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Abstract

Regularly varying stochastic processes model extreme dependence between process values
at different locations and/or time points. For such processes we propose a two-step param-
eter estimation of the extremogram, when some part of the domain of interest is fixed and
another increasing. We provide conditions for consistency and asymptotic normality of the
empirical extremogram centred by a pre-asymptotic version for such observation schemes.
For max-stable processes with Fréchet margins we provide conditions, such that the empir-
ical extremogram (or a bias-corrected version) centred by its true version is asymptotically
normal. In a second step, for a parametric extremogram model, we fit the parameters by
generalised least squares estimation and prove consistency and asymptotic normality of the
estimates. We propose subsampling procedures to obtain asymptotically correct confidence
intervals. Finally, we apply our results to a variety of Brown-Resnick processes. A simulation
study shows that the procedure works well also for moderate sample sizes.
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1 Introduction

Max-stable processes and regularly varying processes have in recent years attracted attention as
time series models, spatial processes and space-time processes. Regularly varying processes have
been investigated in Hult and Lindskog [24, 25] and basic results for max-stable processes can
be found in de Haan and Ferreira [16]. Such processes provide a useful framework for modelling
and estimation of extremal events in their different settings.

Among the various regularly varying models considered in the literature, max-stable Brown-
Resnick processes play a prominent role allowing for flexible fractional variogram models as
often observed in environmental data. They have been introduced for time series in Brown and
Resnick [5], for spatial processes in Kabluchko et al. [29], and in a space-time setting in Davis
et al. [11].

For max-stable processes with parametrised dependence structure, various estimation proce-
dures have been proposed for extremal data. Composite likelihood methods have been described
in Padoan et al. [32] and Huser and Davison [27]. Threshold-based likelihood methods have
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been proposed in Engelke et al. [21] and Wadsworth and Tawn [38]. For the max-stable Brown-
Resnick process asymptotic results of composite likelihood estimators have been derived in Buhl
and Klüppelberg [6], Davis et al. [12], and Huser and Davison [26].

Parameter estimation based on likelihood methods can be laborious and time consuming, and
also the choice of good initial values for the optimization routine is essential. As a consequence,
a semiparametric estimation procedure can be an alternative or a prerequisite for a subsequent
likelihood method. Such an estimation method has been suggested and analysed for Brown-
Resnick processes in Buhl et al. [8] and Steinkohl [37] based on the extremogram, which is a
natural extremal analogue of the correlation function for stationary processes. The extremogram
was introduced for time series in Davis and Mikosch [10] and Fasen et al. [22], and extended to a
spatial setting in Cho et al. [9] and a space-time setting in [37]. Semiparametric estimation
requires a parametric extremogram model. The parameter estimation is then based on the
empirical extremogram, and a subsequent least squares estimation of the parameters.

The processes considered in [7, 8, 9, 37] are isotropic spatial or space-time Brown-Resnick
processes associated to the class of fractional variogram models with additively separable de-
pendence function in the space-time case, cf. model (I) in Section 5.3 below.

The central goal of this paper is to generalise the semiparametric method developed for the
spatially anisotropic Brown-Resnick process in [8] in various aspects. Firstly, we allow for general
regularly varying processes, thus leaving the max-stable models for those in their domains of
attraction. Secondly, whereas in [8] we carried out least squares estimation of the spatial and
temporal dependence parameters separately, we allow for a much larger class of dependence
models provided they satisfy certain regularity conditions. Thirdly, we develop a generalised
least squares estimation, which estimates all dependence parameter in one go. Fourthly, we
focus on extremogram estimation based on gridded data, but extend the observation scheme to
a more realistic setting.

In practice one often observes data on a d-dimensional grid (d ∈ N) which is small with
respect to some of its dimensions (e.g. the spatial dimensions) and large with respect to others
(e.g. the temporal dimension). Hence, with regard to such cases, instead of assuming that the
grid increases in all dimensions, it is appropriate to assume for example the number of observed
time points to tend to infinity, but a fixed and rather small number of observed spatial data.
The extension to such observation schemes makes it necessary to split up every point and
every lag in its components corresponding to the fixed and increasing domain. For a parametric
extremogram model we derive asymptotic results of its generalised least squares estimators which
differ considerably from those obtained when the grid increases in all dimensions. As a general
result and not surprisingly, the fixed observation terms are still part of the limits.

Our paper is organised as follows. In Section 2 we introduce the theoretical framework of
strictly stationary regularly varying processes. We define the extremogram, the observation
scheme with its fixed and increasing dimensions as well as assumptions and asymptotic second
order properties following from regular variation. Section 3 presents the empirical extremogram
and its pre-asymptotic version. Here we prove a CLT for the empirical extremogram centred by
the pre-asymptotic extremogram. We also specify the asymptotic covariance matrix. We prove
a CLT for the empirical extremogram centred by the true extremogram under more restrictive
assumptions. To formally state the asymptotic properties of the empirical extremogram, we need
to quantify the dependence in a stochastic process, taking into account the different types of
observation areas. For processes with Fréchet margins we prove asymptotic normality of the
empirical extremogram centred by the true one. In case the required conditions are not satis-
fied, we provide assumptions under which a CLT for a bias corrected version of the empirical
extremogram can be obtained. Section 4 is dedicated to the parameter estimation by a gener-
alised least squares method. Under appropriate regularity conditions we prove consistency and
asymptotic normality, where the rate of convergence depends on the observation scheme. We

2



also present the covariance matrix in a semi-explicit form. In Section 5 we show our method at
work for Brown-Resnick space-time processes. We state conditions for Brown-Resnick processes
that imply the mixing conditions from Section 3 and are hence sufficient to obtain the corre-
sponding CLTs for the empirical extremogram. These conditions depend highly on the model for
the associated variogram. Finally, in Section 5.3 we apply these results to three different depen-
dence models of the Brown-Resnick process, and prove the mixing conditions, which guarantee
the asymptotic normality of the empirical extremogram, as well as the regularity conditions of
the generalised least squares estimates. In Section 6 we examine the finite sample properties
of the GLSEs in a simulation study, fitting the parametric models described in Section 5.3 to
simulated Brown-Resnick processes. We apply subsampling methods to obtain asymptotically
valid confidence bounds of the parameters. Many proofs are rather technical and postponed to
an Appendix.

2 Model description and the observation scheme

We consider the same theoretical framework as in Buhl and Klüppelberg [7] and Buhl et al.
[8] of a strictly stationary regularly varying stochastic process {X(s) : s ∈ Rd} for d ∈ N,
defined on a probability space (Ω,F ,P). This implies that there exists some normalizing sequence
0 < an → ∞ such that P(|X(0)| > an) ∼ n−d as n → ∞ and that for every finite set I ⊂ Rd
with cardinality |I| <∞,

ndP
(XI
an
∈ ·
)

v→ µI(·), n→∞, (2.1)

for some non-null Radon measure µI on the Borel sets in R|I|\{0}, where R = R ∪ {−∞,∞}
and XI denotes the vector (X(s) : s ∈ I). The limit measure is homogeneous:

µI(xC) = x−βµI(C), x > 0,

for every Borel set C ⊂ R|I|\{0}. The notation
v→ stands for vague convergence, and β >

0 is called the index of regular variation. Furthermore, f(n) ∼ g(n) as n → ∞ means that
limn→∞ f(n)/g(n) = 1. If I is a singleton; i.e., I = {s} for some s ∈ Rd, we set

µ{s}(·) = µ{0}(·) =: µ(·), (2.2)

which is justified by stationarity. For more details see [7]. For background on regular variation
for stochastic processes and vectors see Hult and Lindskog [24, 25] and Resnick [34, 35].

The extremogram for values in Rd is defined as follows.

Definition 2.1 (Extremogram). Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying
process and an →∞ a sequence satisfying (2.1). For µ as in (2.2) and two µ-continuous Borel
sets A and B in R\{0} (i.e., µ(∂A) = µ(∂B) = 0) such that µ(A) > 0, the extremogram is
defined as

ρAB(h) = lim
n→∞

P(X(0)/an ∈ A,X(h)/an ∈ B)

P(X(0)/an ∈ A)
, h ∈ Rd. (2.3)

For A = B = (1,∞), the extremogram ρAB(h) is the tail dependence coefficient between X(0)
and X(h) (cf. Beirlant et al. [2], Section 9.5.1).

For the data we allow for realistic observation schemes described in the following.

3



Assumption 2.2. The data are given in an observation area Dn ⊂ Zd that can (possibly after
reordering) be decomposed into

Dn = F × In, (2.4)

where for q, w ∈ N satisfying w + q = d:

(1) F ⊂ Zq is a fixed domain independent of n, and

(2) In = {1, . . . , n}w is an increasing sequence of regular grids.

This setting is similar to that used in Li et al. [31], where asymptotic properties of space-time
covariance estimators are derived. The natural extension of the regular grid In to grids with
different side lengths only increases notational complexity, which we avoid here. Our focus is on
observations schemes, which are partially fixed and partially tend to infinity.

Example 2.3. In the special case where the observation area is given by

Dn = F × {1, . . . , n}

for F ⊂ Rd−1, we interpret the observations as generated by a space-time process {X(s, t) : s ∈
Rd−1, t ∈ [0,∞)} on a fixed spatial and an increasing temporal domain. �

We shall need some definitions and assumptions, which we summarize as follows.

Assumption 2.4.
(1) For some fixed γ > 0 and 0, ` ∈ Rd we define the balls

B(0, γ) =
{
s ∈ Zd : ‖s‖ ≤ γ

}
and B(`, γ) =

{
s ∈ Zd : ‖`− s‖ ≤ γ

}
= `+B(0, γ).

(2) The estimation of the extremogram is based on a set H = {h(1), . . . ,h(p)} ⊂ Zd ∩ B(0, γ)
of observed lag vectors.

(3) We decompose points s ∈ Rd with respect to the fixed and increasing domains into s =
(f , i) ∈ Rq × Rw.

(4) Similarly, we decompose lag vectors h = s − s′ or ` = s − s′ for some s, s′ ∈ Rd into
h = (hF ,hI) or ` = (`F , `I) in Rq × Rw. The letter h is used throughout as argument of the
extremogram or its estimators.

(5) We define the vectorised process {Y (s) : s ∈ Rd} by

Y (s) := XB(s,γ);

i.e., Y (s) is the vector of values of X with indices in the ball B(s, γ).

(6) We shall also need the following relations, also stated in [7]. For an → ∞ as in (2.1), the
following limits exist by regular variation of {X(s) : s ∈ Rd}. For ` ∈ Rd and γ > 0,

µB(0,γ)(C) := lim
n→∞

ndP(Y (0)/an ∈ C), (2.5)

τB(0,γ)×B(`,γ)(C ×D) := lim
n→∞

ndP
(Y (0)

an
∈ C, Y (`)

an
∈ D

)
, (2.6)

for a µB(0,γ)-continuous Borel set C in R|B(0,γ)|\{0} and a τB(0,γ)×B(`,γ)-continuous Borel set
C ×D in the product space.
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(7) We define sets D1, . . . , Dp, Dp+1 by the identity

{Y (s) ∈ Di} = {X(s) ∈ A,X(s+ h(i)) ∈ B} (2.7)

for i = 1, . . . , p, and {Y (s) ∈ Dp+1} = {X(s) ∈ A}. Note in particular that, by the relation
between {Y (s) : s ∈ Rd} and {X(s) : s ∈ Rd} and regular variation, for every µ-continuous
Borel set A in R \ {0},

µB(0,γ)(Dp+1) = lim
n→∞

ndP(Y (0)/an ∈ Dp+1) = lim
n→∞

ndP(X(0)/an ∈ A) = µ(A).

�

3 Limit theory for the empirical extremogram

We suppose that a strictly stationary regularly varying process {X(s) : s ∈ Rd} is observed
as in Assumption 2.2 and derive asymptotic properties of the empirical extremogram. We do
this by formulating appropriate mixing conditions, generalising the results obtained in [7] to the
more realistic setting of this paper. The proofs are based on spatial mixing conditions, which
have to be adapted to the decomposition into a fixed and an increasing observation domain. In
principle, our proofs rely on general results of Ibragimov and Linnik [28] and Bolthausen [4].

The main theorem of this section states asymptotic normality of the empirical extremogram
sampled at lag vectors h ∈ H and centred by its pre-asymptotic counterpart. The empirical and
the pre-asymptotic extremograms are defined in Eq. (3.2) and (3.3).

For the definition of the empirical extremogram we need the following notation: for k ∈ N,
an arbitrary set Z ⊂ Zk and a fixed vector h ∈ Zk, define the sets

Z(h) := {z ∈ Z : z + h ∈ Z}, (3.1)

which is the set of vectors z ∈ Z such that with z also the lagged vector z + h belongs to Z.

Definition 3.1. Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying process, which is
observed on Dn = F × In as in (2.4). Let A and B be µ-continuous Borel sets in R\{0} such
that µ(A) > 0. For a sequence m = mn → ∞ and mn = o(n) as n → ∞ define the following
quantities:

(1) The empirical extremogram

ρ̂AB,mn(h) :=

1

|Dn(h)|
∑

s∈Dn(h)

1{X(s)/am∈A,X(s+h)/am∈B}

1

|Dn|
∑
s∈Dn

1{X(s)/am∈A}

, h ∈ H. (3.2)

For a fixed data set the value am = amn has to be specified as a large empirical quantile.

