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Spurious numerical damping in the collocation boundary element method is considered for plane
sound waves in two-dimensional ducts subjected to rigid and absorbing boundary conditions. Its
extent is quantified in both conditions based on a damping model with exponential decay, and
meshes of linear and quadratic continuous elements are studied. An exponential increase of nume-
rical damping with respect to frequency is found and the results suggest an upper bound for given
element-to-wavelength ratios. The quantification of numerical damping is required for evaluation
of meshes covering a large number of waves, and real damping phenomena can be prevented from
overestimation.
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1. Introduction

The boundary element method (BEM) is a popular numerical tool for solving linear time-
harmonic acoustic problems arising in many technical and scientific applications.1–3 Using
the BEM, modeling is limited to the boundary of the wave-carrying fluid domain. Hence,
boundary element discretizations involve fewer degrees of freedom than corresponding dis-
cretizations obtained by the finite element method (FEM). Moreover, the implicit satisfac-
tion of the Sommerfeld radiation condition is particularly advantageous for exterior prob-
lems compared to the FEM.4

Concerning the linear time-harmonic FEM, it is widely known that it suffers from the
so-called pollution effect5 — a cumulative numerical error growing with the number of waves
in the domain.6 Different from the common discretization error, the local error caused by
the pollution effect can only be reduced by a global mesh refinement. The pollution and
the related dispersion effect, i.e. the numerical error introduced by the wavenumber in the
discrete setting, have been rigorously discussed in literature.5,7–9 Moreover, error estimates

This is an Open Access article published by World Scientific Publishing Company. It is distributed under
the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is
permitted, provided the original work is properly cited.

1850022-1

J.
 T

he
or

. C
om

p.
 A

co
ut

. 2
01

8.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
E

C
H

N
IC

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

M
U

N
IC

H
 o

n 
11

/3
0/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

http://dx.doi.org/10.1142/S2591728518500226


September 17, 2018 10:8 WSPC/S2591-7285 130-JTCA 1850022

S. K. Baydoun & S. Marburg

have been presented10–12 and modified finite element formulations have been suggested to
address this issue.13–16

However, much less work has been carried out in the past regarding a similar effect that
occurs when using the BEM. This effect will be denoted as numerical damping in what
follows. It has been studied in the last years for acoustic interior problems,17–19 and first
approaches towards its quantification exist.20 The present paper is built upon these works,
and it is organized as follows.

Section 2 serves as a short introduction to numerical damping in the BEM and demon-
strates its implications to the reader. In Secs. 3 and 4, two methods are presented for
the quantification of numerical damping arising for plane sound waves in two-dimensional
ducts subjected to rigid and fully absorbing boundary conditions, respectively. The first
method is based on the full width at half maximum (FWHM) of resonance peaks in the
course of frequency response curves. In the second approach, the sound pressure ampli-
tude decay of a traveling wave is related to an analytical solution subjected to losses.
Both methods assume a qualitative equivalence between numerical damping and linear vis-
cous damping. They are applied in Sec. 5, and the extent of numerical damping is studied
over frequency for different meshes of linear and quadratic continuous boundary elements.
The results are discussed in Sec. 6, and the paper concludes by pointing out the bene-
fits, applicability and the limitations of the presented approaches for quantifying numerical
damping.

2. Brief Review of Numerical Damping in the Boundary Element Method

In the following, the phenomenon of numerical damping is introduced using the example of
an acoustic interior problem. A plane sound wave in a closed two-dimensional duct of length
l = 3.4m and width w = 0.2m is considered, as shown in Fig. 1. It is filled entirely with air
with a density of ρ = 1.3 kg/m3, and the speed of sound is c = 340m/s. A sound wave is
generated due to a harmonic excitation by a particle velocity of v0 = 1mm/s at x = 0 and is
fully reflected at the end x = l of the rigid duct. The system is free of dissipation, and, hence,
resonances are expected at the integer multiples of 50Hz. At those frequencies, standing
waves with infinite amplitudes are formed, and the phase jumps equal 180◦. Comprehensive
studies on error estimates of this problem are available in the literature.21,22 The three-
dimensional equivalent of this model is defined as a benchmark problem of computational
acoustics.23

