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Abstract

About 25 % of the world’s population depends either fully or patially on freshwater obtained
from karst systems, making their protection and sustainable management an essential task in wa-
ter resource management. Similar to most freshwater resources, also karst aquifers are affected
by increasing pressures from anthropogenic activities. The dolomite-dominated karst system in
Waidhofen a.d. Ybbs (Austria) represents such an example as it is affected by increasing mining
activities. Mining activities cause a decrease in groundwater recharge as the surface is sealed to
avoid any contamination of the aquifer. This problem was also recognized by the regional wa-
terworks and they needed a tool that can support the future management of their water supplying
systems. This dissertation aims to contribute to the challenge of safely and sustainably managing
karst systems by developing a hydrologic model that is able to simulate the hydrological impacts of
land use changes on karst spring discharge. Moreover, a further focus is to deal with the uncertain-
ties that are related to a simulated spring discharge. Therefore, I decided to divide the presented
thesis into two major objectives, i.e. Model development, implementation and application and
Uncertainty quantification.

Before developing mathematical approaches for the simulation of hydrological processes, a
conceptual model of an aquifer of interest is needed. For the Waidhofen karst system, such an
idea of the internal functioning of the aquifer was gathered from a detailed analysis of long-term
hydrochemical time series. In particular, for the spring that is assumed to be most affected by
increasing quatry areas, i.e. the Kerschbaum spring, an acceptable conceptual model was built that
provided an appropriate starting point for the development of a mathematical simulation model.
Most karst hydrologic models fall in the category of lumped parameter models, since it is chal-
lenging to apply physically-based models where little is known about the heterogeneity and order
of karst conduits and how they interact with the matrix. Similarly, a lumped parameter model was
developed in this study. The model, called LuKARS (Land use change modeling in KARSt sys-
tems), is based on the implementation of disctinct landscape units with similar soil and land use
characteristics, defined as hydrotopes. LuKARS was intitially set-up for the Kerschbaum spring
and later tested for other springs in order to ensure the transferability of the approach. It was shown
that the model is able to reproduce the observed changes in karst spring discharge as a result of
increasing dolomite quarries. Since this research idea evolved from a practical problem of water
management in Waidhofen a.d. Ybbs, LuKARS should not only be applicable by researchers, but
also by decision makers. For that reason, the model was implemented in an open source frame-
work that uses QGIS as a graphical user interface (GUI) and consists of tools for water resource
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mangement, i.e. FREEWAT.

For the second objective of this thesis, the active subspace method was applied to the Ker-
schbaum spring LuKARS model to investigate the model parameter and output uncertainties as
well as to test for possibilities to reduce the parameter dimensions. The original space of 21 pa-
rameters was effectively reduced to a four dimensional problem. A surrogate model was fitted
in this lower dimensional parameter space and used to perform a Bayesian inversion in order to
quantify the parametric uncertainties in the original parameter space. The results highlighted that
LuKARS in combination with the active subspace method can be used to perform land use change
impact studies with an acceptable range of model output uncertainties, i.e. < 10 % with respect
to the mean discharge. Finally, a comprehensive parametric study was performed to investigate
the hydrological meaning of an identified active subspace. Relevant hydrological and catchment
properties can be derived from an active subspace, which can be used to better interpret the model
uncertainties as well as to develop tailored field campaigns for missing modeling data.
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Zusammenfassung

Etwa 25 % der Weltbevolkerung hidngt entweder teilweise oder komplett von der Versorgung mit
Trinkwasser aus Karstsystemen ab, was deren Schutz und nachhaltige Bewirtschaftung zu einer
essenziellen Aufgabe in der Wasserwirtschaft machen. Ebenso wie die meisten Frischwasserres-
sourcen sind auch Karstgrundwasserleiter von steigendem Druck anthropogener Aktivititen be-
troffen. Das von Dolomit dominierte Karstsystem in Waidhofen a.d. Ybbs (Osterreich) stellt ein
solches Beispiel dar, da es von zunehmenden Steinbruchaktivititen beeinflusst wird. Durch die
Versiegelung der Oberfliache in diesen Bereichen, welche eine Verschmutzung des Grundwasser-
leiters verhindern soll, wird gleichzeitig die Grundwasserneubildung verringert. Dieses Problem
wurde auch von dem fiir die regionale Wasserversorgung zustindigen Wasserwerk identifiziert und
es wird ein Instrument bendtigt, welches sie bei der zukiinftigen Bewirtschaftung ihres Wasserver-
sorgungssystems unterstiitzt. Das Ziel dieser Dissertation ist es, einen Beitrag fiir die sichere und
nachhaltige Bewirtschaftung von Karstsystemen zu leisten. Dazu soll ein hydrologisches Mod-
ell entwickelt werden, welches fiir die Simulation von landnutzungsbedingten Verinderungen im
Karstquellabfluss benutzt werden kann. Des Weiteren liegt der Fokus auf der Quantifizierung der
Unsicherheiten, welche in Bezug zu den simulierten Quellabfliissen stehen. Auf dieser Basis habe
ich beschlossen, die Arbeit in zwei Hauptziele zu gliedern, zum einen die Modellentwicklung,
Implementierung und Anwendung und zum andern die Unsicherheitsquantifizierung.

Bevor ein mathematischer Ansatz zur Simulation von hydrologischen Prozessen entwickelt
werden kann, muss ein konzeptionelles Modell des Grundwasserleiters, welcher modelliert wer-
den soll, erstellt werden. Fiir den Fall des Karstsystems in Waidhofen wurde solch eine Vorstellung
der hydrologischen Funktionsweise durch eine detaillierte Analyse von Langzeithydrochemischen
Zeitreihen generiert. Speziell fiir die Quelle, fiir welche davon ausgegangen wird, dass sie am
meisten durch die Vergroferung der Dolomitsteinbriiche beeinflusst wird (Kerschbaumquelle),
wurde ein akzeptables Konzeptmodell generiert, welches eine angemessene Basis fiir die En-
twicklung eines mathematischen Simulationsmodells darstellt. Die meisten karst-hydrologischen
Modelle fallen in die Kategorie der lumped Parameter Modelle, da die Anwendung physikalisch-
basierter Modellansitze eine grole Herausforderung darstellt, wenn es kein Wissen iiber die Het-
erogenititen und die Ordnung von Karstrohren und deren Interaktion mit der Gesteinsmatrix gibt.
Im hiesigen Fall wurde ein lumped Parameter Modell entwickelt, welches auf der Implementierung
von unabhingigen Landschaftseinheiten mit dhnlichen Boden- und Landnutzungseigenschaften
basiert, den sogenannten Hydrotopen. Dieses Modell, genannt LuKARS (Land use change model-
ing in KARSt systems), wurde zunéchst fiir die Kerschbaumquelle aufgebaut und anschlieBend fiir
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andere Quellen getestet um die Ubertragbarkeit des Modellansatzes zu gewihrleisten. Es wurde
gezeigt, dass LuKARS in der Lage ist, die beobachteten Verdnderungen im Quellabfluss, welche
aus der Steinbruchvergroferung resultierten, nachzubilden. Ferner, da diese Forschungsidee einem
anwendungsorientierten Wasserwirtschaftsproblem entsprang, sollte LuKARS kein reines For-
schungswerkzeug sein, sondern auch fiir Entscheidungstrdger nutzbar sein. Aus diesem Grund
wurde das Modell in eine frei zugéngliche und verfiigbare Umgebung, welche QGIS als grafis-
che Benutzeroberfliche verwendet, implementiert. Diese Umgebung, mit dem Namen FREEWAT,
verfiigt iiber diverse Analyseinstrumente, welche speziell in der Wasserwirtschaft verwendet wer-
den.

Fiir das zweite Hauptziel dieser Arbeit wurde die Methode der aktiven Unterrdume fiir das
LuKARS Modell der Kerschbaumquelle angewendet um sowohl die Unsicherheiten in den Mod-
ellparametern und den Modellergebnissen zu quantifizieren, als auch Moglichkeiten zur Reduktion
der Parameterdimensionen zu testen. Der urspriingliche, 21 dimensionale Parameterraum wurde
effektiv zu einem 4 dimensionalen Problem reduziert. Ein Surrogat wurde an diesen niederdimen-
sionalen Parameterraum angepasst und im Rahmen einer Bayes’schen Inversion verwendet um
die Parameterunsicherheiten im urspriinglichen Parameterraum zu quantifizieren. Die Ergebnisse
zeigen, dass LuKARS in Verbindung mit der Methode der aktiven Unterrdume zur Simulation
von landnutzungsbedingten Verdnderungen in Karstquellabfliissen mit akzeptablen Modellergeb-
nisunsicherheiten von < 10 %, bezogen auf den mittleren Quellabfluss, verwendet werden kann.
Abschlieend wurde eine umfassende Parameterstudie durchgefiihrt um die hydrologische Bedeu-
tung eines identifizierten, aktiven Unterraumes zu untersuchen. Diese hat ergeben, dass relevante
hydrologische, als auch gebietsabhdngige Eigenschaften aus den aktiven Unterrdumen abgeleitet
werden konnen. Diese konnen dazu verwendet werden, um die Modellunsicherheiten besser zu
interpretieren als auch um angepasste Feldkampagnen fiir die Erhebung fehlender Modelldaten zu
entwerfen.
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Chapter 1
Introduction

Water is considered as one of the most important substances on our planet. We as humans are
sure that life would not exist as we know it without water. Knowing about this vital importance of
water, the United Nations General Assembly recognized as a human right that all of us have access
to affordable and clean drinking water in 2010 (UN, 2018). The neccesity for this recognition is
especially given by an unbelievable number of 2.2 billion people, i.e. about 30% of the world’s
population, who do not have access to safely managed drinking water services (WHO, 2017).
Besides this fundamental discussion about the accessibility to fresh water, knowing about the de-
pendence of human survival on clean drinking water makes it important to safely and sustainably
manage our water resources.

From all exploited water bodies, groundwater can be regarded as the most important resource,
since it provides almost half of the world’s drinking water demand (Smith et al., 2016). Moreover,
Siebert et al. (2010) estimated that the irrigation demand of 38% of actually irrigated lands world-
wide is met by groundwater resources. Hence, this water is used to produce the food we eat and the
energy we consume, i.e. energy crops. The reason why groundwater became an essential source
for freshwater supply is two-fold; On the one hand, despite the freshwater stored in the global
ice caps and glaciers, groundwater systems represent the second largest global freshwater storage.
On the other hand, meteoric water gets purified while percolating through soil and rock layers
before arriving in an aquifer system, which can ensure a good quality of the groundwater. Thus,
groundwater systems are valuable freshwater sources in terms of their quantity and quality. Given
that this hidden treasure is stored below our feed, every single action we undertake on the earth’s
surface may somehow affect groundwater reservoirs. More precisely, if we seal surfaces for urban
spreading, we reduce groundwater recharge which affects the quantity of a groundwater resource
(Bittner et al., 2018a). If we apply intensive farming using fertilizers, pesticides and herbicides, we
may change the groundwater quality (Menci6 et al., 2016). However, how anthropogenic activities
interact with different types of groundwater systems is a matter of intense research (Luo et al.,
2016; Narany et al., 2017; Zipper et al., 2019). Given our increasing world population, debates
about human-induced climate change and an observable increasing pressure on the land surface
and our freshwater supply systems, studying this interconnection between land use activities and
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groundwater dynamics has never been more urgent to safeguard future water supply.

Tools that are commonly applied to investigate how land use actions affect the hydrological
behavior of groundwater systems are mathematical models (Dwarakish and Ganasri, 2015; Karls-
son et al., 2016). Different kinds of hydrological models exist and they mainly differ in terms of
their mathematical base. So called black-box models are the most simple approaches. They use
a defined function to transfer an input to an output (Labat et al., 2000; Hu et al., 2008). While
those models are easy to apply and implement, they can only be considered reliable for the specific
hydrological conditions of the calibration period (Hartmann et al., 2014a). Lumped models try
to build a physical conceptualization of a groundwater system. They are based on transfer func-
tions, each of them simulating a specific hydrological process in the conceptual representation of
an aquifer (Fleury et al., 2007; Tritz et al., 2011; Mazzilli et al., 2017). Given that the parame-
ters of black-box and lumped models cannot be obtained from field measurements, they need to
be estimated during model calibration (Bittner et al., 2020a). This parameter estimation is prone
to parameter uncertainties and depending on the total number of calibration parameters, different
parameter combinations can lead to similar modeling results (Beven, 2006). To tackle this issue,
it is recommended to perform global sensitivity analyses and uncertainty studies when applying
this kind of models. Finally, distributed, process-based models implement physical functions that
describe the different hydrological processes (Reimann and Hill, 2009). These models can account
for the spatial variability of hydrological parameters and are often used to assess potential impacts
of anthropogenic impacts on a groundwater reservoir (Chu et al., 2010).

How to approach questions related to the interconnection between land use activities and
groundwater dynamics mainly depends on the complexity of an investigated system. In this con-
text, the probably most complex groundwater systems are represented by karst aquifers (Bakalow-
icz, 2005). Worldwide, 10 to 25 % of the supplied freshwater fully or partially originates from
these kind of groundwater systems (Chen et al., 2017a; Stevanovi¢, 2019). These important but
vulnerable sources for freshwater supply are mainly characterized by two types of flow, i.e. a
slow flow through the rock matrix and a quickflow through conduit fracture systems. Conduits
result from carbonate dissolution along existing cracks in the composite rocks (Ford and Williams,
2013). In response to precipitation events, these open channel systems in the subsurface lead to
a quick discharge reaction at an outlet spring. However, the internal structure of a karst system
remains a black-box since we cannot see the conduit network, how it interacts with the rock ma-
trix and how water is stored within. This complexity makes it difficult to investigate hydrological
impacts of anthropogenic activities (Hartmann et al., 2014a). In particular, the uncertainties about
the internal structure of karst systems mostly do not allow to reliably parametrize physically-based
models (Juki¢ and Denié-Juki¢, 2009). Hence, it is difficult to use these models for investigating
the hydrological effects of anthropogenic activities on karst systems.

For the given reasons, lumped parameter models are usually preferred simulation tools in karst
hydrological research (Juki¢ and Denic¢-Juki¢, 2008; Jourde et al., 2015). As already mentioned,
their parameters usually cannot be obtained from field campaigns and, thus, they need to be esti-
mated during model calibration. In most cases, the more processes we aim to implement, the more




Introduction

parameters are needed which have to be calibrated (Bittner et al., 2020a). Since a high number
of calibration parameters can lead to model uncertainties, the development of a lumped parameter
model that can be used to perform land use change impact studies in karst systems also requires a
quantification of model uncertainties and possibilities to reduce the parameter spaces dimension;
This challenge is what the proposed thesis aims to tackle.

1.1 The case study problem

At the beginning of my dissertation, I was confronted with the task to perform hydrological investi-
gations in one of the pilot areas of the Interreg project PROLINE-CE. This pilot area was the water
supplying karst system in Waidhofen a.d. Ybbs (Austria, Fig. 1.1a). The specific problem was
that the recharge area of the most important spring for the regional water supply, i.e. Kerschbaum
spring, is affected by land cover changes. In particular, parts of this recharge area are used for
dolomite mining. Based on spatial analysis performed using existing orthophotos from 2007 and
2010, it could be observed that the mining areas almost doubled within this period. Given this
rapid increase of the quarry areas and the importance of the Kerschbaum spring, the waterworks
Waidhofen a.d. Ybbs (also a project partner in PROLINE-CE) were interested to investigate how
this land use change affects the Kerschbaum spring discharge.

In order to start this investigation, the first task was to collect all existing information about
the study area, analyze existing data and create first conceptual ideas of the study area. From a
geographical point of view, this pre-alpine region is part of the eastern foothills of the Northern
Calcareous Alps, having altitudes that range between 415 to 969 m a.s.l. The surface drainage of
the area is managed by two small fluvial systems, the Waidhofenbach and the Lugerbach, which
drain most of the study area into the Ybbs river in Waidhofen. Analyzing the existing climate
data from 1981 to 2014, the regional climate could be described as warm-moderate with an annual
mean temperature of 8 °C. From December to February, mean daily temperatures below freezing
can occur. An annual mean precipitation of 1379 mm was calculated from this data set, having a
bimodal distribution with maxima during summer (June and July) and winter months (December
and January). Taking into account the geological map of the region (Fig. 1.1b), most of the area is
dominated by a lithologic sequence of dolomitic basement rocks. This leads to the assumption that
typical karst phenomena like dry valleys and caves are present in the study area. Hacker (2003)
found that significant sinkholes are not present in the study area, leading to the conclusion that
point-infiltration plays a minor role for recharge in the study area. Furthermore, Hacker (2003)
revealed that a deep karstified groundwater system exists, which extends even below the elevation
level of the Waidhofenbach valley.

This basic knowledge about the study area was the starting point for the investigations in the
framework of this dissertation. The formulated research hypotheses and objectives are presented
in Fig. 1.2.
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Figure 1.1: Overview of the recharge areas of the Kerschbaum, Mitterlug and Hinterlug spring.
a) The location of all springs, i.e. Kerschbaum, Glashiitten, Hieslwirt, Mitterlug and Hinterlug.
Moreover, the Lugerbach and Waidhofenbach creeks are shown together with the location of the
local climate station. The orthophoto in the background indicates that forests are the dominant
land cover. b) The geological map highlights the dominance of dolomitic basement rocks (grey) in
the study area (GBA, 2018).

1.2 Model development, implementation and application

1.2.1 Hypothesis 1: Dolomite aquifers can display high temporal and spatial
variability in their hydrochemical signals also on a small spatial scale
In Section 1.1 it was shown that a basic understanding of the natural environment of the study area

Waidhofen a.d. Ybbs was gathered based on a preliminary data analysis. However, for the aim
of developing a hydrologic model to investigate land use change impacts on spring discharge, a
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Figure 1.2: Outline of this cumulative dissertation.
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clear conceptual understanding of the recharge area and its connected aquifer system is essential.
Mudarra and Andreo (2011) and Mudarra et al. (2012) highlighted the value of using time series
of major ions to get an enhanced picture of the internal structure and the functionning of karst sys-
tems. They investigated limestone karst systems in southern Spain with pronounced karst features.
Several similar investigations exist which also focus on limestone dominated karst systems (Perrin
et al., 2003; Goldscheider, 2005; Mahler et al., 2008). In contrast, pure dolomite karst systems,
such as that in Waidhofen a.d. Ybbs, are less investigated and controversely discussed in terms of
karstification (Dossi et al., 2007; Hilberg and Schneider, 2011). Moreover, hydrochemical param-
eters are not frequently monitored (< 4 measurements per year) in the study arca Waidhofen a.d.
Ybbs and long term time series of major ions only exist from the obligatory drinking water moni-
toring. Although the temporal resolution of these time series is not satisfying, the spatial resolution
is good thanks to the numerous springs (shown in Fig. 1.1a) on a small spatial scale (ca. 10 km?).
Hydrochemical data were obtained at these springs over the past 40 years. Hence, to get a better
understanding of the hydrological functionning of the Waidhofen karst system, we hypothesized
that dolomite aquifers can display high temporal and spatial variability in their hydrochemical
signals also on a small spatial scale. The research questions we asked to validate the hypothesis
are as follows.

P-ET-I

Figure 1.3: Conceptual model of the Kerschbaum spring recharge area as derived in the work of
Narany et al. (2019). The meanings of the used symbols are as follows: P is precipitation, I means
interception, ET represents evapotranspiration, SF is surface flow and Qg schpaum 1S the spring
discharge at the Kerschbaum spring.

* 1) Can we derive the spatial and temporal variability of hydrochemical conditions in a
dolomitic karst system on a small spatial scale?

« 2) Is it possible to infer relevant information about the heterogeneous nature of a small scale
dolomite aquifer based on the spatio-temporal variability shown by long term hydrochemical
time series with a low temporal resolution (i.e. up to four measurements per year)?

The research hypothesis and questions were addressed in the article of Narany et al. (2019)

6
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presented in Chapter 2.

The objective in the study of Narany et al. (2019) was to get a conceptual hydrological under-
standing of the karst system in Waidhofen a.d. Ybbs (shown as an example for the Kerschbaum
spring recharge area in Fig. 1.3. Therefore, long-term hydrochemical time series of major ions
obtained from the five existing karst springs and one pumping well were evaluated by means of
statistical analyses. Based on the temporal evolution and the hydrochemical characteristics deter-
mined for each spring, a cluster analysis was conducted to find similarities and differences in the
behavior of the springs on a small spatial scale. Three different clusters were built based on that
analysis, all of which showing different contributions from the unsaturated (epikarst) and saturated
zone. Finally, a conceptual model of the entire karst system was derived based on the basic knowl-
edge of the interpretation of the local geology and the hydrochemical signatures of each spring and
the pumping well.

1.2.2 Hypothesis 2: A recharge area of a given karst system can be subdi-
vided into distinct units of homogeneous soil and land use properties,
defined as hydrotopes

Based on the conceptual understanding of the Waidhofen karst system generated in the work of
Narany et al. (2019), a mathematical model should be developed that is able to simulate the hy-
drological effects of the land use change observed in the study area (Section 1.1). While modeling
land use change impacts is not a new topic in the hydrological community (Nandakumar and Mein,
1997; Siriwardena et al., 2006; Breuer et al., 2009; Mango et al., 2011), it just became an emerg-
ing objective in the karst community (Sarrazin et al., 2018). As mentioned earlier, various kinds
of mathematical models exist, e.g. black-box, lumped and physically-based models, that all dif-
fer in their degree of complexity and process representation (Labat et al., 1999; Reimann et al.,
2011; Tritz et al., 2011; Mekonnen et al., 2018). Although physically-based models are generally
preferred tools for modeling land use change impacts in hydrological research (Chu et al., 2010),
their application in karst systems is limited due to a lack of data related to the internal structure of
karst systems (Hartmann et al., 2014a). For this reason, most modeling studies in karst hydrology
used lumped parameter approaches to assess and simulate karst water resources and hydrological
processes (Fleury, 2005; Fleury et al., 2007; Hartmann et al., 2012b; Sivelle et al., 2019). Given
this recent state in karst hydrological modeling, the model to be developed should be lumped and
semi-distributed, thus, taking advantage of the conceptual character of lumped models and the
fully distributed character of physically-based models. Out of this motivation, we hypothesized
that a recharge area of a given karst system can be subdivided into distinct units of homogeneous
soil and land use properties, defined as hydrotopes. The research questions we asked to validate
the hypothesis are as follows.
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(a) —» highest quickflow intensity
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—> lowest quickflow intensity

| L o
| Qis. Hyd 2 - Hyd 4 | Hyd 2 ¢ Hyd 4

B Qb Qtot

Figure 1.4: Hydrotopes model concept of LuKARS. The meanings of the used symbols are as
follows: SF is surface flow, Hyd is the abbreviation for hydrotope, Qsec. Qiy and Qpyq are the
hydrotope-specific flow components and Qj, and Q;,, represent the baseflow and the total spring
discharge, respectively. Egec, Emin and Eyqy are the hydrotope-specific storage thresholds. A more
detailed explanation is given in Chapter 3.
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¢ 1) Can we create a new semi-distributed modeling approach that lumps the predominant
hydrotopes present in a catchment?

 2) Is it possible to calibrate and validate the modeling approach for a reference karst system?

* 3) In order to proof the model concept, can we transfer the modeling approach to other karst
systems and their related catchments while maintaining the calibrated hydrotope parameters?

* 4) Can the developed model reproduce the observed impacts of land use changes in the
Kerschbaum spring discharge?

Ths research hypothesis and questions were addressed in the article of Bittner et al. (2018a)
presented in Chapter 3.

The objective in the work of Bittner et al. (2018a) was to develop a lumped parameter model
that can be used to simulate the land use change impacts by the increasing quarry areas on the
Kerschbaum spring discharge. The idea was to build a framework that integrates landscape unit
with homogeneous soil and land use properties, i.e. hydrotopes, as distinct parts in a lumped
parameter model (Fig. 1.4). Fig. 1.4 shows this model structure and how each hydrotope (Fig. 1.4a)
becomes conceptualized as a lumped bucket (Fig. 1.4b). This model was named LuKARS (Land
use change modeling in KARSt systems). The study showed, that by changing the area of one of
these hydrotopes, it is possible to simulate the hydrological impacts this land use change implies.
Finally, the developed model was tested and validated for other recharge areas in order to ensure
its transferability to other catchments.

1.2.3 Hypothesis 3: The FREEWAT plugin in QGIS offers a tailored frame-
work to build a graphical user interface for the developed hydrotope-
based karst aquifer model

Given that the idea of developing a hydrologic model to perform land use change impact studies
emerged from the case study problem presented in Section 1.1, it was necessary that the tool is
applicable by practioners who are not familiar with programming. Recent initiatives exist that try
to overcome this very limitation by providing open source tools for water resource management
in form of a graphical user interface (GUI), e.g. Winston (2009) and Olivera et al. (2006). In the
particular case of semi- or distributed hydrologic models, such a GUI needs to be able to man-
age the spatial distribution of relevant model parameters, This fact leads to the idea of using a
geographical information system (GIS) as user interface for this kind of hydrologic models. Re-
cent efforts have been made to use the freely available QGIS environment (www.qgis.org) as a
GUI for different hydrologic models, such as SWAT (Dile et al., 2016; Park et al., 2019). While
these software couplings were oriented towards getting a GUI for one specific model, a more
general framework would be helpful to integrate different tools for different purposes in water re-
source management (De Filippis et al., 2017). The FREEWAT plugin in QGIS (www.freewat.cu) is
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such an initiative which has a modular structure consisting of pre-processing, simulation and post-
processing tools (Rossetto et al., 2018). FREEWAT was a formerly funded EU project, finished in
2017, and the maintenance and development of the pulgin now depends on the voluntary contri-
bution of researchers. So far, the plugin only comprises a physically-based hydrologic model, i.e.
MODFLOW-OWHM (Hanson et al., 2014), and a rainfall-discharge model is still missing. Given
the hydrotope-based framework of LuKARS that makes an integration in a GIS environment valu-
able, we argued that the FREEWAT plugin in QGIS offers a tailored framework to build a GUI
for the LuKARS model. For this work, the following taks were formulated and addressed in the
article of Bittner et al. (2020b) presented in Chapter 4.

1) Linking our modeling approach to the existing FREEWAT structure consisting of pre-
processing, evaluation and post-processing modules.

 2) Using the GIS system for coupling the process of hydrotope generation, model building
and model evaluation in one interface.
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Figure 1.5: LuKARS interfaces as implemented in FREEWAT.
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The objective in Bittner et al. (2020b) was to make the developed modeling approach LuKARS
accessible and applicable also for non-researchers. Given that the research ideas of this PhD study
evolved from a real world problem, it was a particular aim to make the model usable by the wa-
terworks Waidhofen a.d. Ybbs and also by other interested stakeholders. Therefore, the developed
karst aquifer model was implemented in the FREEWAT environment, which provides a QGIS
framework for open-source tools for water resource management. LuKARS takes advantage of
existing tools for model pre- and post-processing in FREEWAT. Moreover, it was shown that GIS
environment provides a straightforward modeling framework for the hydrotope-based structure of
LuKARS. Fig. 1.5 shows as an example three different interfaces from the LuKARS integration
in FREEWAT, which are the QGIS interface including the hydrotopes (Fig. 1.5a), the model set-
up interface (Fig. 1.5b) and the results window (Fig. 1.5c). All relevant model data objects can
be stored and shared as time series and/or geospatial data. The software including an test ap-
plication for the Kerschbaum spring in Waidhofen was made available for public use on GitHub
(https://github.com/dbittner87/LuK ARS).

1.2.4 Hypothesis 4: The dimensions of the parameter space in LuKARS can
be reduced using the active subspace method while better constraining
the parameter ranges of the most sensitive model parameters. This
leads to a reduction in model parameter and output uncertainties

As pointed out in Section 1.2.2, the lack of spatially distributed data about the internal structure
of karst systems makes conceptual rainfall-discharge models suitable tools to predict karst spring
discharge. This is because these lumped models allow for a conceptual simplification of the karst
system functioning (Hartmann et al., 2014a; Jourde et al., 2015). Nevertheless, it is not trivial to
find an acceptable model representation since most of the parameter ranges cannot be determined
or constrained by field observations. On the one hand, a severe simplification of a karst aquifer
with a low-dimensional parameter space, i.e. 4 to 6 parameters, can lead to an underrepresenta-
tion of relevant hydrological processes. However, such a low-dimensional parameter space can
reduce parameter uncertainties and model equifinality (Jakeman and Hornberger, 1993; Hartmann
et al., 2017). On the other hand, considering the more complex nature of a karst system in a
modeling framework can improve its conceptual representation (Hartmann, 2018). In most cases,
such a complex lumped parameter model cannot be adequately calibrated since its parameters
are not sufficiently constrained by the measured discharge data (Hartmann et al., 2014a). In the
particular case of a lumped parameter model, which not only intends to simulate karst spring dis-
charge but also the impacts of land use changes, a higher dimensional parameter space is needed.
Therefore, identifying the parameters that are constrained by calibration data and their respective
sensitivities is a recent effort of the karst modeling community (Mazzilli et al., 2012a; Hartmann
et al., 2017; Mudarra et al., 2019). In this context, different approaches were recently proposed
to reduce model structure and parameter uncertainties for karst hydrologic models. Most of these
methods can be grouped into so-called multi-objective calibration approaches, using additional
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data sources like hydrochemical data (Hartmann et al., 2017), the autocorrelation of the discharge
(Moussu et al., 2011), ground-based gravity measurements (Mazzilli et al., 2013) and dye tracer
concentrations (Mudarra et al., 2019). Despite all these efforts, dealing with the high dimension-
ality of the model parameter space remains a challenge and there is a need to quantify how and
which model parameters are constrained by calibration data. A recently developed method, called
the active subspace method (Constantine et al., 2014), identifies directions in the parameter space
that are most constrained by the calibration data. These parameter directions provide information
about the sensitivity of parameters as well as about the relation between specific parameters. This
information about parameter relations is the main strength of the active subspace method which
goes beyond the information derived from other global sensitivity analysis methods, e.g. Sobol
(Sobol, 2001). Therefore, we hypothesized that the dimensions of the parameter space in LuKARS
can be reduced using the active subspace method while better constraining the parameter ranges
of the most sensitive model parameters. This leads to a reduction in model parameter and model
result uncertainties. The research questions we asked to validate the hypothesis are as follows.

¢ 1) Which are the most sensitive parameters of the developed model?

* 2) Can we reduce the parameter uncertainties in a Bayesian framework by better constraining
the prior parameter ranges?

« 3) To what extent is it possible to reduce the parameter dimensions of the model?

¢ 4) What are the uncertainties in the model output when using the model with reduced pa-
rameter dimensions?
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Figure 1.6: Concept of defining and active subspace. a) Identification of active subspace. b)
Eigenvectors in active subspace. ¢) Modeling results obtained with lower-dimensional surrogate
model defined in active subspace.
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The research hypothesis and questions were addressed in the article of Teixeira Parente et al.
(2019a) presented in Chapter 5.

The objective in the work of Teixeira Parente et al. (2019a) was to quantify the parameter uncer-
tainties of LuKARS. Depending on the number of hydrotopes implemented in LuKARS, the model
can have a large parameter space. For this reason, the chosen methodology for uncertainty quan-
tification should also be usable for parameter dimension reduction. The active subspace method
represents such a method and was recently proposed for exact these purposes. Thus, the main aim
here was to apply this method for the developed modeling approach. In an active subspace, the
contribution of the parameters related to groundwater recharge were recognized as most informed
for the investigated Kerschbaum spring LuKARS model. For these, the prior ranges became most
constrained in the posterior. It was shown that the original 21-dimensional parameter space of the
Kerschbaum spring model could be reduced to a 4-dimensional surrogate model. Fig. 1.6 high-
lights this process of identifying the active subspace in the eigenvalue decay (Fig. 1.6a) and the
relevant eigenvectors (Fig. 1.6b). The model output uncertainties when using the lower dimen-
sional model were < 10% with respect to the mean spring discharge (Fig. 1.6c).

1.2.5 Hypothesis 5: The dimension and the feature of the active subspace
can be related to underlying geometrical and hydrological model pa-
rameters, used to describe different hydrological properties of a chatch-
ment

The active subspace method, was successfully applied in different hydrological investigations (Jef-
ferson et al., 2015; Erdal and Cirpka, 2019), also including the study performed to validate the
hypothesis formulated in Section 1.2.4 (Teixeira Parente et al., 2019a). In this study, the parameter
and model output uncertainties of LuKARS were quantified. Moreover, the active subspace found
in Teixeira Parente et al. (2019a) was used to effectively reduce the dimensions of the LuKARS
parameter space. However, how the parameter combinations identified in the directions of an ac-
tive subspace can be interpreted from a hydrological point of view is not clear. Given this research
gap, we hypothesized that the dimension and the feature of the active subspace can be related to
underlying geometrical and hydrological properties of a chatchment. The research questions we
asked to validate the hypothesis are as follows.

1) Which geometrical properties of a hydrotope mostly affect the dimension and the feature
of an identified active subspace?

* 2) Which hydrological properties do have an impact on the dimension and the feature of an
identified active subspace?

The research hypothesis and questions were addressed in the article of Bittner et al. (2020a)
presented in Chapter 6.
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Figure 1.7: Concept of identifying hydrological properties in active subspace. The figure shows
how the variability of the specific discharge from a hydrotope can be identified in the eigenvector
of the relevant eigenvalues in an active subspace.

The objective of the study from Bittner et al. (2020a) was to perform a parametric study of the
LuKARS model with the active subspace method. In the work of Teixeira Parente et al. (2019a),
we identified dominant contributions from the parameters controlling groundwater recharge in
active subspaces. Here, a framework was proposed how to hydrologically interpret these results
of the active subspace method. A total of 21 scenarios were investigated in three test cases where
the hydrotope areas and hydrological properties were modified in well-known ranges. The results
highlight that it is possible to determine relevant hydrological and catchment properties from an
identified active subspace. As an example, Fig. 1.7 shows how the hydrological variability can be
identified in an eigenvector of the active subspace. Furthermore, it was proposed that the active
subspace information could be used to plan tailored field campaigns in order to obtain relevant data
for any modeling project.
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Chapter 2

Hydrochemical data analyses and
conceptualization of the Waidhofen karst
system

Narany et al. (2019)!

Abstract

Dolomite karst systems are less common and less exploited than limestone systems, but still they
can significantly contribute to drinking water supply in many countries. The knowledge about spa-
tial and temporal variations of hydrochemical parameters of such systems is much more limited
than for limestone karst aquifers. In the present research, 40-year long observations of hydro-
chemical parameters gathered from five springs and a pumping well in Waidhofen an der Ybbs
(Austria) were used to show the variability of chemical water composition in a small scale (~ 10
km?) dolomite karst system. Integration of classic geochemical methods and multivariate statis-
tical analysis revealed that the hydrofacies correlate directly with the lithofacies (dolomite) in the
study area. At the same time, measured concentrations of Ca>", Mg?", Na", Cl", and HCO; al-
low for a classification of the springs in three groups based on their ionic ratios. This classification
highlights the spatial and temporal variability that can be encountered in dolomite karst systems,
even on small spatial scales, that are relevant for water suppliers. Moreover, temporal observa-
tions of hydrochemical parameters show increasing trends of nitrate concentrations in all sampling
points, though with different rates. The analysis of the stable isotopes §'>’N-NOj and §'¥0-NO3
revealed that nitrification processes in forest floors and mineral soils are the main source of ni-
trate in most locations investigated. The findings of the present study highlight the necessity of
a detailed temporal and spatial distributed monitoring to support water resources management in
dolomitic karst aquifers.

'Narany, T.S., Bittner, D., Disse, M., Chiogna, G., 2019. Spatial and temporal variability in hydrochemistry of a
small scale dolomite karst environment. Environmental Earth Sciences 78, 273.
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2.1 Introduction

Karst aquifers constitute an important source for drinking water supply for about 25% of the
world’s population (Hillebrand et al., 2015). In Europe, karst systems occupy nearly 35% of
the land surface (Goldscheider, 2005) and in some countries, such as Austria, more than 50%
of the drinking water supply originates from karst springs (Hartmann et al., 2014a). Generally,
karst aquifers are considered as rapid flow and transport systems, which store large volumes of
water due to their geological properties (Jebreen et al., 2018; Benson and Yuhr, 2015). How-
ever, the rapid and often unfiltered water exchange between the land surface and the karst aquifer
makes karst systems highly vulnerable. While the heterogeneous hydrological and hydrochemi-
cal dynamics are well documented for limestone aquifers (Musgrove et al., 2016; Mudarra et al.,
2012; Mabhler et al., 2008; Perrin et al., 2003), this spatio-temporal variability is poorly investi-
gated for dolomite-dominated karst systems (Dossi et al., 2007; Goldscheider, 2005). According
to Hilberg and Schneider (2011), dolomite aquifers could be considered as more reliable drinking
water sources when compared to limestone aquifers due to the steadier discharge conditions and
minimal impacts of precipitation or seasonal effects they exhibit. Thus, a better understanding of
these systems would lead to improved water resources management strategies.

Insightful information about the hydrological functioning of karst systems is generally pro-
vided through the monitoring of physical and chemical parameters (Bicalho et al., 2017; Mudarra
et al., 2012) and can be used as indirect indicators to characterise karst systems (Mudarra and An-
dreo, 2011). Physical parameters, such as rainfall data, spring discharge, temperature and electrical
conductivity (EC) can be easily monitored and used to obtain information on the hydrodynamic
behaviour of karst systems (Bicalho et al., 2017; Hartmann et al., 2014a). On the contrary, the lack
of continuous and significant hydrochemical data causes a poor understanding of the processes
controlling water quality, particularly how natural processes and human activities influence karst
(Hartmann et al., 2014a; Charizopoulos et al., 2018). While the analysis of long-term discharge
time series of karst springs is not new (Fiorillo and Guadagno, 2010), only a limited number of
research studies focused on the hydrochemistry of dolomite karst systems over an extended period
of time (Schmidt et al., 2013; Miorandi et al., 2010).

Although dolomite aquifers are mostly considered not to be as heterogeneous as limestone
aquifers (Hilberg and Schneider, 2011; Krawczyk and Ford, 2006; Wang et al., 2004), we hypoth-
esize that they can display high temporal and spatial variability in their hydrochemical signals also
on a small spatial scale. To test this hypothesis, the present study investigates long-term hydro-
chemical time series (40 years of data) from 5 springs and a pumping well located in a small-scale
recharge area in the Triassic dolomite sequence of the Northern Calcareous Alps (NCA) close to
Waidhofen a.d. Ybbs (Austria). The specific aims of this work are i) to present a rare novel dataset
for water quality parameters, something which is uncommon as it describes the chemical compo-
sition of a dolomite karst system over 40 years, ii) to derive the spatial and temporal variability of
hydrochemical conditions in the dolomitic karst system of Waidhofen an der Ybbs on a small scale
(10.86 km?), which is of interest for water supply purposes, and iii) to infer relevant information
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about the heterogeneous nature of the dolomite aquifer based on the spatio-temporal variability
shown by the hydrochemical time series. We apply multidimensional data analysis methods based
on hydrochemical data sets from long-term observations to investigate the hydrochemical time
series. These include classic geochemical methods coupled with multivariate statistical analysis.
Although the temporal resolution of the present time series is low (about 4 measurements per
year, typical for mandatory water quality analysis of water suppliers), the availability of long-term
hydrochemical time series provides valuable information to characterize the spatio-temporal vari-
ability of this small-scale karst system. If our hypothesis is not rejected, then this variability should
be acknowledged for both practical as well as for scientific research purposes. In the first case, the
spatial distribution and the frequency of the monitoring campaigns should be adequate to ensure
water quality standards. In the second case, the analysis performed on a single time series in such
a system cannot be considered representative for the ongoing hydrochemical processes even at a
small spatial scale (~ 10 km?).

