A One-Step Feasible Negotiation Algorithm for Distributed Trajectory
Generation of Autonomous Vehicles

Maximilian Kneissl}*2, Adam Molin', Hasan Esen!, and Sandra Hirche?

Abstract— We propose a distributed trajectory generation
method for connected autonomous vehicles. It is integrated
in an intersection crossing scenario where we assume a given
vehicle order provided by a high-level scheduling unit. The
multi-vehicle framework is modeled by local independent ve-
hicle dynamics with coupling constraints between neighboring
vehicles. Each vehicle in the framework computes in parallel a
local model predictive control (MPC) decision, which is shared
with its neighbors after conducting a convex Jacobi update step.
The procedure can be iteratively repeated within a sampling
time-step to improve the overall coordination decisions of the
multi-vehicle setup. However, iterations can be stopped after
each inter-sampling step with a guaranteed feasible solution
which satisfies local and coupling constraints. We construct
feasible initial trajectory candidates and propose a method
to emulate the centralized solution. This makes the Jacobi
algorithm suitable for distributed trajectory generation of au-
tonomous vehicles in low and medium speed driving. Simulation
results compare the performance of the distributed Jacobi MPC
scheme with the centralized solution and illustrate the feasibility
guarantee in an intersection scenario with unforeseen events.

I. INTRODUCTION

Autonomous cars bring the capability of making travel-
ing on roads safer and also more efficient. The ability to
share intention-based data with a vehicle’s surrounding is
a significant benefit of this technology and obtains much
attention in research and development of automated driving.
The control decisions, vehicles make, based on other vehi-
cles’ intentions often underlie optimization problems. When
sharing this optimized intentions with surrounding vehicles
via a potentially unreliable communication channel, it is an
important requirement to provide a feasible and thus safe
solution of the distributed optimization problem for each
communication step.

In this paper we consider an automated intersection cross-
ing scenario, where vehicles enter the intersection zone
and receive a crossing sequence with respect to other ve-
hicles in the zone from an intersection management (IM)
infrastructure computer. Next, an inter-vehicle negotiation is

*This work has been conducted within the ENABLE-S3 project that has
received funding from the ECSEL Joint Undertaking under grant agreement
No 692455. This joint undertaking receives support from the European
Union’s HORIZON 2020 research and innovation programme and Austria,
Denmark, Germany, Finland, Czech Republic, Italy, Spain, Portugal, Poland,
Ireland, Belgium, France, Netherlands, United Kingdom, Slovakia, Norway

IM. Kneissl, A. Molin, and H. Esen are with the Cor-
porate R&D department of DENSO Automotive Deutsch-
land GmbH, Freisinger Str. 21-23, 85386 Eching, Germany

{m.kneissl,a.molin, h.esen}@denso-auto.de

2S. Hirche and M.Kneissl are with the Institute for Information- oriented
Control, Technische Universitit Miinchen, Arcisstrae 21, 80290 Miinchen,
Germany hirche@tum.de

accomplished to agree on a safe and efficient crossing tra-
jectory based on other vehicles’ decisions. The local vehicle
decisions are computed via a model predictive control (MPC)
law, whilst using independent plant models with coupling
constraints between related vehicles, as e.g. proposed in [1].

In [2] an intersection problem, formulated as an MPC
problem subject to system constraints, is solved analytically
using Hamiltonian analysis. Collision avoidance between
vehicles is guaranteed for the time vehicles leave the in-
tersection area. A guarantee for the complete crossing phase
is, however, not provided. For a given crossing priority, [3]
discusses the solution of sequentially solving the vehicles’
MPC problems and also extensions to approximative parallel
implementations. [4] proposes an iterative procedure for safe
intersection crossing where uncertainties, such as an emer-
gency braking case, of vehicles during an approaching phase
are considered. Authors of [5], [6] solve the intersection
crossing problem by computing in- and out-times of a vehicle
in a critical area iteratively while enabling asynchronous
communication updates. These works are expanded with
a robust solution and real-world experiments in [7]. A
solution for parallel computation, without nested iterations,
is presented in [8]. However, a lower-bound on the velocity,
larger than zero, is required.