x

y

l

w

Fig. 1. Geometry of the two-dimensional closed duct.
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The frequency response of the system is studied using the BEM in conjunction with
a collocation discretization. The mesh consists of 32 one-dimensional boundary elements
with quadratic Lagrangian pressure approximation, of which 15 elements are employed
for both edges parallel to the direction of wave propagation, respectively. Regarding the
numerical integration, an adaptive scheme is used, where the domain of singular integrals
is subdivided into smaller intervals.24 The number of Gaussian points is chosen according
to a relative distance function.25 The frequency response is evaluated up to 520Hz. At
500Hz, a standing wave composed of 10 half-waves emerges, corresponding to a ratio of
three elements per wavelength. A numerical error of less than 5% in the L∞-vectornorm
can be expected.21

In Fig. 2, the sound pressure level pL and the phase angle φ at the center of the duct,
i.e. x = 1.7m, y = 0.1m, are shown. Resonances only occur every 100Hz since the chosen
point is associated with a node of the modes at the uneven integer multiples of 50Hz.
Figure 3 provides close-ups of the frequency response curves at around 100 and 500Hz,
respectively. Obviously, the peak at 500Hz is wider and less pronounced than the peak
at 100Hz. Moreover, the phase jumps at the low-frequency resonances are sharp, while at
500Hz, they are rounded.

Those phenomena clearly indicate damping that is introduced numerically, since the
underlying physical system is free of dissipation. Furthermore, the extent of numerical damp-
ing seems to grow with frequency. However, numerical damping does not only occur for the
case of a fully reflected sound wave as presented here, but it is also encountered for travel-
ing waves.19 The upcoming sections present methods to quantify the numerical damping in
both scenarios.
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Fig. 2. Sound pressure level (top) and phase angle (bottom) at the center of the duct.
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Fig. 3. Resonance peaks of the sound pressure level at the center of the duct at 100 Hz (left) and 500 Hz
(right).

3. Full Width at Half Maximum for Interior Acoustic Problems

The occurrence of artificial numerical damping can lead to an overestimation of real dam-
ping phenomena. Moreover, in the case of large computational domains accommodating a
large number of waves, excessive numerical damping leads to unacceptable errors. Hence,
methods for the quantification of its extent are desirable. For this purpose, it is assumed
that numerical damping behaves similarly to viscous fluid damping, i.e. it is proportional
to the time derivative of the sound pressure. The method presented herein is based on the
FWHM of the sound pressure peak.

The FWHM method is widely applied in experimental damping estimation by means of
frequency response analysis and extensively discussed for mechanical systems with a single
degree of freedom.26,27 The starting point for its derivation in the context of acoustic interior
problems is the scalar, damped, homogeneous wave equation in one dimension, i.e.

∂2p(x, t)
∂x2

− 1
c2

p̈(x, t) − µṗ(x, t) = 0. (3.1)

Here, µ denotes the unknown damping coefficient. Separating the variables, the sound pres-
sure is decomposed into solely time- and position-dependent functions, respectively, and it
is written as p(x, t) = g(x)p̃(t). For the purpose of damping estimation from a frequency
response, only the frequency ranges around resonances are of interest. At these frequencies,
standing waves form, that can be described by a sinusoidal position-dependence under the
assumption of light damping. Hence,

g(x) = A sin(kx), (3.2)

in which the wave number k = 2πf/c is introduced. Double differentiation, inserting p(x, t)
into (3.1), and imposing a time-harmonic excitation on the right-hand side yields

¨̃p(t) + µc2 ˙̃p(t) + c2k2︸︷︷︸
ω2

0

p̃(t) = Ae cos(ωet). (3.3)

Equation (3.3) describes the sound pressure in the time domain at a discrete position in the
fluid and is similar to the differential equation of a mechanical system with a single degree
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of freedom. In (3.3), ω0 is the angular eigenfrequency of the undamped system. Ae and
ωe denote the amplitude and angular frequency of the excitation, respectively. In steady-
state, the time-dependent pressure function reads p̃(t) = p̂ cos(ωet + φ) with the pressure
amplitude p̂ and the phase shift φ with respect to the excitation. Inserting p̃(t) into (3.3)
and rearranging gives

p̂ = Ae√
(ω2

0−ω2
e )2+(µc2ωe)2

, ˙̂p = ωep̂ = Aeωe√
(ω2

0−ω2
e )2+(µc2ωe)2

for the sound pressure amplitude and its time derivative ˙̂p. In the case of light damping,
the resonance frequency accords approximately with the eigenfrequency (ωe ≈ ω0), and the
time derivative can be written as