2.2 Materials and Methodologies

2.2.1 General characteristics of the study area

Waidhofen an der Ybbs is situated in the alpine foreland in the state of Lower Austria (Niederoster-
reich) (Figure 2.1a). The study area is located 10 km south of the city of Waidhofen a.d. Ybbs
and covers an area of approximately 10.86 km?. The area is part of the foothills of the NCA, with
minimum and maximum altitudes from 415 to 969 m asl, respectively. The regional climate is cate-
gorized as ‘Central European humid temperate’, with a mean annual temperature of 8 °C, and mean
annual precipitation of 1379 mm. The rainfall rate shows a characteristic summer-maximum, with
the peak during the month of July (Bittner et al., 2018a). According to Markart et al. (2012), the
substrata of the mountainous landscape are dominated by dolostones. The karst springs originating
from the dolomitic bedrock, namely Mitterlug, Hinterlug, Hiselwirt, Glashiitten and Kerschbaum,
are the main sources of drinking water supply for more than 25,000 inhabitants (Leaders, 2012).
Moreover, the water supplier operates a pumping well (Forster well, No. 5 in Figure 2.1c) located
in the Waidhofenbach valley, which is filtered in the dolomitic basement rock and used once the
water demand cannot be met by the water supplying springs.

Kerschbaum is the most important spring for the water supply system with a mean daily dis-
charge rate of 2,932 m3/d, followed by Hinterlug and Mitterlug with mean daily discharge rates
of 957 m3/d and 329 m>/d, respectively. Hieslwirt spring and Glashiitten spring are ungauged.
The dominant land covers are deciduous and mixed coniferous-deciduous forests and cultivated
grassland (Promper et al., 2014). Stone quarries cover approximately 1.7 % of the entire study
area (Koeck, 2017).
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2.2.2 Geology and hydrogeology

The study area of Waidhofen a.d. Ybbs, as part of the NCA, is dominated by a lithologic sequence
of dolomitic basement rocks (Figure 2.1c¢). The complex stratigraphy of the NCA has a significant
influence on the hydrogeological characteristics of the region (Hilberg, 2016). Main dolomite
(Hauptdolomit) is the dominant strata along the northern part of the NCA, which was formed in
the course of marine sedimentation phases during the Triassic era and partially reaches vertical
thicknesses of up to 1000 m (Hilberg, 2016). Despite the dominance of carbonatic bedrocks,
characteristic karst features like dolines, caves or sinkholes are only partly present in the study
area, since dolomitic rocks do not show tendencies to develop karstic features like limestones
(Leaders, 2012).
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Figure 2.1: (a) Location of Waidhofen a.d. Ybbs in Austria; (b) Orthophoto showing the main
land cover in the study area and the locations of the investigated springs and well, which are 1 =
Hinterlug, 2 = Mitterlug, 3 = Hieslwirt, 4 = Glashiitten, 5 = Forster well, 6 = Kerschbaum; (c) The
geological map highlighting the dominance of dolomitic basement rocks, the striking fault sepa-
rating the Glashiitten- and Schnabelberg massifs as well as the outcrop of the Opponitz formation
at Mitterlug spring, representing the aquitard for the Mitterlug spring aquifer.

The two mountain massifs in the study area, namely Schnabelberg (Hinterlug spring in northern
part) and Glashiittenberg (Mitterlug, Hieslwirt, Glashiitten and Kerschbaum spring in southern
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part) are tectonically separated by a strike-slip fault (Figure 2.1c). This fault is documented by the
outcrop of the Opponitz formation (underlying the Main Dolomite sequence, also Triassic, mainly
calcareous schists, travertine and marl, mostly impermeable) at Mitterlug spring (Opponitz layer),
representing the aquitard for the aquifer feeding Mitterlug spring (Hacker, 2003). The syncline
fault striking through Glashiittenberg massif is considered as an underground basin and water
storage system, which drains the Glashiittenberg massif in the north-east direction. Although the
Mitterlug, Hieslwirt, Glashiitten and Kerschbaum springs are fed by the same mountain massif,
Hacker (2003) showed that they do not all share the same recharge areas, indicating a high degree
of hydrogeological heterogeneity on a small spatial scale. Moreover, Hacker (2003) provided
evidence for a deep karstified aquifer system in the Glashiittenberg mountain massif and further
highlights the complexity of this small scale karst aquifer system. Generally, karst aquifers are
characterised by short mean residence times of the fast flow component ranging between a few
hours or days.

2.2.3 Groundwater sampling and analysis
2.2.3.1 Continuous monitoring and sampling

Water samples were collected from five springs, namely Hinterlug, Mitterlug, Hieslwirt, Glashiitten,
and Kerschbaum and one pumping well (Forster well) in Waidhofen for physicochemical analysis,
following the framework of the statutory water quality monitoring established in Austria. Sam-
pling intervals and the parameters to be monitored are prescribed by law in the Austrian Drinking
Water Ordinance (Chovanec 1994). The available water quality data from the waterworks Waid-
hofen a.d. Ybbs have a temporal resolution of one to four measurements per year in the time from
1977 to 2017. Data gaps are present in the long-term data set because of discontinuous monitor-
ing, and some parameters being excluded due to changes in monitoring plans, priority, or other
logistic reason at different times during the more than 40 year of monitoring of the study area.
Therefore, only twelve water quality parameters, namely Temperature (Temp), pH, EC, calcium
(Ca%"), magnesium (Mg?"), sodium (Na'), potassium (K "), sulphate (SO42 ), chloride (Cl ),
carbonate (COgZ’), bicarbonate (HCO3), nitrate (NO3') were chosen for this study. Additional
spring water samples were collected for NO3 isotope analysis in September 2017, as well in May
and September 2018.

2.2.3.2 Analytical methods

Temp, pH, and EC were measured in the field using a pH meter WTW pH 540 GLP and conduc-
tivity meter (WTW 330 i). Only accredited laboratories are permitted to perform water quality
analysis for drinking water supply. According to the information from the water works owner, the
applied sampling analysis methods and detection limits changed over the investigated time period.
However, since 2005, Ca2!, Mg?!, Na', and K" were analysed based on the ionic chromatog-
raphy method (ISO 14911:1998), with a minimum detection limit of 0.5 mg/L for calcium and
magnesium, and 0.1 mg/L for sodium and potassium. Also, N03_, SO42’, and C1~ were analysed
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via dissolved anions by liquid ion chromatography (ISO 10304-1:2007), with a minimum detec-
tion limit of 0.1 mg/L. Samples with ion balance error larger than £ 10% were eliminated from
the dataset.

For the isotope analysis of the nitrate species in the water samples, the ratio of stable Oxygen
isotopes (5180—N03’) and the ratio of stable N isotopes (& 15N—N03’ ) of NO3 were analysed
using the stable isotope ratio mass spectrometry (IRMS) method with an analytical precision of
+ 0,8 %o and + 0,3 %o, respectively.

2.2.4 Multivariate statistical analysis
2.2.4.1 Trend analysis

Natural and anthropogenic changes can introduce trends and shifts in hydrologic time series data,
which could be identified and quantified by applying parametric and non-parametric time series
analysis methods (Narany et al., 2017). For consistently increasing or decreasing trends (“mono-
tonic trends”) the nonparametric test such as the Mann-Kendall Test (Mann, 1945; Kendall, 1975)
is commonly applied to assess the statistical significance of trends (Yue and Wang, 2004). The
Mann-Kendall and modified Mann-Kendall tests (Yue and Wang, 2004; Hamed and Rao, 1998)
were applied on EC, Ca?*, Mg?*, SO4?~, CO3%~ and NOj samples, which were collected for all
springs throughout different time periods, starting from July 1977 for EC, July 1989 for Ca?*, July
1989 for Mg?*, July 1992 for SO42~, July 1990 for NO3 and July 1980 for CO3%~. All the men-
tioned water quality parameters were collected in the Forster well since July 2004. Sampling was
not scheduled regularly during the 40-years monitoring period, therefore only samples belonging
to the winter season (December, January and February) and summer season (June, July, and Au-
gust) were considered for trend analysis. The results of the non-parametric Mann-Kendall test may
give wrong results if the time series is autocorrelated (Yue and Wang 2004). To address this issue,
a modified version of the Mann Kendall test based on a variance correction approach (Yue and
Wang 2004) was applied for the time series data of EC, Ca?*, Mg?", SO42~, and NOJ of the sam-
pling stations that showed serial correlation in the trend analysis (Ca®" in Kerschbaum spring; EC
in Hieslwirt, Kerschbaum, and Glashiitten springs, NO3_ in Hieslwirt, Hinterlug, and Glashiitten
springs; SO42’ in Hieslwirt, Hinterlug, and Kerschbaum springs, Mg2+ Hieslwirt, Kerschbaum,
and Glashiitten springs). Moreover, Sen’s slope estimator (Sen, 1968) was used to determine in-
creasing or decreasing trends in the time series data with positive or negative values of Sen’s slope
respectively.

2.2.4.2 Hierarchical cluster analysis (HCA)

The HCA is a data classification technique which is widely applied in Earth sciences for classi-
fication of hydrochemical data (Cloutier ct al., 2008) using predetermined selection criterions to
classify objects in clusters that show high internal homogeneity (within cluster) and high external
heterogeneity (between clusters) (Nosrati and Van Den Eeckhaut, 2012). In this study, HCA was
performed on the normalized data of groundwater samples from all five springs and the Forster
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well, using six main parameters including Ca?", Mg?", Na', HCO;, Cl" and SO4> . Euclidean
distance (straight line distance between two points in a c-dimensional space defined by ¢ number
of variables) measures were applied to measure similarity/dissimilarity among the variables while
the Ward’s linkage method (Ward Jr, 1963) was chosen to link initial clusters produced during
initial clustering steps. The Kruskal-Wallis test (Kruskal and Wallis, 1952) was applied to check
the statistical significance of the results from the cluster analysis.

2.3 Results

2.3.1 General Hydrochemistry

Results of the descriptive statistics for the chemical composition of the five dolomite karst springs
(Hieslwirt, Kerschbaum, Glashiitten, Hinterlug, and Mitterlug) and the pumping well (Forster well)
are reported in Table 2.1. According to Hilberg and Schneider (2011), calcium (CaZt), magnesium
(Mg "), sodium (Na'), potassium (K'), sulphate (SO42~), chloride (C1-), and hydrocarbonate
(HCOj) could be considered as the main hydrochemical parameters in the formations of the NCA.

Table 2.1: Descriptive statistics of water physiochemical parameters in Waidhofen.
COs2~ Ca®" Mg** Nat K- NOy 1ICO; CI° SO [C

Sampling Temp

points Stadistic ¢ PH Ol med mefl mel mel med. mgl mel mel. pSiem O NNO; 81O-NO;
Minimum 8.0 7.1 10.1 400 130 10 01 30 2200 05 30 3410 04 3.1
Hieslwirt Maximum 101 83 127 60.0 270 15 35 9.5 28777 52 9.0 460.0 7.7 29
Mean 8.4 7.7 109 448 242 11 0.7 6.7 238.6 1.2 6.3 401.1 24 0.4
Variance (n) 0.1 01 03 9.9 4.6 0.1 0.9 15 150.1 0.6 25 739.1  20.6 9.8
Minimum 80 72 106 490 240 19 00 20 2310 10 32 4300 2 22
Kerschbaum Maximum 9.6 83 148 740 330 95 7.8 114 3225 233 120 5700 2.1 43
Mean 9.0 7.6 133 575 269 35 0.8 5.2 287.6 5.2 8.6 4868 2.0 3
Variance (n) 0.1 00 04 134 22 1.6 0.9 0.7 151.0 112 23 680.3  0.003 13
Minimum 8.6 74 10.6 420 150 06 0.0 1.0 2310 0.1 2.0 3490 1.1 12
Glashiitten ~ Maximum ~ 10.8 83 12,6 560 29.0 34 9.5 6.0 2746 8.7 9.0 510.0 2.6 49
Mean 9.3 77 118 47.1 257 20 0.9 38 2567 LS 49 4330 19 25
Variance n) 0.2 00 0.1 7.9 3.9 1.3 4.0 0.8 46.5 15 1.0 953.6 0.6 4.1
Minimum 7.1 70 118 480 210 10 00 40 2571 02 62 396.0 -0.7 3.1
Hinterlug Maximum 9.8 83 142 750 330 44 188 100 3094 166 119 5544 04 39
Mean 86 77 131 566 268 22 42 75 2845 17 81 465.6 0.0 34
Variance () 0.2 0.0 0.2 16.1 32 25 273 12 1069 5.1 1.5 9220 037 0.19
Minimum 6.5 7.1 78 360 180 1.1 1.6 69 1700 02 39 3333 -0.1 1.1
Mitterlug Maximum 9.9 83 116 580 28.0 44 6.4 103 2533 9.0 10.0 4500 -0.1 438
Mean 80 7.7 101 428 234 25 32 87 2193 14 69 3893 -0.1 3.1
Variance (n) 0.4 0.1 04 132 26 19 3.6 0.7 1965 2.1 2.5 6753 0 35

Minimum 74 84 128 282 200 19 0.2 37 2723 02 34 3620 - -
Forster well ~ Maximum 8.0 9.7 136 86.6 287 114 27 55 2920 239 244 4320 - -
Mean 7.6 8.8 132 525 271 35 0.5 4.5 2850 1.7 5.1 390.6 - -
Variance (n) 0.1 01 0.1 415 1.6 105 0.1 0.2 154 120 9.1 1041 - =

Generally, EC (this work is referred to specific EC at Temp = 25 °C) is used as an indicator
for various aquifer lithologies, because it is mainly controlled by the dissolution processes within
the aquifer. In the study area, the mean EC ranged from a minimum 389 uS/cm for the Mitterlug
spring to a maximum 486 uS/cm for the Kerschbaum spring.

Weathering of carbonate rocks in Alpine karst systems significantly contributes to the concen-
trations of major cations (i.e. Ca?* and Mg“), and major anions (i.e. HCO3) (Pfleiderer et al.,
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2006). Long term (1989 to 2017) mean values of Ca®* varied between 42.8 mg/L in the Mitter-
lug spring and 57.5 mg/L in the Kerschbaum spring. In addition, observed HCOj values ranged
between 287.6 mg/L in the Kerschbaum spring and 219.3 mg/L in the Mitterlug spring.

The typical dolomite and limestone systems include low concentrations of Na™ and C1~ (Kandug
et al., 2012). According to the results (Table 2.1), low concentrations of Nat and Cl~ were mea-
sured, specifically Na* values varied from maximum 11.4 mg/L in Forster well to 0.6 mg/L in
Glashiitten. Moreover, C1~ concentrations varied from 23.9 mg/L in Forster well to 0.1 mg/L in
Glashiitten. Sulphate concentrations also varied from a maximum mean value of 8.6 mg/L in the
Kerschbaum spring to a minimum mean value of 4.9 mg/L. in Glashiitten. NOj3 concentrations
also varied between a minimum of 1 mg/L in Glashiitten spring and a maximum of 11.4 mg/L in
the Kerschbaum spring. According to the EU legislation, the upper permissible limit of NO;™ for
tap water is 50 mg/L, therefore, all samples have values below these limits.

2.3.2 Spatial characterization of the karst aquifer and groundwater origin

2.3.2.1 Hydrochemical characterization of the karst springs
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Figure 2.2: Piper diagram (a), temperature variations based on spring’s altitude (b), and scatter
diagram of EC vs temperature (c) of the five springs and pumping well

The collected water sample chemical compositions from the six sampling points during 1989 to
2017 were summarized using the diagram according to Piper (1944) (Figure 2.2). The groundwater
type showed that all sampling points have a similar anionic composition, dominated by HCO; with
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an abundance order of HCO; > S04 > ClI- (meq/L) and cationic composition, dominated by
Ca”* and Mg?*, respectively, with an abundance order of Ca®* =~ Mg?* > Na™ (meg/L). Only
water samples collected from the Kerschbaum spring showed an abundance order of HCO; >
S04%~ 2 CI™ (meq/L).
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Figure 2.3: Distribution of ionic ratios for major groundwater ions in the study area

In Waidhofen, the spring’s water temperature decreased with increasing altitudes from 9.3 °C
at 428 m in Glashiitten, to 8 °C at 500 m in Mitterlug (Figure 2.2b). However, Hieslwirt and
Hinterlug did not show the same pattern as the rest of the study area. Moreover, with decreasing
altitude, EC increased from 350 pS/cm in Mitterlug to > 400 pS/cm in Glashiitten (Figure 2.2b).
Concerning EC and temperature, sampling points were classified in two main groups (Figure 2.2c).
The first group consists of Mitterlug, Hieslwirt, Glashiitten springs and the Forster well where EC
varied between a minimum of 330 uS/cm to maximum about of 450 uS/cm, which can indicate that
the chemical compositions of water from the first group is mainly controlled by carbonate rocks
(Hilberg and Schneider, 2011). In the second group, Kerschbaum and Hinterlug springs showed
EC values ranging from 450 puS/cm to above 500 puS/cm with a mean temperature around 9 °C and
different altitudes, which can indicate the impact of evaporates on groundwater chemistry.

The hydrochemistry of karst systems can be characterized by considering the ratio between cal-
cium and magnesium. The average of Ca”/Mngr ratios in the Forster well, Glashiitten, Hieslwirt,
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Kerschbaum, Hinterlug and Mitterlug spring are 1.17, 1.10, 1.12, 1.28, 1.27, and 1.10, respec-
tively. According to Figure 2.3a, the majority of the samples indicated the dissolution of dolomite
with Ca®t/Mg?t was close to one (£ 0.2).

In general, a Ca>*/Mg?" molar ratio that is equal to one indicates dissolution of dolomite rocks
(Mayo and Loucks, 1995). While Ca2t/Mg?™ ratios in the range of 1.5 to 2 represent groundwater
has been influenced by both dolomitic and limestone units, a Ca>t/Mg>* ratio > 2.0 signifies a
higher influence of limestone in a regarded karst system (Pfleiderer et al., 2006). Dissolved Ca>t
and Mg? " are largely supplied by weathering of carbonates in karst regions as examplified by the
relatively high HCO3' concentration. Typically, the dissolution of dolomite should release equal
amounts of Ca?" + Mg?" and HCO;. Therefore, the equivalent charge ratio of Ca?" + Mg?"
and HCOj3 (close to 1:1 line) confirms the impact of dolomite dissolution. Figure 2.3b clearly
revealed that almost all samples were plotted along the 1:1 line, which can suggest that calcium
and magnesium were originated from dissolution of dolomite in this area. Significant positive cor-
relation also exists between [HCO3 + SO4%~] and [Ca?* + Mg?"] in the spring and well samples,
with the average Ca?" + Mg?' /HCO3 + SO42~ ratios of 1.02 (Forster well), 1.07 (Glashiitten),
1.04 (Hieslwirt), 1.04 (Kerschbaum), 1.04 (Hinterlug) and 1.05 (Mitterlug) (Figure 2.3c). The
correlation between SO42~ and Ca?t/Mg?" was not significant (Figure 2.3d).

2.3.2.2 Classification the geochemical distribution of sampling points

In this study, cluster analysis was used to classify the groundwater samples collected from the sam-
pling points into groups with similar groundwater quality properties. Three groups were selected
based on cluster analysis results, each having different groundwater hydrochemical concentrations
as the class centroids (Table 2.2). Class 1 includes 100 % of groundwater samples from the Mitter-
lug spring, and 76 % and 4 % of groundwater samples from the Hieslwirt and Glashiitten springs,
respectively. They represent groundwater types with lower concentrations of Ca®", Mg?", Nat,
ClI™, and HCOj3 (Table 2.2) as compared to groundwater samples from other sampling points.
Class 2 includes 95 % of groundwater samples from Glashiitten spring, and also 24 %, 13 % and
10 % of groundwater samples from the Hieslwirt, Hinterlug, and Kerschbaum spring, respectively.
Apart from sulphate, the concentrations of the main hydrochemical parameters show slightly in-
creased values in this class as compared to class 1. In class 3, 90 % of groundwater samples
from the Kerschbaum spring, 87 % of samples from the Hinterlug spring and all samples from the
Forster well show higher concentrations of Ca?t, Mg”, Na', Cl, and HCOj; as compared to
class 1 and 2. Therefore, concentrations of major ions follow the order: class 1 < class 2 < class 3
(Table 2.2).

The results of Kruskal-Wallis test (Table 2.3) showed significant differences (p value < 0.05)
between the springs that were classified as a class one (Mitterlug and Hieslwirt springs) and class
three (and Kerschbaumer, Hinterlug springs and Forster well) considering Ca** concentrations.
However, groundwater samples belonging to Mitterlug and Hieslwirt springs (Class one) did not
show significant differences (p value = 0.125). Significant differences were also observed between
Ca®* concentrations in Glashiitten spring (class two) and other sampling points, except Hieslwirt
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spring. Hieslwirt and Glashiitten are almost significantly different (p value = 0.051), explaining
the results of the cluster analysis where 95 % of the Glashiitten samples and 24 % of the Hieslwirt
samples were jointly classified in class 2.

Table 2.2: Mean parameter values of the three principal water groups.

Class Groundwater samples percentage Class centroids (mg/L)

Ca®" Mg?" Na® HCO; ClI~ S04
Cl1 100 % Mitterlug + 76 % Hieslwirt + 4 % Glashiitten 4426 23.88 1.12 22391 148 6.05
@ 95% Glashiitten + 24 % Hieslwirt + 13 % Hinterlug 4854 2585 138 25846 149 581
+ 10 % Kerschbaum
90 % Kerschbaumer + 87 % Hinterlug + 100 % Forster
well + 1 % Glashiitten

C3 56.42 2686 3.08 283.06 3.06 7.49

Considering the Kruskal-Wallis test results for Mg?t and HCO;7 in Table 2.3, groundwater
samples that were classified as class one (Mitterlug and Hieslwirt springs), class two (Glashiitten
+ 24 % Hieslwirt) and class three (Kerschbaumer, Hinterlug springs and Forster well) showed sig-
nificant differences (p value < 0.05). However, significant differences were not observed between
sampling points (Kerschbaumer, Hinterlug springs and Forster well) in class three (p value > 0.05).
Moreover, Hieslwirt and Mitterlug (class one) showed a p-value slightly smaller that 0.05 (p value
=0.047 and 0.042 regard to HCO;3 and Mg+, respectively).

The same patterns in Kruskal-Wallis test were also observed for SO42~ (Table 2.3): Springs
from class one (Table 2.2) showed significance differences (p value < 0.05) with the springs and
well in class two and three. Also considering SO4%~, Hieslwirt and Mitterlug (class one) with a
p-value equal to 0.241 and Kerschbaum and Hinterlug (class three) with a p-value equal to 0.08
did not show a significant difference.

2.3.2.3 Temporal variations of spring and well water chemistry

The long-temporal extension of the hydrochemical time series provides a unique opportunity to
study the processes and factors controlling groundwater chemistry in the study area. In this regard,
trend analysis is applied to quantify the temporal variations of water chemistry over a defined
interval.

The temporal evolution of EC (at 25 °C) showed a decreasing trend (p-value < 0.05 and nega-
tive Sen’s slope) over almost 40 years of monitoring (from 1977 to 2017) at all monitoring points,
except of Mitterlug spring and Forster well (Figure 2.4a and Table 2.4). The water samples from
the Mitterlug spring did not show any significant variation (p value = 0.14). In contrast, EC in the
Forster well showed a different temporal pattern characterized by a slight increase (p-value < 0.05
and positive Sen’s slope) starting in 2004.

The Ca?* time series clearly indicated an increasing trend (p-value < 0.05 and positive Sen’s
slope) in the springs from 1989 to 2017 (Figure 2.4b and Table 2.4), which can indicate enhanced
dissolution processes of Ca®* minerals in the studied karst system. However, Ca2* concentrations
in the Forster well did not show any significant trend (p value = 0.123) between 2004 and 2017.
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Ca?*t concentrations were consistently lower in Mitterlug, Hieslwirt and Glashiitten than in Ker-
schbaum and Hinterlug during the entire monitoring period, similar to the observed patterns of
EC.

Table 2.3: Result of Kruskal-Wallis test to check the statistical significance of the cluster analysis.
Bold numbers indicate significant differences (p value < 0.05).
Ca" | Hieslwirt ~ Ca®" | Kerschbaum  Ca?" | Glashiitten ~ Ca?' | Hinterlug ~ Ca®' | Mitterlug ~ Ca®* | Forster

Ca?" | Hieslwirt 1 < 0.0001 0.051 < 0.0001 0.125 < 0.0001
Ca’>" | Kerschbaum < 0.0001 1 < 0.0001 0.238 < 0.0001 < 0.0001
Ca®> | Glashiitten 0.051 < 0.0001 1 < 0.0001 0.000 0.000
Ca® | Hinterlug < 0.0001 0.238 < 0.0001 1 < 0.0001 < 0.0001
Ca>~ | Mitterlug 0.125 < 0.0001 0.000 < 0.0001 1 < 0.0001
Ca> | Forster < 0.0001 < 0.0001 0.000 < 0.0001 < 0.0001 1

Mg | Hieslwirt Mg?* | Kerschbaum ~ Mg?* | Glashiiten  Mg?" | Hinterlug ~ Mg>* | Mitterlug ~ Mg?* | Forster
Mg>* | Hieslwirt 1 < 0.0001 < 0.0001 < 0.0001 0.042 < 0.0001
Mg>" | Kerschbaum < 0.0001 1 0.000 0.842 < 0.0001 0.099
Mg?* | Glashiitten < 0.0001 0.000 1 0.001 < 0.0001 < 0.0001
Mg?" | Hinterlug < 0.0001 0.842 0.001 1 < 0.0001 0.078
Mg?* | Mitterlug 0.042 < 0.0001 < 0.0001 < 0.0001 1 < 0.0001
Mg?" | Forster < 0.0001 0.099 <0.0001 0.078 < 0.0001 1

HCO4 | Hieslwirt HCO; | Kerschbaum HCOy | Glashiitten HCO; | Hinterlug  HCO; | Mitterlug HCO; | Forster
HCO;5 | Hieslwirt 1 < 0.0001 0.003 < 0.0001 0.047 < 0.0001
TICO5 | Kerschbaum < 0.0001 1 < 0.0001 0.180 < 0.0001 0.215
HCOj5 | Glashiitten  0.003 < 0.0001 1 < 0.0001 < 0.0001 < 0.0001
HCOj | Hinterlug < 0.0001 0.180 < 0.0001 1 < 0.0001 0.869
HCO, | Mitterlug 0.047 < 0.0001 < 0.0001 < 0.0001 1 < 0.0001
HCO3 | Forster < 0.0001 0.215 < 0.0001 0.869 < 0.0001 1

C1™ | Micslwirt CI™ | Kerschbaum C1 | Glashiitten CI™ | Minterlug CI™ | Mitterlug Cl™ | Forster
Cl™ | Hieslwirt 1 < 0.0001 0.249 0.075 0.395 0.412
CI~ | Kerschbaum < 0.0001 1 < 0.0001 < 0.0001 < 0.0001 < 0.0001
CI™ | Glashiitten 0.249 < 0.0001 1 0.531 0.040 0.055
CI™ | Hinterlug 0.075 < 0.0001 0.531 1 0.007 0.012
CI™ | Mitterlug 0.395 < 0.0001 0.040 0.007 1 0.970
Cl™ | Forster 0412 < 0.0001 0.055 0.012 0.970 1

S04 | Hieslwirt SO4>~ | Kerschbaum SO4%~ | Glashiitten SO42~ | Hinterlug  SO4>~ | Mitterlug  SO4> | Forster
SO4% | Hieslwirt 1 < 0.0001 0.000 < 0.0001 0.241 < 0.0001
$04>" | Kerschbaum < 0.0001 1 < 0.0001 0.080 < 0.0001 < 0.0001
804> | Glashiiten  0.000 < 0.0001 1 < 0.0001 < 0.0001 0.038
$04>" | Hinterlug < 0.0001 0.080 < 0.0001 1 0.000 < 0.0001
SO4% | Mitterlug 0.241 < 0.0001 < 0.0001 0.000 1 < 0.0001
S04~ | Forster < 0.0001 < 0.0001 0.038 < 0.0001 < 0.0001 1

The Mg?" time series showed different trend patterns for different sampling points. No trend
(p-value > 0.05) was detected in Hieslwirt, Hinterlug springs (from 1989 to 2017) and Forster well
(from 2004 to 2017). While, Mitterlug, Glashiitten, and Kerschbaum springs showed decreasing
trends (p-value < 0.05 and negative Sen’s slope) of Mg2+ concentrations over 28 years (Figure 2.4c
and Table 2.4).

The SO42~ time series showed decreasing trends (p-value < 0.05 and negative Sen’s slope)
in Mitterlug, Hieslwirt, and Kerschbaum springs from 1991 and in the Forster well from 2004 to
2017. Glashiitten and Hinterlug springs did not display any significant trend (p-value > 0.05) of
S042~ concentrations in 26 years of water monitoring (Figure 2.4d and Table 2.4). Similar to the
patterns observed for EC, Ca?", and Mg2 ', the most pronounced SO,42~ trends were observed in
Hinterlug and Kerschbaum. While, the lowest SO4%~ concentrations trend was observed in Forster
well.
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Figure 2.4: Temporal trend of groundwater physico-chemical parameters
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NOj; concentrations are available for more than 27 years (from 1990 to 2017); however, the
application of Pettitt’s test (Pettitt, 1979) revealed a significant change (p value < 0.0001, & = 0.05)
in the time series in Kerschbaum, Hinterlug, Glas-hiitten, and Hieslwirt springs in 2004, 1998,
2000, and 1995, respectively. To overcome the influence of these break points on time series
analysis, the Mann-Kendall test was performed for nitrate concentrations in the period from 2004
t0 2017. Anincreasing trend (p-value < 0.05 and positive Sen’s slope) was observed at all sampling
points (Figure 2.4e and Table 2.4).

In contrast to EC, Ca%*, Mg”, and SO42_, the highest concentrations of NO3; were observed
in Mitterlug, Hieslwirt, and Hinterlug, while the lowest concentration patterns of NO3 were ob-
served in Glashiitten and the Forster well. The increasing trend of NO; concentrations in all
sampling stations has raised concerns about the possible source of nitrate in Waidhofen.

In the presented study, the stable isotope values of §'°N and §'30 were applied to identify ni-
trate sources in the study area, since nitrate sources can show different isotopic “fingerprints” of ni-
trogen (15N/14N) and oxygen (180/160) isotope ratios. Hence, the determination of & 15N—NO3’
and §'80-NOj in water samples can provide meaningful insights for the identification of nitrate
sources in the study area (Matiatos, 2016). According to Einsied] et al. (2005), the values of § I5N
and §'30 in the nitrate species are strongly different depending on the respective nitrate source.

Table 2.4: Results of Mann-Kendall test in the springs and pumping well.

Mitterlug Hieslwirt Glashiitten Hinterlug ~ Kerschbaum Forster well

Kendall’s tau  -0.172 -0.290 -0.477 -0.318 -0.367 0.315

EC P-value 0.140 <0.0001  <0.0001  0.001 < 0.0001 0.039
Sen’s slope  -0.307 -0.529 -0.857 -0.556 -0.569 0.522
Trend No trend Decreasing Decreasing Decreasing Decreasing  slightly increasing
Kendall’s tau  0.429 0.425 0.305 0.447 0.507 0.249

Ca®'  P-value 0 < 0.0001  0.003 <0.0001 < 0.0001 0.123
Sen’s slope  0.003 0.073 0.066 0.105 0.115 0.119
trend Increasing Increasing  Increasing Increasing Increasing No trend
Kendall’s tau  -0.292 -0.048 -0.278 -0.025 -0.257 0.097

Mgt P-value 0.048 0.252 0.000 0.731 < 0.0001 0.564
Sen’s slope  -0.011 0.000 -0.011 0.000 -0.033 0.012
trend Slightly decreasing No trend Decreasing  No trend Decreasing  No trend
Kendall’s tau  -0.542 -0.886 -0.170 -0.565 -0.682 -0.574

SO4>~  P-value 0.001 <0.0001  0.148 < 0.0001  <0.0001 < 0.0001
Sen’s slope  -0.100 -0.105 0.004 -0.078 -0.070 -0.071
trend Decreasing Decreasing No trend No trend Decreasing  Decreasing
Kendall’s tau  0.219 0.626 0.689 0.764 0.644 0.566

NO;  P-value 0.019 <0.0001  <0.0001 <0.0001  <0.0001 < 0.0001
Sen’s slope  0.008 0.064 0.024 0.056 0.018 0.005
trend Increasing Increasing  Increasing Increasing Increasing Increasing

The §!N-NOj ranged from a maximum value of 7.7 %cin Hieslwirt (September 2017) to a
minimum value of -0.7%o in Hinterlug (September 2018). §'30-NOj also varied from a maxi-
mum of 4.8 %in Mitterlug (May 2018) to a minimum value of -3.1%o in Hieslwirt (May 2018)
(Table 2.1). The combined determination of 8'°N and §!30 values (Figure 2.5) distinguished two
major nitrate sources in Waidhofen. In Mitterlug, Hieslwirt, and Hinterlug springs with slightly

28



Hydrochemical data analyses and conceptualization of the Waidhofen karst system

lower 515N—NO§, it can be reasoned the nitrate was produced from nitrification in forest soils
(Figure 2.5). While, in Kerschbaum and Glashiitten springs nitrate originated from nitrification
process in mineral soils.
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Figure 2.5: Schematic diagram of the isotopic composition of groundwater nitrate from various
sources and nitrogen and oxygen isotope composition of karst groundwater.

2.4 Discussion

2.4.1 Spatial and temporal variations in carbonate dissolution

The waters in most of the karst area have been found to primarily contain calcium and bicarbonate
ions, along with different quantities of magnesium ions, deriving from dissolution of dolomite or
limestone as weathering reactions in carbonate rocks (Krawczyk and Ford, 2006). In Waidhofen,
the Ca?'-Mg?"-HCO; groundwater type in all sampling stations (Figure 2), along with almost
equal Ca?* and Mg+ concentrations and low Nat, K*, and CI~ content indicated that the hydro-
facies correlate directly with the presence of dolomite as the dominant lithofacies in the study area.
Dolomite weathering causes the higher concentrations of Mg?* and HCO3 compared to SO4%,
Na*, CI” in groundwater (Szramek et al., 2007). According to the Piper diagram (Figure 2.2)
groundwater was found to be dominated by Ca>*, Mg?*, and HCOy3, and was characterized as
a Ca“-Mg”-HCO; (alkaline-earths-carbonatic) type, in all the sampling points. In the present
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study, EC, temperature, and major ions were used as indirect indicators to characterize the karst
system, because they reflect karstification and mineralization processes and show variation in re-
sponse to different residence times and rainfall events in the study area (Mudarra and Andreo,
2011). According to Hilberg and Schneider (2011), mean EC in limestone or dolomitic aquifers
should range between 300 and 350 uS/cm, while a higher total mineralization due to the participa-
tion of other components, such as gypsum or halite, indicates an influence of evaporitic units and
cause higher EC values (Andreo et al., 2016).

Three conditions should be checked to identify a pure dolomite aquifer (Hilberg and Schneider,
2011); i) the concentrations of sulphate, sodium and chloride should not make up a majority of the
groundwater composition, ii) the Ca”/Mg”—ratio should be close to 1 (£ 0.2) with a solution
saturated in terms of calcite and dolomite and iii) the total amount of dissolved solids, expressed
in terms of EC, should vary in the range from 300 to 350 uS/cm.

The presented results satisfy the first condition as very low Na®, C1~ and SO42~ concentrations
were observed (maximum concentrations are 11.4, 23.9, and 24.0 mg/L, respectively), indicating
that the area is not affected by evaporitic deposits. Moreover, Ca>" + Mg?!/HCO; + S0,2~ ratios
equal to one and (Ca** + Mg2+)/HCO3_ molar ratio higher than one, along with the absence of a
positive relation between SO4%~ and Ca®*/Mg?" ratio (Figure 2.3d) showed that the springs and
the well are not influenced by high sulfate concentrations in this region.

The second condition was satisfied for the dataset because 64 % of the water samples showed
Ca’*/Mg>" ratios < 1.2 (section 2.3.2.1). The carbonatic nature of the aquifer system and the
superordinate control of the dolomitic basement rock in the catchment area were reflected in the
calcium to magnesium ratio (Figure 2.3a).

With respect to the third condition, variations of EC were classified in two groups (Figure 2.2c).
The first group included the Mitterlug, Hieslwirt, and Glas-hiitten spring and the Forster well with
EC < 400 pS/cm, considered as typical EC values for karst systems. The second group showed EC
values > 400 pS/cm (up to 570 uS/cm) in Kerschbaum and Hinterlug springs. Higher EC values in
these two springs could not be related with the dissolution of gypsum, because the results from the
descriptive analysis (Table 2.1) and the ionic ratios (Figure 2.3c and d) did not indicate high values
of SO4>~ in any sampling stations. Therefore, the reasons for such anomalously high values in EC
are still a matter of research.

Besides the spatial differences in EC values between Kerschbaum and Hinterlug springs and
other springs (Mitterlug, Hieslwirt, and Glashiitten), the ionic ratios’ plots ((Ca2t + Mg?*) and
(Ca*' + Mg?!/HCO; +S042 ")) (Figure 2.3) showed clear shifts from the low ionic ratios in Mit-
terlug spring to higher ionic ratios in Kerschbaum and Hinterlug springs, and Forster well, depict-
ing different levels of water mineralization in a small-scale karst system. As shown in Figure 2.1,
the Hinterlug spring is separated from the four others by a fault striking between the Mitterlug
and Hinterlug springs (Bittner et al., 2018a). This may explain the identified spatial variability of
the investigated hydrochemical parameters between Hinterlug and the other sampling points, in
particular Mitterlug, Hieslwirt, and Glashiitten. However, Kerschbaum, Mitterlug, Hieslwirt and
Glashiitten springs rise from the same mountain massif and therefore, the spatial variations in geo-
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chemical compositions can be related to the residence time within the carbonate aquifer systems.
Moreover, another possible explanation for this spatial variability is different water mineralization
kinetics (Hartmann et al., 2014a) due to the differences in water temperature. Since the sampling
points are located between a maximum elevation of around 500 m a.s.l (Mitterlug) and a minimum
elevation of around 419 m a.s.1 (Hieslwirt), the different residence times and the variations of the
hydrochemical compositions within the less than 80 m of elevation difference points towards a
high degree of spatial variability even in a small-scale karst system.
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Figure 2.6: Classification of sampling point based on spatial and temporal variations.

Spatial and temporal variations of hydrochemical parameters obtained from the sampling points
were also detected by plotting the results of the cluster analysis over time (from 1989 to 2017)
(Figure 2.6). These findings further highlight the changing patterns in Ca2*, Mg?", Na*, Cl -,
and HCOj concentrations in the Hieslwirt spring, from class one (low ionic concentrations) to
class two (medium ionic concentrations) between 2004 to 2006 (Figure 2.6). This time period fits
well with the beginning of water extraction from the Forster well, however, a detailed study is
required to investigate this possible relationship and to justify the increase of Ca2~, Mg2t, Nat,
Cl™, and HCOj in the Hieslwirt spring since 2008. Moreover, Hinterlug, Kerschbaum, and the
Foster well were classified as class three (high ionic concentrations), and did not show temporal
variations, except between years 1990 to 1995. It is also important to note that, some mixing could
be observed with class two. As discussed earlier, Hinterlug spring is tectonically separated from
the other springs. However, the cluster analysis findings and ionic ratios revealed similar patterns
of major ions between Hinterlug and Kerschbaum springs and Forster well. Since Forster well is
filtered between -50 m and -100 m in the deep dolomitic bedrock, these correlations can be indica-
tive that these two springs are fed by a deep karstified aquifer system. Therefore, the Schnabelberg
mountain (where Hinterlug spring crops out), possibly has a similar deep aquifer system that feeds
Hinterlug spring. However, detailed investigations should be conducted to understand these spatial
variations between Hinterlug, Kerschbaum and other springs, which is a matter of our following
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research activities.

