
Fakultät für Elektrotechnik und Informationstechnik
Technische Universität München

Security Challenges and Building Blocks
for Robust Industrial Internet of Things Systems

Matthias Niedermaier

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr.-Ing. Wolfgang Kellerer

Prüfende der Dissertation:
1. Prof. Dr.-Ing. Georg Sigl
2. Prof. Dr.-Ing. Dominik Merli,

Hochschule Augsburg

Die Dissertation wurde am 15.01.2020 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am
23.04.2020 angenommen.

Abstract

Digitalization is an ongoing process in home automation, automotive, and industrial
processes. In the home environment, it is not surprising anymore that almost everything
can now be controlled remotely. However, this trend can also be observed in the industrial
environment, where systems are no longer controlled and monitored on-site, but can be
done almost from anywhere in the world by using tablets and smartphones. Furthermore,
in the course of predictive maintenance, where servicing is performed before damage
causes outages, sensors are analyzed in industrial plants and the data is transmitted over
the Internet to the vendor. Consequently, industrial components are getting increasingly
connected and remotely accessible. This higher connectivity also enlarges the attack
surface, because now attackers have new possibilities which did not exist in the times of
air-gaped industrial plants.
Overall, in the first part of this work, problems of current Industrial Control System

(ICS) in terms of robustness will be shown and potential solutions are demonstrated. In
the second part, further concepts and future building blocks for increasing IT security in
ICS will be introduced.
What makes today’s industrial plants and devices attractive to attackers is the interac-

tion between the network side and the real world, which does not exist in this form in the
standard IT landscape. This is exactly what is addressed in this work, by highlighting
the problems of current control architectures in terms of robustness and thus the related
dependency of the control side on the network side. To this end, a testbed is built and
used, making the effects of network traffic on the electrical side and therefore the real
world measurable. Fuzzing and Denial of Service attacks are possible ways of attacking
control systems. The problems shown here can be solved, for example, by secure archi-
tectures. One possibility is the feedback free separation of the communication processor
from the control processor analyzed in this work. Moreover, a safe way to scan an indus-
trial network is presented. This basic security monitoring tool allows initial assessments
about the network, whether they contain vulnerable devices or not.
In addition, new concepts for increasing security in industrial plants are presented in

this work. New and open components are introduced that can be used for research,
evaluation, and teaching. Furthermore, an Intrusion Detection System is shown, which
runs on low-performance industrial edge node devices. The advantage of this is that each
device can decide for itself and no additional hardware is needed. Also, a concept of an
active network scanner on edge node devices is presented. This allows a simple network
scan in each subnetwork having such an edge node device. Additionally, an open and
low-cost testbed is being introduced to research and train industrial security, without
disrupting or damaging a productive ICS. This testbed also includes a small physical
process to monitor the impact of cyber-attacks in the real world.

iii

Kurzfassung

Die Digitalisierung ist ein fortlaufender Prozess, der bereits Heimautomatisierung, Fahr-
zeuge und industriellen Anlagen erreicht hat. Im heimischen Bereich ist es nicht mehr
verwunderlich, dass inzwischen fast alles von unterwegs gesteuert werden kann. Dieser
Trend ist jedoch auch im industriellen Umfeld zu beobachten, wo Systeme nicht mehr
vor Ort gesteuert und überwacht werden, sondern dies auch aus der Ferne auf Tablets
und Smartphones geschieht. In Zeiten von Predictive Maintenance, bei der die Wartung
vor einem Ausfall durchgeführt wird, werden Sensoren in Industrieanlagen analysiert und
die Daten an den Hersteller übertragen. Dies ist nur ein Grund dafür, dass industriellen
Komponenten immer mehr miteinander vernetzt werden. Diese höhere Konnektivität er-
höht jedoch auch die Angriffsfläche, da Angreifer jetzt neue Möglichkeiten haben, die es
zu Zeiten der klaren logischen Abtrennung von Industrieanlagen nicht gab.
Zusammenfassend werden im ersten Teil Probleme aktueller industrieller Systeme, wie

die Robustheit demonstriert und mögliche Lösungen aufgezeigt. Im zweiten Teil werden
weitere Konzepte zur Erhöhung der IT-Sicherheit in industriellen Systemen vorgestellt.
Was Industrieanlagen und -geräte für Angriffe so attraktiv macht, ist das Zusammen-

spiel von der Netzwerkseite mit der realen Welt, was es in dieser Form in der Standard-
IT-Landschaft nicht gibt. Genau hier setzt diese Arbeit an, indem Probleme aktueller
Steuerungsarchitekturen in Bezug auf Robustheit und Abhängigkeiten zwischen digtaler
und realer Welt aufgezeigt und Lösungsvorschläge unterbreitet werden. Zu diesem Zweck
wird eine Testumgebung aufgebaut und verwendet, die die Auswirkungen des Netzwerk-
verkehrs auf der elektrischen Seite und damit auf die reale Welt messbar macht. Fuzzing-
und Denial of Service-Angriffe sind eine Möglichkeit, eine industrielle Steuerung anzu-
greifen. Die hier gezeigten Probleme können beispielsweise von sicheren Architekturen
gelöst werden. Eine Möglichkeit ist die rückwirkungsfreie Trennung des Kommunikati-
onsprozessors vom Steuerprozessor, die in dieser Arbeit aufgezeigt und analysiert wird.
Darüber hinaus wird eine sichere Möglichkeit zum Scannen eines industriellen Netzwerks
vorgestellt, durch die eine Einschätzung über das Netzwerk getroffen werden kann.
Ebenfalls werden in dieser Arbeit weitere Konzepte zur Erhöhung der Sicherheit in

Industrieanlagen vorgestellt. Es werden neue und offene Komponenten gezeigt, die für
Forschung, Evaluierung und Lehre genutzt werden können. Darüber hinaus wird ein
Intrusion Detection System entwickelt und analysiert, welches auf Edge-Node-Geräten
mit geringer Leistung genutzt werden kann. Außerdem wird ein Konzept eines aktiven
Netzwerkscanners auf industriellen Edge-Node-Geräten vorgestellt, was einen einfachen
Netzwerk-Scan in jedem Teilnetzwerk ermöglicht. Des Weiteren wird ein offener und
kostengünstiger Demonstrator für Forschung und Lehre in Bezug auf IT-Sicherheit in
industriellen Anlagen präsentiert. Dazu gehört auch ein physikalischer Prozess, um die
Auswirkungen von Cyberangriffen in der realen Welt darstellen zu können.

v

Contents

Abstract iii

Kurzfassung v

Contents vii

List of Figures xi

List of Tables xv

Acknowledgements xvii

1 Introduction 1
1.1 Contribution . 5

1.1.1 Addressed Research Questions . 5
1.1.2 Scientific Publications . 5
1.1.3 Revealed Vulnerabilities, Assigned Common Vulnerabilities and

Exposures, and Published Advisories 7
1.2 Structure of the Thesis . 9

2 Industrial Control System Background Knowledge 11
2.1 Timeline on Industrial Control System Attacks 12
2.2 Programmable Logic Controller Application 15
2.3 Programmable Logic Controller Overview 16
2.4 Programmable Logic Controller (Scan) Cycle Time 17
2.5 Structured Text User Program . 18
2.6 Attack on the Programmable Logic Controller Cycle Time 19
2.7 Noteworthy Industrial Control System Characteristics 20

2.7.1 Industrial Control System and the Confidentiality, Integrity and
Availability Triad . 20

2.7.2 Lifecycle . 22
2.7.3 Functional Safety . 22
2.7.4 User Program . 22
2.7.5 Update Management . 22

vii

Contents

3 Communication Robustness of Programmable Logic Controllers in Terms of
Security 23
3.1 Communication Robustness Testbed for Industrial Internet of Things

Components . 25
3.1.1 Introduction . 25
3.1.2 Communication Robustness Testbed 26
3.1.3 Devices under Test in the Testbed 30
3.1.4 Experiments with Communication Robustness Testbed 33
3.1.5 Conclusion . 34

3.2 Fuzzing Proprietary Industrial Devices . 35
3.2.1 Introduction . 35
3.2.2 Related Work and Motivation . 35
3.2.3 Concept . 36
3.2.4 Framework Architecture . 37
3.2.5 Framework Evaluation . 39
3.2.6 Conclusion . 42

3.3 Impact of Network Traffic on Industrial Control System Devices 43
3.3.1 Introduction . 43
3.3.2 Related Work . 43
3.3.3 Certification Programs . 44
3.3.4 Attacker Model . 45
3.3.5 Materials and Methods . 45
3.3.6 Experiments, Results, and Discussion 49
3.3.7 Conclusion . 60

3.4 Dual-MCU Setup for Robust Industrial Internet of Things Devices 61
3.4.1 Introduction . 61
3.4.2 Concept and Background . 61
3.4.3 Proof of Concept Implementation 63
3.4.4 Benchmarking . 67
3.4.5 Conclusion . 70

3.5 Efficient Passive Network Scanning for Industrial Control Systems 73
3.5.1 Introduction . 73
3.5.2 Passive Network Scanning . 74
3.5.3 Media Access Control Addressing 75
3.5.4 Device Identification Challenges . 77
3.5.5 Using Media Access Control Addresses for Device Discovery and

Identification . 78
3.5.6 Framework and Evaluation . 79
3.5.7 Conclusion . 87

4 Modular Building Blocks to Enhance Industrial Control System Security 89
4.1 Open Industrial Control System Components for Secure Operation 91

4.1.1 Introduction . 91
4.1.2 Remote IO/Edge Node . 91

viii

Contents

4.1.3 Open-source Testbed . 93
4.1.4 Conclusion . 96

4.2 Intrusion Detection on Industrial Internet of Things Edge Devices 97
4.2.1 Introduction . 97
4.2.2 Background . 99
4.2.3 Concept . 100
4.2.4 Implementation . 105
4.2.5 Evaluation and Measurement Results 107
4.2.6 Conclusion . 113

4.3 Network Scanning on Industrial Internet of Things Edge Devices 115
4.3.1 Introduction . 115
4.3.2 Related Work . 116
4.3.3 Concept . 117
4.3.4 Proof of Concept Implementation 119
4.3.5 Evaluation . 121
4.3.6 Conclusion . 125

4.4 Low-cost Industrial Control System Testbed for Education and Research . 127
4.4.1 Introduction . 127
4.4.2 Industrial Control System Testbed 128
4.4.3 Testbed Implementation . 131
4.4.4 Evaluation and Benchmarking of the Testbed 138
4.4.5 Conclusion . 142

5 Conclusion and Future Work 143
5.1 Conclusion . 143
5.2 Future Work . 144

Bibliography 147

Acronyms 165

A Appendix 171
A.1 Search Engine Parameters . 172
A.2 Programmable Logic Controller Cycle Time Measurements 176

A.2.1 Mean Idle Cycle Time . 176
A.2.2 Overview . 177
A.2.3 Wago at Different Rates . 180

A.3 Schematic of the BeagleBone Measurement Printed Circuit Board 182
A.4 Schematic of the Dual Microcontroller Unit Printed Circuit Board 183
A.5 Schematic of the Remote Input/Output Printed Circuit Board 184

Index 185

ix

List of Figures

1.1 IoT units installed based on category [Meu17]. 1
1.2 ICS related vulnerability reports – Tickets from ICS-CERT [Ind12; Ind15;

Ind16]. 2
1.3 Structure and focus of this thesis. 10

2.1 IEC 62264 industrial automation pyramid. 11
2.2 Example application where liquid/goods is filled in a container. 16
2.3 Picture of a common PLC (WAGO 750-842). 17
2.4 Simplified sequence of a PLC cycle. 18
2.5 Electrical view of a PLC toggling an output. 19
2.6 CIA Protection goal triad, with extension. 21

3.1 Picture of the testbed built into racks. 26
3.2 Schematic overview of the testbed. 27
3.3 Rendered image of the PCB of the BeagleLogic adapter board. 28
3.4 Example visualization of the cycle time of a Siemens S7-1211C PLC. . . . 29
3.5 Illustration of a test sequence within the testbed. 33
3.6 Fuzzing test process procedure. 36
3.7 Communication between a standard PLC and the corresponding IDE. . . 37
3.8 Data-flow within the PropFuzz framework. 37
3.9 Overview of the PropFuzz framework modularity. 38
3.10 Handshake between Phoenix PLC and IDE. 41
3.11 Test setup for the measurement. 46
3.12 Overview of a controlled attack on PLCs with delays during packets, to

achieve different network loads and measure the cycle time deviation. . . . 50
3.13 Detailed view of PLCs, which are less influenced by packet flooding. . . . 51
3.14 Boxplot of a Wago 750-831 (4), where the PLC stops during Address

Resolution Protocol - Request TPA=SPA, THA=0 (ARP 3) flooding. . . 52
3.15 Boxplot of UDP flooding attack on a Wago 750-889 (1), resulting in a high

deviation of the cycle time. 53
3.16 Boxplot with medium deviation during UDP flooding with hping3 of the

Schneider TM221CE16T (16). 54
3.17 Boxplot, while an attack on a Siemens S7-314 (8) is generating a high

network load with the S7Com implementation of zgrab. 55
3.18 Probability Density Function to view the distribution during the S7Com

flooding of a Siemens S7-314 (8) with zgrab. 55

xi

List of Figures

3.19 A boxplot representing a shorter cycle time of a Phoenix ILC151 (11)
during Modbus/TCP flooding with zgrab. 56

3.20 Example of a boxplot with no measurable influence on the Crouzet em4
(15). 57

3.21 CPU load during SYN flooding attacks of a Wago 750-8100 (2) with hping3. 58
3.22 Influences of active scanners on a Wago 750-880 (3). 58
3.23 Influences of different network scanners on a Wago 750-880 (3) during

network scanning. 59
3.24 Example architecture of a dual MCU setup for robust controlling. 62
3.25 Rendered controller shield that is placed on top of the network MCU board. 65
3.26 Website, running on the network MCU, showing some information and

allowing configuration of the network and the IO MCU. 66
3.27 Program sequence to achieve a defined time behavior of the IO MCU. The

dashed circle “Wait time” is the additional task compared to a standard
PLC cycle. 66

3.28 Image showing the complete setup with the network MCU board and the
IO shield. 68

3.29 Time plot of the 1ms cycle time during pre-idle, attack, and post-idle of
the introduced secure implementation. The jitter is about 10µs, which is
equal to a deviation of 1%. 68

3.30 Boxplot of the cycle time of the introduced approach during hping3 attack.
A constant cycle time is set to 10ms during all phases. 69

3.31 Boxplot of cycle time of the Wago PLC during hping3 attack, with vari-
ances during idle and influences during attack. 69

3.32 Density plot of the 10ms cycle time of the introduced implementation
during hping3 attack. 70

3.33 Density plot of the cycle time of the Wago PLC during hping3 attack
influenced during the attack. 70

3.34 Structure of an EUI-48 [Ins14] MAC address. 75
3.35 MAC address vendor assignment process. 77
3.36 Method of the MAC based identification. 79
3.37 Method of vulnerability mapping within the framework. 80
3.38 ARP packet occurrence by device over time [Device number](Total ARP

packets). 81
3.39 ARP packet occurrence by device over time. 82
3.40 Histogram of known devices MAC addresses in their MA-L address space. 83
3.41 Dataflow within the framework. 84
3.42 Passive network monitoring setup. 84

4.1 Picture of the baseboard and the custom PCB of the used edge node device. 92
4.2 Overview of software integration onto the edge node devices. 93
4.3 Network system view on a “standard” industrial network mapped to the

used PoC testbed implementation. Eight “intelligent” edge node sensors,
one “intelligent” actuator, a PLC, an HMI, and possibilities for cloud services. 94

xii

List of Figures

4.4 Pictures of the open-source ICS testbed, which is controlling a physical
process. 95

4.5 Centralized data collection approach with system requirements. 98
4.6 Distributed data collection approach. Preliminary data processing is con-

ducted at the edge devices. 98
4.7 Used information from the stack for intrusion detection. 102
4.8 Timing in sensor networks with polling, separated in periodic and irregular

timings. 103
4.9 Overview of the system with integration of the IDS into LwIP. 105
4.10 Current state of the IDS on the edge node display. 106
4.11 Webpage running on each edge node, displaying the current IDS status

and debug output. 108
4.12 Interarrival time of modbus packets. 109
4.13 Interarrival time of ARP request packets. 110
4.14 KDE of the interarrival time of Modbus/TCP packets. 110
4.15 Measurement of the ping behavior with and without the IDS. 112
4.16 View of the network mapping from an IIoT edge node device of two dif-

ferent scans. 117
4.17 Flowchart of a SYN and a connect scan with an open port on the target. . 119
4.18 Scan progress and results on the edge node display. 120
4.19 High-level view of the scan process. After the first/trusted scan, a contin-

uous monitoring is run. 120
4.20 Webpage running on the edge node, displaying the current scan status and

debug output. 121
4.21 Plot over time, with packets per second of an edge node scanning the

network. ARP and ICMP ping requests are used to check if the hosts are
up. TCP connect scans are done if the host is up. 122

4.22 System view of LICSTER. 132
4.23 Front view on the complete LICSTER testbed. The process on top, rep-

resents a punching machine with a conveyor belt. 133
4.24 Program sequence of the process implemented on the PLC. 133
4.25 Pictures of the different HMI views. 134
4.26 PCB of the remote IOs. 135
4.27 Picture showing the display mounted on each remote IO. 136
4.28 Picture showing the Fischertechnik setup. 137
4.29 Density plot showing the number of packets per second of each device

within LICSTER. 139

A.1 Schematics of the developed measurement adapter for BeagleLogic. 182
A.2 Schematics of the developed dual MCU extension board. 183
A.3 Schematic of the Remote IO extension board. 184

xiii

List of Tables

1.1 Internet-facing ICS devices till January 3, 2020 (used queries in Ap-
pendix A.1). 4

2.1 Selection of attacks against industrial systems and malware targeting ICS,
illustrated in a timeline. 13

3.1 Measurement results of the BeagleLogic validation. 29
3.2 PLCs deployed within the testbed, with additional components regarding

completeness. 31
3.3 Symbols used in formulas. 38
3.4 Example of pattern matching . 39
3.5 Phoenix Contact test equipment used for the evaluation. 40
3.6 Factory default port scan of the Phoenix ILC150 PLC. 40
3.7 Overview of programs used, corresponding protocols, and respective pa-

rameters. 47
3.8 Deployed devices in CoRT for these tests. 47
3.9 Symbols used in formulas. 49
3.10 Cycle time classes, which are observable during the attacks. 52
3.11 Symbols used in formulas. 63
3.12 Specification of the used hardware for the PoC implementation. 64
3.13 IEEE MAC assignment structure [Ins14]. 76
3.14 Symbols used in formulas. 78
3.15 Devices employed within the testbed for this evaluation. 80
3.16 Number of devices and known vulnerabilities in the database. 83
3.17 Validation of the introduced approach in the Communication Robustness

Testbed. 85
3.18 Comparison of existing tools within Communication Robustness Testbed

(CoRT). 86

4.1 Specification of the used edge node hardware. 93
4.2 Overview of devices used in the testbed. 94
4.3 Symbols used in formulas. 103
4.4 Summary of the evaluated attack scenarios and detection capabilities. . . 111
4.5 Binary comparison of example application with and without the IDS build-

ing block in bytes. 113
4.6 Generalized comparison of passive network monitoring (e.g. IDS) and

active scanning. 117
4.7 Data size of different packets from our scanner or as a response to it. . . . 123

xv

List of Tables

4.8 Binary comparison of example application with and without scanner in
bytes. 123

4.9 Summary of the evaluated attack scenarios and detection capabilities. . . 124
4.10 Overview of devices used in the testbed. Prices are current prices on

Amazon. 132
4.11 Electrical wiring within the testbed. 138
4.12 Evaluation of a selection of possible devices in the testbed. 140

A.1 Search engine parameters for Shodan. 172
A.2 Search engine parameters for Censys. 173
A.3 Search engine parameters for ZoomEye. 174
A.4 Search engine parameters for Ditecting. 175
A.5 Overview of the mean idle cycle time of each PLC. 176
A.6 Cycle time in µs during attacks against Wago devices 177
A.7 Cycle time in µs during attacks against Siemens devices 178
A.8 Cycle time in µs during attacks against Phoenix Contact devices 179
A.9 Cycle time in µs during attacks against ABB devices 179
A.10 Cycle time in µs during attacks against Crouzet devices 179
A.11 Cycle time in µs during attacks against Schneider devices 179
A.12 Cycle time in µs during attacks against Wago devices at 64 kb/s 180
A.13 Cycle time in µs during attacks against Wago devices at 1 Mb/s 180
A.14 Cycle time in µs during attacks against Wago devices at 8 Mb/s 180
A.15 Cycle time in µs during attacks against Wago devices at 16 Mb/s 181

xvi

www.amazon.de

Acknowledgements

I gratefully acknowledge the support, guidance, and advice of my supervisor Prof.
Dr.-Ing. Georg Sigl, and of my second examiner and mentor Prof. Dr.-Ing. Dominik
Merli.

The number of people and companies who have supported me is so large that it
is unfortunately not possible to mention them all.

At the Hochschule Augsburg, University of Applied Sciences, I received a lot of
technical and organizational help from Prof. Dr. Gordon Thomas Rohrmair, Prof. Dr.
Alexander von Bodisco, Prof. Dr. Jürgen Scholz, Florian Fischer, Thomas Hanka, Fe-
lix Sauer, Susanne Kießling, Robert Happacher, and Peter Knauer, among many others.

Additionally, I met a lot of fantastic people at Fraunhofer AISEC, including Dr.
Sven Plaga, Dr.-Ing. Johannes Obermaier, Alexander Giehl, Martin Striegel, Gerhard
Hansch, and Carsten Rolfes. Besides, I was kindly integrated by Dr.-Ing. Matthias
Hiller, Dr.-Ing. Michael Pehl, and Florian Wilde at the TU München.

In the last few years, my family, my sweetheart and friends could not help won-
dering what I was doing the whole day. Now we are at the end of the journey, and
they probably still do not know what I am doing. But I would like to thank for their
unwavering support and sympathy.

My PhD research was supported by the BayWISS Consortium Digitization, which
I would like to acknowledge.

Finally, I would like to say THANK YOU to all of you for the great support!

This thesis was supported by

xvii

Introduction
Chapter1

Contents of this chapter

1.1 Contribution . 5
1.2 Structure of the Thesis . 9

It is fair to say that we are living in a digitized world. Digitization is no longer unique
to classic IT companies, it happens at companies across all sectors and in the home
environment. It is not unusual to control the heating or to start the cleaning robot on
the way home. However, not only these areas but also industries are connected, and thus
entire factories are getting interconnected. Gartner Inc. forecasts 20 billion Internet of
Things (IoT) devices in 2020 [Meu17]. As can be seen in Figure 1.1, this number is
not only compound out of “consumer” devices, but also devices of the “business: cross-
industry” and the “business: vertical-specific” market.

20
16

20
17

20
18

20
19
1

20
20

0

10

20

1.3
1.6

2.0

2.6

3.2

1.1
1.5

2.1

3.3

4.4

4.0 5.2
7.0

9.9
12.9

Year

B
ill
io
n
Io
T

de
vi
ce
s

Consumer Business: Cross-Industry Business: Vertical-Specific

Figure 1.1: IoT units installed based on category [Meu17].

12019 figures are an interpolation of 2018 and 2020.

1

1 Introduction

To be exact, Gartner Inc. says there will be 12.9 billion IoT devices in the consumer
segment and 7.6 billion devices in the business area in 2020. These numbers also include
connected industrial equipment. Furthermore, it can be observed that, from 2016 to 2020,
there will be more than three times the number of IoT devices, both in the consumer
and in the business sector.
Unfortunately, due to this high level of networking and the increased number of IoT

devices, the attack surface is also expanding. Especially in an industrial environment,
this allows attacks that were not possible in the past, as classic industrial plants often
ran independently and were not connected to the outer world. The isolation, with no
physical communication path from the industrial plant to the outer world, is therefore
called “air gapped”. This separation is often no longer possible due to new demands
such as predictive maintenance. With predictive maintenance, sensor data of machines
is analyzed in order to perform maintenance before a standstill. This exchange of sensor
data is only one example of an Industry 4.0 scenario, which requires a higher connectivity
and make the historical air gapped segmentation hardly possible.
For example, industrial plants can be attacked if there are misconfigurations, vul-

nerable jump hosts, vulnerabilities in the industrial product itself, or other exploitable
opportunities for attackers. Industrial Control System Computer Emergency Response
Team (ICS-CERT), which is a part of the Department Homeland Security, publishes
annual reports on incidents, vulnerabilities and more. Figure 1.2 shows the numbers
of vulnerability reports of the “Year in Review” report from 2012 [Ind12] 2015 [Ind15]
and 2016 [Ind16]. Noticeable here is the rapid increase after 2010. This was proba-
bly due to the increasing popularity of ICS and Supervisory Control and Data Acqui-
sition (SCADA) security in academic research, e.g. Beresford [Ber11] and attacks on
plants like Stuxnet [Lan11; Kar11] both published in 2011. However, this graph shows
that many products have vulnerabilities that attackers can exploit.

20
10

20
11

20
12

20
13

20
14

20
15

20
16

0

100

200

300

41

141 147
181 167 177

257

Year

V
ul
ne
ra
bi
lit
ie
s

Figure 1.2: ICS related vulnerability reports – Tickets from ICS-CERT [Ind12; Ind15; Ind16].

The fact that these vulnerabilities are actively exploited in the wild is shown by secu-
rity incidents in industrial plants in recent years. One of the best known of these is the
Stuxnet worm, which was uncovered in June 2010 [Kar11] as attacking industrial control
devices that controlled centrifuges for separating nuclear material. The plant was com-
pletely isolated from the outside world (air gaped). Therefore, the infection probably

2

took place via a USB stick or a portable programming device. Subsequently, some of
the uranium centrifuges were destroyed, delaying or partially preventing uranium enrich-
ment. In 2014 there was a cyber-attack against a German steel mill [Lee+14] that was
initialized by spear phishing emails. As a result, a system could not shut down correctly,
causing it to be damaged. BlackEnergy 3 malware was used in a cyber-attack against an
Ukrainian power grid in December 2015 [Lee+16]. The attackers used phishing emails
and manipulated Microsoft Office documents to get access to the Information Technol-
ogy (IT) network. The attackers fought their way “down” to the control network. A total
of three electricity suppliers and around 225,000 customers were affected by this attack.
Another attacking tool is the Triton framework, which aims for a safety control unit
from Schneider Electric (Triconex™ Safety Instrumented System [Mil+19]). In attacking
this system with Triton, safety-related functions were bypassed, leading to the fail state
and an automatic shutdown of the industrial process. Considering that these systems
control safety-relevant processes in which humans, for example, interact with machines,
this poses a high risk, even to human lives.

Many attacks that have become known in recent years use spear phishing attacks to
enter the company [Fed13]. In this manner, a kind of “gateway” is established on a
computer in the company, where the network is scanned and other systems are getting
infected. Once the attackers have reached the actual target system, they can manipulate
the system or exfiltrate information. When the attackers have reached the desired goal,
they mostly try to hide attack paths to remain undetected. All these examples show
that especially in the Industrial Internet of Things (IIoT) environment attacks can have
a big impact on the real world. This is something that distinguishes classic office IT
from industrial systems. Impacts, particularly on critical infrastructures, can concern
not just single companies but also complete populations. As the above examples show,
the industrial devices were not attacked directly, but through a standard computer that
became infected. If the computer was then infected, the industrial devices did not provide
adequate protection and could be taken over by the attackers. This means that due to
the usually very weak security level, the controllers are often vulnerable if a network
connection exists.

Another attack vector is not using gateways and jump hosts, but the direct path. So-
called jump hosts are hardened machines, which are used to access a network via the jump
host from a network with a different security level. Nevertheless, this is not always used
and many industrial plants are connected to the Internet for reasons of misconfiguration,
remote maintenance, and other scenarios that require a remote connection.

These can be found using a specialized search engine for SCADA systems. For example,
Censys [Dur+13] lists about 80 000 unique devices tagged “SCADA” and is partly open
source. Another search engine for IoT and IIoT devices is Shodan [Mat09; Bod+14],
which was one of the first search engines of its kind. Lesser known is ZoomEye [Kno16]
and Ditecting [Dit15]. Shodan, ZoomEye and Ditecting are mostly closed source and less
is known about the search engine mechanisms. Table 1.1 shows current scan results of
these search engines on January 3, 2020. The used queries for the search engine can be
found in Appendix A.1.

3

www.censys.io
www.shodan.io
www.zoomeye.org
www.ditecting.com
www.shodan.io
www.zoomeye.org
www.ditecting.com

1 Introduction

It is noticeable that the number of devices found varies. According to Censys [Cen], the
different number of devices found is partly due to the fact that Censys is significantly more
aggressive when deleting entries than Shodan. For example, Censys will delete devices
that were not found in the last week. However, the Censys search engine uses a distributed
approach and is currently less known than Shodan, which means that Censys can access
more devices (distributed approach) and is also blocked by fewer users (lesser-known).
ZoomEye is not focused on ICS and does not interpret some protocols correctly, which
leads to a significantly higher number of findings only based on the open port. Tundis et
al. [Tun+18] analyzed different network vulnerabilities scanning tools, including Censys
and Shodan. They also have differences in the number of devices found and could not
find a complete explanation, since most search engines are partially or even completely
proprietary, e.g. Ditecting. It should also be mentioned that it is generally difficult
to make a precise statement about the number of devices, since small changes in e.g.
dynamic Internet Protocol (IP) ranges can cause large variations. However, it is possible
in any case to get an overview, that many industrial devices are accessible from the
Internet.

Table 1.1: Internet-facing ICS devices till January 3, 2020 (used queries in Appendix A.1).

Protocol Port Shodan Censys ZoomEye Ditecting
Modbus 502 TCP 20 648 28 171 23 732 14 173
Siemens S7 102 TCP 22 365 4 994 31 761 2 464
DNP3 20000 TCP 436 429 61 490 367
BACnet 47808 TCP 18 225 16 882 49 913 11 750
Niagara Fox 1911 TCP 32 351 27 879 120 429 26 634
Ethernet/IP 44818 TCP 48 506 –* 12 326 1 971
Phoenix PCWorx 1962 TCP 831 –* 3 881 168
Codesys 2455 TCP 2 568 –* 8 105 2 455

Total: 145 930 78 355 311 637 59 982
*Currently not scanned/available.

Given that some of these systems control manufacturing processes and critical infras-
tructures and, as previously pointed out, have vulnerabilities, there is an urgent need
for action. On the one hand, industrial control system devices need to be better tested
to reveal and close vulnerabilities. On the other hand, control networks must be bet-
ter managed, monitored, and protected against attacks. Furthermore, open components
must be developed that simplify and enhance research and teaching in this area. In this
work, these points are examined and suggested solutions are presented.

4

www.censys.io
www.censys.io
www.censys.io
www.censys.io
www.shodan.io
www.censys.io
www.zoomeye.org
www.censys.io
www.shodan.io
www.ditecting.com

1.1 Contribution

1.1 Contribution

In this section, special contributions of this work are highlighted.

1.1.1 Addressed Research Questions

In the following, the research questions addressed in this thesis are introduced. These
research questions represent the framework that guided this work, but do not fully reflect
all the results of this work.
How can the robustness of industrial components be evaluated?
One of the first questions, that come up when dealing with the robustness of in-
dustrial control systems, is the question of how to make this measurable. A big
challenge here is to measure the proprietary and different systems with a similar and
comparable procedure. (addressed in Section 3.1, Section 3.2, and Section 3.3)

What are secure architectures for robust ICSs devices?
A further challenge is to provide secure architectures for devices and network scan-
ners in order to be prepared for future requirements of secure connectivity of
Programmable Logic Controllers (PLCs). (addressed in Section 3.4 and Section 3.5)

What will future building blocks for IIoT devices look like?
Another research question is how the security of IIoT devices can be increased by
building blocks (features, which increase the security level) and what side effects
these can cause in ICSs. What is meant here in detail, it is analyzed which attack
mechanisms the IT security modules protect against and which restrictions result
from them. (addressed in Section 3.4, Section 4.3, Section 4.2, and Section 4.4)

How can open source help facilitate ICS security research and education?
In order to conduct device-level research, it needs open-source components to make
changes. Furthermore, testbeds are also important for teaching to understand ICSs.
Here, a big challenge is that most of the purchasable components are closed-source.
(addressed in Section 3.5, Section 4.1, and Section 4.4)

1.1.2 Scientific Publications

During the time working at this thesis, several scientific publications were published.
This section provides a short description of publications and information about the cor-
responding conferences. These are the published scientific papers used in this thesis,
sorted by release date, with the newest first.

“Efficient Intrusion Detection on Low-Performance Industrial IoT Edge Node De-
vices” – Matthias Niedermaier, Martin Striegel, Felix Sauer, Dominik Merli and
Georg Sigl – arXiv preprint 2019 [Nie+19c].
Summary : A method for intrusion detection that combines distributed agents on
IIoT edge devices with a centralized logging is introduced. Additionally, a Proof
of Concept (PoC) implementation on an Microcontroller Unit (MCU) running Free-
RTOS with LwIP is demonstrated and evaluated.

5

1 Introduction

“LICSTER – A Low-cost ICS Security Testbed for Education and Research” – Fe-
lix Sauer, Matthias Niedermaier, Susanne Kießling and Dominik Merli – 6th In-
ternational Symposium for ICS & SCADA Cyber Security Research (ICS-CSR)
2019 [Sau+19].
Summary : In this paper the “LICSTER” testbed is introduced, which is an open-
source low-cost ICS testbed, enabling researchers and students to get hands-on ex-
perience with industrial security for about 500 euros.

“Network Scanning and Mapping for IIoT Edge Node Device Security” – Matthias
Niedermaier, Florian Fischer, Dominik Merli and Georg Sigl – Proceedings of the
IEEE 24th International Conference Applied Electronics (IEEE AE) 2019 [Nie+19a].
Summary : A network scanning and mapping building block to scan directly from
IIoT edge node devices is presented. This enables the detection of unwanted devices
in an industrial network.

“A Secure Dual-MCU Architecture for Robust Communication of IIoT Devices” –
Matthias Niedermaier, Dominik Merli and Georg Sigl – 8th Mediterranean Confer-
ence on Embedded Computing (IEEE MECO) 2019 [Nie+19b].
Summary : A setup to ensure a resilient controlling for IIoT devices like PLCs is
shown. This is a possible solution for the demand of secure architectures in the
IIoT. Moreover, a PoC implementation with a benchmark and a comparison with a
standard PLC is presented.

“Future Proofing IoT Embedded Platforms for Cryptographic Primitives Support”
– Sven Plaga, Norbert Wiedermann, Matthias Niedermaier, Alexander Giehl and
Thomas Newe – 12th International Conference on Sensing Technology (IEEE ICST)
- Wireless Sensor Networks 2018 [Pla+18].
Summary : The presented approach enables designers and developers of embedded
systems to achieve comparable results over an extended range of algorithms and
implementations for the usage cryptographic functions in IoT and IIoT devices.

“Efficient Passive ICS Device Discovery and Identification by MAC Address Correla-
tion” – Matthias Niedermaier, Thomas Hanka, Sven Plaga, Alexander von Bodisco
and Dominik Merli – 5th International Symposium for ICS & SCADA Cyber Secu-
rity Research (ICS-CSR) 2018 [Nie+18b].
Summary : In this paper, a lightweight passive network monitoring technique using
an efficient Media Access Control (MAC) address-based identification of industrial
devices is proposed. This is based on an incomplete set of known MAC addresses
to device associations. The presented method can guess correct device and ven-
dor information. Proving the feasibility of the method, an implementation is also
introduced and evaluated regarding its efficiency.

6

1.1 Contribution

“You Snooze, You Lose: Measuring PLC Cycle Times under Attacks” – Matthias Nie-
dermaier, Jan-Ole Malchow, Florian Fischer, Daniel Marzin, Dominik Merli, Volker
Roth and Alexander von Bodisco – 12th USENIX Workshop on Offensive Technolo-
gies (USENIX WOOT) 2018 [Nie+18c].
Summary : This work demonstrates that the electrical side of a PLC, i.e., the con-
trolled process, can be influenced by packet flooding the network side. This differs
from already known Denial of Service (DoS) attacks as the target is the actual process
and not the network connectivity.

“CoRT: A Communication Robustness Testbed for Industrial Control System Com-
ponents” – Matthias Niedermaier, Alexander von Bodisco and Dominik Merli – 4th
International Conference on Event-Based Control, Communication and Signal Pro-
cessing (IEEE EBCCSP) 2018 [Nie+18a].
Summary : In this paper, a testbed and measurement methods for communication
robustness test research of ICS components is presented.

“PropFuzz – An IT-Security Fuzzing Framework for Proprietary ICS Protocols” –
Matthias Niedermaier, Florian Fischer and Alexander von Bodisco – 22nd Interna-
tional Conference Applied Electronics (IEEE AE) 2017 [Nie+17].
Summary : A new fuzzing framework, called PropFuzz, which can fuzz proprietary
ICS protocols and monitor the behavior of the controller is introduced. Furthermore,
the first results of a security assessment with the framework are presented.

1.1.3 Revealed Vulnerabilities, Assigned Common Vulnerabilities and
Exposures, and Published Advisories

While working on this dissertation, several vulnerabilities in products were found. These
vulnerabilities were always reported to the vendors and not made public before the 90-day
responsible disclosure timeline.
Common Vulnerabilities and Exposures (CVE) is an industry standard that aims to

introduce a common naming convention for security vulnerabilities and other vulnerabil-
ities in computer systems. Multiple naming of the same threats by different companies
and institutions is supplemented by a identifier (eg, CVE-2020-1337) to ensure clear
identification of the vulnerability. This number is made out of the year, followed by
a consecutive number, with at least four digits. The list of CVEs is managed by the
Mitre Corporation [MITa] in collaboration with the CVE numbering authorities, like se-
curity professionals, educational institutions, government agencies, and security software
vendors.
A security advisory is a public announcement, which informs users of a product about

a security problem. This helps users to take appropriate measures, like the installation
of security updates or the information of secure configuration methods.
The ICS-CERT is part of the United States Computer Emergency Readiness Team

(US-CERT), which is subordinate to the Department of Homeland Security and is specif-
ically responsible for the security of ICSs. The ICS-CERT, co-ordinates vulnerability
reports and issues advisories accordingly. In Germany, the Federal Office for Informa-

7

1 Introduction

tion Security (BSI) performs similar tasks. Additionally, the Cyber Emergency Response
Team at the Association of Electrical Engineering, Electronics and Information Technol-
ogy (CERT@VDE) is an IT security platform for the coordination of IT security reports
in Germany, especially risks targeting the industrial sector.

