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Abstract

Increased sensing data in the context of the Internet of Things (IoT) necessitates data
analytics. It is challenging to write applications for Big Data systems due to complex
and highly parallel software frameworks as well as systems. The inherent complexity
in programming Big Data applications is also due to the presence of a wide range of
target frameworks, each with their varied data abstractions and APIs. The thesis aims to
reduce this complexity and its ensued learning curve by enabling domain experts, that
are not necessarily skilled Big Data programmers, to develop data analytics applications
via domain-specific graphical tools. The approach follows the flow-based programming
paradigm used in IoT mashup tools.

The thesis contributes to these aspects by (i) providing a thorough analysis and classifica-
tion of the widely used Spark and Flink frameworks and selecting suitable data abstrac-
tions and APIs for use in a graphical flow-based programming paradigm and (ii) devising
a novel, generic approach for programming Big Data systems from graphical flows that
comprises early-stage validation and code generation of Big Data applications.

The thesis also demonstrates that a flow-based programming model with concurrent ex-
ecution semantics is suitable for modelling a wide range of Big Data applications. The
graphical programming approach developed in this thesis is the first approach to sup-
port high-level Big Data application development by making it independent of the target
Big Data frameworks. Use cases for Spark and Flink have been prototyped and evaluated
to demonstrate code-abstraction, automatic data abstraction conversion and automatic
generation of target Big Data programs, which are the keys to lower the complexity and
its ensued learning curve involved in the development of Big Data applications.
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Zusammenfassung

Die enorme Menge an Sensordaten im Rahmen des Internet der Dinge (Englisch: Inter-
net of Things oder IoT) erfordert komplexe Datenanalysen. Anwendungen für solche
Big Data Systeme zu erstellen ist aufwendig, da sehr komplexe, hochparallele Soft-
waresysteme und Werkzeuge verwendet werden. Die inhärente Komplexität bei der Pro-
grammierung von Big Data Anwendungen aufgrund der Vielzahl von unterschiedlichen
Datenabstraktionen und APIs welche dabei zum Einsatz kommen, erschwert die En-
twicklung solcher Anwendungen zusätzlich. Diese Arbeit zielt darauf ab, diese Kom-
plexität und die daraus resultierende Lernkurve zu reduzieren, indem sie es Domänen-
experten, die nicht unbedingt erfahrene Big Data Programmierer sind, ermöglicht,
Datenanalyse-Anwendungen mit Hilfe von domänenspezifischen, grafischen Werkzeu-
gen zu entwickeln. Hierbei wird das Konzept der datenflussorientierten Program-
mierung verwendet, das in sogenannten IoT-Mashup-Tools üblich ist.

Die Arbeit adressiert diese Probleme durch (i) Analyse und Klassifikation der weitverbre-
iteten Spark und Flink Frameworks sowie Auswahl geeigneter Datenabstraktionen und
APIs für den Einsatz in einem grafischen, datenflussorientierten Programmierparadigma
und (ii) Entwicklung eines neuartigen, generischen Ansatzes zur Programmierung von
Big-Data-Systemen aus grafischen Abläufen, welcher die frühzeitige Validierung und
Codegenerierung von Big Data Anwendungen umfasst.

Die Arbeit zeigt auch, dass ein datenflussorientiertes Programmiermodell mit paral-
leler Ausführungssemantik für die Modellierung einer breiten Palette von Big Data
Anwendungen geeignet ist. Der in dieser Arbeit entwickelte grafische Programmier-
ansatz ist ein erster Ansatz zur Unterstützung der Entwicklung von Big Data Anwendun-
gen auf hohem Abstraktionsniveau, indem er sie unabhängig von den angestrebten Big
Data-Frameworks macht. Anwendungsfälle für Spark und Flink werden prototypisch
erstellt und ausgewertet, um Code-Abstraktion, automatische Datenabstraktionskon-
vertierung und automatische Generierung von Ziel-Big-Data-Programmen zu demon-
strieren. Diese sind der Schlüssel zur Senkung der Komplexität und der daraus resul-
tierenden Lernkurve.
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1 Introduction

“The unexamined life is not worth
living.”

— Socrates

Within the advancements in information and communication technologies in the last
years, there are two significant trends. First, the number, usage and capabilities of the
end-user devices, such as smartphones, tablets, wearables, and sensors, are continually
increasing. Second, end-user devices are becoming more and more connected to each
other and the Internet. With the advent of 5G networks, the vision of ubiquitous con-
nected physical objects, commonly referred to as the Internet of Things (IoT), has become
a reality. In the world of connected physical devices, there is a massive influx of data, which
is valuable for both real-time as well as historical analysis. Analysis of the generated data
in real-time is gaining prominence. Such analysis can lead to valuable insights regard-
ing individual preferences, group preferences and patterns of end-users (e.g. mobility
models), the state of engineering structures (e.g. as in structural health monitoring) and
the future state of the physical environment (e.g. flood prediction in rivers). These in-
sights can, in turn, allow the creation of sophisticated, high-impact applications. Traffic
congestion can be avoided by using learned traffic patterns. Damages to buildings and
bridges can be better detected, and repairs can be better planned by using structural
health monitoring techniques. More accurate prediction of floods can enhance the ways
authorities and individuals react to them.

Nevertheless, data insights are crucial to develop high impact applications. These insights
can guide the development process to continually improve the quality of applications
and continuously cater to the ever-changing needs of the users, thereby leading to a sig-
nificantly higher rate of user satisfaction. In specific scenarios where the response of
the system is context dependent, continuously performing data analytics to guide the
business logic of an application is unavoidable. For example, consider an application
responsible for alerting and routing ambulances and fire brigades to different parts of
the city: such an application needs to perform data analytics continuously to provide
effective responses.

Deriving insights from data collected is a separate challenge that falls primarily into the
topic of data analytics and machine learning. Traditional Data Science techniques deal with
deriving insights from datasets gathered using programs like R and Python. Examples
of Python libraries include NumPy [141], SciPy [142], Pandas [125], SciKit-Learn [140],
Keras [97] and others. The data gathered is cleaned up, subjected to a series of transfor-
mations, analysed, and results are either visualised or saved in human-readable formats.
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Mostly, these are non-cluster based techniques relying on the computing power of a single
machine. There are two significant shortcomings with this style of data analytics:

1. It does not scale well to handle the processing of vast amounts of datasets (i.e. the
volume of data) generated from millions of IoT sensors.

2. It cannot support the processing of large datasets in real-time (i.e. velocity of data)
to make a business decision, i.e. no support for stream analytics.

Therefore, in the past years, several sophisticated tools have emerged that focus on ma-
nipulation and analysis of data of high volume, velocity and variety commonly referred to as
Big Data. Big Data analytics tools allow parallelised data analysis and learn via machine
learning algorithms operating on datasets that reside in large clusters of commodity ma-
chines cost-effectively. Mostly, these are cluster-based data science techniques. These tools
are typically used to cater to different business needs like targeted advertising, social
network analysis etc. The term ‘Big Data’ in a technical sense refers to a specific set of
storage and query languages like HDFS [24], Hive [20], Pig [27] etc. These tools have
their semantics and lines of operation. Storing datasets and writing programs to anal-
yse them involves working with different APIs and libraries. Even though the Big Data
tool-chains are designed for heavy real-time as well as historical data analytics, there are
certain limitations associated concerning their usage:

• Working with Big Data frameworks requires developing programs using several
libraries and APIs as well as working with different data abstraction formats. In-
cluding a Big Data analytics method in a user application is not easy. Developers
need to write complicated code and include drivers for integration of the applica-
tion with Big Data systems. This approach makes the process quite cumbersome
and challenging to quickly prototype applications for performing exploratory data
researches because of a vast number of varied solutions available in the ecosystem.

• The learning curve associated with it is steep and requires a considerable amount
of technical expertise to use it. There is no support for end-user programming with
Big Data, i.e. programming at a higher abstraction level.

• Deployment of Big Data programs on clusters for execution, fetching results back
for insights and management of clusters require a considerable amount of DevOps
training and expertise.

A promising solution is to enable domain experts, that are not necessarily programmers,
to develop the Big Data applications by providing them with domain-specific graphi-
cal tools. In the context of visual programming, two approaches are widely used, i.e.
block-based programming [90] and flow-based programming [121] with both the approaches
having their pros and cons, respectively [114, 40]. Nevertheless, as far as programming-
in-the-large [65] is concerned, such as complex heterogeneous systems which can also
accommodate the example of Big Data systems, flow-based programming approaches
are well suited [81, 59, 162] compared to their block-based counterparts [90].
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Block-based Programming In block-based programming, the programming constructs
are represented via graphical blocks. Popular examples include Google Blockly [79] and
MIT Scratch [118]. Example of how such a program looks like is shown in Figure 1.1.
The block-based programming approach suffers mainly in the dimensions of:

Viscosity The viscosity of a notational system describes its resistance to change [90]. A
system is more viscous when a single change (in the mind of the user) “requires an
undue number of individual actions” [82].

Role-Expressiveness It is defined as “intended to describe how easy it is to answer the
question: ‘What is this bit for’?” [82]. The ‘bit’ can be an individual entity in the
notation or a substructure in the program, consisting of multiple entities [90].

Block-based programming approach uses visual notation for programming constructs
like for loop, while loop, methods containing logic etc. This affects understandability
when the logic of the program grows, affecting the dimensions of ‘role-expressiveness’ and
‘viscosity’ severely. Additionally, using graphical constructs for underlying programming
constructs defeats the purpose of high-level programming where the critical requirement
is a higher-level of abstraction and not mere substitution of programming constructs with
visual notations. Nevertheless, attempts have been made to support high-level program-
ming for data analytics via the block-based programming approach as in the tool named
‘milo’ [132].

Figure 1.1: Block-based programming: print inside a while loop 1

Flow-based Programming In flow-based programming, the program is constructed by
specifying the data-flow between various components in the form of a graph where the
vertices represent data sources, data transformers and data sinks while the edges rep-
resent data-flow pathways. Example of how such a program looks like is shown in Fig-
ure 1.2. Such graphical approach restricts expressiveness in specific scenarios because
some information that can be easily expressed via code is challenging to represent in
visual notation and must be implemented internally [143, 89].

Despite the enormous potential of combining IoT sensing and actuating with data an-
alytics, developing applications that control the operation of IoT sensors and actuators
is challenging. Developers have to write complex codes to access the datasets from the
sensors of different devices. Also, they need to perform data mediation before using the
data for real insights. To deal with some of these challenges, dedicated IoT development

1source: https://developers.google.com/blockly/
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1 Introduction

tools called IoT mashup tools can be used. Such tools expedite the process of creating
and deploying simple IoT applications that consume data generated from IoT sensors,
publish data to external services or other devices. They typically offer graphical inter-
faces for specifying the data-flow between sensors, actuators, and services which lowers
the barrier of creating IoT applications for end-users. Dataflow based programming is a
case of flow-based programming paradigm [48]. Hence, the resulting application follows
the flow-based programming model, where outputs of a node in the flow become inputs
of the next node. With decreased learning curve, end-users, i.e. users with no prior
experience and training can quickly prototype an IoT application. An exemplary tool is
Node-RED [92], a prominent visual programming environment developed by IBM for vi-
sual programming of IoT applications. Currently, the mashup tools including Node-RED
do not support the specification and execution of flows that include Big Data analytics compu-
tations, i.e. they do not support in-flow data analytics with Big Data technologies.

Figure 1.2: Flow-based programming in Node-RED [92]: print inside a while loop 2

A flow-based programming approach has been used in the context of IoT applica-
tion development via graphical mashup tools. The graphical flow-based programming
paradigm of the mashup tools provides an optimal construct for supporting high-level
programming for Big Data applications which would qualify as programming-in-the-
large. Big Data analytics via flow-based graphical tools would abstract away all the tech-
nical complexities involved in setting up and writing Big Data applications from the
end-user and also permit to leverage the opportunities offered by the increasing number
and sensing capabilities of connected devices for developing sophisticated applications
that employ data analytics as part of their business logic to make informed decisions
based on sensed data. This would lead to the usage of Big Data analytics in the context
of IoT.

1.1 Need to go Beyond

Until recently, a lot of research has been done on how to collect and store such data
in Big Data infrastructure. Analytics is performed on these datasets separately to gain
insights [51]. However, as far as the application development scenario is concerned us-
ing graphical flow-based programming tools, no significant amount of research has been
done on how to make use of Big Data analytics during application development. Tradi-
tionally, the worlds of IoT and Big Data have stood apart from each other. IoT is used for

2source: https://software.intel.com/en-us/node/721391/
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1.2 Problem Statement

collecting data into storage and writing business logic while Big Data for analysis. How-
ever, in many scenarios, it is important to interlink both the worlds in an integrated way.
There are certain scenarios in which business logic of flow-based applications may need
input from Big Data jobs, i.e. applications may require to trigger data analysis. Similarly,
after the execution of Big Data jobs there may arise need to perform some additional task,
i.e. may need to trigger a business logic. An example scenario has been illustrated where
the integration of Big Data analytics and business logic in application development is
really useful to generate value for end-users.

Start

Travel Details

Decide

Analytics to find best deals

Results

Pricing Bill

Payment Gateway

Itinerary

Re-confirmation

Figure 1.3: Mashup involving Big Data analytics for travel route optimisation.

Public transportation is becoming increasingly tough in most modern cities of the world
today. It is desirous to know real-time traffic situations for smooth transit within differ-
ent areas of a city. Therefore the idea of connected mobility is highly sought for. Con-
nected mobility, an application of IoT, takes into account all available transit options,
payment services along with real-time traffic information and map services to facilitate
optimal route planning for hassle free transportation. The traffic conditions, payment
services, parking spot availability, public transit options with their rates and historical
data are offered as REST services in the context of connected mobility. Applications can
be created via flow-based programming tools by third party application developers by
consuming the offered REST services appropriately which assist the user to travel from
one point to another with in the city limits. The application suggests the user to use a
combination of transit options and handles the entire trip cost in an integrated manner
since different services may have different providers. It also guides the user during his
travel with a map. The flow of such an application where real-time analytics is unavoid-
able is depicted in Figure 1.3. The application takes user input and during first iteration
it performs analytics to get real-time traffic information and then appropriately suggest
optimal routes with a combination of transportation options which can be followed for
those paths. This cycle is iterated till the user is satisfied with the results after which the
flow in the application moves on to calculate the trip cost, display it to the user, handle
the payment through a payment gateway and present the final itinerary to the user.

1.2 Problem Statement

Although high-level graphical programming of Big Data systems via flow-based pro-
gramming tools would enable end-users, i.e. users with little to no prior programming
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expertise, to develop sophisticated, high-impact applications, it is far from straightfor-
ward. Such an approach should go beyond from merely making use of graphical flows
that only act as data providers for Big Data clusters. Developers should also be able
to specify Big Data analytics jobs and consume their results within a single application
model. This can effectively enhance the development of applications that continuously
harness the value out of sensed data in their operation. The main rationale is to develop
a uniform application model and associated model of computation, that will facilitate
specification of big data analytics as a part of the regular business logic of an applica-
tion.

High-level graphical programming of Big Data applications via flow-based programming
tools entails the following major challenges:

C1 Inherent complexities in programming of Big Data applications. The Big Data
ecosystem is too large in the number of frameworks, solutions and platforms avail-
able to work with. Each framework is complex to use. The available solutions can
be categorised into distributions, execution engines/frameworks, analytics plat-
forms etc. The focus here is on the execution engines/frameworks which started
with the MapReduce [23] programming model on top of Hadoop Distributed File
Systems (HDFS) [24]. Hadoop MapReduce is an open-source framework to write
applications to process data stored on HDFS in batch mode. But the paradigm
shifted rapidly towards Apache Spark [168] which is way faster when compared to
MapReduce as it does most of its operations in memory, thereby reducing the num-
ber of disk access operations. It also offers high-level operators on top of custom
data abstractions like the Resilient Distributed Dataset (RDD) [31] whereas every
functionality needed has to be manually coded while working with MapReduce.
Additionally, Spark offers functionality to process streaming datasets. Similarly,
Apache Flink [150] with its own data abstractions and APIs is also gaining popu-
larity. Its a strong competitor of Spark. The important point to highlight here is
that the most popular Big Data Frameworks, i.e. Apache Spark and Apache Flink
which are used to write Big Data applications typically offer the following differ-
ences which gives rise to a learning curve:

1. Both of the frameworks offer different programming models and data abstrac-
tions to represent and process datasets, like RDDs, DataFrame, DStreams in
case of Spark while DataSet and DataStream in case of Flink.

2. They offer different APIs on top of data abstractions to work with datasets.

3. Different libraries are present in the framework for machine learning, graph
processing, stream processing etc. Additionally, often the APIs with their
functionalities overlap.

It is necessary to distil the programming concepts, data abstractions and APIs from
the different libraries of both the frameworks which are well-suited to be repre-
sented and used from a flow-based programming paradigm. In addition to this,
the inherent data processing architecture of both the systems are different as Flink
is heavily based on Kappa architecture [71] while Spark tries to be Lambda [113]
compliant as it grew out from the ecosystem of Hadoop.
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C2 Integrating with Big Data systems. IoT applications heavily rely on REST architec-
tural style for communication and integration between components because it is
simple and the communication is uniform. Uniform communication is especially
important in IoT due the seer presence of a large number of heterogeneous devices.
This is an opportunity for Big Data analytics tools: if they also offered their APIs
in REST, they could be invoked as regular services within IoT applications. Certain
Big Data tools already offer RESTful APIs. For instance, in Spark one can invoke
Spark jobs, monitor and control them via REST calls. Unfortunately, most other
Big Data analytics tools (including Hive and Pig) lack REST interfaces. Addition-
ally, the problem takes a second dimension, i.e. Big Data tools like Spark and Flink
make use of different programming APIs, evaluation models and data representa-
tion formats to create runnable programs within those environments and its not
possible to achieve this via simple RESTful approach. Generic translation of flows
into native Big Data programs coupled with RESTful operations to load, monitor
and return results from Big Data systems to flow-based programming tool envi-
ronment is needed to create applications which perform data analytics and also
consume their results in a single application model.

C3 Usage of flow-based programming for Big Data analytics. It is important to state
that the flow-based programming tools used for IoT application development gen-
erally involved collection and processing of datasets. They have also been used to
feed data into Big Data systems for processing but were not designed to support
flow-based Big Data programming. Therefore, an improvement over the current
architectural style of flow-based programming tools is necessary to support high-
level programming of Big Data applications, particularly in the following dimen-
sions:

1. The single-threaded model and blocking semantics used in flow-based pro-
gramming tools prevent specification of Big Data application via flows as Big
Data programs are typically repetitive and time-consuming. Without the sup-
port for multi-threaded and concurrent execution semantics, the applications
developed would cause bottleneck for the components connected after time-
consuming data analytics components in a flow. Additionally, with a single
thread of execution it would be difficult to scale the application to meet in-
creasing data processing loads.

2. Flow-based programming tools have so far focused on enabling end-users,
even non-programmers, create and deploy relatively simple applications. As a
result, a number of common features for development environments and plat-
forms, such as built-in security mechanisms and code generation capabilities,
are not included in current popular flow-based programming tools. To allow
the integration with Big Data analytics tools, flow-based programming tools
have to provide these missing features, along with features included in data
scientists tool-kits (e.g. pre-fetching of example data from a dataset, graphical
inspection of datasets, etc.). In the end, the challenge is to shift the focus from
end-users to developers and data scientists.

C4 Visual programming not language independent. Flow-based programming tools
provide a graphical language for modelling the data-flow between the various com-
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ponents of an application. This notation has its limitations when modelling com-
plex behaviours that involve loops or generic operation [129, 131]. At the same
time, Big Data analytics tools have their own (non-graphical) languages, such as
Pig Latin, SQL/SparkSQL [34] and different APIs for writing driver programs to be
executed in Spark and Flink run-time environments. There are currently only a few
attempts to specify Big Data analytics jobs graphically (e.g. the QryGraph tool for
specifying Pig Latin queries [138]). A seamless development experience integrat-
ing flow-based applications and Big Data analytics would ideally provide a single
visual notation for specifying both the application logic and the data analysis logic
in graphical editor (e.g. allowing for graphically specifying the contents of ‘Analyt-
ics to find deals’ box in Figure 1.3). As this would allow developers to use a single
consolidated tool chain, it would greatly simplify the application development.

1.3 Research Goals

Responding to the challenges presented in Section 1.2, this thesis focuses primarily to
support high-level graphical programming for Big Data applications via flow-based pro-
gramming paradigm. The thesis thus targets the following research goals (Figure 1.4
illustrates the overall ideas of the research goals):

G1 The first goal is to analyse Big Data frameworks. Big Data systems typically come with
a wide range of frameworks like Spark, Flink, Pig etc. which have very diverse
programming style. For instance, Pig programs follow a scripting style while Hive
supports SQL like queries to query datasets. Spark and Flink involve complex data
abstraction formats, different APIs and have different libraries offering different
functionalities. All these are used in conjunction by a developer manually to create
a driver program which then runs in the run-time environment to do the actual
data-analytics. In order to support high-level programming of such systems, it is
of paramount importance to:

1. Analyse the target Big Data frameworks, extract data abstractions and APIs which
are compatible with the flow-based programming paradigm. Two Big Data
frameworks namely Spark and Flink have been chosen for the thesis work.

2. Representation of the selected APIs operating on the compatible data abstrac-
tions as modular components (for definition of modularity in the context of
this work, please refer to Section 5.2).

G2 The second goal is to support graphical programming of existing Big Data systems, i.e.
represent the modular components in a graphical tool based on the flow-based pro-
gramming paradigm and enable high-level programming by:

1. Developing a generic approach to parse graphical flows making use of such modu-
lar components to generate native Big Data programs and with support for early-
stage validation so that a flow always yields a compilable and runnable Big
Data program.
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1.4 Contributions & Publications

2. Additionally, design new improved concepts for flow-based programming tools to
support designing applications with concurrent execution semantics, thereby
overcoming the prevalent architectural limitations in the state-of-the-art IoT
mashup tools. A flow-based programming model with concurrent execution
semantics is suitable for modelling a wide range of Big Data applications cur-
rently used in Data Science. Without the aforementioned semantics, designing
a flow involving Big Data analytics would lead to components waiting to exe-
cute for a long time as Big Data jobs usually take long to finish their execution.
This would lead to inefficient design of applications.

1. GUI components used by end-user of the tool
2. Modular in design
3. Flow-based programming paradigm
4. User connects several components to create an application

Comp.
1

Comp.
2

Comp.
3

Mashup tool

Big Data Ecosystem

uses a subset of APIs from the Big Data Ecosystem

API 1 API 2 API 3

1. Selected APIs of Big Data tools modelled as modular composable
     components 
2. Selected Data abstractions only i.e. no user defined functions
3. User connects these components to create a Big Data app.
4. Abstracts the complexities of Big Data systems from end-user
5. Compatible with the semantics of the mashup tool
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Figure 1.4: Modular subset of Big Data systems compatible with flow-based programming
paradigm (tool-agnostic)

The two goals cut across all the identified challenges, while focusing explicitly on chal-
lenges C1-C3.

1.4 Contributions & Publications

The main contributions presented in this thesis comes from a number of publications
stemming from the research work and collaboration done within the TUM-Living Lab
Connected Mobility project, in which the author participated as an early stage researcher.
The following peer-reviewed papers and technical reports form the core contribution
presented in this thesis.
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Publications

1. Mahapatra, T., Gerostathopoulos, I. and Prehofer, C.: Towards Integration
of Big Data Analytics in Internet of Things Mashup Tools. In: Proceedings
of the Seventh International Workshop on the Web of Things, ser. WoT’16.
New York, NY, USA: ACM, 2016, pp. 11-16. http://doi.acm.org/10.1145/
3017995.3017998

2. Mahapatra, T., Prehofer, C., Gerostathopoulos, I. and Varsamidakis, I.:
Stream Analytics in IoT Mashup Tools. In: 2018 IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC). pp. 227-231
(Oct 2018). https://doi.org/10.1109/VLHCC.2018.8506548

3. Mahapatra, T., Gerostathopoulos, I., Prehofer, C. and Gore, S. G. , “Graphical
Spark Programming in IoT Mashup Tools,” 2018 Fifth International Confer-
ence on Internet of Things: Systems, Management and Security, Valencia,
2018, pp. 163-170. https://doi.org/10.1109/IoTSMS.2018.8554665

4. Mahapatra, T., Gerostathopoulos, I., Fernández, F. and Prehofer, C., “Design-
ing Flink Pipelines in a IoT Mashup Tools,” Proceedings of the 4th Norwe-
gian Big Data Symposium (NOBIDS 2018), vol. 2316, pp. 41-53, Trondheim,
Norway, November 14, 2018. http://ceur-ws.org/Vol-2316/paper3.pdf

5. Mahapatra, T. and Prehofer, C., “Service Mashups and Developer Support,”
Project Consortium TUM Living Lab Connected Mobility, Digital Mobility
Platforms and Ecosystems, Software Engineering for Business Information
Systems (sebis) TUM, July 2016. https://mediatum.ub.tum.de/node?id=

1324021

An overview of the contributions is presented in Chapter 3.

1.5 Structure

The thesis is structured in the following way. Chapter 2 presents the state-of-the art in
Big Data analytics and IoT application development using mashup tools. It also builds
the storyline of the importance and relevance of Big Data analytics in IoT applications
and pinpoints the limitations to overcome in order to support high-level graphical pro-
gramming of Big Data applications. Chapter 3 breaks down the research goals G1 and
G2 into three concrete objectives O1 — O3, provides a detailed discussion of the con-
tributions made and approach followed in the thesis. The concrete objectives points
to the chapters where they have been addressed by specific contributions discussed in
those chapters. Chapter 4 discusses a new graphical flow-based programming tool con-
cept to support development of applications with built-in stream processing capabilities.
Chapter 5 and Chapter 6 discuss graphical programming of Spark and Flink respectively.
Finally, Chapter 7 concludes the thesis and gives the author’s subjective opinions and in-
sights from the derivatives of the investigation done as part of the thesis work.
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2 Background

“In pioneer days they used oxen for
heavy pulling, and when one ox couldn’t
budge a log, they didn’t try to grow a
larger ox. We shouldn’t be trying for
bigger computers, but for more systems
of computers.”

— Grace Hopper

This chapter summarises the associated libraries, infrastructures and technologies avail-
able for Big Data analytics. It gives an overview of the emerging field of IoT and why Big
Data analytics in the context of IoT is essential. In the same time, end-user development
in the domain of IoT application plays a crucial role where graphical flow-based pro-
gramming tools called ‘mashup tools’ have been used to reduce application development
efforts. A similar approach can be used to support high-level programming of Big Data
applications. The chapter presents an overview of the state-of-the-art IoT mashup tools
currently in use and also highlights their current architectural limitations, supporting
their inadequacy to support high-level programming of Big Data applications.

Data Science has become a much hyped term in the last years. What makes this term
even more interesting is that academicians and industry lab researchers do not agree
on a common definition. In addition to this, there is a distinct lack of respect for the
decades of work done by researchers, whose work is based on work done by mathemati-
cians as well as statisticians for decades before the term was popularised by technology
industries. On a very superficial level, it appears to be reselling of simple statistics and
mathematical algorithms and not a broad field by itself [139]. In addition, simultaneous
usage of the term ‘Big Data’ along with Data Science often raises questions on their ac-
tual definition and application. This chapter attempts to bring a clear perspective of the
terms and help build the foundations required to understand the research contributions
made in the thesis.

2.1 Data Science

The current age has seen an increased production in the volume of data from many
sources, covering almost all aspects of our lives like internet shopping, browsing, on-
line searches, tweets etc. In the context of IoT, devices are equipped with a wide range of
sensors which collect data almost round the clock and transmit this, i.e. we kind of have
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Figure 2.1: Drew Conway’s Venn diagram of data science, as in [151]

infinite streams of data pouring into our systems continuously. The data thus generated
is continuously monitored and this process is not knew. But the current age has given rise
to a phenomenon popularly known as ‘Datafication’, i.e. the data is subjected to learning
techniques to gain insight of the individual as a species or learning in-depth about the ex-
ternal environment. Alternatively, it can be defined as a process of “taking all aspects of
life and turning them into data [58].” For instance, LinkedIn [105] datafies professional
networks while Twitter [154] datafies random thoughts. Datafication is an interesting
concept which essentially transforms the purpose of datafied things and churns out new
forms of value [58]. Drew Conway’s Venn diagram nicely summarises Data Science as
shown in Figure 2.1. His explanation for various components involved in Data Science is
as follows:

Hacking Skills Data is a commodity traded electronically, therefore, in order to
be in this market you need to speak hacker. Far from ‘black hat’ activities, data
hackers must be able to manipulate text files at the command-line, thinking
algorithmically, and be interested in learning new tools.

Machine Learning Data plus math is machine learning, which is fantastic if that
is what you - if that is what you are interested in, but not if you are doing
data science.

Math & Statistics Knowledge Once you have acquired and cleaned the data,
the next step is to actually extract insight from it. You need to apply appropri-
ate math and statistics methods, which requires at least a baseline familiarity
with these tools.
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Traditional Research Substantive expertise plus math and statistics knowledge
is where most traditional researcher falls. Doctoral level researchers spend
most of their time acquiring expertise in these areas, but very little time learn-
ing about technology.

Substantive Expertise Science is about discovery and building knowledge,
which requires some motivating questions about the world and hypotheses
that can be brought to data and tested with statistical methods. Questions
first, then data.

Danger Zone This is where I place people who, ‘know enough to be dangerous’,
and is the most problematic area of the diagram. It is from this part of the
diagram that the phrase ‘lies, damned lies, and statistics’ emanates, because
either through ignorance or malice this overlap of skills gives people the ability
to create what appears to be a legitimate analysis without any understanding
of how they got there or what they have created.

2.2 Doing Data Science

A typical Data Science program model looks as shown in Figure 2.2.

Figure 2.2: Data science program approach, as in [163]

It essentially involves:

1. Importing data from files, databases, web APIs into data structures supported in
programs like R or Python.

2. After the data has been imported, it is subjected to clean-up, i.e. elimination of
duplicates and storing it in appropriate data structural formats such that it is com-
patible with the transformation functions.

3. Cleaned-up data is passed to transformation functions which help to narrow-down
the dataset, i.e. zoom into an area of observational interest. These functions can
create toned-down versions of datasets which can be stored in new variables which
in turn can be passed as arguments to new transformation functions. These func-
tions can also be used to create a set of summary statistics.
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4. The transformed data is used to generate knowledge/insights about the original
dataset. Broadly, there are two approaches:

• Graphical visualisation of data via plots of different kinds which is both intu-
itive and raises questions easily in case of any discrepancy in the transformed
dataset. The downside of this approach is that it does not scale well and is
often prone to displaying unanticipated results, i.e. result which the user was
not expecting.

• Models are mathematical tools which can answer specific questions and they
scale well. A model works on the basis of certain assumptions and therefore,
cannot produce unanticipated results.

5. The last part is effective communication of the insights gained from the visualisa-
tion and modelling techniques to others.

2.3 (Big) Data Analytics

Big Data is an umbrella term to refer to the new approaches that are needed to properly
manage and analyse these ever-growing amounts of information, which differ from tradi-
tional data in the so-called 4V’s: volume, variety, velocity and veracity [55]. Each of these
properties entails a different challenge that Big Data platforms must address: they must
be capable of handling great amounts of data that come from different sources (hence
with different structures) and do it quickly enough while, at the same time provide re-
sults that really matter. In many use cases like stocks transactions, user interactions with
social networks, exchange of messages between end-user terminals and mobile base sta-
tions, or events in smart cities infrastructures (e.g. pollution monitoring, traffic control,
lamp posts, etc.) data occur as a series of events that follow a flow-like structure. In
the last decade, a number of Big Data analytics tools have emerged to satisfy different
business needs such as targeted advertising, social network analysis, sentiment analy-
sis, malware analysis and others. From a technical perspective, Big Data analytics can
however be divided into two modes:

Batch Mode It essentially deals with manipulating and querying in parallel large
amounts of data residing in clusters of commodity machines.

Streaming Mode It involves accommodating and analysing large amounts of incoming
data as they come.

These two modes co-exist in the lambda architecture [113], where the outputs from the
two processing modes are combined in a serving layer before delivering the final result.
We describe the different components of a Big Data Analytics system in the following
sub-sections.

Big Data Processing Systems Big Data processing systems typically rely on a multi-
tude of high-level languages, programming models, execution engines and storage en-
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Figure 2.3: Four layered architecture of Big Data processing systems

gines. This typically forms a four-layered architecture as shown in Figure 2.3. The high-
level languages allow a non-technical person to specify a data query or processing al-
gorithm in a data manipulation program. Examples of typical high-level languages are
Pig [27], Hive [20], SQL, JAQL [42, 38], Flume [21], BigQuery [80] etc. The program-
ming model is the heart of the big data processing system. MapReduce [23] is one of the
most widely used programming model. The queries in high-level language are translated
and represented in a suitable programming model and passed onto the execution engine
for execution. The execution engine is responsible for handling computing resources and
executing the programs expressed in a particular programming model. Typical execu-
tion engines are ‘Yet Another Resource Negotiator’ (YARN) [13], Flume Engine [21], Tera
Data Engine [50, 9, 49], Azure Engine [44, 46, 45] etc. The programs during execution
make use of the storage engine to actually retrieve datasets, perform operation on them
and return result sets. Google File System (GFS) [77], HDFS, Voldemort [158], Tera Data
Store [50, 9, 49] are some of the most widely used storage engines.

2.4 Batch Analytics

Batch analytics systems rely on collecting data before they are analysed, so they sim-
plify the whole process notably. However, they require huge storage facilities, as they
are not capable of handling data as they arrive. Most of the currently used Big Data
paradigms, like MapReduce [63], are based on the batch processing. Batch processing
behaves reasonably well when assessing large volumes of data is the priority, especially
regarding bounded datasets. However, they fail in providing good results with low la-
tency, thus being inappropriate for real-time systems. Some popular solutions built on

15



2 Background

top of MapReduce to provide batch analytic capabilities include Pig, Hive, Spark etc.
It is possible to somehow adapt MapReduce to data streams, by breaking the data into
a set of finite batches. This is known as micro-batching and it is what Spark Streaming
does [68].

2.4.1 Hadoop

Hadoop is an open source framework [22] to write scalable applications involving a large
number of networked systems primarily meant for handling massive datasets and their
associated computation. It is written in Java and runs inside the Java Virtual Machine
(JVM). It makes sense to leverage the power of Hadoop infrastructures when we have to
deal with petabytes of data [145]. It was created by Yahoo employee Doug Cutting and
the inspiration came from the concepts of Google File System (GFS) [77]. In the recent
versions, Hadoop supports a resource management layer like the YARN [134]. The core
of Hadoop is the open-source implementation of the MapReduce programming model,
which works with datasets spread across multiple networked systems managed by the
Hadoop Distributed File System. It is the de-facto standard for all Big Data processing
systems.

2.4.1.1 The Hadoop Distributed File System

When a dataset outgrows the storage capacity of a single physical machine then it be-
comes necessary to partition it across a number of separate machines. The filesystems
which manage the storage across a network of separate machines are called distributed
filesystems. The Hadoop Distributed File System (HDFS) is a distributed file system
written in Java that can be run on low-cost commodity hardware preferably running
GNU/Linux. It is designed for storing very large files with streaming data access pat-
terns, i.e. it is built around the idea that the most efficient data processing pattern is
a write-once, read-many-times pattern [161]. It offers a high degree of fault-tolerance.
Most Hadoop projects use HDFS as the file handling system, making it the foundation
of all Hadoop based infrastructures [23]. Figure 2.4 shows the HDFS architecture, how
it splits dataset into blocks and spreads it across a large number of networked machines.
HDFS stores data in blocks which are saved in multiple nodes based on a user-defined
replication factor (by default 3). During retrieval, HDFS tries to minimise the distance to
a data block by selecting a node that is close to the client. This leads to a higher through-
put. Every data chunk has a checksum and this can be requested by the client to ensure
the integrity of the entire dataset. HDFS typically has the following components:

NameNode It is the single master node of a HDFS set-up. It manages the namespace of
the filesystem and controls file access of clients. Every file is divided into blocks
(64 MB by default) which are then stored across different DataNodes as managed
by the NameNode. When a client requests for a specific file, the NameNode knows
where its associated blocks are stored. It informs this information to the client and
the client requests to the specific DataNodes to send the blocks of data. It is also
responsible for monitoring the status of DataNodes and in case of any failure, it
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Figure 2.4: HDFS architecture, as in [24]

redoes the replication of lost data blocks to ensure that the replication factor of
data is always maintained.

DataNodes These are the slave nodes and they can be more than one in number. These
are responsible for managing the local storage and catering to client data requests.

The problem of ensuring that the data replicates are coherent when spread across many
DataNodes is resolved by restricting the user to write to a file only once or append to
it. In case of any changes, the user is forced to delete the file and write it again from
scratch.

2.4.1.2 MapReduce

MapReduce is a programming model for data processing [161], originally developed by
Google [63]. Hadoop can run MapReduce programs written in a wide range of pro-
gramming languages like Java, Ruby, Python and C++. It provides an interface to write
fault-tolerant highly parallel applications that can be run on a huge amount of nodes and
work on petabytes of data [23]. It offers scheduling, monitoring and fault-safety to the
developer who creates MapReduce applications [145].

The main idea is to use the map and reduce/fold from functional programming. MapRe-
duce breaks the processing into two distinct phases: the map phase and the reduce phase.
Each phase has key-value pairs as input and output, the types of which are defined by
the programmer. The programmer also specifies two functions: the map function and the
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reduce function. The map function is applied to all elements of a dataset which can be
done in parallel as HDFS supports chunking/dividing data into blocks, i.e. each node
in the HDFS can run a map function on the block of data available on that node. The
results of all the map functions are passed to the reduce function, which produces the
final result of the computation. In case of MapReduce, it is perfectly valid if the map
functions produce zero, one or more outputs and similarly the reduce function can pro-
duce multiple results for a single input. This is in stark contrast to traditional functional
programming paradigm which also makes MapReduce more flexible. However, it is not
suitable for smaller programs as the task has to be divided and run across multiple nodes
which increases overhead considerably.

2.4.2 Hive

Hive is a data warehousing solution built on top of Hadoop. Its main goal is to simplify
the querying and analysis tasks in Hadoop by providing a familiar SQL-like syntax for
performing these tasks. Hive alleviates the problem of writing custom MapReduce (MR)
programs that are hard to maintain and reuse and allows non-programmers to interact
with Hadoop for reporting and ad-hoc data analysis.

Hive provides an SQL-like declarative language called HiveQL for specifying queries.
Queries are internally compiled into MR programs and executed on a Hadoop cluster.
In particular, Hive supports data definition statements for creating tables, data manip-
ulation (DML) statements such as load, and typical SQL statements such as select, join,
union, group by, order by, etc. Database schemas are kept in a system catalogue called
metastore, which is physically stored in a relational database. As HDFS is not optimised
for the use cases of a relational database, Hive combines HDFS with the fast random ac-
cess from well known databases like MySQL or a local file system in a component called
metastore. When working with Hive, a user can create tables schemas and load data to
them from files in the HDFS. Hive supports reading and writing in a number of seriali-
sation formats including CSV and JSON.

Once a query is issued, it gets translated into an execution plan. In case of data definition
language (DDL) statements, the plan consists only of metadata operations, while LOAD
statements are translated to HDFS operations. In case of INSERT statements and regular
queries, the plan consists of a directed-acyclic graph of MR jobs, which gets executed in
the Hadoop cluster.

2.4.3 Pig

Pig is a scripting layer on top of Hadoop MR. It can be used as alternative to Hive for
simplifying the querying and analysis tasks. However, whereas Hive targets data ana-
lysts with SQL expertise, Pig targets mainly developers with procedural programming
expertise.

Pig provides a procedural query language called Pig Latin. A Pig Latin program is a
sequence of statements, each of which specifies only a single data transformation. State-
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ments are constructed with the use of SQL-style high-level data manipulation constructs,
e.g. JOIN, GROUP, ORDER, DISTINCT, FILTER, FOREACH and others. As an important
difference to SQL, where only flat tables are allowed, Pig Latin has a nested data model
that allows non-atomic data types such as tuple, set and map to occur as fields of a ta-
ble. This provides more intuitive and flexible programming abstractions. Apart from
using its built-in constructs, Pig allows users to provide User-Defined Functions (UDF),
typically written in Java, that extend the functionality of Pig.

A Pig Latin program essentially can be represented by a directed acyclic graph where
nodes represent data transformations and links represent data-flow. This is called logical
plan. Logical plans get translated to physical plans, which in turn get translated to MR
jobs by the Pig compiler.

2.5 Stream Analytics

The idea of processing data as streams, i.e. as they come in, is different from batch
processing. The latter approach was followed in the first Big Data-processing systems,
such as in Hadoop’s MapReduce and in Apache Spark, which mainly dealt with reliable
parallel processing of Big Data residing in distributed file systems, such as Hadoop’s
HDFS. Stream processing of Big Data has been recently sought as a solution to reduce
the latency in data processing and provide real-time insights (e.g. on the scale of seconds
or milliseconds).

In particular, an ideal stream-processing platform should meet the following require-
ments [147]:

• Low latency. Streaming platforms usually make use of in-memory processing, in
order to avoid the time required to read/write data in a storage facility and thus
decrease the overall data-processing latency.

• High throughput. Scalability and parallelism enable high performance in terms
of data-processing capability. The real-time performance of stream-processing sys-
tems is frequently demanded even with spikes in incoming data [74].

• Data querying. Streaming platforms should make it possible to find events in the
entire data stream. Typically, SQL-like language is employed [147]. However, since
data streams never end, there needs to be a mechanism to define the limits of a
query; otherwise it would be impossible to query streaming data. This is where the
window concept takes part. Windows define the data in which an operation may be
applied, so they become key elements in stream-processing.

• Out-of-order data. Since a streaming platform does not wait for all the data to
become available, it must have a mechanism to handle data coming late or never
arriving. A concept of time needs to be introduced, to process data in chunks re-
gardless of order of arrival.

• High availability and scalability. Stream processors will most likely handle ever-
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growing amounts of data and in most cases, other systems could rely on them, e.g.
in IoT scenarios. For this reason, the stream-processing platform must be reliable,
fault-tolerant and capable of handling any amount of data events.

The first approaches to stream processing, notably Storm and Spark Streaming, used to
focus on requirements such as low latency and high throughput [93]. Lambda architec-
ture, a well-known approach [74, 113, 99] combines batch and stream-like approaches to
achieve shorter response times (on the order of seconds). This approach has some advan-
tages, but one critical downside: the business logic needs to be duplicated into the stream
and the batch processors. In contrast to this, stream-first solutions, such as Apache Flink,
meet all the outlined requirements [74].

2.6 Spark

Spark is a fast, scalable, fault-tolerant general purpose distributed computing platform.
It makes efficient use of memory and is generally faster than traditional MapReduce pro-
gramming model. There have been many approaches to cluster computing like MapRe-
duce [62], Message Passing Interface (MPI) [73] etc. Spark Programming model has been
designed to overcome the limitations of MapReduce [168]. It’s excellent in-memory com-
putation capabilities are good for scenarios which demand iterative computations, e.g.
application of machine learning techniques, which involves application of an algorithm
repeatedly on a same dataset till optimum results are obtained, interactive explorations
which enable users to submit SQL like queries and stream processing. In addition to this,
Spark supports both batch as well as stream analytics. It has evolved from a framework
to an ecosystem, with several libraries built around the core framework; Spark SQL pro-
vides a SQL-like interface for data analysis, GraphX can be used for graph computations
and different Machine Learning libraries to learn from datasets.

Spark in implemented in Scala [137] but provides APIs in Scala, Java as well as Python. It
has become the most popular data analytics platform surpassing traditional MapReduce
style of doing distributed data analytics and has been adopted by big giants in the IT
sector. For instance, there is a Spark cluster set-up in production consisting of 8000 live
nodes [170].

2.6.1 Spark Application Program

A Spark application can be programmed from a wide range of programming languages
like Java, Scala, Python and R. In case of programming from Python, the Python source
code itself is the Spark application program. But in the case of Java/Scala, the source
code is compiled to generate a Java ARchive (JAR) file. This JAR file is typically sent to a
Spark cluster for execution and is traditionally known as the ‘Spark Driver program’. The
terms ‘Spark Application program’ and ‘Spark Driver program’ essentially convey the same
message. In this thesis, the term ‘Spark Driver program’ has been used extensively.
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2.6.2 Spark Fundamentals

Spark is a distributed computing platform engine which is under heavy research and de-
velopment. With every release, new libraries and new programming models are added to
it. Nevertheless, they are all centred around Spark Core. The different libraries cater to
different aspects of Big Data analytics. The most important component in the Spark
ecosystem is the Spark Core, which provides basic functionalities for running Spark
jobs. Since, Spark allows us to use different libraries it is very different from traditional
Hadoop technologies. Spark can be studied from two different perspectives: (i) as a dis-
tributed analytics engine, (ii) as a library providing different libraries and APIs for Big
Data analytics. One of the strongest shortcomings of MapReduce is that job results need
to be saved before they can be used by another job. Spark’s core concept is an in-memory
execution model that enables caching job result in memory instead of fetching it every
time from the hard disk. Consider an example [171], where we have stored the city map
data as a graph. The vertices of this graph represents points of interest on the map and
the edges represent the possible routes between them along with the distance value. In
order to locate a new spot on the map for a new building such that it is as close as possible
to all points in the graph, we have to:

1. Calculate the shortest path between all the vertices.

2. Find the farthest point distance, i.e. maximum distance to any other vertices for
every vertex.

3. Find the vertex with minimum farthest point distance.

In the case of a MapReduce solution, this would require three steps where the result of
every preceding step needs to be saved first before it can be used in the succeeding step.
But in Spark, all these can be computed in-memory using the concept of caching. Here
in this section, the fundamental concepts of Spark as a distributed analytics engine has
been discussed.