2.4.2 Anthropogenic inputs to the groundwater system

Increasing nitrate trends in all sampling points during 27 years of groundwater monitoring have
raised the concern about possible sources of nitrate in Waidhofen, where 78 % of the catchment
area is covered by forests. According to Di Lorenzo et al. (2012), in natural grassland in temperate
regions, the baseline concentrations of nitrate are typically below 2 mg/L. In the present study, all
five observed springs drain a catchment that is predominantly covered by forests, with nitrate con-
centrations ranging from a minimum of 1 mg/L in Glashiitten in 1990 to more than 11 mg/L in the
Kerschbaum spring in 2017. Generally, additional information of possible nitrate sources can be
obtained using dual isotope analysis of §'’'N-NO; and §'80-NOj (Albertin et al., 2012). This is
done to overcome the problem of overlapping source signatures. In Mitterlug and Hinterlug springs
with the average nitrate values of 8.7 and 7.5 mg/L, respectively, & 15N—NO§ showed values less
than 2 %o and 6180—NO3’ showed values less than 4.8 %cindicating nitrification processes in forest
and grassland soil to be the primary source of nitrate in these two springs (Einsiedl and Mayer,
2006) (Figure 2.5). The same nitrate sources were identified for the Hieslwirt spring samples col-
lected in May and September 2018, with §'3N-NO; around 0.1 %o and - 0.4 %o and §'30-NO;
around 1.5 %o and 2.9 %o, respectively. Generally, the nitrification in the forest bedding produce
nitrates that are significantly depleted in & 15N—NO3’, compared to soil organic nitrogen (Spoelstra
et al., 2007). The Hieslwirt samples collected in September 2017 show a higher § ISN—NO3_ value
of 7.7 %o, which points towards manure and septic waste as a possible source of nitrate in this
spring. However, since this value does not follow the same pattern as the other samples taken at
this spring, we carefully considered this data point as an outlier. The average value of & 15N—NO3’
in the collected samples from the Kerschbaum and Glashiitten springs (average nitrate values of
5.2 and 3.8 mg/L, respectively) is above 2 %o, indicating nitrate was derived from mineral soil. Our
findings revealed higher concentrations and an increasing trend of nitrate derived from forest soil
(Mitterlug, Hinterlug, and Hieslwirt springs) compared with nitrate concentrations derived from
mineral soil in Kerschbaum and Glashiitten springs. Moreover, the isotope results did not provide
evidence of an impact of chemical fertilizers and manure, since 515N—NO§ values of chemical
fertilizers should vary between -8.0 %cand +6.2 %o. & 15N—N()3_ values of manure should range
from +10.0 %o and +20.9 %o for composted manure and from +8 %o and 16 %¢ (poultry manure)
(Wassenaar, 1995). Therefore, in Waidhofen, §'N-NO3 and §'80-NOj data conclusively indi-
cate that nitrification process related to the soil organic matter is the primary source of nitrate in
this forested area. By considering the Hieslwirt sample collected in September 2017 as an outlier,
there is not any significant evidence of fertilizer applications, septic swages or manure as primary
sources of nitrate in the study area. However, the reason for increasing trends of nitrate in this area
remains a question which requires more frequent sampling of isotopic composition of groundwater
nitrate in this karst system.
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2.4.3 Conceptual model

Based on the results of our hydrogeochemical analysis of all time series, it is possible to infer a
conceptual model of the aquifer system of the Glashiittenberg massif. Since the Hinterlug spring
is the only spring originating from the Schnabelberg massif, it is not possible to create a compre-
hensive conceptual model of the entire mountain massif due to a lack of data.

As highlighted by the ionic ratios (Figure 2.3), the Kerschbaum spring shows a higher degree
of mineralization as compared to the Mitterlug, Glashiitten and Hieslwirt spring. Given that the
degree of mineralization is comparable to the samples analyzed from the Forster well, which is fil-
tered in the deep aquifer system, we can conclude that the Kerschbaum spring is partly fed by the
deep aquifer system of the Glashiittenberg massif. The fact that the highest mean concentrations
of ClI~ was obtained from the Kerschbaum spring also highlight a strong influence of the deep
saturated parts of the aquifer system. Further, this conceptual model finds a physical explanation if
we observe that the Kerschbaum spring can be fed by the saturated part of the subsurface ground-
water basin as it is in the proximity of the syncline striking through the Glashiittenberg massif
(Figure 2.1). These conclusions are also reflected by the results of the cluster analysis (Figure 2.6).
The more variable and generally higher temperatures (Figure 2.2c) measured in the Kerschbaum
spring as compared to the Forster well indicate the influence of the unsaturated zone on the total
spring discharge. The high range of measured NO; concentrations in the Kerschbaum spring,
considered as an indicator for the contribution of the unsaturated zone to spring discharge, can also
be related to the existence of preferential flow paths in the unsaturated zone of the Kerschbaum
recharge area delivering infiltrated water directly to the spring. Summarizing, the Kerschbaum
spring is affected by a rather constant supply of water coming from the saturated zone of the deep
aquifer system and by preferential flow paths (e.g. conduits) through the unsaturated zone, high-
lighting a well-connected and karstified aquifer system in the southern to the central parts of the
Glashiittenberg massif.

The analysis of the ionic ratios indicates also a transition of the degree of mineralization from
the Glashiitten to the Hieslwirt spring. Geographically, the closer the spring is located to the out-
crop of the Opponitz and Lunz layers (both impermeable, see Figure 2.1c), the lesser the degree of
mineralization. This relation is also reflected by the EC values obtained from the Glashiitten and
the Hieslwirt spring, with a lower mean EC in Hieslwirt (401.1 uS/cm) as compared to Glashiitten
(433.0 uS/cm). These results are indicative of the impact of the saturated zone of the deep aquifer
system on spring discharge. This system is hosted in the syncline of the Glashiittenberg massif
and its contribution to spring discharge decreases the closer a spring is located to the pinch-out
of the dolomite reservoir and the outcrop of the impermeable Lunz layer. On the contrary, the
Glashiitten and the Hieslwirt spring differ from each other in NO3™ concentrations in the period
from 1990 to 2017. Considering that the land use in this part of the study area is rather homoge-
neous (beech forests), we argue that the impact of the unsaturated zone on the spring discharge
is higher in the Hieslwirt than in the Glashiittenberg. This conclusion is further supported by the
lower mean temperatures measured in the Hieslwirt spring as compared to the Glashiitten spring,
pointing towards a stronger influence of infiltration paths located in higher parts of the catchment
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and less mixing with water from the saturated zone (also given the proximity to the pinch-out of
the dolomite aquifer).

The described relations also explain why, most of the time, the cluster analysis shows that
the Hieslwirt and the Mitterlug spring fall within one cluster (Figure 2.6). The Mitterlug spring
is located at the highest elevation of all springs originating from the Glashiittenberg massif and
consequently is least affected by the saturated zone of the deep karst system. This conclusion is
based on the results from the hydrochemical analysis, where the Mitterlug spring has lowest mean
values related to EC, Ca>* and HCOy, as well as by the low degree of mineralization (Figure 2.3).
Moreover, the low temperatures measured in the Mitterlug spring also point towards a primary
impact of infiltration and preferential flow paths located in the unsaturated zone of the higher parts
of the Glashiittenberg massif. This dominant impact of the unsaturated zone on the Mitterlug spring
discharge is further highlighted by the fact that the Mitterlug spring has the highest concentrations
of NO3 as compared to all other springs.

In conclusion, the results of our analysis show that the influence of the saturated zone of the
aquifer system in the central to northern parts of the Glashiitten-berg massif is strongly affected
by the proximity to the outcrop of the impermeable Opponitz and Lunz layers. Although the
Glashiitten and the Hieslwirt are close to each other, the identified differences in contributions from
different parts of the aquifer system between both springs highlight a high degree of subsurface
heterogeneity in the dolomitic basement rock in this part of the Glashiittenberg massif.

2.5 Conclusion

The present study gives indications to the origin of spring waters by consideration of dolomite
karst hydrochemistry in Waidhofen a.d. Ybbs. Hydrochemical analysis revealed similar ground-
water types (Ca”-Mg”-HCO;) as a result of dolomite dissolution for all sampling points. How-
ever, the results of ionic ratios and cluster analysis indicated statistically significant spatial geo-
chemical variations between the sampling points. In this regard, Mitterlug and Hieslwirt springs
(class one), Glashiitten (class two) and Kerschbaum and Hinterlug spring and Forster well (class 3)
are classified based on the increasing concentrations of major ions (Ca>*, Mg?*, Na*t, HCO5,CI7,
and SO4%7). Moreover, long-term groundwater observations showed that Hieslwirt’s hydrochem-
istry shifted from low ionic concentrations (class one) to medium ionic concentrations (class two).
Generally, the finding of this study suggests that the dissolution of dolomite as a natural process
controls the groundwater chemistry in the aquifer system of Waidhofen. Spatial and temporal vari-
ations in geochemical concentrations and EC between the sampling points are considered as an
effect of different residence times and water mineralization in the dolomite aquifer system. Based
on the hydrochemical and cluster analysis, we were able to develop a conceptual model of the
Glashiittenberg massif, highlighting that also dolomite-dominated karst systems can exhibit a high
spatio-temporal variability even on a small spatial scale mainly due to the heterogencous response
of the unsaturated zone. Increasing nitrate trends raised concerns about the impact of human ac-
tivities on the karst system, however & 15N—NO3_ and 5180—NO3_ data revealed the nitrification
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processes in forest floor and mineral soil matters as the main source of nitrate in the study area.
The increasing nitrate concentrations and the heterogeneity in the geochemical and hydrological
(Bittner et al., 2018a) behavior of the system encouraged the local water authorities to strengthen
the monitoring program and carefully monitor potential nitrate sources to sustainably protect the
groundwater quality of the karst system. The conclusion that we can derive by the interpretation
of the results specific for the study area under investigation have a broader impact. In fact, the
general assumption that dolomite karst systems can be considered (approximately) homogenous
units cannot be confirmed by our dataset. On the contrary, our study has shown that dolomite karst
aquifers display a significant degree of spatio-temporal, hydrochemical variability which on the
one hand highlights the importance of a tailored monitoring strategy to safely manage the water
resources and on the other hand shows the necessity for further studies on dolomite karst system
as they represent frequently used aquifer systems for water supply.
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Chapter 3

Development of a lumped karst aquifer
model for land use change impact studies -
LuKARS

Bittner et al. (2018a)!

Abstract

Hydrological models represent valuable tools to investigate the impacts of land use changes on
water resources. Most commonly, distributed, physically-based models are applied for land use
change impact studies in hydrology. However, providing a physically-based and detailed descrip-
tion of subsurface flows in karst systems is challenging. Lumped models, in contrast, are easy
to implement and widely used in karst hydrological research, albeit not applicable for land use
change impact studies. To overcome these limitations, we developed a new semi-distributed model
LuKARS (Land use change modeling in KARSt systems) that lumps the predominant hydrotopes
(i.e. distinct landscape units characterized by homogeneous hydrological properties as a result of
similar land use and soil types) present in a catchment as independent, non-linear units. Flows from
each hydrotope represent a specific response of the vadose zone (soil-epikart-infiltration zone) in a
defined recharge area. The saturated zone consists of a single linear storage unit recharged by each
hydrotope independently. The main goal of this approach was to investigate land use change im-
pacts in a dolomite karst system exploited for the water supply of the city of Waidhofen a.d. Ybbs
(Austria) by changing the area covered by each hydrotope. Here, land use changes occured in the
form of increasing spaces used for dolomite mining and at the expense of existing forest sites. With
our parametrized model, we were able to reproduce the measured discharge in the largest spring
of the Waidhofen karst system (Kerschbaum spring). Moreover, we succeeded in transferring the
parametrized hydrotopes to other recharge areas (Hinterlug and Mitterlug) and validated the trans-

IBittner, D., Narany, T.S., Kohl, B., Disse, M., Chiogna, G., 2018. Modeling the hydrological impact of land use
change in a dolomite-dominated karst system. Journal of Hydrology 567, 267-279.
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ferability of the modeling approach. Finally, we successfully showed the model’s applicability for
land use change impacts studies by validating the calibrated model in a period in which the space
of the dolomite quarries in the Kerschbaum recharge area almost doubled. The results of our study
show that an increase of the dolomite quarries negatively affects the water supply of the city of
Waidhofen a.d. Ybbs.

3.1 Introduction

Karst aquifers constitute a major worldwide source of freshwater supply (Delbart et al., 2016;
Hosseini et al., 2017), thus, special importance is paid to carbonate rock aquifers in hydrological
research and water resource management (Hartmann et al., 2014a; Jin et al., 2015; Chang et al.,
2017, Filippini et al., 2018). A detailed knowledge of hydrological processes, i.e. groundwater
recharge, storage and discharge, as well as of the land use impacts on water quality and availability
are of primary interest for sustainable exploitation of any karst aquifer. Hydrological models there-
fore serve as important tools to investigate the hydrological functioning of karst systems (Jourde
et al., 2015). However, Hartmann et al. (2014a) outlined that land use change impact studies have
rarely been conducted explicitly for karst catchment areas and they highlighted the necessity of
such studies for sustainable water resource management in karstic areas. Therefore, the aim of this
work is to present a new conceptual modeling approach that allows for the simulation of land use
change impacts on the drinking water supply from karst aquifers.

“Black-box” models (Labat et al., 1999, 2000; Hu et al., 2008; Juki¢ and Deni¢-Juki¢, 2008)
and lumped conceptual models (Mangin, 1975; Arikan, 1988; Fleury, 2005; Fleury et al., 2007;
Tritz et al., 2011; Hartmann et al., 2012a; Chang et al., 2017; Mazzilli et al., 2017) are the most
commonly applied modeling approaches in karst hydrological research. However, “black-box”
models can only be considered reliable for the conditions specific to their calibration period (Hart-
mann et al., 2014a) and lumped models assume one single water input time series for the con-
sidered system (Scanlon et al., 2002; Hartmann et al., 2012b). These two features make these
modeling approaches inappropriate for land use change impact studies (Hartmann et al., 2014a).
Distributed, process-based models are often used to assess potential impacts of land use changes
on hydrological systems (Chen et al., 2017b). They aim to consider the spatial variability of hy-
drological parameters as well as the heterogeneous effects of land use and soil properties in a
catchment. Although Reimann et al. (2011) and Kordilla et al. (2012) introduced promising mod-
eling approaches for the distributed simulation of hydrological processes in karst aquifers, their
application is usually hampered by the high complexity of subsurface systems and a general lim-
itation in data availability (Juki¢ and Deni¢-Juki¢, 2009; Hartmann et al., 2014a; Ladouche et al.,
2014).

To overcome these limitations, we hypothesize that the recharge area of a given karst system
can be subdivided into distinct units, defined as hydrotopes (Koeck and Hochbichler, 2012). We
define hydrotopes as independent model units described by homogeneous hydrological character-
istics, in particular infiltration properties, resulting from similar land use and soil types. Therefore,
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we assume homogeneous infiltration properties for a given soil type with the same bedrock due to
similar formation conditions of the saprolite, i.c. chemically weathered rock (Williams, 1983). The
concept of hydrotopes was successfully applied in former hydrological and ecohydrological stud-
ies (Gurtz et al., 1999; Krysanova et al., 2005), however, it was not yet applied in the framework
of land use change impact studies in karstic systems. Therefore, our research objectives are i) to
create a new semi-distributed modeling approach that lumps the predominant hydrotopes present
in a catchment, ii) to calibrate and validate the modeling approach for a reference karst system, iii)
to proof our concept by transferring the modeling approach to other karst systems and their related
catchments while maintaining the calibrated hydrotope parameters and iv) to investigate land use
change impacts by changing the area covered by each hydrotope.

In LuKARS, we apply a non-linear transfer function proposed by Tritz et al. (2011), which is
able to simulate the hysteretic behavior of the soil and epikarst storage that results from different
water retention potentials during wetting and drying cycles. Different from Tritz et al. (2011),
we use that function for the implementation of individual hydrotopes constituting the catchment
area of a karst spring. In this way, each hydrotope is characterized by a specific hydrological re-
sponse, which contributes to the total spring discharge. The saturated zone consists of a single
linear storage unit recharged by each hydrotope independently. Thus, the proposed modeling ap-
proach benefits from the advantages of lumped models (i.c. the easy implementation and the low
computational power) as well as from the characteristics of distributed models (i.e. integration of
spatial heterogeneities of soil hydraulic properties). To the best of our knowledge, such a concep-
tual modeling approach integrating hydrotopes as lumped non-linear storages has not been widely
discussed in karst hydrological research (Sarrazin et al., 2018).

The paper is structured as follows. In Section 3.2, we introduce the main characteristics of our
investigated karst region in Waidhofen a.d. Ybbs (Austria). In Section 3.3, we present the setup
and the governing equations of the hydrotope-based modeling approach. In Section 3.4 and 3.5,
we present and discuss the results of the model calibration, model validation as well as the land use
change impacts on the hydrological system. Finally, we conclude our investigations in Section 3.6.

3.2 Study area

3.2.1 Catchment description

The study area is located 10 km south of the city of Waidhofen a.d. Ybbs in Lower Austria
(Fig. 3.1). This pre-alpine region is part of the eastern foothills of the Northern Calcareous Alps,
with altitudes ranging from 415 to 969 m a.s.l. In this warm-moderate regional climate, with an
annual mean temperature of 8 °C, mean daily temperatures below freezing occur mainly from De-
cember to February. Annual mean precipitation of 1379 mm was recorded at the weather station
Hinterlug (Fig. 3.1b) during the period from 1981 to 2014. The annual distribution of precipitation
is bimodal with maxima during both the summer (June and July) and winter months (December
and January), with snowfall dominating precipitation in the winter (Supplementary material B.1.1).
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Two small fluvial systems constitute the study area’s drainage: the Waidhofenbach and the Luger-
bach. Close to the weather station Hinterlug, the Lugerbach flows into the Waidhofenbach, which
drains most of the study area into the Ybbs river in Waidhofen.

The local geology is dominated by a lithologic sequence of dolomitic basement rocks (Main
Dolomite, Triassic age, Fig. 3.1a) and thus, typical karst phenomena such as springs, dry valleys
and caves are present in the study area. Significant sinkholes are not present in the study area,
leading to the conclusion that point-infiltration plays a minor role for recharge. Moreover, prior
investigations revealed that a deep karstified groundwater system exists, also below the elevation
level of the Waidhofenbach valley (Hacker, 2003). Considering the specific hydrogeological set-
ting of the area, we can assume a well-connected network of fractures and conduits. The largest
springs originating from those karstificable rocks are exploited for the municipal drinking water
supply of Waidhofen a.d. Ybbs.

Main Dolomite
(Triassic) [

@ springs
/\ weather station Hinterlug

0 02550 100 150 200 km
)

Figure 3.1: Overview of the study area, including (a) the geological map (GBA, 2018), (b) the
orthophoto of the whole study area including the location of the three recharge areas with their
corresponding karst springs and the draining fluvial systems (Gauss-Kriiger coordinate system)
and (c) the location of the city Waidhofen a.d. Ybbs in Austria.

In this work, we focus on three distinct springs and their recharge areas, namely the Ker-
schbaum (2.5 km?), Mitterlug (0.25 km?) and Hinterlug (1.8 km?) springs (Fig. 3.1b). The de-
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lineation of the respective recharge areas was performed based on tracer tests by Hacker (2003).
Each of these springs is fed by karst aquifers of the Main Dolomite, where the karst system of
the Hinterlug spring is separated tectonically from the two others by a pronounced strike-slip
fault that separates the two mountain massifs Schnabelberg (Hinterlug spring in northern part)
and Glashiittenberg (Kerschbaum and Mitterlug spring in southern part). Even if the Kerschbaum
and Mitterlug springs rise from the same mountain massif, prior investigations for the designation
of protection areas revealed that the feeding karst aquifers can be considered independent (Hacker,
2003).

3.2.2 Hydrotopes

In the following, we shortly describe the hydrotopes that are dominant in the recharge areas of the
three considered springs. Note that hydrotopes covering less than 1% of the respective recharge
areas were not considered, assuming that their contribution to the spring discharges is negligible,
as often done in other hydrological models (Neitsch et al., 2011), and they are merged with the
dominant hydrotopes to fill the whole recharge areas.

Table 3.1: Relative spatial share (in %) of each hydrotope in the three recharge areas. No number
means that the respective hydrotope is not present in the regarded recharge area. The description of
the forest hydrotopes (Hyd B1 - Hyd B4) indicates the dominant over- and understorey vegetation.

Hydrotope Covered catchment area (%) Description

(Hyd) Kerschbaum Hinterlug Mitterlug

Hyd Q 4 - - Dolomite quarries

Hyd B1 13 - 2 Bluegrass-Beech Forest

Hyd B2 56 6 36 White Sedge-Beech Forest
Hyd B3 27 - 53 Christmas Rose-Beech Forest
Hyd B4 - 79 - Wood Barley-Beech Forest
Hyd P - 15 9 Pasture

A detailed field mapping campaign was carried out yielding the Forest Hydrotope Model data
base and report. All subsequently mentioned hydrotope categories are part of this database (Koeck
and Hochbichler, 2012). The result of those field investigations is a detailed classification of the
predominant hydrotopes in the study area (Fig. 3.2). Hydrotopes were mapped and classified
according to i) the overstorey trees as indicators for interception capacities and preferential flow
paths in the soil (rooting), ii) the understorey vegetation as an indicator for the hydrological site
conditions (dry to wet) and iii) the dominant soil types and respective thicknesses (shallow to deep)
as qualitative parameters for the hydrophysical site properties. The soil depths in the study area
range from 20 cm to 60 cm (Markart et al., 2012). The spatial share of each hydrotope in all
defined recharge areas is shown in Table 3.1.
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Figure 3.2: Spatial distribution of the dominant hydrotopes in the three recharge areas as charac-
terized by Koeck and Hochbichler (2012). (a) Kerschbaum recharge area, (b) Hinterlug recharge
area and (c) Mitterlug recharge area.

Hyd Q represents dolomite quarries located in the Kerschbaum spring recharge area. In 2007,
when the orthophoto illustrated in Fig. 3.1b was taken, the quarries covered 4% of the Kerschbaum
spring recharge area. Due to the removal of local vegetation and soil cover, the dolomitic base-
ment rocks remained bare in these areas. The catchment classifications and the runoff modeling
performed according to Markart (2004) and Kohl (2011) revealed that the dolomite quarry sur-
faces have discharge coefficients of almost 1 and do not contribute to a considerable amount of
the recharge in the subsurface karst system. Instead, the quarries are drained by a small creek that
flows into the Waidhofenbach and thus do not feed the Kerschbaum spring (Fig. 3.1b).

Hyd P indicates pastures, located in the Mitterlug and Hinterlug spring recharge areas. Hydro-
topes B1, B2, B3 and B4 represent the forest type hydrotopes, all having beeches (Fagus sylvatica)
as the dominant tree species.

Hyd B1 is the “Bluegrass-Beech Forest” hydrotope and is present in the recharge areas of the
Kerschbaum and Mitterlug spring. Shallow soils with high proportions of coarse fragments and a
minor occurrence of fine-grained textures are characteristic for that hydrotope. The dominance of
bluegrass (Sesleria albicans) in the understorey vegetation indicates mostly dry site conditions as
aresult of low water storage capacities and locations on sun-exposed slopes.

Hyd B2 represents the “White Sedge-Beech Forest” type and is the only hydrotope that can
be found in every investigated recharge area. Here, the characteristic soil types show more fined
grained textures as well as moderate thicknesses, thus having an elevated storage capacity and a
lower permeability than soils on the Hyd B1 sites. White sedges (Carex alba) were mapped as the
dominant understorey vegetation and indicate moderately fresh site conditions.

Hyd B3 is the “Christmas Rose-Beech Forest” type and occurs in the Kerschbaum and Mitter-
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lug recharge areas. Moderate to great solum thicknesses of predominantly loam textured soils are
characteristic for these sites. The incidence of Christmas roses (Helleborus niger) points towards
fresh site conditions.

Hyd B4 is the “Wood Barley-Beech Forest” type and exclusively occurs in the Hinterlug
recharge area. As compared to the former Beech-Forest type hydrotopes, Hyd B4 soils have the
highest loam contents as well as the greatest soil depths. Permanently moist site conditions are
characteristic for Hyd B4 and evidenced by the presence of wood barley (Hordelymus europaeus)
and woodruff (Galium odoratum).

3.3 Methods

3.3.1 Modeling concept

LuKARS aims to simulate the hydrological processes that take place in each hydrotope, to simu-
late their respective interaction with the saturated groundwater system and, finally, to reproduce the
observed discharge behavior of a spring. Similar to Tritz et al. (2011), we consider the hydrotopes
to conceptually represent the vadose zone (soil-epikarst-infiltration zone) and to be directly con-
nected to the saturated zone. In the model, all hydrotopes receive an effective precipitation input
that depends on the hydrotopes’ canopy interception, evapotranspiration and snow melt/retention
in winter. Moreover, each hydrotope is characterized by a specific retention capacity. Therefore,
the same input signal leads to different reactions of the hydrotopes both under dry (E,,;;) and wet
conditions (Ejay). The conceptual model considers that the activation of conduits is faster if infil-
tration happens faster, which is less retained in a thin hydrotope (low soil storage) than in a thick
one (high soil storage). The basic idea of implementing a series of hydrotopes in a single modeling
framework is based on the assumption of a hydrophysical uniqueness of each hydrotope. In partic-
ular, the model aims to reproduce hydrotope-specific hysteresis cycles and the hydrological effects
of long dry and wet cycles on each hydrotope. The temporal state of the catchment storage sys-
tem, i.e. dry or wet conditions, therefore plays an important role for the initialization of different
discharge processes (Tritz et al., 2011; McNamara et al., 2011). Fig. 3.3 illustrates the structure of
LuKARS and the possible flow processes that are described in the following:

1) Part of the water is moved out of the catchment once a hydrotope-specific threshold (Ey,.) is
exceeded. E,.. [L] is defined as an activation level for flow processes leading to water losses, i.e.
overland flow processes and secondary spring activation (Mazzilli et al., 2017). From a conceptual
perspective, the flow component Qg [L3T- 1 integrates the flows that do not arrive at a regarded
karst spring and that are transferred outside the investigated recharge area.

2) Another part of the water stored in a hydrotope is discharged to the outlet of the catchment
(Onyd,1 1© Onya 4 [L3T~ 1)) if the hydrotope-specific maximum storage capacity Epqy [L] is ex-
ceeded. This flow is considered a quickflow component occurring in preferential flow paths, such
as subsurface conduits, and is responsible for the fast reaction of a spring discharge to rainfall and
snowmelt events (Blume and Van Meerveld, 2015). The conceptual idea is that the hydrotopes
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with shallow and coarse-grained soils have the highest connectivity to karst conduits (e.g. Hyd 2
in Fig. 3.3). The quickflow stops once the storage volume drops below the hydrotope-specific
minimum storage capacity E,,;, [L].

(a) —» highest quickflow intensity
—3»  medium quickflow intensity
—> lowest quickflow intensity

(b)

Quec,1 Quec2 Q. Q.
3 3 .3 4
Ege, Ese ST Egee, e

Ennax1 T

Enmip,1 -

Qa1

Qis1| Qis2

Quya

£ Qe

Figure 3.3: Example of the conceptualization of the hydrotopes and the model implementation as
performed for the Kerschbaum recharge area. (a) The conceptual representation of the present hy-
drotopes. Hyd 1 indicates the dolomite quarries with no groundwater recharge and the dominance
of surface runoff (SF). The connectivity to the karst system is largest in Hyd 2 with shallow and
coarse-textured soils and lowest in Hyd 4. (b) Model implementation of the four hydrotopes in the
Kerschbaum recharge area.

3) A next part of the water stored in a hydrotope leaks into a lower reservoir B as inter-storage
flow Qig [L3T’1]. This flow represents the process of groundwater recharge. Deep and fine-
textured soils provide a more stable groundwater recharge (e.g. Hyd 4 in Fig. 3.3) than shallow
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and coarse-textured soils (e.g. Hyd 2 in Fig. 3.3).

4) The last flow component Q), [L3T- 1 represents water transferred from the storage B to the
spring. This flow to the spring outlet simulates a baseflow contribution from the phreatic aquifer
system to the spring discharge.

3.3.2 Governing equations

The modeling approach we propose to use is based on the application of a non-linear storage
threshold function, similar to what is suggested in Tritz et al. (2011). In the following, the subscript
notation indicates that the respective terms are hydrotope specific.

LuKARS solves the following balance equation for each hydrotope:

Oseext Qisx t Onyd.x :
dE Sy — —F—=—=2 G E, >0
Abx )P ay i 3.1

dr 0 ifE, =0

where E, indicates the water level [L] in hydrotope x, t [T] is the time, whereas S, represents
the hydrotope-specific sink and source term as a mass balance of precipitation, snow melt, evapo-
transpiration and interception [LT~ '], as detailed in the next section. a, [L?] is the absolute area
covered by the respective hydrotope.

For the baseflow storage, the following balance equation is implemented in the model:

dEb - ):(Qisx)*Qb if Eb >0

(3.2)
dr 0 ifEp,=0

where E}, is the water level [L] in the baseflow storage and Qjg [L3T~!] stands for the total flow
from all hydrotopes to the baseflow storage. The variable A [L?] represents the whole catchment
area. Eq. 3.1 and 3.2 are solved for each time step n using their discretized forms, as given in
Eq. 3.3 and 3.4, respectively:

_ Qsec,x,n + Qix,x,n + thd.x,n
Qy

Z(Qis.en) = Obn
A

Ex,n+] = maX[OaEx,n + (Sx.n )Af] (3.3)

Eppy1 =max[0, Ep + ( ) At 34
The discharge terms are computed as follows:

maX(O7Ex,n - Emi,n,x) o khyd,.'c

Ohyd xn = & a 3.5)
vd-xn n[ Emaxx — Eminx lhyd X !

Qis.x,n =Expn kis,x ay 3.6)

Qxec.x.n - maX(O7Ex$n - E.vec,x) ksecix dx (37)
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Qh,n - Eh,n kpA (3.8)

Epaxx [L] and Eyin ¢ [L] are the upper and lower storage thresholds of the hydrotope and
Egcx [L] is the hydrotope-specific activation level for a secondary spring discharge. Following
the notation of Tritz et al. (2011), ki, [LT '] and kg [LT '] are the discharge coefficients
for Qisx (L3T~!] and Osecx [L3T-1], respectively. The discharge coefficient for the quickflow
of a hydrotope is represented by kpyg [L2T—']. Notice that all three discharge coefficients are
hydrotope-specific. In contrast with Tritz et al. (2011), we consider the term [jy4, [L], which
is the hydrotopes’ mean distance to the adjacent spring and accounts for the relative location of
the same hydrotope types in a specific catchment. The ratio between kjyy and lj,4, represents
the discharge coefficient. The dimensionless connectivity/activation indicator € specifies whether
or not the quickflow component from a hydrotope is active during time step n and is defined as
follows:

& = 0& Ex,n+1 < Emax,x or
& — 1& EXJ’H—I < Emin,x

€1 = 0if (3.9)

§=0& Ex,n+l > Emax,x or

g=1& E,xJH»l > Emin,x

&pp1 = 1if (3.10)

For each time step, the total inter-storage discharge (Qjs [L3T-1), computed as the sum of
the inter-storage discharge of each hydroptope, is added to the underlying linear storage. Finally,
the spring discharge (O [L3T 1)) is computed as the sum of the quickflow provided by each
hydrotope and the baseflow component from the linear storage:

Qrorn = Obn+ Z thd.x,n (3.11)
X

3.3.3 Sink and source terms

Interception of solid and liquid precipitation and evapotranspiration losses are computed sepa-
rately by the model, since interception is high in forested sites while evapotranspiration is high
from non-forest surfaces (in our case quarries and pastures). Moreover, we applied a degree-day
model (Martinec, 1960) to describe snow melt and accumulation in the study area. The model
first estimates daily losses from interception, then it computes snow accumulation and snowmelt.
Finally, the removal of evapotranspiration losses is calculated. The input term S, [LT '] in Eq. 3.1
is calculated as follows:

Sy =My —Ety ifP=0 and

. (3.12)
Se=P—1I;+M;—Ety ifP>0

where P represents the daily precipitation [LT~'], My [LT~'] is the amount of snowmelt in
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the case of the presence of a snow layer and I; [LT~'] and Ez, [LT 1] are the daily losses of
interception and evapotranspiration.

As indicated in the DVWK (1996), interception in beech-dominated forests increases from
11 % in the winter season (21st December) to 17 % in the summer season (21st June) and then
decreases again to the winter value. The daily I, time series was generated via linear interpolation
between these two values. To avoid unrealistic interception losses during heavy rainfall events,
percentage losses were limited to a maximum of 5 mmd~! (Markart et al., 2006). In the non-
forested hydrotopes, I, is set to 0 since no interception can occur. Considering the data availability,
we used the method proposed by Thornthwaite (1948) to calculate potential evapotranspiration
(Etpo) based on monthly mean temperatures as follows:

T
Etp =16(10 )" (3.13)

where Etpy [LT~!] is the monthly potential evapotranspiration, 7 [°C] is the mean monthly
temperature, and H is the heat index defined as

H= (%)'-5‘4 (3.14)
with exponent r given by
r=675"TH3+771e > H>+1.792¢ "2 H +0.49239 (3.15)

The computed sum of monthly E?),, represents an estimate for months with a length of 30 days
and 12 hours of possible sunshine per day. For simplicity reasons, we considered Efp, to be
representative estimates for each month and did not further adjust the monthly time series regarding
differences in the sum of the days of a month and the latitudinal variability of possible sunshine
hours per day. Thus, we divided Et,, by the number of days and assumed the resulting Et, [LT!]
to be representative for the 15th day of a month. The selection of Thornthwaite’s method is based
on the fact that the results obtained with this method are close to the annual ET values calculated
by Markart et al. (2006) for our study area. Similar to our interception calculations, we interpolated
linearly between these values to obtain a characteristic time series of Et;.

The degree-day method we applied in LuKARS is given by:

Mo = F max(0,7 —1y) (3.16)

where M), stands for the potential melt rate in the form of a snow water equivalent [LT 1, T
is the daily mean temperature [°C], 7 represents a threshold temperature [°C] controlling either
snow accumulations or melts and F is defined as the degree-day factor [LT—'°C~!]. We assumed
the following conditions for snow accumulation (Sy;,y [L]) and actual snowmelt (M, (LT~ 1))

Ssnow.n —Oxn if T;, < Tf and
Smow,n+l =Sy +Sx,n+l if T, < Tf & T < Tf and (3.17)
Ssnown+1 = maX(O7 Ssnow.n _Md) if Ty > Tf
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and

M;=0 ifT <Ty and
My =Mpy ifT >T; & Ssyow =M and (3.18)
Md = Ssnuw if T > Tf & Sslww <M

A table summarizing the notations used in LuKARS is further provided in Supplementary
material B.1.2.

3.3.4 Estimation of the hydrotope storage thresholds

Differences in physical soil properties are the most important criteria to differentiate the hydro-
topes. Namely, soil texture and soil thickness are the most relevant factors for the internal hydro-
logical behavior of a hydrotope. To estimate the storage thresholds E,,;, and E,,, for each of the
considered hydrotopes, we used a new hydropedological fieldguide (DWA, 2018) that was devel-
oped to characterize a site of interest in terms of hydrological aspects (Kohl et al., 2016). Site
mapping with this tool is performed analogous to the German soil classification system (Ad-hoc-
Arbeitsgruppe Boden, 2005). The tool derives the dominant hydrological processes as well as the
storage capacities under the dry and wet conditions of a selected site, based on the physical soil,
catchment and land use information (Supplementary material B.1.3).

To translate qualitative information about the soil properties of the hydrotopes in our study
area into quantitative values, i.e. soil thickness and texture, we used the available data for similar
sites presented by Leitgeb et al. (2013). Finally, we took the storage capacities for dry and wet
conditions as indicated by the hydropedological fieldguide to set Emin and Emax threshold values
for each hydrotope.

3.3.5 Calibration and validation process

To calibrate the snow module of the model, we converted the measured snow depth time series at
Hinterlug weather station (BMNT, 2018) in snow water equivalent (SWE) time series, using the
approach of Jonas et al. (2009). The temperature thresholds for the three spring catchment areas
were chosen according to the main exposition of each recharge area.

The natural hydrological behavior of the hydrotopes, i.e. groundwater recharge, quickflow
and storage, is predetermined by their physical properties. Hence, the parameters describing the
behavior of a hydrotope should be calibrated accordingly and should be consistent with the ex-
pected hydrological response of the system. This means, for example, that the hydrotope with the
most coarse-grained and shallowest soils should have the highest discharge parameter khyd and
the lowest range of storage volume (Ejuax — Emin). Once calibrated, kpyy remains constant while
transferring the hydrotopes to other catchments. The discharge coefficient will vary among dif-
ferent catchments according to the spatial distribution of the hydrotopes in the catchment since
it depends on the mean distance between the area covered by a hydrotope and the outlet (/y4).
Hence, each hydrotope should be transferable to other catchment areas by solely modifying the
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exponent o, Eg.. and k.. In this way, different catchment characteristics, such as the steepness of
the slopes, can be included. Since kg is the most unknown parameter in our modeling approach,
we carefully calibrated it so that kg has a maximum range of two orders of magnitude with regard
to all hydrotopes. The parameter sets for Hyd B1, B2 and B3 were calibrated for the Kerschbaum
recharge area, and Hyd P and B4 were calibrated in the Hinterlug catchment. Since we did not
have any information about the soil characteristics of Hyd P, we calibrated this particular hydrotope
based on the known pasture properties derived from comparable study areas and determined the
storage thresholds with the hydropedological fieldguide (DWA, 2018). The parameters of Hyd B2
were transferred from the Kerschbaum to the Hinterlug catchment.

Note that the Mitterlug spring discharge is not measured directly at the spring itself, but at
a storage system located behind an overflow basin. This leads to the fact that this time series is
unusable to quantitatively assess the correctness of the hydrotopes’ parametrization at Mitterlug
spring on a daily scale. Thus, we calculated monthly mean values from the daily discharge time
series measured at the storage system. Since neither water leaves nor additional water enters the
system before the monitoring point, we used the monthly mean discharge for validation. We treat
this catchment as an ungauged one for which we validate the parameter sets of the hydrotopes as
determined for the Kerschbaum and Hinterlug recharge areas.

The models were calibrated and validated for the years 2006 and 2007 when the dolomite
quarries covered 4% of the Kerschbaum recharge area. For further model validation as well as to
proof its applicability for land use change impact studies, we also run LuK ARS for the Kerschbaum
catchment for the years 2010 — 2013, when the area covered by the dolomite quarries almost
doubled (Fig. 3.7) at the expense of the area covered by Hyd B2. Due to the presence of large data
gaps in the observed discharge time series from 2010 to 2013, we focused our model validation on
three distinct timeframes in 2010, 2012 and 2013, for which we have reliable measurements. These
three validation periods comprise high and low flow conditions to ensure a meaningful evaluation
of the model results for different hydrological states of the system.

More information about the input data used for the model simulations is presented in Supple-
mentary material B.1.4.

3.4 Results

3.4.1 Calibration and validation periods

The chosen parameter sets of all hydrotopes, the baseflow storages of the three recharge areas
as well as the snow model parameters are presented in Table 3.2. The results of the calibration
and validation periods of the snow model as well as the simulated and observed hydrographs of
the Kerschbaum and Hinterlug springs are presented in Fig. 3.4. We can observe that the snow
model overestimates the SWE from January 2006 to April 2006, whereas the Kerschbaum snow
model produces higher SWE compared to the Hinterlug snow model. However, the timing of
snow retention and the snowmelt of both models fits reasonably well. Similarly, the snow models
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accurately match the timing of retention and melt during the validation phase.