(2) The pre-asymptotic extremogram

ρAB,mn(h) =
P (X(0)/am ∈ A,X(h)/am ∈ B)

P(X(0)/am ∈ A)
, h ∈ Rd. (3.3)

Key of the proofs of consistency and asymptotic normality of the empirical extremogram
below is the fact that ρ̂AB,mn(h) is the empirical version of the pre-asymptotic extremogram
ρAB,mn(h), which can in turn be viewed as a ratio of pre-asymptotic versions of µB(0,γ)(C(h))
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(cf. Eq. (2.5)) for suitably chosen sets C(h) that depend on A and B. In particular, by (2.7),
for h ∈ B(0, γ),

P
(X(0)

am
∈ A, X(h)

am
∈ B

)
= P

(Y (0)

am
∈ C(h)

)
with C(h) implicitly defined by {Y (s) ∈ C(h)} = {X(s) ∈ A,X(s+ h) ∈ B} for s ∈ Rd. Note
that if h = h(i) ∈ H, then C(h) = Di, and if h = 0 and A = B then C(h) = Dp+1.

In view of (2.5), µB(0,γ)(C(h)) can be estimated by an empirical mean, where the estimator
has to cope with Assumption 2.2 of an observation area with fixed and increasing domain.

Definition 3.2. Assume the situation of Definition 3.1. Based on observations on Dn = F ×In
as in (2.4) decompose the observations s = (f , i) ∈ F ×In and the lags h = (hF ,hI) ∈ H as in
Assumption 2.4(3) and (4). For hF ∈ H define F(hF ) as in (3.1). Then an empirical version
of µB(0,γ)(C(h)) is for h ∈ H given by

µ̂B(0,γ),mn(C(h)) :=
md
n

nw

∑
i∈In

1

|F(hF )|
∑

f∈F(hF )

1{Y (f ,i)
am

∈C(h)}. (3.4)

Observe that for fixed hF ∈ Zq and observations on Dn = F × In there will be points
s = (f , i) ∈ F(hF ) × In with i near the boundary of In, such that not all components of the
vector Y (s) = Y (f , i) are observed. However, since we investigate asymptotic properties of
In whose boundary points are negligible, we can ignore such technical details. As will be seen
in the proofs below, for every h ∈ H, the empirical extremogram ρ̂AB,mn(h) is asymptotically
equivalent to the ratio of estimates µ̂B(0,γ),mn(C(h))/µ̂B(0,γ),mn(Dp+1).

Limit results for the empirical extremogram (3.2) involve the calculation of mean and variance
of µ̂B(0,γ),mn(C(h(i))) = µ̂B(0,γ),mn(Di) for h(i) ∈ H. Strict stationarity and Assumption 2.4(6)
yields immediately by a law of large numbers that E[µ̂B(0,γ),mn(Di)] → µB(0,γ)(Di) as n → ∞.
Calculation of the variance involves the covariance structure and we decompose as in Assump-

tion 2.4(4) h(i) into h(i) = (h
(i)
F ,h

(i)
I ) ∈ Rq × Rw. We have to calculate for f ,f ′ ∈ F(h

(i)
F ) and

i, i′ ∈ In,

Cov
[
1{Y (f ,i)

am
∈Di}

,1{Y (f ′,i′)
am

∈Di}

]
= Cov

[
1{Y (0)

am
∈Di}

,1{Y (`F ,`I)
am

∈Di}

]
with `F = f − f ′ and `I = i− i′, where the equality holds by stationarity. The lag vectors `F
and `I are contained in

L
(i)
F = {f − f ′ : f ∈ F(h

(i)
F ),f ′ ∈ F(h

(i)
F )} and Ln := {i− i′ : i, i′ ∈ In}, (3.5)

respectively. The number of appearances of the lag `F we denote by

N
(i)
F (`F ) :=

∑
f ,f ′∈F(h

(i)
F )

1{f−f ′=`F}. (3.6)

Observe that a spatial lag (`F , `I) with `I = (`
(1)
I , . . . , `

(w)
I ) appears in L

(i)
F × Ln exactly

N
(i)
F (`F )

∏w
j=1(n− |`(j)I |) times. We show in Lemma A.2 that

Var
[
µ̂B(0,γ),mn(Di)

]
=

m2d
n

n2w|F(h
(i)
F )|2

Var
[ ∑
f∈F(h

(i)
F )

∑
i∈In

1{Y (f ,i)
am

∈Di}
]

=
m2d
n

n2w|F(h
(i)
F )|2

(
|F(h

(i)
F )|nwVar

[
1{Y (0)

am
∈Di}

]
(3.7)
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+
∑

f ,f ′∈F(h
(i)
F )

∑
i,i′∈In

(f ,i)6=(f ′,i′)

Cov
[
1{Y (f ,i)

am
∈Di}

,1{Y (f ′,i′)
am

∈Di}

])

∼ md
n

nw
1

|F(h
(i)
F )|

(
µB(0,γ)(Di) +

∑
`I∈Zw

1

|F(h
(i)
F )|

∑
`F∈L

(i)
F

(`F ,`I)6=0

N
(i)
F (`F ) τB(0,γ)×B((`F ,`I),γ)(Di ×Di)

)

=:
md
n

nw
σ2
B(0,γ)(Di), n→∞. (3.8)

Remark 3.3. For comparison we recall the expression in the corresponding Lemma 5.1 of
Buhl and Klüppelberg [7], where F is not fixed, but part of the increasing regular grid. Then

|F(h
(i)
F )| ∼ N

(i)
F (`F ) ∼ nq as n→∞, such that (3.7) can be approximated as follows:

Var
[
µ̂B(0,γ),mn(Di)

]
∼ md

n

nwnq

(
µB(0,γ)(Di) +

∑
`I∈Zw

∑
`F∈Zq

(`F ,`I)6=0

τB(0,γ)×B((`F ,`I),γ)(Di ×Di)
)

=
(mn

n

)d(
µB(0,γ)(Di) +

∑
`∈Zd\{0}

τB(0,γ)×B(`,γ)(Di ×Di)
)
, n→∞.

Thus, the difference from the setting of a partly fixed observation area F ⊂ Dn is that the
fixed observation terms do not disappear asymptotically, but remain as constants in the limit
expression. �

3.1 The extremogram for regularly varying processes

For proving asymptotic normality of the empirical extremogram we have to require appropriate
mixing conditions and make use of a large/small block argument as in [7]. For simplicity we
assume that nw/md

n is an integer and subdivide Dn into nw/md
n non-overlapping d-dimensional

large blocks F × Bi for i = 1, . . . , nw/md
n, where the Bi are w-dimensional cubes with side

lengths m
d/w
n . From those large blocks we then cut off smaller blocks, which consist of the first

rn elements in each of the w increasing dimensions. The large blocks are then separated (by
these small blocks) with at least the distance rn in all w increasing dimensions and shown to be
asymptotically independent.

In order to formulate the CLT below, in particular, the asymptotic covariance matrix, we
need to compute Cov[µ̂B(0,γ),mn(Di), µ̂B(0,γ),mn(Dj)] for possibly different i, j ∈ {1, . . . , p}. To
this end we extend the notation (3.5) and (3.6) as follows. The lag vectors `F are contained in

L
(i,j)
F := {f − f ′ : f ∈ F(h

(i)
F ),f ′ ∈ F(h

(j)
F )}, (3.9)

and we denote the number of appearances of the lag vector `F by

N
(i,j)
F (`F ) :=

∑
f∈F(h

(i)
F )

∑
f ′∈F(h

(j)
F )

1{f−f ′=`F} (3.10)

If i = j, then we obtain again (3.5) and (3.6).
The asymptotic results stated in Theorem 3.4 below extend those in Theorem 4.2 of [7], where

the observation area Dn is assumed to increase with n in all dimensions. The decomposition (2.4)
into a fixed domain F and an increasing domain In results in mixing conditions which focus on
properties for In increasing to Zw, while F remains fix and appears in the limit, similarly as in
Eq. (3.7).
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Theorem 3.4. Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying process, which is
observed on Dn = F × In as in (2.4). Let H = {h(1), . . . ,h(p)} ⊂ Zd ∩ B(0, γ) for some γ > 0
be a set of observed lag vectors. Suppose that the following conditions are satisfied.

(M1) {X(s) : s ∈ Rd} is α-mixing with respect to Rw with mixing coefficients αk1,k2(·) defined
in (A.1).

There exist sequences mn, rn →∞ with md
n/n

w → 0 and rwn /m
d
n → 0 as n→∞ such that:

(M2) m2d
n r

2w
n /nw → 0.

(M3) For all ε > 0, and for all fixed `F ∈ Rq with am = amn →∞ as in (2.1),

lim
k→∞

lim sup
n→∞

∑
`I∈Zw

k<‖`I‖≤rn

md
n P( max

s∈B(0,γ)
|X(s)| > εam, max

s′∈B((`F ,`I),γ)
|X(s′)| > εam) = 0.

(M4) (i) lim
n→∞

md
n

∑
`∈Zw:‖`‖>rn

α1,1(‖`‖) = 0,

(ii)
∑
`∈Zw

αk1,k2(‖`‖) <∞ for 2 ≤ k1 + k2 ≤ 4,

(iii) lim
n→∞

m
d/2
n nw/2 α1,nw(rn) = 0.

Then the empirical extremogram ρ̂AB,mn defined in (3.2), sampled at lags in H and centred by
the pre-asymptotic extremogram ρAB,mn given in (3.3), is asymptotically normal; i.e.,√

nw

md
n

[
ρ̂AB,mn(h(i))− ρAB,mn(h(i))

]
i=1,...,p

d→ N (0,Π), n→∞, (3.11)

where Π = µ(A)−4FΣF
ᵀ ∈ Rp×p. Writing h(i) = (h

(i)
F ,h

(i)
I ) for 1 ≤ i ≤ p+1, with the convention

that (h
(p+1)
F ,h

(p+1)
I ) = 0, the matrix Σ ∈ R(p+1)×(p+1) has components

Σii =
1

|F(h
(i)
F )|

µB(0,γ)(Di)

+
∑
`I∈Zw

1

|F(h
(i)
F )|2

∑
`F∈L

(i)
F

(`F ,`I)6=0

N
(i)
F (`F ) τB(0,γ)×B((`F ,`I),γ)(Di ×Di)

=:σB(0,γ)(Di)
2, 1 ≤ i ≤ p+ 1, (3.12)

Σij =
1

|F(h
(i)
F )||F(h

(j)
F )|

(
|F(h

(i)
F ) ∩ F(h

(j)
F )|µB(0,γ)(Di ∩Dj)

+
∑
`I∈Zw

∑
`F∈L

(i,j)
F

(`F ,`I)6=0

N
(i,j)
F (`F ) τB(0,γ)×B((`F ,`I),γ)(Di ×Dj)

)
, 1 ≤ i 6= j ≤ p+ 1. (3.13)

The matrix F consists of a diagonal matrix F1 and a vector F2 in the last column:

F = [F1, F2] with F1 = diag(µ(A)) ∈ Rp×p, F2 = (−µB(0,γ)(D1), . . . ,−µB(0,γ)(Dp))
ᵀ
.

Corollary 3.5. Assume the situation as in Theorem 3.4. Suppose that the following conditions
are satisfied.

(1) {X(s) : s ∈ Rd} is α-mixing with respect to Rw with mixing coefficients αk1,k2(z) defined in
(A.1).
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(2) There exist sequences m := mn, r := rn →∞ with md
n/n

w → 0 and rwn /m
d
n → 0 as n→∞

such that (M3) and (M4i) hold.

Then, as n→∞,

ρ̂AB,mn(h(i))
P→ ρAB(h(i)), i = 1, . . . , p,

Proof. As in part II of the proof of Theorem 3.4 (cf. Appendix A.2), we find that for i = 1, . . . , p,
as n→∞,

ρ̂AB,mn(h(i)) ∼
µ̂B(0,γ),mn(Di)

µ̂B(0,γ),mn(Dp+1)

P→
µB(0,γ)(Di)

µB(0,γ)(Dp+1)
= ρAB(h(i)),

where the setsDi andDp+1 are defined in (2.7). Convergence in probability follows by Lemma A.2
and Slutzky’s theorem. The last identity holds by definitions (2.3) and (2.5), recalling that
µB(0,γ)(Dp+1) = µ(A) > 0.

Remark 3.6. (i) If the choice mn = nβ1 and rn = nβ2 with 0 < β2 < β1d/w < 1 satisfies
conditions (M3) and (M4), then for β1 ∈ (0, w/(2d)) and β2 ∈ (0,min{β1d/w; 1/2−β1d/w}) the
condition (M2) also holds and we obtain the CLT (3.11).

(ii) The pre-asymptotic extremogram (3.3) in the CLT (3.11) can be replaced by the true
one (2.3), if the pre-asymptotic extremogram converges to the true extremogram with the same
convergence rate; i.e., if√

nw

md
n

[
ρAB,mn(h(i))− ρAB(h(i))

]
i=1,...,p

→ 0, n→∞. (3.14)

�

3.2 The extremogram of processes with Fréchet marginal distributions

There are strictly stationary regularly varying processes for which (3.11) is satisfied, but (3.14)
does not hold. Theorem 3.7 below states a necessary and sufficient condition for max-stable
processes with Fréchet marginal distributions such that both (3.11) and (3.14) hold, yielding
the CLT (3.21) for the empirical extremogram (3.2) centred by the the true one (2.3). In case
this condition is not satisfied, Theorem 3.8 states conditions such that (3.21) holds for a bias
corrected version of the empirical extremogram.

Theorem 3.7 (CLT for processes with Fréchet margins). Let {X(s) : s ∈ Rd} be a strictly
stationary max-stable process with standard unit Fréchet margins, which is observed on Dn =
F × In as in (2.4). Let H = {h(1), . . . ,h(p)} ⊂ Zd ∩B(0, γ) for some γ > 0 be a set of observed
lag vectors. Suppose that conditions (M1)–(M4) of Theorem 3.4 hold for appropriately chosen
sequences mn, rn →∞. Let ρAB be the extremogram (2.3) and ρAB,mn the pre-asymptotic version
(3.3) for sets A = (a1, a2) and B = (b1, b2) with 0 < a1 < a2 ≤ ∞ and 0 < b1 < b2 ≤ ∞. Then
the limit relation (3.14) holds if and only if nw/m3d

n → 0 as n→∞. In this case we obtain√
nw

md
n

[
ρ̂AB,mn(h(i))− ρAB(h(i))

]
i=1,...,p

d→ N (0,Π), n→∞, (3.15)

with Π specified in Theorem 3.4.