Advisories:

• Advisory (ICSA-19-106-03) [ICS19]:
“PLC Cycle Time Influences” – Matthias Niedermaier, Jan-Ole Malchow and Flo-
rian Fischer

• VDE-2018-013 [CER18b]:
“WAGO 750-8xx Controller Denial of Service” – Matthias Niedermaier, Jan-Ole
Malchow and Florian Fischer

• VDE-2018-012 [CER18a]:
“PHOENIX CONTACT Inline-Controller (ILC) 1×1 ETH Denial of Service” –
Matthias Niedermaier, Jan-Ole Malchow and Florian Fischer

• Advisory (ICSA-17-264-04) [ICS17]:
“Improper Authentication issue in iniNet Solutions iniNet Webserver” – Matthias
Niedermaier and Florian Fischer

• Advisory (ICSA-16-313-01) [ICS16]:
“Phoenix Contact ILC PLC Authentication Vulnerabilities” – Matthias Niedermaier
and Michael Kapfer

CVEs:

• CVE-2019-10953 [Nat19]:
“PLC Cycle Time Influences” – Matthias Niedermaier, Jan-Ole Malchow and Flo-
rian Fischer

• CVE-2017-13995 [Nat17]:
“Improper Authentication issue in iniNet Solutions iniNet Webserver” – Matthias
Niedermaier and Florian Fischer

• CVE-2016-8366 [Nat16a]:
“Phoenix Contact ILC PLC Password Macro Leakage” – Matthias Niedermaier and
Michael Kapfer

• CVE-2016-8371 [Nat16b]:
“Phoenix Contact ILC PLC Access without Authenticating even if the Authenti-
cation Mechanism is enabled” – Matthias Niedermaier and Michael Kapfer

• CVE-2016-8380 [Nat16c]:
“Phoenix Contact ILC PLC Access to Read and Write PLC Variables without
Authentication” – Matthias Niedermaier and Michael Kapfer

8

https://www.us-cert.gov/ics/advisories/ICSA-19-106-03
https://cert.vde.com/de-de/advisories/vde-2018-013
https://cert.vde.com/de-de/advisories/vde-2018-012
https://ics-cert.us-cert.gov/advisories/ICSA-17-264-04
https://ics-cert.us-cert.gov/advisories/ICSA-313-01
https://nvd.nist.gov/vuln/detail/CVE-2019-10953
https://nvd.nist.gov/vuln/detail/CVE-2017-13995
https://nvd.nist.gov/vuln/detail/CVE-2016-8366
https://nvd.nist.gov/vuln/detail/CVE-2016-8371
https://nvd.nist.gov/vuln/detail/CVE-2016-8380

1.2 Structure of the Thesis

1.2 Structure of the Thesis

The thesis is structured as follows (see Figure 1.3). In Chapter 2, relevant background
information is provided on ICS security, focusing on the interaction between the network
and the physical world, as well as other specific requirements in this environment.
Chapter 3 focuses on the communication robustness of ICS components. Section 3.1

introduces the testbed which is used for the measurement and evaluation of proprietary
components. Fuzzing related to robustness is handled in Section 3.2. In Section 3.3
discusses the effects of DoS attacks on PLCs. Thereafter, a hardware architecture is
presented, which is robust against these attacks due to two separated MCUs (Section 3.4).
Additionally, a secure method for scanning in fragile ICS environments is presented in
Section 3.5.
Chapter 4 introduces building blocks for secure ICS devices and platforms for fur-

ther research. More precisely, Section 4.1 presents open-source components and a open
testbed. In Section 4.2 an IDS on IIoT edge node devices is shown. Section 4.3 introduces
a network scanner for IIoT edge node devices. An open-source testbed for education and
research is presented in Section 4.4.
At the end, a conclusion and a discussion of open research questions are given in

Chapter 5.

9

1 Introduction

Chapter 1 – Introduction

Chapter 2 – Industrial Control System Background Knowledge

Chapter 3 – Communication Robustness of Programmable Logic Con-
trollers in Terms of Security

Section 3.1 – Communication Robustness Testbed for Industrial Inter-
net of Things Components

Section 3.2 – Fuzzing Proprietary Industrial Devices

Section 3.3 – Impact of Network Traffic on Industrial Control System
Devices

Section 3.4 – Dual-MCU Setup for Robust Industrial Internet of
Things Devices

Section 3.5 – Efficient Passive Network Scanning for Industrial Control
Systems

Chapter 4 – Modular Building Blocks to Enhance Industrial Control
System Security

Section 4.1 – Open Industrial Control System Components for Secure
Operation

Section 4.2 – Intrusion Detection on Industrial Internet of Things
Edge Devices

Section 4.3 – Network Scanning on Industrial Internet of Things Edge
Devices

Section 4.4 – Low-cost Industrial Control System Testbed for Educa-
tion and Research

Chapter 5 – Conclusion and Future Work

Figure 1.3: Structure and focus of this thesis.

10

Industrial Control System
Background Knowledge

Chapter2
Contents of this chapter

2.1 Timeline on Industrial Control System Attacks 12
2.2 Programmable Logic Controller Application 15
2.3 Programmable Logic Controller Overview 16
2.4 Programmable Logic Controller (Scan) Cycle Time 17
2.5 Structured Text User Program . 18
2.6 Attack on the Programmable Logic Controller Cycle Time 19
2.7 Noteworthy Industrial Control System Characteristics 20

Industrial Control System (ICS) is the common umbrella term for the various devices
used in industrial infrastructures. These devices generally include sensors, actuators,
and embedded computers interconnected via network. The basic hierarchical scheme is
standardized by IEC 62264 [Int03] and described as automation pyramid illustrated in
Figure 2.1 [Kel+09]. Compared to other domains, the individual components of ICSs
tend to have a long lifetime, and cycles need to be processed in real time within certain
time constraints [Sad+15].

ERP

MES

SCADA

PLC

Sensors, Actuators, etc.

Assembly and
Manufacturing Process

Level 1
Control level

Level 2
Process control level

Level 3
Plant level

Level 4
Corporate level

Level 1
Field level
Level 0
Process level

ms
s
m
h
d

A

I

CO
ffi
ce

IT

A

I

C

IC
S

connected

Figure 2.1: IEC 62264 industrial automation pyramid.

11

2 Industrial Control System Background Knowledge

Enterprise Resource Planning (ERP) facilitates the entrepreneurial task of plan-
ning and controlling resources such as capital, personnel, operating resources, and mate-
rials in a timely and appropriate manner. One of the world’s largest commercial providers
of ERP software is SAP [Lei08]. ERP systems should reflect all business processes and
should move away from isolated solutions to a holistic ERP system that can be used
to manage resources company-wide. In addition, ERP systems improve the communi-
cation flow in the company and, in the sense of e-collaboration, can make cooperation
in the company more efficient. A Manufacturing Execution System (MES) refers
to a process-related level of a multi-layered manufacturing management system. A MES
distinguishes itself from similarly effective systems for production planning, the so-called
ERP systems, by direct connection to the distributed systems of process automation
and enables the management or control of the production. Supervisory Control and
Data Acquisition (SCADA) defines a system for monitoring and controlling techni-
cal processes through a computer system. The data is then presented in a userfriendly
way, allowing control to intervene in the process. Additionally, there is often a historian
server in the SCADA layer, which stores measurement values and production states over
a period of time, so that, among other things, it is possible to generate statistic or find
faulty batch. A Human Machine Interface (HMI) resides at level 1 of the industrial
automation pyramid and allows an operator to interact with a machine or plant. Today,
communication within SCADA systems increasingly depend on TCP-based techniques.
A Historian is a server at level 2, where conditions, input and output information are
stored for long-term analysis. A Programmable Logic Controller (PLC) is a device
that is used to control a machine or plant and that is digitally programmed. Remote
Input/Output (IO) devices read inputs and write outputs over a fieldbus or network
connection.
Figure 2.1 shows, on the left side, the differences in timing requirements of an ICS at

the corresponding levels. The devices at higher levels, such as 3 and 4, often have a data
exchange time of several hours or days. For SCADA systems, data transfer time has to be
in the order of seconds to minutes. This is in contrast to hard real-time processes at the
control and field levels, where transmissions must complete in milliseconds. Of course,
these timing requirements are heavily dependent on the underlying physical process.
For example, temperatures in large tanks change very slowly, but in comparison, the
throughput of a water pipe can change very quickly.
As indicated on the right side in Figure 2.1, the classic Confidentiality, Integrity and

Availability (CIA) model from office IT is often reversed, so availability is the highest
protection goal in ICS systems. In itself, this statement has to be differentiated, as it
also depends on the underlying physical process. In the following, these ICS specific
singularities will be considered separately in detail.

2.1 Timeline on Industrial Control System Attacks

For a long time, industrial plants were not in the focus of attackers or little was known
about successful attacks. In general, the Stuxnet Malware, which focus on attacking the

12

2.1 Timeline on Industrial Control System Attacks

Iranian uranium enrichment program is one of the best-known attacks and ushered in
the age of cyber attacks on industrial systems. A survey of publicly available information
about cyber attacks on industrial systems [Hem+18] shows, how the number attacks has
increased over the recent years. A selection of malware affecting ICS and attacks on ICS
is illustrated in Table 2.1. In the course of this, the year of the occurrence of the malware
or the attack as well as the name and a brief description are listed.

Table 2.1: Selection of attacks against industrial systems and malware targeting ICS, illustrated
in a timeline.

2000 · · · · · ·• Attack Maroochy Water
Cyber-attack caused the
release of untreated sewage

2010 · · · · · ·• Malware Stuxnet
Stuxnet is one of the first
and best known malware
targeting PLCs

2010 · · · · · ·• Malware Night Dragon
Attack targeting energy, oil,
and petrochemical
companies

2012 · · · · · ·• Malware Shamoon
Attack on national oil
companies including Saudi
Aramco and RasGas

2013 · · · · · ·• Malware Havex
With this malware it is
possible to control the
infected system remotely

2014 · · · · · ·• Attack German Steel Mill
Cyber-attack with massive
damage

2015 · · · · · ·• Malware BlackEnergy Malware targeting HMIs

2017 · · · · · ·• Attack NotPetya
Targeting Ukraine with
Ransomware, with no way
to decrypt

2017 · · · · · ·• Malware TRITON Malware bypassing safety
mechanisms

The first example is the attack on Maroochy Water services in Queensland, Aus-
tralia [Sla+08]. In the case of this attack, a contract worker took revenge for the fact
that he did not get a permanent job. The attacker controlled 150 pumping stations with

13

2 Industrial Control System Background Knowledge

a laptop and released millions of liters of contaminated water into public water over a
period of 3 months.
With Stuxnet [Lan11; Kar11], malware that specializes on ICSs has been programmed

for the first time. Several vulnerabilities in Microsoft Windows were exploited and valid
certificates were used. If an infection occurs, a scanner is installed in the process control
system. This searches for and manipulates data packets of the PLCs, which are control-
ling motors. Attention was drawn to the suspected smuggling of Stuxnet into plants of
the Iranian uranium enrichment plant “Natanz” in 2010. This assumption is fueled by
the specific properties of Stuxnet to attack only one specific Siemens process control and
only two specific motor controls. These specific component constellation were used at
the centrifuges in “Natanz”.
Night Dragon [Cyb11] is a mix of different attack techniques. The hacker groups

specifically target sensitive data and information from the oil, gas and chemical industries.
The focus is particularly on projects and financing plans for oil and gas fields, which,
in the hands of criminals, can impact billions of dollars in business and thus affect the
energy industry worldwide. Attacks of this type have been known to McAfee since 2010.
In the case of these attacks, it is assumed that confidential information has been gathered
from PLCs.
Shamoon [Bro+13] is a malware that is aimed exclusively against oil and energy plants

in Saudi Arabia. The aim was to sabotage the plants of Aramco and RasGas. For this
purpose, central computers in computer systems with Shamoon were used to infect other
systems connected to the network. In this way it was possible to infect up to 30,000
computers. After Shamoon had spread through a network, the actual malicious code was
triggered which consisted in deleting critical files and hard disk areas relevant for the
operating system. Such damaged computers crash and can no longer be used without
manual repairs. This less sensitive and open approach by Shamoon sets him apart from
the other known incidents. Considering that some systems, SCADA, and PLCs use
Microsoft Windows, which is often not up to date, it becomes clear why production was
also affected here.
The Havex [Nel16] malware is categorized as a Remote Access Trojan (RAT), which

makes it possible to bring an infected system under the attackers control and control
it remotely. Another task of Havex is to read network traffic. Various industries were
attacked by Havex, especially in Europe and the USA.
Attackers, targeting a German steel mill [Lee+14], took control of the furnace and

massively damaged the plant. The hackers manage to produce a failure of the entire
systems in the plant. Those responsible in the steel mill were no longer able to shut
down the furnace. According to the report, the attackers first used fake emails tailored
to employees to gain access to the plant’s office network and then worked their way into
the production networks. In this case, the BSI rates the hackers knowledge as “very
advanced” and assumes that their knowledge went far beyond the knowledge of classic
IT security and includes specialist knowledge of the ICSs and production processes used.
The attack initially caused individual components to fail, ultimately the furnace could
no longer be controlled and was in an “undefined state”. The employees of the steel mill
could no longer shut down the furnace and the entire furnace system was damaged.

14

2.2 Programmable Logic Controller Application

The BlackEnergy [Lee+16] malware was used on December 23, 2015, which lead to
the world’s first extensive blackout caused by hackers in Ukraine. The exact details on
the attack are not entirely clear. However, is is assumed that they have been able to
inject BlackEnergy malware into the system of a regional energy provider using prepared
office files. To this end, they are said to have sent fake emails to employees of the
energy supplier, with the Ukrainian parliament as sender. The content should encourage
employees to download the attachment. Anyone who opened the file was informed that
the Word version was out of date. In order to read the content, the victim should
allow a macro to be executed. Macros are often used to automates certain tasks in
many companies. Whoever clicked “activate” then let the Black Energy malware into the
system. The attackers then find their way down to the ICS level via this “gateway”.

NotPetya [Gre19] is malware that targets on windows systems. As more and more
industrial controls are also based on windows, they were also affected by NotPetya. For
example, HMIs from different vendors were affected.

The Triton [Dud17] malware is targeting Triconex™ Safety Instrumented Sys-
tem [Mil+19] from Schneider Electric. The malware aim is to shut down the affected
systems or to deactivate safety mechanisms so that the system is operated in an unsafe
condition. An attack on a refinery of the Saudi Arabian company Tasnee is said to have
almost resulted in an explosion after an attack with Triton.

All of these attacks and malware show, that the threat situation in the area of industrial
IT security is high. Therefore, it is necessary to investigate the security of ICS more
closely and to develop protective mechanisms. On the one hand, these must protect the
network and, on the other hand, make industrial devices secure by its own.

2.2 Programmable Logic Controller Application

A PLC is an industrial digital computer designed to control physical processes. A PLC
is electrically connected to sensors and actuators and mostly with a fieldbus or Ethernet-
based network. A user-specific program running on the PLC controls the actuators based
on the inputs read from the sensors. Since the majority of PLCs operate in a cycle-
oriented fashion, we focus on this type of device. Figure 2.2 shows a simple example
application where a PLC controls the filling process of a container on a conveyor belt.
The sensor reports to the PLC when a container passes it. The PLC then controls the
valve that opens and fills the container. This process must have the right timing, or else
the liquid would not end up in the container. If the cycle time is too high, or if the
processing is very slow, the opening or closing of the valve gets delayed and occurs at
false container positions. A more detailed analysis of PLC cycle time requirement can
be found from Electro Cam Corporation [Ele98].

15

2 Industrial Control System Background Knowledge

PLC
Ethernet

Sensor

Container

Valve

Figure 2.2: Example application where liquid/goods is filled in a container.

This example highlights the peculiarity of Cyber-Physical Systems (CPSs), as it
demonstrates a physical process were delays could lead to intolerable failures of the
physical process handling. Using a simple process as described here, many damage sce-
narios can be covered. For example, if you imagine the containers are filled with medicine
and a cyber-attack may result in too little or too much active ingredient, the effects on
the patient can be extreme.

2.3 Programmable Logic Controller Overview

A PLC is a device programmed on a digital basis that is used to control machines or
plants. These replace the previously hardwired systems, thus enabling flexible control
and reprogramming. In the simplest case, a PLC has inputs, outputs, an operating
system, and an interface to upload the user program. The user program defines how
the outputs have to be switched and the inputs handled. The PLC is connected to the
physical world with sensors and actuators. Figure 2.3 shows a common PLC from WAGO
Kontakttechnik GmbH & Co. KG.”
The picture shows a controller with the base module and power supply, an input

module, an output module, and an end module. The base module houses the Central
Processing Unit (CPU) with the network interface and also some status Light-emitting
Diodes (LEDs). All modules have an internal bus, over they talk to each other. This bus
is mostly manufacturer dependent and proprietary. From the IO modules, the cables go
to the corresponding sensors and actuators. The current generation of control systems
usually have an Ethernet connection via which industrial protocols can be used. For
example, status information can be queried over this connection to show sensor values
on HMIs. There are usually two options to upload the user program to the PLC – one
via Ethernet if available and the other via a local interface like an SD card or a debug
interface to make settings when the network interface is not available. Additionally,
updates are generally uploaded over these interfaces.
There are different PLC devices which differ mainly in the processing:

• Cycle-oriented PLCs: A large group of PLC devices are cycle-oriented, i.e. they
work strictly according to the input-process-output model principle. The operating
system of the PLC controls the cycle. At the start of the cycle, all inputs are first

16

2.4 Programmable Logic Controller (Scan) Cycle Time

Ethernet

Status
indicators

CPU

Debug
interface

Input
module
Output
module
End
module

Figure 2.3: Picture of a common PLC (WAGO 750-842).

read in the system and a process image is created. The user program is then
executed, and at the end of the cycle, the process image is written back.

• Cyclic PLCs with interrupt processing: Generally, the regular cycle is exe-
cuted. If an interrupt occurs, e.g. due to a change of a sensor value, the interrupt
is handled. After this, the regular cycle continues to run.

• Event-driven PLCs: Here, the operating system lists all “events” and processes
the corresponding user program parts in this order.

In this work, cycle-oriented PLCs and user programs are used, as these are the most
popular ones. How a PLC cycle works is explained in detail in the following.

2.4 Programmable Logic Controller (Scan) Cycle Time

The run mode of a cycle-oriented PLC consists basically of a loop of four phases, as
illustrated in Figure 2.4. In the first phase, inputs such as sensors are read into the
internal registers of the PLC and a process image is created. In the second stage, the
program execution is performed. The third phase handles internal housekeeping, for
example, diagnostic functions and communication. At the end of the scan cycle, the
outputs are written back from internal registers (process image) to the electrical circuits.
Typical cycle times are between one and 10 milliseconds. In more powerful models, or
small programs, cycle times may be in microseconds. There are versions with either fixed
or asynchronous cycles. The user program may include branches and conditional calls,

17

2 Industrial Control System Background Knowledge

resulting in varying execution times. For these reasons, it is not possible to specify a
generally valid cycle time, as this usually depends on the process and the corresponding
user program.

Phase 1: Read Inputs

Phase 2: Program Execution

Phase 3: Diagnostic, Commu-
nication, ...

Phase 4: Write Outputs

Cycle
Time

Figure 2.4: Simplified sequence of a PLC cycle.

When the generic cycle is not sufficient, there are special input cards that report an
interrupt or handling the control loop itself. By using interrupts, the currently running
program is interrupted, and, for this situation, the assigned program is executed and
then the interrupted program continues. This allows the mastering of time-critical tasks
that are in conflict with the cycle time.

2.5 Structured Text User Program

In most cases a PLC is first of all a black box which executes an operating system and
software from the manufacturer. Then the so-called user program is executed on top,
which comes from integrators or operators. In most cases only this user program can be
modified by the end users. Structured Text (ST) is a text-based programming language
for PLCs. The standard EN 61131-3 [IEC93] specifies, among other things, the language
scope of ST. Listing 2.1 shows an example of a ST user program which operates cyclically.
This will toggle two outputs every 100 cycles.

1 PROGRAM PLC_PRG
2 VAR
3 Counter:INT := 0; (* Variable to count PLC cycles initialized with

0 *)
4 END_VAR
5

6 IF Counter >= 200 THEN (* Reset Counter *)
7 Counter := 0; (* Set Counter to 0 *)
8 END_IF;
9

10 IF Counter < 100 THEN (* Output1 high 0-99 cycles *)
11 Output1 := TRUE; (* Set Output1 high *)
12 Output2 := FALSE; (* Set Output2 low *)
13 ELSIF Counter < 200 THEN (* Output2 high 100-199 cycles *)
14 Output1 := FALSE; (* Set Output1 low *)
15 Output2 := TRUE; (* Set Output2 high *)
16 END_IF;

18

2.6 Attack on the Programmable Logic Controller Cycle Time

17

18 Counter := Counter + 1; (* Increase cycle counter *)
19 END_PROGRAM

Listing 2.1: Example of ST user program code.

It is important to note that, as illustrated in Figure 2.4, the program cycle is executed
completely before changes are written to the process image. The outputs are thus updated
each cycle exactly once and this at the end. The user programs, which are used in this
work are programmed in ST and toggle the outputs, as illustrated in Listing 2.1, to get
a correlation between the electric output signal and the cycle time. This correlation
is achieved because the electrical signal is changed at every cycle, and therefore the
electrical signal pulse time correlates with the cycle time. Assuming each cycle takes
exactly 1ms, an output signal with 100ms high and 100ms low would be generated for
the code shown here.

2.6 Attack on the Programmable Logic Controller Cycle Time

The basic idea behind the PLC cycle time attack in this work is to influence the timing
of a PLC by means of network traffic. This raises the research question of whether
industrial systems are prone to network traffic and what impact this has on the electrical
side and in real-world situations. In other words, the attacker aims to alter the timing
of PLC outputs.
Wedgbury and Jones [Wed+15], as well as Cárdens [Cár+08a], predicted that extra

network traffic might affect the process controlled by an ICS. However, they did not
present evidence for their prediction. The experiments conducted in this work lend
support to their assertion because the results of this work show that network traffic can
affect user programs running on PLCs.
If an output of a PLC is changed with every cycle, a kind of square wave signal is

generated. This regular behavior is represented by the blue line in Figure 2.5. A common
output voltage for PLCs is 24V, which results in flatter rising edges. If the cycle time
becomes longer due to the load on the CPU, there is a shift in the output signal ∆t,
which is represented by the dotted orange line.

output

cycle

24V

1 2 3 4 5

∆t

expected delayed

Figure 2.5: Electrical view of a PLC toggling an output.

19

2 Industrial Control System Background Knowledge

A ST code, which changes the output every PLC cycle is shown in Listing 2.2. This
ST code will generate a signal similar to the signal illustrated in Figure 2.5.

1 PROGRAM PLC_PRG
2 VAR
3 Output:INT := 1; (* Variable for Output, "1" starting with high *)
4 END_VAR
5

6 IF Output = 0 THEN (* Compare Output Variable with 0 *)
7 Output1 := FALSE; (* Set Output1 low *)
8 Output := 1; (* Set Output Variable to 1 *)
9 ELSE

10 Output1 := TRUE; (* Set Output1 high *)
11 Output := 0; (* Set Output Variable to 0 *)
12 END_IF;
13

14 END_PROGRAM

Listing 2.2: Example of ST user program code, to switch “Output1” with every PLC cycle.

As an attacker, it can be a goal to influence this cycle time and thus also the electrical
behavior. The attack surface is a combination of device design and software imple-
mentation. More precisely, it is the implementation of the network stack, PLC-specific
protocols, and PLC runtime. For example, sharing resources between system tasks and
the actual control program can be problematic. If attackers are able to exhaust the
resources available to system tasks, they also succeed in preventing normal operation of
the control program.

2.7 Noteworthy Industrial Control System Characteristics

In the following, some noteworthy circumstances of ICS are explained with reference to
the “ICS Security Compendium” [Fed13] of the BSI. This document gives an overview of
the challenges in ICS, as well as security recommendations. Compared to the standard
IT environment, Operational Technology (OT) has different priorities and infrastructure
to protect, which are explained in the following.

2.7.1 Industrial Control System and the Confidentiality, Integrity and
Availability Triad

Protection goals are defined to achieve information security and protect data of IT sys-
tems. Basically, there are three protection goals, which are represented in the Confiden-
tiality, Integrity and Availability (CIA) [Per08] triad.

• Confidentiality: Data may only be read or modified by authorized users, both
when accessing stored data and during data transmission.

• Integrity: Data may not be modified unnoticed. All changes must be traceable.

20

2.7 Noteworthy Industrial Control System Characteristics

• Availability: Prevention of system failure: Access to data must be guaranteed
within a specified timeframe.

These are often extended by two more protection goals.

• Authenticity: This refers to the characteristics of the authenticity, verifiability,
and trustworthiness of an object.

• Non-repudiation: It requires that “no improper denial of actions performed”
is possible. Among other things, it is important in the electronic conclusion of
contracts. It can be reached, for example, by electronic signatures.

The CIA model is often presented in a triad, with the extended protection goals in a
pentagon. Both of these representations are shown in Figure 2.6.

Confidentiality

Integrity Aavailability

AuthenticityNon-repudiation

Figure 2.6: CIA Protection goal triad, with extension.

Two worlds come together in the field of industrial IT security – those coming from
office IT and those from automation engineering. From the perspective of office IT,
the established CIA protection goal model is often inverted in the literature [Zhu+11;
Sto+11], resulting in availability as the most important asset. In automation engineer-
ing, the focus is often not on the CIA triad. One example is the Safety, Reliability
and Availability (SRA) model [Eur11], which describes a classically applied structure
of priorities in the industrial environment. Reliability, Availability, Maintainability and
Safety (RAMS) [Int02] provides another definition of goals in the industrial environment.
It is mainly used in railway applications and uses these four aspects on a similar priority
level. An extension of RAMS is RAMSST, which also includes “security,” the protection
of the system against external attacks and “testability,” the degree to which a system
supports tests in a given test context.
All in all, a unified approach cannot be found here, as it depends heavily on the

requirements and the physical process. Depending on the area in which the controls are
used (railway, industrial automation, etc.), other directives and security models apply.
Often there is a way to combine the two worlds of office IT and automation technology,
to achieve the goals of both areas. Therefore, in this work, the CIA model is used, taking
into account a different prioritization of the individual protection goals.

21

2 Industrial Control System Background Knowledge

2.7.2 Lifecycle

The lifecycle of an ICS is derived from the associated production facilities. This is
significantly longer than the typical time periods in office IT environments. Usually, it is
10–15 years [Sto+11] and sometimes even more than 20 years. In office IT, it is usually
only three to five years.

2.7.3 Functional Safety

There are many applications in which the operation of the equipment is subject to regu-
latory requirements, like nuclear power plant safety. In these cases, significant changes,
including software changes to the ICS, may require an approval process [Nov+08]. Owing
to this test process, the possibilities to make timely security updates are limited or not
present here.

2.7.4 User Program

In contrast to office IT, ICSs are operated over longer periods of time with virtually
the same user program. Changes are made in the context of controller options such as
controller parameters, sensor limits, and process parameters.

2.7.5 Update Management

In the field of office IT, systems are often updated as soon as possible after the detection
of errors or vulnerabilities. Contrary to this, in ICS updates are rare or not unavail-
able [Cár+09]. In the area of ICS, software changes, including software updates, must
comply with the systems, which should be patched. Thus, application-specific tests must
be performed before and after the updates are used in actively used plants. As a result,
updates can only be made as part of maintenance activities at longer intervals.

22

Communication Robustness of
Programmable Logic Controllers in
Terms of Security

Chapter3
Contents of this chapter

3.1 Communication Robustness Testbed for Industrial Internet of Things
Components . 25

3.2 Fuzzing Proprietary Industrial Devices . 35
3.3 Impact of Network Traffic on Industrial Control System Devices 43
3.4 Dual-MCU Setup for Robust Industrial Internet of Things Devices 61
3.5 Efficient Passive Network Scanning for Industrial Control Systems 73

This chapter examines the correlation between communication load and the timing
behavior of cycle-oriented PLCs, which is also called reliability or robustness in the
industrial context.
In computer science, software development and engineering, the term “robustness”

means the ability of the correct functionally of a process, even under unexpected con-
ditions. Additionally, robustness, also known as “fault tolerance,” is one of the quality
criteria for software and systems. Examples of such precautions include preventing un-
defined states and system crashes and, in particular, intercepting erroneous user or data
inputs. Nevertheless, 100% robustness is not achievable. But for a computer program,
it is often possible to bring the system in a safe state and produce an error message.
An example of one of the best-known behaviors, in the case of an error, is probably the
Microsoft Windows blue screen [Mic19], in which a critical error occurs and, as a pre-
caution, the computer is shut down. Furthermore, an error message is displayed, which
with the user can localize the problem. The aim of this fail-safe behavior is clearly to
protect the hardware and not to maintain operations.
In contrast, in the industrial environment, the goal, when an error occurs, is usually to

bring the plant respectively the process into a safe state and also not to injure any persons.
However, to get back to the IT security context, in general network communication, such
as DoS flooding, should not have any impact on the control process of a PLC. It is this
requirement for the robustness of industrial systems that is analyzed in this chapter, with

23

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

the focus on interactions between the network side and the physical world. It discusses
how the robustness of a PLC can be influenced and what options are available for a
secure operation of ICSs.
The chapter is structured as follows. At first, in Section 3.1, the proprietary testbed

with which the evaluations are done is introduced. After this, the possibilities of influenc-
ing the electrical output signal of a PLC are examined. This will be tested with the help
of fuzzing (Section 3.2) and then extended by DoS attacks (Section 3.3). Afterwards, a
new type of PLC architecture is presented in Section 3.4, which is based on a dual MCU
setup, in order to achieve a separation between IO control and the network communica-
tion. Furthermore, a passive scan method based on Address Resolution Protocol (ARP)
packets and vendor MAC address assignment analysis is presented in Section 3.5.

24

3.1 Communication Robustness Testbed for Industrial Internet of Things Components

3.1 Communication Robustness Testbed for Industrial Internet
of Things Components

Contents of this section

3.1.1 Introduction . 25
3.1.2 Communication Robustness Testbed 26
3.1.3 Devices under Test in the Testbed 30
3.1.4 Experiments with Communication Robustness Testbed 33
3.1.5 Conclusion . 34

Parts of this section have already been published in the paper “CoRT: A Communica-
tion Robustness Testbed for Industrial Control System Components” at the 4th Interna-
tional Conference on Event-Based Control, Communication and Signal Processing 2018
(EBCCSP) [Nie+18a].

3.1.1 Introduction

One possible attack vector is the exploitation of the network communication of IIoT
devices. Thus, a robust communication system is essential to ensure security. Unfor-
tunately, the high requirement in operational availability for real-world ICSs makes it
difficult to assess component security during its runtime. However, this is possible in a
research testbed where tests could be done and analyzed in a safe environment. There are
already many testbeds for ICS security research. Holm et al. [Hol+15] analyzed 30 ICS
testbeds in 2015. However, these mostly focus on analyzing a complete ICS infrastruc-
ture, as opposed to testing single components. In this section, a testbed, focusing on the
security of industrial components, especially the robustness of communication, which can
influence the control behavior, is introduced. It is then used for the evaluations in this
chapter. The following requirements for the testbed, with corresponding measurement
methods, have been defined:

• Network capture: The generated network traffic during attacks and tests must
be captured for further investigation.

• Network reachability check: It must be probed if the devices are reachable
within the network during attacks.

• Electrical monitoring: The electrical outputs must be monitored to recognize
changes in the control behavior.

• Fast integration: The integration of new devices into the testbed must be easy
and fast.

The rest of the section is structured as follows. In Section 3.1.2, an overview of the
Communication Robustness Testbed (CoRT) is given. The devices currently deployed in

25

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

the testbed are described in Section 3.1.3. Security tests which can be done with CoRT
are explained in Section 3.1.4. Finally, a conclusion is provided in Section 3.1.5.

3.1.2 Communication Robustness Testbed

A communication robustness test measures the steadiness of control signals under various
communication parameters and loads. Figure 3.1 shows our testbed divided into two
identical racks, enabling comparison of the results.

Monitor
Server
Network
Switch
Logic
Analyzer

DuTs

Figure 3.1: Picture of the testbed built into racks.

At the lower half the Devices under Test (DuTs), such as PLCs, HMIs, and bus couplers
are placed. The electrical outputs of these are wired to a logic analyzer. All DuTs are
interconnected with a network switch to a server. Besides, there is a monitor built in to
keep track on the analyzed data. The DuTs are mounted on an EN 50022 rail, which
is commonly used in the industrial sector. Both racks are lockable and have wheels for
easy transportation.

26

3.1 Communication Robustness Testbed for Industrial Internet of Things Components

3.1.2.1 Attacker Model Defined for the Testbed

This testbed is focused on, but not limited to, two attacker models: 1 an attacker who
has remote access to the network and 2 an attacker who has local access to the ICS
components with basic knowledge. Both are able to inject network traffic, e.g. send
commands or perform a Man-in-the-Middle (MitM) attack. Attacker model 2 is also
able to locally manipulate input signals and has direct network access to the DuT. This
is the case, e.g. if the attacker unplugs sensors or connects to the ICS network with a
computer.

3.1.2.2 Testbed Focus on Robustness of Devices

The robustness of an IIoT device is essential, because they mostly control machines and
interact with their environment. Therefore, an outage or loss of control creates a problem.
With the CoRT, the research question, how network communication could influence the
robustness of industrial systems can be analyzed. The communication robustness of
different industrial components can be measured with e.g. fuzz testing and DoS attack
frameworks. These must be specialized on proprietary protocols, which are partly used
in ICSs.

3.1.2.3 Schematic Overview of the Testbed

Figure 3.2 gives a schematic overview of the testbed components. On the server, there
are three Virtual Machines (VMs) for measuring, programming, and attacking the DuTs.
In order to not influence the measurement, this separation is necessary, because some
attack tools lead to a high system load. For this reason, the cores of the server are fixed
assigned to the VMs. On the programming VM the necessary Integrated Development
Environments (IDEs), to configure the PLCs and to load the user program, are installed.
The attacking VM offers a platform to execute the control as well as attack tools. The
measuring VM already comes preconfigured with all measurement methods, which will
be explained in detail in the following sections. Furthermore, additional attack tools and
further DuTs can be integrated into the testbed.

24VDuT_0 DuT_1 DuT_N

Network

S
e
r
v
e
r

Measuring VM

Attacking VM

Programming VM

Logic
Analyzer

Wires

Critical
Control
Part

Commu-
nication
Part

Figure 3.2: Schematic overview of the testbed.

27

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

The DuTs are powered by 24V, which can be switched on and off remotely by the
measuring VM. The logic analyzer is used to observe the critical control part, which is
also the side a physical process is connected in real scenarios.

3.1.2.4 Measurement of the Electrical Behavior

To measure the robustness of the DuTs, the electrical outputs are observed with a logic
analyzer. All PLCs are configured to toggle every single cycle, resulting in a frequency
between 20Hz and 20 kHz, depending on the device. These signals are measured with a
logic analyzer and logged on the measuring VM. For the logic analyzer task, a BeagleBone
Green running BeagleLogic [Abh14] with a custom Printed Circuit Board (PCB) is used.
It is possible to analyze up to 14 channels in a continuous mode with a maximum of
100Ms/s. The Ethernet interface (100Mb/s) was used to send the data to a computer
for further analysis. The capture is done on a fixed rate of 1MHz, which allows calculating
the timing without an additional timestamp. Only the state of the output of the device
currently under test is of interest. Therefore, a byte per sample (8 active channels) or
two byte (14 active channels) was needed to transfer data over the network, leading to
a feasible data rate. Figure 3.3 shows the adapter board designed for this purpose. The
schematic can be found in Appendix A.3.

Digital Inputs
Resistor Dividers Level Shifter

Protection Diodes Pin Headers

Figure 3.3: Rendered image of the PCB of the BeagleLogic adapter board.

This is necessary to measure up to 30V and convert it to the 3.3V input signal of the
BeagleBone Green. On the PCB, there are mainly resistor dividers, protection diodes,
and an SN74LVCH16245A [Tex14] 16-Bit level shifter. The left side of the PCB is
connected to the outputs of the DuTs and the pin header is mounted on the BeagleBone
Green. With the logic analyzer setup, influences on the control behavior of PLCs are
measured and logged.

28

3.1 Communication Robustness Testbed for Industrial Internet of Things Components

To ensure the validity of the tests, a function generator and a Picoscope 2208 [Pic]
oscilloscope to measure the capabilities of the BeagleLogic is used. 1 Mega samples per
second (Ms/s) on the BeagleLogic is configured, which is also the sample rate in the
test setup. The results of this tests are summarized in Table 3.1. The deviation of the
BeagleLogic adapter compared to the function-generator was below 0.1%, which was
sufficient for the test setup.

Table 3.1: Measurement results of the BeagleLogic validation.

Freq. (Hz) 100 1000 10000
P Mean 100.0 1000.0 10000
B Mean 99.97 999.9 9999
P Min 99.96 999.9 9999
B Min 99.97 999.0 9990
P Max 100.1 1000.0 10000
B Max 99.98 1000.0 10008
P Std 0.003621 0.0623 0.5102
B Std 0.004198 0.2185 7.252
P = Picoscope, B = BeagleLogic

3.1.2.5 Visualization

Besides the logging, the measurement results are directly visualized on monitors on the
testbed. The cycle time [Mad00] of a Siemens S7-1211C during idle is illustrated in Fig-
ure 3.4. Idle means that the PLC is measured without any attack or intentional injected
communication load. But this is not constant as it is influenced by communication and
housekeeping during the execution. One cycle time takes from 140µs to 300µs during
idle measurement on the S7-1211C.

0 1000 2000 3000 4000 5000 6000

µs

150

200

250

300

C
y
cl

e
T

im
e

in
µ

s

Figure 3.4: Example visualization of the cycle time of a Siemens S7-1211C PLC.

29

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

Furthermore, the ping response, current test results, and statistics of the network
capture are visualized and can be optional used for analyses. This enables a quick
overview at any time.

3.1.2.6 Optional Measurement Methods

Further test methods are already implemented and evaluated in the testbed, which could
be important for later measurements. Currently, these are not taken into account in this
chapter. However, they offer a basis for further research questions.

Optional: Ping Response of DuT To ensure network reachability during tests, the ping
response of all devices is measured. This is done with a fping [Sch] script every 100ms,
which has been tested as a trade-off between measuring accuracy and not influencing the
devices by flooding. If a network stack on a DuT crashes, it is detected and logged.

Optional: Network Capture To analyze tests in detail, a network capture of the test
period is essential. The complete network traffic within the testbed is mirrored on one
port and captured with tcpdump [Jac+89] in a log rotation. For example, if a device
fails during an attack, the timestamped and corresponding captures are used for further
investigation.

Optional: Virtualized Devices For the measurement of the response time of a command
sent over the network to the DuT, it is necessary to virtualize components, e.g. sensors
or other IIoT devices. The control command (e.g. set an output over an industrial
protocol) is sent by the measurement VM, which reduces timing dependencies during the
measurement. Thereafter, the electrical output is measured by the logic analyzer and is
processed. In order to send a command, the industrial protocol, e.g. BACnet or Modbus,
can be used and integrated into the test.

Optional: Input Signal Generation To simulate electrical input signals for the DuTs,
these must be generated to be read by real hardware. This is realized with a Universal
Serial Bus (USB)-to-serial converter, which is connected to the attacking VM. The
RTS pin of the USB-to-serial converter is used to generate the signal and Metal-oxide-
semiconductor Field-effect Transistor (MOSFET) are used to switch 24V. Both the gen-
erated input and the output signals of the DuT are measured by the logic analyzer. The
delay between them is the response time. This could cause a jitter if, for example, the
DuT faces a high CPU load due to network communication.

3.1.3 Devices under Test in the Testbed

For the CoRT testbed, diverse vendors and products are chosen. Thus, it is possible to
compare implementations based on their security level from a technical point of view.
However, single devices can also be tested. Table 3.2 lists currently deployed devices
with a selection of open ports.

30

3.1 Communication Robustness Testbed for Industrial Internet of Things Components

Table 3.2: PLCs deployed within the testbed, with additional components regarding complete-
ness.

No. Vendor Product Vendor No. Selection of Open Ports
1 Wago Controller KNX IP 750-889 21, 80, 443, 502, 2455, 6626
2 Wago Controller PFC100 750-8100 22, 80, 443, 502, 4840, 6626,

11740
3 Wago Controller ETH. 750-880 21, 80, 443, 502, 2455, 6626,

44818
4 Wago Controller BACnet 750-831 21, 80, 443, 502, 2455, 6626,

47808
5 Siemens CPU 1211C 6ES7211-1AE40-0XB0 80, 102, 443
6 Siemens Simatic S7-1212 6ES7212-1AE31-0XB0 80, 102, 443
7 Siemens Simatic ET 200SP 6ES7155-6AU00-0AB0 -
8 Siemens Simatic S7-314 6ES7314-6EH04-0AB0 80, 102, 443
9 Siemens Simatic S7-1516F 6ES7516-3FN01-0AB0 80, 102, 443
10 Siemens LOGO! 24RCE 6ED1052-1CC01-0BA8 80, 102, 502, 8080
11 Phoenix ILC 151 2700974 21, 80, 1962, 41100
12 Phoenix ILC 150 ETH 2985330 21, 80, 1962, 41100
13 Phoenix ILC 171 ETH 2TX 2700975 21, 80, 443, 1962, 41100
14 ABB PM554-T 1SAP120600R0071 21, 502, 1200, 1201
15 Crouzet em4 B26-2GS 88981133 502, 42424
16 Schneider TM221CE16T TM221CE16T 502, 44818
17 Siemens KP 300 6AV6647-0AH11-3AX0 102, 2308
18 Schneider HMISTU855 HMISTU855 502, 6001
19 OpenPLC Raspberry Pi 3 Commit f1a2645 22, 502, 8080, 20000
20 Moxa NP5110 NP5110 23, 80, 443, 950, 966, 4900

3.1.3.1 Common Network Protocols

Industrial components often use common network protocols for tasks such as monitoring
and visualization. On the testbed, the following common network protocols are available:

• File Transfer Protocol (FTP) “Port: 21” is used for file transfer. Within
industrial networks, this is used for logging and updating the firmware, for example.