Primal decomposition methods are potential candidates to
provide safety guarantees and the ability to dynamically react
during crossing a critical intersection zone, while enabling
parallel computations. In [9] a Jacobi decomposition is
proposed for a distributed MPC setup with coupled sys-
tem dynamics. An extension to coupling constraints is also
considered, where resources leading to this coupling can be
accessed mutually exclusive. Authors from [10] extend this
for a general formulation of QP problems including shared
constraints. It remains an open task to make this method
suitable for trajectory generation in a distributed vehicle
setup where reference values and constraints may change
during run-time.

The main contribution of this paper is a distributed
MPC trajectory generation algorithm for automated vehicles,
where after each V2X-based (vehicle-to-everything) informa-
tion exchange a recursive feasible solution is guaranteed. The
method is suitable for low and medium speed scenarios such
as urban driving and computation of the local vehicle MPC
problems are conducted in parallel. The applied iterative
Jacobi-based negotiation assures a safe vehicle coordination
in each step, while with continuation of iterations, vehicles
can improve their performance with respect to a global
objective measure. The goal is to not only ensure safety

o
., o
..

Scheduling

Fig. 1: Intersection crossing scenario.

of the resulting trajectories, but also contain smooth and
performance-oriented properties, while enabling changing
reference values. Therefore, we propose to apply a method,
using a backward reach-set computation, to adjust the local
MPC objective weights and thus influence the trajectory
behavior. This algorithm is seamlessly integrated into an
intersection crossing framework.

The remainder of this paper is organized as follows. In
Section II we state the model of the intersection area, present
the centralized vehicle coordination model, and decompose
it into a distributed vehicle setup. Section III presents the
iterative and parallel Jacobi method with proven feasible
inter-sampling solutions. Next, we discuss the choice of fea-
sible initial guesses for inter-sampling phases. Furthermore,
the backward-reach-set method tailors the presented Jacobi
method to trajectory generation of autonomous vehicles.
Numerical examples are provided in Section IV, before we
state concluding remarks and extension ideas for future work
in Section V.

Notation: Throughout this paper x(k|t) indicates a pre-
diction of state x for time k computed at time ¢, while all
prediction values at time ¢ are x(: |t). The set of integers
I,.p is defined by {a,a + 1,...,b}. The weighted 2-norm is
denoted by ||z — #|[3, = (z — #)TQ(z — &) with appropriate
dimensions of vectors z,Z and matrix).

II. PROBLEM STATEMENT

First, we briefly sketch the steps of receiving a vehicle
dependency information from the IM in the scheduling zone,
and the trajectory adaptation in the adjustment zone to
achieve a safe inter-vehicle distance. Then we present the
algorithmic steps conducted in the safe-crossing zone. Figure
1 illustrates the intersection setup.

A. Intersection Model

We model an intersection consisting of three zones and
an intersection management (IM) infrastructure unit. Vehicles
approaching the intersection share their predicted trajectories
with the IM unit when they enter the scheduling zone.
Based on this information a centralized scheduling decision
is computed, which represents the crossing sequence of
vehicles in the intersection area. Formally, we achieve a
directed graph

g=W¢)7 (D

where vertices V = {1,2,...,N,} label vehicles in the
intersection area and N, is the total number of vehicles.
Furthermore, a directed edge e = (i,5) € &, with 4,5 € V,
indicates that vehicle 7 is predecessor of vehicle j and
consequently crosses a common reference point first. Thus,
the neighbor set of a vehicle 1,

Ni=P,US; 2

can consist of a predecessor vehicle, P; = {j|(j,i) € £},
and a successor vehicle, S; = {j|(i,j) € £}.

Let d;;(: |t) indicate the distance of vehicle i to vehicle
7 € P; with respect to a common reference point in the
safe-crossing zone. Then, during driving in the adjustment
zone vehicles adjust their trajectories such that the following
assumption holds.

Assumption 1: When vehicle i enters the safe-crossing

zone at time step t, dj;(: |t) > ds holds. Furthermore, the
dimension of the adjustment zone is such that vehicles could
come to a full-stop before leaving it.
The black dots at crossing paths in Figure 1 show examples
of common reference points. Moreover, d is a given inter-
vehicle safety distance and we state an assumption on the
central scheduling solution.

Assumption 2: The central scheduling decision is such
that if j € N; and thus fulfills either dj;(: |t) > ds or
d;ij(: |t) > ds no other vehicle k € V, k # i violates the
safety condition d, with respect to vehicle <.