The comparison between observed and simulated hydrographs (Q,,,) indicates that LuKARS
is able to simulate the observed discharge behavior in the Kerschbaum and Hinterlug springs accu-
rately. A Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) of 0.64 for the Kerschbaum
spring and a NSE of 0.76 for the Hinterlug spring highlight an accurate reproduction of the ob-
served discharge (Table 3). Moreover, a MAE of 0.76 [1s~!] for the Kerschbaum spring and a
MAE of 1.72 [Is~!] for the Hinterlug spring also indicate that there is an acceptable reproduction
of the simulated discharge.

Table 3.2: Overview of all model parameters for each hydrotope and all recharge areas.

Hydrotope-specific parameters

parameter HydQ HydBl1 HydB2 HydB3 HydB4 HydP
E i [mm] 0 23 60 90 110 110
E gy [mm] 1 31 120 200 250 145
Eee [mm] 0 35 180 380 220 210
knya [m2d~!] 0 90 85 77 70 85
kis [m mm~'d~1] 0 0.02 0.0055 0.0025 0.0006  0.002
o -] 0 0.9 0.8 0.55 2.3 0.9
Catchment-specific, hydrotope parameters
Kerschb. 550 1600 900 960 - -
Ipyq [m] Hinterlug - - 370 - 800 1160
Mitterlug — 520 430 390 - 130
Kerschb. 0.9 0.095 0.026 0.022 - -
ke [mmm~1d1] Hinterlug - - 0.016 - 0.025 0.008
Mitterlug — 0.095 0.006 0.004 — 0.008
Catchment-specific parameters
Kerschbaum Hinterlug Mitterlug
ky [m mm~!d~1] 0.00043 0.0011 0.02
F [mmd-'ec™1 4 4 4
Ty [°C] 0.5 0 2

When focusing on the calibration period of the Kerschbaum spring, the model mostly matches
the observed peaks as well as the recession limbs of peak discharges. Here, the model overes-
timates the peak at the beginning of April 2006 and slightly undershoots the summer peak dis-
charges. A similar behavior can be observed for the Hinterlug discharge: the model is able to
reproduce the measured discharge time series but it also fits the peak in April 2006. In contrast,
the model underestimates the pronounced peak discharge recorded in the Hinterlug hydrograph in
February 2006. The simulated peak discharges in summer 2006 match the recorded time series
reasonably well.

With respect to the validation period, the calibrated Kerschbaum model fits the measured hy-
drograph in 2007. A NSE of 0.54 and a MAE of 0.77 [1s~!] underline a good match between
the observed discharge behavior and our simulations. Similar to the validation of the Kerschbaum
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spring, the results for Hinterlug show an acceptable match between observed and simulated dis-
charge time series.
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Figure 3.4: Modeling results for the Kerschbaum and Hinterlug springs during the calibration
phase 2006 (left column) and the validation period 2007 (right column). The graphic shows the
precipitation (P) time series, the transformed snow water equivalent (SWE) from the snow depth
measurements and the snow model results and the observed (obs) and simulated (sim) discharge
time series (Qy,,) for the Kerschbaum and the Hinterlug spring.

In contrast to the Kerschbaum model, the Hinterlug model underestimates the peak discharges
in January, April and December 2007. However, a NSE of 0.77 and a MAE of 1.09 [1s~!] indicate
the ability of the model to reproduce the total discharge and the discharge dynamics recorded in
the Hinterlug spring (Table 3.3).
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Table 3.3: Results of the objective functions for the model performances during the calibration
period (2006) and the validation period (2007).

Recharge area  Calibration period (2006) Validation period (2007)

NSE MAE [Is7}] NSE MAE [Is7}]
Kerschbaum 0.64 0.76 0.54 0.77
Hinterlug 076 1.72 0.77 1.09

The highest specific quickflow (Qpyq) in the Kerschbaum recharge area originates from Hyd
B1 in response to rainfall or snowmelt events, whereas Hyd B2 and B3 show weaker quickflow
responses (Fig. 3.5). The variability of Qpy, is highest in Hyd B1 and lowest in Hyd B3. In the
recharge area of the Hinterlug spring, Qp,q is highest in Hyd P and B2, whereof the later shows
the highest variance of the specific discharge. However, Hyd B4 generates the highest 0y, in
response to the snowmelt event in April 2006. Moreover, Ojyq of Hyd B4 appears to be the most
dynamic hydrotope for what concerns the steepness of the recession limbs in the hydrograph. Qj,,q
originating from Hyd P is less variable as compared to Hyd B2 and B4 throughout the calibration
and validation period. Qpys from Hyd Q is constantly 0.

Considering the specific recharge (Qjs), the highest flow contributions in the Kerschbaum
recharge area originate from Hyd B2, followed by Hyd B1 and B3 (Fig. 3.5). Similar to the
quickflow, the variability of Q;, is highest in Hyd B1 and lowest in Hyd B3. In the Hinterlug
catchment, the most specific Q;; also originates from Hyd B2, followed by Hyd P. The specific Qjs
from Hyd B4 can be considered of minor importance compared to the recharge from both other
hydrotopes. Q;s from Hyd Q is constantly 0.

3.4.2 Validation of hydrotopes concept in ungauged spring catchments

As pointed out in Section 3.3.5, we calculated the monthly means of the Mitterlug spring discharge
to enable a quantitative comparison between model and measurements. This monthly time series
and the simulated hydrograph of the Mitterlug model are visualized in Fig. 3.6.

The simulated time series was obtained by carefully calibrating the kg, parameters in the same
range in which kg of the hydrotopes in the other recharge areas are located. Regarding the north
exposition of the whole recharge area, we increased 7 of the applied snow model to account for
the natural delay of spring discharge onset in response to longer snow retention phases. An overall
fit between the monthly Qy;, and the monthly Qs can be observed throughout the two simulated
years (2006-2007). In 2006, both the modeled annual trend and the total discharge adequately
reproduce the observed values. In 2007, the simulation results still reproduce the behavior of the
aggregated monthly time series; however, the simulated discharge slightly overshoots the observed
time series. Finally, a NSE of 0.83 and a MAE of 0.49 [Is~'] highlight a good match between the
monthly means of observed and simulated discharges.
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Figure 3.5: Specific discharge contributions to the groundwater recharge (Qjs) and the quickflow
(Onya) from each hydrotope in the Kerschbaum and the Hinterlug recharge area. A higher resolved
version of this figure is presented in the Supplementary material B.1.5.

3.4.3 Application of LuKARS for land use change

A comparison between the model performances under changed land use conditions is visualized
in Fig. 3.7. We can observe that the model considering 4% of area covered by quarries leads
to higher discharge compared to the model in which we correctly reproduce the increase in the
area covered by quarries. Particularly the simulated low flow discharges deviate most in the two
modeled hydrographs. When focusing on the three distinct validation periods (Fig. 3.7a-c), we
see that the simulation results considering a larger share of Hyd Q better match the observed
discharge. In contrast, the model run with 4% quarries systematically overestimates the measured
records. The results from the updated model are in good agreement, in particular, considering the
recorded peak flow events during the validation phases in 2010 and 2012 (Fig. 3.7a and b).
Although the model results obtained considering the occurred land use change underestimate
the peak flows during the low flow period in 2013 (Fig. 3.7¢c), the modeled low flow discharge
fits the measured time series reasonably well. We can also observe, in all validation periods, a
consistent increase of the NSE and a decrease in the MAE for the model considering land use
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change in comparison to the model neglecting the effect of the quarry (Table 3.4).
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Figure 3.6: Validation of LuKARS in the Mitterlug recharge area. The red and black graphs
indicate the simulated and observed time series of mean monthly discharge, respectively.

3.5 Discussion

3.5.1 Evaluation of the hydrotope-based modeling approach LuKARS

Regarding the error statistics determined for the simulation runs of the calibration and validation
period for the Kerschbaum and Hinterlug spring, we can state that, according to the NSE and MAE
(Table3.3), the results of both models accurately match the observed discharges. In particular,
when focusing on the peak discharges in 2006 and 2007 (Fig. 3.4), the hydrotopes modeling ap-
proach fits the temporal dynamics and the total amounts of the karst-typical sharp peak discharges
in response to both snowmelt and rainfall. Furthermore, the model captures peak discharges in
response to rainfall events after precedent wet, e.g. 06/2006, and precedent dry, e.g. 05/2007,
periods, thus showing its ability to simulate the hydrological response of the soil-epikarst system
following different antecedent conditions. The overall match of the hydrograph recession limbs,
as a physical indicator for karst conduit depletion and transition from conduit to matrix flow, un-
derlines the model’s capability to reproduce the temporal internal dynamics of the karst storage
system. In addition, the good agreement of simulated and measured low flow periods highlight
that the baseflow can be expressed as the sum of a continuous water supply from the hydrotopes
(Qhya) to the spring and the flow from a collective reservoir (Qp).

The largest deviations between Qs and Qy;,, occur when snow processes affect spring dis-
charges, in particular, the underestimation of Qsim at Hinterlug in February 2006 and from March
to April 2007 and the overestimation during the snow retention phase in winter 2006/2007 at Ker-
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schbaum and Hinterlug springs. In particular, for the Hinterlug spring, these deviations explain
the relatively high MAE of 1.72 [Is~!] during the calibration year 2006. We argue that these
discrepancies result from SWE over- and underestimation, since the modeled discharge peaks in
response to rainfall events coincide with the monitored discharge. Although we introduced differ-
ent Ty to account for the different main expositions of each recharge area, these inconsistencies
of model simulations, i.e. either over- or underestimation of snowmelt and retention, suggest that
the simplicity of the degree-day method is insufficient to adequately model snow processes in this
pre-alpine catchment.

Table 3.4: Results of the objective evaluation functions for the Kerschbaum model performance
for land use change during three validation phases in the period from 2010-2013.

Objective function Ist validation (2010) 2nd validation (2012) 3rd validation (2013)

4% 1% 4% 1% 4% 1%
NSE -0.98 0.65 -0.33 0.71 -0.77 0.58
MAE 0.98 0.38 1.16  0.45 1.08 0.39

Regarding the Qj,,¢ hydrographs of each hydrotope (Fig. 3.5), the shallowest and most coarse-
grained hydrotope soils, in particular Hyd B1, show the fastest and most intense reactions to the
rainfall or snowmelt inputs. Q;s; behaves similarly due to the low storage capacity and high dis-
charge coefficient k;;. The low storage capacity further causes Qjyq and Q; to become 0 during
long dry periods, e.g. in July 2006. This behavior complies with the conceptual idea that the
connectivity to fast draining conduits to the spring and flow paths feeding the saturated aquifer is
highest if the hydrotope soils are shallow with mainly coarse-grained sediments. The same rela-
tion between soil thickness, soil texture and discharge behavior also applies for Hyd B2, Hyd B3
and Hyd P and thus meets our hydrotope modeling concept; Hyd B2 has a lower storage capacity,
higher discharge parameters k;s and kj,y4 and, consequently, has a more variable specific discharge
than Hyd B3 in terms of Qpyq and Q.

When comparing the Qy,y4 and Q;s of Hyd B2 in the Kerschbaum and Hinterlug recharge areas
(Fig. 3.5), both specific discharge time series are more dynamic in the Hinterlug recharge area
than in the Kerschbaum one. These differences in the specific discharge behavior are the result
of different mean distances from the Hyd B2 to the respective spring (/;,4) and justify the use of
Inya as a location parameter for any hydrotope in a defined recharge area. Despite the high storage
capacity and the low kjyq of Hyd B4 in the Hinterlug recharge area, Qy,q originating from Hyd B4
is strongly dynamic with partially high specific discharge (Fig. 3.5). Since Hyd B4 covers 79% of
the Hinterlug recharge area and with regard to the pronounced peak discharges in Q,; at Hinterlug
spring (Fig. 3.4), this dynamic contribution of Qpy, is of major importance to adequately reproduce
Qobs bY Qsim- We argue that the quickflow in the Hinterlug recharge area is the result of pushing
old water from the hydrotope’s high storage volume towards the spring once new water enters the
system during a rainfall or snowmelt event; a process similar to the return flow occurring on steep
slopes with layered soil structures. This further explains the constantly low specific Q;; originating
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Figure 3.7: Validation of the Kerschbaum model for the years 2010 — 2013 affected by land use
change. Top: orthophotos taken in 2010 and 2013. Middle: Simulated spring discharge without
land use change (red) and simulated discharge with land use change (blue). Bottom: comparison of
both model runs with the measured time series (obs) for three distinct periods, (a) from 20/06/2010
to 09/07/2010, (b) from 18/01/2012 to 26/04/2012 and (c) from 16/09/2013 to 31/12/2013.

With the chosen hydrotope parameter sets, we were able to simulate the assumed variability of
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Onya and Q; for each hydrotope (Fig. 3.5), i.e. higher variability with shallow soils composed of a
mainly coarse-grained soil texture (e.g., Hyd B1) and lower variability with thick and mainly fine-
textured soils (e.g., Hyd B3). Hence, our calibration approach to decrease kj,4 and to increase the
range between E;, and E,,,, in parallel with more fine-textured and thicker hydrotope soils leads
to plausible hydrological behaviors of each hydrotope. Moreover, the thresholds E;, and E,y, as
determined with DWA (2018), constrain the storage capacities of the hydrotopes reasonably well.

3.5.2 Model validation in the ungauged Mitterlug spring recharge area

Given the results of the application example for the Mitterlug spring, we consider the good fit be-
tween the monthly Q,,, and Oy, (Fig. 3.6) as a proof of the concept of LuKARS, since we obtained
the results by simply transferring the parameter sets of the present hydrotopes as determined in two
distinct recharge areas. Apart from the parametrization of the hydrotopes, the good match between
the monthly time series furthermore corroborates the applicability of the distance parameter /4
as denominator in the discharge coefficient. The increased Ty and the corresponding delayed onset
of snowmelt at Mitterlug spring is justified by the north exposition of the whole recharge area.
However, a measured time series of daily discharge would be needed to quantitatively validate the
hydrotopes’ transferability with regard to the peak discharges and recession parts of the daily time
series.

3.5.3 Model validation for land use change impacts

With respect to the model application for the years 2010-2013 to validate its applicability for land
use change impact studies, a significant improvement of the model results was achieved when
increasing Hyd Q to 7%. The systematic overestimation of the model simulations including 4%
Hyd Q results from an overestimated share of area that contributes to the total discharge in the
Kerschbaum spring. When increasing the area of Hyd Q at the expense of Hyd B2, we reduced
the total discharge contribution from Hyd B2 in the recharge area. Due to the fact that Qj; is
higher than Q4 in Hyd B2 (Fig. 3.5), this surface reduction primarily leads to a reduction of
the baseflow (Qp). The lower baseflow explains why the discharge time series of both model
simulations (Fig. 3.7) deviate most during low flow periods. The good fit between the simulated
discharge of the updated model and the measured hydrograph during both high flow (Fig. 3.7a and
b) and low flow periods (Fig. 3.7c) indicates that the improvements of the model results are not
only related to one specific condition of the natural hydrograph. The undershot peak discharges
during the low flow period in 2013 (Fig. 3.7c) are related to underestimated responses to moderate
precipitation events (< 15 mmd ") followed by dry periods. Although the model does not match
these peak discharges in 2013, the low flow discharge is properly described by the model results.
In addition, these peak discharge underestimations are the result of a non-exceedance of E,4y in
Hyd B1 and the related non-appearance of Qj,y¢ from this hydrotope (not shown) and thus are not
related to the land use change adaptation in the model. Transferred to our understanding of the
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karst system, this land use change leads to a reduction of groundwater recharge. Less recharge
subsequently causes a reduction of the low flow discharge in the Kerschbaum spring.

3.5.4 Model uncertainties

The proposed model LuKARS requires as fundamental input data a reliable size for the catchment
area and a detailed soil classification for the definition of the hydrotopes. Both information can be
gathered by tailored field campaigns and an inaccurate description of the catchment size or of the
hydrotope classification leads to major errors in model output (Mazzilli et al., 2012a).

For what concerns meteorological input data, at the moment the model uses a single time
series as input. This makes the model suitable for small size catchments, typical for water supply
systems in alpine regions. The extension to larger catchments will require a proper management of
meteorological input data. In future versions of the model, this aspect will be included considering
approaches commonly used for semi-distributed hydrological models (Bieger et al., 2017).

Finally, although the model aims to be as parsimonious as possible, we have a large amount
of fitting parameters (24 for the Kerschbaum spring, 16 for the Hinterlug spring and 4 for the
Mitterlug recharge area) and most of them cannot be explicitly derived from independent field
observations. In this context, we point out the importance of performing a rigorous parameter
uncertainty analysis and we warmly recommend, whenever possible, to perform a multi-objective
model calibration (Moussu et al., 2011; Mazzilli et al., 2013; Tuo et al., 2018) to reduce model
equifinality. The purpose of this work is to show that it is possible to include land use change in
a hydrological karst model using hydrotopes as fundamental units. Therefore, we applied a very
simple calibration approach based on trial and error and on our expert knowledge about the study
area. In Bittner et al. (2018b), we illustrate how the model parameters are informed by the spring
discharge data. An automatic calibration toolbox for LuKARS is currently under development and
will be released for free.

3.6 Conclusion

In this study, we developed a semi-distributed conceptual modeling approach LuKARS that lumps
the different hydrotopes as stand-alone units in a catchment. We were able to proof the applica-
bility and transferability of our modeling concept by applying the calibrated hydrotopes to other
recharge areas in which those hydrotopes were mapped. Furthermore, we showed that the pre-
sented approach provides a valuable tool for land use change impact studies in karstic systems by
validating the calibrated Kerschbaum model for a period in which the recharge area suffered from
increasing dolomite mining.

Generally, the calibrated hydrotopes should be tested in other karst catchments in order to
validate their parametrization as well as to investigate the relevance of the calibration parameters
for an accurate process representation considering different catchment characteristics. An example
is Hyd B4, which has the highest storage capacity solely regarding its physical properties, but only
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occurs in the Hinterlug recharge area with the steepest slopes of all catchments; making a further
validation of the parametrization indispensable for catchments with less steep slopes. Since the
applicability of LuKARS in ungauged catchments and for land use change investigations is limited
to calibrated hydrotopes that were validated for specific site conditions, more investigations are
required to parametrize and test more hydrotopes with different soil and land use properties.
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Chapter 4
A graphical user interface for LuKARS

Bittner et al. (2020b)’

Abstract

Simulating karst spring discharge and land use change impacts in a recharge area is strategic for
water resource management in many countries worldwide. For this task, we introduce a user-
friendly modeling environment by integrating the recently proposed LuKARS (Land use change
modeling in KARSt systems) model into the FREEWAT (FREE and Open Source Software Tools
for WATer Resource Management) framework. LuKARS is a rainfall-discharge model for karst
systems that simulates the impact of land use changes by changing the area of the dominant hy-
drotopes, i.e. landscape units with homogeneous soil and land use properties, in a catchment.
FREEWAT is a free and open source toolkit for water resource management implemented in QGIS
desktop application. The integration of LuKARS into FREEWAT takes advantage of the GIS capa-
bilities to map, visualize and change the relevant hydrotope shapefiles. Then, FREEWAT provides
a modular framework for pre- and post-processing tools that facilitate the setup, calibration, anal-
ysis, storage and sharing of a LuKARS model.

4.1 Introduction

Mathematical models are tools which are commonly applied to simulate different processes of the
hydrologic cycle (Casper et al., 2019; Chiogna et al., 2018; Hartmann et al., 2014b; Tuo et al.,
2018). Typically, these models are based on sophisticated mathematical frameworks developed
and applied by researchers and water experts. In recent years, more and more open source codes
are available to model various processes of the hydrologic cycle (Arnold et al., 1998; Borsi et al.,
2013; Winston, 2009). Their complex nature makes them not intuitive for what relates to their

IBittner, D., Rychlik, A., Klsffel, T., Leuteritz, A., Disse, M., Chiogna, G., 2020. A GIS-based model for sim-
ulating the hydrological effects of land use changes on karst systems — The integration of the LuKARS model into
FREEWAT. Environmental Modelling and Software, 104682.
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applicability. In particular, those people who need to apply these tools, e.g. water resource man-
agers, are not necessarily familiar with programming languages and are, thus, often not able to
apply these models (De Filippis et al., 2017).

In the years 2015 to 2017, the European Union funded a coordinated initiative to overcome this
limitation within the HORIZON 2020 program: the FREEWAT project (www.freewat.eu) project.
In FREEWAT, researchers from various European countries developed a free and open-source
plugin including tools for water resource management, such as a hydrologic model and time series
analysis methods, in the QGIS environment (Rossetto et al., 2018). The aim of this plugin is to
use QGIS as a convenient and intuitive graphical user interface (GUI) that enables practitioners
to deal with sophisticated software generics (Rossetto et al., 2019). Although FREEWAT can
be considered as new, its broad applicability was already highlighted in multiple case studies,
such as the management of coastal aquifers, modeling groundwater - surface water interactions
and the assessment of climate change impacts on groundwater resources (De Filippis et al., 2020).
FREEWAT comprises three main modules in which different tools are provided: the pre-processing
module, the simulation codes module and the post-processing module. So far, the simulation
codes module contains various packages of the MODFLOW-2005 family Harbaugh (2005) and
MODFLOW-OWHM (Hanson et al., 2014), all of them being coded for physically-based flow and
transport modeling, primarily in groundwater systems. The MODFLOW family of codes is only
applicable for groundwater dominated systems but not e.g. for rainfall-runoff modeling.

In the particular case of karst hydrology, rainfall-runoff models are commonly applied for
spring discharge predictions (Mazzilli et al., 2012b; Ollivier et al., 2019) and to enhance the under-
standing of hydrological processes in karst aquifers (Duran et al., 2020; Sivelle et al., 2019).Karst
aquifers are widely used as drinking water supply both in Europe and worldwide and hence require
appropriate model-based management (Chen et al., 2017a; Stevanovi¢, 2019). Although promis-
ing physically-based model codes for the distributed simulation of karst aquifer processes exist
(Chen et al., 2017b; Giese et al., 2018; Henson et al., 2018; Reimann and Hill, 2009; Reimann
et al., 2011), and initiatives started to improve their applicability Berthelin et al. (2020); Berthelin
and Hartmann (2020), a reasonable implementation of these models still is often restricted by data
limitations (Juki¢ and Deni¢-Juki¢, 2009; Ladouche et al., 2014).

Various types of rainfall-runoff karst models exist with different conceptual approaches. One
common approach is to consider different combinations of the dominant flow compartments, i.e.
conduits and matrix, as distinct buckets (Chang et al., 2017; Fleury et al., 2007; Jourde et al., 2015).
For this conceptual idea of representing karst systems, Mazzilli et al. (2019) proposed an open-
source GUI that is intuitively applicable also by practioners. Another way to conceptualize the
behavior of karst systems in lumped models is to consider the complexity of recharge processes and
the infiltration to slow and quickflow paths (Bittner et al., 2018a; Hartmann et al., 2012b; Ollivier
etal., 2019). Given that no GUI for this type of conceptual approach exists, the implementation of
such karst aquifer model in FREEWAT makes this framework more comprehensive and applicable
for a broader range of water resource management issues.

We want to contribute to the FREEWAT modeling framework by implementing the recently
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proposed LuKARS model (Bittner et al., 2018a,0; Teixeira Parente et al., 2019a) into the QGIS-
integrated FREEWAT environment. LuKARS is a rainfall-runoff model that can be used to predict
spring discharge in karst systems and was developed to perform land use change impact studies in
karstic environments. This bucket-type model is based on the integration of dominant hydrotopes
in a recharge area, which are distinct spatial entities defined by homogeneous soil and land use
properties (Arnold et al., 1998). Each hydrotope shows a specific hydrological response to recharge
events depending on its specific properties. Since spatially distributed properties need to be defined
for each hydrotope when setting up a LuKARS model, integrating LuKARS in a GIS environment
can make the visualization, application and evaluation of the model more intuitive. Moreover,
LuKARS is one of the few karst hydrologic models that takes into consideration the possibility of
modeling land use change impacts on karst spring discharge. This feature offers a solution to a
timely challenge of the karst modeler community (Hartmann et al., 2014a). Therefore, we consider
the GIS integration of LuKARS into FREEWAT as a valuable contribution to provide applicable
and open source tools for water resources management.

In Section 4.2, we describe the concept of LuKARS and how the technical integration of the
model into the QGIS-FREEWAT environment was performed. In Section 4.3, we show how
LuKARS fits into the existing modular structure of FREEWAT. For a better reproducibility, we
showcase the LuKARS tool in FREEWAT with a case study application. Finally, we discuss and
conclude our efforts in Section 4.4 and 4.5.

4.2 Materials and methods

In this section, we provide a short description about the conceptual idea of LuKARS (Fig. 4.1a and
b), the related assumptions and the flow components that are simulated by the model. Moreover,
we provide a technical summary how the integration of LuKARS into FREEWAT was achieved.

4.2.1 Concept of LUKARS

The concept of LuKARS assumes that the dominant flow components in a karst system, i.e. the
quickflow through conduits and fractures and a slow flow through the matrix, are controlled by the
physical properties of the shallow subsurface, i.e. the soil-epikarst system. If the soil properties
of a hydrotope are characterized by shallow soils with a coarse-grained texture (e.g. Hyd 2 in
Fig. 4.1a), the quickflow paths are better connected and the hydrotope shows a fast and intense
response to a given input signal, e.g. precipitation. In a hydrotope dominated by deep and more
fine-textured soils (e.g. Hyd 4 in Fig. 4.1a), the quickflow is less intense and matrix infiltration is
more constant.

In LuKARS, each hydrotope is represented by a distinct bucket that has three different flow
components (Fig. 4.1b), i.e. the quickflow (Qnyq), the infiltration into the rock matrix (Qjs) feeding
the baseflow storage (B) and a secondary spring discharge (Qsec). Onyd is activated once a hydro-
tope specific storage value (Epax) was exceeded and stops after the hydrotope storage reaches a

63



A graphical user interface for LuKARS

lower threshold (Ep,). By that, a hysteretic behavior of the soil-epikarst system is simulated. Qi
and Q.. are both implemented based on linear transfer functions. In contrast to Qjs, Ogec is only
active if the hydrotope storage is higher than a defined threshold for secondary spring discharge
(Eec). For more information about the mathematical details, the interested reader is referred to the
works of Bittner et al. (2018a), Teixeira Parente et al. (2019a) and Bittner et al. (2020a), where
LuKARS was applied for the case study of Waidhofen an der Ybbs (Fig. 4.1c¢).

( a) —Jp highest quickflow intensity
—3»  medium quickflow intensity
—>  lowest quickflow intensity

= Frig
= S )_—r
gl 4
Hyd 3
Qsec, 1 3| Esec,3 Qsec, 4| Esscd :
(b) Emax,3| Emax, 4| @ springs ;
Emin3 |- Emin,4 |- /\ weather station
= creeks
Ohyd,3 Qhyd,4 CJrecharge area

Qis, 1 Qijs,2 Qis,3 Qis,4 Qhyd

B Q

106000

Figure 4.1: Overview of the LuKARS model concept and the study area. (a) Physical concept of
the hydrotopes implemented in LuKARS. (b) Model representation of the LuKARS hydrotopes.
(c) The Kerschbaum spring recharge area close to Waidhofen a.d. Ybbs (Austria).

4.2.2 LuKARS integration in FREEWAT

The goal of the LuKARS integration was to take advantage of the modular framework of FREE-
WAT and using the provided pre- and post-processing tools. This concept is shown in Fig. 4.2,
which highlights the use of the GIS to create and visualize the hydrotope shapefiles as well as the
FREEWAT input data management in the pre-processing step. In the post-processing, the integra-
tion of LuKARS benefits from the existing time series analysis tools in FREEWAT and the GIS
functionalities to store the hydrotope parameters in shapefiles.

The integration of all FREEWAT tools into the QGIS environment is performed with the Python
programming language. Although most of QGIS is written in C++, it allows for connecting Python
scripts as standalone tools and plugins via PyQGIS (Bhatt et al., 2014). During the installation
process of QGIS, a folder directory is created in which additional plugins, such as FREEWAT,
can be pasted. In this way, QGIS knows what has to be loaded when starting. Following the
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guidelines provided on the project webpage, a FREEWAT folder containing all relevant python
scripts should be dropped in this directory. This directory establishes the connection between
QGIS, FREEWAT and LuKARS. LuKARS is stored in a single folder containing all necessary
Python scripts to be added to the mentioned FREEWAT folder. Most of the LuKARS code was
programmed object-oriented with Python classes. This folder is connected to the plugin by calling
it in the overall plugin operating code Freewat.py. Then, when starting QGIS, LuKARS appears in
the FREEWAT drop-down menu in the QGIS toolbar. It is planned that the LuKARS model comes
with one of the next official releases of FREEWAT. However, interested persons can also download
the required LuKARS python scripts from GitHub (https://github.com/dbittner87/LuKARS). A
detailed description where these utilities need to be added in the QGIS-FREEWAT folder structure
is also provided there.

g
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of Hydrotope shp files in QGIS
Pre-processing ‘—) @
Input data management ‘o=
with OAT (Sensors) in FREEWAT

. . \ VLuKARS model set-up, calibration
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Y - J/Save calibrated parameter
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Export simulated discharge @
and time series analysis with OAT

Figure 4.2: A concept of the modular framework of FREEWAT in QGIS consisting of Pre-
processing, Simulation software and Post-processing tools and how this framework is used for
LuKARS.

4.3 Using LuKARS in FREEWAT

In order to make the use of LuKARS user-friendly, general steps that need to be taken to per-
form modeling tasks with FREEWAT should be similar for all models integrated in this frame-
work. In the following, we explain the relevant steps during the pre-processing, modeling and
post-processing phases. We showcase this application for the Kerschbaum spring case study used
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in Bittner et al. (2018a). The Kerschbaum springshed is a small-scale, pre-alpine and dolomite
dominated aquifer system close to Waidhofen a.d. Ybbs (Austria) (Fig. 4.1c). The recharge area is
affected by anthropogenic impacts in form of increasing mining activities. In order to investigate
the hydrological impacts of this land use change, Bittner et al. (2018a) developed the LuKARS
model. For more information about this area we refer to the work of Narany et al. (2019). The
required data files to perform this simulation can be downloaded from GitHub.

4.3.1 Pre-processing

In order to run LuKARS, time series data with a daily temporal resolution (at least precipitation
and spring discharge) and hydrotope shapefiles (vector data) are needed. Similar to the use of
MODFLOW in FREEWAT, the first step to be done is to go to Model Setup — Create Model.
This step is required in order to define the length and time units, set the working directory and to
define the coordinate reference system (CRS). After finishing this initial step, FREEWAT creates
different model tables as data objects in which the defined information is stored.

In the next step we need to load all relevant input time series in the Observation analysis tool
(OAT) (Cannata and Neumann, 2017; Cannata et al., 2018). The OAT library includes two classes:
the OAT Sensor and the OAT Method class. We use the OAT Sensor class to load and store the time
series needed for LUKARS. The advantage of using OAT at this pre-processing step is that the time
series can be stored in a SQLite database. If we save the QGIS project after loading the time series
with OAT, we do not have to load them again once we resume our LuKARS project in FREEWAT.
As time series input, LuKARS requires at least a precipitation and a discharge time series with daily
temporal resolution. Optionally, it is possible to load a temperature time series that is used to run
a temperature-based evapotranspiration model (Thornthwaite, 1948) and a snow model (degree-
day method, Martinec (1960)). In order to get a daily evapotranspiration time series from the
monthly values obtained with the Thornthwaite method, the monthly evapotranspiration is divided
by the number of days in a month. The resulting daily evapotranspiration value is assumed to be
representative for the 15th day of a month. Then, a daily evapotranspiration time series is obtained
through linear interpolation between each month. The selection of these modeling approaches is
based on the fact that they provide reliable results for the Kerschbaum spring recharge area as
shown in the work of Bittner et al. (2018a). It is planned that further different approaches will be
integrated in future versions. For our case study example, we loaded daily time series of spring
discharge, precipitation and temperature.

In the next step, we can either load or generate hydrotope shapefiles. For the Kerschbaum
case study, the hydrotope shapefiles already include the relevant model parameters introduced in
Table 4.1. If these shapefiles have to be generated, there are different methods to create them,
e.g. by Koeck and Hochbichler (2012) or the German Association for Water, Wastewater and
Waste (Deutsche Vereinigung fiir Wasserwirtschaft, Abwasser und Abfall, DWA) (DWA, 2018).
In Bittner et al. (2018a), we used a modified hydrotope map of the one created by Koeck and
Hochbichler (2012). The map we use here (see Fig. 4.3a) was created using a recently proposed
hydropedological fieldguide by DWA (2018). The DWA (2018) method has the advantage that it
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can also be used to derive ranges for some of the lumped parameters required in LuKARS (Bittner
et al., 2020a). So far, there is no automatic routine to generate the hydrotope shapefiles. It has to
be noted that for using LuKARS in FREEWAT, each hydrotope needs to be stored in a separate
shapefile. We decided to store them in different shapefiles in order to simplify their individual
manipulation, their distinct manual calibration as well as the process of loading the hydrotopes
in the LuKARS FREEWAT interface. These shapefiles need to be projected in the same CRS as
previously defined in the model tables since the CRS is needed to automatically calculate the exact
area each LuKARS hydrotope covers in a regarded recharge area.
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Figure 4.3: Overview of the GUI’s used in LuKARS in FREEWAT. a) The QGIS interface show-
ing the hydrotope map of the Kerschbaum spring recharge area as an example. b) Setting up the
LuKARS model by loading the relevant time series saved as OAT sensors (precipitation and dis-
charge are required, temperature is optional) and hydrotope shapefiles, selecting which additional
module(s) to be used and defining all modeling periods. c) Definition of all model parameters. d)
Plotting window showing the modeling results.
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4.3.2 Model application

After the hydrotope shapefiles and the required time series have been loaded, we can start using
the LuKARS model in FREEWAT. The first interface that is loaded is shown in Fig. 4.3b. Since
the time series are stored as OAT sensors, the interface recognizes them and we just need to select
the right one for each input.

Then, we have to define the total number of hydrotopes which will be loaded in LuKARS. Note
that in the current version, the maximum number of possible hydrotopes is limited to four. This
is due to the fact that each hydrotope has seven calibration parameters. In Teixeira Parente et al.
(2019a) it was shown that the parameter uncertainties when having four hydrotopes can still be
handled, but so far we do not know how this changes when more than four hydrotopes need to be
calibrated. For the Kerschbaum spring case study, we have four hydrotopes that have to be loaded.
These are Hyd Q, Hyd 1, Hyd 2 and Hyd 3. The order in which we load the hydrotopes is not
crucial. For more information about the hydrotopes, we refer to Bittner et al. (2020a).

In the right part of the interface (Fig. 4.3b), we define the warm-up, calibration and validation
period. If the chosen periods overlap, an error message occurs to warn the user and the starting
dates of each period will adapted automatically. For example, if the calibration period overlaps
with the warm-up period, the starting date of the calibration period is set to the end date of the
warm-up period. For our case study, the following periods are defined as in Bittner et al. (2018a):
warm-up period from 01/01/2001 to 12/31/2005, calibration period from 01/01/2006 to 31/12/2006
and validation period from 01/01/2007 to 31/12/2007 (Fig. 4.3).

In the lower part of the interface, the optional snow, evapotranspiration and interception mod-
ules can be activated. The snow module makes use of the degree-day method (Martinec, 1960)
and requires setting a melt factor F [mm d=1°C~1] as well as a temperature threshold 7y [°C]
for melt for each hydrotope. The interception module requires setting a maximum interception
value I, [mm] that depends on the respective land cover of the hydrotope. For a given event,
the effective rainfall is calculated by subtracting Imax from the measured precipitation value. The
evapotranspiration module does not require the definition of any further parameters.

After everything was defined, it is possible to advance to the Define parameters interface after
proving the validity of all input (Check if input is valid). The function to check the validity of the
input helps the users recognizing errors before starting the model calibration.

The Define parameters interface is shown in Fig. 4.3c. Three different ways for setting the
hydrotope parameters are integrated in LuKARS. If no parameter set exists for a recharge area to
be modeled, the first choice would be to manually define the parameters. Another option is to
load a parameter set from a csv-file. A template how this file should be constructed is provided
on GitHub. The third option is to load the parameters from the hydrotope shapefiles. For the
Kerschbaum spring example, we provide the parameters in Table 4.1. Once all parameters were
defined, the Run model button initiates a LuKARS simulation with the given parameter set and
a new window opens that shows the simulated and the observed hydrograph of a regarded karst
spring.
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Table 4.1: Overview of all model parameters for each hydrotope and all recharge areas. A detailed
description of the model can be found in Bittner et al. (2018a) Bittner et al. (2018) and in the
material provided on GitHub.

Hydrotope-specific parameters

Parameter HydQ Hyd1 Hyd2 Hyd3 Parameter description

Ejni [mm] 0 1 1 1 Initial value of hydrotope storage
E,in [mm] 0 23 60 90 Hydrotope storage under dry cond.
Eppax [mm] 1 31 120 200 Hydrotope storage under sat. cond.
Egec [mm] 0 35 180 380 Activat. level for secondary springs
Knya [m>d '] 0 90 85 77 Discharge parameter for quickflow
kig[mmm~'d~"] 0 0.02  0.0055 0.0025 Discharge coeff. for recharge

ksee [mmm~1d=1] 0.9 0.095 0.026 0.022  Secondary spring discharge coeff.
a[-] 0 0.9 0.8 0.55 Quickflow exponent

ljyq [m] 550 1600 900 960 Mean hydrotope distance to spring
Flmmdlecl] 4 4 4 4 Melt factor in degree-day method
Ty [°C] 0.5 0.5 0.5 0.5 Temp. threshold for snow melt
Ly [mm] 0 5 5 5 Max. interception of land use
Baseflow storage parameters

kp [m mm~'d~!1]  0.00043 Baseflow discharge coefficient

Ep jni [mm] 2900 Initial value of baseflow storage

4.3.3 Post-processing

The newly opened window allows to visually compare the simulated and the observed time series
(Fig. 4.3d). Moreover, the window is split into two frames, one for the calibration and one for the
validation period. For both periods, two objective evaluation criteria are calculated, namely the
mean absolute error (MAE) and the Nash-Sutcliffe Efficeny (Nash and Sutcliffe, 1970). In case
those criteria do not show an acceptable goodness of fit for the calibration period, we can go back to
the Define parameters interface and change the parameters. During this trial-and-error calibration,
the modeler should only focus on the goodness of fit in the calibration window of course. In order
to better focus on parts of the simulation period, we can zoom into a period of interest, e.g. a
high flow event, to see which properties of the measured time series are matched by our simulated
time series and which are not. This calibration procedure can be continued until an acceptable
parameter set was found. Once such a parameter set was identified, we can save the graph as an
image file which can then be shared with stakeholders or included in a report. Also, the simulated
time series can be exported as a txt or csv file using the Save simulation results function in the
Define parameters interface. Finally, we can save the hydrotope parameters to the attribute table of
the respective hydrotope shapefiles by applying the Write parameters to shp file(s) function in the
Define parameters interface. This allows to easily share the relevant model files with stakeholders
and to apply the model on other computers without the need to define the parameters from scratch.
Once having written the parameters to the shapefiles, they can directly be loaded to the Define
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parameters interface by clicking Load parameters from shapefile(s). It is important to note that no
automatic calibration procedure is coupled to LuKARS in FREEWAT so far but will be included
in future releases.

Additional post-processing tools are provided in the FREEWAT environment, in particular in
OAT. The OAT Method integrates several statistical analysis tools that can be used to compare the
simulated and observed time series. For more details about these tools, the interested reader is
referred to Rossetto et al. (2018).

