-0.98 <0.001 3218 444-23330 <0.001

- Lane changing 0.40 0.38-0.42 <0.001 13 11-15 <0.001
Traffic: Free Lane changing 0.41 0.39-0.43 <0.001 25 20-32 <0.001

Traffic: Congestion Lane changing -0.032 0.076-0.012 0.144 0.2 0 - 2 0.169

speed increase/ decrease for changing lanes is smaller during the congestion as compared
to the free-flow conditions. That is why, effect of lane changing on crash likelihood during
congestion is not found to be significant as observed by its high p values in table 6.13

.

.

The table 6.14

.

shows the results for the Crash Severity. From the table, it can be seen
that the effect of traffic congestion is significant for all intentions, although the magnitude of
effect is different as reflected in risk difference and odds ratio. This is again due to the reason
that speed adjustment is needed at the upstream end of the congestion. Due to this speed
differential, the congested flow shows greater odds for a severe rear-end crashes. The odds
ratio for the effect of congestion on lane keeping vehicles is shown as infinity due to absence
of high severity outcomes during the free flow conditions. As far as intention is concerned,
lane changing is found to be significant for increase in crash severity during the free flow
conditions. The fig. 6.18

.

also shows that due to lane changing, the high severity points can
be seen during the free-flow traffic as well. This might be again due to larger lane-speed
variability between left and right lanes during free flow conditions. The lane changing is found
to be associated with reduction in crash severity during congestion based on the negative risk
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Table 6.14.: Crash Severity: risk difference and odds ratio

Sample Control Exposure
Outcome: Crash Severity

Risk Difference Odds Ratio

Difference 95% CI p value Ratio 95% CI p value

- Traffic congestion 0.96 0.92-0.98 <0.001 ∞ - -
Intention: Lane changing Traffic congestion 0.80 0.72-0.87 <0.001 297 163-541 <0.001
Intention: Lane Keeping Traffic congestion 0.97 0.93-1.00 <0.001 ∞ - -

- Lane changing 0.00 0.00-0.01 0.103 1.2 0.9-1.6 0.104
Traffic: Free Lane changing 0.14 0.01-0.02 <0.001 ∞ - -

Traffic: Congestion Lane changing -0.06 -0.24-0.07 0.001 0.131 0.037-0.462 0.003

difference and less than 1 odds ratio.

The consequences of congestion on the crash likelihood are in agreement with studies
by Golob, Recker, and Alvarez (2004

.

), Kuang et al. (2017

.

), and Marchesini and Weijermars
(2010

.

) who have too found positive correlation of rear-end crash risk with speed drops, speed
variability or congestion. Regarding Severity, congestion conditions are perceived to result in
less severe crashes (Chang and Xiang, 2003

.

; Marchesini and Weijermars, 2010

.

). The congestion
in outer lanes is also found to be associated with low likelihood of injury crashes by Golob,
Recker, and Pavlis (2008

.

). They also found that transition from free flow to congestion has no
impact on severity. This anomaly might be due to the fact that their severity analysis is based
on accident and resulting severity of the injury. The conflict cases where a possible severe crash
is avoided due to human action/ response are not reflected in these studies. Another possible
reason could be short length of the road section used in this study due to which only partial
observation of congestion and its effects is possible.

6.5. Main Findings

Firstly, The density based clustering is efficient for clustering of the driving maneuvers from
the disaggregate data. The intention prediction model based on these automatic labels is ef-
ficient in predicting driving intentions on an average 3 seconds before lane change with only
few false alarms. Secondly, The results show that the congestion/ speed drop has an increased
likelihood as well as increased severity as compared to the crash risk under free flow. In terms
of intention, vehicles executing a lane changing manoeuvre are at an increased likelihood and
severity of a crash as compared those not changing lanes during the free-flow traffic condi-
tions. The effect of lane changing during congestion is somewhat significant for rear-end crash
severity but not significant for increase in likelihood.
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7. Conclusion

Lane changing and lane keeping are the two primary lateral driving maneuvers on highways.
Their timely detection is one of the keys to highway safety and cooperative driving, however,
data-driven prediction of these manoeuvres has so far been constrained by the manual la-
belling of training data-sets. This study bridges the gap in the literature by demonstrating that
only with lateral movement data in terms of velocity and acceleration can distinguish whether
a vehicle will carry out a lane change or not. A density based clustering approach and a SVM
classifier demonstrated good results for automatically identifying and labelling manoeuvres
as lane keeping or lane changing.