Proof. All finite-dimensional distributions are max-stable distributions with standard unit Fréchet
margins, hence they are multivariate regularly varying. Furthermore we can choose am = md

n in
Definition 2.1. Let V2(h; ·, ·) be the bivariate exponent measure defined by P(X(0) ≤ x1, X(h) ≤
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x2) = exp{−V2(h;x1, x2)} for x1, x2 > 0, cf. Beirlant et al. [2], Section 8.2.2. From Lemma A.1(b)

of [7] we know that for h ∈ H and with V
2
2(h) := a1a2/(a2 − a1)(V 2

2 (h; a2, b2) + V 2
2 (h; a2, b1) +

V 2
2 (h; a1, b2) + V 2

2 (h; a1, b1)),

ρAB,mn(h) = (1 + o(1))
[
ρAB(h) +

1

2md
n

V
2
2(h)

]
, n→∞. (3.16)

If a2 = ∞ and/or b2 = ∞, appropriate adaptations need to be taken, which are described in
Lemma A.1 of [7]. Hence, for h ∈ H,√

nw

md
n

(
ρAB,mn(h)− ρAB(h)

)
= (1 + o(1))

√
nw

m3d
n

V
2
2(h)

2
, n→∞,

which converges to 0 if and only if nw/m3d
n → 0.

If nw/m3d
n 6→ 0 in Theorem 3.7, a CLT centred by the true extremogram can still be obtained

for a bias corrected empirical estimator. Eq. (3.16) is the basis for such a bias correction if the
sets A and B are given by A = (a,∞) and B = (b,∞) with a, b > 0. In that case we have

ρAB,mn(h) =(1 + o(1))
[
ρAB(h) +

1

2md
na

(
ρAB(h)− 2

a

b

)(
ρAB(h)− 1

)]
, n→∞; (3.17)

see [7], Eq. (A.4). An asymptotically bias corrected estimator is given by

ρ̂AB,mn(h)− 1

2md
na

(
ρ̂AB,mn

(
h)− 2

a

b

)(
ρ̂AB,mn(h)− 1

)
and we set, covering both cases,

ρ̃AB,mn(h) := (3.18)ρ̂AB,mn(h)− 1

2md
na

(
ρ̂AB,mn(h)− 2ab

)(
ρ̂AB,mn(h)− 1

)
if nw/m3d

n 6→ 0 but nw/m5d
n → 0,

ρ̂AB,mn(h) if nw/m3d
n → 0.

Theorem 3.8 below guarantees asymptotic normality of the bias corrected extremogram for an—
according to Theorem 3.4—valid sequence mn satisfying nw/m5d

n → 0. The proof, which is given
in Appendix A.3, generalises that of Theorem 3.5 of Buhl et al. [8], which covers the special case
a = b = 1 for Brown-Resnick processes.

Theorem 3.8 (CLT for the bias corrected extremogram for processes with Fréchet margins). Let
{X(s) : s ∈ Rd} be a strictly stationary max-stable process with standard unit Fréchet margins.
Assume the situation of Theorem 3.7 for sets A = (a,∞) and B = (b,∞) with a, b > 0. Then if
and only if nw/m5d

n → 0, the bias corrected extremogram (3.18) is asymptotically normal; i.e.,√
nw

md
n

[
ρ̃AB,mn(h(i))− ρAB(h(i))

]
i=1,...,p

d→ N (0,Π), (3.19)

where Π is specified in Theorem 3.4.

Remark 3.9. From Theorems 3.7 and 3.8 in relation to Remark 3.6 (i) we deduce two cases:
(I) For w/(5d) < β1 ≤ w/(3d) we cannot replace the pre-asymptotic extremogram by the
theoretical version in (3.15), but can resort to a bias correction as described in (3.18) to obtain

n(w−β1d)/2
[
ρ̃AB,mn(h(i))− ρAB(h(i))

]
i=1,...,p

d→ N (0,Π), n→∞, (3.20)
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for sets A = (a,∞) and B = (b,∞) with covariance matrix Π specified in Theorem 3.4.
(II) For w/(3d) < β1 < w/(2d) we obtain indeed

n(w−β1d)/2
[
ρ̂AB,mn(h(i))− ρAB(h(i))

]
i=1,...,p

d→ N (0,Π), n→∞, (3.21)

with covariance matrix Π specified in Theorem 3.4. �

Observe that Remark 3.9 generalises Remark 3.1 of [8].

4 Generalised least squares extremogram estimates

Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying process observed on Dn = F ×In
as in (2.4). In this section we fit parametric models to the empirical extremogram using least
squares techniques for the parameter estimation. Our approach and extremogram models extend
the weighted least squares estimation developed in Buhl et al. [8] and Steinkohl [37] considerably.
In that work the isotropic space-time Brown-Resnick model (I) of Section 5.3 below has been
estimated by separation of space and time, which is possible for that model, but not for all
models of interest. In what follows we present generalised least squares approaches to fit general
parametric extremogram models taking the observation scheme Dn = F × In of a fixed and
an increasing domain into account. The approach bears some similarity to the semiparametric
variogram estimation in Lahiri et al. [30].

Our setting is as follows. Let {ρAB,θ(h) : h ∈ Rd,θ ∈ Θ} be some parametric extremogram
model with parameter space Θ and continuous in h ∈ Rd. Assume that ρAB(·) = ρAB,θ?(·) with
true parameter vector θ? ∈ Θ. Denote by ρ̂AB,mn(h) any of the estimators of Theorem 3.4,
Theorem 3.7, or Theorem 3.8 for the appropriately chosen µ-continuous Borel sets A and B
such that µ(A) > 0 and lags h ∈ H = {h(1), . . . ,h(p)}.

First note that under the much weaker conditions of Corollary 3.5 the empirical extremogram
is a consistent estimator of the extremogram such that as n→∞,

ρ̂AB,mn(h(i))
P→ ρAB,θ?(h

(i)), i = 1, . . . , p, (4.1)

Under more restrictive conditions given in the three CLTs above,√
nw

md
n

[
ρ̂AB,mn(h(i))− ρAB,θ?(h(i))

]
i=1,...,p

d→ N (0,Π), (4.2)

where Π is the covariance matrix specified in Theorem 3.4.
As we shall prove below, consistency of the empirical extremogram entails consistent gen-

eralised least squares parameter estimates, whereas asymptotic normality of the empirical ex-
tremogram entails asymptotically normal generalised least squares parameter estimates.

Definition 4.1 (Generalised least squares extremogram estimator (GLSE)). Let {X(s) : s ∈
Rd} be a strictly stationary regularly varying process, which is observed on Dn = F × In as in
(2.4). Let A and B be µ-continuous Borel sets in R\{0}. For a sequence m = mn → ∞ and
mn = o(n) as n→∞ define for θ ∈ Θ the column vector

ĝn(θ) :=
[
ρ̂AB,mn(h(i))− ρAB,θ(h(i))

]ᵀ
i=1,...,p. (4.3)

For some positive definite weight matrix V (θ) ∈ Rp×p, the GLSE is defined as

θ̂n,V := arg min
θ∈Θ

{ĝn(θ)
ᵀ
V (θ)ĝn(θ)}. (4.4)
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Assumption 4.2 presents a set of conditions, which imply consistency and asymptotic nor-
mality of the GLSE.

Assumption 4.2. Assume the situation of Definition 4.1. We shall require the following con-
ditions.

(G1) Consistency: ρ̂AB,mn(h(i))
P→ ρAB,θ?(h

(i)) as n→∞ for i = 1, . . . , p.

(G2) Asymptotic normality:

√
nw

md
n

ĝn(θ?)
d→ N (0,Π) as n→∞.

(G3) (i) Identifiability condition: For all ε > 0 there exists some δ > 0 such that

inf
{ p∑
i=1

(ρAB,θ1(h(i))− ρAB,θ2(h(i)))2 : θ(1),θ(2) ∈ Θ, ‖θ(1) − θ(2)‖ ≥ ε
}
> δ.

(ii)
p∑
i=1

(ρAB,θ1(h(i))− ρAB,θ2(h(i)))2 > 0, θ(1) 6= θ(2) ∈ Θ.

Note that (i) implies (ii).

(G4) Smoothness condition 1: For all i = 1, . . . , p:

(i) sup
θ∈Θ
{ρAB,θ(h(i))} <∞.

(ii) ρAB,θ(h(i)) has continuous partial derivatives of order z1 ≥ 0 w.r.t. θ, where z1 = 0

corresponds to ρAB,θ(h(i)) being continuous in θ.

(G5) Smoothness condition 2:

(i) sup
θ∈Θ
{‖V (θ)‖M + ‖V (θ)−1‖M} <∞, where ‖ · ‖M is some arbitrary matrix norm.

(ii) The matrix valued function V (θ) has continuous derivatives of order z2 ≥ 0 w.r.t.
θ, where z2 = 0 corresponds to V (θ) being continuous in θ.

(G6) Rank condition: For θ = (θ1, . . . , θk) ∈ Θ ⊂ Rk we set

• ρ(`)
AB,θ(h(i)) := ∂

∂θ`
ρAB,θ(h(i)) for 1 ≤ i ≤ p, 1 ≤ ` ≤ k.

• ρ(`)
AB(θ) := (ρ

(`)
AB,θ(h(i)) : i = 1, . . . , p)

ᵀ
for 1 ≤ ` ≤ k.

• Denote by PAB(θ) the Jacobian matrix of (−ρAB,θ(h(1)), . . . ,−ρAB,θ(h(p)))
ᵀ
; i.e.,

PAB(θ) = (−ρ(1)
AB(θ), . . . ,−ρ(k)

AB(θ)) ∈ Rp×k. (4.5)

The Jacobi matrix has full rank: rank(PAB(θ?)) = k. �

The proof of the next theorem can be found in Appendix A.4.

Theorem 4.3 (Consistency and asymptotic normality of the GLSE). Assume the situation of
Definition 4.1. If Assumption 4.2(G1) and (G3) hold as well as (G4) and (G5) for z1 = z2 = 0,
respectively, then the GLSE is consistent; i.e.,

θ̂n,V
P→ θ?, n→∞. (4.6)

If Assumption 4.2(G2) and (G3) hold as well as (G4) and (G5) for z1 = z2 = 1, respectively,
and the rank condition (G6) holds, then the GLSE is asymptotically normal; i.e.,√

nw

md
n

(θ̂n,V − θ?)
d→ N (0,ΠV ), n→∞, (4.7)
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with asymptotic covariance matrix

ΠV = B(θ?)PAB(θ?)
ᵀ
[V (θ?) + V (θ?)

ᵀ
] Π [V (θ?) + V (θ?)

ᵀ
]PAB(θ?)B(θ?),

where B(θ?) :=
(
PAB(θ?)

ᵀ
[V (θ?) + V (θ?)

ᵀ
]PAB(θ?)

)−1
and Π is the asymptotic covariance

matrix in Eq. (4.2).

Remark 4.4. The quality of the GLSE depends on the matrix V (θ). Simple choices for the
matrix V (θ) in (4.4) are the identity matrix, leading to the ordinary least squares estimator, or
some general weight matrix, leading to weighted least squares estimators.

An asymptotically optimal matrix V (θ) can be obtained as follows. Let Π = Π(θ?) be the
asymptotic covariance matrix of the empirical extremogram in Eq. (4.2). Assume that Π(θ?)
can be extended to a matrix function Π(θ) on the whole parameter space Θ and that Π(θ) is
invertible for all θ ∈ Θ. Assume also that V (θ) = Π−1(θ) satisfies the Assumption 4.2(G5) for
z2 = 1. Then, as pointed out in Lahiri et al. [30], Theorem 4.1, for spatial variogram estimators
and in Einmahl et al. [19], Corollary 2.3, for extreme parameter estimation based on iid random
vector observations, the resulting asymptotic covariance matrix ΠV = ΠV (θ?) of the GLSE
in (4.7) is asymptotically optimal among all valid matrices V ′ = V ′(θ). This means that ΠV is
minimal in the sense that for all valid matrices V ′, the difference ΠV ′−ΠV is positive semidefinite.
�

5 Estimation of Brown-Resnick space-time processes

5.1 Brown-Resnick processes

We consider a strictly stationary Brown-Resnick process with representation

η(s) =

∞∨
j=1

{
ξj e

Wj(s)−δ(s)
}
, s ∈ Rd, (5.1)

where {ξj : j ∈ N} are points of a Poisson process on [0,∞) with intensity ξ−2dξ, the dependence
function δ is nonnegative and conditionally negative definite, and {Wj(s) : s ∈ Rd} are indepen-
dent replicates of a Gaussian process {W (s) : s ∈ Rd} with stationary increments, W (0) = 0,
E[W (s)] = 0 and covariance function

Cov[W (s(1)),W (s(2))] = δ(s(1)) + δ(s(2))− δ(s(1) − s(2)).

Representation (5.1) goes back to de Haan [15] and Giné, Hahn, and Vatan [23]. The univariate
margins of the process η follow standard unit Fréchet distributions. Non-stationary Brown-
Resnick models have recently been discussed and fitted to data by Engelke et al. [21] and Asadi
et al. [1].

There are various quantities to describe the dependence in (5.1), where explicit expressions
can be derived:

• In geostatistics, the dependence function δ is termed the semivariogram of the process {W (s) :
s ∈ Rd} based on the fact that for s(1), s(2) ∈ Rd,

Var[W (s(1))−W (s(2))] = 2δ(s(1) − s(2)).