Resilient Distributed Dataset The most important functionality provided by Spark
core for running Spark jobs is the ‘resilient distributed dataset’ (RDD) [168]. RDDs are
read-only collection of objects which represent user input that has been partitioned over
machines in the cluster. It is possible to have multiple partitions on the same machine.
Each RDD contains the transformation(s) that will be applied to the data by worker
processes. When a machine containing a worker process fails, information present in
RDD can be used by another worker machine to recompute the lost computation. RDDs
are computed from other RDDs by applying coarse-grained transformations [168] or by
reading user input from disk. RDDs are not required to be stored in physical memory
as they can be recomputed any time. However, when necessary, users can persist data
represented by an RDD in memory. Figure 2.5 shows a typical RDD operation in Spark.
For example [171], there is a 300 MB file which needs to be stored in a 3-node cluster
set-up. HDFS automatically splits the file into 128 MB blocks and places each part on
a separate node of the cluster. If the file is needed to be used by a Spark program, then
the corresponding parts are loaded into the main memory of the respective nodes and a
RDD is created. The RDD thus created contains a reference to each of the blocks loaded
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into RAM of different cluster nodes. RDD abstracts things so that it becomes easy to
work with distributed collection and takes care of communication as well as node failure
issues [171].
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Figure 2.5: RDD operations in Spark, following [171]

Spark driver process When a Spark application is submitted, a process called ‘Spark
driver’ inspects the application and prepares an execution plan. Execution plan con-
sists of RDDs along with computations to be performed on them. Once execution plan
is ready, worker processes/nodes are invoked to read data from external sources and
perform computations as scheduled by the ‘Job Scheduler’ process within Spark. Spark
driver program has all control over the resources required to orchestrate, control the ex-
ecution and manage the worker processes. Reading of data from external sources and
actual computation occurs within the worker processes. Once the computations have
been performed data could either be pushed out of the run-time environment of worker
processes into external receivers or brought into to the driver process. Figure 2.6 shows
the communication pathways between the Spark driver program and worker processes
and a typical execution pattern of a Spark application program.

Distributed Execution Model Spark supports cluster computing via Mesos[88],
YARN[156] and a built-in standalone[29] mode. Spark applications can be deployed
in either client or cluster mode. In client mode, Spark driver program runs as a child
process of the cluster manager and in cluster mode Spark driver is run on one of the
worker nodes. Cluster mode of deployment is safer compared to client as in the client
mode if a Spark driver program crashes then cluster manger crashes along with it and
the application must be re-deployed. However, in the cluster mode, cluster manager
remains unaffected and may launch another worker node to restart the execution. Spark
driver and worker nodes communicate several times during the execution.
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Figure 2.6: Spark application program: execution pattern in cluster mode

Evaluation & Execution Style When a Spark application is submitted for execution,
it is first inspected by Spark driver program to generate an execution map. Only com-
putations whose output is sent out of the Spark execution environment are scheduled
for actual execution. This is known as ‘Lazy Evaluation’. Advantages of lazy evaluation is
that computations which do not end in sinks, i.e. push-data out, are not executed thereby
reducing computations.

2.6.3 Spark Ecosystem

Spark offers many libraries centred around Spark core to cater to different aspects and
requirements of Big Data analytics. Recent developments in the programming model of
Spark have increased its flexibility and power. Here, we describe some of the libraries of
the Spark ecosystem. Figure 2.7 gives a graphical summary of the different libraries and
their runtime interactions.

Spark SQL Although Spark with its built-in RDD abstractions provides fault-tolerance,
but over a period of time several shortcomings of Spark core were identified. One such
shortcoming was that Spark core treats data as an unstructured stream. Streams of data
read from external sources such as files, for example, is mapped into Java/Python objects
which is inefficient for structured and semi-structured data as they are present in differ-
ent file formats such as ‘CSV’, ‘JSON’ etc. Applying relational queries on data read from
external sources or using machine learning and graph processing of Spark on relational
data is not feasible with this approach. Spark SQL is a library which was developed to
address this shortcoming.

Spark SQL addresses the gap between procedural model of Spark and relational model of
structured and/or semi-structured data by providing DataFrame API[34]. DataFrames
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Figure 2.7: Different Spark components, various runtime interactions and storage options, fol-
lowing [171]

store user input in compact columnar format which is more efficient compared to data
stored in objects. In addition Spark SQL introduced Catalyst, an optimisation engine on
top of Spark which uses features of Scala programming language to optimise user query
by generating composable rules in a Turing complete language[34]. Spark SQL builds a
logical plan for the DataFrame operations which is evaluated eagerly, i.e. to identify if
column names used in transformation is present in the DataFrame or not. When opera-
tions involving generating results are encountered, physical plan is generated including
optimisations from Catalyst[34] and gets executed on the worker nodes. Figure 2.8 shows
how using a Data Frame API in Spark along with a supplied schema, data-read from var-
ious sources can be stored in the form of a tabular structure, thereby allowing relational
queries.

Spark Streaming ‘Discretized Streams’ (DStreams) is a library developed to overcome
the limitations of continuous operator model of processing streaming data [169]. Pro-
gramming model of DStreams is to “structure streaming computations as a series of
stateless, deterministic batch computations on small time intervals” [169]. DStreams
use RDD abstractions to provide fault tolerance, stateless and deterministic computa-
tions on streaming data. Programming model of DStreams groups real-time streaming
data into micro-batches for applying operations provided by Spark Core on them. This
is advantageous in scenarios where machine learning models prepared from historical
datasets are applied on streaming data. However, it does not provide event-time based
processing features or late data handling capabilities. Figure 2.9 shows the programming
model of Spark Streaming which creates incremental RDDs with the continuous inflow
of datasets.
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Spark Structured Streaming Spark Structured Streaming is a library built on Spark
SQL engine and uses DataFrame abstractions for processing data. Its programming
model handles streaming data as an unbounded table which grows infinitely [26]. Every
new data received from streaming source is appended as a new row to the unbounded
table. Computations provide incremental updates to existing results. For instance, a run-
ning count on fields A and B is stored in a results table. This results table is updated in
each processing interval (event-time based or processing time based). Structured Stream-
ing provides DataFrame APIs to express computations which is very similar to computa-
tions specified on static data. SQL engine applies the computation incrementally over the
unbounded table and results are updated accordingly [26]. Streaming computations are
evaluated eagerly but executed lazily. Structured Streaming supports window operations
based on processing time and event-time of the data.

Although, the programming model of Spark Structured streaming is good for stream-
ing aggregations, it is incompatible with APIs of Spark ML library. For instance, fea-
ture transformation APIs which map categorical values to continuous values or machine
learning algorithms such as logistic regression which perform iterations over the entire
dataset cannot be used with Spark Structured streaming. Structured streaming aggrega-
tions are executed as incremental queries on the unbounded table and fail in scenarios
where iteration over entire dataset is necessary.

Trigger Time Streaming aggregations are applied on unbounded table at a frequency
indicated by user in the form of ‘trigger time’ in every streaming query. It supports fol-
lowing kinds of triggers[26]:

Immediate Processing Streaming data is processed immediately if workers are idle.
Otherwise, data is grouped into a micro-batch and aggregations are applied on the
batch once workers have finished their ongoing computations.
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Figure 2.9: Spark Streaming programming model

Fixed-interval Processing Processing is triggered at a time interval specified by user.
Data collected between two consecutive time-intervals is treated as a micro-batch
and it is subjected to computations if it has data in it.

One-time Processing Processing is triggered only-once on completion of data read op-
eration from a static source like HDFS.

Handling of Late Data In real-world scenarios, streaming data is delivered to stream
processing engines through message brokers such as Kafka[28, 102], Kinesis[10] etc.
Event-time based window operations perform aggregations by grouping data on the ba-
sis of time stamp present in received messages. It is fairly common for messages to arrive
late. Therefore, the stream processing engine provides a mechanism for the user applica-
tion to handle late data which requires the stream processing engine to store data/state
for longer periods of time than usual. Stream processing applications are usually long
running applications and therefore, streaming data cannot be stored infinitely. This also
requires a purging mechanism as the system can run out of memory very soon! Spark
Structured Streaming handles late data through ‘watermarking[26]’. Watermark indi-
cates the duration up-to which a data can arrive late beyond which it is not considered
for processing.

Spark Machine Learning Spark supports distributed machine learning via:

Spark MLlib Spark MLlib, has been built on top of Spark Core using the RDD abstrac-
tions, offers a wide variety of machine learning and statistical algorithms. It sup-
ports various supervised, unsupervised and recommendation algorithms. Super-
vised learning algorithms include decision trees, random forest etc., while some of the
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unsupervised learning algorithms supported are k-means clustering, support vector
machine etc.

Spark ML Spark ML is the successor of Spark MLlib and has been built on top of Spark
SQL using the DataFrame abstraction. It offers Pipeline APIs for easy develop-
ment, persistence and deployment of models. Practical machine learning scenarios
involve different stages with each stage consuming data from preceding stage and
producing data for the succeeding stage. Operational stages include transforming
data into appropriate format required by the algorithm, converting categorical fea-
tures into continuous features etc. Each operation involves invoking declarative
APIs which transform DataFrame based on user inputs[115] and produce a new
DataFrame for use in the next operation.

2.7 Flink

Apache Flink is a processing platform for distributed stream as well as batch data. Its
core is a streaming data-flow engine, providing data distribution, communication and
fault tolerance for distributed computations over data streams [150]. It is a distributed
engine [96], built upon a distributed runtime that can be executed in a cluster to benefit
from high availability and high-performance computing resources. It is based on stateful
computations[74]. Indeed, Flink offers exactly-once state consistency, which means it can
ensure correctness even in the case of failure. Flink is also scalable because the state can
be distributed among several systems. It supports both bounded and unbounded data
streams. Flink achieves all this by means of a distributed data-flow runtime that allows
a real-stream pipelined processing of data [96].

A streaming platform should be able to handle time because the reference frame is used
for understanding how the data stream flows, that is to say, which events come before or
after another. Time is used to create windows and perform operations on streaming data,
in a broad sense. Flink supports several concepts of time (Figure 2.10):

Event time It refers to the time at which an event was produced in the producing device.

Processing time It is related to the system time of the cluster machine in which the
streams are processed.

Ingestion time It is the wait time between when an event enters the Flink platform and
the processing time.

Windows are a basic element in stream processors. Flink supports different types of win-
dows and all of them rely on the notion of time as described above. Tumbling windows
have a specified size, and they assign each event to one and only one window without
any overlap. Sliding windows have fixed sizes, but an overlap, called the slide, is al-
lowed. Session windows can be of interest for some applications, because sometimes it is
insightful to process events in sessions. A global window assigns all elements to one sin-
gle window. This approach allows for the definition of triggers, which tell Flink exactly
when the computations should be performed.
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Figure 2.10: Different concepts of time in Flink, as in [119]

2.7.1 Flink Ecosystem

The Flink distributed data-flow programming model together with its various abstrac-
tions for developing applications, form the Flink ecosystem. Flink offers three different
levels of abstraction to develop streaming/batch applications as follows:

Stateful stream processing The lowest level abstraction offers stateful streaming, per-
mitting users to process events from different streams. It features full flexibility by
enabling low-level processing and control.

Core level Above this level is the core API level of abstraction. By means of both a
DataStream API and a DataSet API, Flink enables not only stream processing but
also batch analytics on ‘bounded data streams’, i.e. datasets with fixed lengths.

Declarative domain-specific language Flink offers a Table API as well, which provides
high-level abstraction to data processing. With this tool, a dataset or data stream
can be converted to a table that follows a relational model. The Table API is more
concise, because instead of the exact code of the operation, defined logical opera-
tions [150] are less expressive than the core APIs.

In the latest Flink releases, an even-higher-level SQL abstraction has been created as
an evolution of this declarative domain-specific language. In addition to the aforemen-
tioned user-facing APIs, some libraries with special functionality are built. The added
value ranges from machine learning algorithms (currently only available in Scala) to
complex event processing (CEP) and graph processing.
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Figure 2.11: Overall structure of a Flink program [150]

2.7.2 Flink Application: Internals & Execution

The structure of a Flink program (especially when using the core-level APIs) begins with
data from a source entering Flink, where a set of transformations is applied (window
operations, data filtering, data mapping etc.). The results are subsequently yielded to a
data sink, as shown in Figure 2.11. A Flink program typically consists of streams and
transformations. Simplistically, a stream is a never-ending flow of datasets, and a trans-
formation is an operation on one or more streams that produces one or more streams as
output.

On deployment, a Flink program is mapped internally as a data-flow consisting of
streams and transformation operators. The data-flow typically resembles directed acyclic
graphs (DAGs). Flink programs typically apply transformations on data-sources and save
the results to data-sinks before exiting. Flink has the special classes DataSet for bounded
datasets, and DataStream for unbounded data-streams, to represent data in a program.
To summarise, Flink programs look like regular programs that transform data collec-
tions. Each program consists of:

1. Initialising the execution environment.

2. Loading datasets.

3. Applying transformations.

4. Specifying where to save the results.

Flink programs use a lazy evaluation strategy, i.e. when the program’s main method is
executed, the data loading and transformations do not happen immediately. Rather, each
operation is added to the program’s plan, which is executed when its output needs to be
used immediately.

2.8 Internet of Things

Internet of things (IoT) has been defined as the interconnection of ubiquitous computing
devices for the realisation of value to end users [36]. This includes data collection from
the devices for analysis leading to better understanding of the contextual environment as
well as automation of tasks for optimisation of time and enhancing the quality of human
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life to the next level. IoT has already pierced into fields like health care, manufactur-
ing, home automation etc. [66]. But to truly exploit the possibilities offered by IoT is to
rapidly enhance the application landscape.

2.8.1 Importance of Data Analytics in IoT

In a world of connected devices, there will be a huge amount of data that will be con-
stantly recorded and used for real-time and/or historical analysis. Analytics of the IoT
data generated is gaining prominence, as this leads to immediate uncovering of poten-
tially useful insights. Big Data technologies can be employed in this context to generate
insights. Such analytics can lead to important insights regarding individual and group
preferences and patterns of end-users (e.g. mobility models), the state of engineering
structures (e.g. as in structural health monitoring), the future state of the physical envi-
ronment (e.g. flood prediction in rivers). These insights can in turn allow the creation
of sophisticated, high-impact applications. Traffic congestion can be avoided by using
learned traffic patterns. Damages in buildings and bridges can be better detected and
repairs can be better planned by using structural health monitoring techniques. More
accurate prediction of floods can enhance the ways authorities and individuals react to
them.

2.8.2 Role of End-User Development in IoT

IoT solutions have the potential to add value to different aspects of human life and en-
vironment. In several scenarios identifying IoT use cases requires significant domain
knowledge at the same time developing solutions for identified scenarios requires pro-
gramming skills. Often, it is the case that domain experts have a good understanding
of the problem but have little or nil programming skills required for prototyping the
use case. Hence, one of the challenges in IoT is to enable domain experts who could be
non-programmers to design and prototype IoT solutions. Graphical programming tools
designed with ‘end-user development’ as one of the design goals have a significant role in
bridging this gap in expertise and domain knowledge.

End User Development as defined by EUD-Net “is a set of activities or techniques that
allow people, who are non-professional developers, at some point to create or modify a
software artefact” [57]. Given the fast paced development of new technologies and li-
braries it is hard for professional developers to develop expertise in different competing
technologies. Apache Spark and Apache Flink for example, are contemporary platforms
providing Big Data analytics. There is a significant learning curve and involves consid-
erable investment of time. In such situations, graphical tools designed with end-user in
mind are useful for quick prototyping of Big Data applications.
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2.8.3 Application Development for IoT

The development of IoT applications is not a straightforward process because developers
have to write complex code to access the datasets from the sensors of different devices
and also perform data mediation before actually using the data in applications. Special
graphical tools called IoT mashup tools have been proposed as a way to simplify this.
Mashup tools typically support a graphical interface to specify the control-flow between
different sensors, services and actuators [110, 130]. The resulting application follows
the flow-based programming model, where outputs from a node in the flow become in-
puts of the next node, i.e. they offer a dataflow-based programming paradigm where
programs form a directed graph with ‘black-box’ nodes which exchange data along con-
nected arcs.

2.9 Mashups: Enabling End-Users

A mashup application is a composite application developed through the agglomeration
of reusable components. The individual components are known as ‘mashup compo-
nents’ and they form the building blocks of the mashup application. The specification of
control-flow between these mashup components forms the mashup logic. The mashup
logic is the internal logic which defines how a mashup operates or how the mashup com-
ponents have been orchestrated [126]. It specifies which components are selected, the
control-flow, the data-flow and data mediation as well as data transformation between
different components [61]. As control flows from one component to the next it typically
involves potential data mediation before the data received from the preceding compo-
nent can be used, as well as the execution of business logic, defined within the compo-
nent. This process, performed sequentially from the first to the last component of the
flow, defines the business logic of the application. Figure 2.12 shows a typical mashup
application (created in Node-RED [92]). In addition, this also highlights the typical out-
look of a mashup application, i.e. the flow-based programming paradigm it follows. The
example of the figure first fetches data from a REST API, then, checks for certain condi-
tions in the second component, and, finally, the control moves to the third component to
initiate actions corresponding to the input received from its preceding component.

Mashups are quite broad and are generally classified based on their composition, do-
main and the environment. Composition of a mashup extensively deals with the kind
of components that make it up. The application stack has been broadly classified into
data, logic and presentation (user interface) layer. The mashup created accordingly is
called either a data, logic or user interface mashup. Similarly, domain of a mashup ex-
plains the functionality of a mashup like social mashups or mobile mashups etc. Lastly,
the environment explains the context where it is deployed. For instance, it can be web
mashups or enterprise mashups. The difference between web and enterprise mashups
is very subtle and it is not the area of focus here. But it would be sufficient to know
that web mashups are generally targeted for end users on the Internet while enterprise
mashups are specifically used in business contexts. These need to adhere additional secu-
rity guidelines and other business specific requirements which the normal web mashups
need not adhere to [61].
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Figure 2.12: Model of a mashup application in Node-RED, as in [130]

2.9.1 Mashup Components

Mashup components are the building blocks of a mashup. In practice, several technolo-
gies and standards are used in the development of mashup components. Simple Object
Access Protocol (SOAP) web services [133], RESTful web services, JavaScript APIs, Re-
ally Simple Syndication (RSS) [107], Comma-Separated Values (CSV) [159] etc. are some
of the prominent ones. Depending on their functionality the mashup components have
been broadly classified into three categories (Figure 2.13):

Mashup
Components

Logic Data User Interface

SOAP Web
Services
RESTful Web
Services
JavaScript
APIs

RSS

Atom

XML, JSON,
CSV
Web Data Ex-
traction

Code Snippets

Widgets

UI Component
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Figure 2.13: Classification of mashup components, following [61]

1. Logic components provide access to functionality in the form of reusable algo-
rithms to achieve specific functions.

2. Data components provide access to data. They can be static like (RSS) feeds or
dynamic like web services which can be queried with inputs.

3. User interface components provide standard component technologies for easy
reuse and integration of user interfaces pieces fetched from third-party web ap-
plications with in the existing user interface of the mashup application.
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2.9.2 Classification of Mashups

Mashups are classified according to the compositional model [167] which basically gov-
erns how the components are orchestrated to form a mashup application. Based on the
compositional model, we can classify mashups as:

Output Type A composition consisting of a number of mashup components can finally
provide either data, logic or user interface as output.

Orchestration Style Orchestration style governs how the execution of various compo-
nents in a mashup flow are synchronised. Accordingly, we have: (i) flow-based
styles define orchestration as a sequence or partial order among tasks, i.e. follow-
ing the patterns of flowchart like formalisms, (ii) event-based styles rely on publish-
subscribe model for attaining tighter synchronisation between various components,
(iii) layout-based style specifies that the components be arranged in a common lay-
out. The behaviour of a component is governed individually by other component’s
reaction to user interactions.

Data Passing Style Governs how data is passed from one component to another in a
mashup. Accordingly, we have: (i) data-flow approach: in this case, data flows from
one component to another, (ii) blackboard approach: in this case, data is written in
variables which form the source as well as target of operation invocation just like
normal programming languages.

Composition Execution Pattern This governs how the mashup composition model is
executed in the back-end. Accordingly, we have: (i) instance-based: in this case,
when a new message arrives, an instance of the component is instantiated within
the same thread of the composition and the message is handled, (ii) continuous-
based: in this case, one instance of every component is instantiated in separate
threads where they process the input message and send output to the next com-
ponent running in a separate thread.

2.9.3 Producing an Application from a Mashup Composition

After a mashup has been orchestrated by the end-user, the main goal is to generate the
final application. In this case there are two widely used approaches: (i) Model Driven
Development (MDD): Here the focus is on re-usability of the generated code from the
model, (ii) End-User Development(EUD): Here the focus is to abstract the implementation
detail so that minimal coding skills are required from the end-user. The code generation
technique receives inputs from the end-user and generates the mashup application for
the target platform. Accordingly, it must also integrate user supplied custom codes in
the target application and the code generation technique must be extensible to support
incorporation of new features as well as generic to cover most aspects of the target plat-
form. The minimal requirements which a code generation technique [146] needs to fulfil
are:

33



2 Background

1. A meta-model or implicit abstract syntax which governs how the components can
be orchestrated on the front-end by the user.

2. A set of transformations which are build on the meta-model.

3. A mechanism to read the user-input and deliver the specifications to the transfor-
mations and generate the target application.

There are a large number of code generation techniques available like ‘templates and fil-
tering’, ‘templates and metamodel’, ‘frame processors’, ‘API based generators’, ‘in-line genera-
tion’, ‘code attributes’, ‘code weaving’ etc. [146]. Of these, the API based code generation
technique is the most popular one [146]. Typically, these code generators provide ex-
tensive APIs through which various elements of the target language can be generated.
Since, the code generation is done using a meta-model of the target language, the gener-
ated code is always syntactically correct. However, it is restricted to generating code in
one target language only. JavaPoet [94] is one such API based code generator for Java.

2.10 Flow-based Programming (FBP)

It is a programming paradigm invented by J. Paul Rodker Morrison in late 1960s which
uses data processing pathways to design user applications [120]. It defines user appli-
cations as networks of ‘black-box’ processes communicating via data chunks travelling
across well-defined pathways [121]. Conventional programming paradigm, i.e. ‘control-
flow’ programming, typically concentrates on processes and gives secondary preferences
to data. In contrast to this, business applications are typically concerned with how data
is processed and handled, i.e. have very strict requirements on how the data moves in
the system. An example here would illustrate the fundamental differences in both ap-
proaches to problem solving. For instance, consider a program which needs to be devel-
oped to read records and if these records match a certain criteria they are send for further
processing/output or else they get discarded. A typical function written in ‘control-flow’
programming paradigm would have the following structure (Listing 2.1), i.e. taking care
of needed records and ignoring other records. On the contrary, in strict flow-based pro-
gramming paradigm the function would look something like Listing 2.2.

1 read into a from IN
do while read has not reached end of f i l e

3 i f c i s true
write from a to OUT

5 endif
read into a from IN

7 enddo

Listing 2.1: Handling data in control-flow programming paradigm (as in [121])

1 r e c e i v e from IN using a
do while r e c e i v e has not reached end of data

3 i f c i s true
send a to OUT

5 e l s e
drop a
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7 endif
r e c e i v e from IN using a

9 enddo

Listing 2.2: Handling data in data-flow programming paradigm (as in [121])

The Listing 2.2 can be represented as a black-box, i.e. a node while the ‘IN’ and ‘OUT’
can be represented as ports of the node via which the node consumes input and yields
output. A connected pathways between such data processing black-boxes forms the core
of flow-based programming paradigm. The Listing 2.2 also introduces some preliminary
concepts fundamental to flow-based programming paradigm which are:

Nodes are data processing ‘black-boxes’ which consume input and produce output only
via ports. They may be functional, i.e. produce the same output repeatedly if given
the same input multiple times.

Ports are connection points between a node and data pathways.

Pathways are connections between an input port of a node to an output port of a node.
Pathways have a buffer limit and also support splitting into two different output
ports or merging from different input ports.

Data is the processing as well as controlling item flowing through the pathways. Typi-
cally, a dataset is immutable.

Data-flow graph The directed graph formed by considering the connection between dif-
ferent nodes via valid pathways.

Execution of a graph The execution of a graph typically begins from the node which
loads the data and pipes it into the pathway after processing it. These nodes are
also called as ‘source nodes’. They do not have an input port. The nodes where the
execution finishes are known as ‘sink nodes’. These nodes do not have an output
port. The execution can follow either a ‘pull’ or ‘push’ mechanism. In ‘push’ mech-
anism, a node pipes its output as soon as it is available while in ‘pull’ mechanism a
node typically pulls its input from its preceding node when required.

It is special case of dataflow programming. Dataflow programming paradigm specifies
that data-flow controls the execution pathway of a program [48]. The Actor Model [3] is a
very dynamic form of dataflow programming where the nodes can scale up when the sit-
uation demands and the buffer capacity of pathways can be configured as per needs [48].
The Actor Model relies on message passing to send data from one actor to another asyn-
chronously. Every actor has a unique address of the pathway leading to the receiving
actor. A mailbox associated with every actor (typically an ordered queue) stores received
messages and are processed concurrently by the receiving actor. It is an asynchronous
dataflow mode with nodes, i.e. individual actors, being strictly functional in design.
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2.11 IoT Mashup Tools

Mashup tools help the users to develop a mashup application. They typically have a
graphical editor permitting the user to model how the control flows between a set of
components. A description of how a typical mashup looks like will make things clear.
For instance, consider that the weather data is available with the help of REST APIs. A
user wants to get this data, apply some transformation and post it to twitter. The mashup
depicting the flow for this scenario is given in Figure 2.14. The ‘Fn.’ block in the figure
contains code (business logic, depicted by the ‘if’ block) which accomplishes the data
transformations. The orchestration of 3 components namely data from web, a function
block and a tweeter block clearly depicts how the control flows through them to fulfil
the application objective. These components are generally represented by GUI blocks in
a mashup tool which have to be connected suitably to represent the entire business logic.
These tools are based on the flow-based programming paradigm. Some of the most prominent
IoT platforms which also house a mashup tool for service composition include glue.-
things [100], Thingstore [8], OpenIoT [98], ThingWorx [66], Paraimpu [127], Xively [66]
etc. Node-RED is a visual programming environment developed by IBM which supports
the creation of mashups. It is very popular these days. However, it is important to note
that Node-RED is not a complete IoT platform by itself as it does not support device
registration and management. glue.things uses an improved version of Node-RED as a
mashup-environment along with device management features.

http Fn.

if

Twitter

GET
/city{id}/temp

Data from
REST API

Business Logic

Tweet
Message

Figure 2.14: Outline of a typical mashup

2.11.1 Node-RED

Node-RED is an open-source mashup tool developed by IBM and released under Apache
2 license. It is based on the server side JavaScript platform framework Node.js1 (that is
why the ‘Node’ in its name). It uses an event-driven, non-blocking I/O model suited to
data-intensive, real-time applications that run across distributed devices.

Node-RED provides a GUI where users drag-and-drop blocks that represent components
of a larger system which can either be devices, software platforms or web services that
are to be connected. These blocks are called nodes. A node is a visual representation
of a block of JavaScript code designed to carry out a specific task. Additional blocks
(nodes) can be placed in between these components to represent software functions that
manipulate and transform the data during its passage [84].

1https://nodejs.org/
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Two nodes can be wired together. Nodes have a grey circle on their left edge, which is
their input port and a grey circle on their right edge represents their output port. To
connect two nodes, a user has to link the output port of one node to the input port of the
other node. After connecting many such nodes, the finished visual diagram is called a
flow.

IoT solutions often need to wire different hardware devices, APIs, online web services in
interesting ways. The amount of complex code that the developer has to write to wire
such different systems, e.g. to access the temperature data from a sensor connected to a
device’s serial port or to manage authentications using OAuth [56], is typically large. In
contrast, to use a serial port using Node-RED, all a developer has to do is to drag on a
node and specify the serial port details. Hence, with Node-RED the time and effort spent
on writing complex code is greatly reduced and the developer can focus on the business
parts of the application.

Node-RED flows are represented in JSON and can be serialised, in order to be imported
as new nodes to Node-RED or shared online. There is a new concept of ‘sub-flows’ that is
being introduced into the world of Node-RED. Sub-flows allow creating composite nodes
encompassing complex logic represented by internal data flows.

Since in Node-RED nodes are blocks of JavaScript code, it is — technically — possible to
wrap any kind of functionality and encapsulate that as a node in the platform. Indeed,
new nodes for interacting with new hardware, software and web services are constantly
being added, making Node-RED a very rich and easily extensible system. Lastly, note
that the learning curve to develop a new node for the platform is low for Node.js devel-
opers since a node is simply an encapsulation of Node.js code.

To make a device or a service compatible with Node-RED, a native Node.js library ca-
pable to talk to the particular device or service is required. However, with the growing
acceptance of REST style in Web and IoT systems, more and more devices and services
provide RESTful APIs that can be readily used from Node-RED.

2.11.2 glue.things

The objective of ‘glue.things’ is to build a hub for rapid development of IoT applica-
tions. ‘glue.things’ heavily employs open source technologies for easy device integration,
service composition and deployment [100]. TVs, phones and various other home/busi-
ness tools can be hooked up to this platform through a wide range of protocols like
Message Queue Telemetry Transport (MQTT) [149], Constrained Application Protocol
(CoAP) [149] or REST APIs over HTTP.

The development of mashup applications in glue.things roughly goes through three
stages [100].

Firstly, the devices are connected to the platform to make them web accessible using
protocols like MQTT, CoAP or HTTP/TCP etc. Device registration and management is
handled by the ‘Smart Object Manager’ layer in the glue.things architecture as explained
in sub-section below 2.11.2.1. REST APIs provide communication capabilities and JSON

37



2 Background

Figure 2.15: glue.things architecture [100]

data model is used for propagating device updates. These facilities are leveraged using
the client libraries or for a more intuitive experience of device addition the web based
dashboard can be used. The dashboard also features several templates for connecting
devices and simplifying the tasks for the developer.

The second stage deals with creation of mashups. glue.things uses an improved version of
Node-RED as a mashup tool to collect data streams from connected devices and combine
them. This improved version supports multi-users, sessions and automatic detection of
new registered device and makes them available on the panel. External web services like
Twitter, LinkedIn etc. can also be used during mashup composition. The ‘Smart Object
Composer’ layer in the glue.things architecture houses the mashup tool as explained in
detail in sub-section 2.11.2.1.

Lastly, the created mashups are deployed as Node-RED applications including various
triggers, actions and authorisation settings. These deployed mashup applications are ac-
cessible by RESTful API to the developers who may want to use them in their own custom
web applications. To the normal end users, they can be browsed through a collection of
mashup applications which can be used after suitable alterations to the connection set-
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tings and other environment specific values. Sharing of these mashup applications is also
supported by the platform. This functionality is reflected in the ‘Smart Object Market-
place’ layer in the architecture.

2.11.2.1 glue.things Architecture

Figure 2.15 shows the simplified architecture based on the detailed architecture of the
platform. This can be segregated into three distinct layers, namely the Smart Object
Manager, the Smart Object Composer and the Smart Object Marketplace.

Smart Object Manager This layer integrates real-time communication networks to eas-
ily access a large number of IoT devices. These networks support messaging with
real-time web sockets via Remote Procedure Call (RPC), MQTT and CoAP. There
is also a device directory to search and query for any device on the Internet. This
layer is extensible, meaning any future real-time communication network/gateway
can be integrated into the platform.

Smart Object Composer This layer provides mechanisms for data and device manage-
ment. The mashup development environment is build on Node-RED and is used
for service composition. Mashups are JSON objects in combination with a Node.js-
based work-flow engine. This layer also has a virtualised device container for man-
aging the registered devices.

Smart Object Marketplace This layer contains all the created and deployed applica-
tions. These applications can be shared, distributed or traded. Developers can
access them via REST APIs to embed them in a new application. End users can
access these as normal applications.

The application layer contains all the user interfaces for device registration, configuration
and monitoring. A dashboard combines all these UI in a coherent front-end accessible by
both users and developers alike.

2.11.3 Other IoT Mashup Tools

Other IoT mashup tools designed to simplify application development include
WoTKit [43], EcoDiF [64], IoT-MAP [85], OpenIoT [98], ThingStore [8], IoTLink [128],
M3 Framework [83], ThingWorx [66] and Xively [66]. A detailed discussion on their core
functionalities has been published as a report [111].

2.11.4 High-level Programming for Big Data Applications via IoT Mashup

Tools

Mashup tools, based on the flow-based programming paradigm, should be enhanced in
a number of directions to support high-level programming of Big Data applications as
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they are not designed for data analytics. The prevalent architectural limitations of single-
threaded and blocking execution semantics needs to be addressed. First, they should
allow developers to create components with non-blocking semantics and asynchronous
communication. Second, they should allow the specification of multiple threads of oper-
ation for a single mashup. These two points will make it possible to specify components
that incorporate Big Data analytics tasks, have their own life-cycle and act as ‘callbacks’
for receiving the analysis results and propagating them to the rest of the mashup. Third,
mashup tools should incorporate visual programming of not only the data-flow in the
system, but also of the Big Data analysis jobs. This will allow seamless modelling of ap-
plications involving Big Data analytics. Finally, mashup tools should provide support for
both enterprise usage (code generation, extensibility requirements etc.) and data science
tasks, such as visual inspection of datasets. This will facilitate their adoption by both
enterprise developers and experienced data scientists.

2.12 Related Work

We did not find any mashup tool or other research works which support generic high-
level programming for Big Data systems independent of the underlying Big Data frame-
work and execution engine and is designed to be used in the context of IoT, i.e. ingest
data produced from IoT sensors and run analytics on them. However, there are many dif-
ferent solutions to reduce the challenges involved in using specific Big Data frameworks.
This section lists the existing works and solutions aimed to support high-level graphical
programming of Big Data applications as well as flow-based programming concepts for
data analytics.

IBM Infosphere Streams IBM Infosphere®Streams is a platform designed for Big Data
stream analytics and uses IBM Streams Processing Language (SPL) as its programming
language [89]. It is designed to achieve high throughput as well as shorter response
times in stream analytics. The key idea is to abstract the complexities in developing a
stream processing application and the aspects of distributed computing by allowing the
user to use a set of graph operators. The application developed can be translated au-
tomatically to C++ and Java. SPL treats the application flow as a streams graph where
the edges represent continuous streams and vertices represent stream operators. Stream
operators are either transformers, sources or sinks. It is not designed as a visual-flow
based language though it models the application in the form of a graph for reasons of ex-
pressiveness [143]. It is a complete language and not a stream processing library within
a non-streaming language in order to have improved type checking and optimisation.
SPL has two main elements in its language construct, i.e. streams and operators. Opera-
tors without any input streams are called as sources while operators without any output
streams are called as sinks. The operators have their own threading and get executed
when there is at-least one data item in their input stream, i.e. in the edge of the stream
graph. The data-items leave an operator in the same sequence in which they had arrived
after processing. SPL is issued to develop streaming applications as well as batch ap-
plications because both the computing paradigms of Big Data are implemented by data-
flow graphs. Additionally, SPL allows to define composite operators in order to support
programming abstraction and enable development of application involving thousands
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of operators. It has a strong static type system and minimises implicit type conversions.
Every operator can specify the behaviour of its ports, i.e. port mutability. For instance,
an operator can define that it does not modify data items arriving on its input port but
may permit a downstream operator to modify the same. SPL also makes use of control
ports in addition to input and output ports which are used in feed-back loop. There are
three main paradigms for stream processing:

Synchronous data-flow (SDF) In this paradigm, every operator has a fixed rate of data-
output items per input data-items, i.e. both the cardinality of input and output sets
are static and well-known. Examples include StreamIt [152] and ESTEREL [41].
This paradigm is not efficient in real-world scenarios as the input and output sets
cannot be known in advance and leads to optimisation issues.

Relational Streaming This paradigm models the relational model from databases and
allows to use operators like select, join aggregate etc. on data-items. Exam-
ples include TelegraphCQ [53], the STREAM system underlying CQL (Continuous
Query Language) [33], Aurora [1], Borealis [52, 47], StreamInsight [39] and SPADE
(Stream Processing Application Declarative Engine) [76].

Complex Event Processing (CEP) This paradigm treats input streams as raw events
and produces output streams as inferred events, i.e. uses patterns to detect and
gather insights. Examples include NiagaraCQ [54] and the SASE (Stream-based
and Shared Event processing) [5].

SPL is not based on SDF paradigm as it allows dynamic input and output rates for each
operator. It is based on relational model and can support CEP with inclusion of a CEP
library within an operator.

StreamIt StreamIt [152] is a dedicated programming language for writing streams ap-
plication following the paradigm of synchronous data-flow stream processing. It allows
to model the application in form of a graph where vertices are operators and edges rep-
resent streams. The most basic operator is a ‘Filter’ which has one input and one output
port. The rate of data ingestion as well as data production is static and pre-defined
before the execution which is one of the major disadvantages and restricts its usage to
real-world scenarios. Additional programming constructs like ‘Pipeline’, ‘SplitJoin’ and
‘FeedbackLoop’ are used in conjunction to a ‘Filter’ to form a communicating network. A
‘Pipeline’ is used to define a sequence of streams while a ‘SplitJoin’ is used to split and
join streams. Similarly, the ‘FeedbackLoop’ operator is used to specify loops in a stream.
Representation of a stream application via arbitrary graphs, i.e. a network of filters con-
nected via channels is difficult to visualise and optimise. The main advantage is that it
imposes a well-defined structure on streams which ensures a well-defined control flow
within the stream graph. It follows the constructs of flow-based programming paradigm
but does not offer any high-level graphical constructs to write stream applications.

The QualiMaster Infrastructure Configuration (QM-IConf) tool The QM-IConf
tool [70] supports model-based development of Big Data streaming applications. It
introduces a high-level programming concept on top of Apache Storm [14]. It features
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a graphical-flow based modelling (Figure 2.16) of the streaming application in the form
of a data-flow graph where vertices are stream operators and edges represent valid data-
flow paths. A valid data-flow path from vertex v1 to v2 ensures that v2 can consume
the data produced by v1. The data-flow model consisting of data sources, sinks and
operators is translated into an executable Storm code. Nevertheless, it does not validate
its claimed generic modelling approach against other streaming frameworks like Flink
or Spark Streaming. Additionally, it supports only a specific subset of stream analytics
operators to be used in the pipeline.

Figure 2.16: A graphical Big Data model in QM-IConf [70]

Lemonade Lemonade (Live Exploration and Mining Of a Non-trivial Amount of Data
from Everywhere) is a platform designed to support framing of graphical data analytics
pipeline and translate the graphical flow into a runnable Spark program [136]. It trans-
lates visual flows into Spark application in Python programming language and provides
visualisation of the datasets produced from running application. It consists of front-end
where the user can develop Spark flows using dragging and dropping graphical compo-
nents and wiring them to form a flow (Figure 2.17). A JSON object is prepared from the
graphical flow and translated into a Spark application such that each graphical compo-
nent is a Spark method call. The main disadvantage is that it provides graphical com-
ponents for producing applications using Python APIs of Spark MLlib library only. It
does not support framing applications for stream processing or other libraries of Spark
ecosystem. Additionally, the code generation method is not generic, uses hard-coded
method call code snippets and appends them in a Python script. The tool can specify to
ingest data already existing on Big Data cluster and is not designed to support analytics
in the context of IoT. To summarise, it is a visual programming tool for Spark machine
learning restricted to specific APIs and use cases.

QryGraph QryGraph [138] is a web-based tool which allows the user to create graphical
Pig queries in the form of a flow along with simultaneous syntax checking (Figure 2.18)
to support batch processing of datasets stored on HDFS. In QryGraph, a Pig query is rep-
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Figure 2.17: A graphical Spark flow in Lemonade [136]

resented as a data-flow graph with vertices representing data sources, sinks and trans-
formers while edges represent valid data-flow pathways. It also allows the user to deploy
the created job and manage its life-cycle.

Figure 2.18: A graphical Pig flow in QryGraph [138]

Nussknacker It is an open-source tool2 which supports model-based development of
Flink applications. It also supports deployment and monitoring of Flink jobs [153]. First,
a developer needs to define the data model of an application specific to a use case inside
the ‘Nussknacker engine’. The‘engine’ is responsible to transform the graphical model
created on the front-end into a Flink job. It uses the data model and its associated code-
generation together with the front-end graphical model created by an user to generate
the final Flink program. The code generation technique specific to a model should be
defined beforehand. Finally, users with no prior knowledge and expertise in Flink can
use GUI to design a Flink job as a graphical flow, generate the actual Flink program,
deploy it to a cluster and monitor its output.

Apache Beam Apache Beam [12] is an unified programming model and provides a
portable API layer to develop Big Data batch as well as streaming applications. The pro-
gramming model uses the concept of a pipeline to represent an application. In essence, a

2[Nussknacker] https://github.com/TouK/nussknacker
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Figure 2.19: GUI of the Nussknacker tool [153]

pipeline models an application as a data-flow graph consisting of sources, sinks and op-
erators to do the data processing. An, additional feature is that every pipeline ends with
a runner configuration which can be specific to target Big Data Frameworks like Apache
Spark, Apache Flink etc. The programming model translates the pipelines into native
Big Data job and executes it in the target environment, i.e. the same beam program can
be deployed on Spark, Flink, Apex [11] etc. clusters. The beam programming model sup-
port operators necessary for batch and stream operations and if a corresponding feature
is supported by a target framework then a beam application can be run in that specific
environment.

Other Solutions Apache Zeppelin provides an interactive environment for using Spark
instead of writing a complete Spark application. Zeppelin manages a Spark session
within its run-time environment and interacts with Spark in interactive mode [32]
while consuming code snippets in Python/R. Nevertheless, to successfully interact with
Spark, Zeppelin still requires programming skills from users since it requires compilable
code.

Another existing solution is Azure, a private cloud computing service offered by Mi-
crosoft, which also offers Spark as a service. Users can configure a Spark cluster without
requiring any manual installation. Here, Spark can be used to run interactive queries,
visualise data and run machine learning algorithms [116]. Nevertheless, it expects the
user to have programming expertise.

IBM SPSS Modeller provides a graphical user interface to develop data analytics flows
involving simple statistical algorithms, machine learning algorithms, data validation al-
gorithms and visualisation types [91]. SPSS Modeller provides machine learning algo-
rithms developed using Spark MLlib library which can be launched on Spark cluster
by simply connecting them as components in a flow. Although SPSS Modeller is a tool
built for non-programmers to perform data analytics using pre-programmed blocks of
algorithms, it does not support writing new custom Big Data applications for any target
framework.
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Apache NiFi [19], a tool for creating data pipelines in the form of visual flows, supports
integration with Big Data execution engines represented by a GUI component called a
processor. Nevertheless, this processor needs to contain the Big Data application code.
From the perspective of an end-user, NiFi does not reduce the programming challenges
associated with Big Data, although automation via data pipelines is certainly provided.

We classify the related work into the following categories:

Category 1: flow-based data analytics/stream processing In this category, we cate-
gorise the related solutions of StreamIt, IBM Streams Processing Language, QM-
IConf and IBM SPSS modeller.

Category 2: high-level programming for Big Data applications In this category, we
categorise the related solutions of Lemonade, QryGraph, Nussknacker, Apache
Zeppelin, Apache NiFi, Apache Beam and Microsoft Azure.

Section 4.5 in Chapter 4 gives a detailed comparison of the new mashup tools concepts
for supporting flow-based data analytics with category 1 related solutions and discusses
the improvements over the existing state-of-the-art while Chapter 7 compares the high-
level graphical programming concepts for Big Data developed as part of this thesis work
with existing solution falling in category 2.
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“Research is to see what everybody else
has seen, and to think what nobody else
has thought.”

— Dr. Albert Szent-Györgyi

The original research goals G1 and G2 (set out in Section 1.3) are refined into the follow-
ing three concrete objectives:

O1 Analyse Spark and Flink Big Data frameworks to (i) understand their programming
model, (ii) extract suitable data abstractions and APIs compatible with the flow-
based programming paradigm and (iii) model them as modular components.

O2 Accommodate the modular components of Spark and Flink in graphical flow-based
programming tools, development of a generic approach to parse flows created with
such components and generate the native Big Data program for data analytics.