This ensures that the resulting neighboring description G
represents an overall safe geometrical inter-vehicle relation.

B. Centralized Coordination Model

First, we state the intersection coordination problem in
the safe-crossing zone as a centralized MPC problem and
then we discuss the decomposition of it in Section II-C. It is
reasonable to decouple lateral and longitudinal vehicle dy-
namics for low vehicle speeds [11]. Therefore, we solely rely
on longitudinal information for coordinating the vehicles.

Let the discrete longitudinal vehicle dynamics model for
a single vehicle be of form

d\" (1 =T\ (d; (T)
vi) “\o 1) \u T,)3
N’ \—f—"\\/—’ ‘/—'ul(t)
AieRZXQ BieRZXI

x; (tJrl) x; (t)

where T, € R is the discretization sampling time, the state
d;(t) € R is the distance to the point where vehicle ¢ leaves
the safe-crossing zone, v;(t) € R the vehicle’s velocity,

and control input a;(t) € R the acceleration. For simplified
representation, we omit the dependency of the discrete time
t ={0,1,2,...} for the state and input in (3). Let the central
state vector be the aggregation of the local representations,
such that

2(t) = (21 (8)7, oy zn, ()T) T € R2NY,)
and similar for the control input,
u(t) = ()7, un, (7)€ RN, 5)
For a given MPC prediction horizon M, we define
X =(z(t+ 1), ..zt + M|t)"), (6)

and
U= (u(t|t),...ult + M — 1|t)). 7

The central system and input matrices are

A = diag(A;, A, ..., Ay,) € RHVox2N)
and

B = diag(By, Bs, ..., By,) € R#VvxNv, 9)
respectively.

Now, denote the centralized MPC problem as

V= r)r(ng V(k,X,U) (10a)
subject to

x(k+1Jt) = Azx(k|t) + Bu(k|t) VEk € Lupyp—1 (10b)
x(klt) € X Vk € Iyp14em (100)
u(klt) e U Vk € Tpy -1 (10d)

d;i(k|t) > ds

Vk € T;41.
{ € ley1:4m (10e)

{(,5)lieV,jeSi}

x(t|t) = x(t). (10f)

The objective function (10a) is

Ny,
V(k,X,U) = ZV (kyzi(t),ui(t) =

N, [/ t+M t+M—1
> (D llaiklt) =il m+ D ||ui(k|t)||§%i(k)>

i=1 \k=t+1 k=t
11

where z € R? denotes a state reference, assumed con-
stant for one computation step. The weighting matrices are
assumed to be positive semi-definite, i.e. Q;(k) = 0 and
R;(k) = 0. The model constraint (10b) results form (4), (5),
as well as (8), (9), and constraint sets X and U are closed
and polytopic. The distance constraint (10e) is constructed
by dji(klt) = di(k|t) — d;(k|t), where d; = f;(d;) is
an affine transformation of vehicle j’s distance state to a
reference point vehicle ¢ and vehicle j have in common, and
similar for d;. Finally, (10f) defines the initial state. Note
that because (10a) is of quadratic form and (10b) - (10f) are

linear constraints, problem (10) is convex. Thus it can be
cast in a standard QP form,

V*=min V (2) (12a)
subject to
Acqz —beg =0 (12b)
Ainz - bzn S 07 (120)

where z = (X, U)T, Aeq and b result from (10b) and (10f),
while A;, and b;,, result from (10c) - (10e). Certainly, z is
a time-dependent trajectory vector of the introduced form
z(k|t). We omit the time-dependency of z and similar for its
local representation z; to simplify notation when the context
allows it.

C. Model Decomposition

Now, we decompose the central problem (12) in order to
distribute the computation among the vehicles in a sensible
way. For each vehicle ¢ € V we define a local optimization
vector z; containing elements from z. Each element of 2z has
to be contained in at least one resulting z;.

Here, we apply a dynamically decoupled-decomposition
with coupling constraints where z; contains only elements
related to vehicle ¢’s dynamics. This has the benefit that the
vehicles can preserve their local models as private and do
not need to share it, or parts of it, with neighboring vehicles.
It also keeps the number of optimization variables for each
local problem at a minimum. However, we pay the price of
a cooperative inter-vehicle behavior, yet feasibility and thus
safety is ensured, what is the main focus in this paper.