˙̂pr =
Ae

µc2
. (3.4)

Furthermore, two angular frequencies ωI and ωII are defined at which the amplitude drops
to

√
2/2 ˙̂pr, which corresponds to a decrease of 3 dB. Relating that expression to (3.4) and

solving the quadratic equation leads to

ωI,II =

√(
µc2

2

)2

+ ω2
0 ± µc2

2
.

If ωI and ωII are given from the frequency response curve, the unknown damping coefficient
µ can be determined by

µ =
ωII − ωI

c2
. (3.5)

The application of the FWHM method to acoustic interior problems is schematically
depicted in Fig. 4. However, awareness of the underlying assumptions is important when
using the method:

(a) The damping behaves qualitatively as viscous damping, i.e. it is proportional to the
time derivative of the sound pressure.

(b) The extent of damping is small. Hence, (3.2) is valid. Moreover, the resonance frequen-
cies accord with the eigenfrequencies of the undamped system.

(c) Damping between ωI and ωII is independent of frequency.

ωe

˙̂p

ωI ωII

˙̂pr

√
2

2
˙̂pr

Fig. 4. Schematic of the FWHM method.
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4. Quantification of Numerical Damping for a Traveling Sound Wave

The phenomenon of numerical damping is not only observable in the case of resonances
but also for a traveling sound wave. The recent paper18 demonstrates the amplitude decay
of an one-dimensional sound wave in a duct with an absorbing boundary condition at the
outlet. Since the underlying physical system is free of dissipation, the decay clearly indicates
numerical damping in the BEM.

In the following, a method for the quantification of numerical damping occurring for
a traveling wave will be presented. Assuming again that it qualitatively behaves similarly
to viscous damping, the boundary element solution will be related to an analytical solu-
tion to obtain the unknown damping coefficient. The derivation of the analytical solution
again starts with the one-dimensional wave equation (3.1). Introducing the harmonic time-
dependence e−iωt leads to the damped Helmholtz equation, which is given as

∂p2(x)
∂x2

+ (k2 + iµω)︸ ︷︷ ︸
k̃2

p(x) = 0, (4.1)

where the complex wavenumber k̃ has been introduced. Note that in contrast to Sec. 3, p(x)
denotes the solely position-dependent complex sound pressure. Equation (4.1) is accompa-
nied by Robin boundary conditions relating the structural particle velocity vs to the sound
pressure on the boundary, i.e.

1
iωρ

∂p(x)
∂x

− vs(x) = Y (x)p(x), x ∈ {0, l},

where Y (x) is the boundary admittance. A traveling wave in a duct of length l is excited
by a particle velocity v0 at the rigid left end and absorbed at the outlet on the right-hand
side, i.e. vs(0) = v0, Y (0) = 0, vs(l) = 0, Y (l) = 1/ρc. The corresponding boundary value
problem is solved by integrating (4.1), and the analytical solution emerges as

pa(x, µ) = −ρcv0e
ik̃x, x ∈ [0, l]. (4.2)

The extent of numerical damping will be quantified by relating the amplitude decay of (4.2)
to the decay of the boundary element solution. However, the boundary element solution is
additionally subjected to a discretization error that needs to be excluded in the following
study. Considering that discretization induces a local numerical error independent of the
number of waves in the computational domain, the numerical solution of a wave traveling
along one dimension in a uniformly meshed setting will yield a spatially constant discretiza-
tion error. In contrast, the numerical damping subjects the amplitude of the boundary
element solution to a spurious decline with respect to the number of waves.