4.3.4 Land use change impact modeling

Once a reliable parameter set was identified, we can use this parameter set to simulate the hy-
drological impacts of a land use change on karst spring discharge. To do so, modified hydrotope
shapefiles are needed that include the respective land use change compared to the original set of
hydrotopes. Several ways exist how land use change scenarios and modified hydrotope shapefiles
can be generated, e.g. participatory approaches (Mehdi et al., 2018) or repetitive field mapping
campaigns (DWA, 2018). Another possibility, which was chosen by Bittner et al. (2018a), is to
derive land use changes from change detection analysis with orthophotos. In order to copy the
parameter set found during calibration to the modified hydrotope shapefiles, we can use the Copy
[from vector layer tool in FREEWAT. This function copies the attribute tables from the original
hydrotopes to the new ones. By that, we can avoid to manually enter the parameters in LuKARS
again. Using the modified hydrotopes, a LuKARS run can be performed and the effects of the
respective land use change on spring discharge can be evaluated. As an example, we provide such
a set of hydrotope shapefiles including the land use change modeled in Bittner et al. (2018a) on
GitHub.

4.4 Discussion

Given that the FREEWAT project ended in 2017, the maintenance of the initiative now depends
on joint efforts by the developers group and those who like to contribute to it. In our study, we
highlight that previous research studies and related outcomes can act as a platform for further
developments and enhancements. The LuKARS integration in FREEWAT provides a GUI for a
lumped karst aquifer model, making its application more intuitive for stakeholders dealing with
water management issues in karst systems. Possible stakeholders who may use LuKARS in the fu-
ture are researchers, water resources managers, public authorities, engineers and non-governmental
organizations. They can be reached by the broad number of persons who already apply FREEWAT
and are informed about new releases, by social media and stakeholders workshops.

LuKARS represents a complementary GUI for karst hydrologic modeling since the way how
it conceptualizes karst aquifers is different as compared to the KarstMod platform introduced by
Mazzilli et al. (2019). The integration approach was chosen following the state of the art of soft-
ware development, i.e. object-oriented. Thus, the Python model classes and the implemented
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functions can easily be accessed, applied and adapted by interested persons who are familiar with
programming. Nevertheless, some improvements are envisaged for future releases in order to en-
hance the applicability of LuKARS in FREEWAT. So far, the generation of hydrotope shapefiles
is based on field mapping campaigns using different mapping approaches. However, a map-based
generation of hydrotope shapefiles should be made possible if detailed information about soil phys-
ical properties and land use is available in form of raster and/or vector data. We plan to create an
automated procedure that can process available soil and land use data in order to generate hydro-
tope shapefiles within a GIS environment.

A limitation of the current LuKARS version in FREEWAT is that it requires manual calibration.
However, lumped karst aquifer models are typically calibrated with automatic calibration routines
(Hartmann et al., 2017; Teixeira Parente et al., 2019a). It is foreseen to implement an automatic
calibration framework in the modular structure of FREEWAT, such that it will be usable also for
other models available in the platform. For example, we believe that implementing the SAFE
toolbox by Pianosi et al. (2015) into the FREEWAT framework would be very welcome by the
user community.

Finally, the current version of LuKARS allows for the definition of up to four hydrotopes.
Larger scale studies may require a larger number of hydrotopes. However, this would lead to a
rapid increase of fitting parameters and the risk of overfitting. The opportunity of increasing the
number of hydrotopes should be tested for different case studies, e.g. using the World Karst Spring
hydrograph (WoKaS) database presented by Olarinoye et al. (2020), and made available along with
an automatic sensitivity and parametric uncertainty toolbox.

4.5 Conclusions

In this paper we introduce a user-friendly environment for modeling the impacts of land use
changes on the spring discharge of a karst system. We integrated the LuKARS model into the
FREEWAT environment, which is a water resources management toolkit implemented as a plu-
gin in QGIS. The advantages of the OuKARS integration following the tight-coupled FREEWAT
approach are, that

1. QGIS serves as a GUI and provides a useful platform to map, store and change the dominant
hydrotopes in a recharge area of interest,

2. FREEWAT’s modular framework for hydrological modeling, i.e. pre-pro-cessing, simulation
codes and post-processing represents a tailored framework to bring in new model codes that
make the FREEWAT environment more comprehensive,

3. Stakeholders can use the measured and simulated time series obtained with the LuKARS
model and apply all analysis tools present in FREEWAT.

We want to emphasize that FREEWAT provides a valuable environment with open source mod-
eling and analysis tools that can easily be applied by stakeholders. The continuous discussions in
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this group of researchers and practitioners guarantees that the framework improves while remain-
ing applicable. Moreover, this close cooperation also makes sure that only tools will be integrated
which are considered beneficial for FREEWAT and its end-users.
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Chapter 5

Uncertainty quantification of LuKARS and
parameter dimension reduction using active
subspaces

Teixeira Parente et al. (2019a)’

Abstract

In this article, we perform a parameter study for a recently developed karst hydrological model.
The study consists of a high-dimensional Bayesian inverse problem and a global sensitivity anal-
ysis. For the first time in karst hydrology, we use the active subspace method to find directions
in the parameter space that dominate the Bayesian update from the prior to the posterior distribu-
tion in order to effectively reduce the dimension of the problem and for computational efficiency.
Additionally, the calculated active subspace can be exploited to construct sensitivity metrics on
each of the individual parameters and be used to construct a natural model surrogate. The model
consists of 21 parameters to reproduce the hydrological behavior of spring discharge in a karst
aquifer located in the Kerschbaum spring recharge area at Waidhofen a.d. Ybbs in Austria. The
experimental spatial and time series data for the inference process were collected by the water
works in Waidhofen. We show that this case study has implicit low-dimensionality, and we run an
adjusted Markov chain Monte Carlo algorithm in a low-dimensional subspace to construct sam-
ples of the posterior distribution. The results are visualized and verified by plots of the posterior’s
push-forward distribution displaying the uncertainty in predicting discharge values due to the ex-
perimental noise in the data. Finally, a discussion provides hydrological interpretation of these
results for the Kerschbaum area.

I Teixeira Parente, M., Bittner, D., Mattis, S., Chiogna, G., Wohlmuth, B., 2019a. Bayesian calibration and sensi-
tivity analysis for a karst aquifer model using active subspaces. Water Resources Research, 55, 7086-7107.
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5.1 Introduction

Models are commonly used in karst systems to investigate the dominant hydrological processes and
the quantity and quality of water resources in well-defined surface or subsurface catchments. Var-
ious karst modeling approaches exist, ranging from black-box models (Labat et al., 2000, 1999;
Juki¢ and Denié-Juki¢, 2008), i.e., transferring an input signal to a desired output signal, over
lumped parameter models (grey-box) (Fleury et al., 2009; Mazzilli et al., 2017; Sivelle et al.,
2019) to distributed process-based models (Reimann and Hill, 2009; Giese et al., 2018; Henson
et al., 2018; Sauter et al., 2006). Given their ability to represent the physical characteristics of
a catchment in detail, distributed process-based models are usually the first choice in water re-
sources research. In the particular case of karst aquifers, however, acquiring the relevant data for
these models is challenging due to the heterogeneous nature of karstic systems and their mostly
unknown subsurface drainage systems (Xu et al., 2018). Also, past studies have shown that even
if physical parameters may be obtained from field observations, the fact that they mostly rep-
resent point measurements can lead to a severe mismatch when using these parameters in dis-
tributed hydrological models (Hogue et al., 2006; Rosero et al., 2010). For these reasons, lumped
process-based models are commonly accepted modeling approaches in karst water resources re-
search (Juki¢ and Deni¢-Jukic¢, 2009; Jourde et al., 2015; Hartmann et al., 2013b). The parameters
of such lumped modeling approaches are typically not directly measurable in the field and need to
be estimated in the framework of model calibration (Hartmann et al., 2017). This leads to a deci-
sive trade-off: on the one hand, lumped models based on a low number of calibration parameters,
e.g.,4 to 6, are less prone to non-uniqueness in parameter identification (Jakeman and Hornberger,
1993; Beven, 2000), i.e., different parameter combinations lead to the same result. However, the
representation of the dominant hydrological processes in karst systems may be too simple and not
sufficiently represented by this low number of parameters (Hartmann et al., 2013a). In contrast, by
including more calibration parameters to better represent relevant processes in the model structure,
such as the effect of land use changes on spring discharges, the parameters may become unidenti-
fiable, which can reduce the prediction accuracy of the model (Hartmann et al., 2014a). To tackle
the challenge of applying lumped parameter models with a high-dimensional parameter space for
karst hydrological research studies, there is a need to perform comprehensive parameter studies to
avoid model overparametrization and to reduce model parameter and output uncertainties.

With the rise of computational power in the last two decades, Bayesian inverse problems have
become a popular part of comprehensive parameter studies for hydrological models (Engeland
and Gottschalk, 2002; Kavetski et al., 2006; Kitanidis and Lee, 2014; Thiemann et al., 2001). In
contrast to classical inverse problems, whose formulation is often ill-posed, a Bayesian problem
formulation introduces regularizing prior information which gives a different formulation that is
mathematically well behaved. Bayesian inversion aims at finding a posterior distribution on the
model parameters incorporating the information of measured, noisy data, e. g., spring discharge.
The posterior, which is also used to quantify uncertainty in the inferred parameters, is proportional
to the product of the likelihood function and the prior, a distribution that is assumed to be known
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for the model parameters based on prior knowledge, e. g., resulting from field campaigns or manual
model calibration.

The most common strategy used for approximating a posterior is to construct samples from
the distribution with desired properties. Markov chain Monte Carlo (MCMC) and its derivatives
are popular sample-based techniques (Vrugt et al., 2008; Martin-Arias et al., 2020); however, they
present computational challenges. These algorithms generally require a very large number of eval-
uations of the model to provide an acceptable result. In the hydrological community, where a
single model evaluation is often quite computationally expensive, naive implementations of these
methods may not be viable, and having too few samples causes the solution to be polluted with
sampling error. One way to reduce this effect is to construct a surrogate model that has a much
lower computational cost. Common approaches for global surrogate models include stochastic fi-
nite element approaches for forming polynomial approximations (Xiu and Karniadakis, 2002; Wan
and Karniadakis, 2006; Le Maitre et al., 2004a,0) and using tensor grid or sparse grid stochastic
collocation methods (Almeida and Oden, 2010; Nobile et al., 2008). Another strategy is to use
adaptive sampling methods to reduce sample-based error as shown in e. g., Haario et al. (2006);
Vrugt et al. (2009); Mattis and Wohlmuth (2018). Another attribute that affects the computational
expense of sample-based approximation methods is high-dimensionality in the space of uncertain
parameters because it may slow the identification of areas of high probability and has the tendency
to produce highly correlated samples. There has been much effort in developing algorithms that
are more efficient and reduce computational expense due to high-dimensional parameter spaces by
effectively reducing the dimension (Boyce and Yeh, 2014; Bui-Thanh and Girolami, 2014; Con-
stantine et al., 2016; Cui et al., 2016).

A relatively new technique for dimension reduction is the active subspace method presented
in Constantine et al. (2014), Constantine (2015), and Russi (2010), which seeks orthogonal direc-
tions in the space of parameters that dominate the Bayesian update from the prior to the posterior
distribution. These dominant directions span the subspace and define a new coordinate system a
low-dimensional Markov chain can move in. Chains in lower dimensions have preferable proper-
ties concerning autocorrelation times which makes them more efficient when producing posterior
samples of hydrological model parameters. As a bonus, the active subspace can be exploited
also to calculate global sensitivity metrics for individual parameters as shown in Constantine and
Diaz (2017). The active subspace method has previously been successful in reducing the effec-
tive dimension of parameter spaces, e. g., for efficient Bayesian inversion of a complex subsurface
process (Teixeira Parente et al., 2019b), or to study sensitivities in a hydrological model (Jefferson
etal., 2015). An added benefit of the active subspace method is that there is a natural cheap global
surrogate model embedded in the method via global polynomial regression in the low-dimensional
active subspace. Thus the advantage of the active subspace method is threefold: it effectively re-
duces the dimension of the Bayesian inverse problem, it easily produces global sensitivity metrics,
and it naturally allows for the construction of a cheap global surrogate model. All of these are
gained from the same moderate number of forward model evaluations.

While several hydrological studies address the issue of model parameter sensitivities for infer-

75



Uncertainty quantification of LuKARS and parameter dimension reduction using active subspaces

ence (e. g. Cuntz et al. (2016); Mockler et al. (2016); Vanuytrecht et al. (2014)), there has been little
effort in karst hydrological research to investigate the low-dimensionality of a corresponding pa-
rameter estimation problem (e. g., Sarrazin et al. (2018)). Our approach is different to these studies
in the sense that we study dominant directions in parameter spaces and do not focus on sensitivities
of coordinate-aligned, i. e., individual parameters. In this regard, the objective of this manuscript
is the introduction of the active subspace method to the field of karst hydrology as a technique for
dimension reduction and sensitivity analysis in parameter studies. We demonstrate this method
and its mentioned advantages by investigating parameter relationships in the LuKARS model, a
lumped karst aquifer model with a high-dimensional parameter space that was recently developed
by Bittner et al. (2018a) to perform land use change impact studies in karstic environments. We
hypothesize that it is possible to reduce the dimensions of the parameter space in LuKARS, thus
saving computational cost, and to better constrain the parameter ranges of the most sensitive model
parameters leading to a reduction in model parameter and model result uncertainties.

This article is organized as follows. Section 5.2 provides a brief introduction into the study
area and the structure of the LuKARS model. In Section 5.3, we explain Bayesian inversion, how
we exploit active subspaces for it, the construction of global sensitivity values and the concrete
setting for our application. The computational results are presented in Section 5.4, followed by a
comprehensive discussion in Section 5.5 in which we also comment on limits and transferability
of the proposed method. Finally, we conclude with a summary in Section 5.6.

5.2 Case study

5.2.1 Kerschbaum spring recharge area

The karst spring that we investigate in the present study is the Kerschbaum spring located about
10km south of the city of Waidhofen a.d. Ybbs (Austria) (Fig S1 a and b). Its recharge area
was delimited in a former study by Hacker (2003) and comprises about 2.5 km?. This pre-alpine
catchment is part of the eastern-most foothills of the Northern Calcareous Alps with the lowest
elevation of 435 m at the Kerschbaum spring and a maximum elevation of 868 m on the summit of
the mountain Glashiittenberg. The climate of the study area can be described as warm-moderate,
with an annual mean temperature of 8°C and an annual mean precipitation of 1379 mm, both
determined from daily measuring data recorded at the Hinterlug weather station between 1981 and
2014. Forests represent the dominant land cover in the study area with beeches as primary tree
species. Moreover, parts of the recharge area are used for dolomite mining.

From a geological point of view, the entire recharge area of the Kerschbaum spring is dom-
inated by a lithologic sequence of Triassic dolostones (Fig. S1 c). Apart from the absence of
significant sinkholes in the regarded recharge area, leading to the fact that diffuse infiltration plays
a key role for groundwater recharge, Hacker (2003) also provided evidence for a deep karstified
aquifer system with a well-connected drainage system through fractures and conduits in the Ker-
schbaum spring aquifer. It is important to note that the Kerschbaum spring represents the most
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important source for the freshwater supply of the city and the surroundings of Waidhofen and is
thus of particular interest for water resources research studies (Bittner et al., 2018a).

5.2.2 The LuKARS model

The LuKARS model was recently proposed by Bittner et al. (2018a) with the aim to investigate
the hydrological effects of land use changes in karst systems. LuKARS therefore considers the
dominant hydrotopes in a defined recharge area, i. e., areas characterized by homogeneous soil and
land cover properties, as distinct spatial units. The sum of the individual hydrotope responses to
a given input signal (e. g., precipitation) plus the contribution of a shared linear baseflow storage
is then the total spring discharge that should be modeled at a catchment’s outlet. As input data,
the model itself needs a precipitation time series as well as the hydrotope soil information to run.
If further processes affecting the effective precipitation are considered, such as interception and
evapotranspiration, further input data is required. In our case, we also take into account snow melt
and accumulation, interception and evapotranspiration, for which we further need a temperature
time series with a daily resolution. Moreover, a measured discharge time series is needed from
the spring of interest to calibrate and validate the model. In the particular case of the Kerschbaum
spring, the discharge is measured with a flowmeter directly in the spring. The discharge, precipi-
tation, and temperature time series with a daily resolution for our model period from 2006 to 2008
were kindly provided by the water works Waidhofen a.d. Ybbs. The input time series are shown
in Fig. S3. The LuKARS model for the Kerschbaum spring in Waidhofen a.d. Ybbs was set up
in Bittner et al. (2018a) and includes four spatially lumped dominant hydrotopes in the considered
recharge area, shown in Fig. S2. Hydrotopes 1-3 have beeches as dominant tree species; however,
they differ in terms of their individual soil characteristics and spatial shares. While the first hydro-
tope (denoted by Hyd 1) covers 13% of the recharge area and is characterized by shallow soils with
mostly coarse-grained soil particles, hydrotope 3 (denoted by Hyd 3), in contrast, covers 27% of
the catchment and is defined by deeper and fine textured soils. Hydrotope 2 (denoted by Hyd 2) has
the largest spatial share in the Kerschbaum spring recharge area (56%) and represents a transition
hydrotope between Hyd 1 and Hyd 3 with moderate soil thicknesses and coarse to fine-textured
soils. Hydrotope Q (denoted by Hyd Q) characterizes the dolomite quarries, which covered about
4% of space in the recharge area during the model period (2006-2008) in this study.

From a hydrological point of view, the areas of the dolomite quarries are drained by surface
runoff and do not contribute to the Kerschbaum spring discharge. As an obligation to avoid a possi-
ble contamination of the aquifer from the quarry areas, a protective layer consisting of fine material
prevents infiltration into the groundwater system. Thus, Hyd Q is excluded from model calibration
and will not be mentioned hereafter. Also, Bittner et al. (2018a) derived the baseflow coefficient &,
to match the relatively constant baseflow discharge of the Kerschbaum spring with its low temporal
variability. For this reason, as well as to put the focus on calibrating the hydrotope parameters, &y
was chosen as calibrated by Bittner et al. (2018a). More details about the LuKARS model, i.e., a
description of the equations used in LuKARS and the relevant parameters, are provided in A.1. In
the following, we use an index i € {1,2,3} to denote specifications for Hyd i.
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Each hydrotope is modeled as an independent bucket that has three different discharge com-
ponents. The first, representing quickflow (Qnya;) occurring via preferential flow paths (e. g.,
conduits), is described by a non-linear hysteresis function that is activated once a defined storage
threshold (emax i) is reached and stops after the storage value falling below a predefined minimum
storage value (emin;). The second and third discharge components are both implemented by a
linear discharge function and represent the discharge to a shared baseflow storage (Qjs ;) as well
as secondary spring discharge (Qgec,), i. €., a discharge component that transfers water out of the
catchment and does not contribute to the spring discharge. All together, seven parameters need to
be calibrated for the implementation of each single hydrotope. These are the discharge parameter
knyq,; and the dimensionless exponent @; for Qyyq,;, the storage thresholds for the quickflow acti-
vation (emin ;) and (emax,;), parameter k;s ; as the discharge coefficient of Qj; ; and, finally, kgec; and
esec,i as the discharge coefficient and the activation level for Qg i, respectively. Given the different
physical characteristics of all defined hydrotopes, the parameters of one hydrotope need to follow
some constraints with respect to the parameters used for the implementation of other hydrotopes.
From a practical point of view, this means that a hydrotope with shallow and coarse-grained soils
(e. g., Hyd 1) needs to have a lower storage capacity and higher discharge coefficient as compared
to a hydrotope with deep and fine-textured soils (e. g., Hyd 3). For the particular case of the three
hydrotopes in the Kerschbaum spring recharge arca, the parameter constraints are given as follows:

khyd,1 > knyd.2 = Knyd 3
€min,1 < €min2 < €min3
emax,1 < €max.2 < €max.3
o >0 > 03 5.1)
kis,1 > kis2 > kis3
ksec,1 > ksec2 = ksec.3
€sec,1 < €sec2 < Csec.3

Although the introduced condition for the ¢ values is not strictly necessary, we implemented it
to further enhance the quick response of hydrotopes with a low difference between ey, ; and emax i
and a generally low value of en,x ; during high precipitation events. (Bittner et al., 2018a) manually
calibrated the LuKARS model for the Kerschbaum spring recharge area. Based on this trial-and-
error calibration, it was possible to reliably determine possible ranges of all model parameters.
These are shown in Table 5.1 and will be used as prior parameter intervals for the presented study
in a Bayesian setting.

5.3 Parameter inference

In this section we present our approach for solving the Bayesian inverse problem of inferring
parameter information for the LuKARS model. Since high-dimensional parameter spaces compli-
cate Bayesian inference, we utilize the active subspace method, a recent emerging set of tools for
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dimension reduction. We focus the inference process only with a few linear combinations of pa-
rameters that are dominantly driving the update from the prior to the posterior distribution. After
the method is explained formally, but with links to the actual hydrological problem, we explain
Bayesian inversion and its application in detail.

Table 5.1: Prior intervals for physical parameters

No. Parameter Lower bound Upper bound Unit Description

1 knyd.1 9 900 m>d~! discharge parameter for Onyq,1
2 €min, 1 10 50 mm min. storage capacity Hyd 1
3 €max.1 15 75 mm max. storage capacity Hyd 1
4 ap 0.7 1.6 - quickflow exponent of Hyd 1
5 kis,1 0.002 0.2 mmm 'd~!  discharge parameter for Qj |
6 ksec,1 0.0095 0.95 mmm~!d~" discharge parameter for Osec.1
7 esec,1 25 70 mm activation level for Qgec 1

8 khyd,2 8.5 850 m2d~! discharge parameter for Qhyq»
9 €min,2 40 80 mm min. storage capacity Hyd 2
10 €max,2 80 160 mm max. storage capacity Hyd 2
11 (073 0.5 1.3 - quickflow exponent of Hyd 2
12 kis 0.00055 0.055 mmm~'d~!  discharge parameter for Oy >
13 ksec 2 0.0023 0.23 mmm~'d~"  discharge parameter for Qgec 2
14 sec2 130 220 mm activation level for Ogec 2
15 khyd,3 7.7 770 m’d ! discharge parameter for Qyyq 3
16 €min3 75 120 mm min. storage capacity Hyd 3
17 €max,3 160 255 mm max. storage capacity Hyd 3
18 o3 0.2 0.7 - quickflow exponent of Hyd 3
19 kis 3 0.00025 0.025 mmm~!d~!  discharge parameter for Qj; 3
20 ksec 3 0.0015 0.15 mmm !d ! discharge parameter for Qgec 3
21 Csec 3 320 450 mm activation level for Qyec 3

5.3.1 Active subspaces

The active subspace method, introduced in Constantine et al. (2014), Constantine (2015), and
Russi (2010), identifies dominant directions in the domain of a multivariate, scalar-valued function
f:R" — R. In our context, f is a data misfit function (details in Section 5.3.3) which quantifies
the mismatch between observed and simulated spring discharge and is defined on the space of
parameters to be calibrated. In other words, we seek directions on which f varies more than on
other directions, on average. Consider a function f of the form f(x) = g(ATx) for each x € R”,
where A e R"™K 0 <k <n,isa rectangular matrix. Such functions are called ridge functions; see
Pinkus (2015). Take a vector v € R” from the null space of AT, ie., ATv=0, and compute

fx+v) =g(AT(x+v)) = g(ATx) = f(x). (5.2)
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This equation shows that f is constant along the null space of AT meaning that the n-dimensional
function is actually intrinsically k-dimensional. In practice, the goal is relaxed to finding approxi-
mations g and A such that it holds that f(x) ~ g(Ax). For the hydrological problem of interest,
it means that we try to find a few directions in the parameter space that are significantly informed
by the discharge data. We will see that some, but not all, directions change from the prior to
the posterior distribution. This fact is exploited to save a considerable amount of computational
expense.

Note that this is a different approach compared to other sensitivity analysis methods like rotal
sensitivity indices (or Sobol indices) (Sobol, 2001) and Factor Priorisation (Saltelli et al., 2008).
These methods investigate coordinate-aligned sensitivities, i. e., associated with a particular param-
eter (factor) of a hydrological model. Active subspaces can be viewed as a generalization in the
sense that we study dominant “directions” within a parameter space, or, more precisely, we look
for linear combinations of parameters that dominate the model output (here, spring discharge) on
average.

In the following, we assume that f is continuously differentiable and has partial derivatives
that are square-integrable with respect to a given probability density function p. We study a matrix
which is the p-averaged outer product of the gradient of f with itself, i.e.,

CEV/XVI)| = [ VI0VS) p(x) dx. 5.3)

In the parameter estimation problem, the weighting probability density p is the prior density, de-
fined for every model parameter, from the Bayesian inversion context (Section 5.3.3). Note that
C € R™" is symmetric and positive semi-definite. For some vector v € R”, compute

vICv=E[(v' Vf(X))?. (5.4)

Thus, v' Cv displays the averaged variation of our objective function f along v. This quantity is
maximized (in the set of unit vectors) by the normalized eigenvector v; of C corresponding to the
largest eigenvalue A; and gives

E[(v[ VF(X))*] = L. (5.5)

For example, if vi = e = (1,0,...,0)T, it means that f is most sensitive (on average) w.r.t.
changes of the first parameter. Since small eigenvalues mean a small variation in the direction
of corresponding eigenvectors, this observation suggests to compute an orthogonal eigendecom-
position C = WAW ", where W = [wy, ..., w,] contains the eigenvectors and A = diag(Ay,. .., A,)
contains corresponding eigenvalues in decreasing order. The symmetry of C allows us to choose
w; giving an orthonormal basis of R". The eigenvalues and eigenvectors can be exploited to span a
lower-dimensional space along which f is dominantly varying. We can decide to split W after the
k-th column and to neglect the space spanned by Wy.1,..., Wy, i.€.,

W= (W, W, (5.6)
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such that Wy € R™F and W, € R ("% We write
x=WW ' x=Wy+ Wy, (5.7)

where y :== W[ x is called the active variable and z := W, x the inactive variable. The span of
Wi, i.e., Z(Wy) := {Wv|v € R*}, is called the active subspace (of f). In other words, the
coordinate system is transformed to a new orthogonal basis given by the eigenvectors. The new
axes corresponding to the eigenvector with the largest eigenvalue is aligned to the direction of
maximum averaged variation of f in the original coordinate system.

The matrix C is generally not available exactly in practice and must be approximated. Con-
stantine and Gleich (2014), Holodnak et al. (2018) and Lam et al. (2018) proposed and analyzed a
Monte Carlo approximation, i.e.,

Cz(?::l
Nf

M=

VIX)VAX))', (5.8)
1

where X; ~ p, j=1,...,N > 0. The recommended number of samples N required to get a suffi-
ciently accurate estimate of eigenvalues and eigenvectors is heuristically given by

N ~ B mlog(n) (5.9)

for a so-called sampling factor B € [2,10]. The factor m € N denotes the number of eigenval-
ues/eigenvectors to be estimated accurately. The heuristic is motivated in Constantine and Gleich
(2014) by results from random matrix theory in Tropp (2012). We utilize bootstrapping (Constan-
tine and Gleich, 2014; Efron and Tibshirani, 1994) to ensure that the number of gradient samples
N provides a sufficiently good approximation of the eigenvalues of C. Since Cis only an approxi-
mation/perturbation of the exact matrix C, eigenvalues and eigenvectors are also only available in
perturbed versions, i. c.,

C=WAW'". (5.10)

Perturbed active and inactive variables are denoted by ¥ := WIX and Z == W;rx, respectively.
We additionally need a function ¢ defined on the low-dimensional (perturbed) active subspace
approximating f as a ridge function, i.e.,

f(x) ~ §(Wx) (5.11)

for each x € R". It is known that the best approximation in an L? sense is the conditional expecta-
tion conditioned on the active variable y, i.e.,

o=,

R"ikf(VVli +WaZ) pyy (2

§) di. (5.12)

The conditional probability density function Pz% is defined in the usual way, see e. g., Billingsley
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(1995, Section 20 and 33).

In Section 5.4, we make use of a cheap response surface to ¢ gained by a polynomial regres-
sion approach since evaluating g, or even a Monte Carlo approximation of it, can get costly due
to additional evaluations of f required. This surrogate is constructed according to instructions
described in Algorithm 1. There are several examples in the literature that show that a polyno-
mial approximation can be useful in the context of active subspaces, e. g., (Cortesi et al., 2017;
Teixeira Parente et al., 2019b). The accuracy of a regression fit is measured by the 2 value, or
coefficient of determination (see, for example, Glantz and Slinker (1990)).

Algorithm 1 Response surface construction
Assume M > 0 samples x;, i = 1,...,M, according to p and corresponding function values f;,
i=1,...,M, are given.

1. Compute samples ¥; in the active subspace by

yi=W/x, i=1,....M. (5.13)

2. Find a regression surface G for pairs (¥;, f;) such that

G~ f, i=1,...M (5.14)

3. Get a low-dimensional approximation of / at x by computing

/(%) = G(W/ x). (5.15)

5.3.2 Global sensitivity analysis with active subspace

Constantine and Diaz (2017) show that it is possible to get global sensitivity values from the active
subspace that are comparable, in practical situations, with more familiar metrics like variance-
based sensitivities, also known as total sensitivity indices or Sobol indices (Saltelli et al., 2008;
Sobol, 2001).

Since the expensive computations for building the matrix C are already done, no further huge
computational costs are needed. By “global” we mean that the sensitivities, assigned to each
parameter individually, are averaged quantities. In particular, the matrix C from Eq. (5.3), which
will be exploited to compute global sensitivities, is constructed with gradients of the function of
interest f at different locations weighted with a given probability density p. For our application of
the LuKARS model, the function f and the density p are taken to be data misfit function and the
prior density of the model parameters from the Bayesian context described in Section 5.3.3.

The vector of sensitivities s € R”, in which the i-th component displays the (global) sensitivity
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of f w.r.t. parameter x;, is in Constantine and Diaz (2017) computed via
m
si = si(m) = Z ljw?_j, i=1,....m0<m<n. (5.16)
=1

Here, we will set m = n. Thus, we can write more compactly
s(n) = (WoW)A, (5.17)

where A = (A,...,A4,) " € R"is the vector of eigenvalues and o denotes elementwise multiplica-
tion.

Similarly to the estimated quantities in previous sections, we will only have an estimate §
available due to the finite approximation of C. In general, it is hard to give strict bounds for the
number of samples N required to get a sufficiently accurate approximation to s. Hence, we use as
many samples as were shown to be sufficient in (Constantine and Diaz, 2017).

5.3.3 Bayesian inversion

The aim of Bayesian inversion is to approximate a posterior probability distribution on the space of
parameters x € R", n € N, that incorporates uncertainty in the estimated parameters due to noise in
the measured discharge data. Stuart (2010) gives a rigorous mathematical framework for Bayesian
inverse problems, even in infinite-dimensional parameter spaces. The starting point in Bayesian
inversion is a prior probability distribution ppyior that serves as a first guess on the distribution of the
model parameters without any incorporation of measured hydrological data. The prior also serves
to regularize the inverse problem. This choice is often driven by intuition or expert knowledge.
Mathematically speaking, we seek a distribution on x conditioned on the observation of specific
measured data. This leads directly to the well-known Bayes’ theorem.
Datad € R", ngq € N, are here modeled as

d=9(x)+n, (5.18)

where 17 ~ .#7(0,I") is additive Gaussian noise, modeling measurement errors, with mean zero
and covariance matrix I' € R"¢*" and & : R" — R™ is called the parameter-to-observation map.
This map is composed of a forward operator G : R" — V, displaying, e.g., the solution to a
partial differential equation (PDE), and an observation operator 0 : V — R, being, e. g., a linear
functional on the PDE solution space V. For the LuKARS model, ¢ is the mapping from the
calibration parameters x (related to parameters in Table 5.1 and described in Section 5.3.5) to the
discharge values. By Bayes’ theorem, we can define the posterior density as
_ Plike (x) pprior(x)

Ppost(X) = ppost(x|d) = -z (5.19)

where Z := [pu Prike (X') Pprior(X') dX is a normalizing constant to get a proper probability density
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with unit mass. The likelihood pijxe denotes the probability that a parameter x is explaining the
discharge data d corrupted by noise. In this context, i.e., assuming additive Gaussian noise, the
likelihood is given by

Prike(x) o< exp(— fa(x)) (5.20)

with the data misfit function fa(x) = [|d —%(x)||Z and ||-||r := [T /2|5 Note that the data
misfit function is not a typical squared error function, but involves weights by the noise covariance
matrix I".

The posterior density is often intractable since its evaluation requires the solution of a poten-
tially computationally intense problem hidden in the forward operator G. The situation becomes
even worse if the inverse problem is stated in a high-dimensional parameter space. Whereas a
single run of the LuKARS model is sufficiently cheap in our case study, the issue is the high-
dimensionality of the problem. A common way to approximate an expensive posterior distribution
is to construct samples distributed according to the posterior. However, many sampling techniques
suffer from the curse of dimensionality. Well-known sampling approaches comprise, €. g., Markov
chain Monte Carlo (MCMC), Sequential Monte Carlo (SMC), Importance Sampling, and combi-
nations of them.

In this work, we use a Metropolis-Hastings algorithm from Hastings (1970) which belongs to
the class of MCMC methods. The algorithm constructs a discrete Markov chain whose components
are taken as samples and are stationarily distributed according to the desired distribution which is
the posterior here. The samples are naturally correlated which is a drawback compared to other
sampling techniques that produce independent samples. However, advantages of this algorithm
are the absence of restricting assumptions and the fact that it does not suffer from the curse of
dimensionality as badly as other samplers. Nevertheless, MCMC methods can have deteriorating
behavior in higher dimensions because the number of steps needed to get a sufficiently small
correlation between two samples can be rather large. Since the forward operator G is evaluated
in every step in the Metropolis-Hastings algorithm, the standard usage of the algorithm can get
computationally expensive, especially if G is costly.

In this manuscript, we run a standard Metropolis-Hastings algorithm in low dimensions. For
finding low-dimensional structure in our problem, we apply the active subspace method, described
in the previous subsection, which allows to find dominant directions in a parameter space that
drive the update from the prior to the posterior distribution in Bayesian inverse problems. Addi-
tionally, it provides a cheap surrogate of the data misfit function in the low-dimensional space (see
Section 5.3.1).

5.3.4 MCMC in the active subspace

For Bayesian inversion, the function of interest that we aim to approximate with a low-dimensional
approximation is the data misfit function fg from Eq. (5.20), i.e.,

1
Ja(x) = 5lld=F (x|t (5.21)
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The gradient of f3 needed for the computation of C is
Via(x) = V¥ (x) T H(9(x) - d), (5.22)

where V¥ denotes the Jacobian matrix of the parameter-to-observation operator ¢ which models
the relationship between model parameters and discharge values in the LuKARS model.
Not only the perturbed active subspace, but also a cheap surrogate Gq for gg, given by

2ald) = [ So(Wig+ W) pyys (319) dz, (5.23)

can be exploited for an accelerated MCMC algorithm in lower dimensions producing posterior
samples for a Bayesian inverse problem as shown in Constantine et al. (2016). The construction of
Gq as a polynomial approximation is described in Algorithm 1. Note that there are no additional
full model evaluations necessary for this construction. The full model evaluations that we get as
a byproduct of the gradient calculations (see Eq. (5.22)) can be reused. By acceleration, we mean
that the mixing behavior of the resulting Markov chains constructed by a standard Metropolis-
Hastings algorithm can improve in lower dimensions. As a consequence, the computational effort
to produce a certain number of posterior samples is reduced.

In a first step, we compute samples of the posterior distribution defined on the low-dimensional
subspace, called active posterior samples. In order to evaluate the (approximate) posterior density
ﬁposd{ in the active subspace given by

Poost ¥ (F) % Pros 5(F) < exp(=Ga(¥)) Pprior 7 (F)5 (5.24)

where Gy is the response surface approximating gq, we need an approximation to Porior, ¥ denoting
the marginal prior density on the perturbed active variable. The marginal prior density is in general
not analytically available and has to be estimated, e. g., with kernel density estimation (KDE). Note
that for the Metropolis-Hastings algorithm it is only important to know the density up to a constant.
The algorithmic details are given in Algorithm 2.

The active posterior samples are naturally correlated. Nevertheless, the autocorrelation time is
much lower compared to higher dimensional Markov chains. The so-called effective sample size
(ESS) displaying estimation quality of a sequence of samples can be computed by a formula from
Brooks et al. (2011),

Ny

N. —_—
12yt )

0555 = (5.26)

The (-th component of a sample § is denoted by §*) and the number of samples available by Ny.
The expression ry) describes the autocorrelation between the /-th component of samples § with

lag j. The maximum lag regarded is given by Jyax. We determine the final effective sample size
with

Ngss = f:?i?kNiukESS‘ (5.27)
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Algorithm 2 MCMC in the active subspace

Assume a state ¥, is given at step i. Let p(-|§;) be a symmetric proposal density function and
denote the surrogate on gq with Gq. Furthermore, suppose a density p estimating Pprior.¥ 1 given.
Then, one step of the algorithm is:

1. Propose a candidate y' ~ p(-|¥).

2. Compute the acceptance probability with
e "N A (v
Y(y’i’i) = min{Lw} . (5.25)
exp )P

3. Draw a uniform sample u ~ % (0, 1].

4. Accept/reject y’ according to u < y(y’,§;).

After completing Algorithm 2, the entire set of active posterior samples ¥ is reduced to a set of
size Ngsg by taking every p-th sample in the chain (where p is chosen such that we get a set of
size Ngsg). The auto-correlation of the chosen samples is thus reduced. This technique is called
thinning (see, e.g., (Link and Eaton, 2012)). The adequacy of the size of samples depends on
their application in general. However, it is possible to check it, for example by bootstrapping or, if
the surrogate is cheap enough, by construction and comparison of multiple Markov chains having
different lengths.

Our final goal is to construct samples of the posterior distribution in the original n-dimensional
space. Eq. (5.7) suggests to sample Z-components for each § from the reduced set of samples
gained from Algorithm 2. Since it is generally not trivial to sample from the conditional distribu-
tion of Z given ¥, pz‘q(i\i), we have to run another Metropolis-Hastings algorithm. Note that for
this sampling, we only need to sample from pyior(W1§ + W»3Z) because pyy is proportional to
that distribution. We again compute (nearly uncorrelated) samples of Z given a particular sample
y to finally translate them to posterior samples x = W]i + W,z in the original full-dimensional
parameter space.

A summarizing flowchart displaying the described steps of our approach is depicted in Fig. 5.1 a).
We emphasize that full model evaluations are only necessary for the construction of the active sub-
space. The surrogate can be constructed with model evaluations ¢ (x;) that we get as a byproduct
from the calculation of gradients, see Eq. (5.22). However, if it is required to perform a check
for the potential issue of overfitting in the regression fit, additional model evaluations are neces-
sary. For example, we computed another 20,000 model simulations to prevent overfitting, although
the original 1,000 evaluations would have been enough (see Section 5.4). Eventually, Fig. 5.1 b)
visualizes the fact that the active subspace method is looking for dominant directions in a high-
dimensional parameter spaces instead of studying sensitivities of coordinate-aligned, individual
parameters.
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‘ Sample N parameters x; according to pprior-

!

‘ Define data misfit function fq with a suitable noise level. ‘

Calculate gradient V f(x;) for every x;.

‘ Compute C = + Zl\zl Vi)V I(x)T. ‘ T ex

‘ Compute eigendecomposition C = WAW . ‘

I

‘T)@cid? for an active subspace and split W = [W; W] ‘

Using Alg. 1, find regression surface Gy for the
data misfit function fq on the active subspace.

Run MCMC in the active subspace with Alg. 2
Lo gel aclive posterior samples y.

Construct posterior samples in the original space by b
(MCMC) sampling from the conditional distribution )
Pz (- |¥) on z given y.

)

Figure 5.1: a) Flowchart displaying the main steps in the present Bayesian inference process with
active subspaces. b) Visualization of a one-dimensional active subspace in a three-dimensional
parameter space. The parameter x € R3 is projected on the active subspace spanned by wi giving
the active variable y; = w] x.