Let (X;,U;) = 2], then the decoupled-decomposition
results in a local vehicle MPC problem of the form
Vit = min Vi (k, X;, Uy)

?

(13a)

subject to

Il(k‘t) e X; Vk €]It+1:t+M (13¢)
uz(k\t) e U; Vk € Ht:t—i—M—l (13d)
ke,
dji(k[t) > d {\7 € M (13¢)
JjeP;
Vk € Liyroqm
d;i (klt) > d, 13
(ki) 2 {j L 3
z;(t[t) = zi(t) (13g)
wilt + MJt) € {a:(8)|ui(t) = 0} (13h)
ui(t+ M — 1|t) = 0, (131)

here (13b) - (13d) and (13g) are defined with the same
properties as in problem (10), but for values of a local
system, respectively. We also assume that {z;(t)|v;(t) =
0} C X, and that U; contains the origin. Note that in a
local vehicle we model the distance constraint to both a
predecessor vehicle (13e) and a successor vehicle (13f), if
either of those exist. These are constructed by receiving tra-
jectory data from neighboring vehicles via a communication

connection. As a result we achieve dynamically decoupled
systems with shared coupling constraints. The need of the
terminal constraints (13h) and (13i) is discussed in the
following Section III.

ITII. ITERATIVE JACOBI NEGOTIATION
ALGORITHM

To guarantee one-step feasible solutions, we apply a Jacobi
overrelaxation (JOR) algorithm to the problem of distributed
trajectory generation in the intersection area (Chapter 2.4
[12]). Therefore, let us introduce the following notation for
a vehicle i:

 z;, the optimal solution of the local problem (13),

o zP, the trajectory of the p-th inter-sampling iteration
after a JOR update,

e Z;, a feasible candidate for the local trajectory at the
beginning of the JOR iteration procedure.

A. Jacobi Overrelaxation Algorithm

Algorithm 1 is applied to compute the vehicles’ trajecto-
ries in a distributed manner.

Algorithm 1 Jacobi overrelaxation

At the current time step ¢:

Step 1: Set p + 0, each vehicle i € V receive trajectory
candidates, Z;, form neighbors N, and set zf = 2.

Step 2: In parallel, compute 2, Vi € V, by solving (13).

Step 3: Determine the next inter-sampling iterate,

P =iz 4+ (1—wy)2P, Yie), (14)

where Zfil w; = 1 and w; > 0. Share this information
with vehicles j € M.

Step 4: If V;(2F) — Vi(zf_l) >e¢e, VieV and p < Pmazs
increase p <— p + 1 and go to Step 2.
Else, apply u;(0|t), Vi € V, to the local vehicle, increase

t <+ t+ 1, and go to Step I.

In Step 4 of Algorithm 1, € is a specified convergence
bound and p,,q, an upper-bound on the number of inter-
sampling iterations.

Remark 1: Regarding Step 2, remember that dj;(k[t) =
d;(k|t) — d;j(k|t) = fi(z) — fi(2}) and similar for d;; (k|t).

Remark 2: The inter-sampling update (14) can be con-
ducted fully distributed, due to the use of decoupled model
dynamics.

Proposition 1: Given a feasible initial candidate z?, Vi €
V), each consecutive iterate of (14) is again a feasible solution
for problem (13).

Proof: The optimized trajectory z; is a feasible solution
of (13) and the same holds for z?, as assumed above. Sets
X; as well as U; are convex polyhedrals, containing (13h)
and (13i). Furthermore, d;(k|t) is convex in (13e) and (13f).
Consequently, the convex combination (14) of 2} and 2 is

again feasible for (13b) - (13i). The same result holds for
p > 1, what follows by induction. []
Lemma 1: The Jacobi iteration (14) has a non-diverging
behavior.
Proof: Following the reasoning in Chapter 2.6 of [12],
we find due to the convexity of (11) that

N, N,
V) =3 Vi) =3 Viwis + (1 - w)ed)
z;vl i=1
<D (@iViE) + (1= w)Val=D))
z;ul N,
< Z (WiVi(zD) + (1 —wy)Vi(2))) = Z Vi(2f)
=V (zP)

B. Feasible Initial Guess

In Step 4 of Algorithm 1 the trajectory candidate Z;, for
the next time step ¢ + 1, is determined and in Step I the
received neighbor information Z; is applied. In order to pre-
serve feasibility of the overall constraint-coupled distributed
problem these trajectory candidates have to present a feasible
guess for problem (13).