• Secure Shell (SSH) “22” refers to a network protocol that can be used to securely
communicate with a remote device. It is often used to make a remote command
line available locally if, for example, the PLC runs Linux.

• Telnet “23” is a client/server protocol based on a character-oriented data exchange
over a TCP connection. PLCs could be partly configured over it.

• Hypertext Transfer Protocol (HTTP) “80” is used to load web pages (hyper-
text files) into a web browser. Hypertext Transfer Protocol Secure (HTTPS)
“443” uses an additional transport security. These are used for the visualization
of diagnostic information and sensor values.

31

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

3.1.3.2 Industrial Network Protocols

In modern plants, fieldbuses are increasingly being replaced by IP-based communication
systems. Within CoRT, five common industrial protocols on real hardware are available.

• The Modbus/TCP “502” protocol is a communication protocol based on a mas-
ter/slave architecture.

• KNX IP “3671” is mostly used for building automation.

• OPC Unified Architecture "4840" is an industrial Machine to Machine (M2M)
communication protocol that works across manufacturers.

• Ethernet/IP “44818” is a real-time Ethernet mainly used in automation tech-
nology.

• BACnet/IP “47808” is chiefly used in building automation, ensuring interoper-
ability between devices of different manufacturers, if all partners agree on certain
building blocks defined by the standard.

3.1.3.3 Proprietary Network Protocols

There are other proprietary protocols, which are only partly understood.

• The S7comm “102” protocol is used by Siemens devices to communicate, for
example, with the IDE and HMIs.

• Phoenix Contact “1962, 41100” use these ports for programming and debug-
ging.

• ABB “1200, 1201” is the standard communication port.

• WinCC “2308” is mostly used for the communication with panels.

• WAGO-Service-Protocol “2455, 6626” used by Wago for Codesys.

• Crouzet “42424” is used for programming.

• Codesys “1217, 11740” is used by Codesys for programming.

With respect to security, these protocols are particularly interesting, because they execute
privileged commands, such as setting the run mode of a device and updating the user
application.

32

3.1 Communication Robustness Testbed for Industrial Internet of Things Components

3.1.4 Experiments with Communication Robustness Testbed

With CoRT, a playground for researchers, organizations, and academic collaborators is
made available. It is nearly impossible to make tests in an operating ICS, let alone
change hardware or software. Even if tests can be performed, the bulk of the necessary
data is not recorded and cannot be evaluated.
To evaluate different DuTs, predefined sequences of tests are used. However, it is

important to say here that the CoRT only provides the basis (e.g. measurement equip-
ment and procedure) for the tests and that different test scenarios can be implemented.
One of these test sequences is illustrated in Figure 3.5. After it starts, an automated
power cycle of the DuT can be done. This becomes necessary if previous tests have influ-
enced the DuT or if it does not recover, e.g. after a successful DoS attack. Afterwards,
the measurement begins, including network captures, continuous reachability check, and
electrical output measurement. The measurement happens in three phases: (1) pre-idle,
(2) attack, and (3) post-idle monitoring.

Start

Power Cycle

Begin Measurement

Test/Attack
(1) Idle Measurement
(2) Attack Measurement
(3) Post Measurement

End Measurement

Analyze

Next Test or End

Figure 3.5: Illustration of a test sequence within the testbed.

During the test/attack, the DuT can be subjected to different kinds of network ro-
bustness tests and vulnerability scans. Finally, the results are analyzed, logged, and are
visualized on the monitor. If additional tests are in the queue, the sequence starts from
the beginning until all tests are finished. It is possible to perform a full test on a single
device, or to apply one test on every device in the rack. This means that a specific test
can be done on all devices, for example if a new test should be measured. This depends
on the type of validation, such as fuzzing of a single protocol on a device, which is not
supported by other DuTs.
The control of the tests is taken over by the measuring VM, which thus takes over the

central control of the complete CoRT. This in turn starts the measurements and sends
e.g. the attack parameters and duration to the attacking VM.

33

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

3.1.5 Conclusion

The proposed testbed combines network devices, measurement equipment, and indus-
trial components. It allows studying ICS devices like PLCs, sensors, and HMIs in detail
without influencing real-world processes. Furthermore, the testbed measurements are
automatically recorded and analyzed. Also, new test scenarios can be built up, without
having to worry about the measurement setup. With this testbed, a basis for communi-
cation robustness tests has been established.

34

3.2 Fuzzing Proprietary Industrial Devices

3.2 Fuzzing Proprietary Industrial Devices

Contents of this section

3.2.1 Introduction . 35
3.2.2 Related Work and Motivation . 35
3.2.3 Concept . 36
3.2.4 Framework Architecture . 37
3.2.5 Framework Evaluation . 39
3.2.6 Conclusion . 42

Parts of this section have already been published in the paper “PropFuzz – An IT-
Security Fuzzing Framework for Proprietary ICS Protocols” at the 22nd International
Conference on Applied Electronics (AE) 2017 [Nie+17].

3.2.1 Introduction

Most PLCs offer the possibility to configure and program them via a proprietary TCP/IP
connection. This simplification allows remote access to these devices, if there is no
additional hardware restricting the communication. Thus, it is often possible for attackers
to interact directly with the PLC and its configuration interface. Therefore, it is necessary
to analyze the communication between the control system and the IDE, e.g. with fuzzing,
to find security issues in proprietary industrial protocols. The main problem concerning
the fuzzing of these protocols is defining the data structure to be fuzzed. Since these
are proprietary and therefore usually not openly accessible for security analysis. In this
section, a new fuzzing framework called PropFuzz, which is capable of fuzzing proprietary
ICS protocols is introduced. Additionally, to demonstrate the feasibility a selection of
components from the testbed presented in Section 3.1 is fuzzed.
The section is structured as follows. Popular fuzzing frameworks are introduced in

Section 3.2.2. Section 3.2.3 describes the concept of fuzzing a proprietary PLC commu-
nication. Section 3.2.4 explains our framework architecture. Section 3.2.5 presents the
first results, along with possible attacks. Finally, an outlook and a conclusion are given
in Section 3.2.6.

3.2.2 Related Work and Motivation

Barton Miller discovered a program crash caused by noise as a result of a lightning strike
on his network connection during a thunderstorm [Mil+90]. The bug was triggered by
a random input called “fuzz-testing” or “fuzzing” in the literature. Fuzzing could only
trigger bugs, if the input is not rejected by a validation function of the DuT. A fully
automated fuzzing framework for ICSs includes the process steps illustrated in Figure
Figure 3.6 [Kim+16].
There are two elementary categories of fuzzers, based on how they create input for

fuzzing. Generation-based fuzzers create input from scratch and thus require some knowl-

35

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

Identify
Target

Identifiy
Inputs

Generate
Test Case

Execute
Fuzzing

Generate
Results

Monitoring

Figure 3.6: Fuzzing test process procedure.

edge of the protocol with corresponding data fields. With mutation fuzzers, samples of
valid input are used to produce malformed input. A simple mutation fuzzer can modify
a valid input sample and send it to the DuT.

• Generation-based Fuzzing applies with generation rules to fuzz input. Boo-
Fuzz [Per17], a fork and successor to the Sulley [Ami+07] fuzzing framework, and
Peach [Edd09] are block-based fuzzers. These kinds of fuzzers need a deep knowl-
edge of the protocol structure and test case definition to generate inputs. Recent
generation-based fuzzers like VUzzer [Raw+17] are able to automatically generate
input test cases for basic communications.

• Mutation-based Fuzzing uses valid inputs and modifies them to create fuzzing
input. Most of the frameworks analyze previously captured traffic, although there
are fuzzers which allow live capturing. Radasma [Hel16] is an input-generation
tool for basic protocols to identify field boundaries. LZFuzz framework [Sha+11]
is an online fuzzer that intercepts traffic directly, analyzes it with the Lempel–Ziv
compression algorithm, and sends the manipulated packages to the device. The
compression algorithm is used, to guess boundaries between the structural units.

For fuzz-testing ICSs, these fuzzers and frameworks do not fulfill our requirements in
automated input generation for proprietary protocols and electrical monitoring [Sha+11]
and thus these fuzzers are barley compatible with our testbed introduced in Section 3.1.

3.2.3 Concept

Most modern PLCs are programmed with an IDE over TCP/IP. This communication is
often open and not filtered. Figure 3.7 illustrates the minimal setup to interact with the
ICS and the IDE. This is quite simple and consists of a standard Personal Computer (PC)
with a network connection to the PLC. In the CoRT, this task is performed by the
programming VM.
Because, the majority of these protocols are proprietary and have no publicly available

documentation, the here presented fuzzing framework allows a direct investigation of this
communication without previous configuration. To start the data transfer between an
IDE and a PLC, a TCP/IP handshake is done. After that, there is often an additional
proprietary handshake with a kind of challenge. The command and data transfer could

36

3.2 Fuzzing Proprietary Industrial Devices

IDE
PLC

TCP/IP
proprietary

Figure 3.7: Communication between a standard PLC and the corresponding IDE.

be started after this. For a permanent connection, it may be essential to send keep-
alive messages between the IDE and the PLC, which is mostly not required for single-
command interaction. To make fuzzing feasible, it is necessary to perform the proprietary
handshake and determine the protocol field that should be fuzzed.

3.2.4 Framework Architecture

At a high-level view, illustrated in Figure 3.8, PropFuzz is separated into three parts to
fulfill the requirements of a fully integrated fuzzing framework [Pla+16]. The analysis
part splits the protocol and filtrates the information necessary to fuzzing the DuT. In
addition to the network response monitoring, the monitoring part observes the PLC
electrically. For the analysis, the data can be captured live within the test environ-
ment or provided by a packet capture (pcap) respectively packet capture - next genera-
tion (pcap-ng) file. The analysis uses the pcapy module [COR], a Python implementation
for LibPcap [Jac+], for further examination of the collected packages. With the analyzed
data, scapy [Bio+11] is used to send data to the DuT. Pico-python [OFl] or BeagleL-
ogic [Abh14] is used to monitor the DuT. These measurements can be made, on the
one hand on the testbed presented in Section 3.1 (BeagleLogic) or on the other hand,
independently with a simple setup with a PC and an oscilloscope (Pico-python).

Pcap-ng Live

Pcapy (LibPcap)

PropFuzz

Scapy
Pico-python
Beaglelogic

Device under Test

Analysis Fuzzing Monitoring

Figure 3.8: Data-flow within the PropFuzz framework.

A detailed view of the PropFuzz structure is provided in Figure 3.9, which illustrates
the Python modules, classes and configuration files within PropFuzz. The implemented
Python modules are modular and can be extended or used within other frameworks.

37

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

Classes Config

PropFuzz

Unpack

Analyze

SendFuzz

Monitor

Figure 3.9: Overview of the PropFuzz framework modularity.

Unpack The PropFuzz implementation provides two possibilities for package analysis.
First, a live capturing of the communication between DuT and IDE is possible. The
second option is to read in existing pcap files. For live capturing, ARP spoofing is
needed, which could be prevented by some network devices. Once data acquisition is
done, the Unpack module splits up the information of the captured packages and stores
them in objects.

Analyze Inside the analysis process, the messages of the proprietary protocol are inter-
preted. At the start, a statistical analysis with the Ratcliff/Obershelp [Rat+98] pattern
recognition algorithm (see Equation 3.1) of the created package objects is done. With
these similarities, the proprietary handshake between the IDE and the PLC can be deter-
mined. After the detection of a handshake in the captured communication, commands
between the IDE and the PLC must be identified. The commands can be identified
by comparing different captures containing a similarity match of the same command.
Table 3.3 illustrates the symbols used in the formula.

Table 3.3: Symbols used in formulas.
Symbol Description
Km Number of matching characters recursively
|S1|, |S2| Length of each string
0 ≤ Dro ≤ 1 Similarity metric

Equation 3.1 calculates the similarity metric of two strings. The value 0 means that
not even one character in two strings is the same.

Dro =
2 ∗Km

|S1|+ |S2|
(3.1)

Table 3.4 shows an example, how to identify similar strings. In the following example
two strings are used, which have the same beginning and then differ. This is also often
the case for protocols that have a similar data structure for commands.

38

3.2 Fuzzing Proprietary Industrial Devices

Table 3.4: Example of pattern matching .
P r o p F u z z |S1|: 8
P r o p R e z |S2|: 7
3 3 3 3 7 7 3 7 Km: 5

The similarity get a similarity metric as illustrated in Equation 3.2. It is important
here that this is also calculated recursively, for example if a field is shorter or longer, but
still similar.

Dro =
2 ∗Km

|S1|+ |S2|
=

2 ∗ 5

8 + 7
=

10

15
= 0.67 (3.2)

There are two ways to define the input. Either one byte is used and compared, or
4 bits, which are represented in hex. This example shows how similar packets can be
identified in a network stream and how similarities of individual parts of a packet can be
compared with another. This information is then used for the mutation-based fuzzing.

SendFuzz The SendFuzz module is responsible for sending and receiving packets inside
the PropFuzz implementation. For constructing these messages the Python module scapy
is used. The gained information from the analysis module is used to mimic the protocol
handshake by sending sniffed messages to the DuT, which is basically a reply. After
a protocol handshake is successfully established, further packages containing protocol-
specific commands are sent to the DuT. Parts that change in the data structure of the
protocol (low similarity metric) are changed here on the basis of mutation-based fuzzing.
The fuzzing part must run on the attacking VM, to not influence the measurement (see
Section 3.1.2.3).

Monitor Most fuzzing frameworks only observe the network connection during the test.
What is special about fuzzing ICSs is the monitoring of the process control [Yoo+16],
which is possible within the CoRT. To detect the effect of fuzz-testing with our frame-
work, an output channel is monitored by a logic analyzer or oscilloscope as described in
Section 3.1.2. This measurement feedback must run on the measuring VM or dedicated
thread with high priority, that it will not be influenced, by e.g. CPU load caused by
generating the fuzzing packets.

3.2.5 Framework Evaluation

To test PropFuzz, three different PLCs, the “ILC 151 ETH” (11), “ILC 150 ETH”(12)
and the “ILC 171 ETH”(13) from Phoenix Contact, are used. These PLCs were selected
because little is known about the used proprietary protocol, and until now the PLCs of
this manufacturer have not been evaluated in academia. For more information about
the devices, see Table 3.2. According to the datasheet, the devices support the protocols
shown in Table 3.5. In this assessment, the IDE “AUTOMATIONWORX Software Suite
v1.83” from Phoenix Contacts is used.

39

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

Table 3.5: Phoenix Contact test equipment used for the evaluation.

DuT ILC 151 ILC 150 ILC 171
No. 11 12 13
Man.number 2700974 2985330 2700975
Profinet 3 3

Modbus 3 3

Proprietary 3 3 3

FTP 3 3 3

HTTP 3 3 3

HTTPS 3 3

SNTP 3 3 3

SNMP 3 3 3

SMTP 3 3 3

SQL 3 3 3

MySQL 3 3 3

Three ports are open, if the factory default settings are applied. Table 3.6 shows the
results of an nmap scan of the PLCs. A vulnerability in one of these protocols leads to
high risks due to the remote exploitability.

Table 3.6: Factory default port scan of the Phoenix ILC150 PLC.

Port Protocol State Service
21 TCP open FTP
1962 TCP open unknown
41100 TCP open unknown

For the intended purposes, the most interesting ports are the undocumented ones,
which are used by the IDE to communicate with the PLC. Most commands are exchanged
via port 1962. The connection establishment of this protocol is illustrated in Figure 3.10.
The IDE sends a synchronize (SYN) request to the PLC, which should respond with
a SYN acknowledgment (ACK). Consequentially, the IDE completes the Transmission
Control Protocol (TCP) handshake with an ACK.
After the TCP handshake with the PLC, a proprietary initializing (PROP) sequence

between the IDE and the Phoenix Contacts PLC is necessary. This starts with a request
from the IDE to the controller. The request is always the same compared with different
captures of the initialization, resulting in a similarity metric of 1.

0000 01 01 00 1a 00 00 00 80
0008 64 15 00 03 00 0c 49 42 d.....IB
0010 45 54 48 30 31 4e 30 5f ETH01N0_
0018 4d 00 M.

40

3.2 Fuzzing Proprietary Industrial Devices

IDE PLC

TCP/SYN
TCP/SYNACK

TCP/ACK
PROP/initialize handshake
PROP/send “challenge”

PROP/response to “challenge”
PROP/send commands

PROP/response

Figure 3.10: Handshake between Phoenix PLC and IDE.

This request is answered from the PLC, with an identifier (in this case 0x48):

0000 81 01 00 14 00 00 00 01
0008 00 00 00 00 00 02 00 00
0010 00 48 00 00 .H..

This value must be sent back from the IDE to the PLC. It could be seen as a simple
device key that does not change on a controller:

0000 01 05 00 16 00 01 00 00
0008 e8 e9 00 48 00 00 00 1c ...H....
0010 00 04 02 95 00 00

For the proprietary protocol from Phoenix Contact, the same handshake for a specific
DuT could be sent, because it is a constant value for each device. Thus, the handshake is
a simple replay for the Phoenix PLCs and PropFuzz can detect the handshake by statis-
tically comparing the start sequences of live captures or pcap files. After the proprietary
handshake, commands could be sent to the controller. A reset command is shown below,
where the PLC performs a complete reboot. It is noticeable here that the similarity to
the previous packet is high, since many fields remain unchanged.

0000 01 05 00 16 00 10 00 00
0008 e8 c8 00 48 00 00 00 00 ...H....
0010 00 04 0a ba 00 00

At this point, scapy is used to fuzz different fields of the command. With the PropFuzz
framework, it was possible to identify different vulnerabilities in the session management

41

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

and command handling of the PLCs. The vulnerabilities found in the Phoenix Con-
tact products were reported to the manufacturer and customers were informed with an
advisory (ICSA-16-313-01 [ICS16]).
The identified security problems within the protocol make several remote attacks pos-

sible. Considering the usage of these controllers in critical infrastructures, the severity
of potential attacks is classified as high.

• A replay attack CVE-2016-8366 [Nat16a] is a network attack in which a valid
data transmission is repeated. The attacker needs little knowledge and can simply
replay previous captures containing PLC commands.

• By manipulating variables CVE-2016-8380 [Nat16c], it is possible to change the
sequence or process of a program on the PLC. This requires knowledge about the
setup of the control system.

• By changing the software or firmware of an ICS, complete control of it can be
achieved, e.g. to create a BotNet.

These attacks demonstrate the severity of the identified vulnerabilities with our frame-
work. It is possible to remotely exploit affected PLCs without having physical access to
it.

3.2.6 Conclusion

In this section, a stable and extensible fuzzing framework for proprietary ICS protocols
is presented. Compared to the available software, PropFuzz can automatically analyze
the communication between the IDE and the PLC and fuzz the DuT. Additionally, it is
able to monitor the output and detect suspicious behavior with the setup introduced in
Section 3.1 or with a standalone oscilloscope.
Furthermore, the abilities of the PropFuzz framework have been demonstrated by

fuzzing three PLCs within the CoRT, and three critical vulnerabilities were detected,
which could be exploited remotely by attackers (Advisory ICSA-16-313-01 [ICS16]).
Based on these findings, a close cooperation with Phoenix Contact to find solutions
and fixes was initiated.

42

https://www.us-cert.gov/ics/advisories/ICSA-313-01
https://nvd.nist.gov/vuln/detail/CVE-2016-8366
https://nvd.nist.gov/vuln/detail/CVE-2016-8380
https://www.us-cert.gov/ics/advisories/ICSA-313-01

3.3 Impact of Network Traffic on Industrial Control System Devices

3.3 Impact of Network Traffic on Industrial Control System
Devices

Contents of this section

3.3.1 Introduction . 43
3.3.2 Related Work . 43
3.3.3 Certification Programs . 44
3.3.4 Attacker Model . 45
3.3.5 Materials and Methods . 45
3.3.6 Experiments, Results, and Discussion 49
3.3.7 Conclusion . 60

Parts of this section have already been published in the paper “You Snooze, You Lose:
Measuring PLC Cycle Times under Attacks” at the 12th USENIX Workshop on Offensive
Technologies (WOOT 18) 2018 [Nie+18c].

3.3.1 Introduction

In this section, it is shown that the electrical side of a PLC, that is, the controlled process,
can be influenced by packet flooding. This differs from already known DoS attacks as the
target is the actual process and not network connectivity. Experiments with 16 devices
from six vendors conducted in the CoRT (see Section 3.1), giving a good overview of the
current market. This research question is also relevant when scanning the Internet for
benign purposes, which is currently a trend in academic research. Additionally, this gains
importance for active asset management within IIoT environments. If scans potentially
affect controlled processes, then enhanced precautions are required to assure the safety
and security of (largely unknown) scan targets.
The rest of the section is organized as follows. At the start, a description of related work

in Section 3.3.2 is given. Background information of the PLC certification in Section 3.3.3
is provided and the corresponding attacker model in Section 3.3.4. In Section 3.3.5, the
experimental methods and materials are summarized. At the end, the results of the
experiments are given in Section 3.3.6 and a conclusion is provided in Section 3.3.7.

3.3.2 Related Work

DoS attacks on SCADA/PLC/ICS systems and devices have been a topic in academic
research since at least 2005 [Bow+05; Lon+05]. However, most studies only outline
the potential of attacks and do not present evidence derived from experimentation or
simulation. In the following, the discussion is limited to the literature that provides at
least partial evidence for possible DoS attacks.
Teixeira et al. [Tei+12] describe a variety of attacks on control systems. They focus

on the disruption of communication between sensors/actuators and a PLC but overlook

43

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

the effects on the electrical side. The authors of [Ami+09] present a formalization of
DoS attacks on control systems and derive an “optimal” attack plan. However, they do
not evaluate their attack plan against an actual PLCs. Kalluri et al. [Kal+16] conducted
flooding experiments on an unspecified Remote Terminal Unit (RTU) based on IP, SYN,
and 104APCI packets. In all cases, they measured an impact on the response time of the
RTU. However, their report lacks clarity with respect to what exactly caused the effects
they measured. The reasons for this may range from RTU resource depletion to the sat-
uration of other components in their test network. The authors of [Mar+13] simulated
User Datagram Protocol (UDP) flooding attacks in a SCADA network model. They con-
cluded that CPU utilization, packet drop, and traffic delays increased. In [Lon+05], the
impact of DoSs attacks on network-based control is simulated and two countermeasures
are proposed. The authors focus on the communication without analyzing the behaviors
of the devices. A method of testing the communication robustness of industrial devices
is introduced in [Til11]. However, their article mentions no concrete results. Sayegh et
al. [Say+13] set up a testbed with an Omron PLC CJ1M-CPU11-ETN and demonstrated
DoS attacks on the network interface of the device based on TCP/IP SYNs, UDP, and
HTTP traffic. They did not measure effects on the electrical side, nor did they test
different PLCs systematically as in the experiments in this work.

3.3.3 Certification Programs

There are three certification programs for IIoT components. In the following, three such
programs which were previously discussed by Schierholz and McGareth [Sch+10], and
Xie et al. [Xie+14], are mentioned. Certificates of these three programs communicate an
acceptable level of stack robustness. Schierholz and McGareth argue that security-related
certificates may send incorrect signals regarding security. This is primarily because not
all threat vectors may be covered by a certification program. This work supports this
argument as nearly all PLCs which are tested in this work are vulnerable to network
flooding attacks. A short overview of the mentioned programs with respect to network
robustness is provided below.

1. Achilles Certification [GE 17] – Initially developed by Wurdtech Security Tech-
nologies, the Achilles Program was later bought by General Electric. The program
relies on a proprietary test device called the “Achilles Satellite”. Applied tests in-
clude protocol fuzzing and packet storms. Of special interest to this work is the
packet storm sub-test. While the Satellite is proprietary, the requirements for a
certification are publicly documented. For level 2 certification of Achilles, the PLC
is configured with a period cycle output of 1000ms (500ms high output and 500ms
low output) with an acceptable tolerance of 4%.

2. ISASecure EDSA Certification [ISA19] – The EDSA includes CRT Test Require-
ments for Protocols for Ethernet, ARP, IPv4, ICMPv4, UDP, and TCP. With the
exception of Ethernet, the requirements state that the device under test maintains
its essential services under high load but can reduce or cease network communi-

44

3.3 Impact of Network Traffic on Industrial Control System Devices

cation during periods of high load. In all cases, the high load period (maximum
supported data rate) must be long enough to allow saturation effects to manifest.

3. Mu Dynamics MUSIC Certification [Spi] – Mu Dynamics Inc. was acquired by
Spirent Communication Inc. in 2012. The current status of the certification pro-
gram is unknown. According to Xie et al. [Xie+14], MUSIC operated similarly to
Achilles.

3.3.4 Attacker Model

In this work, it is assumed that the attacker is able to send network packets to the target
PLC at the maximum rate supported by the device. This may be possible because the
device is connected to the internet, or another device on the same network is compromised
by the adversary. The compromised device may well be another PLC [Kli+15]. With
regard to the attack types, it is considered that the adversary does not have or need
specific knowledge about the actual process controlled by the PLC or the program running
on the PLC.

3.3.5 Materials and Methods

The basic idea is to measure the changes to the signal captured on the electrical (digital)
outputs of PLCs (see Section 2.6). Three sets of experiments are conducted. In the
first set (Section 3.3.6.1), the focus is on the reaction of devices to different loads of
SYN packets. In the second set (Section 3.3.6.2), the reaction to different protocols
including device-specific control protocols is measured. In the final set of experiments
(Section 3.3.6.3), the impact of scanning tools is assessed. In the remainder of this
section, an overview of the methods and materials is given.
Regarding the electrical side, the PLCs under test are configured to run on their

maximum performance (shortest possible cycle time). This means that an output is
switched at the maximum rate. Depending on the actual device, this leads to a more
or less periodic reference signal. If an attack is successful, the reference signal will be
shifted as described in Section 2.6.
It is expected that the impact of attacks on the cycle time of a PLC differs from device

to device. This is due to differences in the system design, quality of implementation, and
possible safety mechanisms. For example, some manufacturers indirectly tie cycle time
to the cost-efficiency of their devices, since the manufacturing process can be operated at
a higher speed if the cycle time is shorter. An extreme example is provided by Schneider
Electric [Bov17], where a reduction in the cycle time from 30ms to 6ms resulted in the
gain of two million dollars per year.
In the experiments, the device under test is flooded with packets for a specific protocol

and measure the cycle time of the device. The used protocols are depicted in Table 3.7.
The measurements were made in the previously presented Communication Robustness
Testbed (see Section 3.1), with the difference in the measurement procedures. In the
following, the components are briefly explained and what is required for the tests in this
section. The testbed comprising a capture device, an attacking VM, and a measuring

45

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

VM (see Figure 3.11). The capture device can digitize the outputs of the PLCs. The
attacking VM generates traffic for the respective protocol under test. The controller
software implemented on the measuring VM starts and stops the attack traffic, and
stores the data sent by the capture device. It has the option to power on and off the
Devices under Test (DuTs).

DuT_0

DuT_1

DuT_N

Network

Power

Capture
Device

Attacking VM

Measuring
VM

Attack traffic

Control

Output
Control

Figure 3.11: Test setup for the measurement.

In the following, the measurement setup and test cases, which are setup in CoRT, are
discussed in detail.

3.3.5.1 Measuring VM

The measuring VM is a standard VM with two assigned network interfaces. One interface
is connected to the capture device and the other to the attacking VM (virtual Network
Interface Card (NIC)). The measuring VM runs a custom experimental control server
written in Go. The server reads the definition of an experiment defined as a JavaScript
Object Notation (JSON) file. An experiment defines the tool to use specific parameters,
the target to measure, the channel to capture, and the runtime of the experiment. Based
on this definition, the controller configures the capture device and attack server. In
addition, the measuring VM stores the data produced by the capture device.

3.3.5.2 Attacking VM

The attacking VM is also a standard VM with two Gb/s Ethernet network interfaces
assigned. One interface is connected to the DuTs, while the other is connected to the
measuring VM (virtual NIC).
The attacking VM runs a custom experimental client that connects to the correspond-

ing experimental control server implementation on the measuring VM. The purpose of
the client is to start and stop the actual load-generating program. The tools used for
load generation are listed in Table 3.7.
Zgrab [Bas+16], Vegeta [Sen14], and hping3 [San99] are used without any changes. The

syn_spam, arp_spam, gre_spam, and snmp_spam are custom implementations, which
are explained in detail in Section 3.3.5.4.

46

3.3 Impact of Network Traffic on Industrial Control System Devices

Table 3.7: Overview of programs used, corresponding protocols, and respective parameters.
Program Protocols Parameters
ZGrab S7comm / HTTP(S) / -s7 -port 102 / -port 80 -http=""/ -port 443 -tls

Modbus/TCP / Ethernet/IP / -http=""/ -modbus -port 502 / -dnp3 -port 20000 /
DNP3 / Bacnet/IP -dnp3 -port 20000 / -enip -port 44818

Vegata HTTP attack
hping3 SYN/UDP -c 1 -1 -C 17 / -S -P -U -flood
syn_spam SYN -worker 20
arp_spam ARP -worker 20
gre_spam GRE -worker 20
snmp_spam SNMP -worker 20

Table 3.8: Deployed devices in CoRT for these tests.

No. Vendor Manufacturer number Name Firmware
1 Wago 750-889 Controller KNX IP 01.07.13(10)
2 Wago 750-8100 Controller PFC100 02.05.23(08)
3 Wago 750-880 Controller ETH. 01.07.03(10)
4 Wago 750-831 Controller BACnet/IP 01.02.29(09)
5 Siemens 6ES7211-1AE40-0XB0 Simatic S7-1211∗ V4.2.0
6 Siemens 6ES7212-1AE31-0XB0 Simatic S7-1212 V 3.0.2
7 Siemens 6ES7155-6AU00-0AB0 Simatic ET 200SP V 3.3.0
8 Siemens 6ES7314-6EH04-0AB0 Simatic S7-314∗ V 3.3.0
9 Siemens 6ES7516-3FN01-0AB0 Simatic S7-1516F∗ V 2.0.5
10 Siemens 6ED1052-1CC01-0BA8 Logo! 8∗ 1.81.01
11 Phoenix 2700974 ILC 151 ETH V.4.42.04
12 Phoenix 2985330 ILC 150 ETH V.3.94.03
13 Phoenix 2700975 ILC 171 ETH 2TX V.4.42.04
14 ABB 1SAP120600R0071 PM554-TP-ETH 2.5.4.15626
15 Crouzet 88981133 em4 Ethernet 1.2.75/1.0.27
16 Schneider TM221CE16T Modicon M221 1.5.1.0

∗ Achilles Level 2 Certified

3.3.5.3 Devices under Test (DuTs)

The DuTs are PLCs from different vendors as introduced in Table 3.2 in Section 3.1. This
is a variety of devices, which represents a sample of the current market. A summary of
evaluated PLCs with the corresponding firmware version is given in Table 3.8.
The aim is to identify and measure a worst-case scenario. Hence, each PLC was

configured to switch a digital output at the maximum rate. This was configured in a
cyclic task and only changed if necessary (e.g. freewheeling task). This called for device-
specific configurations, especially setting the cycle time to the device-specific minimum,
if applicable.
The default settings for all controllers are set, wherever possible. Of special interest

are parameters for communication overhead. For the used Siemens devices, the default
at 20% is kept. Wago allows setting a data rate limit; however, this setting was disabled

47

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

by default (see Section 3.3.6.4 for effects of this setting). The used user control program
was simple; it only switched the value of an output from 0 to 1, and vice versa.
The default configuration of the PLCs was changed only when necessary for the ex-

periments. This included IP configuration and cycle time. Furthermore, there were no
dependencies in the application code of the PLC, which required communication.

3.3.5.4 Protocol Implementations

In Table 3.7, the used protocols are summarized. For most of the protocols, off-the-shelf
tools are used. If no standard tool was available, an implementation for the necessary
tests was done. With the off-the-shelf tools, there was not much control over the sent
packets. As a result, custom implementations for some protocols were used. All custom
tools were implemented in Go and were capable of saturating the outgoing Gb/s Ethernet
link of the attacking VM.
syn_spam – This implementation uses hard-coded SYN packets with no additional TCP
options set.
arp_spam – RFC 826 defines multiple variants for ARP requests. The standard uses
the following abbreviations: Sender Protocol Address (SPA), Sender Hardware Address
(SHA), Target Protocol Address (TPA), and Target Hardware Address (THA). The
following four ARP request variants were implemented:

1. Who has (ARP 1)

2. Probe (ARP 2)

3. Gratuitous ARP Request TPA=SPA, THA=0 (ARP 3)

4. Gratuitous ARP Reply TPA=SPA, THA=SHA (ARP 4)

gre_spam – This implementation uses Generic Routing Encapsulation (GRE) SYN pack-
ets with no additional TCP options. In this work, GRE packets are tested as modern
DoS attacks sometimes use such packets [Sea16].
snmp_spam – The implementation uses SNMPv1 with a hard-coded community string:

302902010004067075626c6963a01c0204036a5f430
20100020100300e300c06082b060102010101000500

3.3.5.5 Methods

Although the actual procedure differed across the three sets of experiments, the basic
procedure remained the same. Prior to each experiment, the DuTs were powered off and
on so as to start with a clean system state. To make the experiments more convenient,
the execution of individual experiments was automatized. To this end, the individual
experiments were combined in a single large experiment definition for the experimental
server. The gathered data was stored on the control server in a single file per phase
and experiment. After the execution of all the experiments, the resulting files were
downloaded for analysis.

48

3.3 Impact of Network Traffic on Industrial Control System Devices

3.3.6 Experiments, Results, and Discussion

In this section, the three series of experiments which were conducted are discussed. In
the first series, the measured reaction of devices under different loads of SYN packets is
described. In the second series, the measured reaction to different protocols is illustrated.
In the final series, the impact of scanning tools is assessed.

3.3.6.1 Increasing SYN Loads

As a baseline for the communication robustness of the tested devices, a series of tests
(hping3 SYN flood) with increasing inter-packet delay is performed. Every hping3 attack
lasted 60 s, followed by a 30 s idle phase. The delay between the flooding was created by
the wait parameter of hping3 (hping3 -i u<wait for x microseconds> <IP>).
Through this, after each packet, hping3 waited x microseconds until the next packet was
sent. The mathematical symbols used in the formulas can be found in Table 3.9.

Table 3.9: Symbols used in formulas.
Symbol Description
n Number ob measurements of one segment/test
t Time in microseconds of one PLC cycle
t Mean cycle time
tidle Mean idle cycle time without network load
∆t Factor, by which the cycle time is shifted compared to idle

The resulting mean cycle time for comparison is used. The mean cycle time of each
segment, where one network load is tested, was calculated as shown in Equation 3.3.

t =
1

n
·

n∑
i=1

ti (3.3)

For better comparability, the results of dividing them by the mean idle time are nor-
malized (see Equation 3.4). This results in ∆, which is a factor in deviation between
attack and idle.

∆t =
t

tidle
(3.4)

The mean cycle times without network load (tidle) of the different PLCs are listed in
Table A.5. An overview of the results is given in Figure 3.12.

49

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

100 101 102 103 104 105
100

101

Hping3 wait in microseconds between packets

D
ev
ia
ti
on

fa
ct
or

of
m
ea
n
cy
cl
e
ti
m
e

Wago 750-889 (1) Wago 750-8100 (2) Wago 750-880 (3)
Wago 750-831 (4) Siemens S7-1211 (5) Siemens S7-1212 (6)
Siemens ET200 (7) Siemens S7-314 (8) Siemens S7-1516F (9)
Siemens Logo! 8 (10) Phoenix ILC151 (11) Phoenix ILC-150 (12)
Phoenix ILC-171 (13) ABB PM554 (14) Crouzet EM4 (15)
Schneider TM221 (16)

out of operation

Figure 3.12: Overview of a controlled attack on PLCs with delays during packets, to achieve
different network loads and measure the cycle time deviation.

The measurement yield that for some PLCs (5, 8, 9, 10, 14, and 16) a higher network
load led to higher cycle times.
For some controllers (1, 3, and 4), an “out-of-operation” state under specific data rates

is observed. We defined a device as out of operation if its cycle time was increased by a
factor 10 or more.
Some PLCs (2 and 12) were not influenced at the maximum packet flooding but at

lower rates. This shows that it is not always useful to execute a DoS attack at the
maximum available data rate.
In the detailed view in Figure 3.13 and Figure 3.13, it can be observed, that only the

Crouzet EM4 (15) performs very well, during the increasing network load test. Further-
more, three devices (6, 11 and 13) in the testbed were only little influenced by the hping3
flooding attacks.
During the hping3 measurement, the mean cycle time of the Siemens ET200 (7) some-

what decreased, meaning that the device ran faster at different packet rates.

50

3.3 Impact of Network Traffic on Industrial Control System Devices

100 101 102 103 104 105
0.94

0.96

0.98

1

1.02

1.04

Hping3 wait in microseconds between packets

D
ev
ia
ti
on

fa
ct
or

of
m
ea
n
cy
cl
e
ti
m
e

Siemens S7-1212 (6) Siemens ET200 (7) Phoenix ILC151 (11)
Phoenix ILC-171 (13) Crouzet EM4 (15)

Figure 3.13: Detailed view of PLCs, which are less influenced by packet flooding.

However, most of the PLCs were affected, and further analysis showed that only the
Crouzet em4 (15) was not influenced at all by the tests.
Conducting all the experiments summarized in Figure 3.12 took about a month. These

experiments show that most devices can be influenced by sending SYN packets at a
defined rate. Since SYN packets already have an influence on devices, it can be ex-
pected that higher-level protocols such as HTTP, Simple Network Management Pro-
tocol (SNMP), and ICS-specific protocols will be even more effective. This is due to
additional resource consumption at higher levels of the network stack. In the following,
a more detailed analysis of this phenomenon is presented.

3.3.6.2 Detailed Analysis of Protocols

Each experiment in this series had four phases. First, the device to test was powered off
and on to guarantee a clean system state. The actual attack phase was flanked by two
idle phases. The idle phase prior to the attack served as a reference to determine the
impact of the attack. The post-attack idle phase was intended to observe any possible
long-term effects of the attack. Each phase lasted for 600 seconds. There was a 60-second
break between successive experiments.
Different impacts on the PLCs cycle time during the attacks could be observed. Owing

to space constraints, the impact is categorized into six different effect classes defined in
Table 3.10. For each class, only the worst-case scenario observed is presented. The results
are detailed in the Appendix A.2.

51

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

Table 3.10: Cycle time classes, which are observable during the attacks.
Class Description
Class 1: PLC “Stops” No changes to the output during attack
Class 2: High Deviation Over a factor of 100 slower during

attack compared to idle
Class 3: Medium Deviation Up to a factor of 100 slower during

attack compared to idle
Class 4: Increased Variance of Cycle Times High variance of cycle time during

attack compared to idle
Class 5: Faster Cycle Time Cycle time is getting faster during

attack compared to idle
Class 6: No Measurable Influence Cycle time during attack and in idle

has no measurable difference

The results of the measurements are shown in a boxplot with calculated arithmetic
mean (H) and median (). The quantiles are 25% and 75%, with whiskers up to factor
1.5 of the box.

Class 1: PLC “Stops” An extreme behavior is that the PLC “stops” during the attack.
This means that the outputs are not updated during packet injection. Figure 3.14 shows
this behavior during an ARP flood attack.

Pre idle Attack Post idle
1000

1500

2000

2500

3000

C
y
cl

e
ti

m
e

in
µ

s

Figure 3.14: Boxplot of a Wago 750-831 (4), where the PLC stops during ARP 3 flooding.

It is interesting to note that an ARP flooding attack can be sent to the whole broadcast
domain. Therefore, all devices that can be influenced in a broadcast domain can be
affected by this type of attack. However, ARP requests do not cross subnet boundaries,
and as such only local adversaries can apply ARP flooding attacks.

52

3.3 Impact of Network Traffic on Industrial Control System Devices

In the example given in Section 2.2, the valve remains open if it is opened when the
attack has started. Thus, the material will not be filled into the container but next to
it. This can obviously lead to all sorts of trouble.
Devices in this class clearly exceed the requirements for a certification as described in

Section 3.3.3.

Class 2: High Deviation During a flooding attack, the cycle time of some controllers
increases by several seconds. In the measurement illustrated in Figure 3.15, the cycle
time increases up to 5 seconds. In the example, this influence is achieved through UDP
flooding. During pre- and post-idle phases, the PLC functions as expected and toggles
about 2 ms.