Figure 5 demonstrates the distinction between both types of error. The undamped
analytical solution of a traveling wave yields a constant sound pressure amplitude of
p̂a(x, µ = 0) = ρcv0. Regarding the boundary element model, the same width and mesh size
are used as in the previous section. The corresponding solution is obtained by evaluating
the sound pressure at n discrete internal field points along x and storing the amplitudes in
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Fig. 5. Absolute sound pressure of a one-dimensional traveling wave along a duct evaluated with the BEM
(p̂be) and analytically with (p̂a(µe)) and without damping (p̂a(0)).

an array p̂be. It clearly exhibits a decay along the whole length l = 100m of the duct while
the rate of decay decreases towards the propagation direction of the wave. The amplitude
of the analytical solution p̂a(µe) with an exemplary damping coefficient µe �= 0 is also given
in Fig. 5. Note that viscous damping, as modeled here for the analytical solution, results in
an exponential decay e−α̃x with the attenuation coefficient

α̃ =
1
2

µc. (4.3)

However, the exponential behavior is hardly recognizable in Fig. 5.
With the analytical solution at hand, the unknown numerical damping coefficient µ

corresponding to a particular boundary element model is estimated based on the following
idea: The constant offset, i.e. the mean difference between p̂be and p̂a(µe), is identified as
the discretization error. This offset, and hence the discretization error, is excluded in the
process of finding µ. Thereby, the spurious oscillations of the boundary element solution
are also ruled out. The final coefficient µ is found such that the absolute difference between
the boundary element solution and the adjusted analytical solution is minimal. The algo-
rithm for finding the numerical damping coefficient for a traveling wave and the emerging
minimization problem are given below.

(1) Calculate the boundary element solution for a given mesh and evaluate p̂be ∈ R
n along

n interior points along the duct.
(2) Initialize the damping coefficient µi=0 and the analytical solution p̂a(µi=0) ∈ R

n.
(3) Solve the unconstrained minimization problem

min
µ∈R

∥∥∥∥p̂be −
(
p̂a(µ) − ‖p̂a(µ) − p̂be‖2

n

)∥∥∥∥
2

until convergence is reached.
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However, in view of the curves in Fig. 5, it has to be noted that the decay characteristics
of the analytical and the boundary element solutions differ significantly. While the slope of
the numerical solution clearly flattens, the slope of the analytical sound pressure is almost
constant in the considered case. As a consequence, the resulting damping coefficient of the
above algorithm is dependent on the traveled distance of the wave and can be interpreted
as a spatially averaged damping coefficient. Shorter captured distances will yield higher
damping coefficients and vice versa.

5. A Benchmark Study: Numerical Damping in Boundary Element
Methods for Two-Dimensional Acoustic Duct Problems

Having introduced two approaches for quantifying numerical damping, its extent is studied
in what follows for acoustic waves in two-dimensional ducts. Linear and quadratic continuous
boundary elements and different mesh sizes are investigated. For the sake of comparability,
the mesh size h refers to the distance between adjacent nodes in the direction of wave pro-
pagation. One quadratic and two linear elements are employed across the width of the duct,
respectively, for all meshes. Hence, for a given h, meshes of linear and quadratic elements
yield the same number of degrees of freedom.

Numerical damping of fully reflected sound waves is evaluated using the same fluid
properties, geometrical setup and conditions as in Sec. 2. Figure 6(a) shows the damping
coefficients at 10 resonance peaks between 50Hz and 500Hz. They increase with increasing
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Fig. 6. Coefficients for numerical damping over frequency for linear (p = 1) and quadratic (p = 2) elements
using different mesh sizes, where h denotes the distances between adjacent nodes and h0 = 0.17 m. Evaluation
for the fully reflected wave by the FWHM method (a) and evaluation for the traveling wave (b).
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mesh size and numerical damping is generally higher for linear elements of same mesh size
in the considered frequency range. Moreover, linear and quadratic elements exhibit different
slopes with respect to frequency. However, the slopes seem to be independent of the mesh
size. The linearity of the graphs in Fig. 6 indicates an exponential relation µ ∝ fβ between
the numerical damping coefficient and the frequency with an exponent β, which depends
on the element type. The curves in Fig. 6(a) correspond to β1 = 1.5 for linear and β2 = 3.5
for quadratic elements, respectively.