O3 Identify the prevalent architectural limitations in the state-of-the-art mashup tools,
design new concepts for graphical flow-based programming tools, its realisation
to support creation of applications with concurrent execution semantics, support
for scaling up of individual components in a modelled application and support for
in-flow stream processing.

The concrete objectives O1 — O3 are addressed in the following manner:

Regarding O1, to support graphical programming for Big Data via flow-based program-
ming tools, it is required to integrate Big Data programming into flow-based program-
ming paradigm. Big Data frameworks like Pig, Hive, Spark, Flink etc. are completely
heterogeneous in nature when it comes to developing programs with them for data an-
alytics. For instance, Pig allows a more scripting style while Hive supports SQL like
queries. Spark has a number of different libraries for different functionalities like Spark
GraphX [18] for graph computation, Spark Streaming to do stream analytics etc. Most of
these libraries use different APIs and different data abstractions to store and transform
data like DStream, DataFrame etc. All the different data abstractions are abstractions
over the core data abstraction called the RDD. Nevertheless, all the data abstractions are
not interoperable with each other. Hence, a thorough analysis of both Spark and Flink
ecosystems is done to extract those data abstractions and APIs suitable to represent in
a flow-based programming paradigm, i.e. not supporting APIs requiring user defined data
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transformation functions or supporting code-snippets during flow creation to interact with tar-
get framework internals. The selected APIs with their data abstractions formed a subset
from the entire ecosystem. The APIs present in this small subset are modelled as mod-
ular components, i.e. a set of specific APIs bundled together and executed in a specific
order to perform one data analytics operation such that the resultant components have
high-cohesion with loose coupling.

The modular components are independent of the execution semantics of the implement-
ing graphical programming tools and can be expressed in any flow-based programming
tool with the requirement that these would form the basic unit of execution in the imple-
menting tool. The objective is met by the following two contributions:

1. A thorough analysis of the Spark framework and selecting suitable data abstrac-
tions for use in a graphical flow-based programming paradigm (Chapter 5).

2. A thorough analysis of the Flink framework and identify the programming ab-
stractions and APIs which are more amenable to be used in graphical flow-based
programming paradigm (Chapter 6).

Objective O2 basically deals with graphical programming from flow-based tools with
the modular components distilled from the frameworks in objective O1. The objective
is to develop a conceptual approach to parse a flow created from the distilled modular
components and generate a compilable and runnable Big Data program. The approach
should be easily extensible, i.e. to add support for new components and keep the code-
generation process generic. This is met by the following two contributions:

1. Devising a novel, generic approach for programming Spark from graphical flows
that comprises early-stage validation with feedbacks and code generation of Java
Spark programs (Chapter 5).

2. The conceptual idea and the technical realisation of mapping a graphical flow de-
signed in a flow-based programming tool to a Flink program and providing basic
flow validation functionalities at the level of the tool (Chapter 6).

For O3, a thorough analysis of the existing graphical flow-based tools is done and their
architectural limitations for supporting in-flow Big Data analytics are pinpointed. New
concepts for graphical flow-based tools are designed based on the actor model and has
been prototyped via a new flow-based tool called aFlux. Based on the actor semantics,
every component used in a flow are actors which can be scaled up by defining a con-
currency factor. These actors react when they receive a message in their mailbox and
process the messages asynchronously thereby facilitating modelling of applications that
are multi-threaded and have concurrent execution semantics in them. The actor model
has also been adapted to support components which react on arrival of messages, process
them and send their output to the next actor but do not stop their execution, rather they
listen for messages continuously. This helps to include components which can stream
data continuously in a flow to succeeding components thereby facilitating the creation
of stream analytics applications. Additionally, factors which govern the performance of
such stream analytic applications, for instance the buffer management options, i.e. how
to regulate the buffer of a component when it is over-flooded with incoming streams of
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data, are user-configurable and the application generation, deployment complexities are
abstracted from the end-user to support easy prototyping of stream analytics applica-
tions without getting into the nuances of it. The objective is met by two contributions as
listed below:

1. Design of new graphical flow-based programming concepts based on the actor
model with support for concurrent execution semantics to overcome the prevalent
architectural limitations of mashup tools (Chapter 4).

2. Supporting built-in user-configurable stream processing capabilities for simplified
in-flow data analytics. (Chapter 4).

It has been demonstrated that a flow-based programming model with concurrent execu-
tion semantics is suitable for modelling a wide range of Big Data applications currently
used in Data Science.

The objectives O1 & O2 which specifically deal with supporting high-level graphical pro-
gramming for Big Data applications are evaluated via use cases to demonstrate the ease
of use, code-abstraction from user, automatic conversion between different data abstrac-
tions and automatic Big Data program generation. The use cases have been prototyped
using the outcome of the objective O3 as a test-bed. Therefore, O3 has been discussed
first before discussing O1 & O2.
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Analytics

“There are two ways of constructing a
software design. One way is to make it so
simple that there are obviously no
deficiencies. And the other way is to
make it so complicated that there are no
obvious deficiencies.”

— C.A.R. Hoare

This chapter introduces essential concepts to support data analytics in flow-based pro-
gramming paradigm and caters to the research contributions by (i) design of new graphi-
cal flow-based programming concepts based on the actor model with support for concur-
rent execution semantics to overcome the prevalent architectural limitations of mashup
tools, (ii) supporting built-in user-configurable stream processing capabilities for simpli-
fied in-flow data analytics. Parametrising the control points of stream processing in the
tool enables non-experts to use various stream processing styles and deal with the subtle
nuances of stream processing effortlessly. The effectiveness of parametrisation in sim-
plifying stream analytics has been validated in a real-time traffic use case. aFlux [108,
109, 112] is a JVM based mashup tool prototyped to realise the proposed concepts. The
concepts have been explained by using the prototype as a running example.

Despite promised benefits in having data analytics in graphical mashup tools, there are
several limitations of current approaches [110, 111]. So far, mashup tools have been suc-
cessful in supporting application development for Internet of Things. At the same time,
Big Data analytics tools have allowed the analysis of very large and diverse datasets. But
Big Data systems are complex to write applications for. High-level Big Data program-
ming would help lower the learning curve similar to what mashup tools have done for
IoT application development. Having graphical flow-based tools for data analytics and
application development would be useful to prototype applications involving data ana-
lytics. Such scenarios should go beyond merely specifying IoT mashups that only act as
data providers. Mashup developers should also be able to specify Big Data analytics jobs and
consume their results within a single application model.

Supporting Big Data analytics in the flow-based programming of IoT mashup tools in-
volves overcoming the existing architectural limitations in the current state-of-the-art
IoT mashup tools such as:

Blocking execution and synchronous communication in mashups Mashups devel-
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oped in current mashup tools have blocking execution and synchronous communi-
cation semantics. This effectively means that the execution cannot get transferred
to the next component in a data flow before the logic of the current component gets
executed. This becomes a limitation in cases where a mashup needs to run an ana-
lytic job in the background, while listening for further inputs from various sources
like HTTP, Message Queue Telemetry Transport (MQTT) [149] etc. Since Big Data
analytics jobs are typically time-consuming, there is a clear need for non-blocking
semantics on the mashup that invokes it, so that it can continue its operation, and
for asynchronous communication between the Big Data analytics tools and the
mashup, so that the analytics results are communicated to the mashup when they
become ready.

Single-threaded mashups Since most mashup tools use JavaScript technologies for ap-
plication development and deployment, mashups developed with such tools are
single-threaded. This can be a serious limitation when a mashup involves the ex-
ecution of a number of Big Data analytics jobs. In such a case, invoking each of
them in a separate thread can speed up the execution of the data analytics part
by a factor equal to the number of jobs (assuming jobs with same duration). Be-
sides integration with Big Data analytics tools, multi-threading in mashups would
could be beneficial in cases involving heavy database querying and/or file IO where
read or write latency is not negligible. With this, it should be possible to define
concurrency factor of each individual component used in a mashup which is not
supported in current mashup tools. This would speed up processing of individual
components which is of paramount importance in case of stream processing as we
might need to process data quickly if the load increases to reduce waiting time and
ensuring quick response time of the application.

4.1 Essential Concepts to Support Flow-based Data Analytics

Existing tools allow users to design data flows which have synchronous execution seman-
tics. This can be a major obstacle since a data analytics job defined within a mashup flow
may consume great amount of time causing other components to starve or get executed
after a long waiting time. Hence, asynchronous execution patterns are important in order
for a mashup logic to invoke an analytics job (encapsulated in a mashup component) and
continue to execute the next components in the flow. In this case, the result of the ana-
lytics job, potentially computed on a third party system, should be communicated back
to the mashup logic asynchronously. Additionally, mashup tools restrict users in cre-
ating single-threaded applications which are generally not sufficient to model complex
repetitive jobs. To summarise, the main motivation behind aFlux, i.e. coming up with
improved design concepts for flow-based programming tools (a.k.a. mashup tools), are
to support the following concepts:

1. concurrent execution of components in flows.

2. support for modelling complex flows via flow hierarchies (sub-flows).

3. support inbuilt stream processing.
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4. model Big Data analytics via graphical flows and translate the flows to native Big
Data programs.

aFlux is a an IoT mashup tool prototyped as part of this thesis work based on the pro-
posed concepts that offers several advantages compared to existing solutions. It features
a multi-threaded execution model, and concurrent execution of components. It primarily aims
to support in-flow Big Data analytics when graphically developing services and applica-
tions for the IoT.

Available Mashup
Components Application Header & Menu Bar Side Panel

Activity Tabs

Console-like Output 

Canvas

Add-Plug-in 
Button 

Mashups

Figure 4.1: Graphical user interface of aFlux [119]

aFlux consists of a web application and a back-end developed in Java and the Spring
Framework1. The web application is composed of two main entities: the front-end and
back-end, based on REST API. The front-end of aFlux (Figure 4.1) provides a GUI for the
creation of mashups. It is based on React2 and Redux3 frameworks. Mashups are created
by dragging-and-dropping available mashup components from the left panel on to the
canvas and wiring them. New mashup components are loaded from plug-ins [119]. The
application shows a console-like output in the footer, and the details about a selected
mashup component are shown on the right-hand side panel. The ‘Application Header &
Menu Bar’ contains functionalities to control the execution of a mashup like start execu-
tion, stop execution, saving the mashup etc. Using the aFlux front-end, a user can create
a flow by wiring several mashup components (or sub-flows) together.

1 https://spring.io/
2https://reactjs.org/
3https://redux.js.org/
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4.1.1 Programming Paradigm

Based on previous analysis, we decided to go with the actor model [3, 86], a paradigm well
suited for building massively parallel [4, 148], distributed and concurrent systems [157,
155]. Actors communicate with each other using asynchronous message passing [122].
The actor model was originally a theoretical model of concurrent computation [78]. The
actor model is one of the ways of realising dataflow programming paradigm which is a
special case of flow-based programming [48].

Figure 4.2: Actor model: working

In the actor model (Figure 4.2), an actor is the foundation of concurrency or rather like
an agent which does the actual work. It is analogous to a process or thread. Actors
are very different from objects because in an object-oriented programming paradigm, an
object can interact directly with another object, i.e. changing its values or invoking a
method. This causes synchronisation issues in multi-threaded programs and additional
synchronisation locks are necessary to ensure proper functioning of the program [78]. In
contrast to this, the actor model provides no direct way for an actor to invoke or interact
with another actor. Actors respond to messages. In response to a message, an actor may
change its internal state, perform some computation, fork new actors or send messages
to other actors. This makes it a unit of static encapsulation as well as concurrency [67].

Message passing between actors happens asynchronously. Every actor has a mailbox where
the received messages are queued. An actor processes a single message from the mailbox
at any given time, i.e. synchronously. During the processing of a message, other messages
may queue up in the mailbox. A collection of actors, together with their mailboxes and
configuration parameters, is often termed an actor system.

The main intuition is that when a user designs a flow, the flow is modelled internally in
terms of actors, i.e. an actor is a basic execution unit of the mashup tool. For instance,
the flow depicted in Figure 4.3 corresponds to three actors namely A, B and C with the
computation starting with actor A. On completion, it sends a message to actor B and so
on.

In the realisation of aFlux, Akka [7], a popular library for building actor systems in Java
and Scala, has been used. Since Akka can be configured in many different ways for par-
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allel and distributed operations and governs how the actors would be spawned and exe-
cuted. This shields the actors from worrying about synchronisation issues.

A B C

Figure 4.3: A typical mashup flow

4.1.2 Execution of a Flow

In aFlux, a user can create a mashup flow called flux. A flux is analogous to a flow in IBM
Node-RED. The only requirement for designing a flux is that it should have a start node
and an end node. A flux by default is tied down to a logical unit called job. Every job
can have one or more fluxes. When a job containing a flux like in Figure 4.3 is designed
in aFlux, the control flows through a number of parties before final execution. Firstly,
the job must be saved which allows the mashup tool to parse the flux diagram created
on the front-end by the user. The parsing involves creating and saving a graph model for
the job—the Flux Execution Model. The parser does not care how many fluxes are present
in the job because it scans for special nodes in it. These special nodes are start nodes,
i.e. specialised actors which can be triggered without receiving any message. Other nodes are
normal actors which react to messages. On detection of all start nodes in an activity, the
graph model is built by simply traversing the connection links between the components
as designed by the user on the front-end. A flux execution model of a job contains as
many graphs as the number of fluxes present in it.

On deployment, the control flows from the front-end to the controller responsible for
starting the actual execution of the job. This involves invoking the runner which fetches
the flux execution model of the job. For every flux in the job, the runner environment
proceeds to:

1. identify the relevant actors present in the graph.

2. instantiate an actor system with the actors identified in step 1.

3. trigger the start nodes by sending a signal.

After this, the execution follows the edges of the graph model, i.e. the start actors upon com-
pletion send messages to the next actors in the graph, which execute and send messages
to the next actors and so on.

4.1.3 Logical Structuring Units

To abstract away independent logic within a main application flow, the system supports
logical structuring units called sub-flows. A sub-flow encompasses a complete business
logic and is independent from other parts of the mashup. A good candidate for a sub-
flow is for example a reusable data analytics logic which involves specifying how the data
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should be loaded and processed and what results should be extracted. They encompass
within themselves a complete flow of graphical components.

4.1.4 Concurrent Execution of Components

Every component in aFlux has a special concurrency parameter attached to it which can
be configured by the user while designing a flux. The idea is that in an actor system,
every actor processes one message at a time. During its processing, new messages are
queued on their arrival. To avoid this and facilitate faster processing, every component
in aFlux can be made to execute concurrently by specifying the upper threshold value
of concurrency. If a component has concurrency level of n, messages arrive quickly and
the component takes quite some time to process a message, then the actor system can
spawn multiple instances of that component to process the messages concurrently up-
to n or up-to the global threshold value defined in the system, whichever is minimum.
Beyond that the messages are queued as usual and processed whenever any instance
finishes its current execution. This specification of concurrency parameter is applicable
to individual components as well as sub-flows in aFlux and is decided by the user creating
a flux. In the case of sub-flows, basically all the components used within it adhere to the
concurrency limit of the sub-flow which means that the actor system can spawn multiple
instances of every component used inside the sub-flow as the need arises during run-
time.

4.2 Working of the Prototype

4.2.1 Component: Essential Constituents

A component is the foundational unit of a flow designed in a mashup tool. In aFlux,
every ‘component’ on the front-end which the user can use as a mashup component to
create a flux is internally an actor. Every aFlux actor has an internal business logic and a
set of properties for customisation of its behaviour.

Business logic The business logic is self-contained, i.e. it can execute to completion if
invoked by passing its required data via a message. In fact, these actors react only to mes-
sages. The business logic can be broadly classified into three distinct parts as discussed
below.

Type checking of messages When an actor starts its execution, the first step it does is
to ensure that the message received in its mailbox can indeed be processed. This is done
by checking the type of the received message and ensuring that it is compatible. An actor
can support multiple data-types and this is left to the developer on how to resolve or may
do relevant type conversions if required. The man idea is that, if the message received
is of compatible type then, the actor proceeds to execution of the actual computational
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logic. If it is incompatible then the message is ignored and the output for the message
is decided by the developer, i.e. whether not to produce any output or send an error
message.

Computational logic This part houses the actual computational logic of the actor, i.e.
what it does and how it does. Examples of it can be to read from a database, fetch data
from a specific REST API etc.

Passing of output After completion of execution and production of results, every actor
needs to do something with it, i.e. either pass it through its output port(s) such that the
message is received in another connected actor’s mailbox or pass the output to be printed
on the front-end console so that user can know about the result. If an actor has multiple
output ports then the developer of the actor can decide whether to send same output
through all the ports or different set of outputs through different ports.

Properties Every actor has two kinds of properties: (i) user-configurable properties and
(ii) non-configurable properties. The properties of components play a vital role in support-
ing user customisation as well as deciding the execution sequence.

non-configurable properties The ‘non-configurable’ properties typically govern how
the actor behaves within the actor system. Example of an ‘non-configurable’ property
would be the number of input and output ports the actor accepts which the developer
must define while creating a new actor for aFlux. This is a property which the user
on the front-end cannot alter while creating a flux using its visual representation, i.e.
‘component’. Another example would be the method of invocation.

An actor can start its execution as soon as it receives a message in its mailbox then a
question arises how the actor used as the very first component in a flux will ever start its
execution? To solve this dilemma, aFlux supports a property called ‘method of invocation’.
‘method of invocation’ is of two types, i.e. ‘triggered by system’ and ‘triggered by data’. If
an actor has its ‘method of invocation’ property set to ‘triggered by system’ then it can
be used as a first mashup component in a flux because it does not require any arrival of
message in its mailbox to trigger its execution. Such actors are triggered by the system for
invocation when a flux is executed which triggers a series of chain reaction since the first
actor on its completion sends a message to the next connected actor and the execution
continues the path of the flux designed by the user. On the other hand, if an actor’s
‘method of invocation’ property is set to ‘triggered by data’, then it cannot be used as the
first component in a flux because it requires arrival of a message in its mailbox before it
can start its execution. Putting things in a different way, those actors have their ‘method of
invocation’ set to ‘triggered by system’ do not support any input port as they don’t depend
on any input from preceding component or rather they don’t have any. Finally, every
actor has a unique name assigned to it in the system for identification purposes.

57



4 Flow-based Programming for Data Analytics

user-configurable properties The ‘user-configurable’ properties are those which can be
presented on the front-end to the user to configure and these are typically passed as pa-
rameters to the business logic to alter its execution as well as its output. For instance,
if we consider that an actor has been developed to read datasets from a MongoDB then
examples of ‘user-configurable’ properties may include IP address of the database server,
port number, which database to connect to and which collection to fetch datasets from
etc. One interesting ‘user-configurable’ property is the ‘concurrency’ property. This ba-
sically specifies how many instances of the actor can be spawned by the system in case
this actor receives multiple messages in one unit of time. By default, the ‘concurrency’ of
every actor is set to one which means that only one instance of the actor is running which
processes one message at a time. However, if set to more than one and the actor has
a huge influx of messages in its mailbox then the system can spawn multiple instances
of the actor to process the messages concurrently. It is interesting to note that an actor
may not support any ‘user-configurable’ properties if such is the design decision of the
developer. Most of the ‘user-configurable’ properties typically have some default values
assigned to them by the developer of the actor. Again, the ‘user-configurable’ properties
can be further classified into ‘essential user-configurable’ properties and ‘non-essential user-
configurable’ properties. The ‘essential user-configurable’ properties must be configured by
the user on the front-end as the correct execution of the actor depends on values of these
properties while ‘non-essential user-configurable’ properties are totally optional and do
not influence the actual execution of the actor. An example of ‘essential user-configurable’
property would be the location of the database server for a MongoDB actor while an ex-
ample of ‘non-essential user-configurable’ property for the same actor would be a name to
be displayed on the front-end for the convenience of the user.

An interesting point to note is that if an actor is used as the first component in a flux
and is a normal one then, it typically completes its execution, passes its output and exits
from the actor system. On the other hand, if it is the first actor but it is also a streaming
actor (discussed in Section 4.3) then, it continues its execution indefinitely as it needs to
stream data continuously to the next set of connected actors.

Figure 4.1 shows the front-end of aFlux with which the user interacts to create a flux.
All the components available in the system are listed on the left-hand panel from where
they are dragged to the canvas and connected to describe the control-flow of the flux. For
every component dragged on to the canvas and selected, its ‘user-configurable’ properties
are displayed on the right-hand side panel where the user can configure them. When
the user connects two components, a state change is observed on the front-end and the
system captures the flux present in the canvas, i.e. the entire set of components connected
together with their ‘user-configurable’ properties. This state is stored on the front-end
and continuously updated whenever the user changes anything on the canvas, i.e. on
observation of a state change. When the user decides to save the flux or execute it, a
series of interaction occurs between the user interface and mashup engine.

The first interaction between the mashup engine and user interface occurs when the user
decides to save a newly created flux. The state stored on the UI is passed to the mashup
engine and stored in the form of a DAG. This DAG is also called as the ‘flux execution
model’. In the case where the user wants to load a saved flux and display it on the UI, the
mashup engine fetches its ‘flux execution model’ and passes it. A state is populated from
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this information and the flux diagram on the canvas is displayed automatically with the
relevant actors already dragged, connected and their properties modified accordingly.

4.2.2 Component Execution

The diagram depicted in Figure 4.4 is an Identify, Down, Aid, and Role (IDAR) graph [124]
which summarises the execution of a flux consisting of components, i.e. actors within
aFlux. IDAR graphs offer a more readable and comprehensible way of representing how
system components communicate and interact in comparison to Unified Modelling Lan-
guage (UML) [124]. In an IDAR graph, objects typically communicate either by sending
a command message (control messages) or a non-command message, which is called a no-
tice. The controlling objects always remain at a higher level in the hierarchy compared
to the objects being controlled. An arrow with a bubble (circle) on its tail stands for an
indirect method call while a dotted arrow indicates data-flow. Other subsystems having
their own hierarchy are represented with hexagons denoting the subsystem manager.

aFlux
Engine

Flux
Repo./DB

Flux
Parser

1: load flux

Actor
1

Actor
2

Actor 
3

Actor 
n

aFlux Main Executor

Actor System

sendOutput sendOutput sendOutput sendOutput

done
done

2: parse

3: create
4: instantiate

setOutput setOutput setOutput

1. sendOutput: Indirect notifcation to mark end of execution
2. setOutput: send output to next connected actor in flux execution model

Sub-system

Object

Indirect Notices
Notices (upstream)
Command (downstream)
Data flow

Figure 4.4: Flow execution in aFlux: IDAR representation

The execution of a flux typically follows the following sequence:

1. When the user executes a flux, the main component in the back-end called as ‘aFlux
Engine’ sends a command to the ‘Flux Repository’ subsystem which reads the stored
‘flux execution model’ and returns it.

2. ‘aFlux Engine’ sends a command to the ‘Parser’ subsystem for parsing. The ‘flux ex-
ecution model’ is checked for consistency, i.e. if the first component in the flux con-
tains an actor whose ‘method of invocation’ property has been defined as ‘triggered
by system’. The relevant actors used in the flux are identified and after completion
of this operation the ‘aFlux Engine’ is notified.
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3. The ‘aFlux Engine’ creates an actor system where the actors used in a flux would be
executed.

4. The ‘aFlux Engine’ instantiates ‘aFlux Main Executor’ by passing the set of actors to
be executed.

5. This data flows from ‘aFlux Main Executor’ to ‘Actor System’ where the relevant ac-
tors are instantiated and the first actor is triggered by the ‘Actor System’.

6. The first actor completes its execution, notifies to the ‘Actor System’ about its com-
pletion of execution by sending a notification via an indirect method call and at the
same time sends its output to the next connected actor.

7. This process is repeated till the last actor. When it notifies the ‘Actor System’ about
its completion of execution, then the ‘Actor System’ removes all inactive actors and
frees up memory.

4.3 Stream Processing with Flow-based Programming

The flow based structure of mashup tools, i.e. passage of control to the succeeding com-
ponent after completion of execution of the current component is very different from the
requirements of stream processing where the component fetching real-time data (aka the
listener component) cannot finish its execution. It must listen continuously to the arrival
of new datasets and pass them to the succeeding component for analysis. Also, the lis-
tener component has many behavioural configurations which decide when and how to
send datasets to the succeeding component for analysis.

In aFlux, the actor model has been extended to support components which need to process
streaming data. The implementation of streaming components relies on the Akka streams
library, an extension of the Akka library. Applications based on Akka streams are formu-
lated as building blocks of three types: source, sink, and flow. The source is the starting
point of the stream. Each source has a single output port and no input port typically.
Data is fetched by the source using the configuration parameters specified and it comes
out from its output and continues to the next component that is connected to the source.
The sink is basically the opposite of the source. It is the endpoint of a stream and there-
fore consumes data. Basically, it is a subscriber of the data sent or processed by a source.
The third component, the flow, acts as a connector between different streams and is used
to process and transform the streaming data. The flow has both inputs and outputs. A
flow can be connected to a source, the outcome of which results in a new source or even
after a sink which creates a new sink. A flow connected to both a source and a sink results
in a runnable flux (Figure 4.5), which is the blueprint of a stream.

Each streaming component in aFlux offers a different stream analytics functionality (e.g.
filter, merge) and can be connected to other stream analytics components or to any com-
mon aFlux component. The stream analytics capabilities make use of three categories of
components, i.e. fan-in, fan-out and processing components. Fan-in operations allow join-
ing multiple streams into a single output stream. They accept two or more inputs and
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Figure 4.5: Runnable flux with streaming actors

give one output. Fan-out operations allow splitting the stream into sub-streams. They ac-
cept one stream and can give multiple outputs. Processing operations accept one stream
as an input and transform it accordingly. They then output the modified stream which
may be processed further by another processing component. The transformation of the
stream is done in real-time, i.e. when the stream is available on the system for processing
and not when it is generated at source. Every component is internally composed by a
source, a flow and a sink. When a component is executed by aFlux, a blueprint that de-
scribes its processing steps is generated. The blueprints are only defined once, the very
first time the component is called, e.g. create a queue where the new incoming elements
of the stream get appended for a component to process.

Every stream analytics component has some attributes that can be adjusted by the user
at run-time. For example, for the processing components the user can optionally define
windowing properties such as window type and window size. The internal source of
every stream analytics component has a queue (buffer), the size of which can be defined by
the user (default is 1000 messages). The queue is used to temporarily store the messages
(elements) that the components receives from its previous component in the aFlux flow
while they are waiting to get processed. Along with the queue size, the user may also
define an overflow strategy that is applied when the queue size exceeds the specified limit.
Figure 4.6 shows the interface of aFlux where the user can define buffer size and overflow
strategy. The overflow strategy determines what happens if the buffer is full and a new
element arrives. It can be configured as:

drop buffer drops all buffered elements to make space for the new element.

drop head drops the oldest element from the buffer.

drop tail drops the newest element from the buffer.

drop new drops the new incoming element.

The internal flow part of a streaming component describes its logic and defines its be-
haviour. This is where the whole processing of messages takes place. The source sends
the messages directly to the flow when it receives them. As soon as the processing of a
message has finished, the result is then passed to the sink. By default, the analysis of
messages is done in real-time and each message is processed one-by-one (e.g. count how
many cars have crossed a given junction). However, the user can also select windowing
options.

Figure 4.6 shows the interface of aFlux where the user can define windowing properties.
The implementation supports content-based and time-based windows. For both of these
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Figure 4.6: aFlux GUI to specify buffer size, overflow strategy & window parameters

types of windows, the user can also specify a windowing method (tumbling or sliding)
and also define a window size (in elements or seconds) and a sliding step (in elements or
seconds).

In a nutshell, a window is created as soon as the first element that should belong to this
window arrives, and the window closes when the time or its content surpasses the limit
defined by the user. A window gathers all messages that arrive from the source until it
is closed completely. Finally, the component applies the required processing on the data
in the window and passes the result(s) to the sink. The first thing is to choose whether
the window should be content or time-based. A content-based window has a fixed size
of a number of elements n. It collects elements in a window and evaluates the window
when the nth element has been added. On the other hand, a time-based window groups
elements in a window based on time. The size of a time window is defined in seconds.
For example, a time window of size 5 seconds will collect all elements that will arrive
in 5 seconds from its opening and will apply a function to them after 5 seconds have
passed.

In stream analytics, there are different notions of time like:

processing time windows are defined based on the wall clock of the machine on which
the window is being processed.

event time windows are defined with respect to timestamps that are attached to each
element.

hybrid time combines processing and event time.

In the implementation, currently processing time is used to interpret time in our processor.
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For instance, a time window of size 60 seconds, will close exactly after 60 seconds. After
deciding on using content or time windows, the user has to decide how to divide the
continuous elements into discrete chunks. Here the user has the following two options.
The first is tumbling window, where stream elements are divided into non overlapping
parts and each element can only belong to a single window. The second option is sliding
window, which is parametrised by length and step. These windows overlap and each
element may belong to multiple windows. Windows can be either tumbling or sliding.
A tumbling window tumbles over the stream of data. This type of window is non over-
lapping, which means that the elements in a window will not appear in other windows.
A tumbling window can be either content-based (e.g. “Calculate the average speed of
every 100 cars”) or window-based (e.g. “Find the count of tweets per time zone every
10 seconds”) whereas a sliding window slides over the stream of data. Due to this rea-
son, a sliding window can be overlapping and it gives a smoother aggregation over the
incoming stream since it does not jump from one input set to the other but it slides over
the incoming data. A sliding window has an additional parameter which describes the
size of the hop. A sliding window can as well be either content-based (e.g. “For every 10
cars calculate the average speed of the last 100 cars”) or time-based (e.g. “Every 5 sec-
onds find the count of tweets per time zone in the last 10 seconds”). Thus if the sliding
step is smaller than the window size, elements might be assigned to multiple successive
windows. The tumbling window can be conceived as a special case of a sliding window,
where the window size is equal to the sliding step. Therefore, it does not make any sense
to define a sliding step for a tumbling window.

The sink is the final stage of a stream analytics component. The sink gets the results from
the flow and decides the final outcome. In this case, the results need to be send to the
next component in the flux because the components should be able to pass messages to
each other.

4.4 Example Flow for Stream Analytics

An open-source traffic simulation software by the name SUMO [101] has been used to
demonstrate the stream processing capabilities of aFlux. The data generated from the
system is random making it a perfect fit for real-time analytics and the results of the
analytics affect the system performance, i.e. traffic congestion in SUMO. For the eval-
uation purposes, the traffic of A9 highway4 near Munich has been used for simulation.
TraCI [160], a python based interface has been used for data-exchange between SUMO
and Kafka [117, 75, 69].

Scenario In the scenario, all cars run on a straight line on the A9 highway and in the
same direction from south to north. At a certain point on the highway, there are four
lanes, three of which possess a loop detector (see Figure 4.7). Loop detectors measure the
occupancy rate (0-100) on the lane, i.e. how long was a car placed on the loop detector
during the last tick (one tick equals to one second of simulation time in SUMO). A high
occupancy rate signals a more busy lane and therefore the possibility of a traffic conges-

4A9 public github project, available at https://github.com/iliasger/Traffic-Simulation-A9
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Figure 4.7: The 4 lanes used in the experiment. Each of the 3 left lanes possess a loop detector.
The 4th lane is initially closed

tion. The fourth lane of the highway, further referred as shoulder-lane, is initially closed
which means that no cars can run on it. However, if the total average of the occupancy
rates of the three other lanes exceeds the threshold of 30, the shoulder-lane opens to
reduce the traffic. When the average of the occupancy rates falls below 30, the shoulder-
lane closes again. On the 500th tick of the simulation, it is assumed that a car accident
happens and a lane, ahead of the four previously mentioned lanes, gets closed at the same
moment and remains closed for the rest of the experiment. This builds up a congestion
on the highway, causing the occupancy rates of the loop detectors to increase and makes
it meaningful to open the shoulder-lane at some point to alleviate the congestion.

Goal The goal of this experiment is to compare different stream processing methods on
data coming from the simulation environment. Particularly, the one-by-one method for
processing data, tumbling window processing with three different window sizes (50, 300
and 500) and sliding window processing are compared. The user can define the method
of data processing and change various associated parameters on aFlux UI. The loop detec-
tor occupancy, lane state, mean speed of cars and time values from SUMO are captured
via TraCI and published to Kafka. The lane state is a binary value that indicates the state
of the shoulder-lane at the current tick(0 means closed and vice-versa). Mean speeds are
used as an indicator of a traffic congestion, i.e. a low mean speed on a lane indicates a
traffic congestion. The average mean speeds of the three lanes are plotted to demonstrate
the effect of the shoulder-lane in the relief of a traffic congestion. Finally, time measures
the duration the shoulder-lane state takes to reach 1 for the first time and the duration
it needs to reach 0 again for the last time. This factor indicates the responsiveness of
each method on traffic changes, e.g. how fast the system perceives and reacts to a traf-
fic congestion. All runs of the experiment are based on the exact same conditions. The
routes of the cars and the way that they are simulated in the simulation have the same
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Figure 4.8: aFlux flow used in the experiment - subscribes to a Kafka topic that publishes the
occupancy rates of loop detectors and calculates their moving average in real-time

randomness for all runs and therefore do not impact the experiment results. The only
factor that influences the results of the experiments are the decisions to open and close
the shoulder-lane.

Flow-based data analytics For the reliability of the results, the experiment have been
run twice for every stream processing method. In order to make decisions to change the
state of the shoulder-lane based on the occupancy of the loop detectors, a flow in aFlux
has been designed (Figure 4.8). The first component of the flow is a Kafka subscriber
that listens to the topic where TraCI publishes the occupancy rates of each loop detec-
tor on every tick. The data is parsed using a JSON parser and the results are passed to
the moving average component. The moving average component receives the occupancy
values and calculates their average on real-time and based on the user-specified method
(windowing or simple processing). The results are then passed to the binary value com-
ponent which outputs 0 if the average is below the user-defined threshold (e.g. 30) or 1
otherwise. Finally, the result is transformed into a JSON file and published to a Kafka
topic, where TraCI listens, to decide whether to open or close the shoulder-lane.

Evaluation parameters The data coming from SUMO is analysed in a number of
stream processing methods via a number of configurable parameters. The result of such
analytics affect the performance of the system, i.e. SUMO. To measure the affect on sys-
tem performance, the following aspects are considered:

Responsiveness indicates how fast the system can detect a traffic congestion and open
the shoulder-lane to alleviate it.

Settling time refers to the time the system needs to reach a steady state [72]. In the
experiment, the shoulder-lane may open and close successively. We define the set-
tling time as the time the shoulder-lane needs to reach a steady state after a change
occurs. It is estimated based on the shoulder-lane state parameter.

Stability refers to the ability of the system to reach a stable state without overshoots
when a change occurs. An overshoot occurs when the system exceeds a certain tar-
get point before convergence [72]. In our case, stability is tested when the shoulder-
lane changes state. Stability is in inverse proportion to settling time, i.e. short
settling time infers to a higher system stability.

The occupancy rates of the loop detectors have not been considered for result-analysis
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Figure 4.9: Average mean speed of cars moving on the 3 lanes. (a) Data analysis without win-
dows (one-by-one), (b) Shoulder-lane state without windows (one-by-one)

since they are used to make decisions in aFlux and the focus is to examine the impact of
these decisions to other factors in a traffic system.

Analysis of Mean Speed First, for every processing method the average of the mean
speeds of the cars moving on the 3 previously mentioned lanes, per tick is analysed. The
mean speed of the vehicles running on a lane at a certain point of time discloses informa-
tion about the current congestion of this lane. Through this analysis, the responsiveness
of each method to changes and their effectiveness to solve a problem is determined; in
this case to alleviate the traffic congestion.

From Figure 4.9 (a), when the accident happens at tick 500 the average mean speeds of
cars moving on the 3 particular lanes that we examine, falls significantly. This means that
a congestion starts to build-up on these lanes. The loop detectors send their occupancy
rates to aFlux every tick and they are getting averaged by the moving average component
one-by-one. Since we do not use any window to process the incoming data, each average
occupancy value depends on all previous occupancy values, even on the low occupancy
rates before the accident. As a result, the moving average value cannot reflect new envi-
ronment changes fast enough and hence it reaches the threshold of 30 on the 3020th tick
for the first time to open the shoulder-lane. By observing the Figure 4.9 (a) one can see
an up-trend of the average speeds on the 4600th tick but the moving average value falls
below 30 only on the 5680th tick for the last time when the shoulder-lane gets closed as
well, a fact that shows a slow reaction time.

Figure 4.10 (a) shows the average mean speeds of the lanes when using a content-based
tumbling window of size 50 to process the occupancy rates of the loop detectors. Using
a window of size 50 means that only the 50 latest occupancy values are aggregated and
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Figure 4.10: Data analysis with content-based tumbling window of size (a) 50, (b) 300, (c) 500
and (d) content-based sliding window of size 500 and step 250

averaged and that the average does not keep the state of the previous values. We consider
50 to be a small window size, as it lasts for about 17 ticks. The difference in reaction time
to a non-window processing is significant since the system perceives much earlier the
traffic congestion and opens the shoulder-lane on tick 1620 for the first time. When the
traffic congestion is alleviated, the system closes the shoulder-lane on the 4145th tick
which is also a much faster reaction in comparison to 5680 ticks that it took for the non-
window processing.

Figure 4.10 (b) depicts the average mean speeds of cars when using a content-based tum-
bling window of size 300. Using this method, the system opens the shoulder-lane on tick
1970 and closes the shoulder-lane on the 4715th tick for the last time. This processing
method responds to changes faster than the no-window processing but a bit slower than
the tumbling window of size 50. This performance is expected since a larger window size
takes longer to aggregate more values (100 ticks) and hence adapts slower to changes in
comparison to smaller window sizes. In Figure 4.10 (c), we present the results of the
tumbling window with size 500 (167 ticks). In comparison to window size 300 this pro-
cessing method is slightly slower (shoulder lane opens at tick 1979 and closes at 4391).
The distribution of the mean speeds is quite similar to window size 300 though which
suggests that the system shows a similar behaviour in both cases. Figure 4.10 (d) shows a
sliding window of size 500 with a sliding step of 250. The difference of the previous win-
dow processing is that the sliding window takes into consideration the previous state as
well by overlapping on previous values. In our case, the sliding window overlaps the 250
latest elements of the previous window. In general a sliding window gives smoother and
in some cases faster results, since it is moving faster (emits more values than a tumbling
window). By comparing the figures of the sliding and tumbling window of size 500, one
can observe that the distribution of the average of the mean speeds are quite similar in
both graphs. The sliding window seems to be faster in opening the shoulder lane for
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the first time (tick 1810) but it is a bit slower in closing it (tick 4652). We consider this
differentiation to be dependent on the variation of data in each experiment.

Analysis of Shoulder-lane state The shoulder-lane state depends completely on the
average of the occupancy rates of the lanes. If the average occupancy rate is above 30
the shoulder-lane state turns to 1 (lane opens) otherwise it is 0. The analysis of the state
of the shoulder lane shows the variability of each method. When the occupancy rate
reaches 30 it may climb above 30 (overshoot) and then it may fall below 30 (undershoot)
again on the next tick. In control theory, overshoot refers to an output that exceeds its
target value, whereas the phenomenon where the output is lower than the target value
is called undershoot. In our case, it is normal to have an overshoot as we expect the
occupancy rates to rise above 30 but here we want to examine the overshoot followed by
an undershoot ratio which leads to an unstable state where the shoulder-lane opens and
gets closed on successive ticks. We also focus on the settling times of each method. A
stable system must have short settling times [2], i.e. converge quickly to its steady value,
and must not overshoot.
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Figure 4.11: Shoulder-lane state. 0 means lane closed. 1 means lane open. Data analysis with
content-based tumbling window of size (a) 50, (b) 300, (c) 500 and (d) content-
based sliding window of size 500 and step 250

Figure 4.9 (b) shows the variation of the state of the shoulder lane when occupancy rates
are processed one-by-one. On tick 3020 the lane opens for the first time and we observe
an overshoot-undershoot case which lasts for 3 ticks before the lane state value settles on
1. Thus, the settling time when the shoulder-lane opens for the first time is 3 ticks. When
the traffic is about to be alleviated and just before the shoulder-lane closes for the last
time on tick 5680, we see another overshoot-undershoot incident with a longer settling
time. Concerning the variation of the shoulder-lane state, Figure 4.11(a) shows that this
particular method has many overshoot and undershoot incidents causing the shoulder-
lane to open and close many times successively. This fact implies an unbalanced system
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with long settling times. We can attribute this lack of stability to the small window size
which is sensitive to the behaviour of a small sample of data. Figure 4.11(b) depicts the
shoulder-lane states during the experiment. In this method, there is no big variation be-
tween the states and almost no overshoot-undershoot incidents. The settling time is short
and the system seems to be balanced. The big window size allows the system to make
a decision, based on a bigger sample of data and hence it is more stable than the two
previously mentioned methods. In Figure 4.11 (c), the results of the tumbling window
with size 500 can be seen. This window size is considered very big and it is used as an ex-
treme case here. As expected there are no overshoot-undershoot incidents and the system
seems to be very balanced. The shoulder-lane opens and closes only once when needed
and there is no settling time. This is the best window size compared to the previous one.
In the following section, we will examine the same window size for the sliding version of
the tumbling window. Figure 4.11 (d) shows the results of the sliding window with size
500 and sliding step 250. As expected, there are no overshoot-undershoot incidents here
as well and the system is balanced. The shoulder-lane opens and closes only once when
needed and there is no settling time. This figure is quite similar to the corresponding one
of the tumbling window which implies that there no big difference between a tumbling
and a sliding window in this case concerning the stability of the system.

Method Responsiveness Settling Time Stability

No window very slow long low

Tumbling window 50 very fast very long very low

Tumbling window 300 slow very short high

Tumbling window 500 slow none very high

Sliding window 500 slow none very high

Table 4.1: Stream analytics method characteristics

Discussion The results of various stream analytics methods based on their perfor-
mance in solving a traffic control problem in real-time are summarised in Table 4.1.
By observing the table, two points become evident: (i) stream processing can be done in
various ways, (ii) these methods perform differently thereby affecting the final outcome
and performance of the application. For instance, in the above traffic use-case a small
window processing method, like the tumbling window of size 50, showed a very good
responsiveness as it was the fastest method to open and close the shoulder-lane when a
traffic congestion occurred but it showed poor stability since its settling times were the
longest of all five methods. On the other hand, the no-window processing method is the
slowest method to perceive and respond to a change in the environment (e.g. traffic con-
gestion). This method also has low stability since it is prone to long settling times and
overshoot-undershoot incidents. From Table 4.1, it can be stated that the most efficient
method to control traffic in our scenario is a tumbling window of a normal size (not too
big or small), but it will take further iterations to define the ideal window size.

What has been evaluated? When data needs to be processed in real-time and the
result of such analysis impacts the final outcome, i.e. performance of the application,

69



4 Flow-based Programming for Data Analytics

Tools
Concurrent
execution

Data analytics
app. development

Flows with
built-in stream

processing

Execution of
each component

in separate threads

Scaling up
of

individual
components

Parametrisation
of component

buffer

Streaming
paradigm

aFlux Yes

Batch jobs.
Streaming
is a special

case

Yes Yes Yes Yes

Actor model
with support
for CEP and
relational
streaming
paradigm

StreamIt Yes
Streaming only.

Batch is a special case
No Unknown No No

Synchronous
dataflow
paradigm

IBM
Infosphere

Streams
Yes

Streaming only.
Batch is a special case

No Yes Unknown No

Relational
streaming
paradigm
with support
for CEP

IBM SPSS Yes
Streaming only.

Batch is a special case
No Unknown No No

Appears
to follow
relational
streaming
paradigm

QM-IConf No
Streaming only.

Batch is a special case
No No No No

Relational
streaming
paradigm

Node-RED No
No support

for streaming
No No No No

Not
Applicable

Table 4.2: Comparison of aFlux with existing solutions

there is no easy way to know the right stream processing method with the correct pa-
rameters. Hence, it becomes very tedious to manually write the relevant code and re-
compile every time a user wants to try something new. By parametrising the controlling
aspects of stream processing it becomes easy for non-experts to test various stream pro-
cessing methods to suit their application needs. Overall, the following aspects of aFlux
has been captured via the example — the integrated stream processing capabilities in
a flow, parametrisation of the buffer capacity and overflow strategies and modelling of
different kinds of window methods to process data, i.e. tumbling and sliding windows.

4.5 Discussion

In this section, we compare our concepts (as in aFlux) with exiting solutions supporting
flow-based stream analytics. In Section 2.12, we have classified existing solutions into
two categories. The category 1 solutions deals with tools supporting flow-based data
analytics especially stream processing. The tools are StreamIt, IBM Streams Processing
Language or the IBM Infosphere Streams, QM-IConf and IBM SPSS modeller. We also
consider Node-RED for comparison as it is one of the prominent platforms used for flow-
based programming in the context of IoT and is widely supported by IBM.