Pre idle Attack Post idle
102

103

104

105

106

107

C
y
cl

e
ti

m
e

in
µ

s

Figure 3.15: Boxplot of UDP flooding attack on a Wago 750-889 (1), resulting in a high devi-
ation of the cycle time.

Considering the example in Section 2.2, the PLC will nearly stop reacting. More
precisely, the outputs will remain at the current level (on or off), only being updated
every few seconds. This means that, if the valve is opened at this moment, it will remain
opened for several seconds, and the convey belt will still move forward, resulting in a
similar effect to the one described before. Devices in this class break the requirements
for certification as described in Section 3.3.3. Neither do the devices maintain essential
services, nor is the deviation smaller than 4%.

Class 3: Medium Deviation Another effect that can be observed is a “medium” devia-
tion of the cycle times. Devices in this class show increased cycle times below one second.
Figure 3.16 shows an example. The device toggles in idle with about 2ms. During UDP
flooding, the cycle time is up by a factor of about 40.
Owing to this factor, the controller processes everything at a slower rate. It is pos-

sible that a process is still running correctly, but at a much slower pace or imprecisely.

53

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

Pre idle Attack Post idle
103

104

105

C
y
cl

e
ti

m
e

in
µ

s

Figure 3.16: Boxplot with medium deviation during UDP flooding with hping3 of the Schneider
TM221CE16T (16).

Considering the example in Section 2.2, the container may have already passed the valve
when the sensor input is processed. Therefore, the loading could miss the container.
As for classes 1 and 2, the criteria for certification would not be met. Additional

to the impacts described in the previous effects, this could lead to a slower production,
resulting in a loss of profit. In the example given in Section 3.3.5 from Schneider Electric,
the goods will not be filled into the container.

Class 4: Increased Variance of Cycle Times With regard to the results in Figure 3.17,
the cycle time is only minimally affected by packet flooding attacks. The boxplot as
well as the mean value shows a delay of about 25%. However, the variance is still large
under the attack. On some controllers, the boxplots and mean value representations are
misleading. In fact, there may be effects which are only viewable in other representations.
Figure 3.18 shows the kernel density estimation in a histogram plot. The number of

bins is set to 1,000 in order to get a good resolution of the distribution. In this, the
cycle time is plotted against their probability (density). With this representation, the
influenced cycles are clearly visible.
The density plot in Figure 3.18 of the cycle time shows two peeks in idle, for low and

high electrical signals. It can be noticed that the low and high signals do not have the
same length. In fact, the high signal is longer than the low signal. During the attack, the
cycle time increases and new peeks are formed. The two peeks are shifted by a factor of
about 2, which is not obvious in the boxplot but is visible in the density representation.
This, in turn, means that some cycle times are twice as slow. Regarding the example
(Section 2.2), the result would be variable filling quantities.
For devices in this class, it is not entirely clear if they would fulfill the requirements

of the certifications. This is mainly due to the relatively broad definition of the used

54

3.3 Impact of Network Traffic on Industrial Control System Devices

Pre idle Attack Post idle

200

400

600

800

C
y
cl

e
ti

m
e

in
µ

s

Figure 3.17: Boxplot, while an attack on a Siemens S7-314 (8) is generating a high network
load with the S7Com implementation of zgrab.

100 200 300 400 500 600 700 800 900

Cycle time in µs

0.000

0.005

0.010

0.015

D
en

si
ty

Pre idle

Attack

Post idle

Figure 3.18: Probability Density Function to view the distribution during the S7Com flooding
of a Siemens S7-314 (8) with zgrab.

55

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

classes. However, for the selected device, the answer is still clear. For the Siemens S7-
314 (8) under test in the study, the maximum communication load was set to 20%. As
such, the assurance of the device was exceeded. In addition, the Siemens S7-314 (8) is
Achilles level 2-certified, but the findings indicate that the device is still susceptible to
network-based attacks on the electrical side of the device.

Class 5: Faster Cycle Time By considering only the mean cycle time of the PLC, no
changes can be determined. However, on a closer look, the cycle time appears to be more
spread and some cycles become even faster during an attack. An example under a UDP
flooding attack is given in Figure 3.19.

Pre idle Attack Post idle
0

1000

2000

3000

4000

5000

C
y
cl

e
ti

m
e

in
µ

s

Figure 3.19: A boxplot representing a shorter cycle time of a Phoenix ILC151 (11) during
Modbus/TCP flooding with zgrab.

This effect could be caused by a kind of buffer overflow of the network stack and
result in a packet drop. Furthermore, maybe this is achieved by blocking or crashing
the network stack, thereby allowing the CPU to process the control process faster. In a
real-world example, this could make the process unpredictable if it gets faster than usual.
In the context of the used example (Section 2.2), the container could not be positioned
correctly, or the valve could close earlier than expected, leading to insufficient filling.
Considering the current knowledge, the certification programs listed in Section 3.3.3

do not take into account that PLCs could work faster. As such, devices in this class
would meet the requirements while still being prone to attacks.

Class 6: No Measurable Influence Some tests indicated no measurable influence. Fig-
ure 3.20 shows an example where the three phases are similar.
This PLCs has a dual MCU setup, where one controller handles the communication

and the other one runs the control program. The communication controller is still strug-
gling with the network traffic and is unresponsive to pings. Nevertheless, the controller

56

3.3 Impact of Network Traffic on Industrial Control System Devices

Pre idle Attack Post idle
1985

1990

1995

2000

2005

2010

2015

C
y
cl

e
ti

m
e

in
µ

s

Figure 3.20: Example of a boxplot with no measurable influence on the Crouzet em4 (15).

responsible for the physical process is working as expected. However, the architecture
was probably created as a necessity and is not designed for security. In further analyzes,
some vulnerabilities in the Crouzet em4 (15) were found, but these are not yet disclosed
at the current time. Therefore, there is still room for improvement, even if this PLC
performs well in these tests.

CPU Load During Attacks In the used testbed, most devices are based on Real-Time
Operating Systems (RTOSs) and the CPU usage cannot be supervised. However, the
Wago 750-8100 is based on Linux (with root access), which allows the measurement of
CPU utilization during attacks. The device has a single-core 600MHz ARM processor
with 256MB of RAM. The flooding attack started after 10 ticks and stopped after 20
ticks. Figure 3.21 illustrates the CPU usage during the experiment. In regular operation,
the software Interrupt Request (IRQ) has a CPU usage of up to 5%.
During the attack, the software IRQ, which, among other things, handles the network

traffic, increases to nearly 100%. In case of an interrupt, the regular software execution
is halted and the interrupt is handled. A high interrupt load seems to affect the control
software of the PLC, influencing the continuous execution and resulting in asynchronous
cycle times.

3.3.6.3 Effects of Active Scanning

In the literature listed in Section 3.3.2, it is stated that active scans should be avoided.
However, this claim is not backed by empirical evidence. Using the testbed, it is possible
to precisely assess the influences of an active scan. For this comparison, a selection of
active scanners Nmap 7.60 [Lyo09], PLCScan version 0.1 [Efa12], and RiskViz Search
Engine [Ris15], which uses ZGrab [Dur+13] for application scanning) to analyze the
behavior of ICS components under an active scan is used. To conduct this measurement,

57

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
10−1

100

101

102

Time in Ticks

C
P
U

Lo
ad

in
%

Software IRQ User Idle System

Figure 3.21: CPU load during SYN flooding attacks of a Wago 750-8100 (2) with hping3.

the default configuration of the scanners was used (IP as parameter). For this analysis, a
control system (Wago 750-880 (3)), which is already known as influenceable, is selected.
All network scanners require less then 30 seconds to analyze a single device. Figure 3.22
summarizes the measured effects of these three scanners compared to the idle cycle time.

Idle Nmap PLCScan RiskViz
102

103

104

105

106

C
y
cl

e
ti

m
e

in
µ

s

Figure 3.22: Influences of active scanners on a Wago 750-880 (3).

In idle, the PLC has a cycle time between 500µs and 4000µs with a mean of about
2000µs. During a nmap scan, which scans in default the most 1000 common ports,
the cycle time increases up to 300ms. With PLCScan, which scans only two protocols
(Modbus/TCP and S7comm), a cycle time up to 7ms can be measured. The RiskViz
Search Engine scans at low rates with about 800 kb/s and effects the cycle time slightly.
Figure 3.23 illustrates the influences of the cycle time of the three network scanners over
the 30-second scan time. The data used for the plots in Figure 3.22 and Figure 3.23 are

58

3.3 Impact of Network Traffic on Industrial Control System Devices

derived from the same scan. Above all, it can be seen that nmap and PLCScan influence
the cycle time over a longer period of time.

0 5 10 15 20 25 30

s

102

103

104

105

106

C
y
cl

e
ti

m
e

in
µ

s

Nmap

PLCScan

RiskViz

Idle

Figure 3.23: Influences of different network scanners on a Wago 750-880 (3) during network
scanning.

The presented analysis of active scanning in ICS networks shows that there are measur-
able influences for some devices. Therefore, scanning of ICS networks presents a chicken
or egg problem. Specific devices should not be scanned. On the other hand, it is not
known which devices are in a network prior to a scan. The only trivial option, if a scan
cannot be avoided, is to keep the data rate as low as possible.

3.3.6.4 Mitigation and Future Work

In order to secure assets, systems, machines, and networks against cyber threats, it is nec-
essary to implement and maintain a state-of-the-art industrial security concept [Sto+11].
This includes validation of the communication robustness of single components, for ex-
ample, with flooding tools. The results with these testing tools have shown that there
is a lack of secure ICS component architectures. Furthermore, existing tests are not
vendor-independent or transparent to the public.
Data rate limitations on the network provide a possible software solution. This feature

is already implemented by controllers from Wago (1,2,3,4). The measurements show
that this option can be an efficient mitigation (see Appendix A.2). However, the Wago
750-8100 is not prone to flooding attacks for data rates of 16Mb/s and below. The effect
of flooding is drastically reduced for the remaining devices for data rates of 1Mb/s and
below. Only the longest measured cycle time is increased. There is no change in the
mean cycle times. For data rates of 8Mb/s and above, the effects measured without the
feature are still evident. This possibility of rate-limiting indicates that there are other
configuration options which could prevent cycle time influences.

59

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

Another software-based solution would be RTOSs with hard real-time scheduling like
FreeRTOS [Ina+11]. Such schedulers guarantee a certain task tick time. If mapped to
PLCs cycle times, the expected characteristics on the electrical side could be guaranteed.
Besides software solutions, specific hardware configurations provide another op-

tion [Nao+17]. A possible configuration could be a multi-controller setup, for example,
two dedicated controllers, or a System-on-a-Chip (SoC), where one controller processes
the real-time task and the other controls communication. A challenge in this scenario
is to prevent feedback effects between the controllers. A hardware solution is obviously
only possible for new products, but it would increase production and integration costs.

3.3.7 Conclusion

In this section, the communication robustness of PLCs under network flooding attacks
was tested. The results show that the electrical side of PLCs is prone to network flooding
attacks. Variances in the runtime of control programs can have disastrous effects. This
differs from well-known DoS attacks, as in this case physical processes are involved. A
successful exploitation of found weaknesses can lead to major environmental and safety
impacts, as these devices usually control physical processes in critical infrastructures.
The presented analysis shows that most of the PLCs are affected, irrespective of man-

ufacturers. With the exception of one device (Crouzet em4 (15)), all the devices in the
CoRT showed measurable changes during network flooding attacks. Some of the con-
trollers even “stopped” operating and did not update their outputs for the duration of
the attack. Additionally, it is shown that active network scans have a detectable effect
on the electrical side of PLCs. These results are relevant as active network scans are a
current trend in academic research. Network scans with high data rates may influence
Internet-facing PLCs accidentally. Taking this possibility into account is recommended
when assessing the risk of a planned project.
Apart from casualties, network-based Distributed Denial of Service (DDoS) attacks

are another current trend [Sea16]. This is mainly because network flooding attacks are
technically simple. In the presented scenario, an attacker can influence an actual physical
process. This increases the thread imposed by DDoS attacks.
To summarize the research in this section, it can be said that a secure system config-

uration is of great importance. Furthermore, it is good to see that Wago offers at least
a partial function mitigation feature. However, operators need to learn about and use
configuration features to enable a secure operation. In the future, manufacturers should
launch products which are secure by design/default.
All affected vendors have been informed about the findings using an adapted respon-

sible disclosure.

60

3.4 Dual-MCU Setup for Robust Industrial Internet of Things Devices

3.4 Dual-MCU Setup for Robust Industrial Internet of Things
Devices

Contents of this section

3.4.1 Introduction . 61
3.4.2 Concept and Background . 61
3.4.3 Proof of Concept Implementation 63
3.4.4 Benchmarking . 67
3.4.5 Conclusion . 70

Parts of this section have already been published in the paper “A Secure Dual-MCU
Architecture for Robust Communication of IIoT Devices” at the 8th Mediterranean Con-
ference on Embedded Computing (MECO) 2019 [Nie+19b].

3.4.1 Introduction

Attacks are particularly dangerous for IIoT devices such as PLCs, as they interact with
the physical world, resulting in serious damage or injury. Haddadin et al. showed how
strong robots that interact with humans can injure them [Had+07]. This cannot only
happen because of a bug in the program, but also due to DoS attacks, as introduced in
the previews section (Section 3.3). Therefore, the communication part of PLCs should
be designed in such a way that it does not influence the control part.
In this section, a dual MCU setup to ensure a resilient controlling for IIoT devices like

PLCs is introduced, which is a possible solution for the demand of secure architectures
in the IIoT. Moreover, a PoC implementation with a benchmark and a comparison with
a standard PLC under DoS attack is provided.
The section is structured as follows. Section 3.4.2 explains the methodology behind

a dual controller setup for secure controlling and gives the necessary background. In
Section 3.4.3, the PoC implementation is illustrated. Section 3.4.4 compares the robust-
ness against Denial of Service attacks of the secure architecture and a commercial PLC.
Finally, a conclusion is given in Section 3.4.5.

3.4.2 Concept and Background

There are secure architectures for complete chips with patents available on the mar-
ket [Fru+05]. This concept requires deep knowledge and no standard MCU can be used,
which may make the end product expensive. Alves et al. introduced an open-source
Linux-based PLC and implemented an Intrusion Detection System (IDS) as a DoS pro-
tection [Alv+18]. However, the used method only partially protects against DoS attacks,
implementation errors, and zero-day vulnerabilities. Moreover, it is currently only pos-
sible for Linux-based systems. They also show that the program execution time on

61

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

current PLCs varies during their tests. As a result, secure architectures for IIoT devices
are necessary [Cár+08a; Cár+08b].
The IIoT architecture presented in this section comprising two MCUs, a network MCU

(NW-MCU), and an IO-MCU handling the connection to the sensors and actuators, offers
the following advantages compared to most existing solutions:

• Well-controlled communication between the two MCUs reduces intentional and
unintentional influencing of the physical process.

• Compared to a software solution, e.g. based on a single MCU and a
RTOS [Ngu+15], a vulnerability in the hardware or software of the network MCU
will not directly influence the IO MCU.

• The reduced code size on the IO MCU reduces testing effort, e.g. for safety certi-
fications, because the critical code size is smaller.

• By using a unidirectional connection [Zil+10] from the IO MCU to the network
MCU, it is possible to monitor without influencing.

Figure 3.24 shows the principle of the presented secure architecture introduced in this
section with a dedicated network and IO MCU. This architecture differs from the Crouzet
em4 (15), in that a network controller was not added afterwards, but instead focusing
on security and a strong separation. The network MCU handles the communication over
Ethernet and Modbus/TCP. Configuration information and control data are submitted
without influencing the IO MCU. For this to happen, the IO control must be handled in
a predefined time slice by the IO MCU to ensure a certain response time. The uncritical
part is responsible for the network communication and the critical control part, for the
physical process. Influences on this critical part affect the real world.

Critical Control
Part

Uncritical
Part

MCU
Network

MCU
Control/IO

Robust
communication

IO
IO
IO

Network

Figure 3.24: Example architecture of a dual MCU setup for robust controlling.

The cycle time of a PLC is the time for the execution of a complete program cycle
including the communication (see Section 2.4). It depends on the processing time of the
program, which is determined by the number of instructions. Higher prioritized tasks
interrupt the cycle, thereby delaying the actual cycle. The mathematical symbols used
in the following formulas can be found in Table 3.11.
This cycle time (tcycle) is the sum of the phases that are processed at each pass. In a

simplified representation with one task, there are four phases. First, the inputs get read
in (tread_in); this step has a constant processing time. It is independent of input changes

62

3.4 Dual-MCU Setup for Robust Industrial Internet of Things Devices

Table 3.11: Symbols used in formulas.
Symbol Description
tcycle Summary of the time for all phases
tread_in Time to read in the inputs and create the process image
tcomm Time for communication and housekeeping
tcalc Time, which is necessary for the calculation (user program)
twrite_out Time to write back the process image
tdelay Delay, which is necessary to get a fixed cycle time

for cyclic tasks. Thereafter, the communication is handled (tcomm). The communication
depends on external participants and can have different runtimes. For example, if the bus
speed is slow or the data size is big, the communication part takes longer. At the end,
the necessary calculation (tcalc) is done and the outputs are written back (twrite_out). In
this case (Equation 3.5), the cycle time (tcycle) is free-running and varies in time.

tcycle = tread_in + tcomm + tcalc + twrite_out (3.5)

For the introduced approach, the IO MCU must have a constant runtime independent
of the network MCU, which results in the requirement of a constant cycle time (tcycle).
This could be achieved by setting a timeout to the communication between the network
MCU and the IO MCU. To get a constant cycle time (tcycle) of the IO MCU, a delay
(tdelay) is inserted to equalize time fluctuations. The calculation of the delay is shown in
Equation 3.6.

tdelay = tcycle − (tread_in + tcomm + tcalc + twrite_out) ≥ 0 (3.6)

It must be ensured that the cycle time (tcycle) is higher than the maximum time, which
can pass through the four phases in Equation 3.5. Therefore, the maximum time of each
phase must be limited depending on the desired cycle time. The behavior, which is
illustrated in Equation 3.6, must be represented by the IO MCU and runs independent
of the NW MCU.

3.4.3 Proof of Concept Implementation

To prove the feasibility of the introduced concept, a PoC implementation is necessary.
The focus is on the robust communication between the two MCUs and the real-time
behavior of the IO control during flooding attacks.

3.4.3.1 Proof of Concept Hardware

The hardware of the secure architecture consists of the network board and the IO shield,
which are connected. Table 3.12 shows the specification of the hardware used. The MCU
on the network board is faster but more expensive than the IO MCU.

63

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

Table 3.12: Specification of the used hardware for the PoC implementation.
Hardware Network Board IO Shield
Board design STMicroelectronics custom
MCU STM32F767ZIT6 STM32F030F4P6
Core ARM®Cortex®-M7 Arm®Cortex®-M0
Clock up to 216MHz up to 48MHz
RAM 512 kB 4 kB
Flash 2MB 16 kB
MCU price ∼ 10e ∼ 1e

For PLCs, which often cost several hundred dollars, an additional IO MCU would not
render the final product much more expensive. Furthermore, the proposed concept is
possible with different MCUs, depending on the later demands.

Network Board Hardware For the network MCU, a development board (STM
NUCLEO-F767ZI [STMa]) is used. This MCU was chosen because, on the one hand, this
series is relatively energy-efficient, which is also used in standard PLCs, and on the other,
offers enough performance for further evaluations. The board provides an RJ45 Ethernet
connector and an Arudino™ Uno V3 connector. Additionally, an ST-Link programmer
with Serial Wire Debug (SWD) and serial communication is attached to the MCU for
programming and debugging output.

IO Shield Hardware The IO shield is a custom design, as there is no suitable shield for
this purpose. Figure 3.25 shows the shield, which is designed to be compatible with the
Arduino™ Uno V3 header. This makes the shield usable with many other boards. The
schematic can be found in Appendix A.4

3.4.3.2 PoC Software

As explained in Section 3.4.2, the communication part between the two MCUs does not
use a constant time during processing. This requires calculation and compensation to
achieve a uniform runtime, resulting in a constant cycle time. The software that runs on
the two MCUs is fundamentally different in terms of Random-Access Memory (RAM)
and Read-only Memory (ROM) usage. Furthermore, in contrast to the IO MCU, the
network MCU has no “hard” real-time requirements. Of course, this only applies if the
network communication does not have real-time requirements.

Network MCU The network board has a much higher computing power than the IO
board. It runs an operating system (FreeRTOS [Bar+08]) to handle the different tasks in
a pre-emptive multi-tasking single-core implementation. As a result, the network commu-
nication with multiple subscribers can be handled through different RTOS tasks. For the
network communication, the Lightweight IP (LwIP) [Dun01] stack is used. Figure 3.26

64

3.4 Dual-MCU Setup for Robust Industrial Internet of Things Devices

STM32F030F4

SWD Port
quartz crystal

IO LEDs to network boardUART

Figure 3.25: Rendered controller shield that is placed on top of the network MCU board.

shows the configuration web server running on the network board. This shows actual
information, such as the uptime and the current state of the outputs. Furthermore, the
cycle time of the outputs on the IO MCU can be configured.
For communication between the two boards, an Serial Peripheral Interface (SPI) with a

speed of 13.5Mb/s is used. The network MCU is the master and continuously transmits
the information to the IO MCU. If the IO MCU does not respond within a certain time,
the transmission is tried again after a delay.

IO MCU The IO MCU runs a bare metal system, with the usage of the
STMicroelectronics (STM) Hardware Abstraction Layer (HAL). This makes later
changes to the MCU easier if, for example, more performance is necessary. Within
this HAL, the SysTick is set to 100µs, which is also the resolution of all time-based HAL
functions, such as the timeouts of the communication functions. The sequence of the
program on the IO MCU is illustrated in Figure 3.27. The start represents the initial
powering of the MCU, whereon the initialization of this is done.
After the initialization, a continuous cycle is executed. At the start of the cycle,

the timer to measure the delay is reset. Thereafter, the inputs are read with the HAL
functions and the SPI with a timeout of 500µs is executed. The time is chosen so that
there is enough time to transfer the necessary data and a cycle time of 1ms is possible.
After this, the calculation of the new output states is done by comparing the current

65

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

STM32F767 Dual Controller Server

Info

Called URL: / HTTP/1.1 Host: 192.168.178.210 Connection: kee
Build: Dec 28 2018 19:24:05
Uptime MS: 0006809123 ms
Free heap: 0000013520 bytes
Output PA0: L
Output PA1: L
Output PB1: L

Refresh   Soft Reset  

Config

Output PA0 in ms:
0000000001
Output PA1 in ms:
0000000001
Output PB1 in ms:
0000000001

Submit

Figure 3.26: Website, running on the network MCU, showing some information and allowing
configuration of the network and the IO MCU.

Initializestart
Read inputs
tread_in

Communi-
cation
tcomm

Calculation
tcalc

Wait time
tdelay

Update
outputs
twrite_out

res
et
tim

er

Figure 3.27: Program sequence to achieve a defined time behavior of the IO MCU. The dashed
circle “Wait time” is the additional task compared to a standard PLC cycle.

cycle count with the configured cycle time. In these cycles, the varying timing, which
is measured with the timer, must be compensated (see Equation 3.6) to get a constant
cycle time. This is done in the wait state by holding it there until the desired cycle
time is reached and then writing the previous calculated outputs back. In the PoC
implementation, the cycle time is set to 1ms. This is a common minimum cycle time for
commercial PLC solutions. As a result, multiples of 1ms can be used as the IO response
time. This is common for current commercial PLCs.
To ensure robust communication over SPI, the receive and transmit functions on the

IO are implemented in a blocking mode with a timeout. Interrupts and Direct Memory
Access (DMA) are not used to prevent blocking and timing problems through many
interrupts and memory overflows by overwriting buffer boundaries. Thus, the IO MCU
could miss a transmission from the NW MCU to fulfill the real-time requirements of

66

3.4 Dual-MCU Setup for Robust Industrial Internet of Things Devices

the IO control. Furthermore, the send and receive buffers have fixed sizes and defined
data structures, which avoid overflows and memory leakage of dynamically allocated
variables. For the PoC implementation, the STM32F7 is configured as SPI master and
the STM32F0 as SPI slave. This has the advantage that the STM32F7 as master can
tolerate a higher timeout when sending and receiving, because this does not have to
meet hard timings for IO control. In the PoC implementation the transmission from the
STM32F7 to the STM32F0 has fixed 30 bytes, to configure the IO logic. 3 bytes are read
back from the STM32F0 to transfer the status of the IOs. For the transmission, CRC32
can be used with the STM HAL (see Listing 3.1).

1 uint32_t HAL_CRC_Calculate(CRC_HandleTypeDef *hcrc,
2 uint32_t pBuffer[],
3 uint32_t BufferLength
4)

Listing 3.1: CRC check of the transmition with STM HAL.

This was only used for the PoC implementation and should be solved cryptographically
if used in a product, whereby the low performance of the STM32F0, especially the few
RAM of 4 kB, must always be taken into account here.

3.4.4 Benchmarking

Figure 3.28 shows the PoC setup with the network board and the attached IO shield,
which is used for the benchmark. For a secure operation, the interferences on the SPI
bus must be considered so that the IO MCU is not influenced. These include flooding
by the network MCU, invalid data, and shortcuts. The current PoC is not protected by
cryptographic mechanisms. Nevertheless, the SPI communication cannot influence the
IO MCU.
Additionally, to show the stability of the concept during network flooding attacks, the

cycle time is measured during a flooding attack. For the measurements, a PicoScope
2208B USB oscilloscope is used. With this, the measured data can be exported and
analyzed. Figure 3.29 shows the cycle time of the introduced implementation over time
during pre-idle, hping3 [San99] flooding attack, and post-idle. The jitter is only about
10µs, which is equivalent to 1% deviation. The cycle time is similar in all phases and is
not influenced by the attack.
Furthermore, the introduced robust implementation is compared with a standard PLC.

As a reference, the Wago PLC (HW:750-8100 SW:02.05.23(08)) number 2 from Table 3.2
is used, which is a current PLC from this vendor. This should not be regarded as an
opinion about this product, but as a reference for comparison.

67

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

RJ45 network

IO shield

SWD Port

Arduino™ Uno V3 connector

Figure 3.28: Image showing the complete setup with the network MCU board and the IO shield.

0 10 20 30 40 50 60
s

0.990

0.995

1.000

1.005

1.010

1.015

C
y
cl

e
ti

m
e

in
m

s

Pre idle Attack Post idle

Figure 3.29: Time plot of the 1ms cycle time during pre-idle, attack, and post-idle of the
introduced secure implementation. The jitter is about 10µs, which is equal to a
deviation of 1%.

Figure 3.30 shows the boxplot of the introduced secure PoC implementation during
pre-idle, attack, and post-idle. The measurement duration of each phase is 60 s. The PoC
introduced in this work has a fixed cycle time of 1ms (see Figure 3.29) and the PLC from
Wago has a default of 10ms. For this reason, the introduced implementation toggles the
output every 10 cycles to allow a direct comparison. The maximum jitter during idle
is less than 1% for the secure architecture and about 300% for the Wago PLC. The
DoS attack is done with hping3 in the flooding mode. No difference was observed in the

68

3.4 Dual-MCU Setup for Robust Industrial Internet of Things Devices

cycle time on the introduced PoC implementation in this work during pre-idle, attack,
and post idle. On the common PLC (Figure 3.31), the attack slows down the cycle time
noticeably, as shown in Section 3.3. The same scale was chosen for the y-axis (0ms -
100ms) in order to be able to compare the two box plots directly.

Pre idle Attack Post idle
0

25

50

75

100

C
y
cl

e
ti

m
e

in
m

s

Figure 3.30: Boxplot of the cycle time of the introduced approach during hping3 attack. A
constant cycle time is set to 10ms during all phases.

Pre idle Attack Post idle
0

25

50

75

100

C
y
cl

e
ti

m
e

in
m

s

Figure 3.31: Boxplot of cycle time of the Wago PLC during hping3 attack, with variances
during idle and influences during attack.

The density representation (Figure 3.32) shows that the introduced PoC implementa-
tion is stable and only varies in a small range. In contrast, Figure 3.33 shows that on
a common controller a flooding attack could influence the cycle time. In this case, it
ranges up to a cycle time of 100ms (factor 10 slower), where the outputs of the PLC
are not updated. The same scale was chosen for the x-axis (0ms - 20ms) in order to
be able to compare these two plots directly. The comparison between the introduced
secure architecture presented here and a current PLC shows that the proposed solution
is feasible and stable.

69

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Cycle time in ms

0

200

400

D
en

si
ty

Pre idle

Attack

Post idle

Figure 3.32: Density plot of the 10ms cycle time of the introduced implementation during
hping3 attack.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Cycle time in ms

0.0

0.5

D
en

si
ty

Pre idle

Attack

Post idle

Figure 3.33: Density plot of the cycle time of the Wago PLC during hping3 attack influenced
during the attack.

3.4.5 Conclusion

The presented architecture allows a secure and robust operation of an IIoT device in
a network environment. This is achieved by a dual MCU architecture where one takes
over the hard timing requirements and the second controller handles the network com-
munication. This ensures that even with weak points in software implementation, e.g.
vulnerabilities in the network stack or the operating system, the physical process is not
affected. This enables a feedback-free process control. For future devices, it is also pos-
sible to separate the power supply and galvanically isolate the communication to reduce
the possibilities of hardware attacks and failures.
In this section, the feasibility of the introduced robust architecture is demonstrated by

a PoC implementation on a Cortex®-M7 MCU for the network tasks, combined with a
Cortex®-M0 MCU for the time-critical IO handling. The network MCU runs FreeRTOS
and the IO MCU runs a bare metal system. They communicate over SPI with each other
in such a way that the timing behavior is predictable. Benchmark experiments have
shown that the physical control process can be influenced by a deviation maximum of the

70

3.4 Dual-MCU Setup for Robust Industrial Internet of Things Devices

cycle time of under one percent. These experiments were performed during a simulated
DoS flooding attack. The results show that the dual MCU approach introduced here is
a feasible solution against these kinds of network attacks on IIoT devices such as PLCs.

71

3.5 Efficient Passive Network Scanning for Industrial Control Systems

3.5 Efficient Passive Network Scanning for Industrial Control
Systems

Contents of this section

3.5.1 Introduction . 73
3.5.2 Passive Network Scanning . 74
3.5.3 Media Access Control Addressing 75
3.5.4 Device Identification Challenges . 77
3.5.5 Using Media Access Control Addresses for Device Discovery and

Identification . 78
3.5.6 Framework and Evaluation . 79
3.5.7 Conclusion . 87

Parts of this section have already been published in the paper “Efficient Passive ICS De-
vice Discovery and Identification by MAC Address Correlation” at the 5th International
Symposium for ICS & SCADA Cyber Security Research (ICS-CSR) 2018 [Nie+18b].

3.5.1 Introduction

Owing to a growing number of attacks, the assessment of ICSs has gained in importance.
An integral part of an assessment is the creation of a detailed inventory of all connected
devices, enabling vulnerability evaluations. For this purpose, scans of networks are cru-
cial. In the present section, a lightweight passive network monitoring technique using an
efficient MAC address-based identification of industrial devices is proposed. Based on an
incomplete set of known MAC address to device associations, the presented method can
guess correct device and vendor information. To prove the feasibility of the method, an
implementation is also introduced and evaluated regarding its efficiency. The feasibility
of predicting a specific device/vendor combination is demonstrated by having similar
devices in the database.
The baseline for these actions is the discovery (determining the presence of a device)

and identification (know what kind of device it is) of all devices present in the network.
Technically, this is implemented either by active or passive scanning.
Active scanning broadcasts additional packets into a network environment and mon-

itors the resulting traffic. Depending on strict timing constraints, the injection of ad-
ditional network traffic might lead to an unexpected behavior of the connected devices
within industrial infrastructures. A standard network scan could lead to a DoS, or result
in defective devices or an incorrect behavior of the processes [Wed+15]. As availability
is considered the most important IT security protection goal, active scanning methods
should be generally avoided or only executed with a reduced scan rate, like introduced
in Section 3.3.
Passive scanning involves observing and capturing the packets transmitted within

a certain period. This scanning scheme requires a device connected to the network

73

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

to capture the network traffic. The capturing devices can be configured, limiting the
captured traffic to certain packets of interest. Compared to active scans, passive scanning
schemes still have to deal with a large amount of data. Hence, it requires a higher effort
in extracting relevant information, thereby increasing processing time and the demands
for computational power. Considering the IT security protection goal availability, these
additional efforts are compensated, as passive scanning schemes can also be integrated
in fragile infrastructures without impairing regular communication.
The section is organized in the following manner: State-of-the-art network scanners

with a focus on passive fingerprinting are summarized in Section 3.5.2. Section 3.5.3
introduces the fundamentals of the MAC addressing scheme which are crucial for further
comprehension. In Section 3.5.4, the challenges of MAC-based device discovery and
identification are introduced. Section 3.5.5 presents the developed methodology. In
Section 3.5.6, a PoC implementation and an evaluation in the CoRT are presented.
Finally, a conclusion and a research outlook are provided in Section 3.5.7.

3.5.2 Passive Network Scanning

This section provides a survey of currently available passive network scanners. Since the
topic of device identification plays an important role, publicly accessible data sources are
also listed.
NetworkMiner [Hje08] is one of the most commonly used tools. Basically, it is an

application-analyzing network scanner to identify hosts. Using the combination of dif-
ferent fingerprinting methods and tools, NetworkMiner can determine the Operating
System (OS), which runs on a host, enabling vulnerability detection. Since the protocol
stack implementations are different for each OS, the respective protocol header construc-
tion and length also differ. The SYN/ACK packet-based identification takes advantage
of different initial Time to Live (TTL) values for IP and varying TCP window sizes for
TCP.
For these values, NetworkMiner uses the database of the p0f [Zal18] tool. Since differ-

ent OSs also employ different implementations for Dynamic Host Configuration Proto-
col (DHCP), identification is also possible by inspecting these packets. Here, the device
fingerprints from the FingerBank [Bil+13] project are utilized.
SinFP [Auf10] is a tool that supports active and passive OS fingerprinting. The

implementation of the two concepts increases the accuracy in situations when packets
are altered by mechanisms such as packet normalization or stateful packet inspection. In
these cases, SinFP sends several TCP probe frames to trigger different responses. After
all responses are collected, the content of each packet is analyzed using an approach
similar to p0f. Additionally, SinFP supports a pure passive fingerprinting mode. In this
configuration, only captured packets are analyzed which are obtained either from the
network or a file. Like the other tools, a database containing signatures and patterns
is used to identify the detected devices. After the capture of the input data for further
analysis, different capture techniques can be used.
A common approach involves using a mirror port provided by a switch or a network

Terminal Access Point (TAP). With port mirroring, the entire traffic arriving at a port is

74

3.5 Efficient Passive Network Scanning for Industrial Control Systems

forwarded to a mirror port of the switch. In an ICS environment, however, port mirroring
is not as effective as it would be in a conventional environment. This effect is caused by
a huge number of small groups of devices interconnected by simple switches [Wed+15].
Compared to the investigated solutions, the proposed method has some major advan-

tages. First, a high identification rate of industrial components compared to existing
tools is reached. Furthermore, an unused network port is sufficient for this scheme, be-
cause no special network switch feature or monitoring port is necessary. Moreover, no
additional network traffic is generated in fragile ICS networks. Finally, a low effort in
database maintenance compared to deep packet inspection is sufficient.

3.5.3 Media Access Control Addressing

This section introduces the fundamentals of MAC network device addressing, which is
implemented in the data-link layer of the ISO/OSI reference model. These are utilized
for device identification by the proposed method, which will be further described in the
subsequent sections.

3.5.3.1 MAC Address Structure

The MAC address is a unique hardware address assigned to each network adapter. Nowa-
days, all known access methods with a MAC layer (IEEE 802.1), such as Ethernet, Wi-Fi,
and Bluetooth, use the same MAC address format with a 48-bit MAC address as shown
in Figure 3.34.

Hexadecimal: AC:DE:48:12:7B:80
Bit-reversed:35:7B:12:48:DE:01Octet:

0 1 2 3 4 5
LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB
00110101 01111011 00010010 01001000 11011110 00000001

U/L address bit
I/G address bit
MA-L: AC:DE:48

MA-M: AC:DE:48:1
MA-S: AC:DE:48:12:7

Figure 3.34: Structure of an EUI-48 [Ins14] MAC address.

The two least significant bits of the MAC address determine the type of the address:
The Individual/Group address I/G bit indicates whether the frame is transmitted as
unicast (0) or multicast (1). While a unicast frame is sent to one specific device, a
multicast frame is forwarded to a group of devices. An address comprising 48 ones
(FF:FF:FF:FF:FF:FF) is a broadcast address where all devices are addressed. The Uni-
versally/Locally Administered U/L bit is used to tell if the MAC address was taken from
a fixed configuration (0) or dynamically chosen by the OS (1).

75

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

The following address types can be observed when captured network traffic is examined.
If I/G is 0, then it is an individual address (Unicast Address) for a network adapter. In
contrast, if I/G is 1, then the destination address is for a group of stations (Group ad-
dress/Multicast address). A universal, globally unique, and unchangeable MAC address
is used if U/L is set to 0, otherwise (U/L = 1), it is locally changeable.
The assignment of MAC address blocks is allocated and tracked by the Institute of

Electrical and Electronics Engineers (IEEE) Registration Authority (RA). These are
available in three different sizes, namely fixed length, MA-L (large), MA-M (medium),
and MA-S (small), to meet the needs of vendors. The relation of the fixed portion of
a MAC address to the corresponding number of possible MAC addresses is provided in
Table 3.13.

Table 3.13: IEEE MAC assignment structure [Ins14].

IEEE RA IEEE EUI-48 Comp./organ.
assignment assigned block identifier
Company ID (CID) 24 0 yes (CID)

Large (MA-L) 24 224 yes (OUI)

Medium (MA-M) 28 220 no

Small (MA-S) 36 212 yes (OUI-36 only)

Information related to the current allocations, including the names of the respective
vendors, can be obtained directly from IEEE in different file formats [Ins]. These files
containing the currently allocated address blocks are associated with the contact infor-
mation of their holders. This allows the mapping of an unknown MAC address prefix
of a network device to a manufacturer. Unfortunately, this approach does not allow any
correlation with devices, since the vendor is allowed to freely assign addresses within the
allocated space.

3.5.3.2 Broadcast Messages

In the data-link layer, broadcasting is the transmission of certain packets to all devices
within a broadcast domain. A broadcast domain is comprised of hubs, switches, and
bridges, which can be divided by Virtual Local Area Networks (VLANs) or routers oper-
ating on layer 3. Broadcasting is used to accomplish different tasks of different protocols
including:

• ARP, which is used if a network peer wants to communicate with another local
device on a higher layer protocol. To learn the MAC address of the communication
peer, an ARP request is sent to the Ethernet broadcast address that is forwarded
by all network switches. The results containing the respective MAC addresses are
cached in ARP tables of the participating devices (RFC 826 [Plu82]). Since these
requests are essential for successful communication, all active MAC addresses are
cyclically propagated on the network.

76

3.5 Efficient Passive Network Scanning for Industrial Control Systems

• DHCP, which allows the network configuration to be assigned to clients by a server
(RFC 2131 [Dro97]).

• Routing protocols, which optimize the selection of proper routes for router com-
munication.

3.5.4 Device Identification Challenges

For the proposed MAC-based security assessment, two challenges were identified. First,
the approach has to determine devices from their MAC addresses even if the vendor’s
assignment scheme is unknown. Since passive scanning could be a time-consuming task,
time estimation for a complete network device discovery was found to be important.

3.5.4.1 MAC Address Vendor Assignment

Each of the devices is programmed with a unique MAC address taken from the IEEE-
assigned address blocks. Parts of the available blocks are often used sequentially for
various products from a company. For example, regarding MA-L ranges, Figure 3.35
illustrates such a possible block-wise assignment of different product types. Product
types X, Y, and Z are separated in a sequential and continuous block, which are often
spread across the full range.

MA-L Vendor Assigned Part of a MAC Address:

XX:XX:XX:00:00:00 XX:XX:XX:FF:FF:FF

Product-
type X

Product-
type Y

Product-
type Z

00:00:00 5F:FF:FF 60:00:00 BF:FF:FF C0:00:00 FF:FF:FF

Figure 3.35: MAC address vendor assignment process.