We set

Zi(t+1:t+M|t+1) = 2P (t+1:t+Mt), (15)

then it remains to determine 2;(¢t+M +1|¢t+1). In general,
it is not trivial to find Z;(¢+ M +1|t+1), which guarantees
(13c) - (13f) for all involved vehicles. Therefore, we guess
the following trivial candidate, as proposed similarly in [9],
[10]:

(16a)

zi(t+M+1lt+1) = (di(HM't)) :

0

ui(t+M+1[t4+1) =0, (16b)

with x;,u; € z;.

The following proposition shows that this is a feasible
guess.

Proposition 2: Let the local vehicle dynamics be modeled
by (3). Then, the candidate trajectory Z; consisting of (15)
and (16) is a feasible solution for problem (13).

Proof: Since trajectory 2! (k|t), k € Ipipm was
feasible at time step ¢, it follows that ¥ (k|t), k € L;i1.04m
is a feasible solution at time step ¢ + 1. Furthermore, due to
the terminal conditions (13h) and (13i1), (16) fulfills (13c) -
(13f) for kK = t + M + 1. Thus, 2; is a feasible trajectory
candidate for (13). |

Now, we can conclude feasibility for the overall connected
vehicle framework.

Definition 1: A MPC problem is recursive feasible if the
following conditions are met:

1) zi(klt) € X; = zi(k+1t+1) € Xy, k € Ty,

2) Uz(k|t) el; = ul(k—|—1|t—|—1) e U, ke Ht:t+M—1’

where X; defines a set containing all state constraints of the
MPC problem, with a terminal state set XM C X;.

Theorem 1: Each iteration step in the network G, follow-
ing Algorithm 1, ensures recursive feasibility for vehicles i’s
local control problem (13), Vi € V.

Proof: Summarize the zero velocity condition as the set
V; := {x;(t)|vi(t) = 0} and the distance constraint set as
D; := {x;(t)|d;i(t) > ds AN d;j(t) > ds}, then the terminal
set of (13) is XlM :=V,; ND;. For each vehicle entering
the safe-crossing zone we know by Assumption 1 that
x;(klt) € D;, k € Ly, what consequently enables a
feasible initial trajectory with z;(k|t) € X;, k € Lt nm
and z;(t+ M|t) € XM C X,. Proposition 1 guarantees
that 2 (k|t) € X, Tpyns, and 2 (t+M|t) € XM remain
feasible for all inter-sampling iterations p. Furthermore, in
Proposition 2 we prove feasibility for a time-step transition
and thus achieve u; (t+M [t+1) € U; and x; (t+M+1[t+1) €
XZM , what ensures conditions 1) and 2) from Definition 1.
This concludes recursive feasibility of each iteration step. W

A fundamental difference between the centralized problem
formulation (10) and the distributed decomposition (13) are
the terminal constraints (13h) and (13i). These are required
to guarantee Proposition 2.

Yet, the difference between the central and the distributed
formulation likely leads also to a different behavior of the
modeled vehicles. The goal is to avoid the deviation, coming
from this source, in normal driving mode, i.e. driving without
braking to full-stop. For that reason, we propose the method
in the following Section III-C.

C. Emulation of a Terminal-state-less Solution

In order to emulate the behavior of a trajectory which is
not required to come to a full stop, we propose to apply
time-dependent objective weights. Therefore, we introduce
two planning phases within the horizon length M of a local
MPC problem (13). The first one is referred to as normal-
planning, for 1 < k < kprqke, and the second as planning-
to-full-stop, for kprqre < k < M. Accordingly, we define
the weights

Q;l [R?] for 1 < k < kprake

, (A7)
0 for kyrare <k <M

Qi(k) [Ri(k)] = {
where ()} is a constant weight for the normal-planning phase
and similar for R}'. The point kp.qke is the prediction step
from which onward the trajectory shall be planned to a full-
stop of vehicle ¢, which is achieved by applying (17) in the
local MPC objectives (13a). The trajectories are re-computed
in each sampling time step in a receding horizon fashion, and
only the first sample (as proposed in Step 4 of Algorithm 1),
or the first several samples, will be tracked by the respective
vehicle. Thus, the goal is to move the planning-to-full-stop
phase as far back in the prediction horizon as possible, and
therefore achieve an actual driving behavior which is not
affected of the planning-to-full-stop phase.