First, we begin by defining the scope and the parameters to compare. Figure 4.12 shows
the model of a streaming application. This model is also known as dataflow model. Ev-
ery stream application in high-level programming tools are modelled as a dataflow graph
where vertices represent operators and edges represent valid dataflow pathways. Oper-
ators can either be data sources, data sinks or data transformers. The edge between two
operators has a channel capacity Accordingly, we compare the following key parameters
between the solutions (Table 4.2 summarises the compared parameters):
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A B C

Data Source Data Sink
Transformation
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Input Buffer
or Channel
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Output Buffer
or Channel
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Threading Support

Dataflow
Pathway

Figure 4.12: Streaming application modelled as a data-flow graph with vertices representing
operators and edges representing data-flow pathways

Concurent execution of components aFlux is based on actor-model hence it supports
concurrent execution semantics, i.e. one operator in the dataflow graph can start its
execution in parallel before the finish of its predecessor. All tools with exception
of Node-RED and QM-IConf support asynchronous execution of data operators in
the dataflow graph. The second column in Table 4.2 lists this criterion.

Data analytics application development A second criterion for comparison is the kind
of data analytics application that can be developed using these tools. The third and
fourth column in Table 4.2 list this criterion. aFlux relies on asynchronous message
passing techniques to model the dataflow graph and extends the actor model to
support continuous streaming of datasets. This allows a user to model batch ana-
lytics application, a completely streaming application or a batch application with
some components doing stream analytics. Streaming is considered as a special case
in aFlux while other platforms treat modelling of batch jobs as a special case. Other
solutions are stream only platforms and are not designed to specify batch analytic
jobs though they can be modelled as both stream and batch analytics rely on the
dataflow paradigm [144].

Component execution and scaling One of the important criterion for comparison is to
see if the individual components used in an application flow are executed in sepa-
rate threads and can scale. The fifth and sixth column in Table 4.2 list this criterion.
Since operators, i.e. components in aFlux, are independent from other components
it supports scaling up of instances of a specific component. Additionally, each ac-
tor instance of the same component is a different unit of computation hence boots
performance. Other solutions do not support scaling up of instance of a component
if the data load increases. Nevertheless, IBM Infosphere Streams specifies separate
thread of execution for each data operators in a dataflow graph.
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Parametrisation of Buffers and overflow strategy The streams of data travelling from
one operator to another are stored in a buffer queue before being processed. Cus-
tomisation of this buffer is an important parameter for comparison. The seventh
column in Table 4.2 lists this criterion. aFlux supports parametrisation of this buffer
and specify over-flow strategies. This concept is non-existent in all existing solu-
tion and from the running example in Section 4.4 it is clear that optimisation of
this aspect affects the performance of the streaming application.

Stream processing paradigm The eighth column in Table 4.2 lists the criterion of stream-
ing paradigm the tool is built upon. There are three major stream processing
paradigms: (i) synchronous dataflow where the data ingestion and data produc-
tion rates are predefined which makes it unrealistic in real-world use cases, (ii)
relational paradigm which relies on the concept of relational databases to pro-
cess streams which simplifies stream processing and (iii) complex event processing
paradigm in which operators detect patterns in input streams and infer outputs.
Platforms supporting relational are easier to model stream applications, scale-well
while the complex event processing paradigm permits to model complex stream-
ing applications. aFlux supports the relational and the complex event processing
paradigm while StreamIt supports only synchronous dataflow paradigm.

72



5 Graphical Flow-based Spark

Programming

“The function of good software is to
make the complex appear to be simple.”

— Grady Booch

We have a large number of tools that are known as Big Data analytics tools. These tools
are especially used for applications like targeted advertising and social network anal-
ysis. [110]. Spark is one such prominent tool, allowing for advanced, scalable, fault-
tolerant analytics and comes equipped with machine learning libraries as well as stream
processing capabilities [170, 168]. Nevertheless, the learning curve associated with Spark
is quite steep [170]. In response to this, this chapter focuses on supporting Spark pro-
gramming via graphical flow-based programming paradigm.

To illustrate the importance of efficiently prototyping data analytics pipelines, consider
a scenario where the administrator of a taxi service wishes to know the current high de-
mand areas in the city, to redirect the available fleet accordingly and to reduce customer
waiting time. Assuming that the live city data is available via REST APIs, it is still a
non-trivial task to analyse and draw insights from the data since this involves data col-
lection, data cleaning and analytics to arrive at some usable conclusions. If mashup tools
supported graphical blocks for each of the tasks that the administrator needs to perform,
the task would become simpler as it would only involve specifying the data-flow between
various graphical components. The end result is an application which does real-time Big
Data analytics on sensed traffic data and uses the analytics results to re-route the taxi
fleet on the fly.

aFlux, a new actor-model based [87] mashup tool (Chapter 4), has been developed to over-
come the existing limitations of the state-of-the-art mashup tools [109]. In this chapter,
we validate the graphical programming concepts for Spark in aFlux, i.e. how to enable
Spark (version 2.2.0) programming at a higher level with modular components in flow-
based programming paradigm. Thus, the problems can be broadly summarised as:
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(TB1) Problem statements for supporting flow-based Spark programming

PS1 Diverse data-representational styles, APIs and libraries centred around
Spark make it difficult to extract a common programming approach, i.e. us-
ing similar data structures and APIs to load, transform and pass datasets,
with which to access the functionalities of Spark and formulate an approach
to use it from a flow-based programming paradigm. Selection of compatible
APIs and bundling together as modular components. The composability of
these components is discussed in Section 5.6.1.3.

PS2 Reconciling the difference in the programming paradigm of Spark and flow-
based mashup tools can be a challenge. Spark relies on lazy evaluation,
where computations are materialised if their output is necessary, while flow-
based programming has a component triggered, then proceeds to execution,
and finally passes their output to the next component upon completion. To
program Spark from mashup tools, this difference in the computation model
has been addressed by introducing additional auxiliary components in the
mashup tool level called as ‘bridge’ components (Section 5.8.2) and starting
the code generation process at the last component of the user flow.

5.1 Structure

This chapter is structured in the following way.

• Section 5.2 discusses the design issues for supporting flow-based Spark program-
ming.

• Section 5.3 summarises and compares the different data abstractions present in the
Spark ecosystem. The selection of specific data abstractions for supporting flow-
based Spark programming is also done here.

• Section 5.4 classifies the various APIs found in the Spark ecosystem based on their
functionality and method signature.

• Section 5.5 summarises the conceptual approach and also enlists the design deci-
sions taken to solve the design issues discussed in Section 5.2.

• Section 5.6 discusses key properties of a graphical component, flow compositional
rules, flow validation and generation of native Spark application from a graphical
flow.

• Section 5.7 discusses ‘SparFlo’, a library consisting of modular composable compo-
nents. The components bundle a set of Spark APIs which are executed in a specific
order to perform one data analytic operation. This uses only a subset of Spark APIs
which are compatible with the flow-based programming paradigm.
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• Section 5.8 details the prototyping of the approach in aFlux.

• Section 5.9 discusses the evaluation of the approach.

Appendix A is attached to this chapter and contains some of the figures and code listings
discussed here.

5.2 Towards Flow-based Spark Programming

The graphical Spark programming concepts, i.e. a user designs a flow by dragging and
dropping graphical components and the system generates a complete Spark application
for the user typically lowers the learning curve associated in using as well as adopting
Spark. But in order to support such a scenario, there are several design issues which
needs to be addressed by the conceptual approach.

SC1 Design of a modular Spark component (addresses PS1) A modular component
is the basic unit of composition in a graphical flow. A typical Spark application con-
sists of different Spark APIs invoked in a specific sequence to represent the business
logic. Therefore, it makes perfect sense to model the graphical programming con-
cepts on the same lines, i.e. represent Spark APIs via modular-GUI components which
the user can drag and connect them. The flow thus created essentially represents a
sequence with which the Spark APIs are invoked to meet the business logic of the
user.

Modularity By modularity, we mean that the components are so designed that
their functionality is independent from each other and contain necessary code to
execute only one aspect of the desired functionality, i.e. one specific data analytic
operation — high-cohesion with loose coupling of components. [37, 95].

The first concern in this regard is deciding the granularity level of such a Spark com-
ponent to make it modular in its design. The Spark APIs essentially accomplish one
small task within the Spark engine like converting data from one form to another.
Hence, in order to perform a small operation like reading datasets from a stream-
ing source the developer has to invoke many different APIs. Hence, a modular Spark
component should ideally make use of multiple Spark APIs invoked in a specific order to
perform one fundamental data analytics operation.

The second concern is with respect to abstraction-level. A typical Spark application
has many aspects which do not directly correspond to the business logic but are
vital for running of the application. For instance, the ‘application context’ which is a
programming handle to identify a running Spark application, essentially manages
the communication between Spark driver program and worker nodes during exe-
cution. A developer while programming the application context configures it with
various options like providing a name for the Spark application, deciding whether
the application runs in a distributed mode or not, specifying the address of the
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Spark cluster manager etc. It is also interesting to mention that for batch process-
ing where the computations typically finish, the application context must have an
end statement while this is not true for streaming applications as they typically
run indefinitely. Hence, portions of a Spark application not contributing to the business
logic of the application, i.e. loading, transformation or display of datasets, should not be
represented as components but abstracted from the user.

SC2 Data Transformation Approach (addresses PS1) Data transformations in Spark
can be achieved via RDD based operations or the newer declarative APIs which op-
erate on higher level of data abstractions over RDD. The RDD based data trans-
formations require the developer to write their own custom data transformation
functions while the APIs are kind of pre-defined transformation functions which
can be invoked directly on datasets. In traditional Spark application development,
developers typically use a mix and match of both techniques. But from a graphical
programming perspective use of API based data transformation is more reasonable
as a graphical flow can be represented as a flow between different APIs connected
by the end-user to achieve a desired result.

SC3 Design of the translator model (addresses PS2) The translator model which
takes the graphical flow and auto-generates the Spark application program should
parse the auxiliary components (Section 5.8.2) properly as they do not represent
any Spark API but are used to bridge the difference in computational model. Fur-
ther, it should ensure that the flow created by the user will yield a compilable
Spark program. For this, it should provide early feedback to the user in case of
improper usage of components in a flow. In this way, the errors arising out of wrong
formulation of a Spark flow are handled at the mashup tool level. Once the translator
model accepts the Spark flow, it should definitely result into a compilable Spark
program. Additionally, the translator model should be generic and extensible to
support inclusion of additional APIs, libraries and features of Spark in future.

5.3 Data Abstractions in Spark

In this section, various transformations and data abstractions supported by Spark are
discussed in detail to give an understanding of how Spark is used from a developer’s
perspective. The general introduction to Spark, its execution paradigm together with its
varied ecosystem has been covered in Section 2.6. Spark supports two kinds of transfor-
mations among different libraries in its ecosystem. First, it supports high-level opera-
tors which apply user-defined methods to data, e.g. the map operator. The user-defined
operation has to be provided by the developer. Newer libraries of Spark have moved
away from this paradigm and instead offer fine-grained operations where the operation
logic is pre-fixed yet parametrisable by the programmer. Spark has introduced several
data abstractions like RDD [31], DStream [169], DataFrame [30, 171, 34] and Streaming
DataFrame [26] to manage and organise user data within its run-time environment and sev-
eral libraries have introduced data abstractions customised for different cases. Table 5.1
summarises the libraries and the data abstractions each library requires for interaction.
The term ‘data abstraction’ and the term ‘data interface’ convey the same concept and
meaning. For the rest of the chapter, we use the term ‘data abstraction’ for maintaining
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homogeneity and clarity in discussions. Fine-grained operations are possible through the
declarative APIs of Spark, i.e. all APIs of libraries listed in Table 5.1, that are based on
the Spark core library.

The Resilient Distributed Dataset (RDD) Abstraction It is the key data abstraction for
in-memory processing and fault-tolerance of the engine, which is used heavily for batch
processing. Higher level constructs are supplied with User-Defined Functions (UDFs)
applied to the data in a parallel fashion. UDFs have to adhere to strong type checking
requirements. Listing 5.1illustrates ‘map’, a higher level construct applying a UDF to
accept tuples of type-String and produce tuples of type-Integer.

1 // read data from f i l e system
JavaRDD<String > l i n e s = sc . t e x t F i l e ( " data . t x t " ) ;

3 //map each l i n e to i t s length
JavaRDD<Integer > l ineLengths = l i n e s . map(new Function<Str ing , Integer >() {

5 public In teger c a l l ( S t r in g s ) { return s . length ( ) ; }
} ) ;

Listing 5.1: RDD abstraction for batch processing

DStream Data Abstraction Spark Streaming is an extension of Spark Core which pro-
vides stream processing of live data. Data can be read from streaming sources like
Kafka [28], Twitter, Flume etc. and processed in real-time using high-level functions
like map, reduce, join, window etc. The final processed output can be saved either to file
systems, HDFS or even databases. Internally, Spark Streaming divides the live stream
of input data into batches/chunks and feeds to the core Spark engine for processing,
the output from the Spark engine is again in the form of batches of processed output as
shown in Figure 5.1.

Spark 
Streaming

Spark 
Engine

Input Data (in 
batches)

Output (in batches)Input Data (in continous stream)

Figure 5.1: Spark Streaming: internal workings — concept of micro-batches, as in [25]

Spark Streaming provides a high level abstraction called ‘discretized stream’ or
‘DStream’ [169] to represent a continuous stream of data. DStreams can be created
from input data streams like Kafka, Twitter etc. or by applying high level operations on
other DStreams. Internally, a DStream is nothing but a sequence of RDDs. In-order to
use the DStream abstraction in Spark Streaming, there are a few sequential steps which
a developer needs to follow.
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Consider an example [25] where we are interested in counting the number of words in the text
data received from a data server listening on a TCP socket.

1. First, the developer needs to create a streaming context specifying the number of
execution threads and the batch interval. In this example, two execution threads
and a batch duration of 1 second have been used.

2. Second, the developer can create a DStream using the previously specified stream-
ing context to represent the live stream of data coming from the TCP socket. Every
record in this representation is essentially a line of text.

3. Third, the developer needs to split the lines into words by spaces for which spe-
cialised DStream operation like ‘flatMap’ can be used. This operation essentially
creates a new DStream by generating multiple records from a single record of the
original DStream representation.

4. Fourth, in order to count the number of words the DStream created in step three
is mapped to a DStream pair (words,1) via a ‘PairFunction’ object. After this, it is
reduced to obtain the frequency of words in each batch of data.

5. Fifth, the processed output can be printed or sent for further processing.

6. Lastly, the developer needs to specify some additional steps like to start the com-
putation and wait till the computation finishes to terminate in order to trigger the
stream processing application.

Listing 5.2 shows the overall Java code which a developer needs to write in order to
realise the above discussed example.

// Step 1 : Create a l o c a l StreamingContext with two working thread and batch
i n t e r v a l of 1 second

2 SparkConf conf = new SparkConf ( ) . setMaster ( " l o c a l [ 2 ] " ) . setAppName ( "
NetworkWordCount " ) ;

JavaStreamingContext j s s c = new JavaStreamingContext ( conf , Durations . seconds ( 1 )
) ;

4

// Step 2 : Create a DStream that w i l l connect to hostname : port , l i k e l o c a l h o s t
:9999

6 JavaReceiverInputDStream <Str ing > l i n e s = j s s c . socketTextStream ( " l o c a l h o s t " ,
9999) ;

8 // Step 3 : S p l i t each l i n e into words
JavaDStream<Str ing > words = l i n e s . flatMap ( x −> Arrays . a s L i s t ( x . s p l i t ( " " ) ) .

i t e r a t o r ( ) ) ;
10

// Step 4 : Count each word in each batch
12 JavaPairDStream<Str ing , Integer > p a i r s = words . mapToPair ( s −> new Tuple2<>(s ,

1) ) ;
JavaPairDStream<Str ing , Integer > wordCounts = p a i r s . reduceByKey ( ( i1 , i2 ) −> i1

+ i2 ) ;
14

// Step 5 : Pr int the f i r s t ten elements of each RDD generated in t h i s DStream
to the console

16 wordCounts . pr in t ( ) ;
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18 // Step 6 : S t a r t the computation & Wait fo r the computation to terminate
j s s c . s t a r t ( ) ;

20 j s s c . awaitTermination ( ) ;

Listing 5.2: Example of using DStream in Spark

data from 
time 2 to 3

data from 
time 3 to 4

data from 
time 0 to 1

data from 
time 1 to 2

lines from 
time 2 to 3

lines from 
time 3 to 4

lines from 
time 0 to 1

lines from 
time 1 to 2

words from 
time 2 to 3

words from 
time 3 to 4

words from 
time 0 to 1

words from 
time 1 to 2

DStream

lines DStream

words DStream

RDD at time 1 RDD at time 2 RDD at time 3 RDD at time 4

flatMap 
operation

Figure 5.2: Internal working pattern of DStream data abstraction, as in [25]

DStream, the basic abstraction provided by Spark Streaming is internally a continuous series
of RDDs, Spark’s immutable distributed dataset abstraction. Hence, each RDD in a DStream
contains data from a certain time interval only as shown in Figure 5.2. Any operation
applied on a DStream is translated to operations on RDDs. For instance, to convert a
stream of lines to words in the above example, the flatMap operation was used. Internally,
this operation got translated as an operation applied to each individual RDD contained in
the lines DStream which generated the corresponding RDDs of the word stream as shown
in Figure 5.2. It is interesting to note that all these RDD operations and transformations
are abstracted from the developer while using the DStream abstraction and its associated
operations, instead the developer is provided with a high-level API for convenience.

To summarise, Spark Streaming library employs the DStream abstraction [169], which
collects data streamed over a user-defined interval and combines them with the rest of
the data received so far to create a micro-batch. This approach hides the process of com-
bining data. Spark Streaming operations can be performed on a DStream abstraction or on
an RDD abstraction, as DStream can be operated on by converting it to RDD. While this
library is not a true stream processing library (it internally uses micro-batches to repre-
sent a stream), the most important aspect is its compatibility with Spark MLlib library
which makes it possible to apply machine learning models learned offline, on Streaming
data.

DataFrame Data Abstraction The DataFrame API [30], introduced by the Spark SQL li-
brary, is a declarative programming paradigm for batch processing built using the DataFrame

79



5 Graphical Flow-based Spark Programming

abstraction. This data abstraction treats data as a big table with named columns, similar
to real-world semi-structured data (e.g. Excel file). DataFrame API provides a declarative
interface, with which data and parameters required for processing can be supplied. Data
is read into environment using user-defined schema and DataFrame is created as han-
dle to trace the data as the schema changes in the course of transformations. The actual
implementation of the operations performed on the data to produce the desired trans-
formation is abstracted from the user. Spark ML is accessed using the DataFrame API.
Listing 5.3 shows the overall Java code of using DataFrame in Spark where the developer
creates a DataFrame from a JSON file with the schema inferred automatically by Spark.
The DataFrame thus created, can be passed all kinds of SQL queries for data extraction
as indicated in the code listing below. It also supports a SQL function which allows to run
SQL queries programmatically and return the results in the form of a Dataset. For most
complicated scenarios, the developer needs to specify the schema before a DataFrame
can be created from the data source.

Dataset <Row> df = spark . read ( ) . j son ( " people . j son " ) ;
2

// Displays the content of the DataFrame to stdout
4 df . show ( ) ;

// +−−−−+−−−−−−−+
6 // | age | name|

// +−−−−+−−−−−−−+
8 // | nul l | aaaaaaa |

// | 40| bbbb |
10 // | 29| cccccc |

// +−−−−+−−−−−−−+
12

// S e l e c t people older than 30
14 df . f i l t e r ( co l ( " age " ) . gt ( 3 0 ) ) . show ( ) ;

// +−−−+−−−−+
16 // | age |name|

// +−−−+−−−−+
18 // | 40|bbbb |

// +−−−+−−−−+
20

// R e g i s t e r the DataFrame as a SQL temporary view
22 df . createOrReplaceTempView ( " people " ) ;

24 Dataset <Row> sqlDF = spark . s q l ( "SELECT * FROM people " ) ;
sqlDF . show ( ) ;

26 // +−−−−+−−−−−−−+
// | age | name|

28 // +−−−−+−−−−−−−+
// | nul l | aaaaaaa |

30 // | 40| bbbb |
// | 29| cccccc |

32 // +−−−−+−−−−−−−+

Listing 5.3: Example of using DataFrame in Spark

Streaming DataFrame Data Abstraction Spark Structured Streaming is a fault-tolerant
stream processing engine built on top of Spark SQL engine. The Spark SQL engine is
responsible for running the streaming query incrementally and continuously updating
the result as new streaming data arrive. Structured Streaming queries are executed in
small micro-batches internally. The Spark Structured Streaming library provides real-time
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stream processing using Streaming DataFrame APIs, an extension of DataFrame APIs. The
Streaming DataFrame API can be used to express all sorts of streaming aggregations,
event-time windows etc.

Data Stream

Data Represented in an unbounded Table

Unbounded Table

New data = new rows appended

Figure 5.3: Internal working pattern of Streaming DataFrame data abstraction, as in [26]

The key idea in Structured Streaming abstraction is that live data stream is treated as a table
which continuously grows and newly arriving data is appended to it. The processing model
is very similar to batch processing model as the streaming logic is applied as a batch-
query and Spark applies it as an incremental query on top of the unbounded table. The
internal handling of streaming data, in the form of an unbounded table in this data
abstraction/programming model, is shown in Figure 5.3.

In this data abstraction, for the input data stream, an unbounded table called ‘input table’
is created and new data is appended to it continuously as new rows of data. A ‘trigger
time’ is defined at which the new rows of data is appended to the input table, i.e. the
input table grows at the re-occurrence of the trigger time. A query run on the input
table generates a ‘result table’. Hence, at every trigger, not only the input table grows but
also the result table thereby changing the output result set continuously. The mode of
updating output supported are of three types:

Complete Mode In this mode, the entire updated result table is written as output.

Append Mode In this mode, only the newly added rows to the result table since the last
point of trigger are written as output.

Update Mode In this mode, only the rows that were updated in the result table since the
last point of trigger are written as output. This differs from the complete mode as
this outputs only the rows that were changed since the last point of trigger.

Figure 5.4 shows the overall working of the Streaming DataFrame data abstraction used
in Spark Structured Streaming. Consider the same example which we discussed in the
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result
upto t = 2

result
upto t = 3

complete mode

Q
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ry

The entire updated Result Table will be written as output

Figure 5.4: Programming model of Spark Structured Streaming, as in [26]

DStream data abstraction section, i.e. we are interested in counting the number of words
in the text data received from a data server listening on a TCP socket [25]. To express the
same streaming application using the Streaming DataFrame data abstraction in Spark
Structured Streaming, the developer needs to follow some steps.

1. First, the developer needs to create a streaming DataFrame that represents text
data received from the server which is transformed to obtain the word counts. This
DataFrame represents an unbounded table containing the streaming data. The un-
bounded table contains one column of strings named ‘value’ and each line in the
streaming dataset becomes a row in the table.

2. Second, the DataFrame is converted to a string Dataset, so that ‘flatMap’ operation
can be applied to split each line into multiple words. This Dataset contains all the
words received.

3. Third, a new Streaming DataFrame needs to be created which contains all the
unique values contained in the Dataset created in step 2 and counting them. Since
it is a streaming DataFrame, hence it represents the running word counts.

4. Fourth, the developer needs to specify the output mode and start the streaming
operation.

Listing 5.4 shows the overall Java code which a developer needs to write in order to realise
the above discussed example. Figure 5.5 shows the internal workings of the Streaming
DataFrame data abstraction with the help of an example.

It is interesting to note that this data abstraction is incompatible with the Spark ML
library. This is because the incremental processing programming model of Spark Struc-
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Figure 5.5: Programming model of Spark Structured Streaming instantiated with an example,
as in [26]

tured Streaming programming is not compatible with the Spark ML processing model,
where repeated iterations are carried out on entire datasets.

// Step 1 : Create DataFrame represent ing the stream of input l i n e s from
connection to l o c a l h o s t :9999

2 Dataset <Row> l i n e s = spark
. readStream ( )

4 . format ( " socket " )
. option ( " host " , " l o c a l h o s t " )

6 . option ( " port " , 9999)
. load ( ) ;

8

// Step 2 : S p l i t the l i n e s in to words
10 Dataset <Str ing > words = l i n e s

. as ( Encoders . STRING ( ) )
12 . flatMap ( ( FlatMapFunction<Str ing , Str ing >) x −> Arrays . a s L i s t ( x . s p l i t ( " " ) ) .

i t e r a t o r ( ) , Encoders . STRING ( ) ) ;

14 // Step 3 : Generate running word count
Dataset <Row> wordCounts = words . groupBy ( " value " ) . count ( ) ;

16

// Step 4 : S t a r t running the query that p r i n t s the running counts to the
console

18 StreamingQuery query = wordCounts . writeStream ( )
. outputMode ( " complete " )

20 . format ( " console " )
. s t a r t ( ) ;

22

query . awaitTermination ( ) ;

Listing 5.4: Example of using Structured Streaming in Spark
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5.3.1 What is a Spark API?

Developers typically use a user-facing method invocation to achieve large scale data transfor-
mations. These developer-facing methods are called APIs. Spark has easy-to-use APIs
which are intuitive and expressive for operating on large datasets, available in a wide
range of programming languages like Scala, Java, Python and R. There are three sets of
APIs in Spark which have been discussed below.

APIs using RDD based data transformations As defined earlier, a RDD is an im-
mutable distributed dataset partitioned across various nodes in the cluster which can be
operated in parallel. The operations can be controlled with low-level APIs offering either
transformations or actions. In the earlier days, Spark had low-level APIs solely making
use of RDD based data transformations. These low-level RDD-based APIs are typically
used in scenarios where [60]:

1. low-level transformations, actions and control of dataset is necessary.

2. the dataset to be analysed is unstructured, i.e. cannot be represented in relational
format.

3. data manipulation via functional programming constructs is preferred.

It is interesting to mention that even now in Spark with the coming of new data ab-
stractions and APIs based on them, the low-level RDD based APIs have not lost their
importance. RDDs stand as a pillar of interoperability between other data abstractions since
DataFrames and Datasets are built on top of RDDs. The user can easily move data between
DataFrames/Datasets and RDDs via simple method calls.

DataFrame-based APIs DataFrame is also an immutable distributed dataset collection
just like RDDs. However, here data is organised into columns just like in relational databases.
This makes large scale processing of data easier by providing higher levels of abstractions
and domain specific language APIs across a wide range of programming languages.

Dataset-based APIs In newer versions of Spark, DataFrame APIs have been merged
with Dataset APIs to provide unifying data processing capabilities across various li-
braries. As a result of this unification, developers need to learn a few concepts and work
with a single high-level API.

From Spark 2.0 onwards, Dataset has two distinct API characteristics : (i) a strongly–
typed API, (ii) an untyped API.

From a programming perspective, DataFrame is a collection of generic objects, i.e. Dataset
[row], where ‘row’ is a generic untyped Java virtual machine (JVM) object. In contrast to this,
Dataset is a collection of strongly-typed JVM objects, i.e. Dataset [T], where ‘T’ is a defined
class in Java/Scala. The unified API has a number of benefits [60]:
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1. Static-typing and run-time safety If we consider ‘static-typing and run-time
safety’ to be a spectrum then string SQL query is the least restrictive while
Dataset is the most restrictive in SparkSQL. To explain the previous state-
ment the following illustration would suffice. For instance, we cannot detect
any syntax errors in a SparkSQL string query until runtime where as in
DataFrame and Dataset they can be detected during compile time. If a func-
tion in DataFrame is invoked which is not part of the API, the compiler detects
this. Nevertheless, accessing and using a non-existent column name does not
get detected until run time. On the other extreme side of the spectrum, is the
Dataset, the most restrictive because all Dataset APIs are expressed as lambda
functions and JVM typed objects. Any mismatch of the typed parameters
get detected at compile time. Here, even analysis errors can be detected at
compile time thereby saving development time. The spectrum of type-safety
along with syntax and analysis error in different APIs of Spark is shown in
Figure 5.6.

2. Ease of use Although Dataset/DataFrames render a structure which may limit or
restrict what can be done with the data, it introduces a rich semantics and an
easy set of domain specific operations that can be expressed as high-level con-
structs. For example, it’s much simpler to perform aggregations, selections,
summations etc. operations by accessing a Dataset typed object’s attributes
than using RDD. Expressing computation in a domain specific API is easier than
with relation algebra type expressions offered in RDDs.

Syntax
Errors

Analysis
Errors

DataFrame Dataset

Run Time

Compile Time Compile Time

Compile Time

Selected for the Thesis work

Figure 5.6: Spectrum of type-safety along with syntax and analysis error in different APIs of
SparkSQL, as in [60]

When to use DataFrame/Dataset If our requirements are to have a rich seman-
tics, high-level abstractions over datasets and easy to use domain specific APIs then
DataFrame or Dataset APIs form a good candidature. Additionally, higher degree of
type-safety at compile time, high-level expressions, columnar access of data, unification
and simplification of APIs across Spark libraries then DataFrame or Dataset APIs is the
natural choice. Nevertheless, we can always use DataFrames and change back to RDDs
whenever we need fine-grained control.
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Selection of APIs: For flow-based Spark Programming For the thesis contributions,
the DataFrame APIs of Spark have been selected and are supported in the graphical Spark
programming. The reasons for this are:

1. The RDD based APIs require user defined functions to bring about data transfor-
mation which is impractical to be used from a end-user tool. Additionally, it intro-
duces strong type checking requirements to be enforced manually for correct Spark
programming.

2. Dataset APIs though offer the best in terms of detecting syntax errors and analyt-
ical errors at compile time, nevertheless they depend on Dataset [T], where T is
a predefined Java class. It is difficult to pre-define classes for all possible kinds of
datasets. Restricting this to specific use-cases would render the approach inflexible,
non-generic and inextensible.

3. The DataFrame API provides columnar access to data, renders custom view on
dataset, introduces easy to use domain specific APIs, offers a rich abstraction and
at the same time detects syntax errors during compile time. This fits the use-case of
the flow-based programming model, i.e. mashup tools. The only missing feature is
the detection of analytical errors during compile time, i.e. accessing a non-existent
column in a DataFrame. This is fairly easy to implement in a generic manner and
will be described in Section 5.5.

5.3.2 Data Abstractions in Spark: A Comparison

Spark libraries have been built on different abstractions and support various data ab-
stractions for interaction as listed in Table 5.1. The core abstraction is RDD; the other
libraries have added layers of abstraction on top of this core abstraction. Interoperability
between libraries is supported in several cases as illustrated in Table 5.2. There are cases
where interoperability between different Spark libraries is just not possible. For example,
Spark Structured Streaming library cannot be used with the DataFrame APIs of Spark ML
library. This poses a serious limitation to apply machine learning models on streaming
data. On the other hand, Spark Streaming and Spark ML are naturally inter-operable be-
cause both are built on RDD abstraction. However, in order to apply a machine learning
model on streaming data created using the Spark ML we have to do a number of internal
conversions. First, the streaming data represented in DStream data abstraction needs to
be converted to RDD which is supported as indicated in Table 5.2. Then, the RDD data
abstraction is converted into DataFrame so that the machine learning model can be ap-
plied as Spark ML uses DataFrame data abstraction. In detail, Spark ML library has been
built on DataFrame API and introduces the concept of Pipelines. Pipeline is a model to
pack the stages of machine learning process and produce a reusable machine learning
model. Reusable models can be persisted and deployed on demand. The streaming data
when handled using Spark Streaming library usually uses the DStream data abstraction.
The library offers ‘Transform’ and ‘ForEachRDD’ methods to access RDDs (since DStream
internally represents a continuous series of RDDs). Out of the two available methods, the
‘Transform’ method applies the user-defined transformation on RDDs and and produces
new DStream which is not our desired intention as we want a DataFrame to apply the
machine learning model created from the Spark ML library. The ‘ForEachRDD’ is an
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action method that applies user-defined transformation and does not return anything as
its purpose is to push data out of the run-time environment. Abstracting the process of
creating DataFrames from DStream using ForEachRDD function can be abstracted from
the user to automate such interconversion of data abstractions wherever necessary.

Data Abstraction
Library

RDD DStream DataFrame S. DataFrame

Spark Core Yes - - -
Spark Streaming - Yes - -
Spark SQL - - Yes -
Spark MLlib Yes - - -
Spark ML - - Yes -
Spark Structured
Streaming

- - - Yes

Table 5.1: Spark libraries and their supported data abstractions

Target Abstraction
Source Abstraction

RDD DStream DataFrame S. DataFrame

RDD - No Yes No
DStream Yes - No No
DataFrame Yes No - No
Streaming
DataFrame

No No No -

Table 5.2: Interoperability between different Spark data abstractions

(TB2) Analysis results: selection of data abstractions for conceptual approach

From the available data abstractions of Spark, DStream and DataFrame (includ-
ing Streaming DataFrame), have been selected for the thesis work. The conceptual
approach described in Section 5.5 supports only the transformations accessible
via untyped, i.e. DataFrame APIs (Figure 5.6) and using the aforementioned data
abstractions. Any transformation making use of RDD based approach is not sup-
ported. Nevertheless, the implementation of the conceptual approach, for reasons
of interoperability between these data abstractions, makes use of RDD when con-
verting data represented in one of the above data abstraction into another.
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(TB3) Reasons for selection

1. It is possible to represent DStream and DataFrame APIs as modular graph-
ical components that can be wired together. The different input parameters
required by an API can be specified by the user from the front-end. This
addresses the challenge SC1 (Table 5.3).

2. Data Frame APIs based on these aforementioned data abstractions prevent
the usage of user-defined functions (UDFs) and provide predictable input
and output types for each operation—the tool can then check the associated
schema changes for compatibility during the flow validation, i.e. before code
generation and compilation. This addresses the design issue SC2 shown later
in Table 5.3.

5.4 Classification of Spark APIs

The various APIs found in different libraries of Spark have different method signatures
and perform either data loading, data transformation or data writing out of Spark run-
time environment. In this section, we classify the Spark APIs based based on their func-
tionality, i.e. input, transformation and action. Further, we sub-classify the transforma-
tion APIs based on their method signatures. This is useful to create generic invocation
statements to invoke the standalone method implementation of the APIs belonging to the
same API category and operating on the same data abstraction. This is pivotal to make
the code generation process generic and make it independent from the Spark APIs as all
APIs belonging to same category and used in a graphical flow can be invoked in a similar
generic way. Hence, every modular Spark component uses a generic method invocation
statement for its standalone method invocation as listed in Table 5.4 and explained in
Section 5.8.4.

RDDs support only two kinds of operations [31], i.e. (i) transformations which help in
data transformation and create a new dataset from an existing one & (ii) actions which
return the result of data transformation after running computations to the Spark driver
program. It is interesting to note that there is no notion to classify read operations,
i.e. operations which read data into the Spark runtime environment. This is primarily
because of Spark’s lazy evaluation strategy. All transformation functions are evaluated
in a lazy fashion, i.e. they just remember the transformations applied on a file and are
computed when the results are actually needed starting from reading the file. Since, all
APIs invariably work with RDDs internally irrespective of the higher data abstraction
used. Therefore, all Spark APIs fall broadly into two categories, i.e. either ‘transformation’ or
‘action’.

A typical Big Data application follows the model of reading data, analysing it and finally
giving out the result. A typical Spark application allows follows this norm. Here, we
have classified various APIs of different Spark libraries using the notion of logical data-
flow model as shown in Figure 5.7. Accordingly, we have three categories as discussed
below. The visualisation of resultant datasets is not part of a typical Spark application.
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a. Data generated from IoT sensors can be subjected to either real-time analytics or batch analytics. 
    So, accordingly they are stored in file systems, databases or send to Kafka, MQTT brokers etc.
b. The Big Data processing chiefly consists of 4 steps:

1. Read datasets either from streams or databases.
2. Visualize the data or transform the data.
3. Visualize the transformed datasets.
4. Save the resultant datasets to databases or send them back as streams.

Read Data

Kafka/Flume

MQTT

Databases

File Systems

Kafka/Flume

MQTT

Databases

File Systems

1

1

1
1

Output

Visualize
2

3

4

4

IoT
World

Input

2

4

4

Transform & 
Aggregate

Figure 5.7: Logical data-flow model of a typical Big Data application

Input A Spark application begins with identifying data sources and ingesting them
into its run-time environment. APIs to read data from sources such as file systems and
streaming sources are available out of the box. ‘SparkSession’ class is the entry point to
programming Spark with the Dataset or DataFrame APIs. This class provides two meth-
ods:

1. read () : returns a ‘DataFrameReader’ Basically creates a DataFrame

2. readStream() : returns a ‘DataStreamReader’ Basically creates a Streaming
DataFrame

The ‘DataFrameReader’ class provides methods to read datasets from external environ-
ments and represent them in DataFrame format. The various read methods (APIs) of-
fered by this class fall into the ‘input’ category as per the classification done in this thesis.
Some of the examples for this are listed in Table A.1 (SN 1 - 18 ). The ‘DataStreamReader’
class provides methods to read streaming datasets from external environments. Some of
the examples for this are listed in Table A.1 (SN 19 - 25).

Similarly, the ‘StreamingContext’ is the main entry point for using the streaming function-
ality of Spark, i.e. working with DStreams. It provides methods (APIs) to create streams
and work with them. Some of the examples for this are listed in Table A.1 (SN 26 - 30).
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Transformation ‘Transformation’ APIs transform user data within the run-time envi-
ronment. Some data transformation APIs act on one data source while there are transfor-
mation APIs that act on two data sources. Additionally, there are other transformation
APIs which prepare objects required by other data transformation APIs. The transfor-
mation APIs available in Spark have been classified into different sub-categories based
on the number of data-sources they require as input to operate.

Type A: These APIs operate on one data abstraction and produce a new data abstraction.
They may or may not take additional parameters. The different types of transformations
supported by Spark SQL, Spark ML and Spark Structured Streaming libraries include: (i)
Static DataFrame Operations APIs of Spark SQL to produce a new DataFrame as per user-
specified criteria, (ii) ML Transformers of Spark ML transform one dataset to another
(iii) Streaming Aggregations of Spark Structured Streaming add column to produce new
Streaming DataFrame. Examples for this are listed in Table A.1 (SN 42 - 69).

Type B: These APIs operate on two data abstractions and produce a new data abstraction. If we
need to operate on more than two data abstractions then the APIs need to be invoked it-
eratively. Examples include: (i) DataFrame Join APIs of Spark SQL which produce a new
DataFrame by joining two static DataFrames, (ii) DStream Join APIs of Spark Streaming
which produce a new DStream by joining two DStreams, (iii) Streaming DataFrame Join
APIs of Spark Structured Streaming which produce a new streaming DataFrame by join-
ing two streaming DataFrames (iv) Streaming and Static DataFrame Join APIs of Spark
Structured Streaming which produce a new streaming DataFrame by joining streaming
DataFrame and static DataFrame. Examples for this are listed in Table A.1 (SN 70 - 78).

Type C: Spark libraries support APIs that take one data abstraction in addition to other
user-defined object parameters and produce an object such as a machine learning model or
a pipeline model or may be even a new data abstraction. Such a re-usable object can be
applied on other data frames that match the schema of the dataset using which the re-
usable object was prepared. Example APIs include ML Estimators, ML Pipeline Model,
ML Train-Validation Split Model and ML Cross-Validation Model provided by Spark ML.
Examples for this are listed in Table A.1 (SN 79 - 80). The general method signature of
different types of transformation APIs is given below:

data abstraction df1.API() // Type A
data abstraction df1.API(user params) // Type A

data abstraction df1.API(data abstraction df2) // Type B
data abstraction df1.API(data abstraction df2, object userParams) // Type C

Type D: Other Spark APIs which do not follow the above method signature patterns have
been classified as Type D.

Action These are APIs which trigger input APIs and transformation APIs associated with
the data source and cause it to materialise. The lazy evaluation strategy of Spark requires
action APIs for data transformations to materialise in the run time environment. Action
APIs typically write to file systems or streaming sinks, i.e. push result out of the Spark
run-time environment. Examples include: (i) Spark Session Writer API of Spark SQL
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writes a static DataFrame to file system, (ii) Spark Session Stream Writer of Spark SQL
writes a streaming DataFrame to a streaming sink like Kafka (iii) ML Writer of Spark ML
persists a ML model to the file system. Examples for this are listed in Table A.1 (SN 31 -
41).

Which type of APIs are supported in the conceptual approach? The APIs have been
categorised into either input, transformation - Type A, transformation - Type B, transfor-
mation - Type C and action. The underlying method signatures are similar for all APIs
which fall in the same category except for transformation - Type D . Hence, the standalone
method implementation of these APIs can be invoked by generic statements which correspond
to the API category and the data abstraction used by the API. Every modular Spark compo-
nent uses a generic method invocation statement for its standalone method invocation as
listed in Table 5.4 and explained in Section 5.8.4.

APIs not having common method signatures and which cannot be classified have been
categorised as Type D. The standalone method implementation of such APIs cannot be
invoked by a generic invocation statement and are not supported in this work.

5.5 Conceptual Approach for Flow-based Spark Programming

The conceptual approach for programming Spark via graphical flows is presented in two
parts:

(i) Modelling of graphical Spark flows (addresses: [PS2 → SC3]) Typically, a Spark
application consists of three main parts, i.e. reading data from file systems or streaming
sources, like IoT sensors, applying analytical transformations on those datasets and fi-
nally writing the results to either file systems or publishing them as real-time streams, as
the case may be as depicted in Figure 5.7. One of the primary assumptions is end-users
would typically follow the above high-level model while specifying a Spark application.
This idea is used to guide the user and enforce the sequence of connecting components
such that every flow results into a compilable Spark driver program. The flow is captured
and represented as a directed acyclic graph (DAG) [6], where the start vertex represents
data read operations, branches are pathways for data transformations and end vertices repre-
sent data write operations. Any vertex in a branch must be compatible with the schema
produced by its immediate predecessor. Modelling of loops in the graphical flow are not
supported because the data abstractions output from each component are immutable.
Since Spark data abstractions like DataFrame, DStreams etc. are abstractions over RDD
so they are immutable like RDDs.

The DAG can have multiple start vertices, since users can read datasets from two different
IoT data sources, merge them and, then, run analytics on them. In short, the DAG stores
the type of graphical components used by the user and also their positional information,
both of which are necessary to generate a Spark application.

Method implementations of Spark operations that take a data abstraction schema as well
as user parameters as input are maintained which make use of one or more Spark APIs to
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do the data transformation, and return a modified data abstraction schema as the output.
Every vertex in the DAG typically corresponds to one Spark operation and, thus, to one
stand-alone method implementation.

It is interesting to mention here that, since the programming style, as well as execution
model of a Spark application, is different from those of actor based dataflow models,
which follow the flow-based programming paradigm and asynchronous message pass-
ing, additional auxiliary graphical components have been introduced to express a Spark
program from mashup tools. These are typically used for enforcing a strict sequence of
operations, e.g. when defining the order in pipeline operations of machine learning APIs
or for bridging datasets, like in join or merge operations. These need to be preserved in
the DAG as well. These vertices enforce a strict pathway of data transformation by over-
riding the asynchronous dataflow model and do not correspond to any Spark operation.
Additionally, the code generation begins lazily, i.e. when the end vertex of the DAG is
traversed.

The captured DAG is passed to a code generator, which first generates the necessary code
skeleton for initialising a Spark session and then closes the session at the end of the ap-
plication, to create the runnable Spark application. For the actual business logic of the
flow, it wires the method implementations of Spark operations by providing the data ab-
straction schema and user parameters as inputs. The only requirements for this wiring
process are that the data abstraction provided as an input is the same as the data ab-
straction of the output of the previous method, and the data abstraction schema must
be compatible. By compatibility, it is meant that the data abstraction schema from one
operation, for instance a DataFrame, has the necessary columns which the receiving op-
eration would make use of and the receiver expects the schema using the correct data
abstraction, i.e. DataFrame.

(ii) Suitable data abstraction. (addresses: [PS1→ SC1 & SC2]) For expressing a Spark
program in a flow-based programming paradigm, the most suitable data abstractions
for wiring together were selected (refer to the coloured tool boxes TB2 & TB3 in Sec-
tion 5.3.2). Users would typically drag different graphical components and wire them
together in the form of a flow. The chosen declarative APIs require some input and pro-
duce predictable outputs. Hence, these are an ideal choice as wiring components. From
the tool’s perspective, the input is a compatible schema and the output is a correspond-
ing altered schema. In contrast to this, supporting data-transformations based on RDDs
making use of user-defined functions (UDFs) would impose challenges that are difficult
to solve in a generic manner. As every UDF has tight type requirements, this would
introduce type validation problems from a tool’s perspective.

Then, the scope of the graphical components has been defined. The graphical compo-
nents do not represent a single Spark API but rather a set of APIs invoked in specific
order to perform a specific data-analytic operation. Since representing every Spark API
via a graphical component would involve wiring a large number of components for a
Spark program, the aforementioned design attempts to balance a programming tool’s
usefulness and usability.

From a high-level perspective, the process of programming Spark graphically consists
of validating the flow to ensure that it yields a compilable and runnable Spark applica-
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tion. Figure 5.8 illustrates the key concepts for creating a Spark job involving machine
learning algorithms or real-time analytics, by creating a unidirectional flow of connected
components/graphical blocks.

Table 5.3 lists the design decisions taken in the formulation of the conceptual approach
and how they solve the challenges SC1 - SC3.

Table 5.3: Design decisions
SC No. Challenge Solution How it solves the challenge ?