• For h ∈ Rd, the tail dependence coefficient is given by (see e.g. Davis, Klüppelberg, and
Steinkohl [11], Section 3)

ρ(1,∞)(1,∞)(h) = lim
n→∞

P
(
η(h) > n

∣∣∣ η(0) > n
)

= 2
(

1− Φ
(√δ(h)

2

))
, (5.2)

where Φ denotes the standard normal distribution function.
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• For D = {s(1), . . . , s(|D|)} and y = (y1, . . . , y|D|) > 0 the finite-dimensional margins are given
by

P(η(s(1)) ≤ y1, η(s(2)) ≤ y2, · · · , η(s(|D|)) ≤ y|D|) = exp{−VD(y)}. (5.3)

Here VD denotes the exponent measure (cf. Beirlant et al. [2], Section 8.2.2), which is homoge-
neous of order -1 and depends solely on the dependence function δ. For D = {s, s+h} where
s ∈ Rd and h ∈ Rd is some fixed lag vector, we get (cf. Davis et al. [11], Section 3)

V2(y1, y2) = V2(h; y1, y2) = VD(y1, y2) =
1

y1
Φ̃
(y2

y1

)
+

1

y2
Φ̃
(y1

y2

)
, y1, y2 > 0, (5.4)

with

Φ̃
(x
y

)
= Φ̃

(
h;
x

y

)
:= Φ

( log(x/y)√
2δ(h)

+

√
δ(h)

2

)
, x, y > 0. (5.5)

• For h ∈ Rd and sets A = (a1, a2) and B = (b1, b2) with 0 < a1 < a2 ≤ ∞ and 0 < b1 < b2 ≤ ∞,
the extremogram (2.3) is given by (see [7], Eq. (A.1))

ρAB(h) =
a1a2

a2 − a1

(
− V2(a2, b2) + V2(a2, b1) + V2(a1, b2)− V2(a1, b1)

)
(5.6)

for V2 as in (5.4). For A = (a,∞) and B = (b,∞) we get formula (31) of Cho et al. [9]:

ρAB(h) = a
{1

a

(
1− Φ̃

( b
a

))
+

1

b

(
1− Φ̃

(a
b

))}
. (5.7)

• The extremal coefficient ξD (see [2], Section 8.2.7) for any finite set D ⊂ Rd is defined as

P(η(s(1)) ≤ y, η(s(2)) ≤ y, · · · , η(s(|D|)) ≤ y) = exp{−ξD/y}, y > 0;

i.e., ξD = VD(1, . . . , 1). If |D| = 2 and h = s(1) − s(2), then

ξD = 2− ρ(1,∞)(1,∞)(h) = 2Φ
(√δ(h)

2

)
, (5.8)

where the first identity holds in general (cf. Beirlant et al. [2], Section 9.5.1), and the last one
by (5.2).

Our aim is to fit a parametric extremogram model of a Brown-Resnick process (5.1) based on
observations given in Dn = F×In as in (2.4). This approach is semiparametric in the sense that
we first compute (possibly bias corrected) empirical estimates (3.18) of the extremogram ρAB(h)
for different h ∈ H, and fit a parametric model ρAB,θ(h) by GLSE to the empirical extremogram.
For sets A = B = (a,∞) with a > 0, this yields an estimator of the dependence function, since
by (5.5) and (5.7) there is a one-to-one relation between extremogram and dependence function.

5.2 Asymptotic properties of the empirical extremogram of a Brown-Resnick
process

Let {η(s) : s ∈ Rd} be a strictly stationary Brown-Resnick process as in (5.1) with some valid
(i.e., nonnegative and conditionally negative definite) dependence function δ. Before investigating
the asymptotic properties of the GLSE, we state sufficient conditions for δ so that the regularity
conditions of Theorem 3.4 are satisfied.
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Theorem 5.1. Let {η(s) : s ∈ Rd} be a strictly stationary Brown-Resnick process as in (5.1),
observed on Dn = F × In as in (2.4). Let H = {h(1), . . . ,h(p)} ⊂ Zd ∩ B(0, γ) for some γ > 0
be a set of observed lag vectors. Assume sequences

mn, rn →∞, md
n/n

w → 0, rwn /m
d
n → 0, m2d

n r
2w
n /nw → 0, n→∞. (5.9)

Writing u = (uF ,uI) ∈ Rq × Rw according to the fixed and increasing domains, assume that
the dependence function δ satisfies for arbitrary fixed finite set L ⊂ Zq :

(A) md
n

∑
z>rn

zw−1 exp
{
− 1

4 inf
u∈L×Zw:‖uI‖≥z

δ(u)
}
→ 0 as n→∞.

(B) m
d/2
n n(3w)/2 exp

{
− 1

4 inf
u∈L×Zw:‖uI‖>rn

δ(u)
}
→ 0 as n→∞.

Then conditions (M1)-(M4) of Theorem 3.4 are satisfied, and the empirical extremogram ρ̂AB,mn
defined in (3.2) sampled at lags in H and centred by the pre-asymptotic extremogram ρAB,mn
given in (3.3), is asymptotically normal; i.e.,√

nw

md
n

[
ρ̂AB,mn(h(i))− ρAB,mn(h(i))

]
i=1,...,p

d→ N (0,Π), n→∞, (5.10)

where the covariance matrix Π is specified in Theorem 3.4.

Proof. First note that, since all finite-dimensional distributions are max-stable distributions with
standard unit Fréchet margins, they are multivariate regularly varying. We first show (M3). Let
ε > 0 and fix `F ∈ Rq. For γ > 0 define the set

Lγ(`F , `I) := {s1 − s2 : s1 ∈ B(0, γ), s2 ∈ B((`F , `I), γ)}.

Note that, writing s1 = (f1, i1) and s2 = (f2, i2) ∈ Rq × Rw according to the fixed and

increasing domains as before, it can be decomposed into Lγ(`F , `I) = L
(1)
γ × L

(2)
γ (`I) where

L
(1)
γ := {f1 − f2 : s1 ∈ B((0,0), γ), s2 ∈ B((`F ,0), γ)}, which is independent of `I , and

L
(2)
γ := {i1 − i2 : s1 ∈ B((0,0), γ), s2 ∈ B((`F , `I), γ)}. Then, recalling that am = md

n, and
using a second order Taylor expansion as in the proof of Theorem 3.2 of Buhl et al. [8], we have
as n→∞,

P( max
s∈B(0,γ)

η(s) > εam, max
s′∈B((`F ,`I),γ)

η(s′) > εam)

≤
∑

s∈B(0,γ)

∑
s′∈B((`F ,`I),γ)

P(η(s) > εmd
n, η(s′) > εmd

n)

=
∑

s∈B(0,γ)

∑
s′∈B((`F ,`I),γ)

(
1− 2 exp

{
− 1

εmd
n

}
+ exp

{
− 2

εmd
n

Φ
(√δ(s− s′)

2

)})
≤2|B(0, γ)|2

εmd
n

(
1− Φ

((1

2
inf

u∈Lγ(`F ,`I)
δ(u)

)1/2))
+O

( 1

m2d
n

)
.

Therefore,

lim sup
n→∞

∑
`I∈Zw

k<‖`I‖≤rn

md
nP( max

s∈B(0,γ)
η(s) > εam, max

s′∈B((`F ,`I),γ)
η(s′) > εam)

≤2|B(0, γ)|2 lim sup
n→∞

∑
`I∈Zw

k<‖`I‖≤rn

{1

ε

(
1− Φ

((1

2
inf

u∈Lγ(`F ,`I)
δ(u)

)1/2))
+O

( 1

md
n

)}
.
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Since the number of grid points in Zw with norm z = ‖`I‖ is of order O(zw−1), there exists a
positive constant C such that the right hand side can be bounded from above by

2C|B(0, γ)|2 lim sup
n→∞

∑
k<z≤rn

{zw−1

ε

(
1− Φ

((1

2
inf

u∈Lγ(`F ,`I):`I∈Zw,‖`I‖=z
δ(u)

)1/2))
+O

(zw−1

md
n

)}
≤ 2C|B(0, γ)|2

ε
lim sup
n→∞

∑
k<z<∞

{
zw−1

(
exp

{
− 1

4
inf

u∈Lγ(`F ,`I):`I∈Zw,‖`I‖=z
δ(u)

})}
+O

( rwn
md
n

)
≤ 2C|B(0, γ)|2

ε
lim sup
n→∞

∑
k<z<∞

{
zw−1

(
exp

{
− 1

4
inf

u∈L(1)
γ ×Zw:‖uI‖≥z−γ

δ(u)
})}

+O
( rwn
md
n

)
,

where we have used in the second last step that 1 − Φ(x) ≤ exp{−x2/2} for x > 0 and in the

last step the decomposition Lγ(`F , `I) = L
(1)
γ ×L(2)

γ (`I). By condition (A), since we can neglect
the constant γ, we have

lim
k→∞

∑
k<z<∞

zw−1 exp
{
− 1

4
inf

u∈L(1)
γ ×Zw:‖uI‖≥z−γ

δ(u)
}

= 0.

Together with rwn = o(md
n) as n→∞, this implies that

lim
k→∞

lim sup
n→∞

∑
k<z≤rn

{
zw−1

(
exp

{
− 1

4
inf

u∈L(1)
γ ×Zw:‖uI‖≥z−γ

δ(u)
})}

+O
( rwn
md
n

)
= 0.

Next we prove (M1) and (M4i)-(M4iii). To this end we bound the α-mixing coefficients
αk1,k2(·) for k1, k2 ∈ N of {η(s) : s ∈ Rd} with respect to Rw, which are defined in (A.2).
Observe that d(Λ1,Λ2) for sets Λi ⊂ Zw as in Definition A.1 can only get large within the
increasing domain. Define the set

LF := {s1 − s2 : s1, s2 ∈ F}.

We use Eq. (5.8), as well as Dombry and Eyi-Minko [17], Eq. (3) and Corollary 2.2 to obtain

αk1,k2(z) ≤ 2 sup
d(Λ1,Λ2)≥z

∑
s1∈F×Λ1

∑
s2∈F×Λ2

ρ(1,∞)(1,∞)(s1 − s2)

≤ 2k1k2|F|2 sup
u∈LF×Zw:‖uI‖≥z

ρ(1,∞)(1,∞)(u)

= 4k1k2|F|2
(

1− Φ
((1

2
inf

u∈LF×Zw:‖uI‖≥z
δ(u)

) 1
2
))

≤ 4k1k2|F|2 exp
{
− 1

4
inf

u∈LF×Zw:‖uI‖≥z
δ(u)

}
. (5.11)

By condition (A) we have αk1,k2(z)→ 0, since necessarily inf
u∈LF×Zw:‖uI‖≥z

δ(u)→∞ as z →∞

and, therefore, the process {η(s) : s ∈ Rd} is α-mixing; i.e., (M1) holds. We continue by
estimating

md
n

∑
`∈Zw:‖`‖>rn

α1,1(‖`‖) ≤ Cmd
n

∑
z>rn

zw−1α1,1(z)

≤ 4C|F|2md
n

∑
z>rn

zw−1 exp
{
− 1

4
inf

u∈LF×Zw:‖uI‖≥z
δ(u)

}
→ 0, n→∞,
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by condition (A). This shows (M4i). Similarly, it can be shown that (M4ii) holds, if (A) is
satisfied. Finally, we show (M4iii). Using Eq. (5.11), we find

md/2
n nw/2α1,nw(rn) ≤ 4md/2

n n(3w)/2 exp
{
− 1

4
inf

u∈LF×Zw:‖uI‖≥rn
δ(u)

}
→ 0

as n→∞ because of condition (B).

The following is an immediate corollary of Theorem 5.1.

Corollary 5.2. Assume the situation as in Theorem 5.1. Suppose that the dependence function
δ satisfies for some positive constants C and α and for an arbitrary norm ‖ · ‖ on Rw (that
possibly differs from that considered in Theorem 5.1),

δ(u) ≥ C‖uI‖α (5.12)

for every u = (uF ,uI) ∈ L×Zw, where L ⊂ Zq is arbitrary, but fixed. In particular, δ(u)→∞
if ‖uI‖ → ∞. With mn = nβ1 and rn = nβ2 with β1 ∈ (0, w/(2d)) and β2 ∈ min{β1d/w; 1/2 −
β1d/w}, the conditions of Theorem 5.1 are satisfied for {η(s) : s ∈ Rd} and we conclude

n(w−dβ1)/2
[
ρ̂AB,mn(h(i))− ρAB,mn(h(i))

]
i=1,...,p

d→ N (0,Π), n→∞. (5.13)

Proof. Due to equivalence of norms on Rw we will make no difference between the norm in (5.12)
and the one used in Theorem 5.1. Clearly the sequences mn and rn satisfy the requirements
mn, rn →∞, md

n/n
w → 0, rwn /m

d
n → 0 and m2d

n r
2w
n /nw → 0 as n→∞. We have for z > 0,

exp
{
− 1

4
inf

u∈L×Zw:‖uI‖>z
δ(u)

}
≤ exp

{
− 1

4
inf

u∈L×Zw:‖uI‖>z
C‖uI‖α

}
≤ exp

{
− Czα

4

}
.

Condition (B) of Theorem 5.1 is satisfied since

n(β1d)/2n(3w)/2 exp
{
− Crαn

4

}
= n(β1d)/2n(3w)/2 exp

{
− Cnβ2α

4

}
= exp

{
− Cnβ2α

4
+
β1d+ 3w

2
log(n)

}
→ 0

as n→∞. Condition (A) holds since by Lemma A.3 of Buhl et al. [8], there is a positive constant
K such that

md
n

∑
z>rn

zw−1 exp
{
− Czα

4

}
≤ Kmd

nr
w
n exp

{
− Crαn

4

}
= K exp

{
− Cnβ2α

4
+ (β1d+ β2w) log(n)

}
→ 0.