Since this information is unknown, MAC addresses have to be collected. A correlation
of yet unknown devices has to be determined from that source either by direct lookup or
a proper approximation scheme.

3.5.4.2 Interarrival Time of Packets

The mathematical symbols used in the formulas can be found in Table 3.14.

77

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

Table 3.14: Symbols used in formulas.
Symbol Description
tpacket The relative time a broadcast packet occurs
tarrival Time between two broadcast packets of one device
tarrival Mean interarrival time of broadcast packets of one device
tarrivalmax The maximum interarrival time between two broadcast

packets of one device
tcoverage The maximum interarrival time of broadcast packets within a

network, so that every device can be found

Estimating the time for complete device discovery coverage, the interarrival time
tarrival was found to be an important key figure.

tarrival = tpacketn − tpacketn−1 (3.7)

Generally, tarrival is defined as the elapsed time between the arrival of two consecu-
tive packets containing the same information. It is calculated in the manner shown by
Section 3.5.4.2. The mean interarrival time tarrival comprises constituent measurements
(measure) shown by Section 3.5.4.2.

tarrival =
1

n
·
n=measure∑

n=1

tarrivaln (3.8)

Equation 3.9 calculates the maximum time to get a packet of one device.

tarrivalmax = max
∀measure∈device

tarrival(measure) (3.9)

Finally, the expected time for a complete network device discovery tcoverage is calculated
(see Equation 3.10) by using the maximum interarrival time of all devices within the
monitored network segment.

tcoverage = max
∀device∈network

tarrivalmax(device) (3.10)

3.5.5 Using Media Access Control Addresses for Device Discovery and
Identification

This section introduces the methodology developed for the MAC address-based security
assessments. Essentially, it builds up on capturing MAC broadcasts. The MAC addresses
are extracted from these captures and fed to an address-identification process. The
information about the device are mapped to known vulnerabilities.

78

3.5 Efficient Passive Network Scanning for Industrial Control Systems

3.5.5.1 Passive Scan Utilizing Address Resolution Protocol Broadcast Messages

In an industrial network, there are mostly static routes with fixed network configurations.
Consequently, DHCP and routing protocol broadcasts are rare. In contrast, ARP requests
are performed in cases where no MAC address is cached for a certain device. The ARP
cache contains a four-column table containing the protocol type, the protocol address of
the sender, the hardware address of the sender, and the entry time. The expiration time
for the entries is not specified by the relevant RFC 826 [Plu82].

3.5.5.2 Media Access Control Address Correlation

To successfully correlate unknown MAC addresses to devices, a prebuilt data-pool of
known devices is essential.

...

XX:XX:XX:01:23:45in database
Product X

XX:XX:XX:01:23:60to identify
Product ?

XX:XX:XX:01:23:E1in database
Product Y

...

distance

0x81

0x15

Figure 3.36: Method of the MAC based identification.

Figure 3.36 illustrates the developed device identification scheme. In this example,
there are two initially known MAC addresses stored in the data-pool. Both addresses
are close to a MAC address of an unknown device. The illustrated distance value is
calculated from the difference between the addresses. A smaller distance increases the
chance of a correct device identification. In the present case, the unidentified device is
more likely to be the same product family as “Product X”. This distance is used for the
passive identification of ICS components.

3.5.5.3 Mapping of Vulnerabilities

With the determined device correlation, the identification of known vulnerabilities is
feasible. Figure 3.37 shows the relation of the vulnerability mapping. With information
concerning the vendor and product name, the corresponding Common Platform Enumer-
ation (CPE) is searched using pattern recognition. The relationship between CPE and
CVE allows the assignment of vulnerabilities to a device.

3.5.6 Framework and Evaluation

To evaluate the feasibility of the presented method, the outlined methodology is imple-
mented in a framework.

79

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

Vendor
and product

name
CPE CVE

search

relation

Figure 3.37: Method of vulnerability mapping within the framework.

3.5.6.1 Testbed Setup / Preliminary Investigations

To facilitate an examination of the MAC address distribution, the CoRT introduced in
Section 3.1 is used. For this evaluation, a selection of 12 devices of each rack is used,
which were available at the moment of evaluation. By using different configurations in
the testbed, but keeping the numbering in the document consistent, the numbering is
not continuous (see Table 3.2). The components used for the evaluation are listed in
Table 3.15. The devices with the number identifier ending with R1 is in rack 1 and
ending with R2 is in rack 2. The last column denotes the distance, which is the absolute
value calculated from the subtraction of the MAC addresses of devices of the same type.
Except for those from Moxa, the devices were bought at the same time. Therefore, the
distances between the MAC addresses are generally small. Further inspection of the
Moxa devices revealed different production dates and higher values for the distance.

Table 3.15: Devices employed within the testbed for this evaluation.
Vendor Product No. MAC IP No. MAC IP Distance

Rack 1 Rack 2 hex
Wago 750-889 01-R1 00:30:DE:0C:AA:68 192.168.0.30 01-R2 00:30:DE:0C:AA:6C 192.168.0.130 0x000004
Wago 750-8100 02-R1 00:30:DE:41:B9:F0 192.168.0.31 02-R2 00:30:DE:41:B9:E6 192.168.0.131 0x00000A
Wago 750-880 03-R1 00:30:DE:0C:AE:84 192.168.0.32 03-R2 00:30:DE:0C:AE:68 192.168.0.132 0x00001C
Siemens CPU 1211C 05-R1 28:63:36:C6:C7:D4 192.168.0.10 05-R2 28:63:36:C6:CC:67 192.168.0.110 0x000493
Siemens LOGO! 24RCE 10-R1 E0:DC:A0:1C:35:85 192.168.0.23 10-R2 E0:DC:A0:1C:35:4F 192.168.0.123 0x000036
Phoenix ILC 151 11-R1 00:A0:45:9D:40:74 192.168.0.20 11-R2 00:A0:45:9D:42:54 192.168.0.120 0x0001E0
ABB PM554-T 14-R1 00:24:59:0A:4C:B7 192.168.0.21 14-R2 00:24:59:0A:58:B0 192.168.0.121 0x000BF9
Crouzet em4 B26-2GS 15-R1 84:AC:FB:00:05:E0 192.168.0.22 15-R2 84:AC:FB:00:05:E6 192.168.0.122 0x000006
Schneider TM221CE16T 16-R1 00:80:F4:0E:58:89 192.168.0.50 16-R2 00:80:F4:0E:59:BC 192.168.0.150 0x000133
Siemens KP 300 17-R1 00:1C:06:35:C0:7C 192.168.0.11 17-R2 00:1C:06:35:C0:7B 192.168.0.111 0x000001
Schneider HMISTU855 18-R1 00:01:23:2D:BA:A3 192.168.0.51 18-R2 00:01:23:2D:BD:7B 192.168.0.151 0x0002D8
Moxa NP5110 20-R1 00:90:E8:2A:E5:34 192.168.0.70 20-R2 00:90:E8:56:78:5D 192.168.0.170 0x2B9329

3.5.6.2 Interarrival Time of ARP Packets

First, tarrival between consecutive ARP broadcasts for each of the connected devices
is determined. To this end, MAC addresses are extracted from the ARP broadcasts
captured from a 12-hour pcap.
The results of this experiment consist of 3559310 packets, where 220988 (6.21%) are

ARP packets. Figure 3.38 illustrates the calculated tarrival for the 24 devices. In 70%
of the cases, an ARP packet shows up every 16–37 seconds (tarrival), not exceeding the
boundary of one minute (tarrivalmax) at the worst cases. With this data, tcoverage of this
network is about one minute. The total number of ARP packets varies from about 1200

80

3.5 Efficient Passive Network Scanning for Industrial Control Systems

W
ag
o 7
50
-88
9 [
01
-R
1](
12
31
)

W
ag
o 7
50
-81
00
[02
-R
1](
12
31
)

W
ag
o 7
50
-88
0 [
03
-R
1](
12
31
)

Sie
me
ns
CP
U
12
11
C
[05
-R
1](
26
72
)

Sie
me
ns
LO
GO

! 2
4R
CE

[10
-R
1](
12
30
)

Ph
oe
nix

IL
C
15
1 [
11
-R
1](
12
31
)

AB
B
PM

55
4-T

[14
-R
1](
12
33
)

Cr
ou
zet

em
4 B

26
-2G

S [
15
-R
1](
12
31
)

Sc
hn
eid
er
TM

22
1C
E1
6T

[16
-R
1](
12
67
)

Sie
me
ns
KP

30
0 [
17
-R
1](
19
51
)

Sc
hn
eid
er
HM

IS
TU

85
5 [
18
-R
1](
13
02
)

M
ox
a N

P5
11
0 [
20
-R
1](
12
31
)

W
ag
o 7
50
-88
9 [
01
-R
2](
12
31
)

W
ag
o 7
50
-81
00
[02
-R
2](
12
29
)

W
ag
o 7
50
-88
0 [
03
-R
2](
12
29
)

Sie
me
ns
CP
U
12
11
C
[05
-R
2](
26
68
)

Sie
me
ns
LO
GO

! 2
4R
CE

[10
-R
2](
12
30
)

Ph
oe
nix

IL
C
15
1 [
11
-R
2](
12
31
)

AB
B
PM

55
4-T

[14
-R
2](
12
31
)

Cr
ou
zet

em
4 B

26
-2G

S [
15
-R
2](
12
30
)

Sc
hn
eid
er
TM

22
1C
E1
6T

[16
-R
2](
12
65
)

Sie
me
ns
KP

30
0 [
17
-R
2](
19
49
)

Sc
hn
eid
er
HM

IS
TU

85
5 [
18
-R
2](
13
01
)

M
ox
a N

P5
11
0 [
20
-R
2](
12
29
)

0

20

40
A
R
P

P
ac
ke
t
In
te
ra
rr
iv
al

T
im

e
in

s

Figure 3.38: ARP packet occurrence by device over time [Device number](Total ARP packets).

to 2700 over a measurement time of 12 hours. In the testbed, a continuous SCADA
monitoring process is implemented, which queries the status of all devices every sec-
ond. This communication generates constant traffic, which could lead to a homogeneous
plot. There are four HMIs – the Siemens KP 300 [17] and the Schneider HMISTU855
[18], which communicate with the controllers Siemens CPU 1211C [05] and Schneider
TM22ICE16T [16]. Because of the constant communication, there are more ARP pack-
ets of these devices in the pcap.

The second capture, which is used is the publicly available “4SICS-GeekLounge-
151022.pcap” [4SI15] from NETRESEC [NET] captured at the 4SICS conference (now
renamed to CS3STHLM [OMN]). It is about 15h long and has 2274747 packets in total,
of which 16197 (0.71%) are ARP packets. The number of ARP packets varies from 31
(Phoenix Contact FL IL 24), 162 (Hirchmann EAGLE 20 Tofino), 220 (Siemens S7-1200)
to 343 (Moxa EDS-508A) ARP packets over the complete duration of the 4SICS cap-
ture. Figure 3.39 illustrates the distribution of interarrival time of ARP requests. In this
capture, there is not as much traffic as in the first pcap. The difference in the number
of captured packets is mainly caused by the continuous monitoring process of the first
testbed and the different network structure. As a result, the time between two ARP
packets ranges from 2 to 20 minutes.

81

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

Hi
rch
ma
nn

(16
2)

Ph
oe
nix

(31
)

M
ox
a (
34
3)

Sie
me
ns
(22
0)

101

102

103

104

A
R
P

P
ac
ke
t
In
te
ra
rr
iv
al

T
im

e
in

s
(t

a
r
r
iv

a
l)

Figure 3.39: ARP packet occurrence by device over time.

The different results from the captures show that the occurrence of ARP packets
depends on the network and the communication behavior. It follows, therefore, that
after a passive network dump of approximately one hour all devices could be detected.

3.5.6.3 MAC Address Database

The initial device database (see Table 3.16) was built using data from Cen-
sys [Dur+15], Shodan [Mat09], Google Images (images.google.com) and marketplace
search (www.ebay.com), as well as previous scans from our research group. This database
is locally stored and is used for the identification. Figure 3.40 illustrates the distribution
of known devices in the local database over the complete MA-L range of the correspond-
ing vendor, with more than 500 entries. Some vendors have more than one MA-L range,
resulting in more company identifiers.
The dataset plots of Moxa and Allied Telesis are bundled across the lower MAC address

range of the complete MA-L space. This indicates that the examined manufactures have
yet not exceeded their assigned address space. Moreover, the available database entries
suggest a linear assignment process.
The results for Lantronix devices indicate a different assignment process. The MAC

addresses are spread over the full MA-L space, while the majority of addresses are concen-
trated at the upper range. This indicates a kind of randomization, as there are no larger
connected groups of addresses. However, the entries in the used dataset show a possible
sequential block-wise assignment, which could also be a sign that the used dataset is not
large enough to include many devices of the same range. Eventually, it is not possible to
make a final statement on the MAC distribution policy applied by Lantronix.

82

www.censys.io
www.censys.io
www.shodan.io
images.google.com
www.ebay.com

3.5 Efficient Passive Network Scanning for Industrial Control Systems

Table 3.16: Number of devices and known vulnerabilities in the database.

Vendor Products Devices Known Vuln.
MOXA Technologies Networking equipment 5242 80
Lantronix Networking equipment 2126 6
Allied Telesis Networking equipment 950 9
Siemens Automation equipment 75 242
WAGO Kontakttechnik Automation equipment 49 5
Star Micronics (Receipt) printer 20 1
Schneider Electric Automation equipment 14 113
Phoenix Contact Automation equipment 11 6
ABB Automation equipment 6 18
Hirschmann Industries Networking equipment 3 8
Crouzet Automation equipment 3 0

Total: 8499 488

00:00:0000:00:00 3F:FF:FF 7F:FF:FF BF:FF:FF FF:FF:FF
0

100

200

300

MA-L Address Space

N
um

be
r
of

K
no

w
n
D
ev
ic
es Moxa (00:90:E8)

Telesis (00:0D:DA)
Lantronix (00:20:4A)
Lantronix (00:80:A3)

Figure 3.40: Histogram of known devices MAC addresses in their MA-L address space.

3.5.6.4 Proof of Concept Framework

The Proof of Concept (PoC) framework is written in Python 3 and implements automatic
evaluation of MAC-based discovery and identification of ICSs. It takes a pcap file or
input, or captures live traffic, analyzes it, and creates a security report on the detected
network devices. The pseudo program structure of the framework is shown in Figure 3.41.
At startup, the local MAC databases (see Section 3.5.6.3) are imported. These are

extensible Comma-Separated Values (CSV) files that store devices with their product
name and MAC address. Current vulnerabilities are fetched automatically from cve
details [MITb]. In the next step, the IEEE MAC vendor lists, which are publicly available
on the internet, are downloaded and parsed. Subsequently, logged or live network traffic

83

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

is analyzed using the pcapy tool [COR], which provides access to the pcap packet capture
library.

Pcap-ng

Live capture
Analyze capture

IEEE Fetch and parse MAC lists

cve-search
Fetch and parse
vulnerability list

local database Parse device list

Merge data and get device identification

Map vulnerabilities to device

Figure 3.41: Dataflow within the framework.

The MAC addresses of the devices found in the capture are now compared with the
local database of known devices. If a MAC address of a device from the network capture
is at a predefined distance from a MAC address of a known device, it is possible that
these devices are the same product. Based on this, the CVE database is used to map
possible vulnerabilities to the devices.

3.5.6.5 Network Integration

The network integration for this method is easier than most of the available passive
network monitoring tools. This is because no mirror port or network TAP is necessary.
Basically, all broadcast messages containing MAC addresses are sufficient for device dis-
covery. Figure 3.42 shows the integration possibility of the proposed framework in an
existing network.

Device 1

Device 2

Device N

S
w
i
t
c
h

unidirec

tional

M
o
n
i
t
o
r

Figure 3.42: Passive network monitoring setup.

To ensure a feedback-free passive scan, a unidirectional network diode can be placed
between the switch and the scan device. For each broadcast domain, only one monitoring
connection is needed.

84

3.5 Efficient Passive Network Scanning for Industrial Control Systems

3.5.6.6 Validation of the Proposed Scheme

To validate the method and the framework, the devices in Table 3.15 of the CoRT are
used. By probing real hardware, the methodology introduced in Section 3.5.5 and the PoC
implementation are verified. The used database comprises 8499 known devices excluding
the devices from the CoRT that are blacklisted for the validation. The network traffic
used to validate the accuracy is the same 12 hours pcap as that used for interarrival time
calculation (see Figure 3.38). Table 3.17 shows the results of the validation categorized
into four possible results.
Correct identification (3): As illustrated in Section 3.5.5.2, a small distance to a

known device indicates a correct identification. A distance of 0x000000 indicates that
the device was clearly identified. This happens if an already identified device should be
identified again, for example, in a previous scan or in a continuous monitoring process.
Correct vendor, wrong device (G): In a false positive identification, the identified

device does not match the real one. With the distance increasing between the MAC of the
captured device and the entries in the database, the likelihood of a correct identification
decreases.
Only vendor identified (m): Furthermore, it is possible that there is no match,

e.g. if there is no device in the MA-L address space, leading to a distance higher than
0xFFFFFF. It is still possible to identify the vendor by looking up the MAC vendor
list(s).
No identification (7): If there is no known device in the address space and no entry

in the vendor lists, no identification is possible.

Table 3.17: Validation of the introduced approach in the Communication Robustness Testbed.

Device Distance Ident. Device Distance Ident.
01-R1 0x00A214 3 01-R2 0x00A218 3

02-R1 0x001789 G 02-R2 0x00177F G

03-R1 0x00A630 G 03-R2 0x00A614 G

05-R1 0x19CE87 G 05-R2 0x19D31A G

10-R1 0x117EDC 3 10-R2 0x117EA6 3

11-R1 0x0FE94D G 11-R2 0x0FE76D G

14-R1 0x00049C 3 14-R2 0x00075D 3

15-R1 0x000481 3 15-R2 0x000487 3

16-R1 0x000102 3 16-R2 0x000235 3

17-R1 0x089F19 3 17-R2 0x089F18 3

18-R1 0x033E07 3 18-R2 0x0340DF 3

20-R1 0x0001AC 3 20-R2 0x00003D 3

3 Correct identification m Only vendor identified

G Correct vendor, wrong device 7 No identification

In all, the validation leads to a discovery rate (find the device) of 100% with a correct
identification (associate product) rate of 66.67%, demonstrating the feasibility of the

85

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

introduced method and software. Also, these results could be improved with a larger
device database.

3.5.6.7 Comparison with Other Tools

Three active and three passive network scanner tools are used and are compared with the
results of the framework introduced here. A popular active scanner used in the Censys
project is ZGrab (Git version 6c81ce4) [Dur+15], which supports the following SCADA
protocols: BACnet, DNP3, Niagara Fox, Modbus, and SimaticS7. PLCScan (Git version
014480c) [Efa12] is one of the first active scanners for industrial networks. Furthermore,
the active scan of Nmap (Version 7.60) [Lyo09] with Nmap Scripting Engine (NSE)
scripts for BACnet, Ethernet/IP, Modbus, Nigara Fox, Omron, PcWorx, ProConOS,
and SimaticS7 is used. For the passive scan, Netdiscover (Version 0.3), SinFp (Version
1.22), and p0f (Version 3.09b), which are introduced in Section 3.5.2, are used.

Table 3.18: Comparison of existing tools within CoRT.
Device (No./Rack)

01 01 02 02 03 03 05 05 10 10 11 11 14 14 15 15 16 16 17 17 18 18 20 20 Ident.
Scanner R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 Rate
zgrab 7 7 7 7 7 7 3 3 7 7 7 7 7 7 7 7 3 3 7 7 3 3 7 7 25.00%
PLCScan 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 3 3 3 7 7 3 3 7 7 25.00%
Nmap m m 3 3 3 3 3 3 m m 3 3 m m m m 3 3 m m m m m m 41.67%
SinFp 7 00.00%
p0f 7 00.00%
Netdiscover m 00.00%
Introduced tool 3 3 G G G G G G 3 3 G G 3 3 3 3 3 3 3 3 3 3 3 3 66.67%

3 Correct identification m Only vendor identified G Correct vendor, wrong device 7 No identification

To get comparable results, all tools are evaluated in the CoRT, with the devices in-
troduced in Table 3.15. The results of the comparison are shown in Table 3.18. The
identification rate of the active scanners depends on the implementation of the protocol
used in SCADA environments. If the protocol is available for the scanner, then it mostly
discovers and identifies the device. ZGrab and PLCScan have found fewer PLCs, because
there are fewer protocols implemented than Nmap with additional NSE scripts. Similar
to the introduced tool, Netdiscover used the IEEE OUI vendor list and could detect the
vendors of the devices but not the specific product. SinFp and p0f could not identify
any ICS device correctly in the used testbed, instead showing only office components
such as the server used for the evaluation. Similar results of the existing fingerprinting
tools were achieved by others in the past [Cas+13][Hah+11]. The introduced framework
was able to discover all the devices in the testbed by their vendor, and about 66% of the
products were correctly identified.

3.5.6.8 Discussion of Limitations

The proposed MAC-based device identification has some limitations regarding the rate
of discovery and identification. Some of these limitations, however, do not apply to
industrial networks due to their structure and specific use of the connected devices.

86

www.censys.io

3.5 Efficient Passive Network Scanning for Industrial Control Systems

MAC Address Spoofing IT devices often allow specifying a MAC address of a network
interface. For example, a network administrator wants to clone a device. Nevertheless,
this is generally not possible for ICS devices, because vendors do not provide this feature.
Of course, attackers can bring in new devices into a network by sending ARP requests
with spoofed MAC addresses. However, attackers cannot spoof ARP requests of existing
devices without physical access or access to the switching hardware. Therefore, MAC
address spoofing has only minor relevance for the proposed scheme.

Database Quality To identify devices by their MAC address, there must be a similarly
known device in the local database. Hence, the number of entries in the known MAC
address database is significant for the quality of device identification. This could be
improved by community contributions.

MAC Randomization for Connections To make it difficult to identify devices, it is
possible to choose MAC addresses randomly for every new connection. This could lead
to a false positive identification of a device. However, for stationary devices, especially
in industrial networks like PLCs, it is uncommon to randomize the MAC address.

Vendor Assignment Process Vendors sometimes assign the same MAC address to mul-
tiple devices, maybe by mistake or intentionally to save money. This is not a major prob-
lem if the devices are shipped to different parts of the world. In the case of MAC-based
identification, this could lead to false identifications if different products have the same
MAC.

Static ARP Table In a static ARP table, the MAC addresses of some or all network
participants have fixed entries. It is used in static environments, to prevent MitM attacks
by ARP poisoning, to use a network diode, or to reduce the broadcast traffic [Sto+11].
In this case, the ARP broadcasts used to identify the devices will not be sent, and thus,
no identification is possible.

Firmware/Software Version The firmware and software versions are not detected by
the MAC-based identification of a device. Consequently, the vulnerability allocation is
done without considering the software version.
However, in many ICSs, the devices are still in the delivery software state and are not

patched. This information could be used to roughly estimate the firmware version of the
device, which is sufficient for an initial assessment.

3.5.7 Conclusion

In this section a new method for passive scanning of fragile networks is introduced and
a functional PoC is provided. With a MAC-based discovery and identification of ICS
components, a safe passive scan within ICSs is possible. The feasibility of the method
with a validation resulting in a total discovery rate of 100% and an identification quote

87

3 Communication Robustness of Programmable Logic Controllers in Terms of Security

of more than 66% is shown. In comparison with existing tools, the MAC address cor-
relation approach performed well. The minimal integration effort and the extensibility
of the proposed framework has advantages over classical scan methods and deep packet
inspection. Moreover, the code of the presented framework is published and open for con-
tribution to the MAC databases [HSA18]. The material includes the source code of the
framework, network captures, and additional information about the current configuration
of the CoRT.
With a detailed recognition of the transitions between products during the MAC ad-

dress assignment, a more detailed identification could be achieved. Therefore, some
details provided by the vendors or a larger database of each vendor are necessary due to
the vendor-specific assignment process. Additionally, the users of the proposed approach
can add known devices from an industrial plant with which similar devices in other plants
could be identified.

88

Modular Building Blocks to
Enhance Industrial Control System
Security

Chapter4
Contents of this chapter

4.1 Open Industrial Control System Components for Secure Operation 91
4.2 Intrusion Detection on Industrial Internet of Things Edge Devices 97
4.3 Network Scanning on Industrial Internet of Things Edge Devices 115
4.4 Low-cost Industrial Control System Testbed for Education and Research . 127

In this Chapter, building blocks to enhance the IT security level of ICS are introduced.
It is important that industrial systems are protected against the current threats. This
means, among other things, bringing new possibilities and functions into future products,
for example, to detect attacks and to take countermeasures. Furthermore, it is important
to build up awareness for automation engineers who are not familiar with security and
to train people, such as students, in this area. Since productive plants are often in use
24 hours a day at 365 days a year, neither training nor tests and analyses can be done
there. Furthermore, no change can be made to the mostly proprietary ICS devices. For
these reasons, open components and testbeds are needed, which are also accessible at a
low cost to the general public.
The Chapter is structured as follows. At the outset, the open testbed and components

are described in Section 4.1. This is followed by two building blocks for network moni-
toring on industrial edge node devices. The first building block introduces a distributed
IDS on low performance MCUs in Section 4.2. The second building block presented in
Section 4.3 demonstrates the possibility of a network scanner on industrial edge nodes.
At the end, a low-cost ICS testbed for education and research is presented based on the
previous experiences of the author in recent years (Section 4.4). This closes the gap to
find a quick starting point into the complex topic of industrial it security.

89

4.1 Open Industrial Control System Components for Secure Operation

4.1 Open Industrial Control System Components for Secure
Operation

Contents of this section

4.1.1 Introduction . 91
4.1.2 Remote IO/Edge Node . 91
4.1.3 Open-source Testbed . 93
4.1.4 Conclusion . 96

As proprietary industrial components were mostly used in the previous chapter, it is
difficult to make changes to them in order to evaluate new concepts to enhance the IT
security of a single component. Owing to the closed-source devices, usually no personal
software can be installed, except the user program. However, this does not allow any
changes to the operating system or the control software which come from the manufac-
turer. This is only possible in newer PLC generations, which were released on the market
in the last years using Linux as an operating system. Currently, there are only a few
devices from a small number of manufacturers offering this functionality (e.g. Phoenix
PLCnext, WAGO PFC, Siemens IoT and Raspberry Pi-based PLCs).

4.1.1 Introduction

To examine new network architects in the age of Industry 4.0, there is almost no way
around open components. One idea of Industry 4.0 is that the PLC runs completely
in software (soft-PLC) and is mostly hardware and software independent. For example,
this allows that the PLC software runs in the local data center, in the cloud, or simply
on a small computer such as a Raspberry Pi. With centralized PLCs, so-called remote
IOs devices are used for inputs and outputs, which are controlled by the soft PLC via
network. In order to cover this scenario, the open components that are used in this
work are presented in this section. These differ from the previously presented PLC
implementation in Section 3.4, because the architecture is now divided into soft PLCs
and remote IOs.

4.1.2 Remote IO/Edge Node

An open-source remote IO (edge node) for the evaluation of IT security building blocks
for ICSs is presented in this section and explained in detail.

4.1.2.1 Hardware

The edge node devices are implemented on ST NUCLEO-F767ZI [STMa] development
boards. They have an ARM Cortex-M7 core, which operates at a frequency of 216MHz
with 512 kB of RAM and 2MB flash. The board is equipped with an Ethernet transceiver
and corresponding RJ45 jack. This device was used because more performance is available

91

4 Modular Building Blocks to Enhance Industrial Control System Security

for tests, even if it is not needed later. Figure 4.1 shows the used development board
from STM and the custom designed PCB on top. The schematic of the custom PCB
can be found in Appendix A.5. This is used to control the IOs and the display, which
is controlled over Inter Integrated Circuit (I2C). Additionally, LEDs are mounted to
indicate suspicious behavior. This can be used, as in a data center where servers which
require maintenance flash an LED. This allows a quick search when many devices are
installed in a plant.

Display

Ethernet
Inputs

Outputs

NUCLEO-F767ZI Development Board LEDs

Figure 4.1: Picture of the baseboard and the custom PCB of the used edge node device.

On the right side of the development board, the Ethernet connector is placed, and on
the left side, the USB connection for power supply and programming is mounted. By
using the Arduino™ Uno V3 header for the custom PCB, the underlying prototyping
board can be easily changed with other compatible boards. This can be interesting, for
example, if more performance or an energy-saving solution is needed. Table 4.1 lists the
features of the development board with the MCU. The ARM®Cortex®-M7 MCUs are
the high-performance series of the energy-efficient Cortex®-M product range.

4.1.2.2 Software Stack

The software architecture used on the edge nodes is illustrated in Figure 4.2. As operating
system FreeRTOS is used. The MCU software is configured with CubeMX [STMb] by
STM, enabling an easy portability to a wide variety of STM MCUs. Additionally, using
FreeRTOS also allows adding new tasks easily, for example, an additional feature or user
code.

92

4.1 Open Industrial Control System Components for Secure Operation

Table 4.1: Specification of the used edge node hardware.
Hardware IIoT Edge Node
Board design STMicroelectronics
MCU STM32F767ZIT6
Core ARM® Cortex®-M7
Clock up to 216MHz
RAM 512 kB
Flash 2MB

Device Driver

Middleware: FreeRTOS, LwIP, ...

LwIP API

Application Modbus/TCP, WEB, ...

Figure 4.2: Overview of software integration onto the edge node devices.

The used network stack, LwIP, provides TCP/IP functionality, for example. On the
application side, a self-developed Modbus/TCP slave is implemented as well as a rudi-
mentary web server. Additionally, a thread-safe logging function is implemented, which
prints the log message over Universal Asynchronous Receiver Transmitter (UART). As
a whole, this forms the basis for further developments and provides easy extension of the
edge node.

4.1.3 Open-source Testbed

The open-source testbed in this chapter, is based on IIoT and cloud-based ICS architec-
tures [Mah19; Col+14]. Figure 4.3 shows such aICS architecture where the PLC serves
as a central data hub. In the future, the PLC services may be hosted in a local data
center, cloud, or fog.
The architecture used in this open-source testbed contains eight sensors (S1-S8), one

actuator (A1), a PLC, an HMI, and a connection to other services like SCADA, logging
and cloud applications. Modbus/TCP is used as the industrial communication protocol
because it is widely used [Swa+99]. Additionally, Modbus/TCP offers manifold attack
paths [Hui+08]. Thus, there are different possibilities to evaluate and benchmark multiple
realistic attack scenarios.
Table 4.2 summarizes the components used in the open-source testbed. In contrast

to existing testbeds, software can be changed easily. Furthermore, as standard compo-
nents are be used for evaluation, this testbed can be realized at a low cost. In contrast
with standard Modbus/TCP sensors, it is usually not possible to make changes such as

93

4 Modular Building Blocks to Enhance Industrial Control System Security

Level 2
Process control level

Level 1
Control level

Level 1
Field level

S1 S2 S3 S4 S5 S6 S7 S8 A1

PLC

HMI

Cloud,
Logger,

...

Figure 4.3: Network system view on a “standard” industrial network mapped to the used PoC
testbed implementation. Eight “intelligent” edge node sensors, one “intelligent”
actuator, a PLC, an HMI, and possibilities for cloud services.

inserting an IDS. Furthermore, measurements on the system are therefore not feasible,
because no measurement routines can be used within the software on the device.

Table 4.2: Overview of devices used in the testbed.
Identifier Device Software Hardware IP
S1-S8 Sensor FreeRRTOS, LwIP STM32F7 192.168.1.101-108
A1 Actor FreeRRTOS, LwIP STM32F7 192.168.1.109
PLC PLC OpenPLCv3 Raspberry Pi 192.168.1.50
HMI HMI Custom Raspberry Pi 192.168.1.40
Cloud Cloud ScadaLTS, Logging, ... APU2C4 192.168.1.1

Figure 4.4 shows the open-source testbed for the measurement, which is set up in a
19-inch rack. At the bottom, there is the physical process with a motor controlling a
disc. This disc is sensed by eight sensors, each of which is connected to one edge node.
Additionally, the HMI is placed next to the physical process. In the middle, the edge
nodes are placed, each with its own display. Next to this, Raspberry Pis are mounted,
where one controls the HMI and the other runs the PLC software. At the top of the
rack, the network switch and a server representing the cloud are placed. In reality there
would be several (hundred) meters between the components.

In total, the testbed consists of 12 Modbus/TCP devices (eight sensors, one motor,
one PLC, one HMI, one SCADA) controlling a physical process.

94

4.1 Open Industrial Control System Components for Secure Operation

Edge
Nodes

Raspberry
Pis

HMI

Physical
process

NW Switch

Cloud

Figure 4.4: Pictures of the open-source ICS testbed, which is controlling a physical process.

4.1.3.1 OpenPLC

As the central control unit, a Raspberry [Ras12] Pi with OpenPLC [Alv+14] is used. This
PLC is used here to cover the scenarios with remote IOs and soft-PLCs. The project
provides a free open-source solution for PLCs. The PLC is configured to poll all sensors
and actuators every 100ms. Using current sensor states as an input, the program, which
runs on the PLC, is executed and the new output values are calculated. New values are
then written back by the next poll cycle.

4.1.3.2 Human Machine Interface

HMIs enables technicians to view the current status of a plant and the associated pro-
cesses. Based on this, technicians can make decisions and interact with the control
process. The HMI is a custom implementation based on Flask [Ron10] with Pymod-
bus [Col11]. With Pymodbus, the input and output registers are polled from the Open-
PLC every 100ms.

95

4 Modular Building Blocks to Enhance Industrial Control System Security

4.1.3.3 ScadaLTS

ScadaLTS [Rok+16] is an open-source SCADA system that accesses the OpenPLC to
gather data. This is used as a historian and runs on a dedicated server (APU2C4).
The SCADA system polls the OpenPLC every 100ms via Modbus/TCP. This makes it
possible not only to record the data and make it usable for later usage, but also to set
alerts when values are exceeded or unwanted conditions occur.

4.1.4 Conclusion

In this section the open source components used in this chapter were presented. On the
one hand, open edge nodes were introduced, which are used as remote IOs, and on the
other hand, an open-source testbed was described. This is important because changes to
the software of the proprietary components, such as those mostly used in Chapter 3, are
difficult to make. Thus, the use of open source makes research possible directly on the
components. Additionally, with the setup shown in Figure 4.3, Industry 4.0 scenarios
with a centralized PLC and network capable remote IOs can be realized and investigated.
Furthermore, an entire industrial system with a simple physical process can be analyzed
with regard to security using the open testbed.

96

4.2 Intrusion Detection on Industrial Internet of Things Edge Devices

4.2 Intrusion Detection on Industrial Internet of Things Edge
Devices

Contents of this section

4.2.1 Introduction . 97
4.2.2 Background . 99
4.2.3 Concept . 100
4.2.4 Implementation . 105
4.2.5 Evaluation and Measurement Results 107
4.2.6 Conclusion . 113

Parts of this section have already been made publicly available in the paper “Efficient
Intrusion Detection on Low-Performance Industrial IoT Edge Node Devices” on the arXiv
preprint [Nie+19c].

4.2.1 Introduction

The increased connectivity in the times of IIoT allows remote attackers to directly target
IIoT devices, for example, with DoS attacks (See Section 3.3) or packet injection to send
control commands [Ber11]. Thus, centralized defense at the perimeter of the network
do often not provide sufficient protection. Decentralized defenses, where each part of
the network protects itself, are needed. Network IDSs monitor the network and report
suspicious activity. They usually run on a single host, cannot capture all events in
the network, and are associated with a great integration effort. To bridge this gap, a
method for intrusion detection that combines distributed agents on IIoT edge devices
with a centralized logging is introduced in this section. In contrast to existing IDSs, the
distributed approach is suitable for industrial low-performance MCUs.
In classical centralized monitoring systems, low-performance edge devices forward all

information to a high performance system such as a server [Ana17]. There, data is stored
and processed, as shown in Figure 4.5. However, this approach has several drawbacks.
High bandwidth is required to forward data from sensor nodes to the server. This places
high burden on the network. Second, with more and more sensor nodes, tremendous
amounts of data need to be processed on the server, bringing serious scalability issues.
For the above-mentioned reasons, it is beneficial to analyze network data already at the

edge device. As Garcia et al. [Gar+15] note, the edge node devices are getting smarter
again, because, on the one hand, they have enough performance. On the other hand, this
offers advantages in terms of privacy and security. Figure 4.6 shows a distributed IDS
approach where every edge node can observe the network, preprocess data and decide
autonomously. While a centralized logging system might still be present, only few data
is sent to it. This has several benefits over the centralized approach: Bandwidth require-
ments are lower, less data is transmitted, and computational resources at the server are
saved. Thus, this approach scales better for large networks. Moreover, anomalous net-

97

4 Modular Building Blocks to Enhance Industrial Control System Security

Collect
Data

Transmit
Data Save Data Process

Data

high bandwidth high storage high
performance/bandwith

Edge node Server

Figure 4.5: Centralized data collection approach with system requirements.

work traffic can be detected everywhere in the network. This increases network coverage
and the robustness of the IDS, as there is no more single point of failure. Lastly, the IDS
can respond to malicious traffic quicker, because the decision is made on the edge device
itself and has no or less network delay on top. Furthermore, multiple IDSs could operate
concurrently in a single network and exchange information.

Edge node

Collect
necessary

data

Process
data

Filter
data

Server/
Cloud

less bandwidth less storage
less

performance/bandwith

Fast reaction time (local)

Figure 4.6: Distributed data collection approach. Preliminary data processing is conducted at
the edge devices.

Currently, there is a lack of distributed network-based IDSs, which can both run on
low-power edge devices and account for the special networking requirements of ICSs.
To overcome this gap, in this section, a distributed IDS tailored for industrial and

sensor applications, using a statistical approach suitable for embedded low performance
MCUs, is presented. Compared to signature and rule-based approaches, this concept has
some advantages, such as dynamic learning without fixed rules, and the lack of periodic
signatures updates of malicious software/traffic.
This work answers the following research questions about distributed network-based

IDSs in industrial and sensor environments. Special concerns for distributed intrusion
detection are:

• How long does an ICS network have to be observed to get a sufficient amount of
networking data to learn its regular behavior?

• How to handle user interaction, e.g. through an HMI with its influence on system
timings?

98

4.2 Intrusion Detection on Industrial Internet of Things Edge Devices

• How to retrieve the incident message from the edge node and inform an operator
about it?

• What degree of deviation from the regular behavior of the network is tolerable
before detecting it as an incident?

Key contributions of the approach include the following:

• An easily portable implementation, since only the widely used LwIP stack with
FreeRTOS is needed.

• A detailed performance analysis of an actual IDS implementation and an evalu-
ation of the capabilities of the approach in a realistic industrial control system
environment.

The remainder of this section is structured as follows: Section 4.2.2 provides necessary
background knowledge. Section 4.2.3 explains the concept for this approach. The PoC
implementation is described in Section 4.2.4. Validation and benchmarking in an indus-
trial testbed are done in Section 4.2.5. Finally, Section 4.2.6 concludes this section and
gives an outlook.