SC1 Design of
a modu-
lar Spark
Compo-
nent

1. Encapsulating
a set of Spark
APIs invoked
in specific or-
der to perform
a data-analytic
operation in
the form of a
modular compo-
nent along with
fine-tuning of
the operation via
user-supplied
parameters.

2. Representing the
Spark APIs in the
form of modular
components.

• Makes the graphical pro-
gramming easy and intuitive
where the user has to fo-
cus solely on specifying the
data transformation logic, i.e.
read, transform and eject the
results of data analytics, in
the form of wiring up of com-
ponents, along with customi-
sation of individual compo-
nents via parameter passing
and leaving all portions of the
Spark driver program not re-
lated with data transforma-
tion explicitly to be generated
by the system.

SC2 Data
Transfor-
mation
Approach

1. Selection of un-
typed APIs of
Spark making
use of DataFrame,
DStream and
Streaming
DataFrame data
abstractions.

• The untyped APIs detect syn-
tax errors at compile time,
provide columnar access to
data and support easy to use
APIs in a domain specific lan-
guage (coloured tool box TB2
& TB3). Manual inclusion of
checks in the conceptual ap-
proach to detect analytical er-
rors during the flow valida-
tion, e.g. accessing and us-
ing a non-existent columns in a
DataFrame.

Continued on next page
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Table 5.3 – continued from previous page
SC No. Challenge Solution How it solves the challenge ?

SC3 Design
of the
translator
model

1. Supporting auxil-
iary components
to express a
Spark program
in flow-based
programming
paradigm.

2. Maintaining
stand-alone
method imple-
mentation of
Spark APIs.

• The auxiliary components
bridge the difference in ex-
ecution model of Spark and
mashup tools (Section 5.8.2).

• The method invocation
technique is same for all
Spark components, hence it
is generic. For supporting
a new Spark API, the de-
veloper needs to add a new
stand-alone method imple-
mentation for it, thereby
making the approach easily
extensible.
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own configuration values.
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data-source component, a set of 
transformation components and 
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Internal DAG representation 
of User Flow
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Figure 5.8: High-level view of key concepts: designing of Spark jobs via graphical flows

5.6 Composing a Graphical Spark Flow

This section discusses how the conceptual approach works in details, i.e. how to com-
pose a graphical Spark flow, its validation to ensure such a flow generates a compilable
Spark application. A typical Spark application like any other Big Data processing appli-
cation consists of three essential stages, i.e. reading data from file systems or streaming
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sources, actual data transformation, writing the results of data analytics back to file sys-
tems or streaming sources as shown in Figure 5.7. However, an important question arises
here: What kind of graphical components would support such an application model and how
to develop such components? Figure 5.9 shows the high-level application model from a
developer’s perspective. It is evident from the figure that while the user focuses on join-
ing various graphical components to specify the data transformation logic, the developer
sees the same components as a bundled set of Spark APIs. These graphical modular com-
ponents internally correspond to the basic execution component used in a mashup tool,
for instance these correspond to an actor in aFlux which when instantiated invoke the set
of Spark APIs and result in the generation of a complete Spark application program (aka
Spark driver program).

Read
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Component
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Component

Component: basic unit
of execution in a mashup
tool

Read
Data

Transform
1

Transform
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a specific
data analytics
operation

Execution: Translation & 
Code Generation

Artefacts have:
1. Backend execution component
2. Corresponding frontend GUI composable component

Figure 5.9: Developer’s perspective for building Spark components for mashup tools

Every component takes a compatible data abstraction schema as input and produces a
modified schema of the same data abstraction as discussed in Section 5.5. It is intuitive
for the component developer to visualise the flow as a series of transformation of a spe-
cific Spark data abstraction schema. Inception of the flow begins by reading data/stream-
ing data from external source, these components introduce the data abstraction schema
to be used by later components in the flow. This is followed by components which accept
this schema and apply transformation on it to produce an altered schema as output. A
flow typically ends with a component which writes data to external storage or streaming
sink which consumes the schema and marks the end of the flow. The approach can be
broadly classified into three essential parts dealing specifically with: (i) Components, (ii)
Flow validation and (iii) Application generation. All these parts will be explained below
in separate sub-sections.
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5.6.1 Components

A ‘component’ is a basic unit of Spark flow composition. As discussed earlier, a compo-
nent basically encapsulates a set of Spark APIs invoked in a specific order to perform
a specific data analytics operation, e.g. reading data from a file or from a streaming
source like Kafka etc. Only declarative APIs are supported which take specific input and
produce a specific output. The APIs operating on DataFrame, DStream and Streaming
DataFrame data abstractions are supported which means the input to a component is an
initial schema and the output is a transformed schema of the same type.

A component is a critical element in the design since each component is a handle for
the end-user to communicate the business logic as well as configuration information to
the back-end. At the same time, a component serves to enforce the flow compositional
rules so that the final resultant flow always produces a compilable and runnable Spark
application. For supporting graphical Spark programming, these components have been
classified into different categories as explained below. These components are developed
by the developer of the graphical flow-based programming tool and used by the user of
such tools to program Spark graphically.

5.6.1.1 Categorisation of Components

To support generic modelling of graphical Spark flows in mashup tools, we identified the
different classes of APIs that exist within Spark in Section 5.4. Accordingly, the high-level
design decisions discussed above have been used to create different categories of compo-
nents for supporting graphical flow-based Spark programming. Figure 5.10 shows the
different kinds of components supported in aFlux for designing Spark jobs. One specific
challenge is dealing with multiple incoming connections to a component in a mashup
tool. Since in flow-based programming paradigm [121] of mashup tools, every compo-
nent executes on receiving a message from its preceding component and the order of mes-
sages is not preserved. But, in a Spark flow some components which may receive more
than one incoming connections require preservation of the order of messages received.
For such scenarios, special components called bridge components have been designed to
express the Spark sequenced operations in a flow-based programming paradigm.

There are basically five component types namely input, transformation, bridge, action and
executor. Components of these types form the vertices in the DAG. Input components
have no incoming connections and they read data from external sources into the run-time
environment. From the user’s perspective these start a Big-Data processing flow, i.e. they
are the first components in a flow and their output is consumed by other components.

From the mashup tool’s perspective, they introduce the schema to be used by succeed-
ing components in the flow. Transformation components are intermediate components
and represent operations on ingested data; they consume as well as produce an output
schema. Transformation APIs in Spark is designed to accept, at most, two compatible
schema variants, which means they can accept, at the most, two incoming connections;
they must also have at least one outgoing connection. Bridge components do not consume
or produce schema. Accordingly, they do not correspond to any method implementa-
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Modular
Spark 

Components

Input Transformation Bridge Action Executor

Class A Class B

Input
1..*

Transformation
1..2 1..*

Class A
1

Class B
1..* 1

1
Action

1 1

Executor
1..*

Figure 5.10: Classification of GUI components for supporting Spark in mashup tools

tion of Spark operation but are used to express the Spark sequenced operations (Sec-
tion 5.8.2) in a flow-based programming paradigm. For example, they can impose an
order in processing data coming from preceding transformations. There are two classes
of Bridge components namely ‘Class A’ and ‘Class B’. Class A components are used to
distinguish two incoming connections by annotating the connections with meta-data be-
fore being passed on to next component. Class B components impose order from among
any number of independent incoming transformation connections and assemble them
into a sequence by preserving order. Action components allow the user to save the trans-
formed data to external file systems or to stream it out to message distribution systems.
Finally, an executor component collects all the incoming connections from multiple ac-
tion components and adds abstractions related to Spark driver program. This has all
the data required to generate a Spark application after the executor component has been
triggered.

5.6.1.2 Key Attributes of a Component

A component which is the basic unit of a Spark flow has the following attributes:

(Data abstraction) colour denotes the data abstraction the component uses internally.
It is used to differentiate between the types of data abstractions of the encapsulated
APIs within the component actually work on. Since, different data abstractions are
supported, a flow should consist of only components of the same colour to produce
a compilable and runnable Spark application (Section 5.6.1.3).

Component category contains the unique category to which a component belongs, i.e.
either input, action, transformation or bridge etc.
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Unique name is used to identify the component when captured from a front-end user
flow and converted into an internal model for Spark application generation.

Configuration Panel allows users to supply the necessary parameter for its optimal
functioning.

Internal logic refers to the core functionality of the component, i.e. how it takes the
user supplied parameters, generates an invocation statement to invoke the stan-
dalone method implementation of the underlying Spark APIs, prepares and sends
a message to the next connected component in the flow.

Every Spark component can be viewed from two different perspectives, i.e. one from
the end-user perspective of using it in a graphical flow representing a Big Data analyt-
ics operation along with a configuration panel and other as a component instantiated as
an executable-unit in the run-time with pre-programmed attributes and embedded logic.
Figure 5.11 shows the composition of a Spark flow using the modular components. From
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Modular 
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 component

2. Prepared by the
component

…

Figure 5.11: Composition of a Spark flow using the modular components

the Figure, it can be seen that the user specifies configuration via a configuration panel
and specifies its incoming as well as outgoing connections. With that, the component
receives messages from its predecessors and parses the messages. It adds its positional
hierarchy data and sends the complete information to its successors and its own specific
information to be stored in the internal state. The positional hierarchy is also known
as sequences in flow-based programming paradigm [121] which is to enforce correct se-
quence of execution of components in a flow. In this context, positional hierarchy deter-
mines if a specific component can be used in a specific position in a flow.

Hence, every component interacts with the end-user designing the flow and also con-
tributes to creating an internal model of the user flow. All the components in a Spark
flow are validated based on their position in the flow, i.e. if they are allowed in a spe-
cific position in the flow, compatibility of the data abstractions and if the input schema is
compatible with them. For validation, the meta-data storing the category of every Spark
component is maintained and its list of permissible predecessors. If the validation is
passed, then, an internal model of the user flow is created from which the generation of
a runnable Spark application proceeds.
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5.6.1.3 Compositional Rules

Based on the classification of components, a Spark flow needs to adhere to the following
rules to generate a compilable and runnable Spark application:

1. Flow is unidirectional. Every branch in a flow begins with an input component,
followed by one or more transformation components which must lead to one and
only one action component.

2. Every flow must end with only one executor component and each action component
in the flow must be connected to the executor component.

3. Transformation components, which require incoming connections in specific order,
must be preceded directly by bridge component(s).

4. A component accepts an incoming connection(s) if and only if the schema derived
from the incoming connection(s) is valid against schema checks. This means that a
named column operated upon in a component is part of its incoming schema.

5. Each component internally uses one Spark data abstraction which is represented
by a uniform colour code. A flow composed of different coloured components, with
the exception of the executor component, is not accepted. This is done to sup-
port easy validation of a flow. For instance, in a streaming use case using DStream
data abstraction, when we require to use DataFrame APIs for specific functional-
ity like applying a ML model on streaming data which require interconversion of
data abstraction then, the component houses the interconversion algorithms inter-
nally but presents the use case context specific data abstraction for validation, i.e.
DStream, since the flow starts with a data loader component for loading datasets
from a streaming source using DStream abstraction.

Composability of Components Composability is a system design principle which deals
with the interrelation between different components of a system [164]. A system is said to
be composable when its different components can be assembled in various configurations
to satisfy a user requirement [35]. The important criteria for components of a system to
be composable are that they should be independent or self-contained and stateless [123].
A composable system is easier to validate because of its consistency to achieve a certain
goal [123].

In the context of this work, we have outlined that the components designed are modular,
i.e. self-contained and work on taking a data abstraction schema as input and produce a
modified schema of a data abstraction as output, i.e. stateless. The graphical components
when composed following the compositional rules enumerated above, such that they pass the
flow validation to yield a compilable and runnable Spark program are said to be composable.

Every Spark component has an unique internal name and an associated standalone
method implementation for an analytic operation. Meta-data of this information are
maintained on the tool level. The code-generator receives the DAG as input and gener-
ates the required static code, e.g. starting a Spark session, inclusion of Java packages.
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Then, it checks the vertex in the DAG and determines its category. If it is an input or
transformation vertex, then, it uses the vertex’s internal name to determine its associated
method implementation. It calls the method via Java Reflection, passing the data ab-
straction schema and the vertex’s user-supplied configuration values as parameters. This
process is done iteratively for all vertices in the DAG until the code generator reaches the
end vertices, which indicate actions and terminate the flow. Here, it simply calls the ap-
propriate method to publish the data and closes the Spark session. The resulting Java file
is compiled into a runnable Spark application and deployed on a cluster. Based on this
conceptual approach, Spark SQL, Spark ML, Spark Structured Streaming components
have been prototyped in aFlux based on the DataFrame interface and Spark Streaming
components based on the DStream interface.

5.6.2 Validation of a Spark Flow

Validation of a user created graphical Spark flow is the first step before generating the
Spark application program. It is to ensure that the components used in the flow use the
compatible data abstraction and their positional hierarchy in the flow, i.e. a component can
consume the output produced by its predecessor, ensures the generation of a compilable and
runnable Spark application. By validation of a flow, it is meant:

• The flow first loads the datasets, then has transformation components and the last
components are the action components to return the output.

• The transformation components used after loading of datasets do not make use of
any named column name which is missing in the schema of the loaded dataset, i.e.
the first transformation component can consume the schema produced by its data
loader component.

• The schema of the dataset modified by a transformation component can indeed be
processed by the succeeding transformation component/action component.

• The components use a uniform data abstraction of Spark.

If the validation fails then the user must correct the flow and re-deploy it. If a flow
successfully passes the validation phase, it is sent to the next stage,: i.e. representing the
flow in an internal model to be used for Spark driver program generation. Figure 5.12
shows the validation for a flow which reads a CSV file, selects some fields and displays
the results. Algorithm 1 shows the flow validation steps.
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method.

// prepare Java statement for reading into a DataFrame
 if ( componentCategory . equals ( "ReadDataFrame " ) {
statement = " Dataset <Row> "+ nameInDag+" = "+nameInDag+ " _readDataFrame 
( sparkSession , "+" \" "+nameInDag+" \" "+" , featureProp ) " ;
 }

Message Part 2
1. Identify the user 
supplied parameters.
2. Add the params. to a 
common property file 
with unique tag names.

Common Property File: All vertices append their user 
parameters here.

FileToDataFrame1-
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Generic invocation statement for invoking
a wrapper method (Section 5.8.4)

Figure 5.13: Internal model representation of a Spark flow: Steps. Explanation in sub-
section 5.6.3. (contd. on Figure 5.14)
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Internal Model Generation Steps:
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}
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2. Add the params. to a 
common property file 
with unique tag names.
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Figure 5.14: Internal model representation of a Spark flow: Steps. Explanation in sub-
section 5.6.3. (contd. from Figure 5.13, contd. on Figure 5.15)

Internal Model Generation Steps:
1. For the executor end vertex, statements to start a spark session and 
    extract properties from the created property file by other vertices is prepared.
2. It assembles all the previous messages and we have a mini-collection of Java
    statements.

// prepare Java statement for extracting user supplied parameters from the property file
statement1 = " Properties featureProp = new Properties(); " + featureProp = 
    extractProperties(“path to created property file“);" ;

// prepare Java statement for starting a Spark Session
statement2 = " SparkSession sparksession = getSparkSession(“sessionname”, featureProp " ;
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// prepare Java statement for reading into a DataFrame - From Root Node
 if ( componentCategory . equals ( "ReadDataFrame " ) {
  statement = " Dataset <Row> "+ nameInDag+" = "+nameInDag+ " _readDataFrame ( sparkSession , "+" \" "+nameInDag+" \" "+" , featureProp ) " ;
 }
 // prepare Java statement for transforming a DataFrame - From Select Node
 if ( componentCategory . equals ( " TransformDataFrame " ) {
  statement = " Dataset <Row> "+ nameInDag+" = "+nameInDag+ " _transformDataFrame (
  sparkSession , "+" \" "+nameInDag+" \" "+" , featureProp , "+parents . get ( 0 ) +" ) " ;
 }
 // prepare Java statement for action on a DataFrame - From Display Node
 if ( componentCategory . equals ( " ActiononDataFrame " ) {
  statement = nameInDag+" _actionOnDataFrame ( sparkSession , 

"+" \" "+nameInDag+" \" "+ " , featureProp , "+parents . get ( 0 ) +" ) " ;
  }
 // prepare Java statement for extracting user supplied parameters from the property file - From Execute Node
 statement1 = " Properties featureProp = new Properties(); " + “ featureProp = 
    extractProperties(“path to created property file“);" ;
 // prepare Java statement for starting a Spark Session - From Execute Node
 statement2 = " SparkSession sparksession = getSparkSession(“sessionname”, featureProp " ;

Final collection of Java 
statements for the Spark Flow: 
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Message Part 1
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2. Prepare invocation 
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method.
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1. Identify the user 
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Figure 5.15: Internal model representation of a Spark flow: Steps. Explanation in sub-
section 5.6.3. (contd. from Figure 5.14)
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Algorithm 1: validation steps of a Spark flow

1. The user flow is checked for no cycles and represented as a topologically
sorted DAG. If cycles are present, then the validation fails.

2. For the start vertex v1, the following operations are performed:

• Note the data abstraction: vda1 .

• Check the category: If vcat1 , input, where cat ∈
{input,action, transf ormation,executor,bridge}, then the validation
fails.

• Note the input and output schema: vsin1 and vsout1 , where sin = sout ∈
{DataFrame,DStream,StreamingDataFrame}.

• Mark current vertex as ‘visited’.

3. Traverse the next unvisited vertex except the end vertex. Perform the follow-
ing checks:

• Check the compatibility of data abstraction with its immediate prede-
cessor’s: if vdai , v

da
i−1, then the validation fails.

• Check the category: If vcati , transf ormation or vcati , action, then the
validation fails.

• If vcati = transf ormation and it specifies ordering of data-flow then a
counter is started, i.e. count = 1

– Process the next connected vertex together with current vertex, in-
crease the counter, i.e. count = count+ 1.

– If vcati+1 , bridge, then the validation fails.

– Mark current vertex as ‘visited’.

• Check compatibility with predecessor’s schema: If vsouti−1 , vsini , then the
validation fails.

• Note the output schema: vsouti .

• Mark current vertex as ‘visited’.

4. For the end vertex vn:

• Check the category: If vcatn , executor, then the validation fails.

• Check category of its connected predecessor: If vcatn−1 , action, then the
validation fails.

5.6.3 Generation of the Internal Model

Once the validation process has been successful, the flow is deployed in the runtime
environment, therefore an execution unit of the implementing tool is instantiated for
every graphical component used in the flow and the execution follows starts from the first
component of the flow. In the run-time environment, as the components execute a DAG
is regenerated. But this DAG not only captures the user flow but additional information
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is attached to every vertex during its creation, similar to intermediate code generation
step in case of compilers [6].

Message Passing The components on execution rely on message passing. This mes-
sage contains how to invoke the corresponding component’s standalone method imple-
mentation of Spark APIs and the list of user parameters that should be passed while
invoking it. The message also helps all successors to know the output of their prede-
cessor and in turn create their invocation statements, append to the message and pass it
on. Therefore, every vertex during its execution creates a message for all its connected
successors which has two distinct parts:

Message part 1: contains the generic method invocation statement The compo-
nent in its ‘internal logic’ has the necessary code to check the category of the
component. Accordingly, Java statements to invoke the standalone method imple-
mentation of the encapsulated Spark APIs via reflection [106, 104] are added for
every vertex. These Java statements form the main methods in Spark Driver pro-
gram. Structure of Java statements for different components are pre-determined
based on the category of the component, i.e. whether they represent input, trans-
formation, or action components (Section 5.4) and the data abstraction used, i.e.
DataFrame, DStream or Streaming DataFrame. These Java statements form the
first part of the message.

Message part 2: contains the list of user-supplied parameters for the component

Secondly, the component checks the user-supplied parameters and creates a prop-
erty file [165] to store them. It uses the unique name of the component, as every
component has one as its essential attributes, and the property name to create a
tag for every user parameter. This assumes the following form: <uniqueName-
fieldName=user-supplied values>. The first component creates the property file and
other components in the flow use the same file to append their values. The second
message contains the path of the property file and its unique tag to access its
user-supplied parameters.

The component combines both message parts and stores them in the vertex of the DAG
and it also sends as a message to all its successors. The successor components use this
information to create their message, store it, as well as append their message to the orig-
inal message and pass it on. The last component which is the ‘executor’ component adds
Java statements to create a Spark session within which other Spark operations can be in-
voked and also create a generic statement to access the user-supplied parameters from
the property file. Lastly, it assembles all the Java statements of all the components of
the flow to create a combined list of Java statements to invoke the generic method im-
plementation of the Spark operations represented by the individual components in the
flow. Figure 5.13, 5.14 and 5.15 illustrate the steps of the internal model generation of a
Spark flow. The example uses a flow which reads data from a CSV file, selects some fields
of data and displays them. In Figure 5.15, the final assembled list of Java statements is
shown in the form of a green-coloured box which is the internal model representation of
the user created Spark flow.
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5.6.4 Generation of Spark Driver Program

After the preparation of the internal model of a Spark flow, it can be used to generate a
complete Spark driver program.

In the internal model, each vertex has contributed a Java statement and all these have
been assembled by the last vertex of the DAG, i.e. which corresponds to the execute com-
ponent of the user flow. These collection of statements become the statements within
the main method of the Spark driver program. API based code generator is supplied with
these prepared statements for producing a Spark application in Java programming lan-
guage [146]. The internal details of how requisite Spark libraries are added to the final
driver program and the generic implementation of Spark methods corresponding to each
component are invoked using the Java statements from the internal model have been ex-
plained in Section 5.8.

5.7 SparFlo: A Subset of Spark APIs Bundled as Modular

Components

Spark offers many different libraries in its ecosystem accessible either via RDD based pro-
gramming approach or invocation via APIs working on different data abstractions like
DataFrame, DStreams etc. The manual development of Spark application involves inter-
action with these elements. To support development of Spark applications via graphical
flow-based programming more abstraction is necessary. With the approach described in
the chapter, a subset of Spark APIs operating on DataFrame and DStream abstractions
have been selected (coloured tool box TB2) which are compatible with the flow-based
programming paradigm.

‘SparFlo’ is a library consisting of modular (Section 5.2) composable (Section 5.6.1.3)
components. The components in SparFlo bundle a set of Spark APIs from the selected
subset of Spark APIs which are executed in a specific order to perform one data analytic
operation. By modularity, we mean that every component representing a set of Spark
APIs has everything necessary within it to achieve a desired functionality and is inde-
pendent of other components, i.e. in this context perform one data analytics operation
by taking only some user-supplied parameter as input for customisation of the data ana-
lytics operation. These modular components are composable when composed confirming
to the flow compositional rules discussed in Section 5.6.1.3. The components of SparFlo
can then be expressed as compositional units in a mashup tool, for instance they have
been expressed as actors in aFlux (Section 5.8).

Additional compositional units are sometimes necessary to develop graphical flow-based
Spark programs using the SparFlo components. This happens when the execution se-
mantics of the implementing graphical flow-based tool follows a non-sequential execu-
tion model, for instance, bridge components have been developed to express pipelined
operations during a machine learning model creation in aFlux (Section 5.8.2). Such addi-
tional compositional units do not form part of SparFlo but are implementation specific.
This is because if the implementing tool follows a sequential flow-based programming
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paradigm then additional compositional units may not be necessary. In short, SparFlo is
a component library using a subset of Spark APIs which can be easily integrated in graphical
tools based on flow-based programming paradigm. Figure 5.16 illustrates the elements and
characteristics of SparFlo.

1. GUI components following actor semantics
2. Modular in design
3. Flow-based programming paradigm
4. User connects several components to create an application
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Figure 5.16: SparFlo: A library of modular composable components using a subset of Spark
APIs

5.7.1 Extensibility: Inclusion of new/forthcoming Spark APIs

A new/forthcoming Spark API can be modelled as a SparFlo component to be used in
a flow-based tool like aFlux and auto-generate a runnable Spark program using the ap-
proach described in Section 5.5, iff :

• The new Spark transformation is accessible via an untyped API (Section 5.3.1).

• It must use either the DataFrame, DStream or Streaming DataFrame data abstraction
(coloured tool box TB2).

For example, to model a new component called ‘StreamDFRunningAverage’ in SparFlo
and implement it in aFlux which supports running average computations in Spark Struc-
tured Streaming, the following analysis, divided into two broad categories, are to be un-
dertaken from a developer’s perspective:

API Analysis Analysis of the APIs to support such a transformation component, i.e.
if it has an untyped API and its internal data-abstraction is either DataFrame,
DStream or Streaming DataFrame. In this case, this transformation uses Stream-
ing DataFrame and has an untyped API.
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Component Analysis In order to support a new component, its category needs to be de-
termined, i.e. whether its an input, transformation or action component. In this
case, it is a transformation component. A list of valid predecessors and successors
for the transformation component needs to be determined for supporting valida-
tion when the component is used in a flow.

After the analysis, the development activities for supporting the component within aFlux
are again divided into two categories as below:

Development of a wrapper method Once the Spark APIs for the transformation have
been identified, the Splux library containing generic method implementation of all
Spark APIs needs to be extended. A new generic method implementation for the
new Spark API to execute running average operation on streaming data in Spark
run-time environment should be added which can be invoked by reflection tech-
nique during auto-generation of Spark driver program in aFlux.

Component development In case of aFlux, a new actor representing the transformation
component needs to be implemented with the following structural definitions:

• Component category: This component belongs to transformation category of
aFlux components as defined in Section 5.6. The category helps decide the po-
sitional hierarchy of the component in a flow which is required for validation
of the flow. Since, this is a transformation component hence, this can neither
be the first component nor the last component in a flow.

• Colour: The component should have the colour code representing the data-
abstraction it uses internally. Here, its colour code should permit the user to
know that it uses Streaming DataFrame internally.

• Mapping to API type: This component uses Spark APIs which belong to
‘Transformation Type A’ class of APIs. Hence, its mapping to API type is ‘Trans-
formDataFrame’ as indicated in Table 5.4 which would determine its generic
invocation statement used in the internal model to invoke its corresponding
wrapper method.

• Cardinality of Incoming connections: The number of incoming connections
for this component is one. In case, it is more than one then an internal timer
needs to be implemented to wait for all messages from the component’s pre-
decessors to arrive before starting the execution.

• Message/Schema checks: The component which is an executable-unit must in-
clude checks to ascertain the schema received as message from its predecessor
is valid and it can work upon it to bring about a successful transformation.

• Representation in the internal model: Since ‘StreamDFRunningAverage’ is a
transformation component, hence it must contribute to the internal model by
producing a unique name and adding the generic Java statement to invoke its
wrapper method via reflection.
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• User Configurable Properties: All configurable parameters of the API are
made available to the user for customisation.

With this approach, any new API of Spark fulfilling the conditions listed can be added to
SparFlo and programmed in mashup tools via the approach described to auto-generate a
compilable and runnable Spark driver program.

5.7.2 Applicability

The approach described is extensible to accommodate inclusion of newer Spark APIs
and can be used to support flow-based Spark programming, subject to the following
assumptions as discussed below:

Incompatible data abstraction or API type Spark functionalities accessible via declar-
ative untyped APIs making use of either the DataFrame, DStream or Streaming
DataFrame data abstractions are supported and can be represented as modular
components for creating Spark flows. Typed APIs using Dataset are not supported
as indicated in Figure 5.6. It is not possible to support data-transformations based
on user-defined functions (UDFs) and RDDs as it goes beyond the dimensions of
this thesis work (coloured tool boxes TB1 & TB2).

Restrictions in flow design Within the selection of Spark APIs and functionalities,
there are restrictions on the kind of flow which can be composed to generate a
compilable and runnable Spark driver program. Broadly, we have classified the a
Spark flow into 3 kinds: (i) unidirectional flows: these flows flow in a single direction
and have a start and an end point. If the components used in such a flow follow
their positional hierarchy and other validation requirements, then such a flow is
permitted in the system, (ii) flows involving merges & distribution of dataset: these
flows typically include merging of datasets coming from different data sources and
distributing of result sets from a transformation component to carry out different
kind of analytics. Such flows are supported, iff, all merges and distributions path-
ways must be connected to the last component of the flow which is basically the
executor component and (iii) flows with feedback loops: these flows typically have a
connection to one of their previous components in the positional hierarchy of the
flow. Such flows are not supported by the approach described here.

5.8 Implementation of the Conceptual Approach

In this section, we describe the various components from SparFlo implemented in or-
der to realise flow-based Spark programming. Further, we describe the workings of the
‘bridge’ components which help in expressing specific sequenced operations in Spark,
like the Pipeline API for instance, in flow-based programming paradigms. Additionally,
we zoom-in into the workings of the conceptual approach to generate a Spark driver
program from a user created flow, i.e. the code generation aspects of the conceptual
approach.
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5.8.1 Components Implemented

To illustrate the workings of the approach and specific to the use-cases as discussed in
Section 5.9, components belonging to the Spark SQL, Spark ML, Spark Streaming and
Spark Structured Streaming have been implemented. Figures 5.17 and 5.18 list some
of the implemented components for the user to create a Spark flow graphically. The
figures also list their intended functionality as well as classify the components as per the
categorisation of components discussed in Section 5.6 and Figure 5.10. The Spark SQL
and Spark ML components use the DataFrame data abstractions of Spark while Spark
Streaming uses DStream and Spark Structured Streaming relies on Streaming DataFrame
respectively.
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Figure 5.17: Spark components for aFlux (contd. on Figure 5.18)

5.8.2 Supporting Sequenced Spark Transformations in Flow based

Programming Paradigm

In a flow based programming paradigm, the control flows from one component to an-
other from start to end as connected in the flow. In an actor-model based flow program-
ming paradigm, each component reacts on receipt of a message in its mailbox and passing
its output to the next connected component. The messages received by a component in
its mailbox are processed one at a time. This form of execution style is not conducive
to support specific Spark operations which must be executed in a sequence. To be more
specific, each actor has one only mailbox and all messages from other connected compo-
nents arrive in the same mailbox and all messages are processed with equal priority in the
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Figure 5.18: Spark components for aFlux (contd. from Figure 5.17)

order of their arrival. Special handling is required in case of multiple incoming connec-
tions from components belonging to same component category which require ordering.
Special components called ‘bridge components’ are used to order the arrival of message in
an actor’s mailbox so that they are processed in a sequence amicable to the way Spark
APIs are invoked when used via manual programming. The bridge components are of
two kinds:

Class A These components are used to annotate the messages coming from two different
pathways to indicate the order of processing. A typical example is joining data from
two branches which introduces two incoming connections with equal or different
priority. Spark join operations are similar to SQL joins where only in the case of
an inner join, the two data sources have equal priority, i.e. applying join on dataset
1 with dataset 2 or vice-versa always yields the same result. However, in case of
an outer join, the position in join is necessary for the operation, i.e. the order of
processing is vital to perform either join on dataset 1 with dataset 2 or vice-versa.
The ‘PrepareJoin’ component collects messages from two incoming connections and
annotates them with the order of processing before passing it on to the component
where the actual join operation is performed i.e the ‘JoinDF’ component.

Class B These components impose order in the execution of many transformation con-
nections and assemble them into a sequenced operation. A typical scenario would
be creation of a machine learning model which follows a specific sequence of oper-
ations. Accordingly, the ‘PreparePipeline’ component accepts incoming connections
and arranges them in a specific order as specified by the end-user.
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Figure 5.19 illustrates the working of the two different kinds of bridge components.
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Figure 5.19: Bridge components: working details

5.8.3 Components: Key Properties

A component which is internally instantiated into an actor has some properties defined
by the developer in addition to encapsulating a data analytics operation in the form of
a set of Spark APIs. These properties are necessary for correct working of components.
These are not visible to the user of the components while designing a graphical Spark
flow. These properties include:

Category Every component belongs to a category as defined in Section 5.6 which defines
its positional hierarchy in a Spark flow. For example, incoming connections to a
component belonging to action category can only come from components belonging
to either transformation or input category.

Mapping to API type Every component maintains a mapping between its category and
the type of Spark API it represents as listed in Table 5.4. This is also known as
the class of the component. This is essential in the creation of the internal model
representation of a user flow, i.e. creation of invocation statements which follow a
generic style specific to every Spark API type. Spark APIs belonging to input, ac-
tion, transformation - Type A, transformation - Type B and transformation - Type
C have a corresponding class of implementing components. Since Spark APIs be-
longing to transformation - Type D do not have common method signature and
therefore difficult to frame generic invocation statements without compromising
the generalisability of the approach are not supported. Therefore, no component
class maps to transformation - Type D of Spark APIs.

Cardinality of incoming connections The cardinality of incoming connections for ev-
ery component is a feature inherited from the component category. Those compo-
nents which accept more than one incoming connections must implement a timer
to wait for all the incoming messages to arrive before starting their execution since
actor model relies on asynchronous message handling. Some of the components
require proper ordering of messages before processing them. For instance, the
‘PreparePipeline’ component of bridge class B category which accepts more than
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one incoming connection during its execution implements a timer to wait for all
incoming messages to arrive before processing them.

List of valid predecessors Every component has a list of predecessors making use of
the same data abstraction of Spark. This is vital to enforce the flow compositional
rules while using a component, i.e. deciding the correctness of its positional hierar-
chy in a flow. The ‘list of valid predecessors’ ensure that the component can accept the
schema of its preceding component and its output produces a schema acceptable
for its successor components in the flow.

Message content The message received by every component from its predecessor
must be complete and sufficient for its processing needs. For instance, the ‘Pre-
parePipeline’ component needs the positional hierarchy of all its predecessors before
starting its execution. Hence, all valid predecessors of ‘PreparePipeline’ component
must include this vital information in its output message.

Message/Schema checks Since, the message received by every component is a modi-
fied schema therefore a component must perform some schema checks to ensure
its indeed correct and processing it will not lead to generation of a message incom-
patible with its successors or lead to execution failures. Essential conditions for
the incoming schema/message must be defined within each component in accor-
dance to the specifications of the Spark API which the component is representing.
For instance, the ‘FeatureAssembler’ component makes use of the ‘VectorAssembler’
API from Spark ML library. VectorAssembler combines two or more features of
numeric SQL data-types, i.e. either an integer, a double or a float to produce a new
field of vector data type. This attribute does not apply to bridge components as they
typically impose ordering of connections and do not alter and produce schema.

Contribution to internal model Contribution to internal model from a component oc-
curs in the form of adding an invocation statement to invoke the standalone method
implementation of the data analytic operation it represents. Apart from bridge
components every other component contributes to the internal model.

SN Component Class Component Category Spark API Classification

1 ReadDataFrame Input Input
2 ReadDStream Input Input
3 TransformDataFrame Transformation Transformation Type A
4 TransformDStream Transformation Transformation Type A
5 TransformDataFrames Transformation Transformation Type B
6 ActionOnDataFrame Action Action

Table 5.4: Example: mapping of component category→ Spark API type
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5.8.4 Code Generation : Internal Model→ Spark Driver Program

To explain how the ‘internal model’ representation of a Spark flow created by the user is
used to generate a complete Spark driver program, it is imperative to describe the inter-
nal mappings used in a component for such a purpose first. It has already been discussed
that the components which the end-user uses to create a Spark flow on the front-end es-
sentially abstract a set of Spark APIs to represent a specific data analytics operation.
In other words, every component used by the end-user on the front-end corresponds to
a generic implementation of the data analytic operation it represents making use of a
specific set of Spark APIs internally. Table 5.5 lists an example list of the correspon-
dence between different components to their encapsulated Spark APIs. For example, the
component ‘FileToDataFrame’ internally corresponds to a data analytic operation method
which makes use of the ‘DataFrameReader’ API of Spark SQL to read data from a file and
create a DataFrame out of it. During the creation of internal model representation of a
user flow, each component used in the flow creates an invocation statement to invoke its
corresponding generic method implementation by passing the user supplied configura-
tion as parameters.

In order to make the code generation process as generic as possible, such generic method
implementations making use of one or more Spark APIs are maintained. These are called
as ‘wrapper methods’. Listing A.1 shows a wrapper method to read data from a file and
create a DataFrame out of it. The ‘FileToDataFrame’ component essentially corresponds
to this wrapper method. Potential parameters to this wrapper method include file name,
file path, file format etc. All such ‘wrapper methods’ are bundled into a library called as
‘Splux’. Each component used by the user in a flow instantiates into an actor on deploy-
ment. Each actor parses the user supplied configuration values and appends them to a
property file and prepares an invocation statement to invoke the corresponding wrapper
method in Splux. The collection of all such invocation statements contributed by vari-
ous components of the flow are used in the main method of the Spark driver program
which essentially invokes the wrapper method during execution passing it the user sup-
plied configuration values as parameters. Figure 5.20 shows the invocation of a wrapper
method in Splux library from the main method of the Spark driver program. Every com-
ponent used in a flow produces an invocation statement for its wrapper method. These
invocation statements are pre-determined based on the category of the component, i.e.
whether they represent input, transformation, or action components (Section 5.4) and
the data abstraction used, i.e. DataFrame, DStream or Streaming DataFrame, thereby
forming the ‘component class’ (Table 5.4). To reiterate, the wrapper method generic in-
vocation statement for a component is specific to its class. These invocation statements
form the main method in Spark Driver program.

The wrapper methods contained in Splux are invoked via reflection. From an implemen-
tation perspective, JavaPoet [94], an API based code generator is used to assemble the
reflection statements to generate a Spark driver program. Listing A.2 lists the generated
Spark driver program to read datasets from a file, to filter specific items and to display
them.
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SN Component Spark Library Spark API(s)

1 FileToDataFrame Spark SQL DataFrameReader
2 SelectFromDF Spark SQL Select
3 JoinDF Spark SQL Join
4 PrepareJoin - -
5 ShowDF Spark SQL Show
6 DataFrameToFile Spark SQL DataFrameWriter
7 KMeansCluster Spark ML PipelineStage
8 FeatureAssembler Spark ML PipelineStage
9 PreparePipeline - -

10 ProduceModel Spark ML Pipeline, ModelWriter
11 ApplyModelOnDF Spark ML ModelReader
12 KafkaToDStream Spark Streaming KafkaReader
13 ApplyModelOnDStream Spark Streaming,

Spark ML
ForEachRDD, DataFrame,
ModelReader

14 DStreamToKafka Spark Streaming,
Spark ML

ForEachRDD, DataFrame,
ModelReader

15 KafkaToStreamDF Spark Structured
Streaming

StreamReader

16 FileToStreamDF Spark Structured
Streaming

StreamReader

17 StreamDFTokafka Spark Structured
Streaming

StreamWriter

18 StreamDFToFile Spark Structured
Streaming

StreamWriter

19 StreamDFToWindowCount Spark Structured
Streaming

Watermark,Window,
GroupBy, Count

20 StreamDFToRunningCount Spark Structured
Streaming

GroupBy, Count

21 SparkExecute All Application Context

Table 5.5: Example: mapping of modular components→ Spark API(s)

5.9 Evaluation via Examples

The evaluation scenario has been designed to capture the modularity of the approach, code-
abstraction from end-user, automatic handling of Spark session initialisation code, intercon-
version of data between different data abstractions of Spark as well as ease of creating quick
Spark jobs by providing high-level abstraction via graphical flow-based programming. Here,
an example of taxi fleet management with three use cases has been considered: (i) pro-
ducing a machine-learning model to learn traffic conditions, (ii) applying the model to
streaming data to make decisions, (iii) performing aggregations on streaming data. In all
three use cases, the case of manually programming them in Java has been compared with
the specification of graphical flows using Spark components of aFlux.
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Figure 5.20: Invocation of generic Splux methods from the Spark driver program

Evaluation Scenario The dataset in a traffic scenario consists of information that was
published by a vehicle at the beginning of a new trip. The dataset contains three ele-
ments: time-stamp, latitude and longitude. The time-stamp records the time at which
a new trip commenced; latitude and longitude identify the geographic coordinates from
where the new trip commenced. The goal is to devise a machine-learning based rush-
hour fleet management solution to reduce waiting time for customers using Spark. Ma-
chine learning is employed to partition the city into sectors using historical data. Thus,
the model prepared remains on the disk, which is then applied to real-time streaming
data. Finally, stream aggregations, such as window count and running count based on
event time, are applied to streaming data to receive real-time updates. The idea is to
demonstrate how users can develop Spark applications for three different Spark libraries
via aFlux vis-a-vis programming the same solution manually. Development of a Spark
application consists of identifying relevant Spark libraries and using relevant APIs to
build the solution. For example, a KMeans Algorithm is a good choice for identifying
trip start hotspots.

In the dataset, <latitude,longitude> can be used as features for training a KMeans algo-
rithm. The model trained on historical data should be applied to real-time data. The
Pipeline API from the Spark ML library is a good choice for building a re-usable model
which can persist on external file systems. Since Spark ML is built on the Spark SQL
engine, using DataFrame API is the natural choice for this application. Spark libraries,
which handle streaming data, support applying persisting models on real-time data and
support event-time based window aggregations on streaming data. Spark Structured
Streaming is a good choice for performing aggregations as it supports event-time based
windowed processing. However, the programming model of Spark Structured Streaming
is not compatible with Spark machine learning libraries. Hence, Spark Streaming must
be used to apply the created model to real-time data and Spark Structured Streaming
must be used to perform aggregations.
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Therefore, we selected: (i) Spark ML for developing re-usable K-Means Model, (ii) Spark
Streaming for applying model on real-time data and (iii) Spark Structured Streaming: for
applying aggregations on real-time data.

5.9.1 Use Case 1: Batch Processing: Producing a Machine Learning Model

To understand the approach and how it provides advantages, we begin by devising a
Spark application via a manual programming approach first. The relevant Spark libraries
for building an application which produces a machine learning model from datasets have
been identified and has been described in the following section. All the code listings for
this use case are in Appendix A.

5.9.1.1 Approach: Manual Programming via Java

The complete code for producing a machine learning model as discussed in this section
via manual Java programming is shown in Listing A.3. The Spark application built using
Spark ML chiefly consists of the following stages:

UC1-S1 Creating Application Context A batch processing Spark application begins by
first initialising a Spark session. The Spark session is the handle for Spark driver to
orchestrate different tasks of the application like reading datasets, analysing them
and returning results of analytics etc. Once the Spark session has been created,
data is read into the Spark run-time environment using the session handle. Line 2
in the code listing achieves this.

UC1-S2 Reading Datasets Data is read using Reader function of the SparkSession.
DataFrame API views data as a table. Hence, schema must be supplied to it. Data
in CSV format is read in this particular example. Line 4-16 in the code listing
show how to read data into run-time environment using DataFrame reader API.
A schema is defined for the dataset and supplied to the DataFrame reader which
reads data into Spark run-time environment and produces a DataFrame from it.

UC1-S3 Data Transformations Here, ML algorithms are applied as data transforma-
tions to produce a KMeans model fitted on the dataset. First, the data is prepared
for processing. ‘latitude’ and ‘longitude’ are selected as features for training of the
KMeans algorithm. VectorAssembler API creates a field of Vector Data type out of
one or more fields present in the DataFrame. Pipeline API is used to prepare a data
analytics sequence: VectorAssembler for data preparation followed by KMeans for
data analysis. The name ‘features’ has been chosen as the name for feature Vector
and ‘prediction’ as the name for the field produced by the KMeans algorithm. The
lines 19-41 show the instantiation of the objects which are fed to the Pipeline API,
which in turn is used to produce a model. Line 41 shows the production of a model
fitted on the input data. PipelineModel writer API has been used to persist the
model on file system for later application.

UC1-S4 Invocation of Actions Next thing is to display the transformed data. So trans-
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formation on the dataset has been invoked using transform API. This transforma-
tion is executed only when an action API is invoked on the transformed DataFrame
as show in line 44. Show API has been used to display the transformed data on the
console.

UC1-S5 Terminating Application Context Lastly, the Spark driver is terminated by in-
voking stop functionality of Spark session as show in line 46.

5.9.1.2 Approach: Graphical Programming via aFlux

1 FileToDataFrame: Config Panel

1 

2

3

2 FeatureAssembler: Config Panel 3 KMeansCluster: Config Panel

UC1-SC1
UC1-SC5

UC1-SC2

UC1-SC4

UC1-SC3

UC1-SC3

UC1-SC3

UC1-SC3

Figure 5.21: Spark flow in aFlux for producing machine learning model

The approach via aFlux enables the user to create the same Spark program by connecting
graphical components together, leading to auto-generation of the Spark driver program.
Figure 5.21 illustrates an aFlux flow for producing machine learning model using Spark
ML library of Spark. The components used are: (i) the ‘FiletoDataFrame’ component
which has only one output port and no input port. This component belongs to input
category and encapsulates input category of Spark APIs as classified in Section 5.4, (ii)
the ‘FeatureAssembler’ component which has one input as well as one output port. This
belongs to transformation category and encapsulates transformation - Type B category
of Spark APIs, (iii) the ‘KMeansCluster’ component which has one input as well as one
output port. This belongs to transformation category and encapsulates transformation
- Type A category of Spark APIs, (iv) the ‘PreparePipeline’ component which has two
input ports and one output port. This belongs to bridge category and does not encapsu-
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late any Spark APIs, (v) the ‘Produce Model’ component which has two input and one
output port. This belongs to transformation category and encapsulates transformation -
Type C category of Spark APIs, (vi) the ‘ShowDF’ component which has only one input
port and no output port. This component belongs to action category and encapsulates
action category of Spark APIs and (vii) the ‘Spark Execute’ component to mark the end
of the flow to begin flow validation and code generation. The wiring of components is in
correspondence to the stages described in manual programming:

UC1-S1 Creating Application Context The last aFlux component ‘Spark Execute’
marks the end of the graphical flow. Its encounter in the flow conveys a spe-
cial meaning to the translator, i.e. to generate the Spark session initialisation, as
well as the termination codes necessary for the Spark application.