Similar analyses are performed for the case of a traveling wave and presented in Fig. 6(b).
The damping coefficients are obtained as described in Sec. 4 by relating the sound pressure
decay over the course of l = 100m to the analytical solution. At 500Hz, this corresponds
to 150 waves in the duct. Note that it is hardly possible to obtain converged damping
coefficients for finer meshes of quadratic elements in the lower frequency range due to weakly
pronounced decays. These meshes would require longer traveled distances than l = 100m
to be captured.

A comparison of both evaluation methods is shown in Fig. 7. As already discussed in
Sec. 4, the results obtained for the traveling wave are dependent on the choice of the captured
decay length l, and they are to be interpreted as spatially averaged damping coefficients.
Therefore, only a qualitative comparison of the two methods regarding the relation of nu-
merical damping to frequency, element type and mesh size is possible. In this regard, the
results in Fig. 7 show a good agreement.

The increase of numerical damping with respect to frequency in Figs. 6 and 7 is not
surprising, as the approximation quality generally deteriorates with an increasing number

50 100 200 40010−10

10−9

10−8

10−7

10−6

10−5

10−4

f in Hz

D
am

pi
ng

co
effi

ci
en

t
µ

in
s m
2

h = h0, rfl h = 2/3 h0, rfl h = 1/2 h0, rfl h = 2/5 h0, rfl
h = h0, trv h = 2/3 h0, trv h = 1/2 h0, trv h = 2/5 h0, trv

50 100 200 40010−10

10−9

10−8

10−7

10−6

10−5

10−4

f in Hz

Fig. 7. Coefficients for numerical damping over frequency for linear (left) and quadratic (right) elements using
different mesh sizes, where h denotes the distances between adjacent nodes and h0 = 0.17 m. Comparison
between evaluation for the fully reflected wave (rfl) by the FWHM method and evaluation for the traveling
wave (trv).
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Fig. 8. Coefficients for numerical damping over frequency for different ratios of linear (left) and quadratic
(right) elements per wavelength. Evaluation for the fully reflected wave by the FWHM method (rfl) and
evaluation for the traveling wave (trv).

of waves for a given mesh. Therefore, it is common to study numerical errors for constant
ratios of elements per wavelength in the context of wave simulations. This has been justified
in a both descriptive21 and normative28 manner. Figure 8 shows the numerical damping
for eight, 12 and 16 linear as well as four, six and eight quadratic elements, respectively,
evaluated with both methods. Note that eight linear elements per wavelength correspond to
the same number of degrees of freedom as four quadratic elements and so forth. Clearly, the
quadratic elements perform significantly better in the considered frequency range. Moreover,
it can be seen that for the constant element-to-wavelength ratio, the numerical damping
is not constant but decreases with increasing frequency. Consequently, an upper bound
for numerical damping in the whole frequency range could be obtained by evaluating the
numerical damping at the lowest frequency of interest. For example, the widely applied rule
of six quadratic boundary elements per wavelength21 is subjected to a numerical damping
of µ < 1.22 · 10−6 s/m2 for frequencies above 50Hz and the given duct geometry. According
to (4.3), this value corresponds to an attenuation coefficient of α̃ < 2.1 · 10−4 1/m, and the
values for the other ratios of elements per wavelength are given in Table 1. The conversion of
attenuation coefficients to other units such as dB/m and Np/m is described in a monograph
by Knudsen,29 though their notation is not consistent in the literature.30 Typical values in
air31 and sea water32 in standard conditions at low frequencies are given in Table 2. It can
be seen that the attenuation induced by numerical damping in the BEM is of the same
order of magnitude as attenuation in air in the considered frequency range.

The damping ratio ζ is another widely used dimensionless measure for damping, in parti-
cular, for mechanical systems with a single degree of freedom. For acoustic interior problems
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Table 1. Upper bound for numerical atten-
uation coefficients obtained by the FWHM
method for frequencies above 50Hz for con-
stant ratios of elements per wavelength.

Linear Elements Quadratic Elements

el/λ α̃ el/λ α̃
(—) (1/m) (—) (1/m)

8 8.4 · 10−3 4 8.8 · 10−4

12 4.0 · 10−3 6 2.1 · 10−4

16 2.4 · 10−3 8 7.2 · 10−5

Table 2. Exemplary low frequency attenu-
ation coefficients of air and sea water.