4.2.2 Background

There is a large body of research in IDSs, ICS and SCADA networks. Works can roughly
be divided into two groups – one detecting compromise of networked devices, e.g. caused
by malware or control-flow anomalies [Ree+12; Jin+18], and the other concerned with
detecting intrusive network traffic, into which group this work falls.
The first criterion is the type of data used for classifying traffic into benign and intru-

sive. For example, Liu and Liu show how voltage drops reveal the presence of an attacker
in RS485 daisy chain networks [Liu+18]. The simplicity of their approach comes at the
cost of being tailored towards a particular protocol and requiring modeling of the net-
work beforehand. This illustrates one of the key problems for designing a generalized
IDS for SCADA networks: A large number of networking protocols is encountered in
the field. However, to be able to properly scan the network, a monitoring system must
accurately dissect the traffic. Thus, it requires a precise model of every single protocol
it captures, most of which are proprietary [Gol+13]. In contrast, the system proposed
here uses a metadata-based approach which operates independently of the underlying
transport protocol. This overcomes the need for modeling the protocol. Further, this
approach brings flexibility and permits the introduced system to be retrofitted to already
deployed networks.
Network traffic can be acquired and processed either centralized or decentralized. As

stated in the introduction, the latter is preferable. Additionally, passive acquisition
has the benefit of not interfering with the network traffic and thus avoiding the risk to
interrupt production processes.
While the strict timing requirements in ICS traffic hinder the introduction of some se-

curity mechanisms, they can be exploited for distinguishing between normal and intrusive

99

4 Modular Building Blocks to Enhance Industrial Control System Security

network traffic. Barbosa et al. utilize periodic cycle time to distinguish between normal
and intrusive traffic [Bar14]. However, they do not implement a distributed method.
This must be considered insufficient with respect to an insider attacker, who can access
the local network from anywhere within. Lin et al. also present a method which attempts
timing-based intrusion detection [Lin+17]. Yet again, as opposed to this work, their sys-
tem captures data centrally. Further, their system uses network traffic capture files as
an input with no real world testbed. In contrast, the system introduced in this work is
deployed in a real-life testbed and can adjust the baseline, which distinguishes between
normal and intrusive traffic, during runtime.
Haller et al. [Hal+19] show the feasibility of an IDS based on a monitoring task and

the statistical cumulative sum, running on a Phoenix Contact ILC 350-PN controller.
However, this system is a basic approach for this specific PLC and mostly only handles
these two detection possibilities.
There is a lot of research going on in the field of intrusion detection. Some of the

published concepts are summarized in a survey on IDSs in wireless networks [But+14].
These methods have also been used within industrial networks with adjustments to its
specific requirements. Another survey on IDSs and Intrusion Prevention Systems (IPSs)
in SCADA networks has been published by Zhu et al. [Zhu+10]. However, in these
surveys no distributed network analysis on low performance MCUs are handled.
Further work was done by Zimmer et al. [Zim+15], who introduce security building

blocks for real-time CPSs. These are based on measurements of the real-time operation
system with no focus to the network data analysis.
Payer shows a state-driven IDS implemented within the LwIP Stack in 2003 [Pay03].

It analyzes the states of a connection and compares them with stored database. However,
this work covers only a few scenarios and does not perform well as a network IDS.
The previous work mostly focuses on a purely network-based approach with a high

effort necessary for integration, or host based systems with high requirements to the
computing power of the host. In contrast to previous work, the proposed approach in
this work provides the following advantages:

• Distributed IDS on industrial edge node devices, e.g. sensors. This does not require
changes to the network infrastructure while listening to network traffic.

• Analysis of the periodic occurrence of packets/requests.

• Approach and implementation are protocol-independent, because they utilize meta
information. This enables later usage with cryptographic protection mechanisms.

4.2.3 Concept

This section sheds light on what the IDS should protect against, which data can be used
for the IDS analysis and how the intrusion is announced to the operator. Further, the
strengths and weaknesses of the introduced approach are discussed.

100

4.2 Intrusion Detection on Industrial Internet of Things Edge Devices

4.2.3.1 Attacker Model

In this section, both local and remote attackers are considered.
An attacker with local access could, for example, be an employee or a visitor. This

attacker has both physical and network access. Being physically present, the attacker is
able to remove edge nodes from the network by, for example, unplugging the Ethernet
cable. Furthermore, he can launch simple attacks such as pressing the emergency stop
button at a machine, resulting in a denial of service attack. From within the network
perspective, the goal of the attacker is to be able to eavesdrop and manipulate messages
from sensor nodes. Also, he can inject arbitrary messages or delay messages in order to
launch a denial of service attack.
The remote access attacker has gained access to the internal network over the Internet

or can directly attack exposed devices. Flooding attacks, which lead to a DoS, as well
as spoofing and injecting messages can be conducted. MitM attacks are not possible for
the remote attacker.

4.2.3.2 Overview on Workflow

The IDS operates by firstly observing the network traffic in a non-corrupted network,
learning normal or benign traffic. Utilizing the deterministic timings in traffic flows, it
derives periodicity-thresholds, which separate normal from intrusive traffic. Calculating
the thresholds is accomplished in two ways. First, the metadata of each connection are
analyzed and categorized. Second, these categorized connections are analyzed based on
their periodicity. After the learning phase, the traffic of the live ICS is compared to these
thresholds and classified as either normal or intrusive. To account for slight changes in
the ICS traffic behavior, thresholds are adjusted during runtime.

Meta Data Selection First, it is discussed, which features of the network traffic are
suitable to be used for characterizing and classifying the connections. Basically the
introduced IDS approach can analyze, train, and then make decisions using all network
data it receives. Figure 4.7 shows the meta information, which can be analyzed by
the IDS, mapped to the layers of the network stack according to the Open Systems
Interconnection (OSI) model.
Analyzed metadata is chosen such, that the IDSs operates completely protocol-

independent. In this case, metadata is all data, which resides below the application
layer. Thus, no further information is needed during the deployment, which means that
the operator does not have to set rules. Specifically, the following information is used:

• Source and destination ports are used from the TCP and UDP header.

• From the IP header the source address and destination address are used.

• ARP requests and responses contain MAC and IP addresses, which are mapped
to each other.

101

4 Modular Building Blocks to Enhance Industrial Control System Security

Network Inter-
face

Network

Transport

Application

Physical

Data Link

Network

Transport

Session

Presentation

Application

Ethernet

IP, ARP, ICMP

TCP, UDP

TCP: Meta data

UDP: Meta data

Stack Information OSI Layer

Figure 4.7: Used information from the stack for intrusion detection.

• The Ethernet header contains the destination MAC address and the source MAC
address. Those must be consistent with each other in order to recognize e.g. ARP
poisoning.

• Optionally, meta data from the application layer could be used.

The source and destination ports are typically unfeasible for intrusion detection be-
cause they vary: As soon as a connection is terminated, usually a new port is used by
the client. This must be taken into account when categorizing the connections. It is still
feasible to use the port on the server side, e.g. port 502 for Modbus/TCP to analyze the
network packets. The other metadata, however, remains consistent and does not change
at reconnections. Allocating metadata from connections is already a good starting point
for intrusion detection. This is similar to rule-based detection, which is also used in
firewalls.

Exploiting and Learning the Network Timing Behavior A specific characteristic of an
ICS network is periodical polling of inputs and outputs. This creates a homogeneous
timing picture of the connections in the network. In the example in Figure 4.8, first a
TCP/IP connection is established (SYN). The timing pattern here is considered irregular.
The same holds true for closing the connection (FIN). However, after having established
the connection, in the center of Figure 4.8 periodic timing can be observed caused by
periodic polling.
Periodic behavior is exploited in the proposed approach and observed in the initial

training phase. During this training phase, the network needs to remain free from ma-
licious traffic. Two methods to derive thresholds, which separate normal behavior from
an intrusion are used. By filtering one specific connection, e.g. from one edge node to
the central PLC, the time series is getting periodic. This mostly depends on the network
infrastructure and implementation. Nevertheless, this only requires a longer learning
time, if the traffic is more irregular.

102

4.2 Intrusion Detection on Industrial Internet of Things Edge Devices

PLC Edge Node Sensor

connect SYN

SYN+ACK

ACK

irregular

Poll
Response+ACK

ACK periodic

FIN

ACK
FIN
ACK

irregular

Figure 4.8: Timing in sensor networks with polling, separated in periodic and irregular timings.

Statistical Analysis of Normal Traffic Behavior During the learning phase, the min-
imum and maximum interarrival time is calculated. The values tl are recorded during
the learning phase, which is the interarrival time between packets of the same connection
type. The IDS forms a cumulative moving average (see Equation 4.1) over the interar-
rival time of the packets. The mathematical symbols used in the formulas can be found
in Table 4.3. The interarrival time during learning is tl and in active mode ta.

Table 4.3: Symbols used in formulas.
Symbol Description
tl Interarrival time (tarrival) between two packets with the same

meta data during learning
ta Interarrival time (tarrival) between two packets with the same

meta data, when the IDS is active
n Number of packets used for the calculation
∆a Delta to configure the mean time deviation, which is

tolerable when the IDS is active
∆mm Delta to configure the minimal and maximal time deviation,

which is tolerable when the IDS is active

To calculate a specific mean value, the amount of used interarrival times is divided
by nl during learning n in the active mode. This is used after the learning phase as a
reference to detect changes in the frequency of packet transfer in the specific connections.

103

4 Modular Building Blocks to Enhance Industrial Control System Security

Since there may still be minimal deviations after the learning phase, a relative offset (∆a)
is added on top.

tl1 + ...+ tln
nl

∗ (1−∆a) <
ta1 + ...+ tan

n
<
tl1 + ...+ tln

nl
∗ (1 + ∆a) (4.1)

After the learning phase, the moving average is further calculated and compared with
the trusted reference. If this current moving average is outside of this trusted reference,
an anomaly is assumed. Those calculations must be done for each network connection
to the edge node device.

Minimum and Maximum Classification of Traffic After the IDS is switched from the
learning phase to active, the current packet interarrival time during the activated IDS
(ta) is compared with the previous calculated maximum and minimum. If this is outside
of those boundaries, this is seen as an intrusion (see Equation 4.2). In addition, an
adjustable relative offset (∆mm) is specified for the minimum and maximum limits.

min(tl1, tl2, ..., tln) ∗ (1−∆mm) < ta < max(tl1, tl2, ..., tln) ∗ (1 + ∆mm) (4.2)

Network traffic is categorized and statistically evaluated using the parameters described
in Section 4.2.3.2. There are parameters like IP and MAC address, which must not
deviate after the learning phase. In contrast, there is metadata such as the time behavior
which accepts a certain tolerance to avoid false reports. A recognized intrusion should
be processed and displayed directly at the edge node, as well as transmitted to a central
logging server.

4.2.3.3 Intrusion Announcement

To announce an intrusion to the network, broadcasts messages are used. As a result, the
central intrusion logger only needs to be in the same broadcast domain and no config-
uration is necessary. Additionally, in order to detect DoS attacks which are supposed
to block the messages, a keep alive message is sent at a certain time interval. If the
central logger does not receive this message within a predetermined timeout interval, an
intrusion is assumed to take place. Furthermore, the message must contain a signature
and a changing variable to prevent replay attacks. Besides the centralized logging, local
signaling can be used to warn operators within the plant.

4.2.3.4 Discussion of Strenghts and Limitations

One of the biggest strengths of this approach is the easy integration into existing net-
works, because no special network hardware such as as mirror ports are necessary. In
addition, each edge node device can defend itself and does not have to trust other par-
ties. Of course, this is only possible if the manufacturer implement this or an open-source
component is used.

104

4.2 Intrusion Detection on Industrial Internet of Things Edge Devices

In order to get a trusted comparison base, it has to be ensured that there is no attacker
in the network during the initial learning phase. To launch an attack undetectable to the
IDS, the attacker has to generate the same traffic used in the training phase; otherwise,
it will be recognized as an anomaly.
The determination of ∆a and ∆mm depend on how high the acceptable false detection

could be. If the ∆ is chosen too small, there will be many false positive (normal activity
mistakenly identified as an intrusion). Otherwise, if ∆ is chosen too high, false negatives,
where an attack is not detected will occur. False positives and false negatives are often
a problem of IDS, which also exists in products on the market [Ho+12]. This is often
the reason why IDS are mostly preferred instead of IPS in industrial networks, to not
disrupt production. This means that alarms can be checked first to determine whether
they are an attack or a fault alarm.

4.2.4 Implementation

In this section, the feasibility of the introduced distributed IDS approach is demonstrated
by providing an implementation on low-performance MCUs. This sets this work apart
from many other proposed IDSs, which only use simulation for validation. The used edge
node hardware is explained in detail in Section 4.1.

4.2.4.1 Stack integration

The IDS must be integrated into the software stack using some functions (e.g. system
timer) of the operating system. The basic structure of the software stack on the edge
nodes is explained in Section 4.1.2.2. As shown in Figure 4.9, the IDS is integrated
into the widely used LwIP [Dun01] stack. All Receive (RX) and Transmit (TX) data is
processed by the IDS before being forwarded to the regular Application Programming
Interface (API) of the LwIP stack. This design is highly beneficial, as the IDS can be
used without changes to existing projects, which use the LwIP API.

Device Driver

Middleware: FreeRTOS, LwIP, ...

LwIP API IDS

Application Modbus/TCP, WEB, ...

Figure 4.9: Overview of the system with integration of the IDS into LwIP.

Another advantage of using the existing LwIP API is that the IDS can also be used
as a IPS. In this case, packets, which are detected as an intrusion, are not passed to the
application layer and discarded instead.

105

4 Modular Building Blocks to Enhance Industrial Control System Security

4.2.4.2 Centralized Logging of Intrusions

In the introduced decentralized IDS, every sensor node individually captures and prepro-
cesses network data. However, to permit technicians centralized administration of edge
nodes, a central logging is necessary. Every sensor is reporting the current “security”
state in a periodic way to this central logger. If the sensor does not send the status
message within a certain time frame, because, for example, an attacker is flooding the
network, the monitoring and logging server must detect and report this as an incident.
The key features of the centralized intrusion and alive notification are:

• The intrusion message is send to the network via UDP broadcast.

• The message is signed with a performance efficient Keyed-Hash Message Authen-
tication Code (HMAC)-based using a Pre-shared Key (PSK).

• The message is sent out every 10 seconds, with status information and keep alive
message.

• The system time is part of the message for replay protection.

These messages are gathered by the logging server, and, if there is no keep alive message
within 20 seconds, the host is regarded as contaminated.

4.2.4.3 Intrusion Notification on the Edge Node

In addition to the centralized intrusion logging, each edge node device can visualize its
intrusion status using a display and/or an LED. This helps technicians in the control
room, who have been warned of an intrusion, to quickly localize the affected edge nodes
in the field. Without information at the devices or dedicated tools such as EyeSec, this
has been proven to be a tedious task [Str+19]. Figure 4.10 shows the current status
of the edge node device. This shows the IP of the node, the current time (Time) and
learning time (LTime) in milliseconds. Furthermore, when an anomaly is detected, this
is shown on the Organic Light Emitting Diode (OLED) (!!!INTRUSION!!!).

Regular behavior Intrusion detected

Figure 4.10: Current state of the IDS on the edge node display.

After network startup, the current system time and the configured learning time is
displayed. If an intrusion occurs, this will be displayed on the OLED and the red LED
on the baseboard lights up. All these features are additional tools, which aid operators
in managing network security.

106

4.2 Intrusion Detection on Industrial Internet of Things Edge Devices

4.2.5 Evaluation and Measurement Results

To show the performance of the proposed approach, the edge node IDS is evaluated in
the open-source industrial testbed introduced in Section 4.1. Additionally, measurements
were carried out and the detection scenarios were identified.

4.2.5.1 Evaluation in an Open Source Testbed

Please note that the here introduced approach does not depend on a particular network
architecture. For the introduced approach in this work, only periodic network traffic
patterns are required. However, the network architecture only plays a minor role for the
approach introduced in this work, as long as the interaction is “predictable” in a periodic
manner.

IDS Webserver on the Edge Nodes The webserver enables easy remote maintenance
of the edge devices from the control room. Figure 4.11 shows the web page running on
each edge node.
At the top the debug information is shown. To the bottom left, the learned connections

are listed. The background color of the web page displays the current status of the IDS:
Learning (blue), active without intrusion (green) and intrusion detected (red). This
simple yet effective visualization permits the operator to grasp the network status at a
single glance.

Centralized Logger The central logger first checks the HMAC signature and whether
the message time, which is used as replay attack protection, is consecutive. Listing 4.1
shows the status outputs of the central logger. In line 1, the edge node device is down,
which could be caused by a failure or a DoS attack, for example. Line 2 shows the desired
status, where the device is up and no intrusion is detected. An intrusion on edge node 3
is illustrated in line 3.

1 ID : 1 i s down In t ru s i on : ???
2 ID : 2 i s up In t ru s i on : no
3 ID : 3 i s up In t ru s i on : yes
4 . . .

Listing 4.1: Output of the central logger

As explained in Section 4.2.3.3, the UDP broadcast can be received from everywhere
in the broadcast domain. Furthermore, the message outputs can be easily integrated in
different logging mechanisms and tools, offering great flexibility to the user.

4.2.5.2 Interarrival Time in the ICS Testbed

In the following, it is described, how to statistically assess the deterministic timings in
the testbed, which are then utilized by the IDS to detect intrusions.

107

4 Modular Building Blocks to Enhance Industrial Control System Security

Packets

Dst IP: 255.255.255.255
Src IP: 192.168.1.101
Dst Po: 0
Src Po: 0
tMax: 10011
tMin: 10011

Dst IP: 255.255.255.255
Src IP: 192.168.1.102
Dst Po: 0
Src Po: 0
tMax: 10011
tMin: 10011

Dst IP: 255.255.255.255
Src IP: 0.0.0.0
Dst Po: 0
Src Po: 0
tMax: 0
tMin: 999999

Dst IP: 192.168.1.255
Src IP: 192.168.1.33
Dst Po: 80
Src Po: 55452
tMax: 1
tMin: 0

STM32F767 IDS Sensor Server

Called URL: /set HTTP
Build: Dec 28 2019 20:59:12
Device ID: 0000000002
Uptime MS: 0000027519 ms
Free heap: 0000095680 bytes
Learntime: 0006000000 ms
Intrusion: 0000000001

Refresh   Soft Reset   Set Intrusion   Reset Intrusion

First Intrusions

Learning phase

Packets

Dst IP: 192.168.1.102
Src IP: 192.168.1.33
Dst Po: 80
Src Po: 55920
tMax: 218869
tMin: 0

Dst IP: 0.0.0.0
Src IP: 0.0.0.0
Dst Po: 0
Src Po: 0
tMax: 0
tMin: 999999

Dst IP: 0.0.0.0
Src IP: 0.0.0.0
Dst Po: 80
Src Po: 55920
tMax: 0
tMin: 999999

Dst IP: 192.168.1.33
Src IP: 192.168.1.102
Dst Po: 55920
Src Po: 80
tMax: 218869
tMin: 0

STM32F767 IDS Sensor Server

Called URL: / HTTP/1
Build: Dec 28 2019 21:04:24
Device ID: 0000000002
Uptime MS: 0000609629 ms
Free heap: 0000095680 bytes
Learntime: 0000600000 ms
Intrusion: 0000000000

Refresh   Soft Reset   Set Intrusion   Reset Intrusion

First Intrusions

Active without intrusion

Packets

Dst IP: 255.255.255.255
Src IP: 192.168.1.101
Dst Po: 0
Src Po: 0
tMax: 10012
tMin: 10011

Dst IP: 255.255.255.255
Src IP: 0.0.0.0
Dst Po: 0
Src Po: 0
tMax: 308045
tMin: 1174

Dst IP: 255.255.255.255
Src IP: 192.168.1.102
Dst Po: 0
Src Po: 0
tMax: 10011
tMin: 10011

STM32F767 IDS Sensor Server

Called URL: / HTTP/1
Build: Dec 28 2019 21:04:24
Device ID: 0000000002
Uptime MS: 0000627338 ms
Free heap: 0000095680 bytes
Learntime: 0000600000 ms
Intrusion: 0000000001

Refresh   Soft Reset   Set Intrusion   Reset Intrusion

First Intrusions

Dst IP: 0.0.0.0
Src IP: 0.0.0.0
Dst Po: 0
Src Po: 0
tDiff: 0

Dst IP: 0.0.0.0
Src IP: 0.0.0.0
Dst Po: 0
Src Po: 0
tDiff: 0

Dst IP: 192.168.1.102
Src IP: 192.168.1.33
Dst Po: 80
Src Po: 55856
tDiff: 0

Dst IP: 192.168.1.33
Src IP: 192.168.1.102
Dst Po: 55856
Src Po: 80
tDiff: 0

Intrusion detected

Figure 4.11: Webpage running on each edge node, displaying the current IDS status and debug
output.

Assessing the Packet Interarrival Time The interarrival time is the time between pack-
ets of one connection. Figure 4.12 shows the interarrival time of Modbus/TCP packets
to the sensor system in the testbed. The results of the measurements are shown in a
boxplot with calculated arithmetic mean (H) and median (). The quantiles are 25% and

108

4.2 Intrusion Detection on Industrial Internet of Things Edge Devices

75%, with whiskers up to factor 1.5 of the box. The plot only contains communication
on port 502, namely Modbus/TCP. The arithmetic average is about 100ms where the
Modbus/TCP “read discrete input” is executed. This reflects a normal polling behavior
of an industrial PLC. The OpenPLC implementation polls each node. The timeout is set
to 1000ms by default. Most of the controllers have implemented such a timeout, which,
if exceeded, indicates problems in the network communication.

1 2 3 4 5 6 7 8 9

Sensor device number

0

50

100

150

200

In
te

ra
rr

iv
a
l

ti
m

e
in

m
s

Figure 4.12: Interarrival time of modbus packets.

Assessing ARP Request Interarrival Time Figure 4.13 illustrates the interarrival time
of ARP packets in the testbed. In this figure, all ARP requests and responses to the
specific sensor are plotted. This results in a mean of 270 seconds every 4.5 minutes
when the ARP cache is cleared. This makes it possible to perform a host-up detection
of devices in the network. For example, if there is no ARP request for a long time, the
device is probably offline.
Figure 4.14 shows the Kernel Density Estimation (KDE) plot with two high density

areas. In this case, this type of plot represents the frequency of connections over time.
The OpenPLC v3 implementation uses a default polling sleep time of 100ms, which is
added on top of the interaction of each node. The first peak is generated, because of the
default response time of a query. This first peak represents the request from the PLC
and the fastest possible answer by the sensor (request → response). The second peak is
the delay not to flood the edge nodes, with the default of 100ms. This is, in other words,
the refresh rate of the PLC values.
All Modbus/TCP interarrival times of the nine edge nodes are actually shown in the

plot, but they overlap so much, that almost no difference is visible. This could be
different, if, for example, two PLCs poll the sensors. However, this does not make any
difference in the classification per connection and does not change the core statement of
this plot.
Through these illustrations it can be seen, that there is only a little time deviation in

this testbed. Thus, the ∆ can be chosen small. In our evaluations the ∆ was set to 0.1

109

4 Modular Building Blocks to Enhance Industrial Control System Security

01 02 03 04 05 06 07 08 09

Sensor device number

269.8

269.9

270.0

270.1

270.2

270.3

In
te

ra
rr

iv
a
l

ti
m

e
o
f

A
R

P
re

q
u

es
ts

in
se

co
n

d
s

Figure 4.13: Interarrival time of ARP request packets.

0 50 100 150 200 250

Packet interarrival time in ms

0.000

0.002

0.004

0.006

0.008

0.010

D
en

si
ty

Device: 1

Device: 2

Device: 3

Device: 4

Device: 5

Device: 6

Device: 7

Device: 8

Device: 9

Figure 4.14: KDE of the interarrival time of Modbus/TCP packets.

which corresponds to 10%. In this way, the IDS performed well and no false positives or
false negatives occurred during our benchmark (see Section 4.2.5.3).

4.2.5.3 Intrusion Detection Benchmark of the PoC Implementation

The parameters used to detect attacks essentially depend on what has been learned and
how the attack is executed.

Attack Detection The introduced attacker models in Section 4.2.3.1 are used to mea-
sure the attack detection of the IDS on the embedded edge nodes. The following scenarios
are covered by these two attacker models, which are summarized in Table 4.4. These are
evaluated within the open testbed.

110

4.2 Intrusion Detection on Industrial Internet of Things Edge Devices

The local attacker removes 1 an edge node from the network. The centralized logger
will detect this incident after some seconds, because the keep-alive message of the edge
node is missing.
The network is actively sniffed 2 by the local attacker with e.g. ARP poisoning.

Owing to the ARP poisoning, ARP requests are sent out. Those packets are new to the
IDS, resulting in an incident report. Since this attack already requires some knowledge,
the attacker knowledge is categorized as medium.
Input, output, or keep-alive commands are spoofed 3 by the local attacker. If an

attacker connects his own device to the network and sends out ARP requests, the edge
node will receive those requests from an unknown source and will report this.
The local or remote attacker inject 4 packets into the network to send commands to

the edge nodes. New connections will be detected by the IDS.
An attacker is flooding an edge node to perform a DoS attack 5 . The edge node

IDS detects, that packets are either new or occur too often. Additionally, this will be
detected by the logging server, because no alive message are received anymore.
The attacker is passively sniffing 6 the network with a unidirectional network diode.

If this is done completely passively, the IDS cannot recognize this. For this kind of attack,
the attacker knowledge is low.
An attack is already executed during the learning 7 phase of the IDS. Of course, if

an attacker manages to get involved during the learning phase, the IDS naturally also
learns it and regards this as regular. However, the attacker must continue this traffic
after the learning phase; otherwise, the IDS will detect the attack.
The attacker captures 8 an edge node. The IDS is only capable to detect the attack

during the attack phase. After a successful attack and if the edge node is captured, the
attacker can manipulate the data on the captured edge node. If the attacker opens new
connections, the other still trusted edge nodes will detect this.

Table 4.4: Summary of the evaluated attack scenarios and detection capabilities.
Model Short description Attacker Detection
1 Node removed weak 3

2 Active sniffing medium 3

3 Spoofing attack medium 3

4 Injection attack weak 3

5 DoS attack weak 3

6 Passive sniffing weak 7

7 Learning attack strong m

8 Capture edge node strong m

3detected mdepends 7not detected

Time for Learning Regular Behavior The time needed by the IDS to learn regular
connections depends first of all on the use case. In the case of the open-source testbed
introduced in Section 4.1, there is normally a distinction between direct connections, such

111

4 Modular Building Blocks to Enhance Industrial Control System Security

as the read and write of the register through the PLC and packets like ARP requests
that the edge node receives, because it is in the broadcast domain. In the testbed, the
time for learning is approximately twice the time between the longest interarrival time of
an ARP request, which is approximately 10 minutes. This is the absolute minimum and
must always be chosen to also collect rarer events. In practice, it will make no difference
whether the initial learning time is a few minutes, hours, or even one day, as long as the
devices are not battery-operated.

4.2.5.4 MCU Performance Data

Figure 4.15 shows the ping of the edge node device with enabled and disabled IDS. This
is measured with fping [Sch] every 100ms over 100 samples. The average ping without
the IDS is about 0.31ms and 1.13ms with the enabled IDS.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

Number of pings

T
im

e
in

m
s

Ping with IDS Ping without IDS

Figure 4.15: Measurement of the ping behavior with and without the IDS.

The data throughput measured with iperf drops from 28.2Mb/s without the IDS to
4.23Mb/s with the IDS. However, in the used testbed, this performance reduction does
not have any impact on the controlled process, because there are only about 100 kb/s
with a PLC cyclic refresh time of 50ms. Such low traffic rates are common in industrial
plants, but also with higher rates the IDS is capable of handling the traffic.
Table 4.5 shows the differences in the software build with IDS and without IDS. It

is only the function analyzing the received and transmitted packets, because the other
functions depend on the configuration. This means, for example, the webserver or the
logging function can consume more or less RAM and ROM depending on the configura-
tion. Hence, the comparison is limited to the analyze function of the IDS.
This analysis shows, that the actual IDS functionality requires quite few resources and

thus does not waste scarce flash memory.

112

4.2 Intrusion Detection on Industrial Internet of Things Edge Devices

Table 4.5: Binary comparison of example application with and without the IDS building block
in bytes.

Information text data bss dec hex
With IDS 145176 12592 285848 443616 6c4e0
Without IDS 141872 12592 285832 440296 6b7e8
Difference 3304 0 16 3320 cf8

4.2.6 Conclusion

This work shows that network-based IDSs on low-performance MCUs are a workable and
potential way of detecting intrusions in industrial networks. Especially the periodical
nature of polled communication between PLCs and remote sensors and actors allow
effective detection mechanisms. The measurements help to detect numerous network-
based cyber-attacks, while the detection itself affects the network traffic only slightly.
The introduced IDS approach can either be used as a single point of defense or be
easily combined with firewalls, for example. Combined with the protocol neutrality of
the metadata approach proposed in this work, the distributed IDS can be effortlessly
integrated within already existing projects as an autonomous level of security. Being
able to base the implementation of the IDS as a function on the widely used LwIP stack
provides a decent foundation to upgrade the system to an IPS. This is possible because as
an intrusion a detected packet can be dropped before it is being processed by the regular
application running on the MCU. Good detection results paired with the modularity and
easy-to-integrate nature of the proposed approach make it a reasonable choice to tackle
the upcoming security problems of Industry 4.0.

113

4.3 Network Scanning on Industrial Internet of Things Edge Devices

4.3 Network Scanning on Industrial Internet of Things Edge
Devices

Contents of this section

4.3.1 Introduction . 115
4.3.2 Related Work . 116
4.3.3 Concept . 117
4.3.4 Proof of Concept Implementation 119
4.3.5 Evaluation . 121
4.3.6 Conclusion . 125

Parts of this section have already been published in the paper “Network Scanning and
Mapping for IIoT Edge Node Device Security” at the 24th International Conference on
Applied Electronics (AE) 2019 [Nie+19a].

4.3.1 Introduction

In a common industrial system at the field level, which is generally IP-based nowadays,
the network structure rarely or never changes. This means that changes to the network
are either caused by maintenance, malfunction, or an attack. Independent of what caused
these changes in the network environment, the incident must be detected, because this
is a deviation from regular behavior and an operator has to decide how to react to it.
In this section, an active network mapping tool is introduced as a building block

for embedded low-cost edge node devices. This approach differs from the passive scan
option in Section 3.5 and the IDS introduce in section Section 4.2. Here the previously
introduced problems of active scanning are revisited, and an approach with slow and
distributed scanning is presented.
The here introduced security building block enables probing devices (hosts) and ser-

vices in the network directly from an edge node device connected to this network, without
the requirement of additional components. After the edge node is placed into the network
and the system is put into operation for the first time, the edge node scans the network
and learns the structure of the network architecture. This default network “fingerprint”
is stored locally on the edge and is compared with further scans. If the network changes
during further scans, this indicates an anomaly, which will be reported to the operator,
for example.
The concept of edge node based network mapping presented here has the following

properties:

• Easy integration with current network state recognition of other participants.

• New devices in the network can be found.

• New services with open ports will be detected.

115

4 Modular Building Blocks to Enhance Industrial Control System Security

• Hosts and services which change the status are recognized.

• The information of the network scan is only on the “intelligent” edge node so that
attackers cannot exploit this feature. Thus, the edge node only has to trust itself
and no third parties.

• The network scan is done in a pseudo random manner for load balancing, and the
attacker cannot retrace and exploit the scan process.

The section is structured as follows: The related work is discussed in Section 4.3.2.
Section 4.3.3 explains the concept of network scanning and mapping. Section 4.3.4 in-
troduces the PoC implementation. To show the feasibility, an evaluation is done in
Section 4.3.5. At the end, a conclusion is given in Section 4.3.6.

4.3.2 Related Work

There are different active and passive network scanners available on the market and
discussed in research:
One of the best-known network scanners is Nmap [Lyo09]. It offers a wide variety

of scan options, as well as various scripts for further analysis. However, this requires
a comparatively high-performance computer compared to an embedded MCU used in
an IIoT edge node. Additionally, this is usually done by scanning the network from
a central point, meaning that either an additional scan node must be placed in each
separate subnet or only certain subnets can be scanned.
Wedgbury et al.[Wed+15] gave an overview of passive network scanners for ICSs.

Furthermore, different SCADA network monitoring tools and scanners are compared
by Coffey et al. [Cof+18]. All these specialized ICS scanners also call for high system
performance and produce a huge amount of data to process.
An internet-wide search engine (Censys) for SCADA devices was introduced by Du-

rumeric et al. [Dur+15]. This is also capable of scanning internal networks with the help
of zgrab2 [Bas+16]. However, this is a full featured active scanner that does not run on
small edge node devices either.
ModScan, a Modbus/TCP enumeration scanner, was introduced by Bristow et

al. [Bri08]. A specialized vulnerability network scanner for Siemens devices was in-
troduced by Antrobus et al. [Ant+16], which is based on a modified version of PLC-
Scan [Efa12]. However, these basic scanners are written in the Python scripting language
and are again not suitable for MCUs.
Wang et al. [Wan+06] and Radhappa et al. [Rad+18] summarized the current problems

and open research questions existing in wireless sensor networks. However, they did not
handle intrusion detection with regard to port scanner and network mapping on low
performance edge node devices.
Webster et al. [Web+06] describing their experience using active and passive mapping.

The passive scanning approach often took several days to discover a new service and
the active scanner was not able to find services, without the corresponding protocol
implementation. Table 4.6 shows an overview of properties of active and passive scanners.

116

www.censys.io

4.3 Network Scanning on Industrial Internet of Things Edge Devices

Table 4.6: Generalized comparison of passive network monitoring (e.g. IDS) and active scan-
ning.

Property Passive network monitoring Active scanning
Necessary CPU performance high low
Results clearance medium high
Time to get results high low
Additional network traffic none yes

Another possibility is to combine active and passive systems with each other in order
to use the advantages of both systems [Jar+16]. In this way, for example, the concept
presented here, the IDS in Section 4.2, and the passive scanning in Section 3.5 could be
combined.

4.3.3 Concept

Figure 4.16 shows an example of network mapping seen from an edge node device. In
this example network, there are four nodes (N1-N4), and N1 scans the network in a
pseudo random periodic manner. The dashed arrows show the first scan results with 4
devices (N1-N4) found. This first scan is used as a reference and it must be ensured that
this network is not already contaminated. Thereafter, an additional edge node device
gets into the network (A). Thus, the second scan (dotted) detects the expected devices
(N1-N4) as well as the new device (A). This could indicate an intruder or other processes
causing a change in the network, e.g. maintenance work.

N1
N2

N3
N4

A
First scan
(learn)

Further
scan(s)

Figure 4.16: View of the network mapping from an IIoT edge node device of two different scans.

For network scanning, followed by mapping, where the connections of the hosts are
analyzed, the following parameters can be used. These are grouped into two classes and
introduced in the following section:

• Host alive discovery: With an Internet Control Message Protocol (ICMP) ping
sweep, the active hosts in the network can be detected.

• SYN/connect scan: Open ports and services are detected with SYN and connect
scanning.

117

4 Modular Building Blocks to Enhance Industrial Control System Security

• Optional: The ping timing can be used to detect redirection, e.g. MitM attacks.

• Optional: At the application level, e.g. Modbus/TCP, a more detailed fingerprint
is possible.

In this work, the approach introduced combines the methods presented here and inte-
grates them as a security building block for IIoT edge node devices. To the best of the
author’s knowledge, no network scanner for low-performance MCU devices is available
at present.
One of the biggest advantages of distributed scans is that different paths and subnets

can be easily scanned. This is, for example, the case if networks are strongly segmented,
and the already existing IIoT edge devices in this subnet take over the scanning and no
additional scanning hardware is necessary due to a software update.

4.3.3.1 Host Alive Discovery

The first step that is executed in a network scan is the detection of whether a device is
active or not. Called “host alive discovery,” this method is done via a ping sweep at the
IP ICMP level. If this is done in a local network, it results in an ARP request, and if
the host answers (ARP response), it is up and is tried to be pinged. If a host does not
respond to ICMP ping messages, it does not necessarily mean that it is non-existent; it
may also be possible that it has just disabled ICMP echo. In this case, it is possible to
do a port scan anyway, which is time-consuming.

4.3.3.2 SYN/Connect Scan

Figure 4.17 shows the flowchart of SYN and connect scanning. If the port is closed but
the host is up, the target responds with a RST directly after the SYN packet. If the
host is up, but does not send any packet at all, then a packet filter is active. After the
target host has answered, a RST packet is send if SYN scanning is used. In contrast, if a
connect scan is executed the SYN+ACK message from the target host is acknowledged,
and it is possible to get the data/banner from the target. This data/banner is sent by
many services once the TCP handshake is complete.
The advantage of SYN scanning is that the data does not reach the application level,

and therefore, there are no log entries in the application. However, since this is not used
in preparation for an attack and the goal is not to stay under the radar. The preferred
method is a connect scan, because more information from the target host can be collected.
In addition, Soulie [Sou14] recommends performing connect scans within ICS networks
to reduce influences on the process. This is the preferred scanning method, especially in
fragile ICS networks.

4.3.3.3 Pseudo Random Scanning

On the one hand, the selection of the target host to be scanned must be chosen randomly,
as an attacker might otherwise hide himself. On the other hand, if more scanners are in

118

4.3 Network Scanning on Industrial Internet of Things Edge Devices

Edge Node
Scanner Target

SYN scan

SYN

SYN+ACK

RST

Edge Node
Scanner Target

Connect scan

SYN

SYN+ACK

ACK

Data/Banner

RST

Figure 4.17: Flowchart of a SYN and a connect scan with an open port on the target.

the network, they should not flood one target. Furthermore, the start time of the scan
is randomly chosen between one and five minutes after the edge node is switched on.
This delay after the startup is necessary so that other devices can finish booting, and if
there are multiple scanners in a network, the network load will be further distributed.
For attackers, the pseudo random scanning on distributed edge nodes makes it difficult
to guess the scan pattern.

4.3.3.4 Intrusion Detection Handling

If a new device is detected in the network, a known device is no longer reachable, or
ports/services have changed, this should be regarded as an incident. In this case, the
edge node could go into a safe state or report the incident to a centralized logger. This
depends on the respective field of application. The advantage here is that the direct
processing on the edge node allows a fast and independent reaction. This is because
there are no dependencies and long runtimes, e.g. through network communication to a
central server.

4.3.4 Proof of Concept Implementation

To prove that the approach is feasible on an embedded MCU, it was implemented for
the usage in the test environment, which was introduced in Section 4.1.

4.3.4.1 Hardware

The hardware for the edge node scanning is the same as described in Section 4.1.2.1.
The custom PCB provides input and output capabilities and an I2C display connector
to show current scan details. The current scan progress and intrusion message can be

119

4 Modular Building Blocks to Enhance Industrial Control System Security

displayed on the display of the edge node device itself. Figure 4.18 shows the 1.3 inch
OLED display with an SH1106 I2C driver.

Regular scan Intrusion detected

Figure 4.18: Scan progress and results on the edge node display.

4.3.4.2 Software

As shown in Section 4.1.2.2, the software on the MCU uses FreeRTOS [Bar+08] with the
LwIP [Dun01] stack. The edge node device provides a Modbus/TCP slave, to control
the IOs and a web server to provide current information.
The scan process is shown in Figure 4.19. The data of the first network scan is regarded

as a secure state and will be used as a reference for later scans. After this, the scans
are executed periodically and the results are compared with the results of the initial
scan, which is treated as a trusted dataset. In case any mismatch is detected during the
following scans, intrusion handling is initiated.

Execute
first scan
(reference)

start

Execute
current scan

Compare
first with
current
results

Handle
intrusion

unchang
ed

cha
nge

d

Figure 4.19: High-level view of the scan process. After the first/trusted scan, a continuous
monitoring is run.

The scan module is designed as a task in FreeRTOS and could be used as a building
block in other devices as well.
Figure 4.20 shows the current debug output of a scanning edge node device. On the

lower left side, the data of the trusted scan can be seen, which serves as a reference
dataset. On the lower right side, the output of the current scan progress is illustrated.
The IP with the alive status is printed as well as the open TCP ports. During the learning
phase (first scan), the background color is blue. If there is no network change detected
the background color is green, and otherwise red.

120

4.3 Network Scanning on Industrial Internet of Things Edge Devices

First Scan

STM32F767 Sensor Scan Server

Called URL: / HTTP/1
Build: Dec 28 2019 20:00:27
Device ID: 0000000002
Uptime MS: 0000707290 ms
Free heap: 0000083320 bytes
Own IP: 192.168.001.102
Intrusion: 0000000000
Scanning: 192.168.001.016
Scanning: 00001
Scan Round: 0

Refresh   Soft Reset   Set Intrusion   Reset Intrusion

Current Scan

Learning phase (first scan)

First Scan

IP: 192.168.001.010 up
Ports: 22

IP: 192.168.001.040 up
Ports: 22

IP: 192.168.001.050 up
Ports: 22 502

IP: 192.168.001.101 up
Ports: 80 502

STM32F767 Sensor Scan Server

Called URL: / HTTP/1
Build: Jan 29 2019 14:45:38
Device ID: 0000000002
Uptime MS: 0014599648 ms
Free heap: 0000066536 bytes
Own IP: 192.168.001.102
Intrusion: 0000000000
Scanning: 192.168.001.074
Scanning: 00000
Scan Round: 1

Refresh   Soft Reset   Set Intrusion   Reset Intrusion

Current Scan

IP: 192.168.001.010 up
Ports: 22

IP: 192.168.001.040 up
Ports: 22

IP: 192.168.001.050 up
Ports: 22 502

Current scan status without intrusion

Figure 4.20: Webpage running on the edge node, displaying the current scan status and debug
output.