With the particular choice of sequences mn = nβ1 and rn = nβ2 given in Corollary 5.2, we
are in the setting of Remark 3.9. Hence, in addition to the CLT (5.13), we obtain the CLT (3.21)
of the empirical extremogram centred by the true one and the CLT (3.20) corresponding to the
bias corrected estimator.
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5.3 Space-time Brown-Resnick processes: different models for the extremogram

We explore the semiparametric estimation for strictly stationary Brown-Resnick processes in
their space-time form {η(s, t) : s ∈ Rd−1, t ∈ [0,∞)}. For three classes of parametric models for
the dependence function δθ we prove that the GLSE is consistent and asymptotically normal.

Note that by Eq. (5.7) every model {δθ : θ ∈ Θ} for the dependence function yields a model
{ρAB,θ : θ ∈ Θ} for its space-time extremogram. Moreover, the extremogram (5.7) is always of

the same form, and only Φ̃ in (5.5) changes with the model. We consider three different model
classes, which together cover a large field of environmental applications such as the modelling of
extreme precipitation (cf. [6], [8], [11], [14]), extreme wind speed (cf. [21]) or extremes on river
networks (cf. [1]), provided they are valid (i.e., nonnegative and conditionally negative definite)
dependence functions in the considered metric.

(I) Fractional space-time model.
Davis et al. [11] introduce the spatially isotropic model

δθ(h, u) = C1‖h‖α1 + C2|u|α2 , (h, u) ∈ Rd, (5.14)

with parameter vector

θ ∈ {(C1, C2, α1, α2) : C1, C2 ∈ (0,∞), α1, α2 ∈ (0, 2]} .

The isotropy assumption, where (5.14) depends on the norm of the spatial lag h, can be relaxed
in a natural way by introducing geometric anisotropy. We only discuss the case d − 1 = 2, but
the approach is easily transferable to higher dimensions. Let ϕ ∈ [0, π/2) be a rotation angle
and R = R(ϕ) a rotation matrix, and T a dilution matrix with c > 0; more precisely,

R =

(
cosϕ − sinϕ
sinϕ cosϕ

)
and T =

(
1 0
0 c

)
.

The geometrically anisotropic model is then given by

δ̃
θ̃
(h, u) = δθ(Ah, u), (h, u) ∈ Rd (5.15)

where A = TR is the transformation matrix. The parameter vector of the transformed model is

θ̃ ∈ {(C1, C2, α1, α2, c, ϕ) : C1, C2 ∈ (0,∞), α1, α2 ∈ (0, 2], c > 0, ϕ ∈ [0, π/2)} .

For more details about geometric anisotropy see [11], Section 4.2, Blanchet and Davison [3],
Section 4.2, or Engelke et al. [21], Section 5.2.

(II) Spatial anisotropy along orthogonal spatial directions
Buhl and Klüppelberg [6] generalize the fractional isotropic model (5.14) to

δθ(h, u) =

d−1∑
j=1

Cj |hj |αj + Cd|u|αd , (h, u) ∈ Rd (5.16)

with parameter vector

θ ∈ {(Cj , αj , j = 1, . . . , d) : Cj ∈ (0,∞), αj ∈ (0, 2], j = 1, . . . , d} .

It is more flexible than the isotropic model (I) as it allows for different rates of decay of extreme
dependence along the axes of a d-dimensional spatial grid. Arbitrary principal orthogonal di-
rections can be introduced by a rotation matrix R as introduced for the isotropic model in (I),
here described for the case d− 1 = 2:

δ̃
θ̃
(h, u) = C1|h1 cosϕ− h2 sinϕ|α1 + C2|h1 sinϕ+ h2 cosϕ|α2 + C3|u|α3 , (h, u) ∈ R3. (5.17)
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The new parameter vector is

θ̃ ∈ {(C1, C2, C3, α1, α2, α3, ϕ) : Cj ∈ (0,∞), αj ∈ (0, 2], j = 1, 2, 3, ϕ ∈ [0, π/2)} .

In [6] this model is applied to extreme precipitation in Florida and, according to a specifically
developed goodness-of-fit method, performs extremely well.

(III) Time-shifted Brown-Resnick processes
With the goal to allow for some influence of the spatial dependence from previous values of the
process we time-shift the Gaussian processes in the definition of the Brown-Resnick model (5.1).
For τ = (τ1, τ2) ∈ Rd−1 define

W (τ )(s, t) := W (s− tτ , t).

Then {W (τ )(s, t) : (s, t) ∈ Rd−1, t ∈ [0,∞)} is also a centred Gaussian process starting in 0
with stationary increments: for (s(1), t(1)), (s(2), t(2)) ∈ Rd−1 × [0,∞), because of the stationary

increments of {W (s, t)}, where
d
= stands for equality in distribution,

W (τ )(s(1), t(1))−W (τ )(s(1), t(1))
d
= W (s(1) − s(2) − (t(1) − t(2))τ , t(1) − t(2))

= W (τ )(s(1) − s(2), t(1) − t(2)),

The corresponding time-shifted dependence function is given by

δ(τ )(s, t) :=
1

2
Var[W (τ )(s, t)−W (τ )(0, 0)] =

1

2
Var[W (s− tτ , t)−W (0, 0)] = δ(s− tτ, t),

which yields the covariance function

Cov[W (τ )(s(1), t(1)),W (τ )(s(2), t(2))] =

δ(τ )(s(1), t(1)) + δ(τ )(s(2), t(2))− δ(τ )(s(1) − s(2), t(1) − t(2)).

By Theorem 10 of Kabluchko et al. [29] the process

η(τ )(s, t) :=
∞∨
i=1

ξie
W

(τ)
i (s,t)−δ(τ)(s,t) = η(s− tτ , t), (s, t) ∈ Rd−1 × [0,∞), (5.18)

defines a strictly stationary space-time Brown-Resnick process.
This method does not depend on the specific dependence function: every Brown-Resnick

process {η(s, t) : (s, t) ∈ Rd−1, t ∈ [0,∞)} with dependence function {δθ,θ ∈ Θ} results in a

time-shifted Brown-Resnick process with dependence function {δ(τ )
θ ,θ ∈ Θ, τ ∈ Rd−1}. To give

an example, for the Brown-Resnick process (II) without rotation, the parametrised time-shifted
dependence function is given by

δ
(τ )
θ (h, u) =

d−1∑
i=1

Ci|hi − uτi|αi + Cd|u|αd , (h, u) ∈ Rd (5.19)

with parameter vector

(θ, τ ) ∈ {(Cj , αj , j = 1, . . . , d) : Cj ∈ (0,∞), αj ∈ (0, 2], j = 1, . . . , d} × Rd−1.

This model is somewhat motivated by the time-shifted moving maxima Brown-Resnick process
introduced by Embrechts et al. [20], it is however much simpler to analyse and to estimate.

In the following we show that models (I)-(III) satisfy Assumption 4.2 and the conditions of
Theorem 4.3 and Corollary 5.2.
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Asymptotic properties of models (I)-(III)

As before, we assume space-time observations on Dn = S×T = (S×T )(n), where S ⊂ Zd−1 are
the spatial and T ⊂ Z the time series observations. Moreover, we assume that they decompose
into Dn = F × In, where F ⊂ Zq is some fixed domain and In = {1, . . . , n}w is a sequence of
regular grids, and q + w = d.

For two points (s(1), t(1)) and (s(2), t(2)) ∈ Rd−1 × [0,∞), we denote by (h, u) = (s(1), t(1))−
(s(2), t(2)) ∈ Rd their space-time lag vector. Furthermore, we choose Borel sets A = B = (a,∞)
for some a > 0. We denote by ρ̂AB,mn(h, u) the (possibly bias-corrected) empirical space-time

extremogram (3.18), sampled at lags in H ⊂ Rd, and by θ̂n,V the GLSE (4.4), referring to some
positive definite weight matrix V .

To show consistency and asymptotic normality of the corresponding GLSE, we need to ver-
ify the assumptions required in Theorem 4.3; i.e. the relevant parts of Assumption 4.2. Note
that Corollary 5.2 applies for all models, since they all satisfy δθ(h, u) ≥ C|u|α for C > 0
and α ∈ (0, 2]. Thus we obtain the CLTs of the empirical extremogram centred by the pre-
asymptotic extremogram (5.13), centred by the true one (3.15) and of the bias corrected empir-
ical extremogram centred by the true one (3.20). Hence (G1) and (G2) hold for the empirical
extremogram. Furthermore, we assume that the parameter space Θ ⊂ Rk, which contains the
true parameter θ?, is a compact subset of the spaces introduced above for the corresponding
models.

The following requirements concern the model-independent assumptions.

• In order to determine the GLSE we need to choose a matrix V (θ) for θ ∈ Θ, and we take
one, which satisfies condition (G5ii) with z2 = 1. Due to compactness of the parameter space
Θ, condition (G5i) is therefore automatically satisfied.

• We require that |H| ≥ k, such that the rank condition (G6) can be satisfied.

Next we discuss the model-dependent assumptions. First note that the smoothness condition
(G4ii) is satisfied for z1 = 0 for all models {ρAB,θ(·)} (equivalently {δθ(·)}). Due to compactness
of the parameter space, condition (G4i) is therefore automatically satisfied. Besides it suffices
to show condition (G3ii) in order to verify identifiability of the models. Condition (G3ii) is
satisfied for models (I)-(III) if for two distinct parameter vectors θ(1) 6= θ(2) there is at least
one (h, u) ∈ H such that ρAB,θ(1)(h, u) 6= ρAB,θ(2)(h, u). This holds due to the power function
structure of the models. For the geometric anisotropic model in (I) we need to exclude c = 1 to
ensure identifiability of the angle ϕ; however, if c = 1 then ϕ has no influence on the dependence
function and can be neglected. Thus, the GLSEs are consistent according to Theorem 4.3.

We now turn to the CLT (4.7), where it remains to show (G4ii) for z1 = 1. Difficulties arise
due to norms and absolute values of certain parameters in the model equations:

• In their basic forms without rotation or dilution, models (I) and (II) are infinitely often
continuously partially differentiable in the model parameters. Hence asymptotic normality of
the GLSEs follows by Theorem 4.3.

• If rotation and/or dilution parameters are included, continuous partial differentiability still
holds under the following restrictions: Let α1 (for model (I)) or α1, . . . , αd−1 (for model (II)) be
the spatial smoothness parameters. Since they are the powers of some norm or absolute value,
restricting them to values in [1, 2] makes the models continuously partially differentiable. As
to model (II), in the case d − 1 = 2, one of the parameters α1 and α2 being larger than 1 is
already sufficient. To see this, recall that the spatial part of the dependence function is given
by

C1|h1 cosϕ− h2 sinϕ|α1 + C2|h1 sinϕ+ h2 cosϕ|α2 , (h1, h2) ∈ R2.
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Assume w.l.o.g that α2 > 1. Then critical values of ϕ ∈ [0, π/2) are the roots of h1 cosϕ −
h2 sinϕ. Given a value h2 ∈ R we need to choose h1 ∈ R such that h1 6= h2 tanϕ for all
ϕ ∈ [0, π/2). Since tanϕ > 0 for ϕ ∈ [0, π2), we can choose h1 such that sgn(h1) = −sgn(h2).
If all lags (h1, h2, u) ∈ H are chosen such that (h1, h2) have opposite signs (or, trivially, are
equal to (0, 0)) and if rank(PAB(θ?)) = k, then the GLSE is asymptotically normal.

• Model (III) is continuous partially differentiable, if the spatial smoothness parameters αi for
i = 1, . . . , d − 1 are all larger than 1. If αi ≤ 1 for some i, then the term Ci|hi − uτi|αi is,
as a function of τi, not differentiable at τi = hi/u ∈ R. However, it is possible to restrict the
parameter space such that such equalities do not occur.

6 Simulation study

Specifications

Consider the framework of Section 5.3. In particular, let {η(s, t) : s ∈ R2, t ∈ [0,∞)} be a
strictly stationary space-time Brown-Resnick process (5.1) observed on Dn = F × In. Denote
by ρ̂AB,mn(h, u) the space-time version of the (possibly bias corrected) empirical extremogram
given in (3.18), sampled at lags in H ⊂ Rd, where H is specified below and we choose the sets
A = B = (1,∞). As already indicated in its Definition 3.1(1), the computation involves the
practical issue of choosing the value amn = mn =: q as a large quantile, where the first equality
is due to the standard unit Fréchet distribution of the marginals of the Brown-Resnick model, so
that q should be chosen as a large quantile of the standard unit Fréchet distribution. In a data
example it should be chosen from a set Q of large empirical quantiles of {η(s, t) : (s, t) ∈ Dn}
for which the empirical extremograms ρ̂AB,q(h, u), are robust; cf. also Davis et al. [13] after their
Theorem 2.1

In order to test the small sample performance of the GLSE θ̂n,V defined in (4.4), we consider
some of the models (I)-(III) for the dependence function δθ. For the simulations we use the
R-package RandomFields [36] and the exact method via extremal functions proposed in Dombry
et al. [18], Section 2.

(i) Spatially isotropic fractional space-time model
We generate 100 realisations from the model (5.14) on a grid of size 15x15x300. This corresponds
to the situation of a fixed spatial and an increasing temporal observation area; i.e., it is given
by Dn = F × In with F = {1, . . . , 15}2 and In = {1, . . . , 300}. We simulate the model with the
true parameter vector

θ?1 = (0.8, 0.4, 1.5, 1),

which we assume to lie in a compact subset of

Θ1 = {(C1, C2, α1, α2) : C1, C2 ∈ (0,∞), α1, α2 ∈ (0, 2]} .

As the large empirical quantile q we take the 96%-quantile of {η(s, t) : (s, t) ∈ Dn}.