5.3.5 Parameter setting

Before we describe the results of the parameter study in the next section, we discuss the calibrated
parameters and their notation. As mentioned in Section 5.2, there are three hydrotopes with 7
variable parameters each. These parameters are called physical parameters in the following. All
of the 7 parameters have the same physical meaning for each hydrotope.

There are two reasons that lead to the introduction of artificial parameters which we call cali-
bration parameters in the following. One reason is that the k, values are calibrated on a log scale.
Therefore, we define

k% = log(k.) (5.28)

for each k. € {knya.i,kis,i ksec,i}> i = 1,2,3. The second reason is the dependence of the physical
parameters which needs to be circumvented since the application of active subspaces in Bayesian
inverse problems prefers independently distributed and normalized parameters. There exist two
types of dependencies, namely
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1. cross-hydrotope dependencies caused by Eq. (5.1)

2. a dependence between parameters ey ; and emax,i, SINCE emin,; < emax,i-

The first point concerns only parameters in hydrotope 2 and 3. Hence, we write

pi = pity + Ap_yiy (min{piuy, pi-1} — i) (5.29)

or
pi =max{pi_1, pip} + Api—1i(Piwb —max{pi-1,piw}), i=2,3, (5.30)

depending on whether the physical parameter p; € { khydl €min, s oc,,klg l,ksec i»€sec.i} Tollows a de-
creasing or, respectively, increasing behavior (see Eq. (5.1)). The fixed values p; 1, and p; u, denote
the lower and upper bound of respective physical parameters given in Table 5.1. The parameters
Ap; €10, 1] are the newly introduced calibration parameters. They are independent of other cali-
bration parameters. For the second point, we replace (for the purpose of calibration) the parameters
emax,i by Ae; and set

€max,i — emin,,-JrAe,', i= 1,2,3. (531)

The parameter Ae; is now independent of epyy ;. Minimum and maximum values for Ae; are
computed with respective intervals from Table 5.1, i. e., we have

€max,ilb — €min,ilb < Ae; < €max,i,ub — €min.i,ub, (5.32)

which is valid since it holds that emax i 1b — €min,i,lb < €max,iub — €min,i,ub for every i =1,2,3.

Finally, all calibration parameters need to be normalized, i.e., they are mapped from their
corresponding interval to [—1,1]. Normalized parameters are denoted with a bar. Summarizing,
the vector of all normalized independent calibration parameters is

7log  _ - = 7log 7log -
X = (khyd 17emin.17Ael7al;kig 17k§ec 15 €sec,1)

7log og 7log
Dhiyyg (1.2 Drmin,(1.2)5 AELAO‘”)VA"MM) Aksec(lZ)’

7log 7log 21
Akhyd (23) Aemm (2, 3),&63,&0{(2 3)s Ak is,(2,3)" Aksec (23) Aesec (2. 3)) cR“.

Aegee (1.2, (5.33)

5.4 Results

In the following, we assume a normally distributed measurement error (noise) at a level of 5%
for the measured spring discharge as it was kindly provided by the water works owner Waidhofen
a.d. Ybbs for the applied flowmeter. This translates to I';; — (0.05 x di)25[j, i,j=1,...,nq, where
T is the covariance matrix. Additionally, we assume a uniform distribution on the calibration
parameters from Eq. (5.33), i.e., x ~ % [—1,1]?'. The prior intervals for the physical parameters
are given in Table 5.1. Note that the prior distribution on the physical parameters is not uniform
due to the transformation described in Section 5.3.5.
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For the computation of C from Eq. (5.8), we use N = 1,000 gradient samples of V fg, although
only about 250 samples would be necessary to estimate the first m — 8 eigenvectors sufficiently
accurately according to Eq. (5.9) with a pessimistic sampling factor 8 = 10. The reason for choos-
ing this rather large number is to make sure that the global sensitivity values, for which such
heuristics do not exist, are also estimated accurately. The gradient was approximated by central
finite differences. Using seven cores of type Intel(R) Xeon(R) E5 at 3 GHz each, the required
1,000 x (21 x 24 1) = 43,000 forward runs need about 4.3 hours since it required 2.5 seconds for
a single run of the model.

Eigenvalue

1 2 3 4 5 6 7 8
Eigenvalue index

©

Figure 5.2: Spectrum of the matrix C for the data misfit function fy with a 5% noise level. The
light blue area around the eigenvalues indicates variability of the eigenvalues caused by the random
nature of the approximation C.

The resulting eigenvalues and first four eigenvectors are plotted in Fig. 5.2 and Fig. 5.3 a)-d),
respectively. Fig. 5.2 shows the spectral decay on a logarithmic scale. The light blue area around
the eigenvalues displays minimum and maximum eigenvalues gained from bootstrapping and indi-
cates the variability of eigenvalues due to the random nature of the approximation C (see Eq. (5.8)).
Gaps after the first and fourth eigenvalue suggest the existence of one- and four-dimensional active
subspaces. Fig. 5.3 a)-d) shows eigenvectors with components colored according to the hydrotope
they are supposed to model. It shows that parameters 5, 12, and 19, having large contributions in
the first three eigenvectors, take a dominant role. All of these parameters involve the k;s value for
each hydrotope. Moreover, we can observe a ranking between the corresponding hydrotopes of
these parameters, with decreasing order of the ki5 values from Hyd 2, Hyd 1 to Hyd 3 in the first
eigenvector. A different pattern is observed for the contributions of parameters related to kpyg, rep-
resented by parameters 1, 8, and 15 for Hyd 1, Hyd 2, and Hyd 3, respectively. These parameters
appear in eigenvectors 2 to 4 and show a different ranking as compared to the kj; parameters, with
a decreasing contribution from Hyd 1, Hyd 2 to Hyd 3. It is important to highlight that parameter
15 only shows a small contribution in eigenvector 3 and 4. A third important parameter group is
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related to ks, here represented by parameters 6, 13, and 20. They appear in eigenvectors 2 to 4
and have comparable contributions in Hyd 1 and Hyd 2 (parameters 6 and 13) but only a minor
contribution in Hyd 3 (see eigenvector 4). Interestingly, for hydrotope 1 and 2 the same parameters
show up with a similar shape in eigenvector Wy.
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Figure 5.3: The subfigures show sensitivities with respect to the calibration parameters described
in Section 5.3.5. First two rows: First four eigenvectors of the matrix C W, i= 1,2,3,4) for
the data misfit function fyg with a 5% noise level. Along these directions, the data misfit function
changes much more, on average, than along other directions (eigenvectors). The colors distinguish
the three hydrotopes (blue: Hyd 1, orange: Hyd 2, green: Hyd 3). Last row: Global sensitivity
values of the data misfit function fy with a 5% noise level. These values are computed using the
eigenvalues and eigenvectors of C described in Section 5.3.2. The ratio of maximum and minimum
sensitivities is 3.6 x 10°.
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It is important to emphasize that the resulting eigenvectors for the Bayesian data misfit can look
different to ones gained from using the Nash-Sutcliffe model efficiency coefficient (NSE), which is
a more common misfit function in hydrology, introduced in Nash and Sutcliffe (1970).

This can be explained by the fact that the NSE is focusing on high-flow conditions as it is
a (non-weighting) squared error function (Gupta et al., 2009), whereas the Bayesian data misfit
function is a weighting/relative squared error function (weights are given by entries in the noise
covariance matrix I') and, thus, does not favor low- or high-flow conditions.

With the eigenvalue/-vector plot, we have already gained some insight in the parameter sensi-
tivities. Fig. 5.3 e) shows the global sensitivities of the data misfit function fg normalized to |0, 1].
The most sensitive parameter is Ak (1 2), but also ki1 and Akig (2.3) have their contributions since
they show up in W, and W3, respectively, with non-negligible corresponding eigenvalues. At the
same time, parameters 6, 13, and 20, involving ks values in the hydrotopes, show sensitive in the
first eigenvectors. Parameters displaying kpnyq values have small contributions but only in hydro-
tope 1 and 2. All other parameters do not show much sensitivity since their components contribute
only to eigenvectors having eigenvalues that are orders of magnitudes smaller than the first four.
As a consequence, we expect that the more sensitive parameters change their distribution (and also

joint distributions) from the prior to the posterior during Bayesian inference.
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Figure 5.4: 1D marginal prior and posterior distributions in the 4D active subspace.

We decide for a 4D subspace and compute a 4th order polynomial to get the response surface Gg
of gq by Algorithm 1. Since polynomials of 4th order already have 70 degrees of freedom in four
dimensions, we compute another 20,000 samples of fy(x), with x following the prior, to preclude
overfitting. Nevertheless, the 1,000 samples from the computation of C would have been enough
to get the same 2 score which is & 0.77. This score, also called coefficient of determination, is
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a statistical measure for the goodness of a fit and reflects the percent of variance explained. If
predictions of a regression match perfectly well with the data points, the 2 score becomes 1. In
contrast, it can become less than zero, if the predicted values are worse than choosing the constant

2

mean value of the data. In this regard, our r* score indicates that our surrogate is a sufficiently well

behaved fit.

Table 5.2: Left: Posterior means and standard deviations of physical parameters. The informed
parameters are highlighted in bold. Right: Highest 2D correlations for physical parameters.

No. Phys. par. Mean Std.

1 kngan  3.07x 10> 2.34x 10

2 emin.1 29.86 11.57

3 Cmax.1 44.49 12.90

4 o 1.17 0.26

5 ki 1 518x107% 398x1073 Phys. par.  Cor. coef.
6 Ksce,1 0.17 0.22 €min,]  €max,1 0.89
7 €gec,1 47.78 12.95 ki>,l kis.Z 0.77
8 Knya 2 70.62 55.81 emin3  Cmax3 0.70
9 emin2 60.46 11.27 emin2  €max2 0.70
10 emax2 1.20 x 102 16.14 Knya2  kec 0.66
11 [05) 0.82 0.21 kis,1  knyd2 0.64
12 kis.2 452x1073 1.61x10°* ki1 ksec 0.63
13 kecp  2.03x1072 3.23x 1072 Knya2  kis2 0.59
14 Csec.2 1.76 x 102 25.99 kseen ki3 0.57
15 Knyas 25.94 21.75 ksecp  ksees  0.56
16 emin.3 95.71 14.18 kiso  Keec2 0.52
17 emax.3 2.06 x 10% 20.23

18 o3 0.43 0.14

19 kis.3 635x10°% 1.69x10°5
20 kees  6.21x1073 1.07x 1072
21 Csec3 3.85 x 102 37.48

The Metropolis-Hastings algorithm described in Algorithm 2 is used to construct a Markov
chain giving (correlated) posterior samples in the active subspace. Its proposal variance was ad-
justed to 0.005 in order to give an acceptance rate of ~ 35%. We compute 1,000,000 samples
and regard the first 100,000 samples as part of the burn-in which are not considered as part of the
final distribution. The remaining samples give an effective sample size of about 12,000 which is
enough to sufficiently represent a distribution in four dimensions. The resulting distribution on the
active variables, attained from the about 12,000 samples, is displayed in Fig. 5.4. Note that the x
scales of the upper and lower row of plots are quite different. This due to the fact that if we did
not change the lower x scale, the lower histograms would basically become thin lines displaying
no information about the variance of the distribution. However, we see that the active variables are
substantially informed which is exactly what we hoped to achieve. Also note that the first plot in
the upper row, displaying the 1D marginal prior distribution of the first active variable y; = v”v]—x,
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is almost a classical (rectangular) uniform distribution. This is caused by the large contribution of
only one parameter in Wy which is Ak (1 7) in this case. The more parameters contribute to an
active variable, the more its marginal prior distribution differs from a rectangle, see y4 = v"va for
example.

The samples in the inactive subspace Z are computed as described in Subsection 5.3.4 and com-
posed with active posterior samples to give posterior samples in the original space. Resulting 1D
marginal statistics of the physical parameters are given in Table 5.2 (left). As expected, the physi-
cal parameters related to calibration parameters with significant components in the active subspace
are highly informed. The first calibration parameter (l_ciloygd \) having a small but not negligible con-
tribution according to the sensitivity values in Fig. 5.3 e) is already only mildly informed. The
other parameters do not change or only very little because of the choice of the active subspace.

Additionally, Table 5.2 (right) displays the highest resulting two-dimensional posterior correla-
tion coefficients of the physical parameters in LuKARS. They are consistent with the components
of corresponding calibration parameters that show up in the 4D active subspace. The largest corre-
lation occurs between ey | and emay 1. A large correlation coefficient of 0.7 is also found between
the respective storage values of Hyd 2 and Hyd 3, eyin 2 and epyax 2, as well as between e, 3 and
€max,3-

As a verification for our choice of a 4D subspace, we show that the uncertainty in the approxi-
mated posterior distribution is dominated by the uncertainty in the data, and not by approximation
errors caused by dimension reduction. We do this by approximating the posterior’s push-forward
distribution, i.e., the distribution gained by propagating the approximated posterior through the
parameter-to-observation operator ¢, which models the discharge values for a given input param-
eter. Hence, we computed 1,000 samples of the distribution ppost({X |4 (x) € -}), where pipos de-
notes the posterior distribution with density ppos;. Fig. 5.5 a) shows the 95% quantile band around
the data with 5% additive Gaussian noise assumed together with a 75% quantile band around the
median of the posterior’s push-forward distribution. More loosely speaking, the plot shows that
around 75% of discharges simulated with random parameters drawn from the posterior will lie
within the inherent uncertainty of the observed discharge. The uncertainty in the dynamics around
the measured discharges in the Kerschbaum spring is matched well by the uncertainty of the push-
forward posterior distribution which confirms the choice of a 4D subspace. Since we started with
an uninformed prior (a uniform distribution), we can not expect to end up with a push-forward
posterior much more certain than the uncertainty in the experiments. At this point, we would like
to emphasize that it is possible to get a reasonably good approximation of the posterior by consid-
ering only 4 directions in the space of 21 parameters. In this manner, particularly regarding the
low flow conditions and the recession limbs of the peak discharges, we can observe a variation of
only up to £51/s which is roughly the variation due to experimental noise. Also, the mean and
the median of the push-forward distribution give results agreeing with the data which, in addition,
supports the decision for a 4D subspace.

Additionally, this type of plot shows that different decisions for the dimension of the active
subspace lead to different posterior approximations. Fig. 5.5 b) shows the push-forward distribu-
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tion of a posterior gained with a 1D subspace. However, interestingly, assuming a noise level of
10% and taking only a 1D subspace also leads to usable results in the sense that the corresponding
approximation to the posterior’s push-forward distribution matches the inherent uncertainty in the
data well. However, note that the 12 score of Ggq was only about 0.23 in this case. Although we
see that the assumptions are rather unrealistic and the approximation quality of Gq is too bad, it
is worth noting that already the first eigenvector contains some information about the posterior
meaning that the mean and median of the corresponding push-forward posterior give reasonable
discharge values in comparison with the data as shown in Fig. 5.5 b).
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Figure 5.5: Push-forward distributions of the posteriors gained with a 4D (a) and 1D (b) subspace,
assuming a 5% and 10% noise level, respectively, along with their mean and median.
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5.5 Discussion

Besides the introduction of the active subspace method as a technique for dimension reduction
in Bayesian inverse problems to the karst hydrology community, a major aim of our work, as
mentioned in Section 5.1, was to perform a parameter inference in the Bayesian sense providing
information about the behavior of our model and its uncertainties. For the LuUKARS model of the
Kerschbaum spring in Waidhofen a.d. Ybbs, we found a 4-dimensional subspace of the original 21-
dimensional parameter space. This does, however, not mean that only 4 individual physical model
parameters are informed by the discharge data since an active subspace represents a linear combi-
nation of sensitive parameters, represented by the parameters in the eigenvectors corresponding to
dominant eigenvalues. In this regard, the relation between sensitive parameters in each dimension
of the active subspace provides deeper insights into the model behavior than just the sensitivities of
individual parameters. The results, from a broader perspective, show that 7 physical/model param-
eters are most sensitive. These parameters consist of coefficients for the baseflow storages (ks ;,
i =1,2,3), for the quickflow storages (knyq,i» i = 1,2), and for the secondary spring discharges
(ksec,i’ i— ]72)-

The remaining paragraphs in this section are devoted to give a detailed hydrological interpreta-
tion of the results showed in the previous section. These interpretations are based on the following
information. The observed spring discharge is modeled as the sum of the relative contribution of
each hydrotope. Moreover, the LuKARS model of the Kerschbaum spring has fast responding
hydrotopes (i.e., hydrotopes that quickly deliver water to the karst spring after precipitation events,
e.g., Hyd 1) and slow responding hydrotopes (i.e., hydrotopes, which slowly deliver water to the
spring after precipitation events, e.g., Hyd 3).

Parameters 5, 12, and 19 show the largest contributions in the first 4 eigenvectors in Fig. 5.3 a)-
d). These parameters correspond to the ki physical parameters, which delimit the flow contribu-
tions from the hydrotopes to the linear baseflow storage. As derived in Bittner et al. (2018a), the
baseflow storage exhibits a relatively constant discharge behavior with a small temporal variability
and its discharge coefficient k, was not changed within the presented research study. Since the
outflow from the baseflow storage is controlled by its variable storage (ep) and its constant dis-
charge coefficient (ky), the hydrotope discharge coefficients for the groundwater recharge (k;g) also
affect the baseflow discharge and its temporal dynamics since they control e,. Given that k;, was
not included as a calibration parameter, the ki; parameters are responsible to maintain the baseflow
contribution as derived by Bittner et al. (2018a) and are most informed in the first eigenvector
when applying the active subspace method.

Although parameters 5, 12, and 19 have the same physical interpretation, we can observe that
they display different sensitivities for the different hydrotopes. This is due to the fact that different
hydrotopes cover areas which are different in extension (Hyd 1 - 13%, Hyd 2 - 56% and Hyd 3 -
27%). Therefore, the interpretation of the most important parameters occurring in an eigenvector,
should both consider the physical meaning of the parameter and the relative contribution of each
single hydrotope to the total spring discharge, which is highly affected by the relative area covered
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by the hydrotope. In this specific case, parameter 12, associated with Hyd 2, displays the largest
value since it covers the largest area in the Kerschbaum spring catchment and thus has a significant
contribution to the total spring discharge. Parameter 5 has the second largest value although Hyd 1
ranks as third in terms of coverage area. This is explained by the fact that Hyd 1 provides the most
dynamic and variable discharge behavior of all hydrotopes. Hence, the discharge contribution from
Hyd 1 is essential to reproduce the discharge dynamics observed in the Kerschbaum spring. Hyd 3
has the smallest contribution in eigenvector 1, which can be explained by its more constant and
less variable discharge behavior as compared to Hyd 1 and its smaller spatial share as compared to
Hyd 2. Hence, although Hyd 3 has a larger area covered than Hyd 1, parameter 19 is less dominant
than parameter 5.

Although parameters 1 and 8 (involving knyq values of Hyd 1 and Hyd 2) do not show up
in eigenvector 1, their contribution to eigenvectors 2 to 4 is worth discussing. These parameters
follow a different ranking as compared to the k;; parameters, suggesting a larger sensitivity of
parameter 1 from Hyd 1 as compared to parameter 8 from Hyd 2. Since the knyq parameters
constrain the quickflow dynamics originating from each hydrotope, we argue that this ranking is the
result of the different hydrological behaviors each hydrotope is supposed to simulate. Considering
that Hyd 1, which shows the most dynamic behavior in response to precipitation or melt events,
has a large contribution to the temporal variability of the discharge in the Kerschbaum spring, the
importance of adequately representing the quickflow dynamics from Hyd 1 can be regarded as
more important than the relative space covered by each hydrotope.

It is interesting to observe that the posterior means of the informed physical model parameters
(kis.i» i = 1,2,3, see Table 5.2) are close to corresponding calibrated parameters found by Bittner
et al. (2018a). Moreover, the standard deviations of the kjs parameters in the posterior distribution
are smaller as compared to the standard deviations found for the posterior distributions of all other
physical parameters. This provides evidence that we can use the components of the first eigenvec-
tors derived from the active subspace method to show which parameters get individually updated
from the prior to the posterior distribution. Moreover, in comparison to the parameters obtained
by manual calibration, we additionally obtain an uncertainty specification related to any model
parameter.

It is striking that the correlations between ey ; and emax ; (for each i = 1,2, 3) are high although
they are not very dominant according to the first four eigenvectors. The reason for this is that this
correlation is already present in the prior distribution on the physical parameters (see Eq. (5.31)).
However, we argue that the higher positive correlation coefficient between ey, 1 and e,y 1 results
from the dependence of the overall model output on the quickflow dynamics of Hyd 1 (Bittner
et al., 2018a). The dynamics of the quickflow depend strongly on the difference between e, ;
and emax i (see Eq. (A.5)) and thus results in a high correlation coefficient between both storage
thresholds. The positive correlations between the discharge coefficients of Hyd 2, in particular
between kpnyq o and Kgec2, knya2 and kis» as well as between ki and kgec 2, highlight the strong
interdependence of all discharge components that originate from Hyd 2. The strongest correlation
(0.66) is between the discharge coefficient of the quickflow (knyq2) and the discharge coefficient
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of the secondary spring discharge (ksec,2). This means that, if we increase knpyg2 and not ksec 2, the
quickflow contribution increases disproportionately and the total simulated spring discharge would
overestimate the observed peak discharges. The same relationship holds for the strong correlation
(0.59) between the discharge coefficient of the quickflow (knyg.2) and the discharge parameter of
the groundwater recharge (kis2) as well as between the kis» and kgec2 (0.52). These correlations
confirm the fact that if we increase the discharge coefficient of one discharge component in a
certain hydrotope, we need to simultaneously increase all other discharge coefficients in the same
hydrotope to get a similar model output. If the other coefficients were not changed accordingly, we
would disproportionately increase one discharge component (e. g., quickflow from Hyd 2) relative
to others (€. g., ki 2 Or kgec 2); S0, the hydrotope would show a different hydrological behavior. This
highlights that the parameter dependencies within each hydrotope individually help to maintain
the hydrological behavior that is typical for each hydrotope. The reason why only the discharge
parameters of Hyd 2 show high correlation coefficients is that Hyd 2 covers more than 50% of
the Kerschbaum spring recharge area and, thus, has the highest contributions to the total spring
discharge. The correlations between various discharge coefficients of different hydrotopes, e. g.,
kis,1 and ki », are interpreted as a consequence of the parameter constraints introduced in Eq. (5.1),
similar to the dependence between epin ; and emax,; values.

We conclude by commenting on the limits and transferability of the active subspace method.
One of the major disadvantages of the method is the need for gradients in the identification of the
active subspace. Computing gradient information can be computationally expensive, especially if
there are no alternatives to using a finite difference approach as, e. g., adjoint formulations (Plessix,
2006). In the given case, the computational costs for using central finite differences are reasonable
since the model is sufficiently cheap. However, for more expensive models such an approach
can be intractable. There are recent advances for computing active subspaces in a derivative-
free way (Tripathy et al., 2016), however, the computation of derivatives is replaced by a non-
trivial non-convex optimization problem. Since the framework of active subspaces is quite general
and formulated without too many restricting assumptions, we consider its application as highly
transferable. This claim is supported by several applications of the method for complex physical
models, e. g., Erdal and Cirpka (2019); Constantine et al. (2015); Constantine and Doostan (2017);
Diaz et al. (2018); Jefferson et al. (2015). The proposed use of the active subspace method extends
the available tools for parameter and uncertainty estimation in hydrology. A comparison among
all available methods is out of the scope of this work and should be pursued in the future through
a collaborative work in the community. We hence provide only a brief comparison with DREAM,
described in Vrugt (2016) and used to accelerate MCMC in Vrugt et al. (2009), as it has found
wide recognition in Bayesian analysis of hydrological models. The main differences of DREAM
compared to the presented approach are two-fold. First, basic DREAM runs multiple Markov
chains in parallel, exchanging chain elements in a way retaining favorable properties like ergodicity
and the Markov property (memorylessness). Secondly, a randomized subspace sampling strategy
is then used to avoid inefficient mixing of Markov chains in higher dimensions. Our proposed
approach, however, does not need an additional sampling strategy, since the Markov chains are
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moving in the dominant low-dimensional subspace, whereas for DREAM the chain is still evolving
in the full-dimensional space.

5.6 Summary

This manuscript shows results from a parameter study of a karst aquifer model for the Kerschbaum
spring recharge area. The model uses 21 parameters to simulate the discharge behavior of the
Kerschbaum karst spring in Waidhofen a.d. Ybbs. The study consists of a parameter inference
in the Bayesian sense and a (global) sensitivity analysis. Since these problems have a non-trivial
dimension, we first check for low-dimensional structure, if present, hidden in the inference process
and exploit the so-called active subspace method for this. Additionally, without further expensive
computations, we are then able to derive global sensitivity metrics.

It seems that the inference process is indeed intrinsically low-dimensional. Although the
LuKARS model for the Kerschbaum spring has 21 calibration parameters, given the parameter
constraints in Eq. (5.1), we find its dominant parameters and obtain well-constrained values for
them by means of Bayesian inversion in the identified active subspace. In particular, we decide to
reduce the Bayesian inverse problem from a 21D to a 4D problem which is verified by showing
that the push-forward distribution of the approximated posterior has a promising similarity with
the uncertainty in the data. The 1D and 2D posterior statistics, which differ a lot from correspond-
ing prior statistics for dominant parameters, are computed to quantify uncertainty in the inference
caused by measurement errors in the data.

Eventually, the active subspace method shows again to be valuable for Bayesian inference and
sensitivity analysis in complex high-dimensional problems. The results are, however, rather useful
from a computational perspective. The in-depth validation of the model with further sensitivity
analyses, more interesting from a hydrological perspective, and a discussion of the consequences
for the community are out of scope and, hence, not part of this study, but will follow in future
research. In particular, we want to investigate the hydrological features that lead to the present
dimensional reduction.
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Chapter 6

Hydrological interpretation of the meaning
of active subspaces

Bittner et al. (2020a)!

Abstract

The use of the active subspace method was recently proposed to reduce the dimension of complex
hydrological models, perform sensitivity analysis of model parameters and quantify the uncer-
tainty affecting model parameters. Although this inversion method is highly promising in terms
of computational performance, a clear hydrological interpretation of the meaning of the active
subspace that it identifies is missing. In this work, we infer how the active subspace changes in
dimension and feature depending on geometrical and hydrological properties of the karst aquifer
model LuKARS. We find that both the hydrotope area coverage and model parameters describ-
ing the catchment characteristics (here: water storage and discharge properties of the hydrotopes)
have major impacts on the active subspace. Our results show that the active subspace method can
be used to investigate the relation between the model structure, the area of a hydrotope and the
simulated spring discharge.

6.1 Introduction

Hydrologists typically apply mathematical models to address questions related to the quantity and
quality of water resources (Srinivasan and Arnold, 1994; Arnold et al., 1998; Bronstert et al.,
2002; Brath et al., 2006; Hanasaki et al., 2008; Guse et al., 2015). Distributed models can provide
reasonable physical representations of hydrological processes in a catchment but require detailed
information about surface and subsurface properties (Henson et al., 2018; Chen et al., 2018). In the

IBittner, D., Teixeira Parente, M., Mattis, S., Wohlmuth, B., Chiogna, G., 2020. Identifying relevant hydrological
and catchment properties in active subspaces: An inference study of a lumped karst aquifer model. Advances in Water
Resources 135, 103472.
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particular case of karst aquifers, that information often cannot be obtained due to their highly com-
plex and heterogeneous subsurface structure (Juki¢ and Denié-Jukié, 2009; Ladouche et al., 2014).
This lack of spatially distributed data about subsurface flow makes conceptual rainfall-discharge
models suitable tools to predict the discharge of a karst system. Conceptual models allow to dras-
tically simplify the description of the functioning of the subsurface system (Mazzilli et al., 2013;
Hosseini et al., 2017; Mudarra et al., 2019; Ollivier et al., 2019). However, finding an acceptable
conceptual model representation for complex hydrological systems is difficult (Hollaway et al.,
2018). Once a conceptual model is considered apprioriate for a catchment, the next step is to
identify if its parameters can be reasonably estimated considering the available observations. The
general trade-off is two-fold (Jehn et al., 2019). Quite often model complexity can be characterized
by its number of parameters. A low-dimensional parameter space, i.e. 4 to 6 parameters (Jakeman
and Hornberger, 1993), can help to reduce parameter uncertainty but does not necessarily avoid the
occurence of equifinality (Hartmann et al., 2017). Also, a low-dimensional parameter space does
not guarantee model adequacy. More precisely, dominant hydrological processes, such as matrix
infiltration or conduit flow, may not be predicted in a proper way. In case of a high dimensional
parameter space, it is much easier to represent these processes in a complex karst system than
with a small number of parameters (Hartmann, 2018). However, models requiring a large num-
ber of calibration parameters can suffer from overparametrization and parameters can lose their
identifiability (Hartmann et al., 2014a).

Constantine et al. (2014) proposed the active subspace method to reduce the dimensions of
a model’s parameter space, to perform global sensitivity analysis and to quantify the parameter
uncertainties. In this work, we focus on the use of the active subspace method to perform a global
sensitivity analyisis for a lumped karst parameter model. When we talk about sensitivity analysis
performed in an active subspace framework, we do not talk about the sensitivity of single physical
parameters. Instead, we investigate the most relevant linear combinations of physical parameters.
In other words, working in the active subspace framework naturally leads to the definition of the
sensitivity of single parameters in relation to the values of other parameters. We call these linear
combinations of parameters informed if the objective function measuring deviation from observed
data is sensitive to it.

So far, the active subspace method was used in different hydrological research studies (Jeffer-
son et al., 2015; Erdal and Cirpka, 2019; Teixeira Parente et al., 2019a), including an application
to a karst hydrologic model in which Teixeira Parente et al. (2019a) effectively reduced the dimen-
sions of the model’s parameter space and quantified the uncertainties affecting the model parame-
ters. Although these works clearly showed the advantages of using the active supspace method for
inverse modeling and uncertainty quantification in a Bayesian framework, a detailed hydrological
interpretation of what an identified active subspace means is still lacking.

In this work, we exploit the active subspace method to infer which geometrical and hydro-
logical model parameters influence the feature and dimension of the active subspace. We take
as an illustrative example the recently proposed LuKARS (Land use change modeling in KARSt
systems) model (Bittner et al., 2018a). The LuKARS model is based on the implementation of
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hydrotopes, i.e. distinct landscape units characterized by homogeneous hydrological properties as
a result of similar land use and soil types (Arnold et al., 1998), and was developed to simulate the
hydrological impacts of land use changes in a karst aquifer. We investigate a total of 3 synthetic test
cases (TC), each consisting of 7 scenarios, modified after the LuKARS model of the Kerschbaum
spring recharge area in Waidhofen a.d. Ybbs (Austria). The LuKARS model of the Kerschbaum
spring consists of 4 hydrotopes; 3 calibration hydrotopes (each having 7 calibration parameters)
and 1 hydrotope representing a dolomite quarry.

Our research hypothesis is that we can identify a clear pattern that can relate the dimension and
the feature of the active subspace with underlying geometrical and hydrological model parameters,
used to describe different hydrological properties of a chatchment. This is of practical relevance,
because it is beneficial for modelers to know if it is worth characterizing all catchment properties in
each hydrotope or if there is the possibility for assigning a priority for field investigations. To test
the hypothesis, our particular research objectives are (i) to investigate which geometrical properties
and (ii) which hydrological properties of a hydrotope mostly affect the dimension and the feature
of an identified active subspace.

In the following, we provide a description of the active subspace method in Section 6.2. Then,
in Section 6.3 we describe how we intgrated the LuK ARS model in the active subspace framework.
The results and discussion will be shown in Section 6.4. Finally, we conclude our findings in
Section 6.5.

6.2 Methodology

In this section, we provide an abstract framework for our dimension reduction technique. A step-
by-step explanation of how we investigate dependencies between active subspaces and catchment
properties and which relevant information can be derived for hydrological modeling is given.

6.2.1 Definition of parameter ranges

The first step is to define reliable parameter ranges for all parameters of a model to be investigated.
In case of lumped conceptual models, these ranges should be chosen large enough to contain
plausible parameter values.

6.2.2 Define independent model parameters and distributions

A basic property of hydrologic models is that their model parameters are not necessarily indepen-
dent from a statistical point of view (Bédrdossy, 2006). However, the active subspace framework
prefers independent parameters. Thus, based on the real model parameters, now called physical
parameters, new synthetic parameters, called calibration parameters, need to be introduced to
get statistical independency. The parameter ranges defined for the physical parameters need to be
translated into the admissible parameter ranges of the calibration parameters. For that, it is essential
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that the relationships between the physical parameters, and thus, also the calibration parameters,
are known. For the calibration parameters we need to assume a theoretical density distribution
p, e.g. uniform or a truncated Gaussian. Eventually, the ranges of the calibration parameters are
mapped to the range of [-1,1].

6.2.3 Parameter sampling and measuring uncertainties

The active subspace method identifies directions in the calibration parameter space in which a
preselected objective evaluation function changes most, on average (Constantine et al., 2014). For
a hydrologic model the objective is to simulate a discharge time series that matches an observation
set d. The chosen model with a given set of input parameters x is represented by the map .
For each parameter in x, we take n samples from p. Given that measured discharge time series
are affected by measuring errors, we also need to consider these errors as uncertainties in the
proposed methodology. Therefore, assuming that ¢ is a perfect model, we take n ~ .4#°(0,T) as a
zero-centered Gaussian noise with covariance matrix I, such that:

d=%9(z)+n. 6.1)

6.2.4 Select objective evaluation function and approximate gradient

To identify the quality of a fit between a modeled and observed discharge time series, an objective
evaluation function needs to be selected. In the framework of the active subspace method, Teix-
eira Parente et al. (2019a) used the data misfit function for the application of a hydrologic model.
Here, the data misfit function is denoted by fy:

fal@) = 3 ld- G @)} =512 (d -9 @) I3 ©2)

It is important to state that the results obtained with the data misfit function are different from
results obtained with the Nash-Sutcliffe Efficency (NSE) (Nash and Sutcliffe, 1970). Since the
NSE is a nonweighting squared error function it is focusing high-flow conditions (Gupta et al.,
2009). The data misfit function, in contrast, is a weighting squared error function that gives a rela-
tive error between model results and observations and does not favor low- or high-flow conditions.

To identify important directions of f = fg4, one looks at eigenpairs of the symmetric positive
semi-definite n x n matrix

c: /Vf(m)Vf(m)Tp(m)dm —WAW, (6.3)

where p indicates the density of the distribution of the calibration parameters. Thus, we only
have to assume that f has partial derivatives which are square-integrable with respect to p. We
emphasize that this is a rather weak assumption since it is satisfied for almost all types of disconti-
nuities. Only functions that are nowhere differentiable or have non-integrable singularities, which
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are rare and degenerated cases, do not fit in this context. The matrix W = [wy, ..., w,| contains
the eigenvectors w; of C, and the matrix A = diag(A,,...,4,) is a diagonal matrix with the eigen-
values on the diagonal. The eigenvalues of C, which contain all calibration parameters, provide
information about the average sensitivity of f in the direction of the corresponding eigenvector,
since it holds that

hi=w] Cw; = [ (w]Vf(@)?p () da. (64)

In practice, C' can be approximated by a finite Monte Carlo sum, i. .
1Y o
Cr o Y V(@) S(x) = WAW 6.5)
i1

for N € N and parameter samples x; taken from the defined parameter distribution p. Given that

we approximate the matrix C' using a finite Monte Carlo sum, the matrices W = [y, ..., Wy| and
A =diag(44,...,,) denote perturbations to their exact counterpart from Eq. 6.3.

6.2.5 Active subspace identification and sensitivity analysis

If the eigenvalues decay quickly, there are directions in the parameter space where f varies much
more, on average, than other directions, i.e. these directions are significantly more informed by
the data d. An eigenvalue associated to an eigenvector in the parameter space depends on the
entire set of calibration parameters. Therefore, the analysis of each eigenvector/eigenvalue inform
us about the behavior of the entire set of calibration parameters and their interaction. We decide
to choose a k-dimensional subspace, i.e., we truncate after k eigenvalues/-vectors such that the
k -+ 1-th eigenvalue is the first eigenvalue whose difference to the largest eigenvalue is bigger than
one order of magnitude (Step 1 in Fig. 6.1). Another alternative would be to base the truncation
on the ratio between the sum of the remaining n — k eigenvalues and the total sum. The two
strategies would differ if there was a spectral plateau after one or two eigenvalues, i.e., n — 1 or
n — 2 eigenvalues of the same or similar size. However, since this is generally not the case in our
results, both strategies give similar decisions and our results in Section 6.4 do not strongly depend
on a particular strategy.

The span of the eigenvectors associated with significant eigenvalues is called the active sub-
space (Step 2 in Fig. 6.1). At this point of the proposed methodology, the active subspace is
exploited to investigate the relation between a measured discharge and specific catchment proper-
ties. The particular objective is to see if a physical explanation for the parameter sensitivities can
be found in active subspaces. Therefore, the approximated eigenpairs (w;, i,») are used to compute
global sensitivity metrics (Step 3 in Fig. 6.1) (Constantine and Diaz, 2017). The components of
the vector s consisting of the sensitivity values are defined as

n
si= Y, Ai(w)i =10 65
=1
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Based on the identified active subspace, the model’s parameter space can effectively be reduced
for inversion (Teixeira Parente et al., 2019a). However, this topic was already illustrated in other
works (Erdal and Cirpka, 2019; Teixeira Parente et al., 2019a) and will not be further discussed.

1. Decide for a k - dimensional 2. Span Active Subspace over the eigen-

subspace evectors of the relevant eigenvalues
) )
=) =)
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g 2
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3. Take ensemble of all eigenpairs to calculate global sensitivity metric
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Figure 6.1: A conceptual sketch of the procedure for the active subspace identification and sensi-
tivity analysis.

6.3 Application of the methodology to the LuKARS model

The proposed active subspace methodology is applied to the LuKARS model, which was devel-
oped by Bittner et al. (2018a). LuKARS is a semi-distributed lumped parameter model that was
developed to simulate the hydrological impacts of land use changes in a karstic system. The model
consists of different buckets that represent the dominant hydrotopes in a regarded recharge area
(see Fig. 6.2a). LuUKARS was set up for the Kerschbaum springshed (2.5 km?) in Waidhofen a.d.
Ybbs in Austria (Fig. 6.2b), which we use to create synthetic TC’s. With a mean annual discharge
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of 34 15!, the Kerschbaum karst spring is part of the regional water supply system of Waidhofen
a.d. Ybbs. The small-scale recharge area is predominantly covered by beech forests and parts of
it are used for mining activities (Fig. 6.2b). A detailed description of the study area can be found
in Narany et al. (2019). In the following, we provide a detailed explanation how we integrate
the LuKARS model in the framework of the active subspace method. A detailed description of
LuKARS and its equations is provided in A.1I.

6.3.1 LuKARS implementation in the framework of the Active Subspace
method

Based on our experiences from previous analyses, we derived a set of ranges for each parameter
that is applied for the step described in Section 6.2.1. In the particular case of the minimum and
maxium storage values of a hydrotope, i.e. Eni, and Enax, data driven ranges were obtained using
the methodology of DWA (2018). The ranges of all other parameters were chosen large enough so
that they contain reliable values. Table 6.1 lists these parameter ranges used in the active subspace
method applied to LuKARS.

Hyd Q Qsec. Fgep (a)
I Hyd 1
. Hyd 2 Eeoe
I Hyd 3 l_

@ spring

/\ weather stationfied
— creeks . y Qis, Hyd 1-Hyd 3
[Jrecharge area [S58 i & 1 1 1

B Qb Qtot

Figure 6.2: Conceptual model sketch and overview of the study area Waidhofen a.d. Ybbs (Aus-
tria). (a) Conceptual model of the recharge area as implemented in LuKARS, considering the four
hydrotopes (Hyd Q, Hyd 1, Hyd 2 and Hyd 3) and the baseflow storage B. The different bucket
sizes show the different storage capacities of the respective hydrotopes (not to scale). (b) The
boundary of the Kerschbaum spring recharge area. The orthophoto, which was kindly provided by
the water works Waidhofen a.d. Ybbs, shows that the predominant landcover is forest.