This representation is not for productive usage, because attackers could use this infor-
mation for aimed attacks. Preferably, only the intrusion message with the changes is sent
cryptographically protected to a centralized logger or only allows access to authenticated
users. However, this setup depends largely on the integration of the scanners, e.g. if
there are local operators with access to HMIs or a centralized control who can react to
the incident.

4.3.5 Evaluation

To show the feasibility of the approach presented here, an evaluation is done. This is
divided into four parts. First, the feasibility in the previously introduced open-source
industrial testbed is measured, then the network performance is evaluated. After this,
the MCU requirements are measured, and at the end the attack detection is evaluated.

4.3.5.1 Industrial Testbed

The PoC implementation is evaluated in the introduced open-source industrial testbed
(see Section 4.1). There, the introduced network scanner runs on each IIoT edge node,
which is accessed and controlled by an OpenPLC [Alv+14] instance over Modbus/TCP
running on a Raspberry Pi. Eight edge nodes are each connected to one sensor and
one edge node is connected to a motor rotating a disc. Furthermore, there is an HMI
displaying the current state of all edge node devices.

121

4 Modular Building Blocks to Enhance Industrial Control System Security

4.3.5.2 Network Performance Measurement

Figure 4.21 shows the number of packets per second during scanning of one edge node
in the open-source testbed. As shown in Section 3.3, high scan rates can affect the
control behavior of PLCs. Therefore, the number of packets must be low, depending
on the components in the network. As an example, the parameter in our testbed is set
to 100ms delay between pings. This affects the number of packets per second of ARP
and ICMP packets. This wait time between packets is set to a high value, because ARP
requests are broadcast to the complete broadcast domain and, as a result of this, it affects
all devices within this subnet. Further, the delay between each single port scan is also
set to 100ms to reduce the network load. Both delays can be changed easily to fulfill the
custom requirements of a certain industrial network.

0 500 1000 1500 2000 2500

Time in s

0.1

1.0

10.0

N
u

m
b

er
o
f

p
ac

ke
ts

p
er

se
co

n
d

ARP

TCP

ICMP

Figure 4.21: Plot over time, with packets per second of an edge node scanning the network.
ARP and ICMP ping requests are used to check if the hosts are up. TCP connect
scans are done if the host is up.

Initially, the scan is delayed for a few seconds. After a power-up, not all edge nodes
start scanning the same IP at a time (see Section 4.3.3.3). After this, ARP requests
for each IP address are sent out, resulting in a maximum of 4 packets/s. If an ARP
response is received, an ICMP ping is executed (max 4 packets/s). This means that
the host is reachable and the first 1024 TCP ports are scanned, which is done with a
maximum of about 25 packets/s, as shown in Figure 4.21. This depends on the state of
the port, for example, if it is open or closed. In comparison, the standard Modbus/TCP
traffic in our testbed is about 400 packets/second between each node and the PLC. To
distribute the load, if more nodes are scanning, the host selection is pseudo randomized
(see Section 4.3.3.3).
An overview of packet sizes is given in Table 4.7. For example, 25 SYN packets/s with

a size of 60 bytes each generate a throughput of 1500 bytes/s (12 kb/s). The 25 packets/s
is a mixed calculation for open and closed ports. This is because, with closed ports, only

122

4.3 Network Scanning on Industrial Internet of Things Edge Devices

one ACK+RST returns from the target. In contrast, an open port results in a three-way
handshake as illustrated in Figure 4.17.

Table 4.7: Data size of different packets from our scanner or as a response to it.
Packet Bytes
ARP request 60
ARP reply 60
ICMP ping request 74
ICMP ping reply 74
TCP SYN 60
TCP SYN/RST 60
TCP SYN/ACK 60
TCP FIN 60
Example SSH banner 95

4.3.5.3 MCU Requirements

Table 4.8 shows the build output of the different sections in bytes. The FreeRTOS task
uses no more than 2,048words of stack and can run with a low priority. Additionally,
the time between packets can be set to a high value, which results in a sleep (blocked
state) of the scan task, whereby other operations can be performed.

Table 4.8: Binary comparison of example application with and without scanner in bytes.
Information text data bss dec hex
With scanner 140040 12588 293704 446332 6cf7c
Without scanner 129368 12588 293552 435508 6a534
Difference 10672 0 152 10824 2a48

Most MCUs-enabling networking should have enough performance to handle the addi-
tional scan task due to the relatively low RAM and ROM requirements. Nevertheless, by
optimizing the code, the requirements of the scan building block can be further reduced.

4.3.5.4 Attacker and Detection Consideration

The detection in the testbed depends on the scenario and the configuration of the attacker
device. Furthermore, a trusted scan with a clean network at the beginning must be
ensured. For this reason, five possible attack scenarios are modeled and evaluated within
the open testbed:

1 One edge node is removed from the network. This can happen, for example, when
an attacker removes the device or by a malfunction. The type of attack requires
little knowledge of the specific target. Therefore, the attacker is considered weak.

123

4 Modular Building Blocks to Enhance Industrial Control System Security

2 Services offered in the network have disappeared or new services have been added.
This can happen when an adversary attacks services which crash or introduces
back-doors that open new ports. This type of attack requires moderate attacker
knowledge, because changes to the network are made.

3 An attacker attaches a standard configured computer to the network. There is no
special configuration made by the attacker to be undetectable. Adding a computer
to perform a port scan, for example, requires little knowledge and can be done by
a weak attacker.

4 A MitM attack is executed. In this case, the attacker has complete control over
the traffic between two or more network participants. This enables viewing and
manipulating the data. For this scenario, the attacker knowledge is medium because
of the necessary high privileges.

5 An attacker is performing a “stealth” attack [Sin+15]. For example, the attacker
is passively listening to the network traffic and makes a “stealth” port scan. This
passive attack is a special attack on a network, where a system is secretly monitored
and scanned passive, for example, for open ports and vulnerabilities. The purpose
is solely to collect information about the network and hosts. No data is being
injected into the destination network by the attacker. This scenario requires a
strong attacker due to the necessary knowledge.

For scenario 1 , our network scanner detects the changes, because the host is not
reachable by pings anymore and can handle the intrusion. If services with open ports
change (scenario 2), they are detected by the port scan. A standard configured computer
(scenario 3) even without open ports can be found by ICMP pings. If a MitM attack
(scenario 4) is executed, in some cases the latency of pings is getting higher. In this
case, the MitM attack could be detected by analyzing the ping timing; otherwise, it is
not possible with this approach. Stealth attacks or passive listening (scenario 5) cannot
be detected by active scanning methods, such as the edge node scanner presented here.
Table 4.9 summarizes the detection of different scenarios.

Table 4.9: Summary of the evaluated attack scenarios and detection capabilities.
Model Short description Attacker Detection Mechanism
1 Node removed weak 3 ICMP ping
2 Service changed medium 3 SYN scan
3 Standard attack weak 3 ICMP ping
4 MitM attack medium m timing
5 Stealth attack strong 7 –

3detected mdepends 7not detected

124

4.3 Network Scanning on Industrial Internet of Things Edge Devices

4.3.5.5 “Stealth” Attacker Configuration

Case 5 is possible if the attacker suppresses any network interaction, has no open ports,
and disables ICMP echo (Listing 4.2).

1 echo "1" > /proc/sys/net/ipv4/icmp_echo_ignore_all
2 ip link set dev enp0s31f6 arp off

Listing 4.2: Command to disable ARP and ICMP echo in Linux.

In this case, it is not possible for the network scanner to detect the device. The attacker
must be aware that there is a continuous network scanning so as not to get detected.
Additionally, knowledge is required about how the network is configured and if local
networks are not allowed to respond to ARP requests.

4.3.6 Conclusion

In this section, a network scanning and mapping building block for embedded low-cost
IIoT edge node devices was introduced. Furthermore, the feasibility of the presented
approach was evaluated in the previously introduced open-source industrial testbed (Sec-
tion 4.1). The introduced network mapping concept is lightweight and the results are
clear and detailed in contrast to most passive network monitoring approaches.
The amount of additional traffic in the network with the open testbed sample configu-

ration with a mean of 4 packets/s and peeks up to 25 packets/s from a single edge node is
low and could be adjusted, if necessary. Furthermore, the integration within a FreeRTOS
scanning task and the configuration for the network can easily be done in other projects.
Using the here presented building block, the security level of low-cost edge node devices,
e.g. for securing the IIoT, can be increased.

125

4.4 Low-cost Industrial Control System Testbed for Education and Research

4.4 Low-cost Industrial Control System Testbed for Education
and Research

Contents of this section

4.4.1 Introduction . 127
4.4.2 Industrial Control System Testbed 128
4.4.3 Testbed Implementation . 131
4.4.4 Evaluation and Benchmarking of the Testbed 138
4.4.5 Conclusion . 142

Parts of this section have already been published in the paper “LICSTER – A Low-cost
ICS Security Testbed for Education and Research” at the 6th International Symposium
for ICS & SCADA Cyber Security Research (ICS-CSR) 2019 [Sau+19].

4.4.1 Introduction

In order to make ICSs more secure, research is needed, which is, however, difficult to
conduct on productive systems, since these often have to operate 24 hours on 7 days
a week. Testbeds are mostly very expensive or based on simulation with no real-world
physical process. In this section, Low-cost ICS Security Testbed for Education and
Research (LICSTER), an open-source low-cost ICS testbed is introduced, which enables
researchers and students to get hands-on experience with industrial security for about
500 euros. All necessary materials to quickly start ICS hacking are provided, with the
focus on low cost and open source for education and research.
In principle, there are three types of testbeds – virtualized, real-world, and hybrid.

Just as there are different types, there are different tasks for which a testbed can be
used. For security scenarios and attacks on an ICS in particular, a real-world testbed
incorporating a physical process is preferred to fully understand the effects and attack
vectors in a production environment. Unfortunately, purchasing real industrial hardware
for a testbed is very expensive, and particularly for education and research often not
affordable. Additionally, the proprietary devices prevent pervasive changes, which makes
research partly difficult.
In this section, LICSTER, an open-source, low-cost ICS testbed is presented with the

following contributions:

• Testbed components for about 500 Euro, which is affordable by most researchers
and students.

• A real-world physical process controlled by an ICS, which enables to demonstrate
and analyze the impacts of cyber-attacks in the real-world.

• The feasibility of the testbed is shown and ideas for research are discussed.

127

4 Modular Building Blocks to Enhance Industrial Control System Security

• The components are open-source and open-hardware, as far as possible. This
allows a wide range of further research.

• Attacker models and attacks to understand threat scenarios in industrial envi-
ronments are provided.

The section is structured as follows: In Section 4.4.2, the concept of LICSTER is
presented. Section 4.4.3 describes the proposed implementation of the components. The
section continues with an evaluation in Section 4.4.4, with a discussion about further
training and research questions. Eventually, Section 4.4.5 concludes this work.

4.4.2 Industrial Control System Testbed

Setting up a testbed is not the final goal but simply a tool to achieve a bigger objective.
This makes it crucial to have a clear understanding of the objectives and their constraints
before beginning to design a testbed. Especially for an ICS security testbed for education
and research, having clear attacker models and a prepared list of desired attack scenarios
is valuable.

4.4.2.1 Testbed Requirements

As Green et al. [Gre+17] concluded, a testbed, sophisticated and versatile as it may
be, has little use unless it is broadly accessible. Therefore, open source is an essential
requirement. Additionally, many scenarios should be covered with LICSTER, resulting
in the following requirements:

• In order to make the testbed affordable for teaching and research, it must be
designed for low-cost.

• A physical process must be represented to study consequences of cyber-attacks
on ICSs.

• In order to obtain repeatable results, the entire process must be reproducible.

• The testbed must be portable, e.g. for teaching and demonstration to gain aware-
ness. Furthermore, a small footprint is easier to handle when modifying compo-
nents.

• By using open-source software and hardware, research on components is feasible
and widely accessible.

• The testbed implementation should cover level 0 to level 2 of a common ICS,
focusing on the physical process and SCADA environment.

128

4.4 Low-cost Industrial Control System Testbed for Education and Research

4.4.2.2 Related Work

Owing to the interest in ICS security, a lot of testbeds were created around the world
in the past years. Holm et al. [Hol+15] described and compared 30 testbeds in a sur-
vey. However, the testbeds listed there are either expensive, closed-source or virtualized.
LICSTER clearly distances itself from those testbeds with its clear focus on open-source
and low-cost components.
Testbeds for ICS are expensive, especially when they are built with standard hardware,

for example the testbed used in Section 3.1 is about 35 000 euros. This testbed fulfill
the task of specific robustness tests of ICS components. However, the size and the cost
involved make it unattractive for most researchers and students.
Queiroz et al. [Que+09] describe a modular testbed based on Modbus/TCP. However,

they only show simple DoS attacks and make changes difficult because of proprietary
hardware.
Green et al. [Gre+17] describe ten lessons learned by setting up an ICS testbed. They

built up a huge testbed, with the conclusion that local access and a mobile demo unit
are essential.
McLaughlin et al. [McL+16] summarize the ICS landscape and also describe the re-

quirement of testbeds. They highlight the need for real-world physical consequences
and their monitoring. LICSTER matches these requirements and additionally enables
monitoring the physical process.
Maynard et al. [May+18] and Formby et al. [For+18] introduced an open framework

for SCADA virtualization and simulation. However, a pure simulation or virtualization
does not fulfill the requirements of the testbed introduced in this work. Nevertheless,
this can be taken into consideration as an expansion.
Foley et al. [Fol+18] use a Fischertechnik simulation model for cyber security science

hackathons. The basic idea is similar, but in this testbed proprietary components are
used and thus it is significantly more expensive.

4.4.2.3 Attacker Models

There is no single defense mechanism to mitigate all threats to a digital system. De-
pending on the nature and origin of an attacker, some defenses might be less useful than
others. Therefore, before defining the possible attack scenarios against LICSTER, the
potential attackers must be defined.
The remote attacker has network access to the ICS through a router. That means

that the attacker can reach the system only via its IP address and thus preventing attacks
below the OSI network layer three [Day+95]. This replicates the scenario of exposed
control systems [Dur+15], for example, when devices are connected to the internet for
maintenance reasons.
In contrast to the capabilities of the remote attacker, the local attacker has direct

access to the ICS. Being present at the plant site allows, on the one hand, the possibility
for physical attacks on the individual ICS components, e.g. sensor tampering. On the
other hand, there is the direct access to the network switch where ICS components are

129

4 Modular Building Blocks to Enhance Industrial Control System Security

connected to. This enables an attacker to perform ARP spoofing and all the attacks that
rely on it.

4.4.2.4 Attack Scenarios

A central distinction between traditional office networks and production networks is that
an ICS network has to manage and control the physical processes. That makes it all
the more important for a relevant ICS testbed to incorporate a physical process, as it
allows attacks on the system from an entirely different perspective. With LICSTER,
various attack scenarios on the ICS level 0 to level 2 are possible. This means, as shown
in Figure 2.1, that attacks from the process level to the SCADA level can be performed
within LICSTER.
The act of network sniffing can be separated into two methods. The first is a passive

approach. An attacker can utilize a mirror port or network tap to capture the traffic or
simply receive and read broadcast messages. The second method of network sniffing is an
active technique, where traffic is redirected over the host of the attacker by manipulation
on the MAC layer through ARP poisoning, for example.
Less complicated is the DoS attack, where the target is flooded by network packages

it needs to react to. As the number of requests is high enough, the accumulated net-
work and/or CPU load reacts to each and every package, eventually causing the regular
execution of the target to slow down or stop completely.
With a MitM attack, an intruder manages to place himself between two communica-

tion partners through the manipulation of routing information on the IP layer or MAC
layer. There the attacker is able to capture and/or manipulate the exchanged packages.
Additionally, a manipulation over the network of ICS components is possible, as

shown in Section 3.2, where the network interface of a PLC is fuzzed to manipulate the
PLC.
Apart from network-based attack vectors, a culprit with physical access has a

wide range of attacks at his disposal such as manipulating devices, sensors, plug- and
unplugging systems, and straightforward destroying components of the ICS. In the
following, a list of possible attacks mapped to the ICS levels is provided:

Attacks on level 0 (process level):

• Manipulating the physical process, for example, by removing the commodity

• Physically damaging machines so that the process is not performed properly, e.g.
with raw violence

Attacks on level 1 (field level):

• DoS attack on sensors or actuators

• Interfering with availability by disconnecting the network or power plug

• Manipulating a sensor physically so it transmits spoofed values

130

4.4 Low-cost Industrial Control System Testbed for Education and Research

• MitM to manipulate the values between the PLC and remote IO

Attacks on level 1 (control level):

• DoS attack on the PLC or HMI

• Sniffing network traffic, e.g. to get sensitive production information

• MitM to manipulate the values of the PLC or HMI

• Physical access to the HMI, e.g. to stop the process

Attacks on level 2 (process control level):

• DoS attack on the SCADA and historian systems

• Sniffing network traffic, e.g. to get sensitive process details

• MitM to manipulate the values of the SCADA or historian server

• Manipulating the state of the SCADA system, e.g. to reduce the daily order count

Attacks at various ICS levels require different access rights and tools, which are described
in detail in Section 4.4.4 of the evaluation of LICSTER.

4.4.3 Testbed Implementation

The presented testbed handles the physical, field, control and supervisory levels of the
industrial automation pyramid as described in Figure 4.22. The implementation of the
testbed is designed in a way to allow for Industry 4.0 scenarios, like using a smartphone
as an HMI, as well as the more traditional ICS cases represented by the industrial au-
tomation pyramid. Thus, the entire communication between the PLC, the HMI and even
the remote IOs is based on TCP/IP protocols, namely Modbus/TCP. The sensors them-
selves communicate with the remote IOs on a fieldbus protocol, for which Modbus/TCP
was chosen which is broadly used in the industry.
An overview of the devices in the testbed is given in Table 4.10 and described in detail

in the following sections (Section 4.4.3.2 to Section 4.4.3.4). The total amount of 577
euros is not necessarily the cheapest choice, because it depends on the prices of the
distributor.
Figure 4.23 shows the testbed mounted in a 3d printed case, which makes it easily

portable. The physical process is placed on top. In the front panel, the HMI and the
OLED screens of the remote IOs are mounted. The network switch, the two remote IOs,
and the two Raspberry Pis are fixed inside.

131

4 Modular Building Blocks to Enhance Industrial Control System Security

Level 2 Level 1 Level 0

Remote
IO 2

Remote
IO 1

PLC

HMI

SCADA,
historian, ...

Physical
process

User
interaction

Modbus/TCP

Modbus/TCP
Modbus/TCP

Modbus/TCP
touch/web

web

electrical

electrical

Figure 4.22: System view of LICSTER.

Table 4.10: Overview of devices used in the testbed. Prices are current prices on Amazon.
Component Software Hardware IP Price ca.
Remote IO FreeRTOS, LwIP Custom, STM32F7 192.168.0.51/52 79 Euro
PLC OpenPLCv3 Raspberry Pi 3 192.168.0.30 56 Euro
HMI Custom, PyModbus Raspberry Pi with Display 192.168.0.20 139.- Euro
SCADA ScadaLTS, Logging Raspberry Pi 192.168.0.10 56 Euro
Switch - TP-Link 192.168.0.1 32 Euro
Process - Fischertechnik - 195 Euro
Others - e.g. cables - 20.- Euro
Total 577 Euro

4.4.3.1 PLC

As PLC the open-source solution OpenPLC from Alves et al. [Alv+14] is used. It is a
soft PLC, meaning it can be run on various operating systems and on hardware with and
also without IOs. Within LICSTER, OpenPLC runs on a Raspberry Pi, with a PLC
procedure programmed in ST which is uploaded to the PLC over its own web portal.

The program contains a simple, repeatable process which can be triggered and moni-
tored by the HMI as shown in Figure 4.24. The process consists of five stages in which
it moves and processes a plastic cylinder as a workpiece example.

1 Before starting, the initial conditions must be fulfilled with everything at rest and
the cylinder at its place. 2 The conveyor belt moves the plastic cylinder to the punching
machine and stops right underneath it. 3 The punching machine moves downward until
its lower limit switch is triggered. 4 then continues to move up again until its upper limit
switch is triggered. 5 Finally, the conveyor belt moves the plastic cylinder away from the
punching machine, back to its origin and then stops. 6 If a detectable error (e) occurs
or the emergency stop is pressed, the machine goes in an error state and stops every
movement. In this case, the process handling in the event of an error or an emergency
stop are identical, in order to achieve a safe stop state. This can be reset on the HMI.

132

www.amazon.de

4.4 Low-cost Industrial Control System Testbed for Education and Research

HMI

Remote IOs
displays

Physical
process

Goods/
cylinder

Figure 4.23: Front view on the complete LICSTER testbed. The process on top, represents a
punching machine with a conveyor belt.

Initialize
(1)start

Goods to
punching
machine

(2)

Punching
machine
down
(3)

Punching
machine

up
(4)

Goods to
origin
position

(5)

Error state
(6)

reset
e

e
e

e

Figure 4.24: Program sequence of the process implemented on the PLC.

4.4.3.2 Human Machine Interface (HMI)

The HMI is provided by a webserver which runs on a dedicated Raspberry Pi attached
to a touchscreen. The web application is split into three areas – view, order, and control
– where the user has the possibility to monitor the process, place orders, and thus trigger
the described process. The user can also manually control the conveyor belt and the

133

4 Modular Building Blocks to Enhance Industrial Control System Security

punching machine via the touch panel. This behavior resembles a real HMI. Figure 4.25
shows a screenshot of the HMI, where the process is observed. Through this functionality
and usage, authentic attack scenarios can be set up. Basing the HMI on a webserver
has several perks: First, it reflects the change of technology introduced by industry 4.0.
Companies like Siemens are already pursuing this approach with their WinCC/Web Nav-
igator [Sie]. Second, knowledge about web technologies is widespread and conveniently
accessible, making this HMI easy to understand, extend, and exploit. Third, with small
modifications, such as introducing Wi-Fi to the Raspberry Pi, the HMI can be effort-
lessly ported to tablets or smartphones, which introduces new attack vectors and, again,
represents the shift to contemporary technologies.

Process view mode

Order management mode Manual control mode

Figure 4.25: Pictures of the different HMI views.

Besides monitoring the process, orders can be placed and the controller can be set in
a manual mode, where the process is controlled by the operator. This also brings the
human component into play in the testbed.

134

4.4 Low-cost Industrial Control System Testbed for Education and Research

4.4.3.3 Remote IO

The remote IOs are custom, open-source solutions based on a development board from
STMicroelectronics. These remote IOs are based on the edge node devices introduced in
Section 4.1, with 24V IOs. The base board is a STM32F767ZI [STMa] with an Arduino
Uno V3 header, which is connected to a self-designed custom add-on board. Using the
Arduino Uno V3 header for the custom PCB allows the underlying prototyping board to
be changed easily with other compatible boards. This is relevant, for example, if higher
performance, an energy-saving solution, or cheaper hardware is needed.

Transistors LEDs Network

Display

IOs Custom PCB

STM32 development board

USB

Figure 4.26: PCB of the remote IOs.

The USB connector for programming and power is placed on the left side of the de-
velopment board. The RJ45 Ethernet connector for networking is mounted on the right
side. The custom PCB is necessary to convert the 24V of the physical process to the
3.3V of the STM32 development board. Additionally, each remote IO is connected to a
display as illustrated in Figure 4.27. There the operator can monitor the current state
of the Modbus/TCP input registers and coils.
Applying displays to field level components is a trend that can also be seen by real-

world components. In larger plants and systems, it simplifies identifying erroneous de-
vices for the operator. Moreover, these devices often allow a simple on-site basic config-
uration during commissioning.

4.4.3.4 Physical Process (Fischertechnik)

One of the main requirements is to use a real physical process so that impacts are
directly visible. However, in order to keep the necessary skills low, an affordable as

135

4 Modular Building Blocks to Enhance Industrial Control System Security

Figure 4.27: Picture showing the display mounted on each remote IO.

well as manageable solution is used in the LICSTER testbed. Another requirement to
the process is that it should be automatically repeatable without the need for human
interaction. That way the researcher or student has enough time to execute his attacks
and to observe the effects. The selected device is a Fischertechnik punching machine
96785_sim [fis], as shown in Figure 4.28 and is costing 195 euros.
The Fischertechnik system consists of a conveyor belt, two light-barriers, two limit-

switches, and two motors. The light-barriers are placed at each end of the conveyor belt
and the limit-switches control the upper and lower limits of the punching machine. One
electric motor drives the conveyor belt clockwise and counterclockwise, while the other
electric motor lifts and lowers the punching machine from and to the conveyor belt.

4.4.3.5 SCADA/Historian

The software used as SCADA and historian system for the testbed is
Scada-LTS [Rok+16]. It is an open-source solution that supports Modbus/TCP
and is entirely web-based. It also represents the shift to contemporary technologies in
Industry 4.0. The software runs on a Raspberry Pi. Its webpage can be accessed by any
system within the network. Scada-LTS also offers the possibility to store values over a
longer period and to offer them as process history.

4.4.3.6 Necessary Skills

Although the testbed is designed to keep the entry hurdle for new students as low as
possible, basic knowledge about the following three aspects is necessary. 1 Basic electrical
knowledge is required to safely connect a few wires to the system. However, this is
very limited, since only four sensors and two motors need to be connected. 2 When
the STM32-based remote IOs should be used, soldering skills and a soldering iron are
necessary. This can be avoided by using, for example, Raspberry Pis with 24V IOs, as
recommended by the OpenPLC project, but this results in a smaller testbed and also
a higher cost. 3 Basic Linux skills are of benefit to set up the Raspberry Pis and use

136

4.4 Low-cost Industrial Control System Testbed for Education and Research

GoodsLight barrier

Driver board Conveyor belt

Punching machine

Limit switch

Figure 4.28: Picture showing the Fischertechnik setup.

the attacking tools. However, necessary materials and guides to set up the testbed are
provided, which reduce the initial hurdles to a minimum.

4.4.3.7 Connections and Wiring

The network cabling is simple, because only all components need to be connected to
the network switch. There are no special requirements for the networking, but it is
recommended to start at network port 1, for example to set up a mirror port on port 8
later. The OLED screens are connected directly to the remote IO PCBs, or if extensions
are used one to one. The power supplies of the Raspberry Pis, the network switch and
the 24V power supply must be connected as regular and the remote IOs are powered
over USB from one of the Raspberry Pis. The most difficult part is the wiring of the
Fischertechnik process, but every connection is labeled with a number or named, which
make the wiring straight forward. Table 4.11 shows the wiring matrix.
To test whether the cabling is correct, it is possible control and check everything

individually with the manual control mode of the HMI.

137

4 Modular Building Blocks to Enhance Industrial Control System Security

Table 4.11: Electrical wiring within the testbed.
Fischertechnik Remote IO 1 Remote IO 2 Power

1 VCC VCC 24V
2 nc nc 24V
3 GND GND GND
4 nc nc GND
5 nc 8 nc
6 nc 7 nc
7 8 nc nc
8 7 nc nc
15 nc 1 nc
16 nc 2 nc
17 1 nc nc
18 2 nc nc

nc = not connected

4.4.4 Evaluation and Benchmarking of the Testbed

The evaluation of the LICSTER testbed consists of three tiers. First, it is assured that
the overall concept is viable and the communication between the components works
as expected. Second, the previously identified attacks are systematically applied to the
testbed and evaluated for their feasibility and effects to the system. Finally, it is evaluated
which open research questions could be assessed with the help of the proposed testbed.

4.4.4.1 Evaluation of the Implementation

For some research questions and teaching exercise, network traffic is a critical element.
For example, intrusion detection can be configured and evaluated based on the network
traffic captures of executed attacks. Figure 4.29 shows the density distribution of out-
going packets per second per component during a one-minute capture while the testbed
runs its process.
It clearly shows that the number of packets per second differs, depending on the device.

The PLC (192.168.0.30) contains most of the logic and therefore is the most communica-
tive component with about 110 packets/s. This is because the PLC polls the remote IOs
every 100ms while simultaneously being polled by the SCADA and HMI. In compari-
son, the communication of the HMI, which updates the values only once every 500ms,
amounts to significantly less traffic. Each remote IO takes about 55 packets/s to commu-
nicate, which is mostly due to the constant polling of the PLC. The similar behavior of
the remote IOs leads to a correlative density representation. Lastly, the SCADA system,
which has no hard timing requirements, only amounts to about 20 packets/s.

4.4.4.2 Attack Validation within the Testbed

Table 4.12 shows an overview of selected attacks performed on the testbed.

138

4.4 Low-cost Industrial Control System Testbed for Education and Research

0 20 40 60 80 100 120

Number of outgoing network packets per second.

10−2

10−1

100

D
en

si
ty

IP: 192.168.0.10 (SCADA)

IP: 192.168.0.20 (HMI)

IP: 192.168.0.30 (PLC)

IP: 192.168.0.51 (Re. IO1)

IP: 192.168.0.52 (Re. IO2)

Figure 4.29: Density plot showing the number of packets per second of each device within
LICSTER.

In order to correlate the attacks with the ICS levels 1 , the first column enumerates
the levels zero to two of the industrial automation pyramid. The second column Attack
description 2 of the table contains a list of attacks derived from Section 4.4.2.4. These
are the scenarios for a potential attacker. The three basic protection goals of IT security
are Confidentiality, Integrity and Availability. Therefore, the third column, CIA 3 , maps
each attack to the protection goals it compromises. The STRIDE 4 threat model by
Kohnfelder et al. [Koh+99] in the fourth column uses the indicators Spoofing, Tampering,
Repudiation, Information disclosure, Denial of service and Elevation of privilege as a
more detailed threat mapping. Next, column 5 maps the attacker model 5 introduced
in Section 4.4.2.3 to each attack, to clarify which attacks actually need physical access and
which do not. Column 6 containsTools 6 which are used to evaluate and perform attacks
on the testbed are. Here viable readymade and open-source solutions are preferred.
Additionally, customized scripts are provided to execute attacks where no ready to use
tools is available. Here is a brief overview of the tools and the corresponding attacks:

• Network scanning is done with nmap [Lyo09]. The specific Modbus/TCP NSE
script [Bri10] is used to identify Modbus/TCP devices.

• For network sniffing the Linux tool tcpdump [Jac+89] and wireshark [Com+08] is
used. Wireshark, a piece of software for traffic capture and protocol dissection for
various protocols including Modbus/TCP, facilitates easy package analysis.

• For flooding and DoS attacks the tool hping3 [San99] is used. It supports a multi-
tude of protocols and configurations to perform different forms of DoS attacks.

139

4 Modular Building Blocks to Enhance Industrial Control System Security

Table 4.12: Evaluation of a selection of possible devices in the testbed.
ICS
Level

Attack
description CIA STRIDE Remote

attacker
Local

attacker
Tools

(selection)
Skill
level Impact Detection

difficulty
1 2 3 4 5 6 7 8 9
0

process
level

Manipulate A TD 7 3 — low high easy
Physically Damage A TD 7 3 — low high easy

1
field
level

DoS Sensor A D 3 3 hping3 low high easy
Disconnect IO power/network A TD 7 3 — low high easy
Manipulate IO physical A TD 7 3 — low high easy
MitM spoof values IO-PLC CIA STRIDE 7 3 script high high medium

1
control
level

DoS PLC A D 3 3 hping3 low high easy
DoS HMI A D 3 3 hping low medium easy
Sniffing network C I 7 3 Tcpdump low low difficult
MitM spoof values HMI-PLC CIA STRIDE 7 3 script high high medium
Physical access HMI CIA STRIDE 7 3 — low low medium

2
process
control
level

DoS SCADA A D 3 3 hping3 high low easy
Sniffing network C I 7 3 Tcpdump low low difficult
MitM spoof values SCADA-PLC CIA STRIDE 7 3 script high high medium
Attack SCADA CIA STRIDE 3 3 script medium high medium

• For MitM attacks a custom Python script for easy editing is used, based on the
libraries pymodbus and scapy [Bio+11].

• For active manipulation of values in the Modbus/TCP communication, a custom
Python script or interactive Python shell with pymodbus is employed.

The seventh column, Skill level 7 , refers to the knowledge required by the attacker
to achieve his malicious goals. Each attack scenario is rated low, medium, or high. The
rating primarily represents the amount of system-specific insight an attacker needs to
follow through with his attack. Other aspects such as the basic technical knowledge and
the expertise in available tools do not weigh in the rating quite as much, since most
tools and relevant documentation are freely and sufficiently available. To measure the
Impact 8 in column 8, again a rating of low, medium, or high is used to reflect the
consequences to the system and the physical process of each attack. The severity of the
rating depends on factors such as whether or not the plant can be damaged as a direct or
indirect result of the attack, e.g. when the punching machine does not stop at the limit
switch and crashes into the ground. Finally, the Detection difficulty 9 is assessed in
the ninth column on three levels low, medium, and high, as mentioned previously. It
represents a rough estimation of the likelihood of successful detection of an attack by
defensive mechanisms, e.g. an IDS. The skill level, impact, and detection difficulty are
rated on three levels. Attacks in real scenarios depend on many circumstances and can
vary heavily when compared with each other. That is why, the table can only give a
tendency, which should be taken with a grain of salt.
This evaluation has been shown that even low-cost testbeds offer many possibilities of

attacks. It is important to see direct effects for new researchers and students, such as
the physical process. This shows ICS specifics, as digital devices interact with the real
world and attacks on network devices can have an impact on a process.

140

4.4 Low-cost Industrial Control System Testbed for Education and Research

4.4.4.3 Discussion of Extensions and Research Questions

This subsection elaborates on how LICSTER’s functionality can be enhanced by exten-
sions and what research questions can be investigated on the foundation of the here
presented testbed. Also, the research ideas introduced by Cardenas et al. [Cár+08a] are
picked up in this testbed. This demonstrates how adaptive LICSTER really is and how
much room for research and discussion it provides, despite its simplicity. In fact, it is
this simplicity that makes this testbed so easy to use and promising for students and
beginners.

Extensions LICSTER can be easily extended, for example, by virtual ICS compo-
nents [Ant+15] or standard office clients in virtual machines. The extensibility of the
introduced LICSTER testbed allows for the simulation of potentially huge environments,
always with the physical process integrated. Apart from enhancing LICSTER by further
components and clients, its communication capabilities can be extended by additional
protocols such as, for example, OPC UA. Hence, LICSTER can be used as a platform
to evaluate the security aspects of upcoming ICS protocols [Ren+10]. Evaluations like
these could lead to the establishment of requirements for secure protocols in ICSs. One
topic that was discussed by Givehchi et al. [Giv+14], involves operating parts of an ICS,
such as PLCs, in the cloud or fog. It is interesting to examine further security research
in addition to the evaluation of availability and control timings. All that is needed is to
move the OpenPLC, which runs on any Linux-based computer, into the cloud or fog.

Offensive Scenarios Morris et al. [Mor+13] presented 17 attacks against ICSs that use
the same Modbus/TCP protocol as LICSTER. Hence, these attacks can be executed on
the testbed introduced here and evaluated with the real-world impacts on the physical
process. One of the most serious dangers to critical infrastructures is an Advanced
Persistent Threat (APT), as explained, among others, by Gouglidis et al. [Gou+18].
LICSTER provides an elementary but sufficient platform to further investigate these
types of attacks, since it provides all of the relevant components of an ICS, including the
physical process.

Protection Measures A protection mechanism often used for ICSs is network monitor-
ing [Zhu+10]. Since LICSTER spans over multiple ICS layers, it incorporates various
types of network communication, as can be seen in Section 4.4.4.1. For example, the com-
munication between the PLC and the remote IOs shows clear timing criticality, while
the traffic between the SCADA system and the PLC does not. With these distinctive
communication characteristics, LICSTER can be used to evaluate IDS implementations
and to test their detection mechanisms.

Moreover, the remote IO can be programmed with custom firmware, which is mostly not
possible when proprietary hardware is used. With this, intelligent IIoT edge nodes, e.g.
for intrusion detection, can be placed into the testbed.
This small selection of topics shows that it is often not the number of components and

141

4 Modular Building Blocks to Enhance Industrial Control System Security

size that counts, but mapping an entire industrial process within a testbed is more
important. This allows a simple demonstration of impacts on physical processes caused
by cyber attacks. Particularly for learning purposes, it is important to have simple tools
to comprehend complex topics.

4.4.5 Conclusion

In this section, LICSTER, an open-source, low-cost ICS testbed for education and re-
search, was presented and made public available [HSA19]. It is shown that the concept
can be set up for about 500 euros. This way, the entry barrier is lowered so that more
people can get hands-on experience with ICS security. To enhance the learning experi-
ence of how the physical world interacts with the digital environment, suitable attacker
models and possible attacks are introduced. These measures are intended to provide
students and researchers an easy access to the topic of ICS security.
Furthermore, even with a low-complexity testbed as LICSTER, current and relevant

research questions can be assessed, due to the open-source nature of the project and its
components. With LICSTER, offensive as well as defensive techniques can be tested and
evaluated on different ICS levels. The physical process is a key segment of LICSTER,
which allows for a haptic understanding of the effects of cyber-attacks on ICSs.

142

Conclusion and Future Work
Chapter5

Contents of this chapter

5.1 Conclusion . 143
5.2 Future Work . 144

In this chapter, a conclusion of this work is given. This is followed by an outlook
on open and further research challenges in the area of ICS security. Since 2008, when
Cárdenas et al. [Cár+08a] presented the current status and open research questions in the
field of ICS security, a lot of research has been done. Nevertheless, more than a decade
later, much remains unanswered. A part of these research questions were picked up in
this work and current problems of ICS with regard to the communication robustness of
ICS components like PLCs have been analyzed. Furthermore, secure ICS architectures
as well as other building blocks were introduced. All the here shown solutions have been
implemented in a PoC and evaluated. The presented results enhance the state of research
in the area of industrial IT security.

5.1 Conclusion

In this work, I analyzed problems and vulnerabilities of commercial PLCs and then
introduced building blocks to enhance the ICS security in general and PLCs in particular.
First, I introduced the proprietary testbed, that was used for most analyzes in this

work. This testbed is equipped with PLCs from different vendors and a custom designed
logic analyzer to observe the electrical outputs of the PLCs. With this, I analyzed the
automated fuzzing of proprietary TCP/IP protocols for programming PLCs. With this
framework, these protocols can be analyzed without high reverse engineering effort, which
was demonstrated by detecting vulnerabilities in Phoenix Contact PLCs. Furthermore,
possible impacts of network communication load to PLCs were demonstrated. This is
a new way of looking at things, as most research does not cover the interference be-
tween the network and electrical side of industrial controllers. Here also vulnerabilities
of ICS products were discovered, and a warning for careless network scanning in ICS was
given. This shows that network traffic in critical control systems can lead to unintended
states and that there is still potential for further research. Subsequently, a dual MCU

143

5 Conclusion and Future Work

architecture was introduced, which solves the above-mentioned problems regarding an
influenceable cycle time and allows a robust control of physical processes. For existing
ICSs, a secure passive network scanning method was presented to enable asset identifi-
cation without influences. This captures ARP broadcasts and uses MAC addresses to
identify the corresponding device. Using this it is possible to get a first impression of the
network participants without active network scanning.
In the second part, open components to enhance security in ICSs and for education

and research are introduced. At the beginning, self-developed open components and
an open-source testbed were presented. These were used for the research and for PoC
evaluation of the introduced security building blocks. First, a method for a distributed
IDS on low performance MCUs was presented. This allows each ICS device to detect
cyber-attacks on its own by monitoring network timing behavior and packet meta data.
Additionally, I presented a network scanner for low-performance MCU evaluated on the
previous introduced open testbed. As a result, attackers in industrial networks can be
found without the requirement of special scanning hardware in each subnet. At the end,
a Low-cost ICS Security Testbed for Education and Research (LICSTER) is presented to
enable an easy start into ICS security. This is intended, for example, to enable research
in the field of industrial IT security at low costs, as the hurdle in knowledge and cost is
usually high.
On the whole, in this work I identified problems in the area of ICS security, which has

led to numerous vulnerability reports as well as a new awareness of attacks and active
scanning in industrial networks. Furthermore, I demonstrated appropriate solutions to
increase the security level of ICS devices and networks, contributing significantly for
secure Industry 4.0 architectures.