(ii) Geometrically anisotropic fractional space-time model
We generate 100 realisations from model (5.15) on a grid of size 15x15x300. This corresponds
to the same situation as in (i). We simulate the model with the true parameter vector

θ?2 = (0.8, 0.4, 1.5, 0.5, 3, π/4),

which we assume to lie in a compact subset of

Θ2 = {(C1, C2, α1, α2, c, ϕ) : C1, C2 ∈ (0,∞), α1 ∈ [1, 2], α2 ∈ (0, 2], c > 0, ϕ ∈ [0, π/2)} ,
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where we choose α1 ≥ 1 to ensure differentiability of the model, cf. the discussion in Section 5.3.
As the large empirical quantile q we take the 97%-quantile of {η(s, t) : (s, t) ∈ Dn}.

(iii) Spatially anisotropic time-shifted model
We generate 100 realisations from model (5.19) on a grid of size 40x40x40, and consider this as
a situation where the observation area increases in all dimensions; i.e., it is given by Dn = In
with In = {1, . . . , 40}3. We simulate the model with the true parameter vector

θ?3 = (0.4, 0.8, 0.5, 1.5, 1.5, 1, 1, 1),

which we assume to lie in a compact subset of

Θ3 = {(C1, C2, C3, α1, α2, α3, τ1, τ2) : Cj ∈ (0,∞), α1, α2 ∈ [1, 2], α3 ∈ (0, 2], τj ∈ R} ,

where we choose α1, α2 ≥ 1 to ensure differentiability of the model, cf. the discussion in Sec-
tion 5.3. As the large empirical quantile q we take the 95%-quantile of {η(s, t) : (s, t) ∈ Dn}. �

In all three settings we base the estimation on the set H of lags given by

H = {(0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 0, 4), (1, 0, 0), (2, 0, 0), (3, 0, 0), (4, 0, 0), (2, 1, 0), (4, 2, 0),

(1, 2, 0), (2, 4, 0), (1, 1, 1), (2, 2, 2), (1, 3, 2)}.

With this choice we ensure that the lag vectors vary in all three dimensions so that we obtain
reliable estimates. Generally one should choose H such that the whole range of clear extremal
dependence is covered. However, beyond that, no lags should be included for the estimation,
since independence effects can introduce a bias in the least squares estimates, similarly as in
pairwise likelihood estimation; cf. Buhl and Klüppelberg [6], Section 5.3. One way to determine
the range of extremal dependence are permutation tests, which are described in Buhl et al. [8],
Section 6. From those tests we know that our choice of lags satisfies this requirement for all
three models.

For the weight matrix V in (4.4) we propose two choices, which yield equally good results
in our statistical analysis. The first choice is V1 = diag{exp(−‖(h, u)‖2) : (h, u) ∈ H}, which
reflects the exponential decay of the tail dependence coefficients ρ(1,∞)(1,∞)(h, u) of Brown-
Resnick processes given by tail probabilities of the standard normal distribution. The second
choice is to include the (possibly bias corrected) empirical extremogram estimates as in V2 =
diag{ρ̂(1,∞)(1,∞),q(h, u) : (h, u) ∈ H}. Since the so defined weight matrix is random, what follows
is conditional on its realisation. It is in practice not possible to incorporate the asymptotic
covariance matrix Π of the empirical extremogram estimates (ρ̂(1,∞)(1,∞),q(h, u) : (h, u) ∈ H)
(cf. Remark 4.4) to obtain a weight matrix that is optimal in theory. As can be seen from its
specification in Theorem 3.4, it contains infinite sums and is, hence, numerically hardly tractable.

Results

For each of the scenarios (i)-(iii) we report the mean, the root mean squared error (RMSE) and
the mean absolute error (MAE) of the resulting GLSEs for the 100 simulations. The results
are summarised in Tables 1-3. Furthermore, in Figures 6.1-6.3 we plot the parameter estimates
and add 95%-confidence bounds found by subsampling; cf. Politis et al. [33], Chapter 5. We
use subsampling methods, since the asymptotic covariance matrix ΠV specified in Theorem 4.3
contains the matrix Π as specified in Theorem 3.4, which is, as explained above, hardly tractable.
The fact that subsampling yields asymptotically valid confidence intervals for the true parameter
vectors θ?i for i = 1, 2, 3 can be proved analogously to the proof of Theorem 4.1 in Buhl et al. [8]
based on Corollary 5.3.4 of [33]. It requires mainly the existence of continuous limit distributions
of
√
nw/md

n‖(θ̂n,V − θ?i )‖, which are guaranteed by Theorem 4.4, and some conditions on the
α-mixing coefficients, which can be shown similarly as those required in Theorem 3.4.
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Figure 6.1: GLSEs of the parameters of model (i) for 100 simulated Brown-Resnick space-time processes
together with pointwise 95%-subsampling confidence intervals (dotted). First row: C1, α1, second row:
C2, α2. The middle solid line is the true parameter value and the middle dotted line represents the mean
over all estimates.
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Figure 6.2: GLSEs of the parameters of model (ii) for 100 simulated Brown-Resnick space-time processes
together with pointwise 95%-subsampling confidence intervals (dotted). First row: C1, α1, middle row:
C2, α2, last row: ϕ and c. The middle solid line is the true value and the middle dotted line represents
the mean over all estimates.
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TRUE MEAN RMSE MAE

Ĉ1 0.8 0.7856 0.1763 0.1353

Ĉ2 0.4 0.3987 0.0995 0.0785
α̂1 1.5 1.4830 0.1131 0.0897
α̂2 1 0.9916 0.0820 0.0625

Table 1: True parameter values (first column) and mean, RMSE and MAE of the estimates of the
parameters of model (i).

TRUE MEAN RMSE MAE

Ĉ1 0.8 0.7270 0.335 0.2750

Ĉ2 0.4 0.3708 0.1377 0.1097
α̂1 1.5 1.4349 0.2692 0.2274
α̂2 0.5 0.5143 0.0684 0.0491
ĉ 3 2.9441 0.2645 0.1365
ϕ̂ π/4 0.7906 0.1567 0.1214

Table 2: True parameter values (first column) and mean, RMSE and MAE of the estimates of the
parameters of model (ii).

TRUE MEAN RMSE MAE

Ĉ1 0.4 0.4072 0.0898 0.0690

Ĉ2 0.8 0.8482 0.2187 0.1667

Ĉ3 0.5 0.5003 0.1366 0.1085
α̂1 1.5 1.5144 0.0781 0.0594
α̂2 1.5 1.5043 0.1282 0.1054
α̂3 1 0.9694 0.1415 0.1082
τ̂1 1 1.0459 0.1250 0.0945
τ̂2 1 0.9916 0.0420 0.0320

Table 3: True parameter values (first column) and mean, RMSE and MAE of the estimates of the
parameters of model (iii).

Summary

Summarising our results, we find that the GLSE estimates the model parameters very accurately.
Bias and variance are largest for the parameter estimates of model (ii). There are two main
reasons for this. Compared to model (i), for model (ii) we estimate two more parameters based
on the same observation scheme. However, one is a direction, which to estimate is a non-trivial
task and decreases the overall quality of the estimates. For the estimation of model (iii) the
observation scheme is different; in particular, there is a relatively large number of both spatial
and temporal observations available. In contrast, in the setting of models (i) and (ii) only the
number of temporal observations is large.

It is obvious from Tables 1 and 2 that bias and variance of the spatial parameter estimates
Ĉ1 and α̂1 are considerably larger than bias and variance of the temporal parameter estimates
Ĉ2 and α̂2. Again this is due to the fact that only the number of temporal observations is large.

From Table 3 we read off that the variance of the estimates Ĉ1 and α̂1, which correspond
to the first spatial dimension, are considerably smaller than those of Ĉ2 and α̂2. This is due to
the lag vectors we included in the set H, which show more variation with respect to the first
dimension than with respect to the second.

Compared to likelihood-based methods computation time of semiparametric estimation is
substantially lower. This is also found in Buhl et al. [8], Section 5, and Steinkohl [37], Chapter 6,
however, for a much simpler model, where simple least squares estimation applied.
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Figure 6.3: GLSEs of the parameters of model (iii) for 100 simulated Brown-Resnick space-time processes
together with pointwise 95%-subsampling confidence intervals (dotted). First row: C1, α1, second row:
C2, α2, third row: C3, α3, fourth row: τ1, τ2.The middle solid line is the true value and the middle dotted
line represents the mean over all estimates.
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A Appendix

A.1 α-mixing with respect to the increasing dimensions

We need the concept of α-mixing for the process {X(s) : s ∈ Rd} with respect to Rw. In a
space-time setting with fixed spatial setting and increasing time series this is called temporal
α-mixing.

Definition A.1 (α-mixing and α-mixing coefficients). Consider a strictly stationary process{
X(s) : s ∈ Rd

}
and let d(·, ·) be some metric induced by a norm ‖ · ‖ on Rd. For Λ1,Λ2 ⊂ Zw

define

d(Λ1,Λ2) := inf {‖s1 − s2‖ : s1 ∈ F × Λ1, s2 ∈ F × Λ2} .

Further, for i = 1, 2 denote by σF×Λi = σ {X(s) : s ∈ F × Λi} the σ-algebra generated by {X(s) :
s ∈ F × Λi}.

(i) We define the α-mixing coefficients with respect to Rw for k1, k2 ∈ N and z ≥ 0 as

αk1,k2(z) := sup {|P(A1 ∩A2)− P(A1)P(A2)| : Ai ∈ σF×Λi , |Λi| ≤ ki, d(Λ1,Λ2) ≥ z} . (A.1)

(ii) We call {X(s) : s ∈ Rd} α-mixing with respect to Rw, if αk1,k2(z) → 0 as z → ∞ for all
k1, k2 ∈ N.

We have to control the dependence between vector processes {Y (s) = XB(s,γ) : s ∈ Λ′1} and
{Y (s) = XB(s,γ) : s ∈ Λ′2} for subsets Λ′i ⊂ Zw with cardinalities |Λ′1| ≤ k1 and |Λ′2| ≤ k2.. This
entails dealing with unions of balls Λi = ∪s∈F×Λ′i

B(s, γ). Since γ > 0 is some predetermined
finite constant independent of n, we keep notation simple by redefining the α-mixing coefficients
corresponding to the vector processes for k1, k2 ∈ N and z ≥ 0 as

αk1,k2(z) := sup{|P(A1 ∩A2)− P(A1)P(A2)| :
Ai ∈ σΛi , Λi = ∪s∈F×Λ′i

B(s, γ), |Λ′i| ≤ ki, d(Λ′1,Λ
′
2) ≥ z}. (A.2)

A.2 Proof of Theorem 3.4

The proof of Theorem 3.4 is divided into two parts. In the first part we prove a LLN and
a CLT in Lemmas A.2 and A.3 for the estimators µ̂B(0,γ),mn in (3.4). In the second part of
the proof we derive the CLT for the empirical extremogram ρ̂AB,mn in (3.2), and compute
the asymptotic covariance matrix Π. The proof generalizes corresponding proofs in Buhl and
Klüppelberg [7] (where the observation area increases in all dimensions) in a non-trivial way.
We recall the separation of every point and every lag in its components corresponding to the
fixed domain, indicated by the sub index F , and the remaining components, indicated by I,

from Assumption 2.4. In particular, we decompose h(i) = (h
(i)
F ,h

(i)
I ) ∈ H.

The separation of the observation space with its fixed domain has to be introduced into the
proofs given in [7], which is even in the regular grid situation highly non-trivial. We will give
detailed references to those proofs, whenever possible, to support the understanding. On the
other hand, if arguments just follow a previous proof line by line we avoid the details.

Part I: LLN and CLT for µ̂B(0,γ),mn

As in [7], Section 5, we make use of a large/small block argument. For simplicity we assume that
nw/md

n is an integer and subdivide Dn into nw/md
n non-overlapping d-dimensional large blocks

F × Bi for i = 1, . . . , nw/md
n, where the Bi are w-dimensional cubes with side lengths m

d/w
n .
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From those large blocks we then cut off smaller blocks, which consist of the first rn elements in
each of the w increasing dimensions. The large blocks are then separated (by these small blocks)
with at least the distance rn in all w increasing dimensions and shown to be asymptotically
independent.

We divide the spatial lags in Ln into different sets according to the large and small blocks.
Recall the notation of (3.5) and (3.9) and around. Observe that a spatial lag (`F , `I) with

`I = (`
(1)
I , . . . , `

(w)
I ) appears in L

(i)
F ×Ln exactly N

(i)
F (`F )

∏w
j=1(n−|`(j)I |) times, where N

(i)
F (`F ) =

N
(i,i)
F (`F ) is defined in (3.10). This term will replace

∏d
j=1(n− |hj |) in the proofs of [7].

Lemma A.2. Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying process observed on

Dn = F ×In as in (2.4). For i ∈ {1, . . . , p}, let h(i) = (h
(i)
F ,h

(i)
I ) ∈ H ⊆ B(0, γ) for some γ > 0

be a fixed lag vector and use as before the convention that (h
(p+1)
F ,h

(p+1)
I ) = 0. Suppose that the

following mixing conditions are satisfied.

(1) {X(s) : s ∈ Rd} is α-mixing with respect to Rw with mixing coefficients αk1,k2(·) defined in
(A.1).

(2) There exist sequences m := mn, r := rn →∞ with md
n/n

w → 0 and rwn /m
d
n → 0 as n→∞

such that (M3) and (M4i) hold.