In what follows, we find the latest possible kp,qke, i.€.

kbrake = max K7 (18)

with
K=
{k | Fui(k[t) = uj (k|t), k € Tog_y, A
wi(k|t) € Us k €1, _,, such that (13b) — (13i),
with k& € Iy.a_1}.

Here, uf(k|t) results from the solution of problem (13a) -
(13g).
Let the backward reach-set
X{(r) =

{zi(r|t)|3zi(k|t), k € L,.ps, such that (13b) — (13i)} (19)

be the set of admissible states at time step r for which a
trajectory exists that fulfill the problem constraints. Now, we
apply the following method to find kprqke:

Algorithm 2 Brake point kprake

Step 1: Compute the desired trajectory 2%, with respective
state values ¢, by solving (13) without (13h) and (13i).
Set r « M —1.

Step 2: Compute the backward reach-set XA(r). If
xdes(r|t) € XA(r), then kprqre = r and continue with Step
3, else 7 <~ r—1 and repeat Step 2.

Step 3: Compute (13) using (17) and including (13h) as well
as (13i). Apply the result in the Jacobi negotiation scheme
of Algorithm 1.

An essential point is the computation of X#(r) in
Step 2 of Algorithm 2. Regarding this, we apply the
set-projection-algorithm presented in [13]. The resulting
admissible set X7 (r) is a polyhedral formulation of the form
S = {xi(r|t)|Pzi(r|t) + v < 0}, P € R**2 and v € R,
as we assume an LTI model with linear constraints.
Most parts of the set-projection-algorithm are
computationally simple. However, the resulting matrix
P, describing the set S with [inequality constraints
is a redundant representation, i.e. there exists a
S" = {ai(r|t)|P'zs(r|t) ++ < 0},P' € R'*2 and 4/ € RY,
with I’ < [, such that S = S’. To keep the computational
burden low during the recursive determination of XZ(r),
it is required to find a S’ representing the minimal, or
close-to-minimal representation. Efficient methods for that
exist, as it is a well studied problem in the field of linear
programming [14]. A possible method, which we apply, is
presented in [15].

For the computation of kjp,qke, We assume that a vehicle’s
trajectory can be planned to full-stop during its horizon
length, what results in a solution guarantee for Algorithm
2.

Assumption 3: The horizon M of vehicle :’s MPC prob-
lem (13) is large enough to guarantee X; C X (1).

Lemma 2: Algorithm 2 terminates for problem (13) with
a solution for kp,qke-

— 8
2
E6)
z 4|
Q
9 ——no terminal state
o 27 —+—proposed method

0 terminal state Kbrake

5 10 15 20 25 30 35 40 45 50

prediction horizon k (s/T%s)
Fig. 2: Velocity state of example trajectory comparing solu-
tions with no terminal state, proposed method of terminal-
state-less emulation, and terminal state without time-varying
objective weights.

TABLE I: Simulation parameters.

Name Parameter Value
sampling time Ts 0.1s

MPC horizon length M 50

state weights QY diag(0, 10)
input weight RY 5

velocity constraints [0,10m/s]
acceleration constraints (@i, min, @i,maz) [~7m/s?,4m /s3]
safety distance ds 2m

update variable w; 1/Ny

[Ui,min7 Ui,'maz]

Proof: Termination is guaranteed if Step 3 is reached.
Step 2 is always reached after Step I and it continues to Step
3 if state x%¢(r|t) € XA (r), which is at the latest ensured
for r = 1 due to Assumption 3. []

Figure 2 exemplary illustrates the difference between
planning methods by plotting the predicted velocity state
of a vehicle i. The solid line represents a solution without
the terminal condition of coming to full-stop at the end
of the prediction horizon. This would be the case in the
centralized solution (10) extracted for a single vehicle. The
method proposed in Algorithm 2 and plotted with the crossed
line, shows a similar behavior to the terminal-state-less
solution until kp,qre.. When using a terminal state without
the emulation procedure, however, the resulting trajectory
shows a significant divergence from the respective solution
without terminal constraint (dashed line).