Frequency α̃ in air α̃ in sea water
(Hz) (1/m) (1/m)

10 6 · 10−7 —

100 4 · 10−5 2 · 10−7

1000 2 · 10−3 1 · 10−5

10000 4 · 10−2 2 · 10−4

at resonance, it can be determined from ζ = µc2/2ω0. The above example of a damping
coefficient µ = 1.22 · 10−6 s/m2 at 50Hz corresponds to a damping ratio of ζ = 2.4 · 10−4.

6. Conclusion

The phenomenon of spurious numerical damping in the acoustic BEM has been shown
phenomenologically for plane waves in two-dimensional ducts subjected to rigid and fully
absorbing boundary conditions. Under the assumption that numerical damping can be cha-
racterized similarly to linear viscous damping, simple methods for quantifying its extent in
both conditions have been presented. In the case of acoustically rigid conditions, the sound
pressure wave is fully reflected, and standing waves form at the resonance frequencies. The
FWHM method is then applied in order to deduce the numerical damping coefficients at the
sound pressure peaks. Secondly, in the case of full absorption at the outlet, numerical dam-
ping is quantified based on comparisons to analytically determined decay characteristics of
damped traveling waves. Using these methods, numerical damping has been evaluated for
different meshes of linear and quadratic continuous boundary elements. In the considered
frequency range, the unknown numerical damping coefficient increases exponentially with
respect to the frequency. Its extent has also been studied for constant ratios of elements
per wavelength, and the results suggest that an upper bound of numerical damping may be
found for given ratios. Thereby, real damping phenomena, such as the structural damping
of fluid-filled cavities due to sound radiation, can be prevented from being overestimated
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in the future. The quantification of numerical damping can also be essential in the case of
large computational domains accommodating a large number of waves.

However, while the presented methods are suitable for evaluating the appropriateness
of a given mesh in regard to artificial damping, there are clearly some limitations. First
and foremost, the presented results revealed that the rate of decay due to numerical damp-
ing differs qualitatively from an exponential decay. Hence, the mathematical description
of numerical damping similar to viscous damping provides a spatially averaged measure.
Numerical damping as defined here can neither be estimated uniquely in terms of element
sizes nor in terms of element-to-wavelength ratios. Instead, it is a property of each indi-
vidual boundary element model as a whole involving its geometry. Therefore, the results
in this paper can only provide qualitative insights to the relation of numerical damping to
mesh sizes and element types. The question, to what extent their actual values are valid for
other geometries, is beyond the scope of this paper and requires further research. However,
preliminary analyses of ducts of different lengths and widths have shown similar slopes of
the damping coefficient with respect to frequency as given in Figs. 6 and 7 for both, linear
and quadratic boundary elements.

Three-dimensional ducts have been qualitatively investigated in recent papers18,19 of
one of the authors. Though no actual values were determined there, it was also shown that
a refinement of the mesh decreases the effect of numerical damping, and that its extent
increases with frequency. Both quantification methods presented here could be applied
straight-forwardly to three-dimensional duct problems in order to obtain the damping coef-
ficients.

Since the quantification method for traveling waves relies on a comparison to an analyt-
ical solution, it is not generally applicable. On the other hand, the FWHM method provides
a general tool for acoustic interior problems subjected to resonances.

Although exterior problems account for the main field of application of the BEM, they
have not been considered in this paper. So far, the authors did not identify the occurrence of
numerical damping for exterior problems. However, further research is required to confirm
this.

Moreover, the studies in this paper were limited to the boundary element method with
collocation discretizations. Preliminary investigations of a duct problem using the non-
commercial software BEM++,33 which is based on the Galerkin method, also showed indica-
tions of numerical damping, though the extent is smaller than for the collocation method.
The investigations in the recent paper18 of one of the authors indicate that the origin of the
numerical damping stems from the complex-valued fundamental solution of the Helmholtz
equation. It was shown that no numerical damping is introduced when using real-valued
fundamental solutions. However, boundary element formulations associated with purely real
fundamental solutions can lead to numerical instabilities.18

Finally, it has to be noted that truly normative estimations of numerical damping in the
BEM can only be carried out mathematically, as previously done for the pollution effect
in the FEM.5 Meanwhile, the presented results provide the boundary element community
with useful qualitative and quantitative insights into this phenomenon.
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