Then for every fixed i = 1, . . . , p+ 1, as n→∞,

E
[
µ̂B(0,γ),mn(Di)

]
→ µB(0,γ)(Di), (A.3)

Var
[
µ̂B(0,γ),mn(Di)

]
∼ md

n

nw
σ2
B(0,γ)(Di), (A.4)

with σ2
B(0,γ)(Di) specified in (3.7). If µB(0,γ)(Di) = 0, then (A.4) is interpreted as

Var
[
µ̂B(0,γ),mn(Di)

]
= o(md

n/n
w). In particular,

µ̂B(0,γ),mn(Di)
P→ µB(0,γ)(Di), n→∞. (A.5)

Proof of Lemma A.2. We suppress the superscript (i) of h(i) (respectively h
(i)
F ) for notational

ease. Strict stationarity and relation (2.5) imply that

E
[
µ̂B(0,γ),mn(Di)

]
=
md
n

nw

∑
i∈In

|F(hF )|
|F(hF )|

P
(Y (0)

am
∈ Di

)
= md

nP
(Y (0)

am
∈ Di

)
→ µB(0,γ)(Di).

As to the asymptotic variance, we start from (3.7), where it has been calculated that

Var
[
µ̂B(0,γ),mn(Di)

]
=

m2d
n

n2w|F(hF )|2
(
|F(hF )|nwVar

[
1{Y (0)

am
∈Di}

]
+

∑
f ,f ′∈F(hF )

∑
i,i′∈In

(f ,i)6=(f ′,i′)

Cov
[
1{Y (f ,i)

am
∈Di}

,1{Y (f ′,i′)
am

∈Di}

])
=: A1 +A2. (A.6)

By (2.5) and since P(Y (0)/am ∈ Di)→ 0,

A1 =
m2d
n

nw|F(hF )|
P
(Y (0)

am
∈ Di

)(
1− P

(Y (0)

am
∈ Di

))
∼ md

n

nw|F(hF )|
µB(0,γ)(Di)→ 0, n→∞.
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Counting the spatial lags as explained above this proof, for fixed k ∈ N we have by stationarity
the analogy of (5.6) in [7]

nw

md
n

A2 =
md
n

|F(hF )|2
( ∑

`I∈Ln
0≤‖`I‖≤k

+
∑
`I∈Ln

k<‖`I‖≤rn

+
∑
`I∈Ln
‖`I‖>rn

)
∑

`F∈L
(i)
F

(`F ,`I)6=0

N
(i)
F (`F )

w∏
j=1

(
1−
|`(j)I |
n

)
Cov[1{Y (0)

am
∈Di}

,1{Y (`F ,`I)
am

∈Di}
]

=: A21 +A22 +A23. (A.7)

Concerning A21 we have,

A21 =
md
n

|F(hF )|2
∑
`I∈Ln

0≤‖`I‖≤k

∑
`F∈L

(i)
F

(`F ,`I)6=0

N
(i)
F (`F )

w∏
j=1

(
1−
|`(j)I |
n

)
[
P
(Y (0)

am
∈ Di,

Y (`F , `I)

am
∈ Di

)
− P

(Y (0)

am
∈ Di

)2]
.

With (2.5) and (2.6) we obtain by dominated convergence,

lim
k→∞

lim sup
n→∞

A21 =
1

|F(hF )|2
∑
`I∈Zw

∑
`F∈L

(i)
F

(`F ,`I)6=0

N
(i)
F (`F )τB(0,γ)×B((`F ,`I),γ)(Di ×Di). (A.8)

As to A22, observe that for all n ≥ 0 we have
w∏
j=1

(1− |`
(j)
I |
n ) ≤ 1 for `I ∈ Ln. Furthermore, since

Di is bounded away from 0, there exists ε > 0 such that Di ⊂ {x ∈ R|B(0,γ)|
: ‖x‖ > ε}. Hence,

we obtain

|A22| ≤
1

|F(hF )|2
∑

`F∈L
(i)
F

N
(i)
F (`F )

∑
`I∈Zw

k<‖`I‖≤rn

{
md
nP
(
‖Y (0)‖ > εam, ‖Y (`F , `I)‖ > εam

)

+
1

md
n

(
md
nP
(Y (0)

am
∈ Di

))2}
.

which differs from the corresponding expression in [7] only by finite factors. Thus by an obvious
modification of the arguments in that paper it follows that, using rwn /m

d
n → 0 and condi-

tion (M3),
lim
k→∞

lim sup
n→∞

A22 = 0.

Using the definition (A.2) of α-mixing for A1 = {Y (0)/am ∈ Di} and A2 = {Y (`F , `I)/am ∈
Di}, we obtain by (M4i),

|A23| ≤
1

|F(hF )|2
∑

`F∈L
(i)
F

N
(i)
F (`F )md

n

∑
`I∈Zw:‖`I‖>rn

α1,1(‖`I‖)→ 0, n→∞. (A.9)

Summarising these computations, we conclude from (A.7) and (A.8) that for n→∞,

A2 ∼
md
n

nw

∑
`I∈Zw

1

|F(hF )|2
∑

`F∈L
(i)
F

(`F ,`I)6=0

N
(i)
F (`F )τB(0,γ)×B((`F ,`I),γ)(Di ×Di),
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and, therefore, (A.6) implies (A.4). Since md
n/n

w → 0 as n → ∞, equations (A.3) and (A.4)
imply (A.5).

Lemma A.3. Let {X(s) : s ∈ Rd} be a strictly stationary regularly varying process observed

on Dn = F × In. For i ∈ {1, . . . , p}, let h(i) = (h
(i)
F ,h

(i)
I ) ∈ H ⊆ B(0, γ) for some γ > 0 be a

fixed lag vector and take as before the convention that (h
(p+1)
F ,h

(p+1)
I ) = 0. Let the assumptions

of Theorem 3.4 hold. Then for every fixed i = 1, . . . , p+ 1,

ŜB(0,γ),mn :=

√
md
n

nw

∑
i∈In

[ 1

|F(hF )|

( ∑
f∈F(hF )

1{Y (f ,i)
am

∈Di}

)
− P

(Y (f , i)

am
∈ Di

)]

=

√
nw

md
n

[
µ̂B(0,γ),mn(Di)− µB(0,γ),mn(Di)

] d→ N (0, σ2
B(0,γ)(Di)), n→∞, (A.10)

with µ̂B(0,γ),mn(Di) as in (3.4), µB(0,γ),mn(Di)) := md
nP(Y (0)/am ∈ Di) and σ2

B(0,γ)(Di) given

in (3.12).

Proof. Again we suppress the superscript (i) of h(i) and h
(i)
F . As for the proof of consistency

above, we generalise the proof of the CLT in [7] (based on Bolthausen [4]) to the new setting.
We consider the process { √

md
n

|F(hF )|

( ∑
f∈F(hF )

1{Y (f ,i)
am

∈Di}

)
: i ∈ Zw

}
,

observed on the w-dimensional regular grid In. In analogy to (5.11) in [7] define

I(i) :=
1

|F(hF )|

( ∑
f∈F(hF )

1{Y (f ,i)
am

∈Di}

)
− P

(Y (0)

am
∈ Di

)
, i ∈ In, (A.11)

and note that by stationarity,

ŜB(0,γ),mn =

√
md
n

nw

∑
i∈In

I(i). (A.12)

The boundary condition required in Eq. (1) in Bolthausen [4] is satisfied for the regular grid In.
By the same arguments as in [7],

0 < σ2
B(0,γ)(Di) ∼ Var[ŜB(0,γ),mn ] ≤ md

n

nw

∑
i,i′∈Zw

|E[I(i)I(i′)]| <∞, (A.13)

such that
∑
i,i′∈Zw Cov[I(i), I(i′)] > 0. Replacing Sn in [7] by In and nd by nw, we define

vn :=
md
n

nw

∑
i,i′∈In
‖i−i′‖≤rn

E
[
I(i)I(i′)

]
. (A.14)

and obtain by the same arguments that

vn

Var[ŜB(0,γ),mn ]
= 1− md

n

nw
1

σ2
B(0,γ)(Di)

∑
i,i′∈In
‖i−i′‖>rn

E[I(i)I(i′)](1 + o(1)).
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Now note that

md
n

nw

∑
i,i′∈In
‖i−i′‖>rn

E[I(i)I(i′)] ≤ 1

|F(hF )|2
∑

`F∈L
(i)
F

N
(i)
F (`F )md

n

∑
`I∈Zq :‖`I‖>rn

α1,1(‖`I‖)→ 0, n→∞,

as in (A.9), with mixing coefficients defined in (A.2). Therefore,

vn ∼ Var[ŜB(0,γ),mn ]→ σ2
B(0,γ)(Di), n→∞. (A.15)

The standardized quantities are again as in [7], with Sn replaced by In and nd by nw, by

Sn := v−1/2
n ŜB(0,γ),mn = v−1/2

n

√
md
n

nw

∑
i∈In

I(i) and Si,n := v−1/2
n

√
md
n

nw

∑
i′∈In

‖i−i′‖≤rn

I(i′).

The proof continues in [7], with nd replaced by nw, by estimating the quantities B1, B2 and B3.
The estimation of B1 follows the same lines of the proof, resulting in

E[|B1|2] = λ2v−2
n

(md
n

nw

)2 ∑
‖i−i′‖≤rn

∑
‖j−j′‖≤rn

Cov
[
I(i)I(i′), I(j)I(j′)

]
.

We use definition (A.2) of the α-mixing coefficients for

Λ′1 = {i, i′} and Λ′2 = {j, j′},

then |Λ′1|, |Λ′2| ≤ 2 and for d(Λ′1,Λ
′
2) we consider the following two cases:

(1) ‖i − j‖ ≥ 3rn. Then 2rn ≤ (2/3)‖i − j‖ and d(Λ′1,Λ
′
2) ≥ ‖i − j‖ − 2rn. Since indicator

variables are bounded and α2,2 is a decreasing function,

|Cov
[
I(i)I(i′), I(j)I(j′)

]
| ≤ 4α2,2

(
‖i− j‖ − 2rn

)
≤ 4α2,2

(1

3
‖i− j‖

)
.

(2) ‖i − j‖< 3rn. Set z := min{‖i − j‖, ‖i − j′‖, ‖i′ − j‖, ‖i′ − j′‖}, then d(Λ′1,Λ
′
2) ≥ z and,

hence,
Cov

[
I(i)I(i′), I(j)I(j′)

]
≤ 4αk1,k2(z), 2 ≤ k1 + k2 ≤ 4.

Therefore,

E[|B1|2] ≤4λ2

v2
n

(md
n

nw

)2[ ∑
‖i−j‖≥3rn

∑
‖i−i′‖≤rn
‖j−j′‖≤rn

α2,2

(1

3
‖i− j‖

)
+

∑
‖i−j‖<3rn

∑
‖i−i′‖≤rn
‖j−j′‖≤rn

αk1,k2(z)
]

≤4λ2

v2
n

(md
n

nw

)2
nwr2w

n

[ ∑
`I∈Zw:‖`I‖≥3rn

α2,2

(1

3
‖`I‖

)
+

∑
`I∈Zw:‖`I‖<3rn

αk1,k2(‖`I‖)
]
.

The analogous argument as in [7] yields

E[|B1|2] = O
(m2d

n r
2w
n

nw

)
→ 0.

Next, E[|B2|]→ 0 as n→∞ by the same arguments as in [7] replacing Sn by In and nd by nw.
Then we find for B3 with the same replacements

E[B3] = v
− 1

2
n md/2

n nw/2E
[
I(0) exp

{
iλv
− 1

2
n

√
md
n

nw

∑
‖i‖>rn

I(i)
}]
.
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We use definition (A.2) of the α-mixing coefficients for

Λ′1 = {0} and Λ′2 = {i ∈ In : ‖i‖ > rn},

such that |Λ′1| = 1, |Λ′2| ≤ nw and d(Λ′1,Λ
′
2) > rn. Abbreviate

η(rn) := exp
{
iλv
− 1

2
n

√
md
n

nw

∑
‖i‖>rn

I(i)
}
,

then I(0) and η(rn) are measurable with respect to σΛ1 and σΛ2 , respectively, where Λi =
∪s∈F×Λ′i

B(s, γ). Now we apply Theorem 17.2.1 of Ibragimov and Linnik to obtain

|E[B3]| ≤ 4v−1/2
n md/2

n nw/2α1,nw(rn)→ 0,

where convergence to 0 is guaranteed by condition (M4iii).

Part II: CLT for ρ̂AB,mn and limit covariance matrix

Recall the definition of H = {h(1), . . . ,h(p)}. For i ∈ {1, . . . , p}, write h(i) = (h
(i)
F ,h

(i)
I ) with

respect to the fixed and increasing domains F and In. Write further h
(i)
F = (h

(i,1)
F , . . . , h

(i,q)
F )

and h
(i)
I = (h

(i,1)
I , . . . , h

(i,w)
I ). Now we define the ratio

Rn(Di, Dp+1) :=
P(Y (0)/am ∈ Di)

P(Y (0)/am ∈ Dp+1)
=

µB(0,γ),mn(Di)

µB(0,γ),mn(Dp+1)

and the corresponding empirical estimator

R̂n(Di, Dp+1) :=
|F|
∑
i∈In

∑
f∈F(h

(i)
F )

1{Y (f ,i)/am∈Di}

|F(h
(i)
F )|

∑
i∈In

∑
f∈F 1{Y (f ,i)/am∈Dp+1}

=

mdn
nw
∑
i∈In

1

|F(h
(i)
F )|

∑
f∈F(h

(i)
F )

1{Y (f ,i)/am∈Di}

mdn
nw
∑
i∈In

1
|F(0)|

∑
f∈F(0) 1{Y (f ,i)/am∈Dp+1}

=
µ̂B(0,γ),mn(Di)

µ̂B(0,γ),mn(Dp+1)
,

using that F(0) = F . Observe that

|Dn(h(i))| = |F(h
(i)
F )|

w∏
j=1

(n− |h(i,j)
I |) ∼ |F(h

(i)
F )|nw, n→∞.