UC1-S2 Reading Datasets The first aFlux component in the flow, i.e. ‘FiletoDataFrame’
has a configuration panel where the user can specify the file type, its location and
what fields to read. This component abstracts away the code necessary to read the
file and to convert it to a DataFrame.

UC1-S3 Data Transformations The ‘FeatureAssembler’ and ‘KMeansCluster’ compo-
nents can be used to prepare data and apply machine learning algorithm on the
prepared data. The component ‘FiletoDataFrame’ has been wired up with the ‘Fea-
tureAssembler’ component which in turn has been wired up with ‘KMeansClus-
ter’. Since a pipeline needs to be prepared with these components, they both have
been wired to ‘PreparePipeline’ component. In configuration panel of both ‘Fea-
tureAssembler’ and ‘KMeansCluster’, their respective position in pipeline must be
specified. Figure 5.21 illustrates the configuration panels of ‘FeatureAssembler’
and ‘KMeansCluster’. Finally, the model is prepared with the ‘Produce Model’
component and the result is saved.

UC1-S4 Invocation of Actions To display the dataset that was transformed by the ‘Pro-
duceModel’, it is connected to the ‘ShowDF’, which is an action component.

UC1-S5 Terminating Application Context The ‘Spark Execute’ component takes care
of both creation and termination of the application context.

Figures 5.24, 5.25 and 5.26 show the validation of the flow created for use case 1. Fig-
ures 5.27, 5.28, 5.29, 5.30 and 5.31 illustrate the steps of the internal model generation.
The complete Spark driver program generated from the user flow is shown in Listing A.6
and its generated property file storing the user supplied parameters is shown in List-
ing A.7.

What has been evaluated?

Abstraction The graphical flow-based Spark programming offers a high-level of abstrac-
tion and shields the user from the underlying code of Spark, i.e. users do not have
to write any Spark code to prototype a Spark application. Additionally, the auto-
generation of Spark session initialisation code, lines 26-32 in Listing A.6, which is
vital for execution of a Spark program but is unnecessary from a program’s prob-
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lem solving perspectives thereby allowing the user to concentrate on the concrete
problem and achieves a high-level graphical programming paradigm.

Easy Parametrisation Every component used in the flow provide easy customisation
via user supplied parameters from the component’s configuration panel as shown
in Figure 5.21.

Modularity Representation of different Spark APIs as modular components help the user
to compartmentalise a problem and select specific components to meet those goals
since every component caters an independent functionality. The only requirement
is that it should be compatible with the predecessor’s output.

Flow Validation When the flow is composed by observing the compositional rules dis-
cussed in Section 5.6.1.3, the flow is validated for correctness, i.e. if such a flow
would generated a compilable and runnable Spark program and the user is notified
of errors if any. Moreover, all components using a particular data abstraction use
the same colour code which helps the user in composing a flow. The only obvious
check from the user side is to ensure the correct positional hierarchy of components
in the flow, i.e. the flow begins by an input component, followed by transformation
and action/output components.

5.9.2 Use Case 2: Stream Processing: Applying a Machine Learning Model

For the second use case, i.e. stream processing, using Spark Streaming is not straightfor-
ward since the Spark Streaming library is built on the Spark Core and data abstraction
provided is DStreams. Since Spark core, treats all data as unstructured, working with
this involves many steps of data abstraction format conversions. All the figures and code
listings for this use case are in Appendix A.

5.9.2.1 Approach: Manual Programming via Java

The complete code for producing applying the machine learning model on streaming
data as discussed in this section via manual Java programming is shown in Listing A.4.
The Spark application built using Spark Streaming chiefly consists of the following
stages:

UC2-S1 Creating Application Context The first step with any Spark application is to
create an application context. A Spark Streaming context is created which requires
duration of micro-batch as one of its input.

UC2-S2 Reading Datasets After the creating of a streaming application context, data
is read from a compatible input source like Kafka. Kafka records published with
topic ‘trip-data’ are read in the form of < key,value > pairs into JavaPairDstream
data abstraction. A map operation has been called to drop key from every record
as show from line 5 to 24.
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UC2-S3 Data Transformations For performing data transformation, i.e. applying a
model produced using Pipeline API on DStream data abstraction is not possible
without suitable data abstraction interconversion. Hence, we convert DStreams
collected over the micro-batch duration into RDD. Each RDD is transformed into
DataFrame and the created machine-learning model from the first use case is ap-
plied as shown in line 45.

UC2-S4 Invocation of Actions Action step involves pushing data out of Spark run-time
environment, i.e. push back results to Kafka. Spark Streaming does not support
built in Kafka listener. ‘ForEachPartition’ method can be used to push data out of
each partition. Lines 44 to 55 show how Kafka records are produced and published
with topic ‘enrichedData’.

UC2-S5 Terminating Application Context Streaming applications run indefinitely and
the Spark Driver is programmed to keep the context alive for an indefinite period
by invoking ‘awaitTermination()’ method on the stream context created at the start
of the application.

5.9.2.2 Approach: Graphical Programming via aFlux

1 Configuration panel for KafkaToDStream component

1  

UC2-SC1
UC2-SC5

UC2-SC2

UC2-SC3

UC2-SC4

Figure 5.22: Spark flow in aFlux for applying model to streaming data

Figure 5.22 illustrates an aFlux flow for applying a machine learning model on real-
time datasets. The components used are: (i) the ‘KafkatoDStream’ component which
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has only one output port and no input port. This component belongs to input category
and encapsulates input category of Spark APIs as classified in Section 5.4, (ii) the ‘Apply
Model on DStream’ component which has one input as well as one output port. This
belongs to transformation category and encapsulates transformation - Type A category of
Spark APIs, (iii) the ‘DStreamToKafka’ component which has only one input port and no
output port. This component belongs to action category and encapsulates action category
of Spark APIs and (iv) the ‘Spark Execute’ component to mark the end of the flow to begin
flow validation and code generation. The wiring of components is in correspondence to
the stages described in manual programming:

UC2-S1 Creating Application Context The ‘Spark Execute’ component creates a spark
session and this is abstracted from the user.

UC2-S2 Reading Datasets The first component, ‘KafkatoDStream’ reads data from
Kafka and has the necessary conversion code to transform the data into DStream.

UC2-S3 Data Transformations The second component, ‘Apply Model on DStream’
takes the path of a previously created machine learning model and applies it to
the input DStream data-set. This component abstracts the process of converting
DStream to RDD and then to DataFrame in order to apply the saved model.

UC2-S4 Invocation of Actions The transformed data must be pushed back to Kafka.
Producing Kafka records from modified DataFrame is accomplished by the
‘DStreamToKafka’ component. It does the automatic conversion of data from
DStreams to < key,value > format for Kafka.

UC2-S5 Terminating Application Context The ‘Spark Execute’ component takes care
of both creation and termination of the application context.

Figure A.1 shows the validation of the flow created for use case 2. Figures A.2, A.3 and
A.4 illustrate the steps of the internal model generation. The complete Spark driver
program generated from the user flow is shown in Listing A.8 and its generated property
file is shown in Listing A.9.

What has been evaluated?

Auto-conversion between different data abstractions The second component, ‘Apply
Model on DStream’ in the flow does auto-conversion of data abstractions trans-
parently from the user. Spark ML is built on the Spark SQL engine and hence
uses DataFrame APIs. The machine learning model created is using DataFrame
data abstraction. In stream processing, the data abstraction used is DStreams.
Hence, this components transparently reads the DStream data from the previous
component, converts it into RDD and then invokes the saved ML model on it as
shown in Listing 5.5. After applying the ML model, the resultant-set is again con-
verted back from RDD to DStream and send as output to the next component, i.e.
‘DStreamToKafka’ which takes the DStream input and outputs to Kafka. The auto-
conversion process is not trivial as the data from DStream has to converted to RDD
after which user-defined functions are necessary to ensure that the dataset has all
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required columns on which a particular ML model can be applied or to select exact
columns to apply the ML model successfully. After application of ML model, user-
defined functions are necessary to convert it back to DStream data abstraction. This
process cannot be automated as the fields of dataset to be selected to apply the ML
model have to be checked and selected manually. Furthermore, using RDD neces-
sitates the usage of custom transformation functions. This is done on a case-to-case
basis for specific components requiring interoperability with other data abstrac-
tions and is left to the developer of the component to provide.

1 JavaDStream < St r in g > msgDataStream = input . map(new Function < Tuple2 < Str ing
, S t r i ng > , S t r i ng > ( ) {

@Override
3 public S t r in g c a l l ( Tuple2 < Str ing , S t r i ng > tuple2 ) {

return tuple2 . _2 ( ) ;
5 }

} ) ;
7

// Convert DStream to RDD
9 S t r i n g [ ] fieldNames = p r o p e r t i e s . getProperty ( transformDFPipeline [ 1 ] + "−

fieldNames " ) . s p l i t ( " , " ) ;
S t r i n g [ ] dataTypes = p r o p e r t i e s . getProperty ( transformDFPipeline [ 1 ] + "−

dataTypes " ) . s p l i t ( " , " ) ;
11 msgDataStream . foreachRDD (new VoidFunction < JavaRDD < St r in g >> ( ) {

13 @Override
public void c a l l ( JavaRDD < St r in g > rdd ) {

15 JavaRDD < Row > rowRDD = rdd .map ( ( Function < Str ing , Row > ) record −> {
S t r i n g [ ] a t t r i b u t e s = record . s p l i t ( " , " ) ;

17 Object [ ] newArgs = new Object [ a t t r i b u t e s . length ] ;
fo r ( i n t i = 0 ; i < a t t r i b u t e s . length ; i ++) {

19 newArgs [ i ] = mapToDataType ( a t t r i b u t e s [ i ] , dataTypes [ i ] ) ;
}

21 return RowFactory . c r e a t e ( newArgs ) ;
} ) ;

23

L i s t < S t r u c t F i e l d > f i e l d s = new ArrayList < > ( ) ;
25 fo r ( i n t i = 0 ; i < fieldNames . length ; i ++) {

DataType dt = getDataType ( dataTypes [ i ] ) ;
27 S t r u c t F i e l d f i e l d = DataTypes . c r e a t e S t r u c t F i e l d ( fieldNames [ i ] , dt , t rue ) ;

f i e l d s . add ( f i e l d ) ;
29 }

StructType csvschema = DataTypes . createStructType ( f i e l d s ) ;
31

33 // Apply Model created using DataFrame

35 S t r i n g modelPath = p r o p e r t i e s . getProperty ( transformDFPipeline [ 2 ] + "−loadPath
" ) ;

37 // Get Spark 2.0 s e s s i o n
// Pipe l ine model o b j e c t w i l l be s e r i a l i z e d and sent from the dr iver to the

worker
39 PipelineModel savedModel = PipelineModel . read ( ) . load ( modelPath ) ;

SparkSession spark = JavaSparkSess ionSingleton . ge t Ins tance ( rdd . context ( ) .
getConf ( ) ) ;

41 Dataset < Row > msgDataFrame = spark . createDataFrame (rowRDD, csvschema ) ;
msgDataFrame = savedModel . transform ( msgDataFrame ) ;

43
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45

// Convert from RDD to DStream and send to Kafka
47 S t r i n g boots t rapServers = p r o p e r t i e s . getProperty ( transformDFPipeline [ 3 ] + "−

bootStrapServers " ) ;
S t r i n g topicToPublish = p r o p e r t i e s . getProperty ( transformDFPipeline [ 3 ] + "−

topicToPublish " ) ;
49

51 JavaRDD < Row > toRDD = msgDataFrame . toJavaRDD ( ) ;

53 toRDD . foreach ( rowrdd −> {
P r o p e r t i e s kafkaProp = new P r o p e r t i e s ( ) ;

55 kafkaProp . put ( " boots trap . s e r v e r s " , boots t rapServers ) ;
kafkaProp . put ( " key . s e r i a l i z e r " , " org . apache . kafka . common . s e r i a l i z a t i o n .
S t r i n g S e r i a l i z e r " ) ;

57 kafkaProp . put ( " value . s e r i a l i z e r " , " org . apache . kafka . common . s e r i a l i z a t i o n .
S t r i n g S e r i a l i z e r " ) ;

KafkaProducer < Str ing ,
59 S t r i n g > producer = new KafkaProducer < Str ing ,

S t r i n g > ( kafkaProp ) ;
61 S t r i n g data = rowrdd . get ( 0 ) . t o S t r i n g ( ) ;

//Row to S t r in g
63 fo r ( i n t i = 1 ; i <= rowrdd . length ( ) − 1 ; i ++) {

data += " , " ;
65 data += rowrdd . get ( i ) . t o S t r i n g ( ) ;

67 }
producer . send (new ProducerRecord < Str ing , S t r i n g > ( topicToPublish , data ) ) ;

69 producer . c l o s e ( ) ;
} ) ;

71

}
73 } ) ;

Listing 5.5: Auto-conversion between different data abstractions

5.9.3 Use Case 3: Performing Streaming Aggregations

In the third use case, stream aggregations are performed based on event-time and win-
dowed over a given duration. Data is read from Kafka and results are pushed back again
to Kafka. All the figures and code listings for this use case are in Appendix A.

5.9.3.1 Approach: Manual Programming via Java

The complete code for performing streaming operations on data read from Kafka as
discussed in this section via manual Java programming is shown in Listing A.5. The
Spark application built using Spark Structured Streaming chiefly consists of the follow-
ing stages:

UC3-S1 Creating Application Context A Spark session for streaming application is cre-
ated in the same way as discussed in earlier use cases.
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UC3-S2 Reading Datasets Data is read from Kafka. Spark Structured Streaming li-
brary comes with a built-in Kafka reader which reads Kafka messages in JSON for-
mat and maps them to the schema supplied as indicated in line 4 of the application.
Lines 9 to 17 show how Kafka records are read and mapped to a DataFrame abstrac-
tion where entire value part of the record is treated as a string. Lines 18 to 25 show
how the value represented as a string is mapped to the schema provided earlier.
After this, an unbounded table is created for performing aggregations on the data.

UC3-S3 Data Transformations Windowed stream aggregations based on event time is
performed on the streaming data with watermark for handling late arrival of data.
Lines 27 to 30 deal with watermarking to handle late data, grouping of columns,
counting them and selection of results satisfying the condition.

UC3-S4 Invocation of Actions Spark Structured Streaming associates a streaming
query with DataFrames. Only those transformation path that have an associ-
ated streaming query directly or in their path will be included in the execution
plan, i.e. data transformations applied onto and hence results need to be pushed
back to Kafka. Lines 35 to 44 list a streaming query which publishes data back to
Kafka.

UC3-S5 Terminating Application Context In the last step, ‘awaitTermination()’ method
is invoked on the streaming query as shown in line 46 so that it runs indefinitely.

5.9.3.2 Approach: Graphical Programming via aFlux

Figure 5.23 illustrates an aFlux flow for performing streaming aggregations on real-time
datasets. The components used are: (i) the ‘KafkaToStreamDF’ component which has
only one output port and no input port. This component belongs to input category and
encapsulates input category of Spark APIs as classified in Section 5.4, (ii) the ‘StreamD-
FWindowCount’ component which has one input as well as one output port. This belongs
to transformation category and encapsulates transformation - Type A category of Spark
APIs, (iii) the ‘StreamDFtoKafka’ component which has only one input port and no out-
put port. This component belongs to action category and encapsulates action category of
Spark APIs and (iv) the ‘Spark Execute’ component to mark the end of the flow to begin
flow validation and code generation. The wiring of components is in correspondence to
the stages described in manual programming:

UC3-S1 Creating Application Context The ‘Spark Execute’ marks the end of the graph-
ical flow. Its encounter in the flow conveys a special meaning to the translator, i.e.
to generate the Spark session initialisation, as well as the termination codes neces-
sary for the Spark application.

UC3-S2 Reading Datasets The ‘KafkaToStreamDF’ component is used to read stream-
ing messages from Kafka. It reads < key,value > from Kafka and converts it into
streaming DataFrame automatically.

UC3-S3 Data Transformations Spark Structured Streaming library offers different
aggregations on streaming data. Graphical components to perform window
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2 Configuration panel for StreamDFToKafka component

2

1

1 Configuration panel for StreamDFWindowCount component

UC3-SC1
UC3-SC5

UC3-SC2 UC3-SC3
UC3-SC4

Figure 5.23: Spark flow in aFlux for streaming aggregations

based count and running count operations via the ‘StreamDFWindowCount’ and
‘StreamDFRunningCount’ respectively have been implemented. The second com-
ponent, i.e. the ‘StreamDFWindowCount’ takes the kind of window-aggregation to
be performed as user-input and applies it to the incoming data-set.

UC3-S4 Invocation of Actions The result is automatically converted to < key,value >
format and pushed to Kafka by the ‘StreamDFtoKafka’ component.

UC3-S5 Terminating Application Context The ‘Spark Execute’ component takes care
of both creation and termination of the application context.

The action component used in all the three use cases of graphical Spark programming
have no output port functionality but are connected to the ‘Spark Execute’ component to
mark the end of the flow. Figure A.5 shows the validation of the flow created for use case
3. Figures A.6, A.7 and A.8 illustrate the steps of the internal model generation. The
complete Spark driver program generated from the user flow is shown in Listing A.10
and its generated property file is shown in Listing A.11.

Chapter 7 compares and discusses the flow-based Spark programming concepts with
existing solutions offering similar high-level programming for Spark.
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uniquetag_name-field_name=<user supplied values>

// prepare Java statement for reading into a DataFrame
 if ( componentCategory . equals ( "ReadDataFrame " ) {
statement = " Dataset <Row> "+ nameInDag+" = "+nameInDag+ " _readDataFrame 
( sparkSession , "+" \" "+nameInDag+" \" "+" , featureProp ) " ;
 }
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Figure 5.27: Internal model representation of use case 1 Spark flow: Steps. (contd. on Fig-
ure 5.28)
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a wrapper method (Section 5.8.4)

Generic invocation statement for invoking
a wrapper method (Section 5.8.4)

Figure 5.28: Internal model representation of use case 1 Spark flow: Steps. (contd. from Fig-
ure 5.27, contd. on Figure 5.29)
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// prepare Java statement for transforming a DataFrame
if ( componentCategory . equals ( " TransformDataFrameC " ) {
statement = " Dataset <Row> "+ nameInDag+" = "+nameInDag+ " _transformDataFrame (
sparkSession , "+" \" "+nameInDag+" \" "+" , featureProp , "+parents . get ( 0 ) +" ) " ;
}

Step 5

Generic invocation statement for invoking
a wrapper method (Section 5.8.4)

Figure 5.29: Internal model representation of use case 1 Spark flow: Steps. (contd. from Fig-
ure 5.28, contd. on Figure 5.30)
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// prepare Java statement for extracting user supplied parameters from the property file
statement1 = " Properties featureProp = new Properties(); " + featureProp = 
    extractProperties(“path to created property file“);" ;

// prepare Java statement for starting a Spark Session
statement2 = " SparkSession sparksession = getSparkSession(“sessionname”, featureProp " ;

Step 6

// prepare Java statement for action on a DataFrame
if ( componentCategory . equals ( " ActiononDataFrame " ) {
statement = nameInDag+" _actionOnDataFrame ( sparkSession , 

"+" \" "+nameInDag+" \" "+ " , featureProp , "+parents . get ( 0 ) +" ) " ;
}
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Step 7

Generic invocation statement for invoking
a wrapper method (Section 5.8.4)

Generic invocation statement for invoking
a wrapper method (Section 5.8.4)

Figure 5.30: Internal model representation of use case 1 Spark flow: Steps. (contd. from Fig-
ure 5.29, contd. on Figure 5.31)

// prepare Java statement for reading into a DataFrame - From Root Node
 if ( componentCategory . equals ( "ReadDataFrame " ) {
  statement = " Dataset <Row> "+ nameInDag+" = "+nameInDag+ " _readDataFrame ( sparkSession , "+" \" "+nameInDag+" \" "+" , featureProp ) " ;
 }
 // prepare Java statement for transforming a DataFrame - From Feature Assembler Node and KMeans in ordered sequence
 if ( componentCategory . equals ( " TransformDataFrame " ) {
  statement = " Dataset <Row> "+ nameInDag+" = "+nameInDag+ " _transformDataFrame (
  sparkSession , "+" \" "+nameInDag+" \" "+" , featureProp , "+parents . get ( 0 ) +" ) " ;
 }
// prepare Java statement for transforming a DataFrame - From Produce Model
 if ( componentCategory . equals ( " TransformDataFrameC " ) {
  statement = " Dataset <Row> "+ nameInDag+" = "+nameInDag+ " _transformDataFrame (
  sparkSession , "+" \" "+nameInDag+" \" "+" , featureProp , "+parents . get ( 0 ) +" ) " ;
}
 // prepare Java statement for action on a DataFrame - From ShowDF Node
 if ( componentCategory . equals ( " ActiononDataFrame " ) {
  statement = nameInDag+" _actionOnDataFrame ( sparkSession , 

"+" \" "+nameInDag+" \" "+ " , featureProp , "+parents . get ( 0 ) +" ) " ;
  }
 // prepare Java statement for extracting user supplied parameters from the property file - From Execute Node
 statement1 = " Properties featureProp = new Properties(); " + “ featureProp = 
    extractProperties(“path to created property file“);" ;
 // prepare Java statement for starting a Spark Session - From Execute Node
 statement2 = " SparkSession sparksession = getSparkSession(“sessionname”, featureProp " ;

Final collection of Java 
statements for the Spark Flow: 

Internal Model

Figure 5.31: Internal model representation of use case 1 Spark flow: Steps. (contd. from Fig-
ure 5.30)
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6 Graphical Flow-based Flink Programming

“Controlling complexity is the essence of
computer programming.”

— Brian Kernigan

IoT data typically comes in the form of data streams that often need to be processed
under latency requirements to obtain insights in a timely fashion. Examples include
traffic monitoring and control in a smart city; traffic data from different sources (e.g.
cars, induction loop detectors, cameras) need to be combined in order to take traffic
control decisions (e.g. setting speed limits, opening extra lanes in highways). The more
sensors and capabilities, the more data streams require processing. Specialised stream-
processing platforms, such as Apache Flink, Spark Streaming and Kafka Streams, are
being used to address the challenge of processing vast amounts of data (also called Big
Data), that come in as streams, in a timely, cost-efficient and trustworthy manner.

The problem with these stream platforms is that they are difficult to both set-up and
write applications for. The current practice relies on human expertise and the skills of
data engineers and analysts, who can deploy Big Data stream platforms in clusters, man-
age their life-cycle and write data analytics applications in general-purpose high-level
languages such as Java, Scala and Python. Although many platforms, including Flink
and Spark, provide SQL-like programming interfaces to simplify data manipulation and
analysis, the barrier is still high for non-programmers.

To counter this challenge, we use the graphical programming approach of Spark
discussed in Chapter 5 to support Flink programming via flow-based programming
paradigm. To provide a technical underpinning for our proposal and evaluate its fea-
sibility, we have validated the approach in aFlux to support the specification of stream-
ing data pipelines for Flink, one of the most popular Big Data stream-processing plat-
forms. The main challenge is the presence of diverse programming abstractions and
APIs to develop Flink applications which are difficult to model in flow-based program-
ming paradigm. In this chapter, we address the following :

1. A thorough analysis of the Flink framework to select the most suitable program-
ming abstractions and APIs for flow-based Flink programming, i.e. not supporting
APIs requiring user defined data transformation functions or supporting code snippets
during flow creation to interact with target framework internals. Modelling the se-
lected APIs as modular components.

2. Extending the generic approach to parse a graphical Spark flow discussed in Chap-
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ter 5 to support flow-based Flink programming, i.e. parse a flow created using
modular Flink components with support for early-stage validation and automatic
code generation of Flink driver program.

6.1 Structure

This chapter is structured in the following way:

• Section 6.2 discusses the various programming abstractions supported by Flink to
develop applications with and also explores the APIs supported in Flink. Here we
outline the selected programming abstraction, data abstraction and APIs for the
thesis work.

• Section 6.3 highlights the design decisions taken to support graphical flow-based
programming of Flink.

• Section 6.4 describes the conceptual approach.

• Section 6.5 discusses ‘FlinkFlo’, a library consisting of modular composable compo-
nents. The components bundle a set of Flink APIs which are executed in a specific
order to perform one data analytic operation. This uses only a subset of Flink APIs
which are compatible with the flow-based programming paradigm.

• Section 6.6 deals with the prototyping of the conceptual approach in aFlux.

• Section 6.7 discusses the evaluation of the approach.

The chapter concludes by enumerating the research contributions made to the thesis
work. Appendix B is attached to this chapter and contains some code listings discussed
here.

6.2 Flink Programming and Data Abstractions

Programming Abstractions The general introduction to Flink Ecosystem has been
covered in Section 2.7. In this section, we briefly describe the APIs of Flink used to de-
velop applications. Flink offers four level of ‘programming abstractions’ to develop stream
or batch applications as listed below:

1. low-level building blocks using streams, state and time.

2. core APIs based on DataSet/DataStream API.

3. declarative SQL type, i.e. Table API.

4. high-level SQL based operations.
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The characteristics, features and advantages of all these levels of programming abstrac-
tions have been discussed in Section 2.7.

Structure of a Flink program The basic building blocks of a Flink program consists
of streams and transformations. A stream is defined as an infinite flow of data while a
transformation is an operation which takes one or more streams as input and produces
one or more streams as output. Listing 6.1 shows a basic Flink program to calculate the
frequency of words in a text collection. The program has two steps:

1. First, the texts are split into individual words.

2. Second, the words are grouped and counted.

When such a Flink program is executed, it is mapped into a streaming dataflow consist-
ing of streams and transformation operators as shown in Figure 6.1. Each such dataflow
starts with one or more source operators and ends with one or more sink operators. The
dataflows typically resemble directed acyclic graphs (DAGs). Generally, there is a one-
to-one correspondence between transformations in the program and the operators in the
dataflow (vertices in the DAG).

1 ExecutionEnvironment env = ExecutionEnvironment . getExecutionEnvironment ( ) ;

3 // Source
DataSet<Str ing > t e x t = env . readTextF i le ( " / path / to / f i l e " ) ;

5

// Transformations
7 DataSet<Tuple2<Str ing , Integer >> counts =

// s p l i t up the l i n e s in p a i r s (2− tuples ) conta ining : ( word , 1 )
9 t e x t . flatMap (new Tokenizer ( ) )

// group by the tuple f i e l d "0" and sum up tuple f i e l d "1"
11 . groupBy ( 0 )

. sum( 1 ) ;
13

// Sink
15 counts . writeAsCsv ( outputPath , " \n" , " " ) ;

Listing 6.1: Structure of a Flink program

Flink programs are typically parallel and distributed. During execution, a stream has
one or more stream partitions and each operator has one or more operator subtasks.
The operator subtasks are completely independent of each other and execute in separate
threads or even separate machines. The number of operator subtask is the parallelism of
a particular operator. It is interesting to state here that Flink executes batch programs
as a special case of streaming programs where the streams are bounded. Hence, all the
streaming concepts discussed above are equally applicable to batch programs developed
in Flink. The windows supported in Flink and the concepts of time used in Flink have
already been discussed in Section 2.7.

Data Abstractions Flink has two kinds of data-abstractions to represent and manipu-
late data. They are:
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readTextFile flatMap() groupBy()
sum() writeAsCsv()

Source Operator Sink OperatorTransformation Operators

Streaming Dataflow

Streams

Figure 6.1: Mapping of a Flink program to a streaming dataflow during execution which re-
sembles a typical DAG, as in [16]

DataSet It is an immutable collection of finite set of data. It is used to create batch
programs in Flink and can be created and transformed by DataSet APIs.

DataStream It is an immutable collection of infinite set of data. It is used to create
streaming programs in Flink and can be created and transformed by DataStream
APIs.

Flink programs are regular programs that implement transformations on distributed col-
lections created from reading files, Kafka topics etc. Results are made available via sinks.
Depending on the data-source, i.e. batch or stream either DataSet or DataStream APIs
from the core API level of programming abstraction can be used to write the transfor-
mations typically following the sequence of reading datasets, applying transformations
and saving the results of the transformations. The Flink programs are executed lazily, i.e.
the transformations in the main method of the Flink program are stored in the program
plan and materialised when they are explicitly triggered. Section 7.1.2 discusses the lazy
evaluation of Flink in detail and compares it with the lazy evaluation of Spark.

Selection of Programming & Data Abstractions From the available programming
abstractions of Flink,programming via core APIs operating on Data DataSet and DataS-
tream data abstractions, have been selected for the thesis work. The conceptual approach
described in Section 6.4 supports only the transformations accessible via core APIs and
using the aforementioned data abstractions. Any transformation making use of low-
level stateful stream processing of Flink or programming via the SQL/Table API is not
supported. It is easy to represent core APIs based on DataSet and DataStream APIs as
modular components that can be wired together in a flow-based programming paradigm.
Finally, the different input parameters required by an API can be specified by the user
from the front-end. Core APIs based on these aforementioned data abstractions prevent
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the usage of low-level building blocks of Flink programming and provide data transfor-
mation for each operation, i.e. user need not write custom functions from scratch for
data transformation.

6.3 Design Decisions

In order to support Flink pipelines in mashup tools, we needed to decide on the (i) re-
quired abstraction level, (ii) formulation of modular components from Flink APIs and
(iii) a way to support validation of graphical flows to yield a compilable and runnable
Flink program.

Accordingly, from the different abstraction levels, we decided to select the core API ab-
straction levels for supporting Flink pipelines in graphical mashup tools, as these APIs
are easy to represent in a flow-based programming model. They prevent the need for
user-defined functions to bring about data transformation and provide predictable input
and output types for each operation—the tool can then focus on validating the associ-
ated schema changes. Moreover, it is easy to represent DataStream and DataSet APIs as
graphical components that can be wired together. Finally, the different input parameters
required by an API can be specified by the user from the front-end.

We follow the lazy execution model while composing a Flink pipeline graphically, i.e.
when a user connects different components, we do not automatically generate Flink code
but instead take a note of the structure and capture it via a DAG, simultaneously check-
ing for structural validity of the flow. When the flow is marked as complete, the runnable
Flink code is generated. Lastly, we impose structural restrictions on the graphical flow
which can be composed by the user, i.e. it must begin with a data-source component, fol-
lowed by a set of transformation components and finally ending with a data-sink compo-
nent, in accordance with the anatomy of a Flink program. Only when the flow is marked
complete does the actual code generation begins.

6.4 Conceptual Approach

The conceptual approach for designing flow-based Flink programs consists of: (i) A
model to enable the graphical creation of programs for stream analytics, in other words,
to automatically translate items specified via a GUI to runnable source code, known as
the Translation & Code Generation Model, and (ii) a model to continuously assess the end-
user flow composition for structural validity and provide feedback to ensure that the final
graphical flow yields a compilable source code, known as the Validation Model. Figure 6.2
gives a high-level overview of the conceptual approach used to achieve such a purpose.
This conceptual approach is based on the design decisions discussed in Section 6.3.

Since the main idea is to support flow-based Flink programming for Stream analytics,
we restrict the scope of the translator to the DataStream APIs from the core-level API
abstractions. Nevertheless, the DataSet APIs used for batch analytics are fully compatible
with the approach as both the data abstractions of Flink are fundamentally the same.
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In accordance to the anatomy of a Flink program, we have built ‘SmartSantander Data’
as the data-source component, an ‘Output Result’ supporting writing operation to Kafka,
CSV and plain text as data-sink component. Map, filter and window operations are the
supported transformation components. Accordingly, we built the ‘GPS Filter’ component
to specify filter operations, the ‘select’ component to support map operations and a ‘Win-
dow’ as well as ‘WindowOperation’ to specify windows on data streams. We also support
the Flink CEP library via the following components: ‘CEP Begin’, ‘CEP End’, ‘CEP Add
condition’ and ‘CEP New condition’. The CEP library is used to detect patterns in data
streams. We also have two additional components, namely ‘Begin Job’ and ‘End Job’, to
mark the start and end of a Flink pipeline. The translator & code generation model have
been designed to work within this scope of selection. We define all potential positional
rules of these components, i.e. which component can before a specific component in the
flow, in a flow and the validation model works within this scope.

The conceptual approach described for flow-based Flink programming is exactly the
same as the Spark approach described in Section 5.5 and Section 5.6 of Chapter 5. The
only difference is that the modular components here represent a set of Flink APIs and
work on data abstractions specific to Flink.

Runnable Flink
Program

Translator

Actor System

actors + user-defined
properties STD

Graphical 
Parser

Graphical Flow (defined in GUI by the user) 

Visual 
Component #1

Visual 
Component #2

Visual 
Component #3

Visual 
Component #N

Code Generator

Figure 6.2: Conceptual approach for translation and code generation

6.4.1 Translation & Code Generation

The aim of the translation & code generation model is to provide a way to translate a
graphical flow defined by the end user into a native Flink program. This model behaves
as follows: (i) First, the end user defines a flow by connecting a set of graphical components
in a flow-like structure. It represents a certain Flink functionality (i.e. abstraction of a
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set of Flink APIs invoked in a certain order to perform one data analytic operation) and
has a set of properties that the user may configure according to their needs. (ii) Then, a
translator acquires the aggregated information of the user-defined flow, which contains
(a) the set of graphical components that compose the flow, (b) the way in which they are
connected and (c) the properties that users have configured for each component.

The translator has three basic components: a graphical parser, an actor system and a code
generator. It takes as input the aggregated information of the user-defined graphical flow
(i.e. graphical components, the flow structure and the user-defined properties) and its
output is a packaged and runnable Flink job. The graphical parser takes the aforemen-
tioned aggregated information and processes it, creating an internal model and instanti-
ates the set of actors corresponding to the flow. The actor system is the execution environ-
ment of actors, which contains the business logic of the translator. Actors are taken from
the output of the graphical parser. The actor model abstraction makes each actor inde-
pendent, and the only way to interact with the rest is by means of exchanging messages.
Actors communicate using a data structure that has been explicitly defined for making
the translation, using a tree-like structure that makes appending new nodes extremely
easy. In this model, the data structure is referred to as STDS (Specific Tree-Like Data
Structure). As previously stated, each actor corresponds to a specific Flink functionality
and, in turn, to the standalone implementation method of that specific functionality. It
adds a generic method-invocation statement as a message response to the next connected
actor. The method-invocation statement also passes the user parameters and the output
from its preceding node as input to the standalone implementation method of Flink-
functionality APIs. The next actor receives this message and appends its corresponding
method-invocation statement and so forth which is the same process used in case of a
Spark, i.e. internal model generation in Section 5.6.3 of Chapter 5.

6.4.2 Validation

The translation model allows the translation of graphical flows into source code. How-
ever, some graphical flows may result in source code that either cannot be compiled or
yields runtime errors. We have provided support on tool-level for handling the type of
errors that occur because of data dependencies in a flow, during its specification. If one
of the data dependency rules is violated when the user connects or disconnects a compo-
nent in a flow, visual feedback is provided, which helps avoid problems early on. Such
compositional rules must be specified for every modular Flink component, according to
the following pattern:

Structure of a compositional rule

Component A︸            ︷︷            ︸
main

visual component

∣∣∣∣∣should
must

∣∣∣∣∣︸   ︷︷   ︸
isMandatory

come(immediately)︸            ︷︷            ︸
isConsecutive

∣∣∣∣∣before
after

∣∣∣∣∣︸  ︷︷  ︸
isPrecedent

Component B︸           ︷︷           ︸
argument

visual component

For example, the following rules can be specified:

137



6 Graphical Flow-based Flink Programming

• ‘Window’ component must come immediately after ‘Select’ component

• ‘End Job’ component should come after ‘Load data’ component

Each compositional rule is defined between two components having a certain number of
flags, i.e. ‘component A’ and ‘component B’ where ‘component A’ is the main component
of the compositional rule and ‘component B’ is given as parameter. The ‘isMandatory’
flag when set to true means that ‘Component A MUST (...) Component B’ and when
set to false means ‘Component A SHOULD (...) Component B’. The ‘isPrecedent’ flag in-
dicates which component should come before the other. When set to true, it implies a
condition of precedence, i.e. ‘Component A (...) AFTER Component B’. On the contrary,
when set to false it implies a condition of non-precedence, i.e. ‘Component A (...) BE-

FORE Component B’. The ‘isConsecutive’ flag governs the strict positional hierarchy of
the components. When set to true it implies a strict contiguity, i.e. ‘Component A (...)

IMMEDIATELY (...) Component B’. On the contrary, when set to false, the contiguity is
non-strict, i.e. ‘Component A (...) Component B’.

On the front-end, when a user connects two components, it is considered a state-change.
With every state-change, the entire flow is captured from the front-end and subjected to
the validation process. Basically, the flow is captured in the form of a tree; the next step is
to check whether the components are compatible to accept the input received from their
preceding components, whether two immediate connections are legal and whether the
tested component’s positional rules permit it to be used after its immediate predecessor.
Algorithm 1 summarises the flow validation steps. During the check, if an error is found
with any one component of the flow, the user is alerted with the appropriate reasons and
the component is highlighted as shown in Figure 6.3.

Algorithm 1: Validation of Flink flows

foreach flow to be validated do
order the list of element as they appear in the flow;
foreach element in the orderedList do

get the set of compositional rules for it;
instantiate a new result;
foreach rule in compositional rules do

foreach element in the orderedList do
if rule is not met then

result.add(rule);
end

end
end
if result is empty then

clear error information from element;
else

add error information to element;
end

end
end

Finally, after completion of the flow-validation, the code generator takes the STDs as
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Figure 6.3: Flink flow validation: user feedback

input. It has internal mapping to translate parametrised statements (generic invocation
statements to invoke the standalone implementation of Flink APIs ) into real Flink source
code statements. This entity combines the parametrised statement with this mapping
and the user-defined properties, and then generates the final source code. The compiling
process also takes place here. The code generator output is a packaged, running Flink
job that can be deployed in an instance of Flink. The approach is very similar to the
approach used for programming Spark from mashup tools (Section 5.6.4).

6.5 FlinkFlo: A Subset of Flink APIs Bundled as Modular

Components

Flink offers many different libraries in its ecosystem accessible either via low-level state-
ful stream processing approach, programming via Table APIs, data transformation via
SQL or invocation via core APIs working on different data abstractions like DataSet
(for batch analytics) and DataStream (for stream analytics). The manual development
of Flink application involves interaction with these elements. To support development
of Flink applications from graphical flow-based programming paradigm abstraction is
essential. With the approach described in the chapter, a subset from the Flink ecosystem
making use of the core APIs programming abstraction operating on DataSet and DataS-
tream data abstractions have been selected which are compatible with the flow-based
programming paradigm.

‘FlinkFlo’ is a library consisting of modular (Section 5.2) composable (Section 5.6.1.3)
components. The components in FlinkFlo bundle a set of Flink APIs from the selected
subset of Flink APIs which are executed in a specific order to perform one data analytic
operation. By modularity, we mean that every component representing a set of Spark
APIs has everything necessary within it to achieve a desired functionality and is inde-
pendent of other components, i.e. in this context perform one data analytics operation
by taking only some user-supplied parameter as input for customisation of the data ana-
lytics operation. These modular components are composable when composed confirming
to the flow compositional rules discussed in Section 5.6.1.3. The components of Flink-
Flo can then be expressed as compositional units in a flow-based programming graphical
tool, for instance they have been expressed as actors in aFlux. Figure 6.4 illustrates the
elements and characteristics of FlinkFlo.
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1. GUI components following actor semantics
2. Modular in design
3. Flow-based programming paradigm
4. User connects several components to create an application
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Figure 6.4: FlinkFlo: A library of modular composable components using a subset of Flink
APIs

6.5.1 Extensibility: Inclusion of new/forthcoming Flink APIs

A new/forthcoming Flink API can be modelled as a FlinkFlo component to be used in
a flow-based tool like aFlux and auto-generate a runnable Flink program using the ap-
proach described in Section 6.4, iff :

• The new Flink transformation is accessible via core API programming abstraction (Sec-
tion 6.2).

• It must use either the DataSet or the DataStream data abstraction.

For creating a modular component and its prototyping in a mashup tool entails similar
APIs analysis, development of wrapper methods and component development by the
developer following steps explained in Section 5.7.1.

6.6 Implementation

In this section, we describe the various components prototyped specific to the evaluation
use cases (discussed in Section 6.7) in order to realise flow-based Flink programming.
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6.6.1 The SmartSantander Data Connector for Flink

Figure 2.11 illustrates the typical structure of a Flink flow which begins by reading
datasets from a data source, followed by a series of transformations and ends with a
data sink. By default, Flink supports the following kinds of data sources:

File-based data sources typically monitor a file or a specific directory and load from it
into the Flink environment for processing.

Socket-based data sources connect to a hostname via a specific port and read datasets
into the Flink environment for processing.

Collection-based data sources read datasets from Java Collection classes.

The built-in data sources are quite simple and do not suffice for real world use-cases.
Hence, Flink provides an option to extend the basic data sources to create more com-
plicated data sources to read from other third party systems/platforms. For instance,
developers have built data sources to read data directly from Twitter, a Kafka broker
system or even platforms like Wikipedia [166]. Hence, to fit the use-cases as explained
in Section 6.7, the first objective was to develop a Flink connector to read data from the
SmartSantander APIs [135] and create a data stream out of it for analytics. The sensors
deployed in the city of Santander post their data in as soon as it is available to a back-end.
The live data can be accessed via REST APIs provided by the back-end system.

The entry point of Flink connectors to the Flink engine is the ‘SourceFunction’ class. Any
class that extends class one can be used as a data source when creating Flink jobs. Hence,
a new class extending‘SourceFunction’ was created to continuously stream data from
the SmartSantander REST APIs so that other Flink transformation APIs can be applied.
From all the available datasets, three main data collections have been considered for
the implementation, i.e. the traffic dataset, environment dataset and air quality dataset.
A dataset typically in JSON format after being fetched via a REST API is deserialized,
duplicates are removed, (if any) and is available as continuous streams within the Flink
run-time environment for analytics.

6.6.2 Flink Components for aFlux

To illustrate the workings of the approach and specific to the use-cases as discussed in
Section 6.7 components supporting Flink streaming have been implemented [119] as
shown in Figure 6.5. All the components are actors internally and typically follow the
same structural definitions and patterns as the components for Spark discussed in Sec-
tion 5.6.1 of Chapter 5. Typically, the components fall in four categories and correspond
to the anatomy of a Flink program as enumerated in Section 2.7.2.

The approach used to model a Flink pipeline relies on three aspects, i.e. load data from
data source, transform data and finally publish the result via a data sink. This is also
the preliminary form of semantic validation, i.e. deciding if the positional hierarchy of a
component is allowed or not. The user-flow is parsed and expressed as an abstract syntax
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Figure 6.5: Flink components for aFlux

tree which is passed as an input to the code generator. Each node in the tree maps to a
standalone implementation of the Flink Core APIs. The code generator generates code
for sequences like, opening and closing a Flink session, and for the nodes in the abstract
syntax tree it wires the standalone implementation of the APIs, while passing the user
parameters and the output from the preceding node as input. The result is a runnable
Flink program, compiled, packaged and deployed on a cluster.

6.7 Evaluation

The implemented approach has been evaluated for its ease in graphically creating Flink
jobs from aFlux by abstracting the code-generation from the end-user and automatic
Flink driver program generation. For evaluation purposes, we have used live data from
the city of Santander, Spain, which is offered as open data behind public APIs [135].

Scenario In this smart city use-case, the user is an analyst of Santander City Hall, who
need not have programming skills. The user only needs to know how to use aFlux from
the end-user perspective (e.g. drag and drop mashup components) and have some very
basic knowledge of what Flink can do from a functionality point of view rather than from
a developer point of view. For example, the city hall analyst should know that changes in
the city are measured in events and events can be processed in groups called windows.
The user does not need to know any details about how to create a window in the Flink
Java or Scala API, or the fact that generics need to be used when defining the window
type of window. Two broad use-cases have been identified for evaluation purposes:

6.7.1 Use-Case 1: Real Time Data Analytics

The process of analysing stream data as it is generated involves gathering data from
different sources of the city via APIs and processing them. The goal of this use-case
is to gain insights about the city, that help decision makers take the appropriate calls.
For instance, if the air quality is below the desired levels, the city hall would probably
wonder whether it is a good decision to restrict traffic in the city. To prepare a report,
an analyst could create a program to emit the air quality and traffic charge of a certain
area and see if they are related (hence it is a good decision to restrict traffic) or not (hence
restricting traffic will have no impact on the air quality). For stream analytics, a scenario
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was designed to correlate between temperature and air pollution in one area of the city.
Additionally to check, if the conditions of the area in observation in comparison to other
areas of the city affect this relation. For this four Flink flows in aFlux are created. Two
flows are needed to analyse temperature data and two are needed for air quality (e.g.
the level of carbon monoxide). Two flows are required for each dataset because one will
include a ‘GPS filter’ to restrict the data to one particular area of the city (Figure 6.6) and
the other flow would read data for the whole city (Figure 6.7).