Each hydrotope in LuKARS has characteristic hydrological responses to precipitation events
determined by its soil and land use properties. To what extent one particular hydrotope response
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contributes to the total catchment response depends on both, the hydrotope’s area and the parame-
ters that control its discharge variability. On the one hand, hydrotopes having coarse-grained and
shallow soils should have a high contribution to the quickflow and groundwater recharge. More-
over, the possibility that these hydrotopes become dry after a long period without any precipitation
should be allowed. On the other hand, the parametrization of hydrotopes with more fine-textured
and deep soils should allow to show slow and minor contributions to the quickflow and the ground-
water recharge but be able to store a certain water volume. This means, that a given parameter set
of a hydrotope with a small storage volume (e.g. a shallow, coarse-grained soil) needs to be inter-
preted in relation to the parameters applied to a second hydrotope with a higher storage volume
(e.g. a thicker, more fine-grained soil). These physical constraints have to be met to accept a set of
hydrotope parameters in LuKARS. For the Kerschbaum spring recharge area, the LuKARS model
has 4 hydrotopes, each of them covering a defined percentage area. Hyd 1 has shallow and coarse-
grained soils, Hyd 2 has more fine-grained soils with moderate thicknesses, Hyd 3 has mostly
loam textured soils with more elevated thicknesses and Hyd Q represents the dolomite quarries.
The dominant vegetation type for Hyd 1, Hyd 2 and Hyd 3 are beech forests. For this concrete
example of the Kerschbaum spring model, Hyd Q is not included in the process of model calibra-
tion since, by law, the quarries drain all water on the surface outside the catchment (Bittner et al.,
2018a). Thus, the Kerschbaum model has a total of 3 hydrotopes and a total of 21 model param-
eters that need to be calibrated. For these 21 model parameters the following physical constraints
are met:

kiyd,1 = Knyd.2 > knyd 3,
Eming < Emin,2 < Emin 3,
Emax,1 < Emax2 < Emax.3,
o > 0 > 03, ©.7
kis,1 > kis2 > kis 3,
ksec,l > ksec,z > ksec,?n
Egec,l < Esec < Egec3-

As justified by (Teixeira Parente et al., 2019a), the condition introduced for ¢ values is not
strictly necessary, but was implemented to amplify the quick response of hydrotopes with low
storage capacities, i.e. those displaying a small difference between Epin; and Epax; and a low
value of Epgx ;. Since the model parameters for each hydrotope have to meet the constraints shown
in Eq. (6.7), they are not independent from a statistical point of view. Following the second step in
our methodology (Section 6.2.2), we need to introduce three types of non-normalized calibration
parameters with a defined density p. We assumed a logarithmic distribution p of the parameter
ranges of the hydrotope specific discharge parameters (knyq. kis and kg, hereafter summarized as
k. parameters). All other calibration parameters have a uniform prior distribution.
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1. Given the log distribution of the k., we define
K% — log(k.) (6.8)

for each k. € {knya.i, Kis i ksec.i}» i =1,2,3.

2. For i =1,2,3, since Enpin,; < Emax,i» parameter samples for Epax; would be dependent on
samples Epnin;. Hence, we write Emnax i = Emin,; + AE;. We define therefore new (non-
normalized) calibration parameters AE;. This means that the parameter Enax ; is “replaced”
by AE;, which is independent of Epy;y ;.

3. Similar to point 2), the physical constraints from Eq. (6.7) lead to the introduction of new
(non-normalized) calibration parameters that mimic the difference between values of two
successive hydrotopes.

4. The parameters with a A are new calibration parameters, taking values in [0,1] and replacing
corresponding model parameters on the left hand side of the equal sign.

We make sure that these constraints are met and that values are chosen such that the corre-
sponding model parameters lie in the respective specified intervals from Table 6.1. In particular,
we write fori = 2,3

log _ ;log log log log
Kiyai = Knyd,izo + khyd (i—1.) (mm{khydzub7 hydi 1}~ Knyain)»

Ein,i = max {Emin,i,—l ) Emin,i,lb}
+ AEin (i 1,i) (Emin,iuo — Max { Emini1, Eminiib }) -

04 = Qi + Ay (min{ &up, 061} — i) , ©69)

log _ ;log log : log 100 log
kisi - kis ilb +Ak s,(i—1.i) (mm{kls iub? lsl 1} kls i. Ib)
log _ ;log log Iog log
ksec i ksec i,Ib JrAksec (i—1.0) (mm{k%ec iub? sec i— 1} k%ec,i,lb ’

Egec; = max {Esec4i—lyEsec‘i71b}
+ AEsec,(i—l.i) (Esec,i.ub — max {Esec,i—luEsec,i.lb}) )

where lower (1) and upper bounds (y,) of each interval for the model parameters are specified
in Table 6.1. Given a reference hydrotope (e.g. Hyd 1 in Teixeira Parente et al. (2019a)), intro-
ducing new synthetic parameters is only necessary for the other hydrotopes (e.g., Hyd 2 and 3 in
Teixeira Parente et al. (2019a)).

Eventually, all non-normalized calibration parameters are normalized, i. e., they are mapped to
the interval [-1,1]. The normalized parameters are denoted with a bar above their name and form
the final 21-dimensional vector « of calibration parameters, i. e.
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~log =& _ - - _
T = (khc;b(jl'17Emin,l7AEl7alakis.l7kS€C,17ESeC.1a
7l - .
Akh(;%jﬁ(l,z):AEmin,(l,2)%AE27AO‘(1,2)7
Aki(1,2), Aksee (1.2),AEgec (1.2) (6.10)

7log = & ~
Akyca (2.3) AEmin.(2.3): AE3, A&(2 3),

Akis (2.3): Mo (2.3): Mg (2.3)) | € R

Table 6.1: Overview of the model parameter ranges defined for all hydrotopes used in the three
test cases. The respective numbers indicate the lower bound and the upper bound of the parameter
ranges which are used as prior intervals for the active subspace method. For the meaning of the
parameters we refer to the explanation given in A.1
Test Case Hydrotope  knyg Enin Enax o kis kgee Egec
[m?d~'] [mm]  [mm] [-1 mmm-'d']  [mmm-'d7'] [mm]

Hyd 2.1 8.5 -850 40-80 80-160 0.5-1.3 0.00055-0.055 0.0023-0.23 130-220
TC1 Hyd 2.2 8.5-850 40-80 80-160 0.5-1.3 0.00055-0.055 0.0023-0.23 130-220
Hyd 2.3 8.5-850 40-80 80-160 0.5-1.3 0.00055-0.055 0.0023-0.23 130-220

Hyd 1 9-900 10-50 15-75 0.7-1.6 0.002-0.2 0.0095-0.95 25-70
Hyd 1.1 12 - 1200 10-50 15-75 0.7-1.6 0.002-0.2 0.0095-0.95 25-70
Hyd 1.2 22 -2200 10-50 15-75 0.7-1.6 0.002-0.2 0.0095-0.95 25-70
Hyd 1.3 40 - 4000 10-50 15-75 0.7-1.6 0.002-0.2 0.0095-095 25-70
TC2 Hyd 1.4 60 - 6000 10-50 15-75 0.7-1.6 0.002-0.2 0.0095-0.95 25-70
Hyd 1.5 70 - 7000 10-50 15-75 0.7-1.6 0.002-0.2 0.0095-0.95 25-70
Hyd 1.6 100 - 10000 10-50 15-75 0.7-1.6 0.002-0.2 0.0095-095 25-70
Hyd 2 8.5-850 40-80 80-160 0.5-1.3 0.00055-0.055 0.0023-0.23 130-220
Hyd 3 7.7-710 75-120 155-255 0.2-0.7 0.00025-0.025 0.0015-0.15 320-450
Hyd 1 9-900 10-50 15-75 0.7-1.6 0.002-0.2 0.0095-0.95 25-70
TC3 Hyd 2 8.5-850 40-80 80-160 0.5-1.3 0.00055-0.055 0.0023-0.23 130-220

Hyd 3 7.7-710 75-120 155-255 0.2-0.7 0.00025-0.025 0.0015-0.15 320 -450

6.3.2 Synthetic test cases of the Kerschbaum spring LuKARS model

Using the physical relations of the lumped hydrotope parameters (Eq. (6.7)), we want to investigate
how much the spring discharge, generated using the LuKARS model for different TC’s, depends on
the model representation of specific catchment characteristics (here: hydrotope properties). There-
fore, we aim to explore how changing hydrological conditions may affect the active subspaces and
to see if this variability is reflected in the eigenvectors of the significant eigenvalues. In particular,
under the assumption that the model properly represents the hydrology of the area, we want to see
if we can identify a dependence of the spring discharge on different catchment properties, i.e. the
discharge variability a hydrotope displays and the area it covers. For this purpose, we create three
different synthetic TC’s, each consiting of seven scenarios (summarized in Table 6.2).

TC 1: In TC 1, we assume that the recharge area of the Kerschbaum spring is homogeneous in
terms of hydrotope properties. Therefore, we say that all hydrotopes, Hyd 2.1, Hyd 2.2 and
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Hyd 2.3, have the same range of parameter values as indicated in Table 6.1. In the different
scenarios, we vary the area covered by Hyd 2.1, Hyd 2.2 and Hyd 2.3 as shown in Fig. 6.3a.
This TC reflects catchments with quite homogeneous properties. In TC 1 we investigate the
dependence of spring discharge on the area covered by a hydrotope.

TC 2: In TC 2, we assume that all hydrotopes cover the same area in the catchment (Fig. 6.3b). We
increase the discharge variability of the quickflow originating from Hyd 1 while maintaining
constant properties of the other two hydrotopes (Table 6.1). With this TC, we represent
catchments with different magnitudes of contrasting hydrological properties.

TC 3: Finally, in TC 3 we use three different hydrotopes, Hyd 1, Hyd 2 and Hyd 3, and assume
different hydrotope areas following the distributions shown in Fig. 6.3c. In this TC, we
simulate recharge areas with a complex set up of contrasting hydrological properties with
changing impacts on the catchment response.

In order to better follow all different scenarios with varying hydrotope properties, the following
naming scheme was applied: The scenario indices are composed of the number of the TC and the
number of the scenario. E.g. Scenario 2 and 4 of TC 1 are named Scenario 1.2 and Scenario 1.4.
In those cases, where the properties of one specific hydrotope were modified, we renamed the
respective hydrotope by putting a number behind the hydrotope name. E.g., a modification of
Hyd 1 is named Hyd 1.1, Hyd 1.2 and so forth. In all TC’s, we maintain the 4 % dolomite
quarries. The hydrotopes considered in the different TC’s are also summarized in Table 6.1. Since
all TC scenarios represent hypothetical cases, we had to create synthetic discharge time series
as observations for the data misfit function (Eq. 6.2). Those time series were created with the
LuKARS model using the parameter set reported in Table 6.3 and assuming a noise level of 5 %
(as communicated by the water works Waidhofen a.d. Ybbs for the original, measured discharge
time series of the Kerschbaum spring).

Table 6.2: Summary of all investigated test cases with their respective scenarios, hydrotopes and
changes applied in each scenario.

Test case  Scenarios Hydrotopes Changes in Scenarios

increasing area of Hyd 2.2,
decreasing areas of Hyd 2.1
and Hyd 2.3

increasing discharge
parameter (kpy,), ranging
from Hyd 1.1 (120 m?d—!)

Hyd 2.1, Hyd 2.2,

TC 1 1.1-1.7 Hyd 2.3

Hyd 1.1 to Hyd 1.6,
TC 2 2.1-27 Hydl, Hyd?2,

Hyd3 to Hyd 1.6 (1000 md~)
increasing area of Hyd 1,
TC 3 3.1-3.7 gi g ; Hyd?2, decreasing areas of Hyd 2

and Hyd 3
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Hyd2.2 16% 32% 36% 46% 56% 66% 76%
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Figure 6.3: a) Investigated scenarios with same hydrotope properties and varying hydrotope ar-
eas for TC 1. b) Investigated scenarios of TC 2 having equal hydrotope areas, i.e. 32 %, and
changing quickflow properties of Hyd 1. c) Investigated scenarios with changing areas of the real
Kerschbaum spring hydrotopes for TC 3.

In a next step, we investigate how the mean sensitivities of each hydrotope change with vary-
ing hydrotope areas when considering homogeneous catchment conditions (TC 1), when changing
hydrotope properties (TC 2) and when considering the real properties of the Kerschbaum spring
hydrotopes with changing areas (TC 3). Mean hydrotope sensitivities represent the proportion of
the sum of parameter sensitivities of one hydrotope to the sum of sensitivities of the entire param-
eter space. Then, we compare the global sensitivity metrices with the parameters showing up in
the active subspaces of each scenario of the TC’s. Here, we investigate if in the computed active
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subspaces we can identify the catchment properties decisive for modeling the spring discharge. Fi-
nally, we use the active subspaces to identify the catchment properties of the Kerschbaum recharge
area which are relevant for the spring discharge.

6.4 Results and Discussion

We want to emphasize that for the following results we consider a maximum of four significant
eigenvalues. This means that if the eigenvalue decay over one order of magnitude contains more
than four eigenvalues, the decay is not considered as significant enough to identify an active sub-
space. Further, we want to stress that the following results, comprising parameter sensitivities,
are computed with respect to the normalized calibration parameters without any loss of general-
ity for the interpretation of the results in the physical parameter space given the mapping through
Eq. (6.7). To cut through the complexity of all scenarios of TC 1, 2 and 3, in the following we will
show the eigendecomposition only for two scenarios in each TC. For the sake of completeness,
however, we provide the illustrated results of all other simulations in the Supplementary Material.

Table 6.3: Overview of the model parameters used for each hydrotope to generate the synthetic dis-
charge time series in each test case. For the meaning of the parameters we refer to the explanation
given in A.1

Test Case Hydrotope kpyq Enin  Emax @ kis ksec Eqc Ihyd
[m2d~!'] [mm] [mm] [-] [mmm !'d!] [mmm~'d™'] [mm] [m]
Hyd 2.1 85 60 120 0.8  0.0055 0.023 180 900
TC 1 Hyd2.2 85 60 120 0.8  0.0055 0.023 180 900
Hyd 2.3 85 60 120 0.8 0.0055 0.023 180 900
Hyd 1 90 23 31 09 0.02 0.095 35 1600
Hyd 1.1 120 23 31 09 0.02 0.095 35 1600
Hyd 12 220 23 31 09 0.02 0.095 35 1600
Hyd 13 400 23 31 0.9 0.02 0.095 35 1600
TC2 Hyd 14 600 23 31 09 0.02 0.095 35 1600
Hyd 1.5 700 23 31 09 0.02 0.095 35 1600
Hyd 1.6 1000 23 31 09 0.02 0.095 35 1600
Hyd 2 85 60 120 0.8  0.0055 0.023 180 900
Hyd 3 77 90 200  0.55 0.0025 0.035 380 960
Hyd 1 90 23 31 09 0.02 0.095 35 1600
TC 3 Hyd 2 85 60 120 0.8  0.0055 0.023 180 900
Hyd 3 77 90 200  0.55 0.0025 0.035 380 960

6.4.1 Test casel

With TC 1, our specific objective was to investigate the dependence of a spring dicharge on the
area coverage of the catchment’s hydrotopes. In particular, we wanted to see if this dependence
can be identified in the active subspace of an investigated scenario. Fig. 6.4a displays the average
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sensitivity of each hydrotope for each scenario in TC 1 considering different hydrotope area distri-
butions. The plot shows that with increasing area covered by Hyd 2.2 its sensitivity increases, too.
Also, the sensitivities of Hyd 2.1 and Hyd 2.3 decrease with decreasing area.
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Figure 6.4: Average hydrotope sensitivities as obtained by the active subspace method for the
investigated scenarios of a) TC 1, b) TC 2 and c) TC 3.

When Hyd 2.2 covers an area larger than 60 %, it practically becomes the only sensitive hy-
drotpe. We can further observe that all hydrotopes have almost the same sensitivity in Scenario 1.2
where all hydrotopes cover the same arca. More precisely, Hyd 2.1 and Hyd 2.3 cover the same
area in all scenarios of TC 1 with mostly the same sensitivities. Small differences between their
sensitivities only occur in those scenarios where both hydrotopes together cover more than 50 %
of the assumed recharge areas (Scenario 1.1, 1.2 and 1.3). This minor difference of sensitivities
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can be related to the mean distance to the spring of both hydrotopes (I5y4). Since Hyd 2.1 is farther
away from the spring than Hyd 2.3 (Table 6.3), it is less sensitive than Hyd 2.3. Thus, we can iden-
tify a clear dependence of the mean sensitivity of a hydrotope on the area it covers. This finding is
of particular relevance since the exact extent of karst recharge areas often is unknown.
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Figure 6.5: Eigenvalue decay for each investigated scenario in a) TC 1, b) TC 2 and c) TC 3
including the significance level in which we consider an active subspace. All eigenvalues are
normalized to the respective maximum eigenvalue of each scenario. The red line indicates the
level where we choose a k-dimensional active subspace (significance level)

The decay of the eigenvalues for each investigated scenario in TC 1, normalized to the maxi-
mum eigenvalue of the respective scenario, are shown in Fig. 6.5a. We can observe a correlation
between the decrease in the active subspace dimension and the increase in the catchment area of
Hyd 2.2. However, the relation is not always monotonic. Comparing the decays over the first 9
eigenvalues shown in Fig. 6.5a, we can observe the lowest decay for Scenario 1.2 and the highest
decay for Scenario 1.6. The active subspace dimension ranges from | dimension (Scenario 1.6) to
8 dimensions (Scenario 1.2). The results suggest that the more the hydrotopes differ in terms of
area coverage, the faster the decay of the eigenvalues. In other words, the more a catchment area
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is dominated by one hydrotope, the lower the dimension of the active subspace.
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Figure 6.6: Results of the active subspace method applied to different scenarios of TC 1. a) Eigen-
vectors of the relevant eigenvalues of Scenario 1.2. b) Eigenvectors of the relevant eigenvalues of
Scenario 1.6.

Comparable to the results of the global sensitivity analysis (Fig. 6.4a), we found that the de-
pendence between spring discharge and the hydrotope area distribution is also reflected in the
eigenvectors of the significant eigenvalues. We show this for Scenario 1.2 and 1.6. When look-
ing at Eigenvector 1 of Scenario 1.2 (Fig. 6.6a), in which all hydrotopes cover the same area, we
recognize that the contributions of all 7 hydrotope parameters are also similar between all hydro-
topes. Further, the same parameters of each hydrotope have approximately equal contributions, in
particular to the first eigenvector. These are the discharge parameters of the different flow compo-
nents (kpyd, kis and kgec) having similarly high loadings and the storage parameters (Eyj, and Emax)
having similarly low loadings. From Eigenvalue 2 to 4, almost no decay happens (Fig. 6.5a),
meaning that the eigenvectors of these eigenvalues have the same relevance. We argue that these
similarities between the different hydrotope contributions are due to the fact that they all have sim-
ilar properties in terms of their physical characteristics as well as their area coverage. Given this
similarity, there are no hydrological reasons why the parameters of one hydrotope should be more
informed than others. This feature is correctly captured by both, the active subspace behavior as
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well as by the sensitivity analysis performed through the eigenvector decomposition of the active
subspaces. Hence, the area covered by each hydrotope directly affects how discharge data informs
the parameter space of LuKARS.

For Scenario 1.6, we can notice a considerable eigenvalue decay from the first to the sec-
ond eigenvalue (Fig. 6.5a), pointing towards the existence of a 1-dimensional active subspace
(Fig. 6.6b). Although the decay suggests the presence of a 1-dimensional subspace, we also show
Eigenvector 2 to see by which parameters it is dominated. Looking at these two eigenvectors, the
parameters of Hyd 2.2 clearly dominate these two dimensions, thus reflecting the results of the
global sensitivity analysis shown as average hydrotope sensitivities in Fig. 6.4a. Here, the dis-
charge parameter of the recharge (ki) is most sensitive as it is the dominant parameter in the first
eigenvector. Eigenvector 2 is also dominated by Hyd 2.2 parameters with a high contribution of
the discharge parameters controlling the quickflow (kpyq) and secondary spring discharge (ksec).
This shows that the model is mainly sensitive to the parameters constraining the amount as well
as the variability of the three types of hydrotope discharges represented in the conceptual model
(Onyd- Ois and Qgec, see also Fig. 6.2).

When further taking into account all other analyzed scenarios of TC 1 (Supplementary Mate-
rial), we can state that the higher the relative area covered by Hyd 2.2, the more pronounced gets
its contribution to the eigenvectors with significant ecigenvalues. In all scenarios, the most sensitive
parameters are the discharge parameters (knyd, kis and kgec). In summary, the results of TC 1 high-
light that we can identify the impact of the area covered by a hydrotope on the spring discharge in
an active subspace.

6.4.2 Test case 2

Our aim when creating TC 2 was to investigate if in an active subspace we can identify the rel-
evance of the hydrological variability a hydrotope displays independently from its area. For this
purpose, we created seven different scenarios considering equal areas of all hydrotopes, i.e. 32 %
for Hyd 1, Hyd 2 and Hyd 3, and varying quickflow properties in one of the hydrotopes, displayed
by Hyd 1, Hyd 1.1, Hyd 1.2, Hyd 1.3, Hyd 1.4, Hyd 1.5 and Hyd 1.6 (Scenarios 2.1 - 2.7, sce
Fig. 6.3b).

Fig. 6.4b shows the mean parameter sensitivities summed for all hydrotopes and for each of
the investigated scenarios. It highlights that the parameter sensitivities of Hyd 1 increase when
increasing the quickflow contribution. Considering the constant area covered by each hydrotope
in all TC 2 scenarios (Fig. 6.3b), we show that the discharge variability displayed by a hydrotope,
here Qpyq4. can fully explain the differences in the mean sensitivities of different hydrotopes.

When considering the eigenvalue decays in TC 2 (Fig. 6.5b), we can observe that the eigen-
value decay is highest in Scenario 2.7 and lowest in Scenario 2.2. Thus, the variations in hydro-
logical variability of the hydrotopes lead to differences in active subspace dimensions, i.e. with
increasing hydrological variability the eigenvalue decay increases. The active subspace dimension
ranges from | dimension (Scenario 2.6 and 2.7) to 5 dimensions (Scenario 2.2). We can observe a
correlation between the decrease in the active subspace dimension and the increase in kpyq value.
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However, also in this case the relation is not always monotonic and it depends on the cut off value
that we chose for the eigenvalues to be considered relevant for the active subspace.

We show the results of the eigenvectors of the significant eigenvalues for two example scenarios
in Fig.6.7, i.e. Scenario 2.2 and 2.7. To what extent the quickflow contribution increases between
the scenarios is displayed in the empirical cumulative distribution function (ecdf) of Qs shown in
the Supplementary Material. As for TC 1, the results of all other scenarios from TC 2 are provided
in the Supplementary Material.
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Figure 6.7: Results of the active subspace method applied to different scenarios of TC 2. a)
Eigenvectors of the significant eigenvalues of Scenario 2.2. b) Eigenvectors of the significant
eigenvalues of Scenario 2.7.

For Scenario 2.2, the decay of the eigenvalues shown in Fig. 6.5b is slow and without spectral
gaps that span at least one order of magnitude. In the eigenvectors of the first four eigenvalues
(Fig.6.7a), we recognize a dominant contribution of the first hydrotope’s parameters (Hyd 1.1).
It can be observed that all parameters of Hyd 1.1 are present with a noticable contribution in the
shown eigenvectors, while the contributions from Hyd 2 and Hyd 3 are primarily related to their
respective discharge parameter of the recharge (k;s). In Eigenvector 1, the dominant contributions
are related to the parameters controlling the quickflow of Hyd 1.1 (knyd, Emax and @). In particular
all discharge parameters of Hyd 1.1 have high scores in the shown eigenvectors. Eigenvector 2
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is dominated by high loadings of the discharge parameters of the recharge (k;s), with decreasing
order from Hyd 2 to Hyd 1.1 to Hyd 3. Eigenvector 3 behaves similarly to Eigenvector 2, while
Eigenvector 4 is similar to Eigenvector 1.

In Scenario 2.7, the strong eigenvalue decay from Eigenvalue | to Eigenvalue 2 suggests the
presence of a 1-dimensional active subspace (Fig. 6.5b). However, similar as we did for Sce-
nario 1.6, we also show Eigenvector 2 to see by which parameters it is dominated. The eigen-
vectors, shown in Fig. 6.7b, again highlight a clear dominance of the parameters controlling the
quickflow of Hyd 1.6 (knyd, Emax and ). Eigenvector 2 is dominated by the discharge parameter
of the recharge (ki) with still considerably high loadings of all other parameters of Hyd 1.6.

Looking at the ensemble of all TC 2 scenarios (Supplementary Material), the parameters which
determine the variability of the quickflow component Qy,,4, have increasing contributions with in-
creasing discharge variability (e.g. Fig. 6.7a and b). This shows that the active subspace method
identifies the specific impact of the quickflow component of the first hydrotope on the spring
discharge, which is increasing from Scenario 2.1 to 2.7. We further identify that the discharge
parameters controlling the recharge (ki) in Hyd 2 and Hyd 3 play a more significant role in the
TC 2 scenarios than their respective quickflow discharge parameters (knyg). This highlights that,
in contrast to the more pronounced quickflow contribution from the first hydrotope, the recharge
Qs originating from Hyd 2 and Hyd 3 is more important than the quickflow in these two hydro-
topes. Thus, the results of TC 2 highlight that the active subspace method identifies the dominant
discharge components in different hydrotopes.

6.4.3 Testcase3

TC 3 was created to investigate how the feature and dimension of the active subspace behave
when both, the area and the hydrological properties of the hydrotopes vary in a catchment. In
Fig. 6.4c, we show the mean parameter sensitivities summed for all hydrotopes and for each of
the investigated scenarios. We can see that the parameter sensitivities of Hyd 1 increase when
increasing its relative area coverage in the catchment. However, this occurs at a smaller rate than in
TC 1. Simultaneously, when decreasing the areas of Hyd 2 and Hyd 3, their parameter sensitivities
decrease, too. However, we can observe that the sensitivity of Hyd 1 parameters is not uniquely
dependent on the hydrotope area. For instance, when focusing on the sensitivities in Scenario 3.4
(Fig. 6.4c), it can be seen that the parameters of Hyd 1 are most sensitive although Hyd 2 and
Hyd 3 cover almost double the area of Hyd 1. Thus, we argue that the hydrotope’s discharge
variability and its area together lead to a more complex pattern of mean sensitivities as compared
to TC 1 and TC 2. The question that arises is why the sensitivity of Hyd 1 is higher in Scenario
3.4, 3.5, 3.6 and 3.7, although in most of these scenarios its area is smaller than those of Hyd 2
and Hyd 3. The answer to this questions can be found when comparing the mean hydrotope
sensitivities of TC 3 (Fig. 6.4c) with the variability of the two hydrotope discharge components,
quickflow (Qpyq) and groundwater recharge (Qj;). We show this as an example for Scenario 3.1
and 3.7 in the Supplementary Material. For Hyd 1, we can observe that the variability of Qjq
and Qs increases with increasing area coverage. The same relationship holds for Hyd 2, but in
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reverse order, meaning that the variability of both flow components decreases with decreasing area
covered by Hyd 2. Nevertheless, no pronounced change of discharge variability can be observed
for Hyd 3, neither for Qpy4 nor Q5. This shows that the impact of changing hydrotope areas on the
discharge variability is higher in hydrotopes with low storage capacities than in those with high
ones. Since the areas of Hyd 2 and Hyd 3 are similar in all scenarios but the magnitude of the
discharge parameters is higher in Hyd 2, the discharge variability explains the difference in the
mean hydrotope sensitivities. This finding can further be validated when comparing the hydrotope
sensitivities (Fig. 6.4c) with the ecdf’s of Scenarios 3.7 (Supplementary Material). It shows that
in case the largest hydrotope also displays the highest discharge variability (here: Hyd 1), we can
observe a high impact on the mean hydrotope sensitivities.
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Figure 6.8: Results of the active subspace method applied to different scenarios of TC 3. a)
Eigenvectors of the significant eigenvalues of Scenario 3.1. b) Eigenvectors of the significant
cigenvalues of Scenario 3.7.
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Further, we can observe that the eigenvalue decay over the first 9 eigenvalues is highest in
Scenario 3.1 and lowest in Scenario 3.7 (Fig. 6.5¢). However, the differences in the eigenvalue
decays of all TC 3 scenarios are not as substantial as compared to those observed for TC 1 and
2. In fact, the active subspace dimension in TC 3 ranges from 3 dimensions (Scenario 3.1) to 5
dimensions (Scenario 3.6). Hence, we also learn that the complex interplay of changing areas and
different hydrological variabilities of the hydrotopes do not lead to pronounced differences in active
subspace dimensions. Therefore, the hydrological properties of a hydrotope may compensate for
a smaller hydrotope area.

The discovered relationship between the hydrological variability of a hydrotope and the mean
hydrotope sensitivity is also displayed in the eigenvectors of the significant eigenvalues, shown as
examples for Scenario 3.1 and 3.7 in Fig. 6.8a and b, respectively. In Scenario 3.1 (Fig. 6.8a),
where the area coverage of Hyd 1 is significantly smaller than Hyd 2 and Hyd 3, we can recognize
a dominant contribution of Hyd 2 in Eigenvector 1, Hyd 3 in Eigenvector 2 and Hyd 1 in Eigenvec-
tor 3. In particular, we can observe a dominant contribution in all three hydrotopes of the discharge
parameter controlling the recharge (k;s). Further, we can identify a similar eigenvector contribution
of Hyd 1 and Hyd 3 parameters, also reflecting their similar mean sensitivities shown in Fig. 6.4c.
This can be explained by the fact that the groundwater recharge is linear proportional to the base-
flow (see Eq. A.16), making the discharge coefficients controlling the amount and variability of
Qi more sensitive than those of Qpyq.

Looking at the eigenvectors of the four most significant eigenvalues of Scenario 3.7 (Fig. 6.8b),
we can see that the discharge parameters of the recharge (kjs) again are the most important param-
eters of Hyd 1, Hyd 2 and Hyd 3, respectively. Different to Scenario 3.1, almost all parameters of
Hyd 1 have a noteworthy contribution in the most important Eigenvectors 1 and 2. Interestingly,
the contribution of the discharge parameter controlling the quickflow (knyq) appears to be similar,
potentially even more dominant than the contribution of the discharge parameter of the recharge kjs
in the first 2 eigenvectors. This can be related to the fact that Qjy¢ has a much faster contribution
to the spring discharge than Q; passing through the groundwater storage and becoming baseflow.
Hence, although Q) is about 4 times lower than Q;; (see range of the discharge components
in the ecdf’s in Supplementary Material), in the active subspace we identify that their respective
discharge coefficients are similarly informed.

6.5 Conclusion

In this work, we applied the active subspace method to the LuKARS rainfall-discharge model for
three test cases to investigate how the active subspace changes in dimension and feature depending
on geometrical properties, i.e. the area a hydrotope covers, and hydrological properties, i.e. the
discharge variability a hydrotope displays. Therefore, we provided a framework in which we adapt
the physical model parameters of LuKARS to make the active subspace method applicable for
the model while maintaining the physical constraints between each hydrotope. Our aim was to
investigate how much each parameter of the model is informed by the discharge data and how
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different model setups affect the results of the active subspace analysis. Model parameters that are
not sensitive to discharge observations should be then constrained using other data, although this
may be non-trivial in karst systems. The main findings of each test case are the following:

TC 1: For catchments with rather homogeneous hydrological properties, we showed that we can
identify the impact of varying hydrotope areas in an active subspace. We also show that if a
hydrotope covers more than 60 % of the area, then discharge data are informative only for
model parameters belonging to that hydrotope. This may guide tailored field investigation
on a specific part of the catchment.

TC 2: For catchments with contrasting hydrological properties but similiar hydrotope areas, we
highlighted that in an active subspace we can identify the impacts of individual hydrolog-
ical processes on the catchment response. In particular, discharge data will inform model
parameters belonging to the hydrotope mostly responsible for quickflow. To inform other
model parameters, and in particular to better constrain model parameters representing the
other hydrotopes, we suggest to integrate in model calibration measured time series of other
hydrological variables (e.g. soil moisture).

TC 3: For catchments with heterogeneous hydrological properties and varying hydrotope areas we
found that both features show a complex interplay in informing model parameters. The
relationship between hydrological properties of a hydrotope and its area is strongly related
to how much the spring discharge depends on the discharge variability. For those complex
catchment setups we provide evidence that in an active subspace we can identify if the area
covered by a hydrotope plays a more important role than its hydrological properties. In case
the area is the most relevant feature, then its characterization using appropriate experimental
methods (e.g. tracer tests) will be prioritiezed. In case other model parameters are more
sensitive to discharge observations, it is worth measuring other hydrological variables to
better constrain the model parameters which are not informed by discharge observations.

With our results, we highlight that the active subspace method can be used to guide modelers
in obtaining field data relevant for their respective modeling purposes. This is possible because the
eigenvectors of the relevant eigenvalues in an active subspace provide information about informed
linear directions in the parameter space. Depending on how pronounced the parameters appear in
those directions, we can learn about the importance of individual catchment features. Thus, we
consider the information provided in these informed parameter directions as the main strength of
the active subspace method which cannot be derived from other global sensitivity analysis methods
typically applied in hydrology, e.g. Sobol (Sobol, 2001). In total, we highlight that the area a
hydrotope covers has a more significant impact on the dimension of an active subspace than the
discharge dynamics a hydrotope displays. We found that the discharge coefficients (k. parameters)
were the most sensitive parameters in all scenarios.

For future works, our methodology can be used to hydrologically interpret the results obtained
from the active subspace method when applied to other hydrologic models. In our case, the in-
formation about the relevant catchment properties were constrained solely by discharge data. We
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argue that the information about relevant properties of an investigated aquifer system can be better
constrained when calibrating a model using more than one data source. Using hydrochemical and
discharge data in a multi-objective calibration approach, similar to Hartmann et al. (2017), can be
valuable to identify catchment properties which are relvant for both, hydrological and hydrochem-
ical fluxes. Moreover, using the active subspace method in a framework of a multi-temporal scale
calibration, e.g. (Schaefli and Zehe, 2009), can help to identify those model parameters which are
sensitive for the high frequency components of a measured discharge.
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Chapter 7
Conclusions

In this dissertation, a lumped parameter model was proposed that can be used to perform land use
change impact studies in karst systems. This model, i.e. LuKARS, is based on the implementa-
tion of landscape units with similar soil and land use types, defined as hydrotopes. Moreover, a
new methodology for uncertainty quantification and parameter dimension reduction, i.e. the active
subspace method, was tested for LuKARS. It was shown that this method can help to effectively
reduce the parameter dimensions as well as to quantify the model parameter and output uncer-
tainties. Finally, a detailed framework for a hydrological interpretation of an active subspace was
suggested.

7.1 Summary

At the beginning of this dissertation, the case study problem was defined (Section 1.1). In the
pre-alpine and dolomite-dominated karst system in Waidhofen a.d. Ybbs, a continuous land use
change was observed since the year 2007. Increasing areas were exploited for dolomite mining
without knowing about related impacts on the springs which rise close to the quarries. Protecting
these springs is, however, of great importance since they are used for the regional water supply
of Waidhofen a.d. Ybbs. Thus, a detailed understanding of the aquifer system functionning, its
dominant procesess and how it is linked to land surface operations was required to investigate the
impacts of increasing dolomite quarries.

In order to get a more profound knowledge how the karst system works, all existing data were
collected and analyzed. A particular focus was given to long-term hydrochemical time series which
were available for the five springs and the pumping well. Although these time series had an unsat-
isfying temporal resolution, i.e. < 4 measurements per year, the small scale study area (ca. 10 km?)
and the high number of springs provided a high spatial resolution of the dataset. In the study of
Narany et al. (2019), it was shown that such a dataset can be used to get a detailed understanding of
the internal functioning of a karst system. Primarily, the work highlighted that dolomite dissolution
plays a major role in the hydrochemical signal obtained at all springs. However, a cluster analysis
with that dataset helped to create a conceptual model of the mountain massif showing how the dif-
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ferent springs are distinct or connected in the subsurface. It was further shown that these long-term
hydrochemical time series were useful to determine the relative impact of the unsaturated and the
saturated zone for each investigated spring. Generally, the closer a spring is located to a striking,
impermeable layer (here: Opponitz layer), the higher the relative contribution of the unsaturated
zone to the spring discharge. This particularly accounts for the Hieslwirt and Mitterlug springs.
The closer a spring or well is located to the center of the syncline of the dolomitic basement, the
more the hydrochemical patterns point towards a higher relative contribution of the saturated zone.
This was especially observed for the Kerschbaum spring and the Forster well. The Glashiitten
spring was identified as an intermediate spring between these mentioned classes, which can be re-
lated to its geographical position between the Kerschbaum and the Hieslwirt spring. The Hinterlug
spring showed a similar pattern as the Kerschbaum spring and the Forster well. However, given its
clear tectonic separation from the springs of the Glashiittenberg massif, it was not considered in
the conceptual model. Finally, the prior knowledge about the local geology (GBA, 2018) was used
to justify the developed concept of the hydrological functioning of the Waidhofen karst system.

The higher the contribution of the unsaturated zone to a spring discharge, the more the spring
is affected by land use actions. For the part of the catchment which is affected by increasing
dolomite mining activities, i.e. the Kerschbaum spring recharge area, a clear pattern of contri-
butions from the unsaturated and saturated zone was identified. This hydrological understanding
of the Kerschbaum spring recharge area gathered from the work of Narany et al. (2019) provided
the base for the development of a numerical model. The purpose of this model was to simulate
and predict the impacts of the increasing mining activities in the area. Physical properties of the
soil-epikarst system and land cover play an important role for the Kerschbaum spring discharge
as shown by Narany et al. (2019). For this reason, building a modeling approach that is based
on distinct landscape units with homogeneous soil and land use properties, i.e. hydrotopes, ap-
peared promising. The specific hydrological response of a hydrotope should reflect the typical
hysteretic behavior observed in soil-epikarst systems and allow for three discharge components,
i.e. the quickflow, recharge and discharge drained outside the area (e.g. secondary spring discharge
or surface runoff). In the work of Bittner et al. (2018a), this model, i.e. LuKARS, was developed
for the Kerschbaum spring recharge area. It was calibrated for the year 2006 using a trial-and-error
approach and then validated for the year 2007. Using the calibrated hydrotopes, the model was
succesfully tested for the Hinterlug and Mitterlug spring recharge areas to ensure its transferability.
In a next step, the calibrated Kerschbaum model was further applied for distinct time steps between
2010 to 2013. In this validation phase, the observed land use change was considered in the model
structure. It was finally shown that the LuKARS model is able to simulate the hydrological impacts
of the increasing dolomite quarries. The model results highlight that proceeding mining activities
lead to a decrease in the discharge of the Kerschbaum spring and, thus, have a negative impact on
the regional water supply.

The next step was to provide the model in an accesible and user-friendly way to make it ap-
plicable by practioners and decision-makers. In the particular case of Waidhofen a.d. Ybbs, this
was the waterworks. However, the model should not only be provided to the responsibles of
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the study area but to all interested persons dealing with land use change impact studies in karst
systems. For that reason, a tailored framework was needed that provides a GUI for interested
users. In the framework of the FREEWAT project, a QGIS plugin was developed that comprises
various tools for water resource management. The plugin has a modular structure consisting of
pre-processing, simulation and post-processing tools. Given that no rainfall-discharge model was
included in the simulation module, the particular aim in the work of Bittner et al. (2020b) was
to integrate LuKARS into FREEWAT. This software coupling was considered as beneficial for
three reasons. First, the FREEWAT project ended in 2017 and its maintenance and development
strongly depends on voluntary initiatives of researchers to support this developers group. Hence,
the integration of LuKARS was considered as a valuable contribution to the overarching goal of
making FREEWAT a comprehensive toolbox for water resource managers. Second, the present
structure and the provided tools in the pre- and post-processing modules made FREEWAT a tai-
lored framework for making LuK ARS more accessible and applicable by non-researchers. Third,
given its hydrotope-based structure, using a GIS system as GUI for LuKARS was a promising
approach since all relevant model data objects could be stored either as time series or geospatial
data. Finally, the developed software as well as the application example for the Kerschbaum spring
recharge area were provided on GitHub.