Remark 3: Note that the result of Algorithm 2 does not
influence the feasibility guarantee of Theorem 1. It solely
varies the MPC’s objective function by (17) and effects thus
only performance-related changes.

IV. NUMERICAL EXAMPLES

In this section we stress the benefits and functionality of
the proposed negotiation method by simulations. Table I lists
the applied parameters of the respective MPC problems.

As a first scenario we simulate a negotiation process
of N, = 6 vehicles stimulated by a changing reference
value. Figure 3 illustrates the influence of the inter-sampling
iterations in the same simulation setup as above. Given
a reference change form v;,.y = 4m/s — 9m/s, the
trajectory approaches the centralized solution (dashed line)
with increasing inter-sampling iterations pj,qz-

9 F T é.e..rql.t.r.é.l.l.i.e.a R s Yy I
= 8 1
~ Pmax = 10
\g Tt Pmax = 5]
B\ Pmaz = 2
g 6+ Pmaz = 1 T
S 5t]

4
o ~———— centralized
~ B 4
&
o 2t 1
.S
=
s 1¢ 1
3
g

0 7 8 9

time (s)

Fig. 3: First vehicle of six simulated vehicles. Varying num-
ber of inter-sampling iterations of the proposed emulation
method compared to centralized solution (dashed line).

Remark 4: In general a convergence to the centralized
solution is not guaranteed for a dynamical-decoupled de-
composition, as applied in this case. Due to the homoge-
neous vehicle models, however, the iterations approach to
the centralized solution. We use this effect to illustrate the
best possible solution of the distributed Jacobi negotiation
algorithm.

Now, we simulate the intersection crossing scenario il-
lustrated in Figure 1 for vehicles with a given crossing
order order 1 — 2 — 3 — 4 — 5 — 6. Vehicles
{1,2,3} are traveling E — W, vehicles {4,5} W — N, and
vehicle {6} S — N. We set a constant reference velocity
Vigef = Tm/s,Vi € Ii.6. Assume a pedestrian becomes
visible for vehicle 4 at time ¢t; = 5s and crosses the road until
to = 11s. Vehicle 4 will then incorporate this information by
constraining its distance state accordingly and thus plan to
full-stop before the cross walk. Consecutive vehicles, which
not necessary see the pedestrian, will adjust their trajectories
accordingly. Figure 4 illustrates the resulting velocity profile
for vehicles 3,4, and 5 (dots) and inter-sampling trajectories
at time steps ¢t = 5s and t = 5.3s for Pper = D
(solid lines). Each proposed inter-sampling trajectory is a
feasible solution of the overall networked control problem.
The guaranteed safety distance d; is kept, as show in Figure 5
which illustrates the relative inter-vehicle distances between
vehicles 3 — 4, 4 — 5, and 5 — 6 for the above described
scenario.

V. CONCLUSION

We proposed an iterative MPC-based trajectory negotia-
tion algorithm based on convex Jacobi updates for the coor-
dination of connected and autonomous vehicles. The method

vehicle 3

~

w

~ 8|

g JUUUSVRIN DUSEUUUUSS FUUUUUUSY SUUUUUUUSS SUUUUU S

z 4

Q

=

0 ‘
vehicle 4

cesceee

velocity (m/s)
N

vehicle 5

velocity (m/s)
N

time (s)

Fig. 4: Intersection crossing scenario with resulting velocity
profiles for vehicles 3,4, and 5 (dots) and predicted trajecto-
ries at time steps ¢t = 5s and ¢ = 5.3s (solid lines). Simulated
pedestrian crossing before vehicle 4 at time ¢ = 5s.

W~

distance (m)
w

‘“\

time (s)

Fig. 5: Relative inter-vehicle distances for the intersection
crossing scenario between vehicles 3 — 4, 4 — 5, and 5 — 6,
as well as the distance lower bound d;.

is applied to an intersection crossing scenario, where the
crossing order has been determined beforehand and vehicles
keep a safe distance when they enter a safe-crossing zone.
Vehicles are modeled with decoupled dynamical models with
coupling inter-vehicle distance constraints. This enables a
distributed setup without sharing model data with neither
other vehicles nor the infrastructure unit. Computation of
the local MPC problems is conducted in parallel while we
assume a time-synchronized information exchange between
neighboring vehicles. Multiple inter-sampling updates lead to
a improved overall coordination result compared to the op-
timal central solution. However, the iteration process can be
stopped after each information exchange with an guaranteed
feasible and thus safe solution.