Then the empirical extremogram as defined in (3.2) for µ-continuous Borel sets A,B in R\{0}
satisfies as n→∞,

ρ̂AB,mn(h(i)) =

1
|Dn(h(i))|

∑
s∈Dn(h(i))

1{X(s)/am∈A,X(s+h(i))/am∈B}

1
|Dn|

∑
s∈Dn

1{X(s)/am∈A}

∼
1

|F(h
(i)
F )|nw

∑
i∈In(h

(i)
I )

∑
f∈F(h

(i)
F )

1{X(f ,i)/am∈A,X(f+h
(i)
F ,i+h

(i)
I )/am∈B}

1
|F|nw

∑
i∈In

∑
f∈F 1{X(f ,i)/am∈Dp+1}

∼
|F|
∑
i∈In

∑
f∈F(h

(i)
F )

1{Y (f ,i)/am∈Di}

|F(h
(i)
F )|

∑
i∈In

∑
f∈F 1{Y (f ,i)/am∈Dp+1}

= R̂n(Di, Dp+1),

by definition (2.7) of the sets Di for i = 1, . . . , p. The remaining proof follows exactly as that
of Theorem 4.2 in [7], where in the last part the decomposition into a fixed and increasing grid
has to be taken into account. �
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A.3 Proof of Theorem 3.8

Throughout this proof, we suppress the sub index mn of ρ̂AB,mn and ρ̂AB,mn for notational
ease. The case, where nw/m3d

n → 0 as n → ∞, is covered by Theorem 3.7, so we assume that
nw/m3d

n 6→ 0. Hence, by definition (3.18) we have to consider

ρ̃AB(h) = ρ̂AB(h)− 1

2md
na

[
(ρ̂AB(h)− 2

a

b
)(ρ̂AB(h)− 1)

]
.

Observe that for h ∈ H = {h(1), . . . ,h(p)}, as n→∞,

ρ̃AB(h)− ρAB(h)

=ρ̂AB(h)− ρAB,mn(h) + ρAB,mn(h)− 1

2md
na

[
(ρ̂AB(h)− 2

a

b
)(ρ̂AB(h)− 1)

]
− ρAB(h)

=(1 + o(1))
{
ρ̂AB(h)− ρAB,mn(h) + ρAB(h) +

1

2md
na

[
(ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]
− 1

2md
na

[
(ρ̂AB(h)− 2

a

b
)(ρ̂AB(h)− 1)

]
− ρAB(h)

}
Since the conditions of Theorem 3.4 are satisfied we have that√

nw

md
n

[
ρ̂AB(h(i))− ρAB,mn(h(i))

]
i=1,...,p

d→ N (0,Π)

and thus, by the continuous mapping theorem, it remains to show that for h ∈ H,√
nw

4m3d
n

1

a

[
(ρ̂AB(h)− 2

a

b
)(ρ̂AB(h)− 1)− (ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]
P→ 0.

We rewrite the latter as√
nw

4m3d
n

1

a

[
(ρ̂AB(h)− 2

a

b
)(ρ̂AB(h)− 1)− (ρAB,mn(h)− 2

a

b
)(ρAB,mn(h)− 1)

+ (ρAB,mn(h)− 2
a

b
)(ρAB,mn(h)− 1)− (ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]
=: A1 +A2.

As to A1, we calculate√
nw

4md
n

1

2ρAB(h)− (2ab + 1)

[
(ρ̂AB(h)− 2

a

b
)(ρ̂AB(h)− 1)− (ρAB,mn(h)− 2

a

b
)(ρAB,mn(h)− 1)

]
=

√
nw

4md
n

1

2ρAB(h)− (2ab + 1)

[
ρ̂AB(h)2 − (2

a

b
+ 1)ρ̂AB(h)−

(
ρ2
AB,mn(h)− (2

a

b
+ 1)ρAB,mn(h)

)]
=

√
nw

4md
n

1

2ρAB(h)− (2ab + 1)

[
(ρ̂AB(h)− ρAB,mn(h))(ρ̂AB(h) + ρAB,mn(h))

− (2
a

b
+ 1)(ρ̂AB(h)− ρAB,mn(h))

]
=

√
nw

4md
n

(ρ̂AB(h)− ρAB,mn(h))
ρ̂AB(h) + ρAB,mn(h)− (2ab + 1)

2ρAB(h)− (2ab + 1)
.
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By Theorem 3.4, the first term converges weakly to a normal distribution. Since ρ̂AB(h)
P→

ρAB(h) and ρAB,mn(h) → ρAB(h) as n → ∞, the second term converges to 1 in probability.

Slutzky’s theorem hence yields that A1
P→ 0. As to A2, observe that

−
√

4m3d
n

nw
aA2 = ρ2

AB(h)− ρ2
AB,mn(h)) + (2

a

b
+ 1)(ρAB,mn(h)− ρAB(h))

= (1 + o(1))
{
ρ2
AB(h)−

[
ρAB(h) +

1

2md
na

[
(ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]]2

+ (2
a

b
+ 1)

[
ρAB(h) +

1

2md
na

[
(ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]
− ρAB(h)

]}
= (1 + o(1))

{
ρ2
AB(h)− ρ2

AB(h)− ρAB(h)

md
na

[
(ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]
− 1

4m2d
n a

2

[
(ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]2

+ (2
a

b
+ 1)

[
ρAB(h) +

1

2md
na

[
(ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]
− ρAB(h)

]}
= (1 + o(1))

{ 1

md
na

[
(
a

b
+

1

2
− ρAB(h))

[
(ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]
− 1

4md
na

[
(ρAB(h)− 2

a

b
)(ρAB(h)− 1)

]2]}
.

Therefore A2 converges to 0 if and only if
√
nw/m3d

n m
−d
n =

√
nw/m5d

n converges to 0. �

A.4 Proof of Theorem 4.3

We start with the proof of consistency and use a subsequence argument. Let n′ = n′(n) be some
arbitrary subsequence of n. We show that there exists a further subsequence n′′ = n′′(n′) such
that θ̂n′′,V

a.s.→ θ? as n→∞, which in turn implies (4.6).

By (G1) we have for i = 1, . . . , p that ρ̂AB,mn(h(i))
P→ ρAB,θ?(h

(i)) as n → ∞. Hence, there
exists a subsequence n′′ of n′ such that[

ρ̂AB,mn′′ (h
(i))
]
i=1,...,p

a.s.→
[
ρAB,θ?(h

(i))
]
i=1,...,p

, (A.16)

as n→∞. For θ ∈ Θ, we define the column vector and the quadratic forms

g(θ) :=
[
ρAB,θ?(h

(i))− ρAB,θ(h(i)) : i = 1, . . . , p
]ᵀ
i=1,...,p,

Q(θ) := g(θ)TV (θ)g(θ) and Q̂n(θ) := ĝn(θ)
ᵀ
V (θ)ĝn(θ),

where we recall from (4.3) that ĝn(θ) =
[
ρ̂AB,mn(h(i))− ρAB,θ(h(i))

]ᵀ
i=1,...,p. Assumptions (G1)

and (G3) imply that Q(θ) > 0 for θ? 6= θ ∈ Θ and that Q(θ?) = 0, so θ? is the unique minimizer
of Q. Smoothness and continuity of the functions ρAB,θ(h(i)) and V (θ) (Assumptions (G4) and
(G5) with z1 = z2 = 0) and (A.16) yield

∆̂n′′ := sup
θ∈Θ
{|Q̂n′′(θ)−Q(θ)|} a.s.→ 0, n→∞. (A.17)

Now assume that there exists some ω ∈ Ω such that (A.17) holds, but θ̂n′′,V (ω) 6→ θ?. Then
there exist ε > 0 and a subsequence n′′′ = n′′′(n′′) such that for all n ≥ 1,

‖θ̂n′′′,V (ω)− θ?‖ > ε.
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Thus,

Q̂n′′′(θ̂n′′′,V (ω))− Q̂n′′′(θ?)

= −(Q(θ̂n′′′,V (ω))− Q̂n′′′(θ̂n′′′,V (ω))) +Q(θ̂n′′′,V (ω))− (Q̂n′′′(θ
?)−Q(θ?))−Q(θ?)

≥ Q(θ̂n′′′,V (ω))−Q(θ?)− 2∆̂n′′′ = Q(θ̂n′′′,V (ω))− 2∆̂n′′′

≥ inf{Q(θ) : ‖θ − θ?‖ > ε} − 2∆̂n′′′ > 0

for all n ≥ n0 for some n0 ≥ 1. But this contradicts the definition of θ̂n′′′,V as the minimizer of

Q̂n′′′(θ), θ ∈ Θ. Hence θ̂n′′,V
a.s.→ θ? as n→∞ and this shows (4.6).

To prove the CLT (4.7), we introduce the following notation:

• We denote by e` ∈ Rk the `th unit vector.

• For 1 ≤ i, j ≤ p, let vij(θ) := (V (θ))ij be the entry in the ith row and jth column of V (θ).

• Set v
(`)
ij (θ) := ∂

∂θ`
vij(θ) and V (`)(θ) := (v

(`)
ij (θ))1≤i,j≤p, 1 ≤ ` ≤ k.

As θ̂n,V minimizes ĝn(θ)
ᵀ
V (θ)ĝn(θ) w.r.t. θ, we obtain for 1 ≤ ` ≤ k,

0 =
∂

∂θ`
(ĝn(θ)

ᵀ
V (θ)ĝn(θ))

∣∣∣
θ=θ̂n,V

= ĝn(θ̂n,V )
ᵀ
V (`)(θ̂n,V )ĝn(θ̂n,V )− ρ(`)

AB(θ̂n,V )
ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]ĝn(θ̂n,V ). (A.18)

Now define the p×k-matrix P̂AB,n :=
∫ 1

0 PAB(uθ?+ (1−u)θ̂n,V ) du, where the integral is taken
componentwise. Assumptions (G4) and (G5) with z1 = z2 = 1 allow for a multivariate Taylor
expansion of order 0 with integral remainder term of ĝn(θ̂n,V ) around the true parameter vector
θ?, which yields

ĝn(θ̂n,V ) = ĝn(θ?) + P̂AB,n · (θ̂n,V − θ?).

Plugging this into (A.18) and rearranging terms, we find(
− ρ(`)

AB(θ̂n,V )
ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]P̂AB,n + (θ̂n,V − θ?)

ᵀ
P̂AB,n

ᵀ
V (`)(θ̂n,V )P̂AB,n

)
(θ̂n,V − θ?)

=ρ
(`)
AB(θ̂n,V )

ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]ĝn(θ?)− ĝn(θ?)

ᵀ
V (`)(θ̂n,V )ĝn(θ?)

− ĝn(θ?)
ᵀ
[V (`)(θ̂n,V ) + V (`)(θ̂n,V )

ᵀ
]P̂AB,n(θ̂n,V − θ?) (A.19)

for 1 ≤ ` ≤ k. Defining R̂n,V as the k × k-matrix whose `th row is given by

(θ̂n,V − θ?)
ᵀ
P̂AB,n

ᵀ
V (`)(θ̂n,V )P̂AB,n, 1 ≤ ` ≤ k,

the system of equations (A.19) can be written in compact matrix form as

(PAB(θ̂n,V )
ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]P̂AB,n + R̂n,V )(θ̂n,V − θ?)

=− PAB(θ̂n,V )
ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]ĝn(θ?)−

k∑
`=1

ĝn(θ?)
ᵀ
V (`)(θ̂n,V )ĝn(θ?)e`

−
k∑
`=1

ĝn(θ?)
ᵀ
[V (`)(θ̂n,V ) + V (`)(θ̂n,V )

ᵀ
]P̂AB,n(θ̂n,V − θ?)e`. (A.20)
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Hence, multiplying (A.20) by
√
nw/md

n and rearranging terms, we have,√
nw

md
n

(θ̂n,V − θ?)

=− {PAB(θ̂n,V )
ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]P̂AB,n + R̂n,V }−1

× PAB(θ̂n,V )
ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]

√
nw

md
n

ĝn(θ?)

− {PAB(θ̂n,V )
ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]P̂AB,n + R̂n,V }−1

k∑
`=1

√
nw

md
n

ĝn(θ?)
ᵀ
V (`)(θ̂n,V )ĝn(θ?)e`

− {PAB(θ̂n,V )
ᵀ
[V (θ̂n,V ) + V (θ̂n,V )

ᵀ
]P̂AB,n + R̂n,V }−1

×
k∑
`=1

√
nw

md
n

ĝn(θ?)
ᵀ
[V (`)(θ̂n,V ) + V (`)(θ̂n,V )

ᵀ
]P̂AB,n(θ̂n,V − θ?)e`

=: −A−B − C.

Observe that the smoothness conditions (G4) and (G5) and the rank condition (G6) ensure
invertibility of the terms in curly brackets and boundedness of its inverse. For the remainder of
the proof, we can hence use Slutsky’s theorem; to this end note that, as n→∞:

• By conditions (G4i) and (G5i) with z1 = z2 = 1, the matrices V (θ) and PAB(θ) are con-

tinuous in θ, hence V (θ̂n,V )
P→ V (θ?) and PAB(θ̂n,V )

P→ PAB(θ?) by continuous mapping.

• Using (4.6), we find that (θ̂n,V − θ?)
P→ 0, R̂n,V

P→ (0, . . . ,0) and P̂AB,n
P→ PAB(θ?).

• The previous bullet point directly implies that C
P→ 0.

• As to A, condition (G2) directly yields
√

nw

mdn
ĝn(θ?)

d→ N (0,Π).

• Furthermore, ĝn(θ?)
P→ 0 by (G1) and therefore B

P→ 0.

Finally, summarising those results, with B(θ?) =
(
PAB(θ?)

ᵀ
[V (θ?) + V (θ?)

ᵀ
]PAB(θ?)

)−1
, we

obtain (4.7). �
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