Each hydrotope implemented in LuKARS has seven calibration parameters. Taking the exam-
ple of the Kerschbaum spring LuKARS model, three hydrotopes need to be calibrated with a total
of 21 calibration parameters. As discussed in the Introduction, in particular in Section 1.2.4, this
high-dimensional parameter space makes the model prone to parametric and output uncertainties.
Without knowing about these model uncertainties, using the LuKARS model to produce reliable
predictions on the hydrological impacts of land use changes is challenging. For that reason, the
purpose in the work of Teixeira Parente et al. (2019a) was to quantify the uncertainties related to
model parameters and output of LuKARS and to investigate if the parameter space can be reduced
and approximated by a surrogate model. The active subspace method was chosen as an appro-
priate tool since it can identify dominant directions in which the model parameters can be most
constrained. Those directions further provide information about how different model parameters
are related to each other, thus, going beyond a global sensitivity analysis. It was found that the
parameters controlling groundwater recharge become most informed in the active subspace of the
Kerschbaum LuKARS model. Moreover, the identified active subspace suggested that the initial
21-dimensional parameter space may be reduced to four dimensions. A Bayesian inversion was
performed using a polynomial surrogate fitted to the four dimensional subspace. It was shown that
the ranges of the parameters, which were most informed in the active subspace, became most con-
strained from the prior to the posterior. The model output uncertainties were quantified using 1000
random samples drawn from the original parameter space and including the updated information
from the active subspace. The results highlight that when using the four dimensional surrogate
model, the model output uncertainties are < 10 % with respect to the mean discharge of the Ker-
schbaum spring. Thus, it was concluded that using the active subspace method in a Bayesian
inversion framework not only provides a tool to quantify model parameter and output uncertainties
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but also to reduce the parameter dimensions in LuKARS. Given that the model output uncertain-
ties were considerably low, using LuKARS in combination with the active subspace method can
provide reliable predictions on land use change impacts in karst systems.

Although the application of the active subspace method to LuKARS provided good results for
what relates to the quantification of model uncertainties, a clear hydrological intepretation of what
an identified active subspace means is still missing. This research gap was addressed in the work
of Bittner et al. (2020a). In particular, three different test cases, each consisting of seven scenarios
were investigated in which either the area of a hydrotope, the properties of a hydrotope or both were
changed. The first test case was defined to investigate the impact changing hydrotope arcas have
on the spring discharge when having homogeneous hydrological properties. It was shown that if a
hydrotope covers more than 60 %, the spring discharge only informs model parameters that belong
to this hydrotope. In the second test case, the area of the hydrotopes remained constant while
the discharge variability of one hydrotope was increased from one to another scenario. The study
showed that the higher the hydrological variability of the quickflow in one hydrotope, the more
the spring discharge data informs the respective quickflow parameters of that hydrotope. Finally,
in the thrid test case, the hydrotope area and the discharge variability varied were different in all
scenarios. For these complex cases, it was shown that it is possible to identify in an active subspace
if either geometrical or specific hydrological properties of a catchment play a more important role
for the simulated spring discharge. How the hydrological properties and the area of a hydrotope are
related strongly depends on how much the spring discharge is affected by the discharge variability
of a hydrotope. In general, the application of the active subspace method can support a modeler to
obtain relevant field data which are required for a particular modeling purpose. This study showed
that relevant catchment and hydrological properties can be identified in an active subspace.

In summary, this dissertation provided a comprehensive study consisting of the two objec-
tives: Model development, implementation and application and Uncertainty quantification. It was
shown that a detailed conceptual understanding of a dolomite karst system can be gathered from
long-term hydrochemical time series with a low temporal but a high spatial resolution. Based on
this knowledge, a lumped parameter model, LuKARS, was developed which has been proven to
be applicable for land use change impact studies in karstic areas. This model was made available
as an open source GUI for water resource managers by implementing the model into the FREE-
WAT plugin in QGIS. In order to ensure the reliability of the LuKARS model results, the active
subspace method was applied to quantify model parameter and output uncertainties. The initial
21-dimensional parameter space of the Kerschbaum spring LuKARS model was succesfully re-
duced to a four dimensional surrogate model with considerably low output uncertainties. Finally,
a clear hydrological interpretation of the meaning of an active subspace was given that supports a
reliable and process-based dimension reduction of lumped parameter models like LuKARS.
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7.2  Outlook

In this last section of the presented dissertation, an outlook is given for possible future research
activities. Therefore, a specific outlook is given for possible developments of the LuKARS model
and for the active subspace method.

7.2.1 Future enhancements of LuKARS

The LuKARS model was developed for a dolomite-dominated karst system. Dolomite aquifers,
depending on the existing fracture system as well as on the geo- and hydrochemical boundary
conditions of a catchment, generally show a lower degree of karstification than pure limestone
aquifers. This fact is related to the higher solubility of Ca”* as compared to Mg?*. As aresult, the
discharge variability in limestone karst systems is generally higher than the hydrological dynamics
observed at springs orginating from dolomite aquifers. Thus, LuKARS should be tested for a
limestone-dominated aquifer in future research in order to ensure its general applicability for karst
systems.

Moreover, a typical feature of karst systems is the duality of groundwater recharge, i.e. con-
centrated recharge through sinkholes or sinking streams and diffuse recharge in the catchment. In
the particular case of the Waidhofen a.d. Ybbs study area, prior investigations of Hacker (2003)
revealed that concentrated recharge does not play an important role for the aquifer system. This
knowledge was adopted in the development of LuKARS, in which only diffuse recharge was con-
sidered. However, when transferring LuUKARS to a limestone system, concentrated recharge may
become a dominant factor and, thus, needs to be considered in the model structure. Hence, future
works need to further advance the model code in order to account for the duality of the recharge
processes in karst systems.
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Figure 7.1: Comparison hourly vs. mean daily karst spring discharge. (a) Example for hourly
discharge measured at a limestone karst spring. (b) Daily mean discharge obtained from the hourly
time series shown in (a).

When applying LuKARS to a limestone karst system, the time steps on which the model is op-
erated may become another challenge. As pointed out earlier, limestone-dominated karst systems
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typically show a higher discharge variability than dolomite aquifers. Since LuKARS was devel-
oped to work with daily time steps, a further step should be to modify the model code such that it
can be run on an hourly basis. In general, daily discharge values often miss information on relevant
hydrological processes, such as conduit flow, and they sometimes do not show the typical charac-
teristics of a karst spring hydrograph, i.e. the rising and recession limb of a peak discharge. As
an illustrative example, Fig. 7.1 shows a comparison between hourly discharge values and daily
means obtained from the hourly time series. Thus, operating LuKARS on an hourly basis can
ensure that the relevant hydrological processes and characteristics observed discharge time series
obtained from limestone-dominated karst springs can be captured.

Given that various discharge components are simulated by each hydrotope in LuKARS, specif-
ically the quickflow and the recharge, it could be an interesting future work to perform a multi-
objective calibration considering measured flow data from these different components. In partic-
ular, recharge areas in which not only the spring discharge but also conduit flow is monitored can
provide great test sites for this recharge idea. Such a recharge area is e.g. the Milandre test site in
the Swiss Jura mountains, which has been intensively investigated by the karst community (Perrin
et al., 2007; Jeannin et al., 2016). The responsible persons of this test site were already contacted
to initiate this joint research activity. It is assumed that this multi-objective calibration can provide
an alternative way to reduce the model output uncertainties in LuKARS.
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P ET entering the conduit precipitation
Qec - discharge from epikarst  Ce - solute concentration in
= = to conduit discharge from epikarst
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to matrix discharge from matrix
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to conduit discharge from conduit
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Figure 7.2: Possibilities for integrating and trying different solute transport routines in LuKARS.
Different modeling approaches are presented for the three compartments in karst systems, i.e. the
epikarst, matrix and conduits.
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Besides the proposed enhancements for LuKARS as a rainfall-discharge model, the model
could be further improved by the integration of solute transport routines. For different compart-
ments of a karst aquifer, various solute transport approaches could be tested in order to figure out
which of them works best in combination with a lumped parameter model. Some examples are
given in Fig. 7.2. Having a coupled flow and transport model can further support to better con-
strain the ranges of calibration parameters, e.g. in the framework of a multi-objective calibration
approach using discharge and hydrochemical time series.
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7.2.2 Future works with Active Subspaces

The active subspace method was proven to be an efficient tool to quantify model parameter and
output uncertainties, perform global sensitivity analysis, efficiently reduce the dimensions of a
lumped parameter model and to provide relevant information about dominant hydrological and
catchment properties. So far, the active subspace method uses the data misfit function to mea-
sure deviation between observed and simulated spring discharge. This can be further enhanced
when coupling the active subspace method in a multi-objective calibration approach. It should be
possible to include further time series, e.g. measured hydrochemical signals, in combination with
discharge measurements. When applying this multi-objective approach in the existing Bayesian
inversion context, it can be assumed that the parametric uncertainties can be more reduced than in
a single-objective approach.

Kerschbaum
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Figure 7.3: Example of different signals obtained from the discrete wavelet transform when applied
to a spring discharge time series.

Similarly, the signals obtained from the discrete wavelet transform could act as a multi-temporal
scale objective to which the data misfit function could be applied to. Such a decomposition is
shown as an example in Fig. 7.3. By that, only one measured time series is needed but providing
multiple calibration objectives to be coupled with the active subspace method. In order to validate
the results, the weighted sum of eigenvalues and eigenvectors obtained for each signal should bring
similar results as those obtained when using only the measured discharge time series.

As previous studies showed that the global sensitivity metrics obtained from the active sub-
spaces is comparable to those gathered from Sobol’s method (Sobol, 2001; Constantine and Diaz,
2017), it could be helpful to compare the active subspace results with those obtained from other
global sensitivity analysis methods. It is assumed that this study can provide a detailed overview
of advantages and disadvantages the active subspace method has as compared to others. Such a
study can guide future modelers to select an appropriate sensitivity analysis tool for a predefined
task (Bdrdossy, 2006; Pianosi et al., 2015).
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A.1 Appendix to Chapter 5
In LuKARS, the following balance equation is solved for each individual hydrotope:

de; Si— Qscc.ﬁ’Q;x*’thdTi ife;> 0
— = i (A.1)
di 0 ife;=0
e; is the water level [L] in hydrotope i, # [T] indicates the time and S; is a hydrotope-specific sink
and source term in form of a mass balance of precipitation, snow melt, evapotranspiration and
interception. We used the temperature index approach from Martinec (1960) to calculate snow
melt. Interception was estimated based on indications for beech forests in DVWK (1996). Then,
evapotranspiration was calculated based on the method of Thornthwaite (1948). Qgec [L3T1
summarizes all flow terms that do not contribute to the discharge at an investigated karst spring,
i.e., secondary spring discharge and overland flow. Qi,; [L3T!] represents the discharge from
hydrotope i to a linear baseflow storage, considered as groundwater recharge. QOhnyd.i [L3T 1 is
a hydrotope-specific quickflow component through preferential flow paths (e. g., subsurface con-
duits) with a direct connection to the spring outlet. a; [L2] is the space covered by a respective
hydrotope.
The following balance equation is solved for the baseflow storage:
dey [JH&D O g 50

(A.2)
dr 0 if ep =0,

ep is the water level [L] in the baseflow storage and X(Qjs ;) [L3’T integrates the flows from all
hydrotopes to the baseflow storage. Qp [L*T~'] indicates water flow from the storage B to the
spring and simulates the matrix contribution from the saturated zone to the spring discharge. The
variable A [L?] is the space of the entire recharge area. The discretized forms of A.1 and A.2, as
shown in A.3 and A .4, are solved for each time step n:
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Cinil = max {07 eint (Si.n _ Osec.in Ql;.z,n thd,z,n) *At} (A3)
i
Z . —
€b,| = max {O, Con+ <7(Q‘“‘”A) Qb‘”) * At} (A4)
The discharge terms are computed as:
max (0, e, — emin) 1% Knyd.i
Onyain — & {M} R EN (A.5)
€max.i — €min,i lhyd,i
Qis,i,n = kis i*ejn*a; (A.6)
Qsec.i,n = ksec,i * max(O, €in— esec,i) *daj (A7)
Qb =kp *epn*A (A.8)

emax,i [L] and ep;n; [L] are the upper and lower storage thresholds of hydrotope i. The exponent
«; controls the magnitude of the quickflow component from each hydrotope. ege ; [L] represents a
hydrotope-specific activation level for Q. kis.; [LT '] and kgec; [LT '] are the specific discharge
parameters for Qjg ; [L3T!] and Qgec; [L3T 1. knyd.i [L2T!] indicates the specific discharge
parameter for the quickflow and luyq; [L] is the mean distance of hydrotope i to the adjacent
spring, allowing to account for the relative location and distribution of hydrotope i in a specific
recharge area. The ratio between kpyq ; and lpyg,; is the hydrotope discharge coefficient. Then, the
dimensionless connectivity/activation indicator € is defined as:

. & —=0& eint1 < emaxi OF
&l = 0 if
E=1& €intl < emin,i

(A9)

g=0&e¢; > emax.i OF
P 1 if n in+1 Z €max.i (A.IO)

8,1 = 1 & e,-,n“ > emin,,-.
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A.2 Appendix to Chapter 6

In a LuKARS model, areas with homogeneous infiltration conditions are implemented as distinct
hydrological response units, called hydrotopes (Fig. 6.2a). Land use change impact studies can be
performed by changing the hydrotope infiltration area. A hydrotope is analogous to a bucket that
has three discharge components: the quickflow component (Qyyd [L3T~'), a secondary spring
discharge (Qgec [L3T~!]) and the recharge (Qjg [L3T-1). Ohnyq is considered a hydrotope-specific
quickflow occurring in preferential flow paths (e.g. subsurface conduits). The quickflow bypasses
the baseflow storage B and is directly transferred to the spring outlet. The quickflow starts once a
hydrotope-specific storage threshold (Ey.x) has been reached and stops after the hydrotope stor-
age falls below a lower storage threshold (Epiy). Osec integrates all flow components that do not
arrive at the simulated karst spring and that are transferred outside the regarded recharge area,
i.e. secondary spring discharge and overland flow (Tritz et al., 2011). Qj is the discharge from
one hydrotope to the underlying baseflow storage, B, that represents the process of groundwater
recharge. Each hydrotope has 7 physical parameters, with length units L and time units 7', that are
as follows:

* knya [L*T~!] is the discharge parameter for QOpyq,

e Enin [L] is the minimum storage capacity of a hydrotope,
e Emax [L] is the maximum storage capacity of a hydrotope,
e a [-] is the hydrotope-specific quickflow exponent,

o kis [LT~ 1] is the discharge parameter for Qjg,

o keee [LT 1] is the discharge parameter for Qgec,

e Egec [L] is the activation level for Qgec.

Following the conceptual sketch of LuKARS shown in Fig. 6.2a, the model solves the following
discrete balance equations for each hydrotope i and for each time step n:

thd,i,n + Qsec,i.n + Qis,i,n

Ejps1 = max[0,E;p + (Sin— .
1

) A1) (A.11)

where E; indicates the water level [L] in hydrotope i. S; is the hydrotope-specific sink and
source term as a mass balance of precipitation, snow melt, evapotranspiration and interception.
Interception is calculated using estimates provided by DVWK (1996). A simple temperature index
model (Martinec, 1960) is used to model snow melt and snow retention in the model. Then, evap-
otranspiration is considered using the method proposed by Thornthwaite (1948). Qnyq,i [L3T 1
represents the quickflow component (e.g. conduit flow), Qgec.i [L3T 'isa secondary spring dis-
charge and Qj,; [L3T~!] is the groundwater recharge. The absolute area covered by a respective
hydrotope is given by a; [L?].
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Z(Qis.in) = Qo
A
is the balance equation for the baseflow storage B, where Ej, indicates the water level [L] in
the baseflow storage and Z(Qj ;) [L3T~!] are the cumulative flows from all hydrotopes to the
baseflow storage. Qp [L3T~!] represents water that is transferred from the storage B to the spring
and simulates a baseflow contribution from the phreatic aquifer system to the spring discharge. The
variable A [L?] stands for the entire recharge area. The discharge terms are computed as follows:

Eb.ll+l = max[O, Ebﬂ + ( )Al‘] (AIZ)

knya; . max(0,E;n — Enin,;)

Ohyd,in = i % (A.13)
veLn ! lhyd,i " Emaxj —Emin.zf ]
Qsec,i,n = ajksec,i max(07 Ein— Esec,i) (A.14)
Oisin — aikisiEin (A.15)
Ovn=AkyEp (A.16)

Enax,i [L] and Epp; [L] represent the upper and lower storage thresholds of the hydrotope
i. Egc; [L] is the hydrotope-specific activation level for a secondary spring discharge. kgec.i
[LT~'], kis; [LT~'] and ky, [LT~'] are the specific discharge parameters for Qyec.i [L3T™'1, Qi
[L3T!] and Qp [L3T~!], respectively. knyd,i [L2T~'] represents the specific discharge parameter
for the quickflow of a hydrotope and lyyq,; [L] is the mean distance of hydrotope i to the adjacent
spring, thus accounting for the relative location of the same hydrotope types in a specific recharge
area. The ratio between kpyq,; and lyyq,; represents the hydrotope discharge coefficient and «; is a
hydrotope-specific exponent of the quickflow. The dimensionless connectivity/activation indicator
€ is defined as follows:

& =0&E; < Emax.j OF
Ep1 = 0if{ " e (A17)
& = 1& Ei,n+1 S Emin.lf

€, =0&Ei 1> Enaxi OF
gy = 1if{ " bl = Tmad (A.18)
& =1&E; 11> Enin
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B.1 Supplementary material to Chapter 3

B.1.1 Climate of the study area
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Figure B.1: Annual distribution of temperature and precipitation in the study area Waidhofen a.d.
Ybbs. The monthly precipitation sums (blue bars) are averaged from 1981 — 2014 at the weather
station Hinterlug (BMNT, 2018). Temperature was measured at the Mitterlug spring in the period
from 2001 - 2016 and aggregated to monthly means (red line).
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B.1.2 Model notation

Table B.1: Relevant model parameters of LuKARS. The x notations indicate that the respective
parameter is hydrotope-specific.

Symbol Description

Epinx [L] hydrotope-specific minimum storage capacity

Epax x [L] hydrotope-specific maximum storage capacity

Egec x [L] activation level for flow processes leading to water losses

Onyax [L’T!']  hydrotope quickflow component

Qis.x [L3T~!]  groundwater recharge from hydrotope x

Osecx [L3T~!] flow component transferred outside the recharge area

0, [L3T 1 baseflow

Qo [LPT71] total spring discharge

knyax [IL?T~'] hydrotope-specific discharge parameter for Qpyq [L3T ']
Ipya x L] mean distance of hydrotope x to the spring

kis [LT™1] hydrotope-specific discharge coefficient for Qj [L3T 1
ksec x [LT 1] hydrotope-specific discharge coefficient for Qge. [L3T 1

a -] quickflow exponent of hydrotope x

€[] connectivity/activation indicator for the quickflow
k, [LT~ ] discharge parameter for QO [L3T 1

ay [L] area covered by haydrotope x

A [L] recharge area

Sy [LT 1 sink and source term

E, [L] water level in hydrotope x

E, [L] water level in baseflow storage

My [LT 1] daily amount of snow melt

Mo [LT!] potential snow melt rate

I; [LT 1 daily interception loss

Ety [LT1 daily evapotranspiration loss

T [°C] mean monthly temperature

Ty [°C] temperature threshold for snow melt

H [-] heat index in Thornthwaite (1948) approach
r[-] exponent in Thornthwaite (1948) approach
F [LT'°C™'] degree-day factor

Senow [L] accumulated snow water equivalent
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B.1.3 DWA hydropedological fieldguide

The hydropedological fieldguide (DWA, 2018), developed by a DWA (German Association for
Water, Wastewater and Waste) working group, represents a mapping tool for hydropedological
processes. Generally, the tool comprises two parts: i) a general guideline for hydropedological
mapping and ii) a MS-Excel evaluation scheme. To simplify the applicability as well as to increase
the general acceptance of the tool, the mapping scheme (i.e. mapping sheet, included parameters
and parameter classifications) is closely related to the German soil classification scheme (Ad-hoc-
Arbeitsgruppe Boden, 2005). The tool works as follows: First, the user chooses a point in his/her
area of interest that, from a hydrological point of view, is representative of the area he/she wants to
investigate. Next, the user maps different soil parameters (such as soil type, bulk density, content of
organic matter, hydromorphic properties and preferential flowpaths) for each soil layer at the given
soil profile. Given the mapped parameters and assuming a defined rainfall event, the MS-Excel
tool derives the dominant hydrological processes as well as the range of water storage volume for
wet and dry conditions based on pedotransfer functions (Ad-hoc-Arbeitsgruppe Boden, 2005).

B.1.4 Model input data

Table B.2: Information about the temporal resolution, time intervals and measuring stations of the
input data used for the model simulations.

Data Measuring station Temporal resolution  Time interval
Precipitation  Mitterlug spring Daily 01/2006 - 12/2006 (calibration period)
01/2007 - 12/2007 (validation period)
Hinterlug station . S .
Snow depth (BMNT., 2018) Daily 01/2006 - 12/2006 (calibration period)
01/2007 - 12/2007 (validation period)
Hinterlug station . G .
Temperature (BMNT, 2018) Daily 01/2006 - 12/2006 (calibration period)
01/2007 - 12/2007 (validation period)
Kerschbaum . S .
Q~Kerschbaum spring tapping Daily 01/2006 - 12/2006 (calibration period)
01/2007 - 12/2007 (validation period)*
Hinterlug . . .
QHinterlug spring tapping Daily 01/2006 - 12/2006 (calibration period)
01/2007 - 12/2007 (validation period)
Quiere O cTOW basin in Daily 01/2006 - 12/2007 (validation period)**

water supplying system

* Data gaps are present in the Kerschbaum spring discharge time series between 2010 and 2013

** We calculated monthly mean values from the daily discharge values due to high uncertain-
ties in the daily time series resulting from improper monitoring (discharge not measured directly
in spring tapping)
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B.1.5 Specific discharge contributions of the hydrotopes
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Figure B.2: Specific discharge contributions, here quickflow, of the hydrotopes in the Kerschbaum
and Hinterlug recharge areas.
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Figure B.3: Specific discharge contributions, here recharge, of the hydrotopes in the Kerschbaum
and Hinterlug recharge areas.
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B.2 Supplementary material to Chapter 5

The supporting information comprises three figures that are said to support the scientific content
provided in the main text. Fig. B.4 gives an overview about the natural characteristics of the study
area in Waidhofen a.d. Ybbs. The orthophoto in Fig. B.4a), taken in 2006, was kindly provided
by the water works owner in Waidhofen. The shown recharge area of the Kerschbaum spring
was mapped by Hacker (2003). Fig. B.5 is taken from Bittner et al. (2018a) to provide visual
help for the LuKARS model and the interconnection of different hydrotopes. Fig. B.6 provides
a visual overview of the input data processed to run the Kerschbaum LuKARS model. The daily
temperature was used in the temperature index snow model (Martinec, 1960) as well as to calculate
evapotranspiration (Thornthwaite, 1948). The precipitation time series was processed as an input
for LuKARS and the discharge time series was used to calibrate the LuKARS model. All input
data was kindly provided by the water works Waidhofen a.d. Ybbs.

106000 108000

Figure B.4: Overview of the characteristics of the Kerschbaum spring recharge area and its geo-
graphical localization. a) an orthophoto and the boundary of the recharge area with the location
of the Kerschbaum spring. b) the geographical position of Waidhofen a.d. Ybbs in Austria. c)
the dominant presence of dolomitic basement rocks in the catchment (GBA, 2018). The isolines
represent different elevation levels.
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(a) -—> highest quickflow intensity
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Figure B.5: Conceptual sketch of the LuKARS model structure as provided in Bittner et al.
(2018a). Hyd Q represents the dolomite quarries, where no infiltration occurs due to a compacted
protection layer and all water is drained by surface flow. The figure highlights the decreasing
quickflow intensity from Hyd 1 to Hyd 3 due to the increasing soil depth and increasing content of

fine-textured soil.
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Figure B.6: Input data used to run the LuKARS model, including daily temperature (top), daily
precipitation (middle), and daily discharge values of the Kerschbaum spring (bottom).
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B.3 Supplementary material to Chapter 6
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Figure B.7: Results of Scenario 1.1. Figure shows the eigenvectors of the first four eigenvalues.
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Figure B.8: Results of Scenario 1.3. Figure shows the eigenvectors of the first four eigenvalues.
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Figure B.10: Results of Scenario 1.5. Figure shows the eigenvectors of the first four eigenvalues.
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Figure B.12: Results of Scenario 2.1. Figure shows the eigenvectors of the first four eigenvalues.




Article supplementary materials

WHydi.2
WHyd2
| %E]

=

tor 1

igenvect

Ei

Eigenvector 2
|
1
|
|
|
|
|
|
|

Eigenvector 3

é‘é

Figure B.13: Results of Scenario 2.3. Figure shows the eigenvectors of the first four eigenvalues.
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Figure B.15: Results of Scenario 2.5. Figure shows the eigenvectors of the first four eigenvalues.
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Figure B.16: Results of Scenario 2.6. Figure shows the eigenvectors of the first four eigenvalues.
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Figure B.19: Results of Scenario 3.4. Figure shows the eigenvectors of the first four eigenvalues.
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Figure B.21: Results of Scenario 3.6. Figure shows the eigenvectors of the first four eigenvalues.
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Dr.-Ing. Daniel Bittner, Koblenzer Str. 16, D — 80993 Miinchen
daniel.bittner@tum.de, + 49 177 / 33 491 88

CV

Geburtsdatum: 10. November 1987
Geburtsort: Lichtenfels

Familienstand: verheiratet, 1 Kind

Ausbildung:

01.2017 - 05.2020  Promotion am Lehrstuhl fiir Hydrologie und Flussgebietsmanagement der
Technischen Universitdt Miinchen
Dissertation: “Uncertainty Quantification in modeling karst water
resources and the impacts of land use changes” (mit Auszeichnung
bestanden, summa cum laude)

10.2013 - 06.2016  Master of Science in Geowissenschaften an der Universitét Trier,
Deutschland
Masterarbeit: "Numerical modeling of coupled surface and ground
water flow for the Middle Elbe, Germany" (Note: 1.0)
Endnote: 1.2

10.2010 - 01.2014  Bachelor of Science in Angewandter Physischer Geographie an der
Universitat Trier, Deutschland
Bachelorarbeit: "Evaluierung der Bodenhydrologischen Kartieranleitung
der DWA AG HW 1.3" (Note: 1.0)
Endnote: 2.1

06.2009 Abitur am Ville Gymnasium Erftstadt, Deutschland

Berufserfahrung:

11.2016 - heute Technische Universitit Miinchen, Lehrstuhl fiir Hydrologie und
Flussgebietsmanagement, Wissenschaftlicher Mitarbeiter
e Projekt ,,boDEREC-CE* (seit 2019)
Aufgaben: Projekt- und Finanzmanagement, Implementierung und Co-

Antragsteller
Inhalte: Erfassung, Bewertung und Modellierung von Pharmazeutika in
Leitung Interreg verschiedenen Grundwassersystemen.
Projekt ,,boDEREC- Erarbeitung von Monitoringkonzepten fiir Pharmazeutika in
CE* unterschiedlichen Grundwasserleitern.

Erstellung eines modellgestiitzten Bewertungsansatzes fiir
Stakeholder zur Ableitung von Handlungsmafinahmen basierend
auf existierenden Studien.

Foérderung: 2.300.000 € (gesamt), 241.000 € (TUM), Interreg Central
Europe



Projektleitung
Grundwasser-
bewirtschaftung
Waidhofen a.d. Ybbs

Kooperation und
Weiterentwicklung
von MODFLOW mit
USGS

Leitung Interreg
Projekt ,, PROLINE-
CE*

01.2016 - 10.2016

Hydrogeologische
Beratung in der BfG

01.2014 - 12.2015

Hydrogeologische
Ingenieurtdtigkeit

e Wasserversorgung Waidhofen a.d. Ybbs (Osterreich) (seit 2018)

Aufgaben: Projekt- und Finanzmanagement, Implementierung und
Antragsteller

Inhalte: Hydrologische und hydrochemische Zustandsbewertung des
Wasserversorgungssystems (Karstgrundwasserleiter).
Entwicklung von Bewirtschaftungskonzepten zum Schutz der
Grundwasserspender und zur dauerhaften Gewihrleistung der
Wasserversorgung.

Forderung: 32.000 €, Stadt Waidhofen a.d. Ybbs

e Forschungsinitiative mit dem United States Geological Survey (USGS)

(seit 2018)

Aufgaben: Projektleitung, Finanzmanagement, Antragsteller

Inhalte: Initiierung einer Forschungs- und Lehrkooperation mit den
Entwicklern von MODFLOW-OWHM mit Workshops in
Deutschland und USA.
Modellentwicklung zur physikalisch-basierten und verteilten
Simulation von hydraulischen Prozessen in Karst-
grundwasserleitern (Testgebiet Barton Springs, Texas).

Forderung: 20.000 €, BaCaTec & TUM Incentive Fund

e Projekt ,,PROLINE-CE® (beendet, 2016 - 2019)

Aufgaben:
Inhalte:

Forderung:

Projekt- und Finanzmanagement, Implementierung

Konzepte fiir eine integrierte Grundwasser- und
Landbewirtschaftung unter Einbindung von Stakeholdern.
Modellgestiitzte Effektivitdtsanalyse der erstellten Konzepte fiir
verschiedene Grundwassersysteme (Karst- und Poren-
grundwasserleiter).

Entwicklung von modellbasierten Wasserwirtschaftswerkzeugen
fiir Stakeholder.

2.750.000 € (gesamt), 232.000 € (TUM), Interreg Central
Europe

Bundesanstalt fiir Gewésserkunde (BfG),
Wissenschaftlicher Mitarbeiter

Aufgaben:
Inhalte:

Hydrogeologische Beratung des Eisenbahn-Bundesamtes
Statistische Analyse hydrogeologischer und hydrochemischer
Daten im Kontext von Schienenbauprojekten (grotenteils
Stuttgart 21).

Modellbasierte Uberpriifung der Wirksamkeit von
Wasserhaltungs- und Schutzmafnahmen vor Aufstieg von
Thermalwéssern.

Grundbaulabor Trier, Dipl.-Ing. E. Lehmann,
Geowissenschaftler

Aufgaben:
Inhalte:

Projektmanagement, Gutachter

Planung und Implementierung von Grundwassermonitoring
Konzepten im Rahmen von Baugrunduntersuchungen.
Planung, Durchfithrung und Auswertung von Pumpversuchen.
Diverse hydrogeologische und bodenmechanische Feld- und
Laborarbeiten.



Auslandsaufenthalte:

01.2019 - 02.2019

06.2018 - 07.2018
& 01.2019

09.2009 - 04.2010

Praktika:
07.2015 -12.2015

09.2013 - 10.2013

02.2013 - 03.2013

07.2012 -10.2012

University of Texas at Austin (UT Austin),

Gastwissenschaftler in der Computational Hydraulics group (Texas, USA)
Modellunsicherheitsquantifizierung mit der ,,Active Subspace* Methode.
Entwicklung eines Python-basierten Programms zur Kopplung der ,,Active
Subspace® Methode mit Grundwassermodellen.

United States Geological Survey (USGS),

Gastwissenschaftler beim California Water Science Center in San Diego

(Kalifornien, USA)
Testen von neu-implementierten numerischen Simulationspaketen in
MODFLOW-OWHM am Beispiel von Salinas Valley (Kalifornien).
Entwicklung von Bewisserungskonzepten und modellgestiitzte Optimierung
der Grund- und Oberflichenwasserbewirtschaftung im Salinas Valley.

Work and Travel in Frankreich
Rezeptionist in verschiedenen Ferienresorts von Pierre & Vacances

Bundesanstalt fiir Gewisserkunde (BfG), Koblenz (Deutschland)
Erstellung eines numerischen Grundwassermodells fiir den Bereich der
Mittelelbe zwischen Wittenberg und Aken (Sachsen-Anhalt) zur
Quantifizierung des Austauschs zwischen Oberflichenwasser und
Grundwasser

Deutsches Luft- und Raumfahrtzentrum (DLR), Miinchen (Deutschland)
Statistische Analyse von Fernerkundungsdaten des World-View I1
Satelliten.

Kalibrierung der Intrakanalzeit zwischen verschiedenen World-View 11
Sequenzen.

Bundesforschungszentrum fiir Wald, Naturgefahren und Landschaft
(BfW), Innsbruck (Osterreich)
Statistische Auswertung und Korrektur von alpin beeinflussten
hydrologischen und meteorologischen Daten.
Erstellung von Niederschlags-Abfluss Modellen fiir Wildbacheinzugsgebiete.
Durchfiihrung bodenphysikalischer Laboruntersuchungen.

Escuela Politécnica del Ejército (ESPE), Quito (Ecuador)
Ermittlung geologischer & geochemischer Parameter im Feld und
topographische Kartierung, sowie quantitative Datenauswertung im Zuge
eines internationalen Geothermieprojekts.
Geochemische Feldarbeit in Karsthohlen des Amazonas Tieflands.

Ehrenamtliche Tétigkeiten:

01.2020 - heute

Early Career Karst Hydrologic Modelers

Griindungsmitglied
Grundwassermodellierer Netzwerk fiir junge Karsthydrologen.
Diskussion iiber die Wahl geeigneter Modellansétze fiir spezifische
Fragestellungen, Weiterentwicklungen und Austausch von Erfahrungen.



06.2019 - heute

01.2013 - heute

Lehre:

2020

2019

2018

Stipendien:
2020

2019
2018

2012

FREEWAT (FREE and open-source tools for WATer management),
Mitglied des Entwicklerteams
Entwicklung eines Python-basierten Plug-Ins in QGIS mit freiverfiigbaren
Analysewerkzeugen fiir die Wasserwirtschaft.

Deutsche Vereinigung fiir Wasserwirtschaft, Abwasser und Abfall

(DWA),

Mitglied in der Arbeitsgruppe HW 1.3
Erstellung eines bodenhydrologischen Kartierschliissels, um
Abflussprozesse basierend auf bodenphysikalischen Eigenschaften und
topographischen Parametern zu kartieren und bewerten.

Publizierte Richtlinie DWA M-922 Bodenhydrologische Kartierung und
Modellierung.

Numerical modeling of water demand and supply in arid regions (One-
Water, USGS), Vorlesung & Seminar

Hydrologische Statistik, Vorlesung & Seminar

Numerical modeling of water demand and supply in arid regions (One-
Water, USGS), Vorlesung & Seminar

Hydrologische Statistik, Vorlesung & Seminar

Water management at the catchment scale, Seminar & Exkursion ins
Einzugsgebiet der Etsch

Hydrologische Statistik, Vorlesung & Seminar

PROCOPE Post-Doc Stipendium der Deutsch-Franzosischen Botschaft fiir
einen 2-monatigen Forschungsaufenthalt in Frankreich

Erasmus+, Stipendium fiir einen Lehraufenthalt an der Universitét Paul
Sabatier Toulouse 111

Erasmus+, Stipendium fiir einen Workshop & IAH Congress in Malaga
Deutsche Hydrologische Gesellschaft (DHG), Feldstipendium

DAAD Promos, Reisestipendium fiir ein 3-monatiges Praktikum in Ecuador

Weitere Qualifikationen:

Weiterbildung
(Kurse)

FEFLOW — Introduction and advanced topics, Veranstalter: DHI
Effizienztraining fiir Naturwissenschaftler, Veranstalter: TUM Graduate
School

Planung, Durchfithrung & Auswertung von Pumpversuchen, Veranstalter:
Berufsverband Deutscher Geowissenschaftler



Sprachen

Deutsch (Muttersprache), Englisch (flieBend), Franzosisch
(fortgeschritten, B2), Spanisch (fortgeschritten, B1)

IT R (Experte), Python (fortgeschritten), ArcGIS (fortgeschritten), QGIS
(fortgeschritten), LATEX (fortgeschritten), MS-Office Anwendungen
(Experte), MODFLOW (Experte), FEFLOW (Anfanger)

Fiihrerscheine B & A (Auto & Motorrad)

Hobbys Volleyball, FuBiball, Bergsteigen, Spielplatz mit meiner Tochter

Artikel (peer-reviewed):

2020

2019

2018

T. Olarinoye, [...] D. Bittner, [...] A. Hartmann (2020, 57 Co-Authors). Global
karst springs hydrograph dataset for research and management of the world’s fastest
flowing groundwater. Nature Scientific Data 7, 59.

D. Bittner, A. Rychlik, T. Kloffel, A. Leuteritz, M. Disse and G. Chiogna (2019). A
GIS-based model for simulating the hydrological effects of land use changes on
karst systems — The integration of the LuKARS model into FREEWAT.
Environmental Modelling & Software 127, 104682.

D. Bittner, M. Teixeira Parente, S. Mattis, B. Wohlmuth and G. Chiogna (2020).
Identifying relevant hydrological and catchment properties in active subspaces: An
inference study of a lumped karst aquifer model. Adv. in Water Res. 135, 103472.

S. Teschemacher, D. Bittner and M. Disse (2020). Automated Location Detection
of Retention and Detention Basins for Water Management. Water, 12(5), 1491.

M. Teixeira Parente, D. Bittner, S. Mattis, G. Chiogna and B. Wohlmuth (2019).
Bayesian calibration and sensitivity analysis for a karst aquifer model using active
subspaces. Water Resources Research 55, 7086-7107.

T. Sheikhy Narany, D. Bittner, M. Disse and G. Chiogna (2019). Spatial and
temporal variability in hydrochemistry of a small scale dolomite karst environment.
Environmental Earth Sciences 78, 273.

D. Bittner, T. Sheikhy Narany, B. Kohl, M. Disse and G. Chiogna (2018). Modeling
the hydrological impacts of land use change in a dolomite-dominated karst system.
Journal of Hydrology 567, 267-279.

Konferenzvortrige:

2019

D. Bittner, M. Teixeira Parente, S. Mattis, B. Wohlmuth, M. Disse and G. Chiogna
(2019). How to model the impacts of land use changes in karstic environments:
Model development, parameter dimension reduction and uncertainty quantification.
IAH conference, Malaga, Spain.

D. Bittner, M. Teixeira Parente, S. Mattis, B. Wohlmuth and G. Chiogna (2019).
Parameter dimension reduction using the active subspace method for a lumped karst
aquifer model. EGU conference, Vienna, Austria.



2018

2016

D. Bittner, M. Disse, T. Sheikhy Narany and G. Chiogna (2018). Modelling the
impact of land use change on drinking water supply in a karstic system. EGU
conference, Vienna, Austria.

D. Bittner and M. Casper (2016). A coupled modeling approach to assess the
surface water - groundwater interactions for the Middle Elbe on regional scale.
GeoTirol conference, Innsbruck, Austria.

Gastreferent (eingeladen):

2019

2017

D. Bittner, A. Rychlik, T. Kloffel and G. Chiogna (2019). Modeling the hydrological
impact of land use change in karst systems using the LuKARS plugin for FREEWAT.
2nd International LIFE REWAT Summer School, Pisa, Italy.

D. Bittner, M. Disse and G. Chiogna (2018). Trinkwasserschutz und Landwirtschaft
— Wie schiitzen wir nachhaltig unser Trinkwasser? NABU Vulkaneifel
Jahreshauptversammlung, Hillesheim, Germany.