Future work includes the extension of the approach with
a scheduling unit enabling re-scheduling decisions in case

of uncertain events. Furthermore, the algorithm shall be
applied to further traffic scenarios, such as on-ramp merging.
Therefore, an integration into a high-fidelity multi-vehicle
simulation environment will be conducted to enable close to
real-world testing.

REFERENCES

[1] Y. Zheng, S. E. Li, K. Li, F. Borrelli, and J. K. Hedrick, “Distributed
model predictive control for heterogeneous vehicle platoons under
unidirectional topologies,” IEEE Transactions on Control Systems
Technology, vol. 25, no. 3, pp. 899-910, 2017.

[2] Y. J. Zhang, A. A. Malikopoulos, and C. G. Cassandras, “Optimal
control and coordination of connected and automated vehicles at urban
traffic intersections,” in American Control Conference (ACC), 2016,
pp. 6227-6232, IEEE, 2016.

[3] X. Qian, J. Gregoire, A. De La Fortelle, and F. Moutarde, ‘“Decentral-
ized model predictive control for smooth coordination of automated
vehicles at intersection,” in Control Conference (ECC), 2015 Euro-
pean, pp. 3452-3458, IEEE, 2015.

[4] M. Kneissl, A. Molin, H. Esen, and S. Hirche, “A feasible mpc-based
negotiation algorithm for automated intersection crossing,” in 2018
European Control Conference (ECC), pp. 1282-1288, IEEE, 2018.

[5] M. Zanon, S. Gros, P. Falcone, and H. Wymeersch, “An asynchronous

algorithm for optimal vehicle coordination at traffic intersections,” in

20th IFAC World Congress, 2017.

M. Zanon, R. Hult, S. Gros, and P. Falcone, “A feasibility-enforcing

primal-decomposition sqp algorithm for optimal vehicle coordination,”

arXiv preprint arXiv:1704.01081, 2017.

[7]1 R. Hult, M. Zanon, S. Gros, and P. Falcone, “Optimal coordination of
automated vehicles at intersections: Theory and experiments,” /IEEE
Transactions on Control Systems Technology, 2018.

[8] A. Katriniok, P. Kleibaum, and M. JoSevski, “Distributed model
predictive control for intersection automation using a parallelized
optimization approach,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 5940—
5946, 2017.

[9] B. T. Stewart, A. N. Venkat, J. B. Rawlings, S. J. Wright, and
G. Pannocchia, “Cooperative distributed model predictive control,”
Systems & Control Letters, vol. 59, no. 8, pp. 460-469, 2010.

[10] M. D. Doan, M. Diehl, T. Keviczky, and B. De Schutter, “A jacobi
decomposition algorithm for distributed convex optimization in dis-
tributed model predictive control,” IFAC-PapersOnLine, vol. 50, no. 1,
pp. 4905-4911, 2017.

[11] P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle, “The
kinematic bicycle model: A consistent model for planning feasible tra-
jectories for autonomous vehicles?,” in 2017 IEEE Intelligent Vehicles
Symposium (1V), pp. 812-818, IEEE, 2017.

[12] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computa-
tion: numerical methods, vol. 23. Prentice hall Englewood Cliffs, NJ,
1989.

[13] S. Keerthi and E. Gilbert, “Computation of minimum-time feedback
control laws for discrete-time systems with state-control constraints,”
IEEE Transactions on Automatic Control, vol. 32, no. 5, pp. 432435,
1987.

[14] S. Paulraj and P. Sumathi, “A comparative study of redundant
constraints identification methods in linear programming problems,”
Mathematical Problems in Engineering, 2010.

[15] H. Berbee, C. Boender, A. R. Ran, C. Scheffer, R. L. Smith, and
J. Telgen, “Hit-and-run algorithms for the identification of nonredun-
dant linear inequalities,” Mathematical Programming, vol. 37, no. 2,
pp. 184-207, 1987.

[6

=