1 DataStream<Double> levelOfOzone = f i l t e r e d A i r Q u a l i t y . map(new MapFunction<
AirQualityObservation , Double >() {

@Override
3 public Double map( AirQualityObservation airQual i tyObservat ion ) throws

Exception {
return Double . valueOf ( a irQual i tyObservat ion . getLevelOfOzone ( ) ) ;

5 }
} ) ;

Listing 6.2: Generated Java code to select multiple datasets for comparison

What has been evaluated? We describe certain aspects which become easier with
graphical programming of Flink below:

Code abstraction Figure 6.6 and Figure 6.7 show how the analyst can easily get in-
put from streaming sources by using a graphical data-source component, i.e. the
‘SmartSntndr Data’. Adding a new source of data is as simple as changing a prop-
erty in the ‘SmartSntndr Data’ component and aFlux auto-generates the Java code
for it as shown in Listing 6.2.

Window types Tumbling windows were used in Figure 6.6 and Figure 6.7, but process-
ing the data in a different type of window (e.g. using sliding windows) is as easy
as changing the properties of the ‘Window’ mashup component (Figure 6.8) and
aFlux generates the code as listed in Listing 6.3. In Java, the user would need to
know that a sliding window takes an extra parameter, and that the window slide
needs to be specified using Flink’s Time class, in which a different method is in-
voked depending on the time units that they desire.

Ease of data filtering If the analyst were to filter datasets based on the area location that
is being analysed, doing it from aFlux is changing properties of the ‘GPS Filter’
component and choosing the desired radius and aFlux would auto-generate the
code to read the data from the ‘SmartSntndr Data’ component and filter it before
passing to the next components in the flow as indicated in Listing B.1 (Appendix B).
Filtering datasets via manual programming can be difficult as compared to the GUI-
based selection and code auto-generation approach.

Figure 6.6: Stream analytics: Flink flow making use of GPS filter
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Figure 6.7: Stream analytics: Flink flow without GPS filter

Figure 6.8: Tumbling vs sliding windows in aFlux

AllWindowedStream<Double , TimeWindow> tumblingWindowedTemperature = temperature
. windowAll ( TumblingEventTimeWindows . of ( Time . minutes ( 5 ) ) ) ;

2

AllWindowedStream<Double , TimeWindow> slidingWindowedTemperature = temperature .
windowAll ( SlidingEventTimeWindows . of ( Time . minutes ( 5 ) , Time . minutes ( 1 ) ) ) ;

Listing 6.3: Auto-generated codes for tumbling and sliding sindows from aFlux

6.7.2 Use-Case 2: Detection of Complex Patterns

Detecting a pattern of events does not focus to gain insights from the data, but to have the
system notify the City Hall whenever a specific pattern is detected. The analyst would
only have to define the pattern to search and the type of notification to be sent in case
of a match — and aFlux would take care of the details. For instance, the analyst could
define a pattern to detect a progressive increment in the traffic concentration in a certain
area of the city to indicate a probable accident situation. If this happens, the system
would sent a notification to send a police car. Flink has the Complex Event Processing
(CEP) [17] library which is used to detect patterns on an infinite data stream. In this case,
the analyst makes use of GUI components in aFlux to specify patterns and trigger alert
when such an event takes place. The idea is to design a flow so that it detects unusual
traffic volume in a given area and whenever the volume of traffic increases by more that
50% of its normal value then an alert is triggered. It is also designed to have a second
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event detection if the traffic increases over 60% within 10 minutes from the previous alert
and a third event to detect traffic volume amounting to 75% within the next 10 minutes
from the previous alert. Figure 6.9 shows the flow developed in aFlux for this scenario.
It basically makes use of the‘CEP new patt.’ and the ‘CEP add condition’ components to
define patterns to detect on streams. Repeated addition of these components one after
another allows the user to specify more than one pattern to detect. The automatic code
generation is done by the graphical programming approach. Listing B.2 shows the code
auto-generated for the CEP library of Flink.

Chapter 7 compares and discusses the flow-based Flink programming concepts with ex-
isting solutions offering similar high-level programming for Flink.
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 4. Configuration panel for 
    CEP begin component

1.  Flink job starts

 9. Flink job ends

2. Load data
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8. Save output

 5. Configuration panel for 
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Figure 6.9: Flink flow in aFlux to detect events in streams
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“Computer Science is no more about
computers than astronomy is about
telescopes.”

— Edsger W. Dijkstra

This chapter first compares the flow-based Big Data programming concepts developed
in this thesis with other related works. Next, the conceptual approach used to support
high-level programming of Big Data applications is discussed from perspectives of exten-
sibility to other Big Data target frameworks and discusses the possibility of formulating a
unified approach for programming Spark and Flink, i.e. making the approach target Big
Data framework-agnostic. In this context, the abstraction-level supported over Spark and
Flink thereby influencing the concepts within the approach which are framework specific
as well as concepts which are framework independent are clearly outlined. Furthermore,
subjective opinions and insights from the derivatives of the investigation done as part of
the thesis work have been discussed. Finally, the chapter concludes by summarising the
thesis contributions.

7.1 Discussion

The conceptual approach used for supporting high-level programming of Big Data ap-
plications for Spark and Flink in flow-based programming paradigm has been discussed
from two different perspectives in this section.

7.1.1 Comparison with Existing Solutions

In this section, we compare the graphical flow-based programming concepts for Big
Data with existing similar solutions. In Section 2.12, we have classified existing solu-
tions into two categories. The category 2 solutions deal with tools which support high-
level programming for Big Data applications. These tools are Lemonade, QryGraph,
Nussknacker, Apache Zeppelin, Apache NiFi, Apache Beam and Microsoft Azure. Ad-
ditionally, we have also considered QM-IConf from category 1 as it generates native Big
Data program for Apache Storm.

To reiterate, the conceptual approach has two aspects to it: (i) Analysing the target
frameworks and selecting data abstractions, APIs which are compatible with graphical
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Tools
Interaction
endpoint

Target
framework

High-level
programming

Code-snippet
input not required

Generate
Big Data program

Lemonade
Flow-based
GUI tool

Spark ML
(via Python APIs)

3 3 3

Apache
Zeppelin

Interactive
shell

Multi-language
back-end including
Spark and Flink

7 7 7

Apache
NiFi

Flow-based
GUI tool

Interfaces with Spark
and Flink

3 7 7

Apache
Beam

Flow-based
programming API

Unified Programming
model for Big Data
systems including Spark
and Flink

7 7 7

Microsoft
Azure

Flow-based
GUI tool

Includes Spark 3 7 7

QryGraph
Flow-based
GUI tool

Pig 3 3 3

Nussknacker
Flow-based
GUI tool

Flink 3 3 3

QM-IConf
Flow-based
GUI tool

Storm 3 3 3

Thesis work
prototyped in
aFlux

Flow-based
GUI tool

Spark and Flink. Extensible 3 3 3

Table 7.1: Comparison of high-level Big Data programming with existing solutions

flow-based programming paradigm, i.e. not supporting APIs requiring user defined data
transformation functions or supporting code-snippets during flow creation to interact with
target framework internals. Modelling the selected APIs as modular components. (ii) Rep-
resenting the modular components in flow-based programming tools. Devising a generic
approach to parse a graphical flow created using these components with support for ear-
ly-stage validation and automatic code generation of Big Data programs for the specific
target framework.

Table 7.1 summarises the comparison of the conceptual approach developed in the the-
sis with existing solution offering similar abstraction over Big Data application develop-
ment. In particular, we compare and contrast with respect to the following criteria:

Interaction endpoint For high-level Big Data programming, the tool or approach
should offer an endpoint to interact which can accommodate even less skilled Big Data
programmers. A graphical programming interface following the flow-based program-
ming paradigm or the block-based programming paradigm, support for customisation
and auto-generation of native Big Data code would be ideal. The second column in Ta-
ble 7.1 lists this criterion. All tools except Apache Beam and Apache Zeppelin provide a
graphical interface to design an application. Beam is a high-level unified programming
model which has its own APIs to write a Big Data application. The application writ-
ten using Beam’s APIs can be executed in a wide range of target frameworks like Spark,
Flink, Apex, MapReduce, IBM Streams etc. [15]. It is not a graphical tool rather a set of
unified APIs which is difficult for less skilled Big Data programmers to use. Similarly,
Apache Zeppelin has an interpreter which can take SQL queries or Python code snippets
and run them against many target environments including Spark and Flink. In contrast
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to this, the conceptual approach developed in the thesis, prototyped in aFlux, is a graph-
ical flow-based programming tool which supports customisation of components used in
a graphical flow, operates at a high-level over the target Big Data frameworks, abstracts
code usage in terms of input during flow design and automates code generation for the
user.

Supported target frameworks The second criterion for comparison is the target Big
Data framework over which the tool provides a high-level abstraction and if the solution
is tied to this particular framework or can be extended. The third column in Table 7.1
lists this criterion. Tools like Lemonade, QryGraph, Nussknacker, QM-IConf are tied to
one specific Big data framework and the approach used is not extensible. Zeppelin’s in-
terpreter is extensible to frameworks which support SQL based querying or Scala APIs.
Apache NiFi is not really a Big Data programming tool. It is used to design data-flow
pipelines via flow-based programming paradigm. Nevertheless, it has special opera-
tors/nodes to be used in a flow which can interface it with Big Data applications like
Spark and Flink to read data from or send data to. But in order to use such interfacing,
the developer should write the Spark/Flink application separately and connect it via the
data interface operator. Apache Beam’s unified API abstracts a large number of Big Data
execution engines, i.e. a program developed using Beam’s unified API can be executed
in a number of different execution environments with minimal changes [15]. Microsoft
Azure is a graphical flow-based platform used heavily for designing Big Data and ma-
chine learning applications. The manner in which the graphical flow is translated and
run in native Big Data environments is unknown as it is a proprietary tool. But when a
user specifically needs to use a Big Data target framework, for example Spark, then the
user needs to provide Spark code-snippets and the platform supports graphical connec-
tion to a Spark cluster to send the code snippet for execution and fetch the output. In
contrast to this, the conceptual approach developed in the thesis, prototyped in aFlux,
currently supports Spark and Flink and is extensible to other target Big Data frameworks.
For discussion on extensibility of the approach, please refer to Section 7.1.2.

Level of abstraction A third criterion to compare is to understand the abstraction level
a tool offers over a Big Data framework for reducing its complexity, i.e. is the program-
ming done at a high-level over the target APIs. The fourth column in Table 7.1 lists this cri-
terion. All of the existing tools including the conceptual approach developed in the thesis
provide abstraction over their supported Big Data frameworks. Apache Beam requires to
manually program using its provided APIs and therefore cannot be considered as a high-
level programming tool. Nevertheless, it abstracts the complexity of a number of Big
Data frameworks while simultaneously introducing its own level of usage complexity.
Similarly, Zeppelin does not provide a real high-level programming but it offers interac-
tion with underlying systems via small code-snippets and not complete programs.

Usage of code-snippets input during application development Another interesting
feature to compare is if the tool explicitly requires the user to input code-snippets while
developing a Big Data application via graphical flows. The code-snippets are either used
for connecting different components used in a flow or for customisation of a component’s
functionality. This introduces additional complexity and makes it difficult for less skilled
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Big Data programmers to use the tool. The fifth column in Table 7.1 lists this criterion.
Tools like Lemonade, QryGraph, Nussknacker, QM-IConf and the conceptual approach
developed in the thesis provide a graphical flow-based application development envi-
ronment without any code-snippet usage. On the other hand, Zeppelin requires code
snippets provided and they are run in an interactive mode. Apache NiFi does not need
code snippets in a flow but when interfacing with Spark or Flink program is needed, the
program must be developed by the user. Apache Beam mandates manual programming
using its own set of high-level APIs. Microsoft Azure in general does not require code-
snippets but when working with Spark explicit code-snippets are required as input from
the user.

Code Generation It is also interesting to compare and contrast if the tools generate the
complete native Big Data program from the graphical flow created by the user. The sixth
column in Table 7.1 lists this criterion. All tools except Apache Zeppelin, Apache NiFi,
Apache Beam and Microsoft Azure generate a native Big Data program. Apache Zeppelin
makes use of code snippets and is an interactive shell. Apache NiFi runs the flow in its
execution environment without generating any final code for the user to inspect. Apache
Beam requires the user to program manually using its own set of APIs. Microsoft Azure
is a proprietary platform and runs the user flow in its execution environment without
any code generation. Tools like QryGraph, Lemonade, QM-IConf, Nussknacker and the
conceptual approach developed in the thesis generate target Big Data program from the
user flow.

7.1.2 Extensibility of the Conceptual Approach to Additional Target

Frameworks

From a user’s perspective, designing a high-level flow to accomplish similar tasks via
Spark or Flink the flow structure remains almost identical making use of comparable
components. For instance, to create a program to calculate frequency of words in a text
collection the flow is identical and uses the same number of components as well as the
same order in which the components are arranged as shown in Figure 7.1. Nevertheless,
the underlying APIs used in Spark and Flink to achieve the same functionality differ
significantly.

Flow validation: Big Data framework-agnostic The flow validation techniques ap-
plied at the tool level to ensure that the flow created by the user will generate a compil-
able and runnable Big Data program is framework-agnostic. In short, we validate:

• The flow begins with an input component, followed by a set of transformation com-
ponents and ends with an action/output component.

• All the components use the same data abstraction.

• The components arranged in sequence are compatible with the input coming from
their predecessors.
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Read
CSV FlatMap GroupBy Count Display

Input Transformation Transformation Transformation Action/Output

Spark High-level flow

Read
CSV FlatMap GroupBy Count Display

Input Transformation Transformation Transformation Action/Output

Flink High-level flow

Figure 7.1: High-level Big Data flow to count frequency of words in text collection

Code generation: Big Data framework specific The translation and code generation
is target framework specific as the flow abstracts necessary components of the final Big
Data program like starting a Flink/Spark session and terminating it. All the code gen-
erated by the components in the user flow are inside this skeleton. The components
typically represent a stand-alone method implementation of target framework specific
APIs.

1 // Spark Code
Dataset <Str ing > t e x t F i l e = spark . read ( )

3 . t e x t F i l e ( " / path / to / f i l e " )
. as ( Encoders . STRING ( ) ) ;

5 Dataset <Str ing > words = t e x t F i l e . flatMap ( s −> {
return Arrays . a s L i s t ( s . toLowerCase ( ) . s p l i t ( " " ) ) . i t e r a t o r ( ) ;

7 } , Encoders . STRING ( ) ) . f i l t e r ( s −> ! s . isEmpty ( ) ) ;

9 Dataset <Row> counts = words . toDF ( " word " ) . groupBy ( co l ( " word " ) ) . count ( ) ;
counts . show ( ) ;

11

// Fl ink Code
13

DataSet<Str ing > t e x t = env . readTextF i le ( " / path / to / f i l e " ) ;
15

DataSet<Tuple2<Str ing , Integer >> counts =
17 t e x t . flatMap (new Tokenizer ( ) )

. groupBy ( 0 )
19 . sum( 1 ) ;

counts . writeAsCsv ( outputPath , " \n" , " " ) ;

Listing 7.1: Generated code for Spark and Flink

Spark and Flink use different methods to deliver similar results. For instance, the ‘count’
transformation component used in both the flows in Figure 7.1 internally represent dif-
ferent methods of Spark (count()) and Flink (sum()). Additionally, the internal model
generation from the user flow after passing the validation uses target framework specific
invocation statements to invoke the standalone method implementation of APIs. The
codes generated for Spark and Flink for the flows depicted in Figure 7.1 are shown in
Listing 7.1.

151



7 Discussion & Conclusion

Abstraction of target framework execution environment internals The user-flow
and the resultant code generation process for both Spark and Flink hide from the user the
internal workings of the execution environment of the target frameworks. For example,
both Spark and Flink use lazy evaluation [103] to minimise computation overheads. But
there is difference in the way the lazy evaluation is handled in Spark and Flink.

In Spark, execution does not start until an action is applied on a RDD. This means that
all Spark transformations are handled lazily, i.e. when a transformation is called it is not
really executed but only computed when its result is required which also implies that
some datasets may not be read if their output is not used. Consider, an example where a
log file of 1 GB stored in HDFS blocks needs to be processed for error entries. and fetch
the first entry. The logical step is to create a RDD from the log file followed by creation
of another RDD which contains only the filtered error entries, from which the first en-
try needs to be extracted. In case of eager evaluation, Spark would have processed all
blocks of the log file to create a RDD containing all error messages even when only the
first entry was required while in lazy evaluation it stops processing the different blocks
of the log file whenever the first entry is found. In short, Spark records the transfor-
mations applied on datasets in the form a DAG and does absolutely nothing but when
asked for result, it first optimises to do the minimum needed to deliver the result. By
optimisation, it is mean that when an action is encountered Spark checks the DAG and
finds out what operations are needed and clubs them together into a single MapReduce
pass which minimises the number of map and reduce pass which a developer needs to
take care of manually when programming directly using the MapReduce programming
model. When the main method of a Spark program starts execution, Spark waits for the
first action encounter on an RDD to start the actual execution.

Flink handles the lazy evaluation bit differently, i.e. when the main method is executed,
neither the datasets are loaded nor the transformations are computed. Instead, an ex-
ecution plan is created containing the sequence of operations to be computed. These
operations are executed when the execution is explicitly triggered by an execute() call on the
execution environment. This is distinct from the Spark lazy evaluation as Spark starts
execution when it first encounters an action statement while Flink ignores even action
statements but starts when it encounters execute(), the last statement of a Flink program.
This waiting till the end of the program allows Flink optimiser to do a lot more optimisa-
tions of operations compared to its counterpart. As part of our investigation, we did not
find any work comparing the degree of laziness supported by both the target execution
environments.

The user programming these frameworks from a high-level is shielded from these differ-
ence which may produce slight difference in result.

Extending to additional target frameworks As discussed in Section 7.1.1, the concep-
tual approach has two aspects to it. The first step is to analyse a different Big Data frame-
work and model APIs as modular components. The second aspect is to support parsing
of a high-level graphical flow created from such components and generate the target Big
Data program. The second step has aspects which are framework-agnostic like flow cre-
ation rules, flow validation and support for parametrisation of components which are
already compatible. The code generation process, though, has aspects which are target
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framework specific, e.g. generating code-snippets to initialise and terminate a session
within the execution engine of a Big Data framework. These aspects need to handled
for each supported framework which also includes components containing stand-alone
method implementation of target framework APIs which are invoked during the code-
generation process. This is in contrast to the code-generation techniques used in existing
solutions like Lemonade, QM-IConf, Nussknacker, QryGraph where the high-level pro-
gramming approach is tightly-coupled to the target Big Data framework. The graphical
programming approach have already been extended to support additional target frameworks
including Pig and Hive.

Unified programming for Spark and Flink: feasibility From the discussion in Sec-
tion 7.1.2 it might appear that it would be feasible to formulate a unified graphical query
language and using the conceptual approach to generate Spark and Flink program for
a same user flow. In reality, there are fundamental differences where Spark and Flink
differ in terms of underlying architecture, data processing style and data abstractions
offered. Spark grew out from the older Hadoop ecosystem in order to write easily opti-
mised MapReduce programs and is lambda architecture compatible. Flink on the other
hand is a framework and distributed processing engine for performing stateful com-
putations over unbounded and bounded data streams built around the kappa architec-
ture. The Kappa architecture, a simplification of the lambda architecture, relies on data
streams instead of using persisted datasets and has the following key concepts:

1. Everything is a stream.

2. Data sources are immutable.

3. Support for replay, i.e. reprocessing of all data which has already been processed.

1 // Spark code
Dataset <Row> salesSum = spark . read ( )

3 . option ( "mode" , "DROPMALFORMED" )
. option ( " header " , " true " )

5 . option ( " inferSchema " , " true " )
. csv ( f i l e )

7 . groupBy ( " id " , " date " )
. sum( " amount " )

9 . groupBy ( " date " ) ;

11 WindowSpec wSpec = Window . p ar t i t i onB y ( " date " )
. orderBy ( salesSum . co l ( "sum( amount ) " ) . desc ( ) ) ;

13

// window Operation , fo r gather ing the " id " column in the output
15 salesSum . withColumn ( " rank " , dense_rank ( ) . over ( wSpec ) )

. s e l e c t ( " id " , "sum( amount ) " , " date " )
17 . where ( " rank == 1 " )

. show ( ) ;
19 // Fl ink code

env . readCsvFile ( f i l e )
21 . i gnore Inva l idLines ( )

. types ( In teger . c l a s s , In teger . c l a s s , S t r i n g . c l a s s )
23 . groupBy ( 0 , 2 )

. sum( 1 )
25 . groupBy ( 2 )
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. maxBy ( 1 )
27 . pr in t ( ) ;

Listing 7.2: Difference in equivalent code in Spark and Flink

The key difference is in the underlying computational concepts. Spark has a batch con-
cept and uses micro-batches (data in buckets) to support streaming while in Flink is a
stream processing (data is streamed as it arrives, i.e. event-based) and treats batch pro-
cessing as a special case of stream processing.

Due to fundamental differences in computational models, generic code generation for
both target frameworks in not feasible for all cases. Additionally, there are difference
in methods needed to do basic data processing and both frameworks use different ap-
proaches to achieve result. For example, consider a use case where a program needs to
compute the most frequently sold product from a CSV file containing three fields prod-
uct id, date and amount. Spark does not have support for maxBy() method of Flink and
it has to be done via other approaches as shown in code Listing 7.2. Similarly Spark has
reduceByKey() which when ported to Flink necessitates the usage of a pair method of
groupBy() and sum(). A simple missing equivalent method involves lot of manual code
writing and this might be feasible for specific use cases but difficult to generalise.

Additionally, Flink iterates over each dataset based on event, filters, groups, applies
transformation and sends for output while in Spark events are already grouped by time
hence directly proceeds to application of filtering, transformation and finally send to out-
put. Due to inherent difference in way stream processing is handled, a unified high-level
language is not feasible without affecting generalisability of the approach when applied
to the whole frameworks.

7.2 Conclusion

Data analytics is gaining prominence and its even more relevant in the context of IoT
where the generated datasets needs to be analysed to make a business decision. Handling
large volume of data and also processing data streams require cluster based data science
methods like Big Data analytics. The Big Data ecosystem has a steep learning curve
owing to complexity in the programming models of the underlying frameworks, different
data abstractions supported in them coupled with the presence of redundancy-abundant
APIs. Hence, experts find it difficult to select a particular framework for their needs.
The ecosystem has no support for end-user programming which restricts it widespread
application among domain-experts who are not programmers. In this context, the main
idea of the thesis was to provide domain-experts with flow-based graphical tools for high-
level programming of Big Data applications.

IoT mashup tools based on the graphical flow-based programming paradigm has been
successfully used to lower the development effort in the context of IoT applications.
The thesis used the existing concept of graphical flow-based programming paradigm of
mashup tools to enable high-level programming for Big Data applications.
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Succinctly, the contributions made in this thesis are:

Flow-based Programming for Data Analytics Improved graphical flow-based pro-
gramming tool concepts based on actor model with support for concurrent execution se-
mantics to support in-flow data analytics has been proposed and prototyped (Chapter 4).
The integrated stream processing capabilities along with support for parametrising the
controlling factors of stream processing abstracts the various methods of stream pro-
cessing and enables non-experts to prototype adjustable stream analytics jobs. A flow-
based programming model with concurrent execution semantics is found to be suitable
for modelling a wide range of Big Data applications. The improvements over the current
state-of-the-art existing solutions is discussed in Section 4.5.

Development of modular component libraries of Big Data frameworks The Big Data
frameworks like Spark and Flink have their own set of APIs, data abstractions and differ-
ent libraries providing different functionalities. Programmers have to interact with these
APIs and data abstractions to develop Big Data applications. The first step in supporting
high-level graphical programming for Big Data applications was to analyse the target
frameworks, select APIs and data abstractions that are compatible and easy to model in
flow-based programming paradigm, i.e. not supporting APIs requiring user defined data
transformation functions or supporting code-snippets during flow creation to interact with
target framework internals.

Spark 1. An analysis of the different data abstractions of Spark helped to select the
most suitable ones for use in a graphical flow-based programming paradigm.
From the available data abstractions of Spark, DStream and DataFrame (in-
cluding Streaming DataFrame), have been selected for the thesis work. The
conceptual approach described in Section 5.5 supports only the transforma-
tions accessible via untyped, i.e. DataFrame APIs (Figure 5.6) and using the
aforementioned data abstractions. Any transformation making use of RDD
based approach involving user defined data transformation is not supported.

2. An analysis of the Spark framework was done which helped to formulate a
unified classification of APIs present in different Spark libraries (Section 5.4).
This is essential to create generic invocation statements to invoke the standalone
method implementation of the APIs belonging to the same API category and oper-
ating on the same data abstraction.

3. SparFlo is a library created consisting of modular composable components.
The components in SparFlo bundle a set of Spark APIs from the selected sub-
set of Spark APIs which are executed in a specific order to perform one data
analytic operation (Section 5.7). These modular components are composable
when composed confirming to the flow compositional rules discussed in Sec-
tion 5.6.1.3. The components of SparFlo can then be expressed as composi-
tional units in a mashup tool, for instance they have been expressed as actors
in aFlux (Section 5.8).

Flink 1. An analysis of the Flink framework was done to select the most suit-
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able programming and data abstractions for use in a graphical flow-based
programming paradigm. From the available programming abstractions of
Flink,programming via core APIs operating on Data DataSet and DataStream
data abstractions, have been selected for the thesis work (Section 6.2). The
conceptual approach described in Section 6.4 supports only the transforma-
tions accessible via core APIs and using the aforementioned data abstrac-
tions. Any transformation making use of low-level stateful stream processing
of Flink or programming via the SQL/Table API is not supported.

2. FlinkFlo is a library created consisting of modular composable components.
The components in FlinkFlo bundle a set of Flink APIs from the selected sub-
set of Flink APIs which are executed in a specific order to perform one data
analytic operation (Section 6.5). The components of FlinkFlo can be used in
any implementing tool to enable high-level programming of Flink applica-
tions.

High-level graphical programming for Big Data applications A generic approach for
Spark (Section 5.6) and Flink programming (Section 6.4) via graphical flows, validation
of graphical flows and auto-generation of Spark and Flink program created using SparFlo
and FlinkFlo components has been developed. The improvements over the current state-of-
the-art existing solutions providing similar high-level programming for Big Data applications
is discussed in Section 7.1.1.

The graphical programming concepts for Spark and Flink have been prototyped and
evaluated in separate use cases to demonstrate the ease of use, code-abstraction and au-
tomatic data interface conversion, which are the keys in lowering the complexity and its
ensued learning curve involved in the development of Big Data applications.
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A Appendix for Spark

A.1 Spark Code Listings

1 public s t a t i c Dataset <Row> process ( SparkSession spark ,
S t r i n g key ,

3 P r o p e r t i e s userInput ) {

5 // i n i t i a l i s e an empty data frame
Dataset <Row> inputDataSet = spark . emptyDataFrame ( ) ;

7

// read from P r o p e r t i e s f i l e
9 S t r i n g loadPath = userInput . getProperty ( key+"−loadPath " ) ;

S t r i n g inputFormat = userInput . getProperty ( key+"− f i l eFormat " ) ;
11 S t r i n g [ ] fieldNames = userInput . getProperty ( key+"−fieldNames " ) . s p l i t ( " , " ) ;

13 // prepare schema from user input
S t r i n g [ ] dataTypes = userInput . getProperty ( key+"−dataTypes " ) . s p l i t ( " , " ) ;

15 Lis t <S t r u c t F i e l d > f i e l d s = new ArrayList <>() ;
fo r ( i n t i= 0 ; i <fieldNames . length ; i ++) {

17 DataType dt = getDataType ( dataTypes [ i ] ) ;
S t r u c t F i e l d f i e l d = DataTypes . c r e a t e S t r u c t F i e l d ( fieldNames [ i ] , dt , t rue ) ;

19 f i e l d s . add ( f i e l d ) ;
}

21 StructType inputSchema = DataTypes . createStructType ( f i e l d s ) ;

23 inputDataSet = spark . read ( )
. format ( " csv " )

25 . option ( " header " , " f a l s e " )
. option ( "mode" , "DROPMALFORMED" )

27 . option ( " inferSchema " , " f a l s e " )
. schema ( inputSchema )

29 . load ( loadPath ) ;

31 return inputDataSet ;
}

Listing A.1: Splux: wrapper method (standalone method implementation of Spark APIs) to
read data from a file and create a DataFrame out of it
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//main method in Spark Driver program
2 public s t a t i c void main ( S t r in g [ ] args ) throws Exception {

4 P r o p e r t i e s featureProp = new P r o p e r t i e s ( ) ;
featureProp = e x t r a c t P r o p e r t i e s (PROPERTIES_PATH) ;

6

SparkSession sparkSess ion = getSparkSess ion ( " SparkSession4 " , featureProp ) ;
8

Dataset <Row> FileToDataFrame1 = FileToDataFrame1_readDataFrame
10 ( sparkSession , " FileToDataFrame1 " , featureProp ) ;

12 ShowDF3_actionOnDataFrame ( sparkSession , "ShowDF3" , featureProp , FileToDataFrame1 ) ;

14 sparkSess ion . stop ( ) ;

16 }
//Method to invoke Splux API using r e f l e c t i o n

18 public s t a t i c P r o p e r t i e s e x t r a c t P r o p e r t i e s ( S t r i ng path ) throws Exception {
Object objForAppStage = Class . forName ( " org . sparkexample . E x t r a c t P r o p e r t i e s " ) .

newInstance ( ) ;
20 Method appStageMethod = objForAppStage . getClass ( ) . getMethod ( " process " , S t r i ng .

c l a s s ) ;
P r o p e r t i e s p r o p e r t i e s = ( P r o p e r t i e s ) appStageMethod

22 . invoke ( objForAppStage , path ) ;
return p r o p e r t i e s ;

24 }
//Method to invoke Splux API using r e f l e c t i o n

26 public s t a t i c SparkSession getSparkSess ion ( S t r i ng key , P r o p e r t i e s featureProp )
throws Exception {

Object objForAppStage = Class . forName ( " org . sparkexample . GenerateSparkSession " ) .
newInstance ( ) ;

28 Method appStageMethod = objForAppStage . getClass ( ) . getMethod ( " process " , S t r i ng .
c l a s s , P r o p e r t i e s . c l a s s ) ;

SparkSession sparkSess ion = ( SparkSession ) appStageMethod . invoke ( objForAppStage ,
key , featureProp ) ;

30 return sparkSess ion ;
}

32 //Method to invoke Splux API using r e f l e c t i o n
public s t a t i c Dataset <Row> FileToDataFrame1_readDataFrame ( SparkSession

sparkSession , S t r in g key ,
34 P r o p e r t i e s featureProp ) throws Exception {

Object objForAppStage = Class . forName ( " org . sparkexample . FileToDataFrame " ) .
newInstance ( ) ;

36 Method appStageMethod = objForAppStage . getClass ( ) . getMethod ( " process " ,
SparkSession . c l a s s , S t r i n g . c l a s s , P r o p e r t i e s . c l a s s ) ;

Dataset <Row> inputData =
38 ( Dataset <Row>)appStageMethod . invoke ( objForAppStage , sparkSession , key , featureProp

) ;
return inputData ;

40 }
//Method to invoke Splux API component using r e f l e c t i o n

42 public s t a t i c void ShowDF3_actionOnDataFrame ( SparkSession sparkSession , S t r i ng
key , P r o p e r t i e s featureProp , Dataset <Row> inputDS ) throws Exception {

Object objForAppStage = Class . forName ( " org . sparkexample . ShowDF" ) . newInstance ( ) ;
44 Method appStageMethod = objForAppStage . getClass ( ) . getMethod ( " process " ,

SparkSession . c l a s s , S t r i n g . c l a s s , P r o p e r t i e s . c l a s s , Object . c l a s s ) ;
appStageMethod . invoke ( objForAppStage , sparkSession , key , featureProp , inputDS ) ;

46 }

Listing A.2: Sample Spark driver program generated by aFlux
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// i n i t i a l i z e spark s e s s i o n − Step 1 (UC1−S1 )
2 SparkSession spark = SparkSession . bui lder ( ) . master ( " l o c a l [ 2 ] " ) . appName( "App" ) .

getOrCreate ( ) ;

4 // prepare schema − Begin Step 2 (UC1−S2 )
StructType csvschema = DataTypes . createStructType (new S t r u c t F i e l d [ ] {

6 DataTypes . c r e a t e S t r u c t F i e l d ( " timestamp " , DataTypes . StringType , true ) ,
DataTypes . c r e a t e S t r u c t F i e l d ( " l a t i t u d e " , DataTypes . DoubleType , true ) ,

8 DataTypes . c r e a t e S t r u c t F i e l d ( " longitude " , DataTypes . DoubleType , true ) , } ) ;

10 // read data from e x t e r n a l f i l e system
Dataset <Row> inputDataSet = spark . read ( )

12 . format ( " csv " )
. option ( " header " , " f a l s e " )

14 . option ( "mode" , "DROPMALFORMED" )
. option ( " inferSchema " , " f a l s e " )

16 . schema ( csvschema )
. load ( " t r ip −data . csv " ) ; // − End Step 2

18

// s e l e c t f e a t u r e s − Begin Step 3 (UC1−S3 )
20 S t r i n g [ ] inputCols = { " l a t i t u d e " , " longitude " } ;

22 // Feature Ex t rac t ion : Produce a coloums containing f e a t u r e s
P ipe l ineStage myAssembler = new VectorAssembler ( )

24 . se t InputCols ( inputCols )
. setOutputCol ( " f e a t u r e s " ) ;

26

//ML Algorithm : apply KMeans algorithm on f e a t u r e s
28 Pipe l ineStage kmeans = new KMeans ( )

. setK ( 8 )
30 . s e tFeaturesCol ( " f e a t u r e s " )

. s e t P r e d i c t i o n C o l ( " Pred ic t ion " ) ;
32

//Add s t a g e s in to a p ipe l ine
34 Pipe l ineStage [ ] s tage = { myAssembler , kmeans } ;

P ipe l ine myPipeline = new Pipe l ine ( ) . s e t S t a g e s ( s tage ) ;
36

// Model f i t t i n g
38 PipelineModel model = myPipeline . f i t ( inputDataSet ) ;

40 // p e r s i s t model in to e x t e r n a l f i l e system
model . wri te ( ) . overwri te ( ) . save ( " models/kmeans " ) ; //− End Step 3

42

// apply model on t e s t data and pr int to console − Step4 (UC1−S4 )
44 model . transform ( inputDataSet ) . show ( ) ;

46 // stop spark s e s s i o n − Step 5 (UC1−S5 )
spark . stop ( ) ;

Listing A.3: Manual programming: batch processing to produce ML model
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1 // i n i t i a l i z e spark streaming context with micro−batch duration of 1000 ms −
Begin Step 1 (UC2−S1 )

SparkConf conf = new SparkConf ( ) . setAppName (appName) . setMaster ( master ) ;
3 JavaStreamingContext s s c = new JavaStreamingContext ( conf , new Duration (1000) ) ;

// End − Step 1

5 // Configure to read from Kafka − Begin Step 2 (UC2−S2 )
Map<Str ing , Object > kafkaParams = configurat ionParamsForKafkaListener ( ) ;

7 Col lect ion <Str ing > t o p i c s = Arrays . a s L i s t ( topicArray [ 0 ] ) ;

9 // Produce DStream from Kafka Record
JavaInputDStream<ConsumerRecord<Str ing , Str ing >> stream =

11 KafkaUti ls . createDirectStream ( ssc ,
L o c a t i o n S t r a t e g i e s . Pre ferCons i s tent ( ) ,

13 ConsumerStrategies . < Str ing , Str ing >Subscribe ( topics ,
kafkaParams ) ) ;

15 JavaPairDStream<Str ing , Str ing > input = stream . mapToPair (
record −>

17 new Tuple2 <( record . key ( ) , record . value ( ) ) ) ;

19 JavaDStream<Str ing > inputStream =input . map(
new Function<Tuple2<Str ing , Str ing > , Str ing >() {

21 public S t r in g c a l l (
Tuple2<Str ing , Str ing > tuple2 ) {

23 return tuple2 . _2 ( ) ; }
} ) ; //− End Step 2

25

// Convert DStream to RDD to DataFrame to apply saved ML Model − // Begin Step 3
(UC2−S3 )

27 inputStream . foreachRDD (new VoidFunction<JavaRDD<String >>() {
// P ipe l ine model o b j e c t w i l l be s e r i a l i z e d and sent from the dr iver to the

worker
29 PipelineModel savedModel = PipelineModel . read ( ) . load ( " models/kmeans " ) ;

@Override
31 public void c a l l ( JavaRDD<String > rdd ) {

JavaRDD<Row> rowRDD = rdd . map(
33 ( Function<Str ing , Row>) record −> {

S t r i n g [ ] a t t r i b u t e s = record . s p l i t ( " , " ) ;
35 return RowFactory . c r e a t e ( a t t r i b u t e s [ 0 ] . trim ( ) ,

Double . parseDouble ( a t t r i b u t e s [ 1 ] . trim ( ) ) ,
37 Double . parseDouble ( a t t r i b u t e s [ 2 ] . trim ( ) ) ,

a t t r i b u t e s [ 3 ] . trim ( ) ) ;
39 } ) ;

41 StructType csvschema =
DataTypes . createStructType (new S t r u c t F i e l d [ ] {

43 DataTypes . c r e a t e S t r u c t F i e l d ( " timestamp " , DataTypes . StringType , true ) ,
DataTypes . c r e a t e S t r u c t F i e l d ( " l a t i t u d e " , DataTypes . DoubleType , true ) ,

45 DataTypes . c r e a t e S t r u c t F i e l d ( " longitude " , DataTypes . DoubleType , true ) } ) ;
Dataset <Row> msgDataFrame = spark . createDataFrame (rowRDD, csvschema ) ;

47

//Apply model
49 msgDataFrame = savedModel . transform ( msgDataFrame ) ; //−End Step 3

51 // Publish to kafka − Begin Step 4 (UC2−S4 )
JavaRDD<Row> toRDD = msgDataFrame . toJavaRDD ( ) ; toRDD . foreach ( rowrdd−>{

53 P r o p e r t i e s kafkaProp = new P r o p e r t i e s ( ) ;
kafkaProp . put ( " boots trap . s e r v e r s " , bootStrapServre ) ;
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55 kafkaProp . put ( " key . s e r i a l i z e r " , " org . apache . kafka . common . s e r i a l i z a t i o n .
S t r i n g S e r i a l i z e r " ) ;

kafkaProp . put ( " value . s e r i a l i z e r " , " org . apache . kafka . common . s e r i a l i z a t i o n .
S t r i n g S e r i a l i z e r " ) ;

57 KafkaProducer<Str ing , Str ing > producer = new KafkaProducer<Str ing , Str ing >(
kafkaProp ) ;

S t r i n g data = rowrdd . get ( 0 ) . t o S t r i n g ( ) ;
59 //Row to S t r in g

fo r ( i n t i =1; i <= rowrdd . length ( ) −1; i ++) {
61 data += " , " ;

data += rowrdd . get ( i ) . t o S t r i n g ( ) ;
63

}
65 producer . send (new ProducerRecord<Str ing , Str ing >( " enrichedData " , data ) ) ;

producer . c l o s e ( ) ; } ) ;
67 }

} // − End Step 4
69 // S t a r t Streaming Sess ion and wait t i l l terminat ion − Step 5 (UC2−S5 )

s s c . s t a r t ( ) ;
71 s s c . awaitTermination ( ) ;

Listing A.4: Manual programming: stream processing and applying a ML model
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1 // c r e a t e spark s e s s i o n − Step 1 (UC3−S1 )
SparkSession spark = SparkSession . bui lder ( ) . master ( " l o c a l [ 2 ] " ) . appName( "

SparkApp " ) . getOrCreate ( ) ;
3

// produce schema − Begin Step 2 (UC3−S2 )
5 StructType csvschema =

DataTypes . createStructType (new S t r u c t F i e l d [ ] {
7 DataTypes . c r e a t e S t r u c t F i e l d ( " timestamp " , DataTypes . StringType , true ) , DataTypes .

c r e a t e S t r u c t F i e l d ( " l a t i t u d e " , DataTypes . StringType , true ) , DataTypes .
c r e a t e S t r u c t F i e l d ( " longitude " , DataTypes . StringType , true ) , } ) ;

9 // read from Kafka
Dataset <Row> rawData = spark . readStream ( )

11 . format ( " kafka " )
. option ( " kafka . boots trap . s e r v e r s " ,BOOTSTRAP_SERVERS)

13 . option ( " subscr ibe " , " enrichedCarData " ) . load ( )
. se lec tExpr ( "CAST( value AS STRING) as message " )

15 . s e l e c t ( funct ions . from_json ( funct ions . co l ( " message " ) , csvschema ) . as ( " j son " ) )
. s e l e c t ( " j son . * " ) ;

17

// Cast in to schema
19 Dataset <Row> castData = rawData .

withColumn ( " timestamp " ,
21 funct ions . unix_timestamp ( funct ions . co l ( " timestamp " ) , "dd/mm/yyyy hh :mm: ss . SSS " ) .

c a s t ( DataTypes . TimestampType ) )
. withColumn ( " l a t i t u d e " , funct ions . co l ( " l a t i t u d e " ) . c a s t ( DataTypes . DoubleType ) )

23 . withColumn ( " longitude " , funct ions . co l ( " longitude " ) . c a s t ( DataTypes . DoubleType ) )
. withColumn ( " eventTime " , funct ions . current_timestamp ( ) ) ) ; // −End Step 2

25

//Windowed count with l a t e −data hadling − Begin Step 3 (UC3−S3 )
27 Dataset <Row> windowedCounts = castData

. withWatermark ( " eventTime " , " 3 minutes " )
29 . groupBy ( funct ions . window ( funct ions . co l ( " eventTime " ) , " 2 minutes " , " 2 minutes " )

, funct ions . co l ( " junctionID " ) )
. count ( ) . withColumn ( " carcount " , funct ions . co l ( " count " ) . c a s t ( DataTypes .