Crash risk has two components namely, likelihood and severity. MTTC and a newly
introduced impact surrogate: CRIM give an estimation for the rear crash risk by quantifying
its likelihood and severity separately. The estimation of aggregate risk and traffic states shows
that the congestion causes increased likelihood and severity of the rear-end crash. Lane chang-
ing intention is found to be significant for increase in crash likelihood and severity during free
flow traffic conditions. Although, this study only analyses rear-end crashes for risk estima-
tion, but it is possible apply this approach to other crash types by incorporating crash specific
likelihood and severity surrogates.

The unsupervised labeling approach is generic and can easily be transferred to other
locations or scenarios for developing end-to-end intention detection models. Furthermore, the
developed LSTM model for predicting manoeuvres over trajectories from different highway
locations shows significant performance and can detect lane changes at an average 3 seconds
before a vehicle enters into a new lane. The results of the study are envisioned to enhance
highway safety, as the successful and timely prediction can lead to better coordination among
vehicles and proactive alerts to the drivers in the near automated future. The insights from the
effect of intention and traffic on change in crash likelihood and severity provides an evidence
for real time traffic management system policies.

7.0.1. Limitations and Future Work

The presented research is not without its own limitations. The data recorded were obtained
from a short highway segment, which consequently limits the number and nature of the iden-
tified manoeuvres and traffic interactions. Observing a longer road segment could help in
observing more interactions. Finally, this study does not differentiate maneuver labels into
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left or right lane changes, and as a result the utilization of the direction of longitudinal and
lateral velocity with respect to a frame of reference should be further researched. The model
needs validation in real driving scenario to check its robustness with respect to noise in sensor
measurements, unlike the trajectory data which is post-processed and is free of such noise.

Also, data has small variability in traffic states since most traffic conditions belong
to free-flow. Further research can be done on the validation of the crash severity estimation
method for more diverse traffic scenarios where the accident severity data is also available.
The crash risk method is only an estimation from intention and traffic states and not a real
time prediction. Thus prediction of traffic states based on long duration data can be helpful in
predicting crash risk in real time. This means that ability to predict traffic states and driving
intention can help in eventually predicting crash risk, which can be explored in future.
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A. Data Visualizations and Additional Data

A.1. Data Visualization

Figure A.1.: Correlation plots of the risk indicators with lane-wise traffic parameters
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A. Data Visualizations and Additional Data

Figure A.2.: Correlation plots of the risk indicators with lane-wise cars and trucks
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A. Data Visualizations and Additional Data

Figure A.3.: Pair plots of the likelihood, Severity and risk of a crash. The ACI, ACL and total
risk values are divided by their maximum.
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A. Data Visualizations and Additional Data

A.2. Contingency tables for Hypothesis testing

Table A.1.: Likelihood outcome with traffic congestion
Likelihood outcome Congestion No Congestion
High 101 147
Low 1 2811

Table A.2.: Severity outcome with traffic congestion
Severity outcome Congestion No Congestion
High 98 0
Low 4 2958

Table A.3.: Likelihood outcome with Driving Intention
Likelihood outcome Lane-Change No Lane-Change
High 1373 191
Low 1581 2869

Table A.4.: Severity outcome with Driving Intention
Severity outcome Lane-Change No Lane-Change
High 119 99
Low 2835 2961

Table A.5.: Likelihood outcome with Driving Intention in Free Traffic
Likelihood outcome Lane-Change No Lane-Change
High 1281 90
Low 1577 2868

Table A.6.: Severity outcome with Driving Intention in Free Traffic
Severity outcome Lane-Change No Lane-Change
High 41 0
Low 2817 2958
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A. Data Visualizations and Additional Data

Table A.7.: Likelihood outcome with Driving Intention in Congestion
Likelihood outcome Lane-Change No Lane-Change
High 92 101
Low 4 1

Table A.8.: Severity outcome with Driving Intention in Congestion
Severity outcome Lane-Change No Lane-Change
High 78 99
Low 18 3

Table A.9.: Likelihood outcome with Traffic for Lane changing
Likelihood outcome Congestion No Congestion
High 92 1281
Low 4 1577

Table A.10.: Severity outcome with Traffic for Lane changing
Severity outcome Congestion No Congestion
High 78 41
Low 18 2817

Table A.11.: Likelihood outcome with Traffic for No-Lane changing
Likelihood outcome Congestion No Congestion
High 101 90
Low 1 2868

Table A.12.: Severity outcome with Traffic for No-Lane changing
Severity outcome Congestion No Congestion
High 99 0
Low 3 2958
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