StringType ) )
31 . withColumn ( " value " , funct ions . co l ( " carcount " ) . c a s t ( DataTypes . StringType ) )

. s e l e c t ( " value " ) ;
33 // End of Step 3

35 // Publish to Kafka − Begin Step 4 (UC3−S4 )
StreamingQuery streamQ = windowedCounts

37 . writeStream ( )
. format ( " kafka " )

39 . option ( " to p i c " , " update " )
. option ( " failOnDataLoss " , " f a l s e " )

41 . option ( " kafka . boots trap . s e r v e r s " , boots t rapServers )
. t r i g g e r ( Trigger . ProcessingTime ( " 300 seconds " ) )

43 . option ( " checkpointLocation " , checkpointPath )
. s t a r t ( ) ;

45 // Step 5 (UC3−S5 )
streamQ . awaitTermination ( ) ;

Listing A.5: Manual programming: stream processing to apply aggregations
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package org . sparkexample ;
2

import java . lang . Exception ;
4 import java . lang . S t r i n g ;

import java . lang . r e f l e c t . Method ;
6 import java . u t i l . P r o p e r t i e s ;

import org . apache . spark . sq l . Dataset ;
8 import org . apache . spark . sq l .Row;

import org . apache . spark . sq l . SparkSession ;
10

public c l a s s App {
12 public s t a t i c void main ( S t r in g [ ] args ) throws Exception {

P r o p e r t i e s featureProp = new P r o p e r t i e s ( ) ;
14 featureProp = e x t r a c t P r o p e r t i e s ( " hdfs : / /vm−10−155−208−115. cloud .mwn. de

:8020/ user /tanmaya/DemoFolder/ Application1 " ) ;
SparkSession sparkSess ion = getSparkSess ion ( " SparkSession3 " , featureProp ) ;

16 Dataset <Row> FileToDataFrame1 = FileToDataFrame1_readDataFrame ( sparkSession
, " FileToDataFrame1 " , featureProp ) ;
Dataset <Row> ProduceModel2 = ProduceModel2_transformDataFrameC ( sparkSession
, " ProduceModel2 " , featureProp , FileToDataFrame1 ) ;

18 }

20 public s t a t i c P r o p e r t i e s e x t r a c t P r o p e r t i e s ( S t r i ng path ) throws Exception {
Object objForAppStage = Class . forName ( " org . spark_for_af lux .
E x t r a c t P r o p e r t i e s " ) . newInstance ( ) ;

22 Method appStageMethod = objForAppStage . getClass ( ) . getMethod ( " process " ,
S t r i n g . c l a s s ) ;
P r o p e r t i e s p r o p e r t i e s = ( P r o p e r t i e s ) appStageMethod . invoke ( objForAppStage ,
path ) ;

24 return p r o p e r t i e s ;
}

26

public s t a t i c SparkSession getSparkSess ion ( S t r i ng key , P r o p e r t i e s featureProp
) throws Exception {

28 Object objForAppStage = Class . forName ( " org . spark_for_af lux .
GenerateSparkSession " ) . newInstance ( ) ;
Method appStageMethod = objForAppStage . getClass ( ) . getMethod ( " process " ,
S t r i n g . c l a s s , P r o p e r t i e s . c l a s s ) ;

30 SparkSession sparkSess ion = ( SparkSession ) appStageMethod . invoke (
objForAppStage , key , featureProp ) ;
return sparkSess ion ;

32 }

34 public s t a t i c Dataset <Row> FileToDataFrame1_readDataFrame ( SparkSession
sparkSession , S t r in g key ,

P r o p e r t i e s featureProp ) throws Exception {
36 Object objForAppStage = Class . forName ( " org . spark_for_af lux . FileToDataFrame "

) . newInstance ( ) ;
Method appStageMethod = objForAppStage . getClass ( ) . getMethod ( " process " ,
SparkSession . c l a s s , S t r i n g . c l a s s , P r o p e r t i e s . c l a s s ) ;

38 Dataset <Row> inputData = ( Dataset <Row>)appStageMethod . invoke ( objForAppStage
, sparkSession , key , featureProp ) ;
return inputData ;

40 }

42 public s t a t i c Dataset <Row> ProduceModel2_transformDataFrameC ( SparkSession
sparkSession , S t r in g key ,

P r o p e r t i e s featureProp , Dataset <Row> inputDS ) throws Exception {
44 Object objForAppStage = Class . forName ( " org . spark_for_af lux . ProduceModel " ) .

newInstance ( ) ;
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Method appStageMethod = objForAppStage . getClass ( ) . getMethod ( " process " ,
SparkSession . c l a s s , S t r i n g . c l a s s , P r o p e r t i e s . c l a s s , Object . c l a s s ) ;

46 Dataset <Row> inputData = ( Dataset <Row>)appStageMethod . invoke ( objForAppStage
, sparkSession , key , featureProp , inputDS ) ;
return inputData ;

48 }
}

Listing A.6: aFlux generated Spark code for use case 1

1 #Sat J u l 07 17:21:03 CEST 2018
FeatureAssembler2−inputCol=l a t i t u d e , longitude

3 KMeansCluster2−outputCol=p red ic t ion
SparkSession3 −sparkConfPath=hdfs \ : //vm−10−155−208−115. cloud .mwn. de \:8020/ user /

tanmaya/DemoFolder/ spark−conf . p r o p e r t i e s
5 FeatureAssembler2−outputCol=f e a t u r e s

FileToDataFrame1−fieldNames=timestamp , l a t i t u d e , longitude , base
7 ProduceModel2−p i p e l i n e S t a g e s=FeatureAssembler2 , KMeansCluster2

FileToDataFrame1−dataTypes=Str ing , Double , Double , S t r i ng
9 KMeansCluster2−numClusters=2

FileToDataFrame1− f i l eFormat=CSV
11 FileToDataFrame1−loadPath=hdfs \ : //vm−10−155−208−115. cloud .mwn. de \:8020/ user /

tanmaya/DemoFolder/ I n p u t F i l e s /uber−raw−data−apr14 . csv
ProduceModel2−savePath=hdfs \ : //vm−10−155−208−115. cloud .mwn. de \:8020/ user /

tanmaya/DemoFolder/Models/kmeans
13 KMeansCluster2−inputCol=f e a t u r e s

Listing A.7: Generated property file for use case 1
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1 package org . sparkexample ;

3 import java . lang . Exception ;
import java . lang . S t r i n g ;

5 import java . lang . r e f l e c t . Method ;
import java . u t i l . P r o p e r t i e s ;

7 import org . apache . spark . sq l . SparkSession ;
import org . apache . spark . streaming . api . j ava . JavaDStream ;

9 import org . apache . spark . streaming . api . j ava . JavaStreamingContext ;

11 public c l a s s App {
public s t a t i c void main ( S t r in g [ ] args ) throws Exception {

13 P r o p e r t i e s featureProp = new P r o p e r t i e s ( ) ;
featureProp = e x t r a c t P r o p e r t i e s ( " hdfs : / /vm−10−155−208−115. cloud .mwn. de
:8020/ user /tanmaya/DemoFolder/ Application2 " ) ;

15 SparkSession sparkSess ion = getSparkSess ion ( " SparkSession4 " , featureProp ) ;
JavaStreamingContext j s c = getJavaStreamingContextMethod ( sparkSession ,
featureProp ) ; ;

17 JavaDStream<Str ing > KafkaToDStream1 = KafkaToDStream1_readDStream ( j s c , "
KafkaToDStream1 " , featureProp ) ;
ApplyModelOnDStream2_transformDStream ( sparkSession , " ApplyModelOnDStream2 " ,
featureProp , KafkaToDStream1 ) ;

19 j s c . s t a r t ( ) ;
j s c . awaitTermination ( ) ;

21 }

23 public s t a t i c P r o p e r t i e s e x t r a c t P r o p e r t i e s ( S t r i ng path ) throws Exception {
Object objForAppStage = Class . forName ( " org . spark_for_af lux .
E x t r a c t P r o p e r t i e s " ) . newInstance ( ) ;

25 Method appStageMethod = objForAppStage . getClass ( ) . getMethod ( " process " ,
S t r i n g . c l a s s ) ;
P r o p e r t i e s p r o p e r t i e s = ( P r o p e r t i e s ) appStageMethod . invoke ( objForAppStage ,
path ) ;

27 return p r o p e r t i e s ;
}

29

public s t a t i c SparkSession getSparkSess ion ( S t r i ng key , P r o p e r t i e s featureProp
) throws Exception {

31 Object objForAppStage = Class . forName ( " org . spark_for_af lux .
GenerateSparkSession " ) . newInstance ( ) ;
Method appStageMethod = objForAppStage . getClass ( ) . getMethod ( " process " ,
S t r i n g . c l a s s , P r o p e r t i e s . c l a s s ) ;

33 SparkSession sparkSess ion = ( SparkSession ) appStageMethod . invoke (
objForAppStage , key , featureProp ) ;
return sparkSess ion ;

35 }

37 public s t a t i c JavaStreamingContext getJavaStreamingContextMethod ( SparkSession
sparkSession ,

P r o p e r t i e s featureProp ) throws Exception {
39 Object objForAppStage = Class . forName ( " org . spark_for_af lux .

GetJavaStreamingContext " ) . newInstance ( ) ;
Method appStageMethod = objForAppStage . getClass ( ) . getMethod ( " process " ,
SparkSession . c l a s s , P r o p e r t i e s . c l a s s ) ;

41 JavaStreamingContext s s c = ( JavaStreamingContext ) appStageMethod . invoke (
objForAppStage , sparkSession , featureProp ) ;
return s s c ;

43 }
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45 public s t a t i c JavaDStream<Str ing > KafkaToDStream1_readDStream (
JavaStreamingContext ssc ,

S t r i n g key , P r o p e r t i e s featureProp ) throws Exception {
47 Object objForAppStage = Class . forName ( " org . spark_for_af lux . KafkaToDStream " )

. newInstance ( ) ;
Method appStageMethod = objForAppStage . getClass ( ) . getMethod ( " process " ,
JavaStreamingContext . c l a s s , S t r i n g . c l a s s , P r o p e r t i e s . c l a s s ) ;

49 JavaDStream<Str ing > inputData = ( JavaDStream<String >)appStageMethod . invoke (
objForAppStage , ssc , key , featureProp ) ;
return inputData ;

51 }

53 public s t a t i c void ApplyModelOnDStream2_transformDStream ( SparkSession
sparkSession , S t r in g key ,

P r o p e r t i e s featureProp , JavaDStream<String > inputDStream ) throws
Exception {

55 Object objForAppStage = Class . forName ( " org . spark_for_af lux .
ApplyModelOnDStream " ) . newInstance ( ) ;
Method appStageMethod = objForAppStage . getClass ( ) . getMethod ( " process " ,
JavaStreamingContext . c l a s s , S t r i n g . c l a s s , P r o p e r t i e s . c l a s s , Object . c l a s s ) ;

57 appStageMethod . invoke ( objForAppStage , sparkSession , key , featureProp ,
inputDStream ) ;

}
59 }

Listing A.8: aFlux generated Spark code for use case 2

1 #Sat J u l 07 18:32:54 CEST 2018
microBatchDuration=5000

3 RDDToDF3−dataTypes=Str ing , Double , Double , S t r i ng
KafkaToDStream1−bootStrapServers =191.168.22.91\:9092

5 KafkaToDStream1−fieldNames=timestamp , l a t i t u d e , longitude , base
RDDToDF3−fieldNames=timestamp , l a t i t u d e , longitude , base

7 DStreamToKafka3−bootStrapServer =191.168.22.91\:9092
SparkSession4 −sparkConfPath=hdfs \ : //vm−10−155−208−115. cloud .mwn. de \:8020/ user /

tanmaya/DemoFolder/ spark−conf . p r o p e r t i e s
9 KafkaToDStream1−dataTypes=Str ing , Double , Double , S t r i ng

KafkaToDStream1−subscribeToTopic=iotData
11 DStreamToKafka3−topicToPublish=enrichedData

ApplyModelOnDF3−loadPath=hdfs \ : //vm−10−155−208−115. cloud .mwn. de \:8020/ user /
tanmaya/DemoFolder/ Application2 /Kmeans

13 ApplyModelOnDStream2− t ransformPipel ine=RDDToDF3, ApplyModelOnDF3 , DStreamToKafka3

Listing A.9: Generated property file for use case 2
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1 package org . sparkexample ;

3 import java . lang . Exception ;
import java . lang . S t r i n g ;

5 import java . lang . r e f l e c t . Method ;
import java . u t i l . P r o p e r t i e s ;

7 import org . apache . spark . sq l . Dataset ;
import org . apache . spark . sq l .Row;

9 import org . apache . spark . sq l . SparkSession ;

11 public c l a s s App {
public s t a t i c void main ( S t r in g [ ] args ) throws Exception {

13 P r o p e r t i e s featureProp = new P r o p e r t i e s ( ) ;
featureProp = e x t r a c t P r o p e r t i e s ( " hdfs : / /vm−10−155−208−115. cloud .mwn. de
:8020/ user /tanmaya/DemoFolder/ Application1 " ) ;

15 SparkSession sparkSess ion = getSparkSess ion ( " SparkSession3 " , featureProp ) ;
Dataset <Row> FileToDataFrame1 = FileToDataFrame1_readDataFrame ( sparkSession
, " FileToDataFrame1 " , featureProp ) ;

17 Dataset <Row> ProduceModel2 = ProduceModel2_transformDataFrame ( sparkSession ,
" ProduceModel2 " , featureProp , FileToDataFrame1 ) ;

}
19

public s t a t i c P r o p e r t i e s e x t r a c t P r o p e r t i e s ( S t r i ng path ) throws Exception {
21 Object objForAppStage = Class . forName ( " org . spark_for_af lux .

E x t r a c t P r o p e r t i e s " ) . newInstance ( ) ;
Method appStageMethod = objForAppStage . getClass ( ) . getMethod ( " process " ,
S t r i n g . c l a s s ) ;

23 P r o p e r t i e s p r o p e r t i e s = ( P r o p e r t i e s ) appStageMethod . invoke ( objForAppStage ,
path ) ;
return p r o p e r t i e s ;

25 }

27 public s t a t i c SparkSession getSparkSess ion ( S t r i ng key , P r o p e r t i e s featureProp
) throws Exception {
Object objForAppStage = Class . forName ( " org . spark_for_af lux .
GenerateSparkSession " ) . newInstance ( ) ;

29 Method appStageMethod = objForAppStage . getClass ( ) . getMethod ( " process " ,
S t r i n g . c l a s s , P r o p e r t i e s . c l a s s ) ;
SparkSession sparkSess ion = ( SparkSession ) appStageMethod . invoke (
objForAppStage , key , featureProp ) ;

31 return sparkSess ion ;
}

33

public s t a t i c Dataset <Row> FileToDataFrame1_readDataFrame ( SparkSession
sparkSession , S t r in g key ,

35 P r o p e r t i e s featureProp ) throws Exception {
Object objForAppStage = Class . forName ( " org . spark_for_af lux . FileToDataFrame "
) . newInstance ( ) ;

37 Method appStageMethod = objForAppStage . getClass ( ) . getMethod ( " process " ,
SparkSession . c l a s s , S t r i n g . c l a s s , P r o p e r t i e s . c l a s s ) ;
Dataset <Row> inputData = ( Dataset <Row>)appStageMethod . invoke ( objForAppStage
, sparkSession , key , featureProp ) ;

39 return inputData ;
}

41

public s t a t i c Dataset <Row> ProduceModel2_transformDataFrame ( SparkSession
sparkSession , S t r in g key ,

43 P r o p e r t i e s featureProp , Dataset <Row> inputDS ) throws Exception {
Object objForAppStage = Class . forName ( " org . spark_for_af lux . ProduceModel " ) .
newInstance ( ) ;
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45 Method appStageMethod = objForAppStage . getClass ( ) . getMethod ( " process " ,
SparkSession . c l a s s , S t r i n g . c l a s s , P r o p e r t i e s . c l a s s , Object . c l a s s ) ;
Dataset <Row> inputData = ( Dataset <Row>)appStageMethod . invoke ( objForAppStage
, sparkSession , key , featureProp , inputDS ) ;

47 return inputData ;
}

49 }

Listing A.10: aFlux generated Spark code for use case 3

1 #Sat J u l 07 17:21:03 CEST 2018
FeatureAssembler2−inputCol=l a t i t u d e , longitude

3 KMeansCluster2−outputCol=p red ic t ion
SparkSession3 −sparkConfPath=hdfs \ : //vm−10−155−208−115. cloud .mwn. de \:8020/ user /

tanmaya/DemoFolder/ spark−conf . p r o p e r t i e s
5 FeatureAssembler2−outputCol=f e a t u r e s

FileToDataFrame1−fieldNames=timestamp , l a t i t u d e , longitude , base
7 ProduceModel2−p i p e l i n e S t a g e s=FeatureAssembler2 , KMeansCluster2

FileToDataFrame1−dataTypes=Str ing , Double , Double , S t r i ng
9 KMeansCluster2−numClusters=2

FileToDataFrame1− f i l eFormat=CSV
11 FileToDataFrame1−loadPath=hdfs \ : //vm−10−155−208−115. cloud .mwn. de \:8020/ user /

tanmaya/DemoFolder/ I n p u t F i l e s /uber−raw−data−apr14 . csv
ProduceModel2−savePath=hdfs \ : //vm−10−155−208−115. cloud .mwn. de \:8020/ user /

tanmaya/DemoFolder/Models/kmeans
13 KMeansCluster2−inputCol=f e a t u r e s

Listing A.11: Generated property file for use case 3
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A.2 Analysis of Spark APIs

Table A.1: Analysis of Spark APIs
SN Spark API Input Output Spark Library API Type Classification
1. csv() Dataset<String> csvDataset Dataset<Row> Spark SQL Transformation Input

Functionality: Loads an Dataset[String] storing CSV rows and returns the result as a DataFrame.
2. csv() String... paths Dataset<Row> Spark SQL Transformation Input

Functionality: Loads CSV files and returns the result as a DataFrame.
3. csv() String path Dataset<Row> Spark SQL Transformation Input

Functionality: Loads a CSV file and returns the result as a DataFrame.
4. json() Dataset<String> jsonDataset Dataset<Row> Spark SQL Transformation Input

Functionality: Loads a Dataset[String] storing JSON objects and returns the result as a DataFrame.
5. json() String... paths Dataset<Row> Spark SQL Transformation Input

Functionality: Loads JSON files and returns the results as a DataFrame.
6. json() String path Dataset<Row> Spark SQL Transformation Input

Functionality: Loads a JSON file and returns the results as a DataFrame.
7. orc() scala.collection.Seq<String>

paths
Dataset<Row> Spark SQL Transformation Input

Functionality: Loads ORC files from the collection and returns the result as a DataFrame.
8. orc() String... paths Dataset<Row> Spark SQL Transformation Input

Functionality: Loads ORC files and returns the result as a DataFrame.
9. orc() String path Dataset<Row> Spark SQL Transformation Input

Functionality: Loads an ORC file and returns the result as a DataFrame.
10. parquet() scala.collection.Seq<String>

paths
Dataset<Row> Spark SQL Transformation Input

Functionality: Loads Parquet files from the collection, returning the result as a DataFrame.
11. parquet() String... paths Dataset<Row> Spark SQL Transformation Input
Functionality: Loads Parquet files, returning the result as a DataFrame.

Continued on next page
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Table A.1 – continued from previous page
SN Spark API Input Output Spark Library API Type Classification
12. parquet() String path Dataset<Row> Spark SQL Transformation Input
Functionality: Loads Parquet files, returning the result as a DataFrame.
13. text() scala.collection.Seq<String>

paths
Dataset<Row> Spark SQL Transformation Input

Functionality: Loads text files from the collection and returns a DataFrame.
14. text() String... paths Dataset<Row> Spark SQL Transformation Input
Functionality: Loads text files and returns a DataFrame.
15. text() String path Dataset<Row> Spark SQL Transformation Input
Functionality: Loads text files and returns a DataFrame.
16. textFile() scala.collection.Seq<String>

paths
Dataset<String> Spark SQL Transformation Input

Functionality: Loads text files and returns a Dataset of String.
17. textFile() String... paths Dataset<String> Spark SQL Transformation Input
Functionality: Loads text files and returns a Dataset of String.
18. textFile() String path Dataset<String> Spark SQL Transformation Input
Functionality: Loads text files and returns a Dataset of String.
19. csv() String path Dataset<Row> Spark Structured

Streaming
Transformation Input

Functionality: Loads a CSV file stream and returns the result as a DataFrame.
20. json() String path Dataset<Row> Spark Structured

Streaming
Transformation Input

Functionality: Loads a JSON file stream and returns the results as a DataFrame.
21. load() String path Dataset<Row> Spark Structured

Streaming
Transformation Input

Functionality: Loads input in as a DataFrame, for data streams that read from some path.
22. orc() String path Dataset<Row> Spark Structured

Streaming
Transformation Input

Continued on next page
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Table A.1 – continued from previous page
SN Spark API Input Output Spark Library API Type Classification
Functionality: Loads a ORC file stream, returning the result as a DataFrame.
23. parquet() String path Dataset<Row> Spark Structured

Streaming
Transformation Input

Functionality: Loads a Parquet file stream, returning the result as a DataFrame.
24. text() String path Dataset<Row> Spark Structured

Streaming
Transformation Input

Functionality: Loads text files and returns a DataFrame
25. textFile() String path Dataset<String> Spark Structured

Streaming
Transformation Input

Functionality: Loads text file(s) and returns a Dataset of String.

26. socketTextStream()

String hostname,
int port,

StorageLevel storageLevel
ReceiverInput
DStream <String> Spark Streaming Transformation Input

Functionality: Creates an input stream from TCP source hostname:port.

27. receiverStream()

Receiver<T>
receiver,

scala.reflect.ClassTag<T>
evidence$1

<T> ReceiverInput
DStream<T> Spark Streaming Transformation Input

Functionality: Create an input stream with any arbitrary user implemented receiver.

28.
binary

RecordsStream()
String directory,

int recordLength DStream<byte[]> Spark Streaming Transformation Input
Functionality: Create an input stream that monitors a Hadoop-compatible filesystem for new files and reads them as flat binary files

Continued on next page
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Table A.1 – continued from previous page
SN Spark API Input Output Spark Library API Type Classification

29. fileStream()

String directory,
scala.reflect.ClassTag<K>

evidence$4,
scala.reflect.ClassTag<V>

evidence$5,
scala.reflect.ClassTag<F>

evidence$6

<K,V,F extends
org.apache.hadoop

.mapreduce
.InputFormat<K,V»

InputDStream
<scala.Tuple2<K,V»Spark Streaming Transformation Input

Functionality: Create an input stream that monitors a Hadoop-compatible filesystem for new files and reads them as flat binary files

30. rawSocketStream()

String hostname,
int port,

StorageLevel storageLevel,
scala.reflect.ClassTag<T>

evidence$3
<T> ReceiverInput

DStream<T> Spark Streaming Transformation Input
Functionality: Create an input stream from network source hostname:port, where data is received as serialized blocks
31. csv() String path void Spark SQL Action Action
Functionality: Saves the content of the DataFrame in CSV format at the specified path.
32. json() String path void Spark SQL Action Action
Functionality: Saves the content of the DataFrame in JSON format at the specified path.
33. orc() String path void Spark SQL Action Action
Functionality: Saves the content of the DataFrame in ORC format at the specified path.
33. parquet() String path void Spark SQL Action Action
Functionality: Saves the content of the DataFrame in Parquet format at the specified path.
34. save() String path void Spark SQL Action Action
Functionality: Saves the content of the DataFrame at the specified path.
35. text() String path void Spark SQL Action Action
Functionality: Saves the content of the DataFrame in a text file at the specified path.
36. start() String path StreamingQuery Spark SQL Action Action
Functionality: Starts the execution of the streaming query & continually output results to the given path as new data arrives.

Continued on next page
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Table A.1 – continued from previous page
SN Spark API Input Output Spark Library API Type Classification

37. write() -
DataFrame
Writer<T> Spark SQL Action Action

Functionality: Interface for saving the content of the non-streaming Dataset out into external storage

38. writeStream() -
DataStream
Writer<T> Spark Structured

Streaming
Action Action

Functionality: Interface for saving the content of the streaming Dataset out into external storage
39. show() - - Spark SQL Action Action
Functionality: Displays the top 20 rows of Dataset in a tabular form.

40. saveAsTextFiles()
String prefix,
String suffix void Spark Streaming Action Action

Functionality: Save each RDD in this DStream as at text file, using string representation of elements.

41. saveAsObjectFiles()
String prefix,
String suffix void Spark Streaming Action Action

Functionality: Save each RDD in this DStream as a Sequence file of serialized objects.
42. distinct() - Dataset<T> Spark SQL Transformation Type A
Functionality: Returns a new Dataset that contains only the unique rows from this Dataset.
43. drop() Column col Dataset<Row> Spark SQL Transformation Type A
Functionality: Returns a new Dataset with a column dropped.
44. dropDuplicates() - Dataset<T> Spark SQL Transformation Type A
Functionality: Returns a new Dataset that contains only the unique rows from this Dataset.
45. localCheckpoint() - Dataset<T> Spark SQL Transformation Type A
Functionality: Eagerly locally checkpoints a Dataset and return the new Dataset.
46. sort() Column... sortExprs Dataset<T> Spark SQL Transformation Type A
Functionality: Returns a new Dataset sorted by the given expressions.
47. toDF() - Dataset<Row> Spark SQL Transformation Type A
Functionality: Converts this strongly typed collection of data to generic Dataframe.
48. limit() int n Dataset<T> Spark SQL Transformation Type A

Continued on next page
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Table A.1 – continued from previous page
SN Spark API Input Output Spark Library API Type Classification
Functionality: Returns a new Dataset by taking the first n rows.
49. as() String alias Dataset<T> Spark SQL Transformation Type A
Functionality: Returns a new Dataset with an alias set.
50. cache() - Dataset<T> Spark SQL Transformation Type A
Functionality: Persist this Dataset with the default storage level.
51. coalesce() int numPartitions Dataset<T> Spark SQL Transformation Type A
Functionality: Returns a new Dataset that has exactly numPartitions partitions.
52. describe() String... cols Dataset<Row> Spark SQL Transformation Type A
Functionality: Computes basic statistics for numeric and string columns
53. filter() Column condition Dataset<T> Spark SQL Transformation Type A
Functionality: Filters rows using the given condition.
54. orderBy() Column... sortExprs Dataset<T> Spark SQL Transformation Type A
Functionality: Returns a new Dataset sorted by the given expressions.
55. persist() - Dataset<T> Spark SQL Transformation Type A
Functionality: Persist this Dataset with the default storage level.
56. repartition() Column... partitionExprs Dataset<T> Spark SQL Transformation Type A
Functionality: Returns a new Dataset partitioned by the given partitioning expressions.
57. select() Column... cols Dataset<Row> Spark SQL Transformation Type A
Functionality: Selects a set of column based expressions.

58.

sort
Within

Partitions() Column... sortExprs Dataset<T> Spark SQL Transformation Type A
Functionality: Returns a new Dataset with each partition sorted by the given expressions.
59. summary() String... statistics Dataset<Row> Spark SQL Transformation Type A
Functionality: Computes specified statistics for numeric and string columns.
60. unpersist() - Dataset<T> Spark SQL Transformation Type A
Functionality: Mark the Dataset as non-persistent.
61. where() String conditionExpr Dataset<T> Spark SQL Transformation Type A

Continued on next page
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Table A.1 – continued from previous page
SN Spark API Input Output Spark Library API Type Classification
Functionality: Filters rows using the given SQL expression.
62. cache() - JavaDStream<T> Spark Streaming Transformation Type A
Functionality: Persist RDDs of this DStream with the default storage level
63. checkpoint() Duration interval static

DStream<T>
Spark Streaming Transformation Type A

Functionality: Enable periodic checkpointing of RDDs of this DStream.
64. count() - static JavaD-

Stream<Long>
Spark Streaming Transformation Type A

Functionality: Return a new DStream in which each RDD has a single element generated by counting each RDD of this DStream.
65. filter() Function<T,Boolean> f JavaDStream<T> Spark Streaming Transformation Type A
Functionality: Return a new DStream containing only the elements that satisfy a predicate.
66. window() Duration windowDuration JavaDStream<T> Spark Streaming Transformation Type A
Functionality: Return a new DStream in which each RDD contains all the elements in seen in a sliding window of time over this DStream.
67. repartition() int numPartitions JavaDStream<T> Spark Streaming Transformation Type A
Functionality: Return a new DStream with an increased or decreased level of parallelism.
68. persist() - JavaDStream<T> Spark Streaming Transformation Type A
Functionality: Persist RDDs of this DStream with the default storage level.

69. glom() -

static
JavaDStream
<java.util.List<T> >Spark Streaming Transformation Type A

Functionality: Return a new DStream in which each RDD is generated by applying glom() to each RDD of this DStream.
70. except() Dataset<T> other Dataset<T> Spark SQL Transformation Type B
Functionality: Returns a new Dataset containing rows in this Dataset but not in another Dataset.
71. unionByName() Dataset<T> other Dataset<T> Spark SQL Transformation Type B
Functionality: Returns a new Dataset containing union of rows in this Dataset and another Dataset.
72. union() Dataset<T> other Dataset<T> Spark SQL Transformation Type B
Functionality: Returns a new Dataset containing union of rows in this Dataset and another Dataset.
73. join() Dataset<?> right Dataset<Row> Spark SQL Transformation Type B

Continued on next page
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Table A.1 – continued from previous page
SN Spark API Input Output Spark Library API Type Classification
Functionality: Join with another DataFrame.
74. crossJoin() Dataset<?> right Datset<Row> Spark SQL Transformation Type B
Functionality: Explicit cartesian join with another DataFrame.
75. exceptAll() Dataset<T> other Dataset<T> Spark SQL Transformation Type B
Functionality: Returns a new Dataset containing rows in this Dataset but not in another Dataset.
76. intersect() Dataset<T> other Dataset<T> Spark SQL Transformation Type B
Functionality: Returns a new Dataset containing rows only in both this Dataset and another Dataset.
77. intersectAll() Dataset<T> other Dataset<T> Spark SQL Transformation Type B
Functionality: Returns a new Dataset containing rows only in both this Dataset and another Dataset while preserving the duplicates.
78. union() DStream<T> that DStream<T> Spark Streaming Transformation Type B
Functionality:

79. join()
Dataset<?> right,

Column joinExprs Dataset<Row> Spark SQL Transformation Type C
Functionality: Inner join with another DataFrame, using the given join expression.

80. joinWith()
Dataset<U> other,
Column condition

<U>
Dataset

<scala.Tuple2
<T,U> > Spark SQL Transformation Type C

Functionality:Using inner equi-join to join this Dataset returning a Tuple2 for each pair where condition is true.

81.
transform

WithToPair()

JavaPairDStream<K2,V2>
other,

Function3<R,
JavaPairRDD<K2,V2>,

Time,
JavaPairRDD<K3,V3> >

transformFunc

Static <K2,V2,
K3,V3>

JavaPairDStream
<K3,V3> Spark Streaming Transformation Type D
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Checks for Step 1:
1. Is category == input?
2. Note the schema input and output.
3. Note the data abstraction used.

Checks for Step 2:
1. Is category == action/transformation?
2. Is the data abstraction == data abstraction
     of predecessor?
3. Is the predecessor’s output schema used as
     input for this vertex compatible?
4. Note the current vertex’s output schema.

Checks for Step 3:
1. Is category == action/transformation?
2. Is the data abstraction == data abstraction
     of predecessor?
3. Is the predecessor’s output schema used as
     input for this vertex compatible?
4. If action component, note the output message.

Checks for Step 4:
1. Is category == execute?
2. Consume all the incoming msg from action vertex.

DAG

User Flow

Figure A.1: Validation of use case 2 Spark flow: applying model to Streaming data: Steps
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Step 1

Internal Model Generation Steps:
1. A Java statement for each vertex is introduced in the internal model.
    These Java statements form the main method in Spark Driver program. 
    Structure of Java statements for different components are 
    pre-determined based on their category and the data abstraction of the
    encapsulated Spark APIs.
2. The user supplied parameters are stored in a 
     property file with unique tag names.
3. It prepares and sends a message to its successor 
     combining 1 and 2.
4. The next vertex creates & appends its statement (1 & 2).
5. The process continues till the end vertex is reached.

DAG

User Flow

Message Part 1
1. Identify the Spark 
component category.
2. Prepare invocation 
statement for this 
method.

// prepare Java statement for reading into a DStream
 if ( componentCategory . equals ( "ReadDStream " ) {
statement = " JavaDStream <String> "+ nameInDag+" = "+nameInDag+ " _readDStream ( jsc , "+" \" "+nameInDag+" \" "+" , featureProp ) " ;
 }

Message Part 2
1. Identify the user 
supplied parameters.
2. Add the params. to a 
common property file 
with unique tag names.

Common Property File: All vertices append their user 
parameters here.

KafkaToDStream1-fieldNames=timestamp,latitude,longitude,base
KafkaToDStream1-subscribeToTopic=iotData

uniquetag_name-field_name=<user supplied values>

Generic invocation statement for invoking
a wrapper method (Section 5.8.4)

Figure A.2: Internal model representation of use case 2 Spark flow: Steps. (contd. on Fig-
ure A.3)
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Internal Model Generation Steps:
1. A Java statement for each vertex is introduced in the internal model.
    These Java statements form the main method in Spark Driver program. 
    Structure of Java statements for different components are 
    pre-determined based on their category and the data abstraction of the
    encapsulated Spark APIs.
2. The user supplied parameters are stored in a property file with 
    unique tag names.
3. It prepares and sends a message to its successor 
     combining 1 and 2.
4. The next vertex creates & appends its statement (1 & 2).
5. The process continues till the end vertex is reached.

Common Property File: All vertices append their user 
parameters here.

KafkaToDStream1-fieldNames=timestamp,latitude,longitude,base
KafkaToDStream1-subscribeToTopic=iotData

uniquetag_name-field_name=<user supplied values>
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Message Part 1
1. Identify the Spark 
component type.
2. Prepare invocation 
statement for this 
method.

// prepare Java statement for transforming a DStream
 if ( componentCategory . equals ( “TransformDStream " ) {
statement = nameInDag+ " _transformDStream( sparkSession , "+" \" "+
nameInDag+" \" "+" , featureProp , "+parents . get ( 0 ) +" ) " ;
 }

Message Part 2
1. Identify the user 
supplied parameters.
2. Add the params. to a 
common property file 
with unique tag names.

// prepare Java statement for action on a DStream
if ( componentCategory . equals ( " ActiononDataStream " ) {
statement = nameInDag+ " _transformDStream( sparkSession , "+" \" "+
nameInDag+" \" "+ " , featureProp , "+parents . get ( 0 ) +" ) " ;
}

Message Part 1
1. Identify the Spark 
component type.
2. Prepare invocation 
statement for this 
method.

Message Part 2
1. Identify the user 
supplied parameters.
2. Add the params. to a 
common property file 
with unique tag names.

Kafka
to

DStream
start vertex
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DStream
to

Kafka
Step 2

Generic invocation statement for invoking
a wrapper method (Section 5.8.4)

Generic invocation statement for invoking
a wrapper method (Section 5.8.4)

Execute
end vertex

Figure A.3: Internal model representation of use case 2 Spark flow: Steps. (contd. from Fig-
ure A.2, contd. on Figure A.4)

Internal Model Generation Steps:
1. For the executor end vertex, statements to start a spark session and 
    extract properties from the created property file by other vertices is prepared.
2. It assembles all the previous messages and we have a mini-collection of Java
    statements.

// prepare Java statement for extracting user supplied parameters from the property file
statement1 = " Properties featureProp = new Properties(); " + featureProp = 
    extractProperties(“path to created property file“);" ;
// prepare Java statement for starting a Spark Session
statement2 = " SparkSession sparksession = getSparkSession(“sessionname”, featureProp )”;
// prepare Java statement for starting & stopping a Streaming Session
statement3 = " JavaStreamingContext jsc = getJavaStreamingContextMethod(sparkSession,featureProp)”;
statement4 = " jsc.start()”;  statement5 = " jsc.awaitTermination();”;
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DStream
start vertex
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DStream
to

Kafka

Execute
end vertexStep 4

// prepare Java statement for reading into a DStream - From Root Node
 if ( componentCategory . equals ( "ReadDStream " ) {
statement = " JavaDStream <String> "+ nameInDag+" = "+nameInDag+ " _readDStream ( jsc , "+" \" "+nameInDag+" \" "+" , featureProp ) 
" ;
 }
 // prepare Java statement for transforming a DStream - From Apply ML Node
 if ( componentCategory . equals ( " TransformDStream " ) {
statement = nameInDag+ " _transformDStream( sparkSession , "+" \" "+ nameInDag+" \" "+ " , featureProp , "+parents . get ( 0 ) +" ) " ;
}
// prepare Java statement for performing action on a DStream - From DStreamtoKafka Node
 if ( componentCategory . equals ( " ActiononDStream " ) {
statement = nameInDag+ " _transformDStream( sparkSession , "+" \" "+ nameInDag+" \" "+ " , featureProp , "+parents . get ( 0 ) +" ) " ;
}
 // prepare Java statement for extracting user supplied parameters from the property file - From Leaf/Execute Node
statement1 = " Properties featureProp = new Properties(); " + featureProp = 
    extractProperties(“path to created property file“);" ;
// prepare Java statement for starting a Spark Session
statement2 = " SparkSession sparksession = getSparkSession(“sessionname”, featureProp )”;
// prepare Java statement for starting & stopping a Streaming Session
statement3 = " JavaStreamingContext jsc = getJavaStreamingContextMethod(sparkSession,featureProp)”;
statement4 = " jsc.start()”;  statement5 = " jsc.awaitTermination()”;

Final collection of Java 
statements for the Spark Flow: 

Internal Model

Message Part 1
1. Identify the Spark 
component type.
2. Prepare invocation 
statement for this 
method.

Message Part 2
1. Identify the user 
supplied parameters.
2. Add the params. to a 
common property file 
with unique tag names.

Generic invocation statement for invoking
a wrapper method (Section 5.8.4)

Figure A.4: Internal model representation of use case 2 Spark flow: Steps. (contd. from Fig-
ure A.3)
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Checks for Step 1:
1. Is category == input?
2. Note the schema input and output.
3. Note the data abstraction used.

Checks for Step 2:
1. Is category == action/transformation?
2. Is the data abstraction == data abstraction
     of predecessor?
3. Is the predecessor’s output schema used as
     input for this vertex compatible?
4. Note the current vertex’s output schema.

Checks for Step 3:
1. Is category == action/transformation?
2. Is the data abstraction == data abstraction
     of predecessor?
3. Is the predecessor’s output schema used as
     input for this vertex compatible?
4. If action component, note the output message.

Checks for Step 4:
1. Is category == execute?
2. Consume all the incoming msg from action vertex.

DAG

User Flow

Figure A.5: Validation of use case 3 Spark flow: performing streaming aggregations: Steps
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Internal Model Generation Steps:
1. A Java statement for each vertex is introduced in the internal model.
    These Java statements form the main method in Spark Driver program. 
    Structure of Java statements for different components are 
    pre-determined based on their category and the data abstraction of the
    encapsulated Spark APIs.
2. The user supplied parameters are stored in a 
     property file with unique tag names.
3. It prepares and sends a message to its successor 
     combining 1 and 2.
4. The next vertex creates & appends its statement (1 & 2).
5. The process continues till the end vertex is reached.

DAG

User Flow

Message Part 1
1. Identify the Spark 
component category.
2. Prepare invocation 
statement for this 
method.

// prepare Java statement for reading into a DataFrame
 if ( componentCategory . equals ( "ReadDataFrame " ) {
statement = " Dataset <Row> "+ nameInDag+" = "+nameInDag+ " _readDataFrame ( sparkSession , "+" \" "+nameInDag+" \" "+" , featureProp ) " ;
 }

Message Part 2
1. Identify the user 
supplied parameters.
2. Add the params. to a 
common property file 
with unique tag names.

Common Property File: All vertices append their user 
parameters here.

microBatchDuration=5000
RDDToDF3-dataTypes=String,Double,Double,String

uniquetag_name-field_name=<user supplied values>

Generic invocation statement for invoking
a wrapper method (Section 5.8.4)

Figure A.6: Internal model representation of use case 3 Spark flow: Steps. (contd. on Fig-
ure A.7)
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Internal Model Generation Steps:
1. A Java statement for each vertex is introduced in the internal model.
    These Java statements form the main method in Spark Driver program. 
    Structure of Java statements for different components are 
    pre-determined based on their category and the data abstraction of the
    encapsulated Spark APIs.
2. The user supplied parameters are stored in a property file with 
    unique tag names.
3. It prepares and sends a message to its successor 
     combining 1 and 2.
4. The next vertex creates & appends its statement (1 & 2).
5. The process continues till the end vertex is reached.

Common Property File: All vertices append their
 user parameters here.

microBatchDuration=5000
RDDToDF3-dataTypes=String,Double,Double,String

uniquetag_name-field_name=<user supplied values>
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// prepare Java statement for transforming a DataFrame
if ( componentCategory . equals ( " TransformDataFrame " ) {
statement = " Dataset <Row> "+ nameInDag+" = "+nameInDag+ " _transformDataFrame (
sparkSession , "+" \" "+nameInDag+" \" "+" , featureProp , "+parents . get ( 0 ) +" ) " ;
}

Message Part 2
1. Identify the user 
supplied parameters.
2. Add the params. to a 
common property file 
with unique tag names.

// prepare Java statement for action on a DataFrame
if ( componentCategory . equals ( " ActiononDataFrame " ) {
statement = nameInDag+" _actionOnDataFrame ( sparkSession , 

"+" \" "+nameInDag+" \" "+ " , featureProp , "+parents . get ( 0 ) +" ) " ;
}
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Figure A.7: Internal model representation of use case 3 Spark flow: Steps. (contd. from Fig-
ure A.2, contd. on Figure A.8)

Internal Model Generation Steps:
1. For the executor end vertex, statements to start a spark session and 
    extract properties from the created property file by other vertices is prepared.
2. It assembles all the previous messages and we have a mini-collection of Java
    statements.

// prepare Java statement for extracting user supplied parameters from the property file
statement1 = " Properties featureProp = new Properties(); " + featureProp = 
    extractProperties(“path to created property file“);" ;

// prepare Java statement for starting a Spark Session
statement2 = " SparkSession sparksession = getSparkSession(“sessionname”, featureProp " ;
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// prepare Java statement for reading into a DataFrame - From Root Node
 if ( componentCategory . equals ( "ReadDataFrame " ) {
  statement = " Dataset <Row> "+ nameInDag+" = "+nameInDag+ " _readDataFrame ( sparkSession , "+" \" "+nameInDag+" \" "+" , featureProp ) " ;
 }
 // prepare Java statement for transforming a DataFrame - From Window Count Node
 if ( componentCategory . equals ( " TransformDataFrame " ) {
  statement = " Dataset <Row> "+ nameInDag+" = "+nameInDag+ " _transformDataFrame (
  sparkSession , "+" \" "+nameInDag+" \" "+" , featureProp , "+parents . get ( 0 ) +" ) " ;
 }
 // prepare Java statement for action on a DataFrame - From StreamDF to Kafka  Node
 if ( componentCategory . equals ( " ActiononDataFrame " ) {
  statement = nameInDag+" _actionOnDataFrame ( sparkSession , 

"+" \" "+nameInDag+" \" "+ " , featureProp , "+parents . get ( 0 ) +" ) " ;
  }
 // prepare Java statement for extracting user supplied parameters from the property file - From Execute Node
 statement1 = " Properties featureProp = new Properties(); " + “ featureProp = 
    extractProperties(“path to created property file“);" ;
 // prepare Java statement for starting a Spark Session - From Execute Node
 statement2 = " SparkSession sparksession = getSparkSession(“sessionname”, featureProp " ;

Final collection of Java 
statements for the Spark Flow: 

Internal Model

Message Part 1
1. Identify the Spark 
component type.
2. Prepare invocation 
statement for this 
method.

Message Part 2
1. Identify the user 
supplied parameters.
2. Add the params. to a 
common property file 
with unique tag names.

Generic invocation statement for invoking
a wrapper method (Section 5.8.4)

Figure A.8: Internal model representation of use case 3 Spark flow: Steps. (contd. from Fig-
ure A.3)
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B.1 Flink Code Listings

1 DataStream<Traff icObservat ion > f i l t e r e d T r a f f i c = traf f icObservat ionDataStream .
f i l t e r (new Fi l te rFunct ion <Traff icObservat ion >() {

@Override
3 public boolean f i l t e r ( Traf f i cObservat ion input ) throws Exception {

f i n a l double EARTH_RADIUS = 6371;
5 double r e f L a t = 43.462197; // Enter des i red l a t i t u d e here

double refLng = −3.810048; // Enter des i red longitude here
7 double radius = 1 ; // Enter des i red radius here

double currentLat = input . ge tLat i tude ( ) ;
9 double currentLng = input . getLongitude ( ) ;

double dLat = Math . toRadians ( r e f L a t − currentLat ) ;
11 double dLng = Math . toRadians ( refLng − currentLng ) ;

double sindLat = Math . s in ( dLat / 2) ;
13 double sindLng = Math . s in ( dLng / 2) ;

double va1 = Math . pow( sindLat , 2) + Math . pow( sindLng , 2) * Math . cos ( Math .
toRadians ( currentLat ) ) * Math . cos ( Math . toRadians ( r e f L a t ) ) ;

15 double va2 = 2 * Math . atan2 ( Math . s q r t ( va1 ) , Math . s q r t (1 − va1 ) ) ;
double d i s tance = EARTH_RADIUS * va2 ;

17 return dis tance < radius ;
}

19

} ) ;

Listing B.1: Auto-generated codes for data filtering via the GPS component

AfterMatchSkipStrategy s t r a t = AfterMatchSkipStrategy . noSkip ( ) ;
2 Pattern <Traff icObservat ion , Traf f icObservat ion > myPattern = Pattern . <

Traf f icObservat ion >begin ( " s t a r t " , s t r a t )
. where (new SimpleCondition<Traff icObservat ion >() {

4 @Override
public boolean f i l t e r ( Tra f f i cObservat ion t r a f f i c O b s e r v a t i o n ) throws

Exception {
6 i f ( t r a f f i c O b s e r v a t i o n . getCharge ( ) >= 50)

return true ;
8 return f a l s e ;

}
10 } ) . followedBy ( " middle " )

. where (new SimpleCondition<Traff icObservat ion >() {
12 @Override

public boolean f i l t e r ( Traf f i cObservat ion t r a f f i c O b s e r v a t i o n ) throws
Exception {

14 i f ( t r a f f i c O b s e r v a t i o n . getCharge ( ) >= 60)
return true ;

16 return f a l s e ;
}

18 } ) . within ( Time . minutes ( 1 0 ) )
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. followedBy ( " end " ) . where (new SimpleCondition<Traff icObservat ion >() {
20 @Override

public boolean f i l t e r ( Traf f i cObservat ion t r a f f i c O b s e r v a t i o n ) throws
Exception {

22 i f ( t r a f f i c O b s e r v a t i o n . getCharge ( ) >= 75)
return true ;

24 return f a l s e ;
}

26 } ) . within ( Time . minutes ( 1 0 ) ) ;

28 PatternStream <Traff icObservat ion > patternStream = CEP . pattern ( f i l t e r e d T r a f f i c
, myPattern ) ;

30 DataStream<SmartSantanderAlert > a l e r t s = patternStream . s e l e c t (new
PatternSelec tFunct ion <Traff icObservat ion , SmartSantanderAlert >() {
@Override

32 public SmartSantanderAlert s e l e c t (Map<Str ing , L is t <Traf f icObservat ion >> map
) throws Exception {

Traf f i cObservat ion event = map . get ( " end " ) . get ( 0 ) ;
34 return new SmartSantanderAlert ( " Charge went too high in " + event .

t o S t r i n g ( ) ) ;
}

36 } ) ;

Listing B.2: Auto-generated code for pattern detection in real-time data
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