5.2 Future Work

Future industrial plants are being exposed to more and more threats due to increas-
ing demands in connectivity caused by Industry 4.0 scenarios. To withstand this, new
architectures, tools, and concepts will be required. For this reason, the International
Electrotechnical Commission (IEC), introduced the IEC 62443 [IEC08] series that deals
with security in industrial plants. For these new ICSs, security concepts based on the
IEC 62443 have to be designed and set up from the beginning and devices have to be
developed according to these principles. In order to be able to implement these measures,
specific implementations and evaluations for these are needed. In this way, the flooding
tests and evaluations that were made using the proprietary testbed (Section 3.3) can
be used for standardized tests. This enables operators to compare which PLC meet the
requirements for a specific task and also can be used for manufacturers within a contin-
uous integration test. This is partly a task of further research to provide and evaluate
independent generic solutions. In the end, it would be optimal if each device is secure
by itself (Secure by Design) and does not need any external protection mechanisms like
firewalls.

144

5.2 Future Work

However, old plants should not be forgotten, since industrial systems have a lifetime
of several decades. A completely different way of looking at things needs to be chosen,
in which every component is considered insecure. It will take years, if not decades, for
these legacy devices to go out of operation. A first step would be a complete asset
identification with associated vulnerability mapping. This would allow operators of ICSs
to get an overview of possible hazards. A cornerstone for asset management was laid
in Section 3.5, where a completely passive scanning mechanism was demonstrated. This
scanner can serve as the basis for an asset management tool in fragile networks. Another
step is the detailed monitoring of networks, for example, with an IDS. This is difficult,
since the normal state has to be defined in order to detect anomalies. Furthermore, this
often goes along with deep packet inspection and thus with great effort in implementation
and configuration. For this purpose, the IDS presented in Section 4.2 must be expanded
so that the real world process is also mapped virtually in the IDS. These examples show
that the research in the field of ICS security is far from complete, and that there is a
necessity to continue research in this area.

145

Bibliography

[4SI15] 4SICS. Capture files from 4SICS Geek Lounge. 2015. url: https://www.
netresec.com/?page=PCAP4SICS (visited on August 6, 2019).

[Abh14] Kumar Abhishek. Beaglelogic – Beaglebone Logic Analyzer. 2014. url: htt
ps://github.com/abhishek-kakkar/BeagleLogic/wiki (visited
on August 6, 2019).

[Alv+14] Thiago Rodrigues Alves, Mario Buratto, Flavio Mauricio de Souza, and
Thelma Virginia Rodrigues. “OpenPLC: An Open Source Alternative to Au-
tomation”. In: Global Humanitarian Technology Conference (GHTC), 2014
IEEE. IEEE. 2014, pp. 585–589. doi: 10.1109/GHTC.2014.6970342.

[Alv+18] Thiago Rodrigues Alves, Rishabh Das, and Thomas Morris. “Embedding
Encryption and Machine Learning Intrusion Prevention Systems on Pro-
grammable Logic Controllers”. In: IEEE Embedded Systems Letters 10.3
(2018), pp. 99–102. issn: 1943-0663. doi: 10.1109/LES.2018.2823906.

[Ami+07] Pedram Amini, Aaron Portnoy, and Ryan Sears. Sulley – A Pure-python
Fully Automated and Unattended Fuzzing Framework. 2007. url: https:
//github.com/OpenRCE/sulley (visited on August 6, 2019).

[Ami+09] Saurabh Amin, Alvaro A Cárdenas, and S Shankar Sastry. “Safe and Secure
Networked Control Systems under Denial-of-Service Attacks”. In: Interna-
tional Workshop on Hybrid Systems: Computation and Control. Springer.
2009, pp. 31–45. doi: 10.1007/978-3-642-00602-9_3.

[Ana17] Analog Devices Inc. Intelligence at the Edge Part 1: The Edge Node. 2017.
url: https://www.analog.com/en/technical-articles/intel
ligence-at-the-edge-part-1-the-edge-node.html (visited on
December 22, 2019).

[Ant+15] Daniele Antonioli and Nils Ole Tippenhauer. “MiniCPS: A Toolkit for Secu-
rity Research on CPS Networks”. In: Proceedings of the First ACM workshop
on cyber-physical systems-security and/or privacy. ACM. 2015, pp. 91–100.
doi: 10.1145/2808705.2808715.

[Ant+16] Rob Antrobus, Sylvain Frey, Benjamin Green, and Awais Rashid. “Simatic-
scan: Towards a Specialised Vulnerability Scanner for Industrial Control Sys-
tems”. In: Proceedings of the 4th International Symposium for ICS & SCADA
Cyber Security Research 2016. ICS-CSR ’16. Belfast, United Kingdom: BCS
Learning & Development Ltd., 2016, pp. 1–8. isbn: 9781780173573. doi:
10.14236/ewic/ICS2016.2. url: https://doi.org/10.14236/
ewic/ICS2016.2.

147

https://www.netresec.com/?page=PCAP4SICS
https://www.netresec.com/?page=PCAP4SICS
https://github.com/abhishek-kakkar/BeagleLogic/wiki
https://github.com/abhishek-kakkar/BeagleLogic/wiki
https://doi.org/10.1109/GHTC.2014.6970342
https://doi.org/10.1109/LES.2018.2823906
https://github.com/OpenRCE/sulley
https://github.com/OpenRCE/sulley
https://doi.org/10.1007/978-3-642-00602-9_3
https://www.analog.com/en/technical-articles/intelligence-at-the-edge-part-1-the-edge-node.html
https://www.analog.com/en/technical-articles/intelligence-at-the-edge-part-1-the-edge-node.html
https://doi.org/10.1145/2808705.2808715
https://doi.org/10.14236/ewic/ICS2016.2
https://doi.org/10.14236/ewic/ICS2016.2
https://doi.org/10.14236/ewic/ICS2016.2

Bibliography

[Auf10] Patrice Auffret. “SinFP, Unification of Active and Passive Operating System
Fingerprinting”. In: Journal in Computer Virology 6.3 (2010), pp. 197–205.
issn: 1772-9904. doi: 10.1007/s11416-008-0107-z.

[Bar+08] Richard Barry et al. FreeRTOS. 2008. url: https://www.freertos.
org (visited on December 22, 2019).

[Bar14] Rafael Ramos Regis Barbosa. “Anomaly Detection in SCADA Systems: A
Network Based Approach”. English. PhD thesis. University of Twente, April
2014. isbn: 978-90-365-3645-5. doi: 10.3990/1.9789036536455.

[Bas+16] Justin Bastress et al. Go Application Layer Scanner. 2016. url: https:
//github.com/zmap/zgrab2 (visited on December 22, 2019).

[Ber11] Dillon Beresford. Exploiting Siemens Simatic S7 PLCs. 2011. url: https:
//media.blackhat.com/bh-us-11/Beresford/BH_US11_Beresf
ord_S7_PLCs_WP.pdf (visited on August 7, 2019).

[Bil+13] Olivier Bilodeau, David LaPorte, and Eric Kollman. FingerBank. 2013. url:
https://fingerbank.org/ (visited on August 6, 2019).

[Bio+11] Philippe Biondi et al. Scapy Packet Manipulation. 2011. url: https://
scapy.net/ (visited on August 7, 2019).

[Bod+14] Roland Bodenheim, Jonathan Butts, Stephen Dunlap, and Barry Mullins.
“Evaluation of the Ability of the Shodan Search Engine to Identify Internet-
facing Industrial Control Devices”. In: International Journal of Critical In-
frastructure Protection 7.2 (2014), pp. 114–123. doi: 10.1016/j.ijcip.
2014.03.001.

[Bov17] John Boville. Productivity Secrets: Don’t Underestimate the Power of PLC
Scan Time. 2017. url: https://blog.se.com/machine-and-pro
cess-management/2017/02/23/productivity-secrets-dont-
underestimate-power-plc-scan-time/ (visited on August 6, 2019).

[Bow+05] Calvert L. Bowen, Timothy K. Buennemeyer, and Ryan W. Thomas. “A
Plan for SCADA Security to Deter DOS Attacks”. In: Proceedings of the
Department of Homeland Security: R&D Partnering Conference. Citeseer.
2005. doi: 10.1109/TELSKS.2013.6704448.

[Bri08] Mark Bristow. ModScan: A SCADA Modbus Network Scanner. 2008. url:
https://www.defcon.org/images/defcon-16/dc16-presentat
ions/defcon-16-bristow.pdf (visited on August 7, 2019).

[Bri10] Mark Bristow. File modbus-discover. 2010. url: https://nmap.org/
nsedoc/scripts/modbus-discover.html (visited on December 22,
2019).

[Bro+13] Christopher Bronk and Eneken Tikk-Ringas. The Cyber Attack on Saudi
Aramco. 2013. doi: 10.1080/00396338.2013.784468.

148

https://doi.org/10.1007/s11416-008-0107-z
https://www.freertos.org
https://www.freertos.org
https://doi.org/10.3990/1.9789036536455
https://github.com/zmap/zgrab2
https://github.com/zmap/zgrab2
https://media.blackhat.com/bh-us-11/Beresford/BH_US11_Beresford_S7_PLCs_WP.pdf
https://media.blackhat.com/bh-us-11/Beresford/BH_US11_Beresford_S7_PLCs_WP.pdf
https://media.blackhat.com/bh-us-11/Beresford/BH_US11_Beresford_S7_PLCs_WP.pdf
https://fingerbank.org/
https://scapy.net/
https://scapy.net/
https://doi.org/10.1016/j.ijcip.2014.03.001
https://doi.org/10.1016/j.ijcip.2014.03.001
https://blog.se.com/machine-and-process-management/2017/02/23/productivity-secrets-dont-underestimate-power-plc-scan-time/
https://blog.se.com/machine-and-process-management/2017/02/23/productivity-secrets-dont-underestimate-power-plc-scan-time/
https://blog.se.com/machine-and-process-management/2017/02/23/productivity-secrets-dont-underestimate-power-plc-scan-time/
https://doi.org/10.1109/TELSKS.2013.6704448
https://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-bristow.pdf
https://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-bristow.pdf
https://nmap.org/nsedoc/scripts/modbus-discover.html
https://nmap.org/nsedoc/scripts/modbus-discover.html
https://doi.org/10.1080/00396338.2013.784468

[But+14] Ismail Butun, Salvatore D Morgera, and Ravi Sankar. “A Survey of Intrusion
Detection Systems in Wireless Sensor Networks”. In: IEEE Communications
Surveys & Tutorials 16.1 (2014), pp. 266–282. doi: 10.1109/SURV.2013.
050113.00191.

[Cár+08a] Alvaro A Cárdenas, Saurabh Amin, and Shankar Sastry. Research Challenges
for the Security of Control Systems. 2008. url: http://dl.acm.org/
citation.cfm?id=1496671.1496677 (visited on October 16, 2019).

[Cár+08b] Alvaro A Cárdenas, Saurabh Amin, and Shankar Sastry. “Secure Control: To-
wards Survivable Cyber-Physical Systems”. In: Distributed Computing Sys-
tems Workshops, 2008. ICDCS’08. 28th International Conference on. IEEE.
2008, pp. 495–500. doi: 10.1109/ICDCS.Workshops.2008.40.

[Cár+09] Alvaro A Cárdenas, Saurabh Amin, Bruno Sinopoli, Annarita Giani, Adrian
Perrig, and Shankar Sastry. “Challenges for Securing Cyber Physical Sys-
tems”. In: Workshop on Future Directions in Cyber-physical Systems Secu-
rity. Vol. 5. 1. 2009.

[Cas+13] Marco Caselli, Dina Hadžiosmanović, Emmanuele Zambon, and Frank
Kargl. “On the Feasibility of Device Fingerprinting in Industrial Control
Systems”. In: Critical Information Infrastructures Security: 8th International
Workshop, CRITIS 2013, Amsterdam, The Netherlands, September 16-18,
2013, Revised Selected Papers. Ed. by Eric Luiijf and Pieter Hartel. Springer
International Publishing, September 2013, pp. 155–166. isbn: 978-3-319-
03964-0. doi: 10.1007/978-3-319-03964-0_14.

[Cen] Censys.io. Frequently Asked Questions (FAQ). url: https://support.
censys.io/en/articles/1294848-frequently-asked-questio
ns-faq (visited on December 12, 2019).

[CER18a] CERT@VDE. PHOENIX CONTACT ILC 1x1 ETH Denial of Service. 2018.
url: https://cert.vde.com/de-de/advisories/vde-2018-012
(visited on December 22, 2019).

[CER18b] CERT@VDE. WAGO 750-8xx Controller Denial of Service. 2018. url: ht
tps://cert.vde.com/de-de/advisories/vde-2018-013 (visited
on December 22, 2019).

[Cof+18] Kyle Coffey, Richard Smith, Leandros Maglaras, and Helge Janicke. “Vulner-
ability Analysis of Network Scanning on SCADA Systems”. In: Security and
Communication Networks (March 2018). doi: 10.1155/2018/3794603.
url: https://doi.org/10.1155/2018/3794603.

[Col+14] Armando W Colombo, Thomas Bangemann, Statmatis Karnouskos, Jerker
Delsing, Petr Stluka, Robert Harrison, Francois Jammes, Jose L Lastra, et
al. “Industrial Cloud-based Cyber-physical Systems”. In: The IMC-AESOP
Approach 22 (2014). doi: 10.1007/978-3-319-05624-1.

[Col11] Galen Collins. A full modbus protocol written in python. 2011. url: https:
//github.com/riptideio/pymodbus (visited on December 22, 2019).

149

https://doi.org/10.1109/SURV.2013.050113.00191
https://doi.org/10.1109/SURV.2013.050113.00191
http://dl.acm.org/citation.cfm?id=1496671.1496677
http://dl.acm.org/citation.cfm?id=1496671.1496677
https://doi.org/10.1109/ICDCS.Workshops.2008.40
https://doi.org/10.1007/978-3-319-03964-0_14
https://support.censys.io/en/articles/1294848-frequently-asked-questions-faq
https://support.censys.io/en/articles/1294848-frequently-asked-questions-faq
https://support.censys.io/en/articles/1294848-frequently-asked-questions-faq
https://cert.vde.com/de-de/advisories/vde-2018-012
https://cert.vde.com/de-de/advisories/vde-2018-013
https://cert.vde.com/de-de/advisories/vde-2018-013
https://doi.org/10.1155/2018/3794603
https://doi.org/10.1155/2018/3794603
https://doi.org/10.1007/978-3-319-05624-1
https://github.com/riptideio/pymodbus
https://github.com/riptideio/pymodbus

Bibliography

[Com+08] Gerald Combs et al. Wireshark-network Protocol Analyzer. 2008. url: htt
ps://www.wireshark.org/ (visited on August 7, 2019).

[COR] CORE Security. Pcapy. url: https://github.com/CoreSecurity/
pcapy (visited on August 6, 2019).

[Cyb11] Global Energy Cyberattacks. Night Dragon. 2011. url: https://www.
mcafee.com/wp-content/uploads/2011/02/McAfee_NightDr
agon_wp_draft_to_customersv1-1.pdf (visited on December 15,
2019).

[Day+95] John D. Day and Hubert Zimmermann. “The OSI Reference Model”. In:
Conformance Testing Methodologies and Architectures for OSI Protocols.
Washington, DC, USA: IEEE Computer Society Press, 1995, pp. 38–44.
isbn: 0818653523.

[Dit15] Ditecting. Detecting everything among the industrial control cyberspace,
probing malicious vulnerability then mending the ”heaven”. 2015. url: http:
//www.ditecting.com (visited on January 3, 2020).

[Dro97] Ralph Droms. “RFC 2131-Dynamic Host Configuration Protocol, March
1997”. In: Obsoletes RFC1541. Status: DRAFT STANDARD 3.1 (1997).
url: https://tools.ietf.org/html/rfc2131 (visited on August 7,
2019).

[Dud17] Marcin Dudek. TRISIS/TRITON/HatMan Malware Repository. 2017. url:
https://github.com/MDudek- ICS/TRISIS- TRITON- HATMAN
(visited on December 15, 2019).

[Dun01] Adam Dunkels. Design and Implementation of the lwIP TCP/IP Stack. 2001.
url: https://www.academia.edu/32820259/Design_and_Imple
mentation_of_the_lwIP_TCP_IP_Stack (visited on August 7, 2019).

[Dur+13] Zakir Durumeric, Eric Wustrow, and J Alex Halderman. “ZMap: Fast In-
ternet-wide Scanning and Its Security Applications”. In: USENIX Security
Symposium. Vol. 8. 2013, pp. 47–53. url: https://zmap.io/paper.pdf
(visited on August 7, 2019).

[Dur+15] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and J Alex
Halderman. “A Search Engine Backed by Internet-wide Scanning”. In: Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM. 2015, pp. 542–553. doi: 10.1145/2810103.
2813703.

[Edd09] Michael Eddington. Peach Fuzzing Framework. 2009. url: http://www.
peachfuzzer.com (visited on August 6, 2019).

[Efa12] Dmitry Efanov. PLCScan the Internet. 2012. url: http://scadastrang
elove.blogspot.de/2012/11/plcscan.html (visited on August 6,
2019).

150

https://www.wireshark.org/
https://www.wireshark.org/
https://github.com/CoreSecurity/pcapy
https://github.com/CoreSecurity/pcapy
https://www.mcafee.com/wp-content/uploads/2011/02/McAfee_NightDragon_wp_draft_to_customersv1-1.pdf
https://www.mcafee.com/wp-content/uploads/2011/02/McAfee_NightDragon_wp_draft_to_customersv1-1.pdf
https://www.mcafee.com/wp-content/uploads/2011/02/McAfee_NightDragon_wp_draft_to_customersv1-1.pdf
http://www.ditecting.com
http://www.ditecting.com
https://tools.ietf.org/html/rfc2131
https://github.com/MDudek-ICS/TRISIS-TRITON-HATMAN
https://www.academia.edu/32820259/Design_and_Implementation_of_the_lwIP_TCP_IP_Stack
https://www.academia.edu/32820259/Design_and_Implementation_of_the_lwIP_TCP_IP_Stack
https://zmap.io/paper.pdf
https://doi.org/10.1145/2810103.2813703
https://doi.org/10.1145/2810103.2813703
http://www.peachfuzzer.com
http://www.peachfuzzer.com
http://scadastrangelove.blogspot.de/2012/11/plcscan.html
http://scadastrangelove.blogspot.de/2012/11/plcscan.html

[Ele98] Electro Cam Corporation. Scan Times. 1998. url: https://static1.
squarespace.com/static/58e274951b631bf0ffe7f6d8/t/592e
5dc46b8f5bd5ce006522/1496210884591/SCANTIME.PDF (visited
on August 6, 2019).

[Eur11] European Network and Information Security Agency (ENISA). Protecting
Industrial Control Systems. 2011. url: https://www.enisa.europa.
eu/publications/annex-v/at_download/fullReport (visited on
August 18, 2019).

[Fed13] Federal Office for Information Security (German: Bundesamt für Sicherheit
in der Informationstechnik, abbreviated as BSI). ICS Security Kompendium.
2013. url: https://www.bsi.bund.de/SharedDocs/Downloads/
DE/BSI/ICS/ICS- Security_kompendium_pdf.pdf?__blob=
publicationFile (visited on August 19, 2019).

[fis] fischertechnik GmbH. Punching Machine with Conveyor Belt 24V - Sim-
ulation. url: https://www.fischertechnik.de/en/products/
simulating/training-models/96785-sim-punching-machine-
with-conveyor-belt-24v-simulation (visited on December 22,
2019).

[Fol+18] Simon N Foley et al. “Science Hackathons for Cyberphysical System Security
Research: Putting CPS testbed platforms to good use”. In: Proceedings of
the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy. ACM.
2018, pp. 102–107. doi: 10.1145/3264888.3264897.

[For+18] David Formby, Milad Rad, and Raheem Beyah. “Lowering the Barriers to
Industrial Control System Security with GRFICS”. In: 2018 USENIX Work-
shop on Advances in Security Education (ASE 18). 2018. url: https:
//www.usenix.org/node/219741 (visited on August 7, 2019).

[Fru+05] Terry L Fruehling and Troy L Helm. Secured Microcontroller Architecture.
US Patent 6,981,176. December 2005.

[Gar+15] Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta,
Teruo Higashino, Adriana Iamnitchi, Marinho Barcellos, Pascal Felber, and
Etienne Riviere. “Edge-centric Computing: Vision and Challenges”. In: ACM
SIGCOMM Computer Communication Review 45.5 (2015), pp. 37–42. doi:
10.1109/JIOT.2016.2579198.

[GE 17] GE Digital. Achilles Test Platform. 2017. url: https://www.ge.com/
digital/sites/default/files/download_assets/achilles-
test-platform-from-ge-digital-datasheet.pdf (visited on
December 22, 2019).

151

https://static1.squarespace.com/static/58e274951b631bf0ffe7f6d8/t/592e5dc46b8f5bd5ce006522/1496210884591/SCANTIME.PDF
https://static1.squarespace.com/static/58e274951b631bf0ffe7f6d8/t/592e5dc46b8f5bd5ce006522/1496210884591/SCANTIME.PDF
https://static1.squarespace.com/static/58e274951b631bf0ffe7f6d8/t/592e5dc46b8f5bd5ce006522/1496210884591/SCANTIME.PDF
https://www.enisa.europa.eu/publications/annex-v/at_download/fullReport
https://www.enisa.europa.eu/publications/annex-v/at_download/fullReport
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/ICS/ICS-Security_kompendium_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/ICS/ICS-Security_kompendium_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/ICS/ICS-Security_kompendium_pdf.pdf?__blob=publicationFile
https://www.fischertechnik.de/en/products/simulating/training-models/96785-sim-punching-machine-with-conveyor-belt-24v-simulation
https://www.fischertechnik.de/en/products/simulating/training-models/96785-sim-punching-machine-with-conveyor-belt-24v-simulation
https://www.fischertechnik.de/en/products/simulating/training-models/96785-sim-punching-machine-with-conveyor-belt-24v-simulation
https://doi.org/10.1145/3264888.3264897
https://www.usenix.org/node/219741
https://www.usenix.org/node/219741
https://doi.org/10.1109/JIOT.2016.2579198
https://www.ge.com/digital/sites/default/files/download_assets/achilles-test-platform-from-ge-digital-datasheet.pdf
https://www.ge.com/digital/sites/default/files/download_assets/achilles-test-platform-from-ge-digital-datasheet.pdf
https://www.ge.com/digital/sites/default/files/download_assets/achilles-test-platform-from-ge-digital-datasheet.pdf

Bibliography

[Giv+14] Omid Givehchi, Jahanzaib Imtiaz, Henning Trsek, and Juergen Jasperneite.
“Control-as-a-Service from the Cloud: A Case Study for using Virtualized
PLCs”. In: 2014 10th IEEE Workshop on Factory Communication Sys-
tems (WFCS 2014). IEEE. 2014, pp. 1–4. doi: 10.1109/WFCS.2014.
6837587.

[Gol+13] Niv Goldenberg and Avishai Wool. “Accurate Modeling of Modbus/TCP
for Intrusion Detection in SCADA Systems”. In: International Journal of
Critical Infrastructure Protection 6.2 (2013), pp. 63–75. doi: 10.1016/j.
ijcip.2013.05.001.

[Gou+18] Antonios Gouglidis, Sandra König, Benjamin Green, Karl Rossegger, and
David Hutchison. “Protecting Water Utility Networks from Advanced Per-
sistent Threats: A Case Study”. In: Game Theory for Security and Risk Man-
agement: From Theory to Practice. Ed. by Stefan Rass and Stefan Schauer.
Cham: Springer International Publishing, 2018, pp. 313–333. isbn: 978-3-
319-75268-6. doi: 10.1007/978-3-319-75268-6_13. url: https:
//doi.org/10.1007/978-3-319-75268-6_13.

[Gre+17] Benjamin Green, Anhtuan Lee, Rob Antrobus, Utz Roedig, David Hutchi-
son, and Awais Rashid. “Pains, Gains and PLCs: Ten Lessons from Build-
ing an Industrial Control Systems Testbed for Security Research”. In: 10th
USENIX Workshop on Cyber Security Experimentation and Test CSET 17).
2017. url: https://www.usenix.org/node/205860 (visited on
August 7, 2019).

[Gre19] Andy Greenberg. The Untold Story of NotPetya, the most Devastating Cy-
berattack in History. 2019. url: https://www.wired.com/story/
notpetya-cyberattackukraine-russia-code-crashed-the-
world (visited on December 15, 2019).

[Had+07] Sami Haddadin, Alin Albu-Schäffer, and Gerd Hirzinger. “Safety Evaluation
of Physical Human-Robot Interaction via Crash-Testing”. In: Robotics: Sci-
ence and Systems. Vol. 3. 2007, pp. 217–224. doi: 10.15607/RSS.2007.
III.028.

[Hah+11] Adam Hahn and Manimaran Govindarasu. “An Evaluation of Cybersecurity
Assessment Tools on a SCADA Environment”. In: Power and Energy Society
General Meeting, 2011 IEEE. IEEE. 2011, pp. 1–6. doi: 10.1109/PES.
2011.6039845.

[Hal+19] Piroska Haller, Béla Genge, and Adrian-Vasile Duka. “Engineering Edge Se-
curity in Industrial Control Systems”. In: Critical Infrastructure Security
and Resilience: Theories, Methods, Tools and Technologies. Ed. by Dim-
itris Gritzalis, Marianthi Theocharidou, and George Stergiopoulos. Cham:
Springer International Publishing, 2019, pp. 185–200. isbn: 978-3-030-00024-
0. doi: 10.1007/978-3-030-00024-0_10. url: https://doi.org/
10.1007/978-3-030-00024-0_10.

152

https://doi.org/10.1109/WFCS.2014.6837587
https://doi.org/10.1109/WFCS.2014.6837587
https://doi.org/10.1016/j.ijcip.2013.05.001
https://doi.org/10.1016/j.ijcip.2013.05.001
https://doi.org/10.1007/978-3-319-75268-6_13
https://doi.org/10.1007/978-3-319-75268-6_13
https://doi.org/10.1007/978-3-319-75268-6_13
https://www.usenix.org/node/205860
https://www.wired.com/story/notpetya-cyberattackukraine-russia-code-crashed-the-world
https://www.wired.com/story/notpetya-cyberattackukraine-russia-code-crashed-the-world
https://www.wired.com/story/notpetya-cyberattackukraine-russia-code-crashed-the-world
https://doi.org/10.15607/RSS.2007.III.028
https://doi.org/10.15607/RSS.2007.III.028
https://doi.org/10.1109/PES.2011.6039845
https://doi.org/10.1109/PES.2011.6039845
https://doi.org/10.1007/978-3-030-00024-0_10
https://doi.org/10.1007/978-3-030-00024-0_10
https://doi.org/10.1007/978-3-030-00024-0_10

[Hel16] Aki Helin. Radamsa Fuzzing Test Case Generator. 2016. url: https://
github.com/aoh/radamsa (visited on August 6, 2019).

[Hem+18] Kevin E. Hemsley and Ronald E. Fisher. History of Industrial Control Sys-
tem Cyber Incidents. December 2018. doi: 10.2172/1505628.

[Hje08] Erik Hjelmvik. “Passive Network Security Analysis with NetworkMiner”. In:
(IN) Secure 18 (2008), pp. 1–100. url: https://www.forensicfocu
s.com/passive-network-security-analysis-networkminer
(visited on August 7, 2019).

[Ho+12] Cheng-Yuan Ho, Yuan-Cheng Lai, I-Wei Chen, Fu-Yu Wang, and Wei-Hsuan
Tai. “Statistical Analysis of False Positives and False Negatives from Real
Traffic with Intrusion Detection/Prevention Systems”. In: IEEE Communi-
cations Magazine 50.3 (2012), pp. 146–154. doi: 10.1109/MCOM.2012.
6163595.

[Hol+15] Hannes Holm, Martin Karresand, Arne Vidström, and Erik Westring. “A
Survey of Industrial Control System Testbeds”. In: Secure IT Systems.
Springer, 2015, pp. 11–26. isbn: 978-3-319-26502-5. doi: 10.1007/978-
3-319-26502-5_2.

[HSA18] HSA_innos. macDetec - Device Identification by MAC Address. 2018. url:
https://github.com/hsainnos/macDetec (visited on December 22,
2019).

[HSA19] HSA_innos. LICSTER - A Low-cost ICS Security Testbed for Education
and Research. 2019. url: https://github.com/hsainnos/LICSTER
(visited on December 22, 2019).

[Hui+08] Peter Huitsing, Rodrigo Chandia, Mauricio Papa, and Sujeet Shenoi. “At-
tack Taxonomies for the Modbus Protocols”. In: International Journal of
Critical Infrastructure Protection 1 (2008), pp. 37–44. doi: 10.1016/j.
ijcip.2008.08.003.

[ICS16] ICS-CERT. ICS Advisory (ICSA-16-313-01) - Phoenix Contact ILC PLC
Authentication Vulnerabilities. 2016. url: https://www.us-cert.gov/
ics/advisories/ICSA-313-01 (visited on December 22, 2019).

[ICS17] ICS-CERT. ICS Advisory (ICSA-17-264-04) - iniNet Solutions GmbH
SCADA Webserver. 2017. url: https://www.us-cert.gov/ics/
advisories/ICSA-17-264-04 (visited on December 22, 2019).

[ICS19] ICS-CERT. ICS Advisory (ICSA-19-106-03) - PLC Cycle Time Influences
(Update A). 2019. url: https://www.us-cert.gov/ics/advisorie
s/ICSA-19-106-03 (visited on December 22, 2019).

[IEC08] DIN IEC. IEC 62443 Industrial Communication Networks – Network and
System Security. 2008. url: https://www.beuth.de (visited on Jan-
uary 7, 2020).

153

https://github.com/aoh/radamsa
https://github.com/aoh/radamsa
https://doi.org/10.2172/1505628
https://www.forensicfocus.com/passive-network-security-analysis-networkminer
https://www.forensicfocus.com/passive-network-security-analysis-networkminer
https://doi.org/10.1109/MCOM.2012.6163595
https://doi.org/10.1109/MCOM.2012.6163595
https://doi.org/10.1007/978-3-319-26502-5_2
https://doi.org/10.1007/978-3-319-26502-5_2
https://github.com/hsainnos/macDetec
https://github.com/hsainnos/LICSTER
https://doi.org/10.1016/j.ijcip.2008.08.003
https://doi.org/10.1016/j.ijcip.2008.08.003
https://www.us-cert.gov/ics/advisories/ICSA-313-01
https://www.us-cert.gov/ics/advisories/ICSA-313-01
https://www.us-cert.gov/ics/advisories/ICSA-17-264-04
https://www.us-cert.gov/ics/advisories/ICSA-17-264-04
https://www.us-cert.gov/ics/advisories/ICSA-19-106-03
https://www.us-cert.gov/ics/advisories/ICSA-19-106-03
https://www.beuth.de

Bibliography

[IEC93] DIN IEC. IEC 61131-3 – Programmable Controllers - Part 3: Programming
Languages. 1993. url: https://www.beuth.de (visited on January 7,
2020).

[Ina+11] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, and Moris Behnam. “Hard
Real-time Support for Hierarchical Scheduling in FreeRTOS”. In: 23rd Eu-
romicro Conference on Real-Time Systems. 2011, pp. 51–60. url: http:
//www.es.mdh.se/publications/2166- (visited on August 7, 2019).

[Ind12] Industrial Control Systems Cyber Emergency Response Team. NCCIC/ICS-
CERT Year in Review FY 2012. 2012. url: https://www.us-cert.
gov/sites/default/files/Annual_Reports/Year_in_Review_
FY2012_Final.pdf (visited on August 14, 2019).

[Ind15] Industrial Control Systems Cyber Emergency Response Team. NCCIC/ICS-
CERT Year in Review FY 2015. 2015. url: https://www.us-cert.
gov/sites/default/files/Annual_Reports/Year_in_Review_
FY2015_Final_S508C.pdf (visited on August 14, 2019).

[Ind16] Industrial Control Systems Cyber Emergency Response Team. NCCIC/ICS-
CERT Year in Review FY 2016. 2016. url: https://www.us-cert.
gov/sites/default/files/Annual_Reports/Year_in_Review_
FY2016_Final_S508C.pdf (visited on August 14, 2019).

[Ins] Institute of Electrical and Electronics Engineers. IEEE Registration Author-
ity. url: https://regauth.standards.ieee.org/standards-
ra-web/pub/view.html (visited on August 6, 2019).

[Ins14] Institute of Electrical and Electronics Engineers. “IEEE Standard for Local
and Metropolitan Area Networks”. In: IEEE Std 802-2014 (Revision to IEEE
Std 802-2001) (2014), pp. 1–74. doi: 10.1109/IEEESTD.2014.6847097.

[Int02] International Electrotechnical Commission and others. “IEC 62278:2002.
Railway Applications - Specification and Demonstration of Reliability, Avail-
ability, Maintainability and Safety (RAMS)”. In: IEC, Genf (2002). url:
https://www.vde-verlag.de/iec-normen/210148/iec-62278-
2002.html (visited on August 18, 2019).

[Int03] International Electrotechnical Commission and others. “IEC 62264-1 Enter-
prise-control system integration–Part 1: Models and terminology”. In: IEC,
Genf (2003). url: https://www.iso.org/standard/57308.html
(visited on August 7, 2019).

[ISA19] ISA Security Compliance Institute. IEC 62443 - CSA Certification. 2019.
url: https://www.isasecure.org/en-US/Certification/IEC-
62443-CSA-Certification (visited on December 22, 2019).

[Jac+] Van Jacobson, Craig Leres, and Steven McCanne. LibPcap. url: http:
//www.tcpdump.org (visited on August 6, 2019).

[Jac+89] Van Jacobson, Craig Leres, and Steven McCanne. “The tcpdump Manual
Page”. In: Lawrence Berkeley Laboratory, Berkeley, CA 143 (1989).

154

https://www.beuth.de
http://www.es.mdh.se/publications/2166-
http://www.es.mdh.se/publications/2166-
https://www.us-cert.gov/sites/default/files/Annual_Reports/Year_in_Review_FY2012_Final.pdf
https://www.us-cert.gov/sites/default/files/Annual_Reports/Year_in_Review_FY2012_Final.pdf
https://www.us-cert.gov/sites/default/files/Annual_Reports/Year_in_Review_FY2012_Final.pdf
https://www.us-cert.gov/sites/default/files/Annual_Reports/Year_in_Review_FY2015_Final_S508C.pdf
https://www.us-cert.gov/sites/default/files/Annual_Reports/Year_in_Review_FY2015_Final_S508C.pdf
https://www.us-cert.gov/sites/default/files/Annual_Reports/Year_in_Review_FY2015_Final_S508C.pdf
https://www.us-cert.gov/sites/default/files/Annual_Reports/Year_in_Review_FY2016_Final_S508C.pdf
https://www.us-cert.gov/sites/default/files/Annual_Reports/Year_in_Review_FY2016_Final_S508C.pdf
https://www.us-cert.gov/sites/default/files/Annual_Reports/Year_in_Review_FY2016_Final_S508C.pdf
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html
https://doi.org/10.1109/IEEESTD.2014.6847097
https://www.vde-verlag.de/iec-normen/210148/iec-62278-2002.html
https://www.vde-verlag.de/iec-normen/210148/iec-62278-2002.html
https://www.iso.org/standard/57308.html
https://www.isasecure.org/en-US/Certification/IEC-62443-CSA-Certification
https://www.isasecure.org/en-US/Certification/IEC-62443-CSA-Certification
http://www.tcpdump.org
http://www.tcpdump.org

[Jar+16] William Jardine, Sylvain Frey, Benjamin Green, and Awais Rashid.
“SENAMI: Selective Non-Invasive Active Monitoring for ICS Intrusion De-
tection”. In: Proceedings of the 2nd ACM Workshop on Cyber-Physical Sys-
tems Security and Privacy. CPS-SPC ’16. Vienna, Austria: Association for
Computing Machinery, 2016, pp. 23–34. isbn: 9781450345682. doi: 10.
1145 / 2994487 . 2994496. url: https : / / doi . org / 10 . 1145 /
2994487.2994496.

[Jin+18] C. Jin, S. Valizadeh, and M. van Dijk. “Snapshotter: Lightweight Intrusion
Detection and Prevention System for Industrial Control Systems”. In: 2018
IEEE Industrial Cyber-Physical Systems (ICPS). May 2018, pp. 824–829.
doi: 10.1109/ICPHYS.2018.8390813.

[Kal+16] Rajesh Kalluri, Lagineni Mahendra, RK Senthil Kumar, and GL Ganga
Prasad. “Simulation and Impact Analysis of Denial-of-Service Attacks on
Power SCADA”. In: Power Systems Conference (NPSC), 2016 National.
IEEE. 2016, pp. 1–5. doi: 10.1109/NPSC.2016.7858908.

[Kar11] Stamatis Karnouskos. “Stuxnet Worm Impact on Industrial Cyber-Physical
System Security”. In: IECON 2011-37th Annual Conference of the IEEE
Industrial Electronics Society. IEEE. 2011, pp. 4490–4494. doi: 10.1109/
IECON.2011.6120048.

[Kel+09] Ingmar Kellner and Ludger Fiege. “Viewpoints in Complex Event Pro-
cessing: Industrial Experience Report”. In: Proceedings of the Third ACM
International Conference on Distributed Event-Based Systems. DEBS ’09.
Nashville, Tennessee: ACM, 2009, 9:1–9:8. isbn: 978-1-60558-665-6. doi:
10.1145/1619258.1619271.

[Kim+16] SungJin Kim, WooYeon Jo, and Taeshik Shon. “A Novel Vulnerability Anal-
ysis Approach to Generate Fuzzing Test Case in Industrial Control Systems”.
In: 2016 IEEE Information Technology, Networking, Electronic and Automa-
tion Control Conference. May 2016, pp. 566–570. doi: 10.1109/ITNEC.
2016.7560424.

[Kli+15] Johannes Klick, Stephan Lau, Daniel Marzin, Jan-Ole Malchow, and Volker
Roth. “Internet-facing PLCs as a Network Backdoor”. In: Communica-
tions and Network Security (CNS), 2015 IEEE Conference on. IEEE. 2015,
pp. 524–532. doi: 10.1109/CNS.2015.7346865.

[Kno16] Knownsec Inc. ZoomEye – Cyberspace Search Engine. 2016. url: https:
//www.zoomeye.org (visited on January 3, 2020).

[Koh+99] Loren Kohnfelder and Praerit Garg. The Threats to our Products. 1999.
url: https://adam.shostack.org/microsoft/The-Threats-
To-Our-Products.docx (visited on August 7, 2019).

[Lan11] Ralph Langner. “Stuxnet: Dissecting a Cyberwarfare Weapon”. In: IEEE
Security & Privacy 9.3 (2011), pp. 49–51. doi: 10.1109/MSP.2011.67.

155

https://doi.org/10.1145/2994487.2994496
https://doi.org/10.1145/2994487.2994496
https://doi.org/10.1145/2994487.2994496
https://doi.org/10.1145/2994487.2994496
https://doi.org/10.1109/ICPHYS.2018.8390813
https://doi.org/10.1109/NPSC.2016.7858908
https://doi.org/10.1109/IECON.2011.6120048
https://doi.org/10.1109/IECON.2011.6120048
https://doi.org/10.1145/1619258.1619271
https://doi.org/10.1109/ITNEC.2016.7560424
https://doi.org/10.1109/ITNEC.2016.7560424
https://doi.org/10.1109/CNS.2015.7346865
https://www.zoomeye.org
https://www.zoomeye.org
https://adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx
https://adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx
https://doi.org/10.1109/MSP.2011.67

Bibliography

[Lee+14] Robert M Lee, Michael J Assante, and Tim Conway. German Steel Mill
Cyber Attack. 2014. url: https://ics.sans.org/media/ICS-CPPE-
case-Study-2-German-Steelworks_Facility.pdf (visited on
August 14, 2019).

[Lee+16] Robert M Lee, Michael J Assante, and Tim Conway. Analysis of the Cyber
Attack on the Ukrainian Power Grid. 2016. url: https://ics.sans.or
g/media/E-ISAC_SANS_Ukraine_DUC_5.pdf (visited on August 14,
2019).

[Lei08] T. Leimbach. “The SAP Story: Evolution of SAP within the German Soft-
ware Industry”. In: IEEE Annals of the History of Computing 30.4 (October
2008), pp. 60–76. issn: 1934-1547. doi: 10.1109/MAHC.2008.75.

[Lin+17] Chih-Yuan Lin, Simin Nadjm-Tehrani, and Mikael Asplund. “Timing-based
Anomaly Detection in SCADA Networks”. In: Critical Information Infras-
tructures Security. 2017, pp. 48–59. doi: 10.1007/978-3-319-99843-
5_5.

[Liu+18] Pengfei Liu and Ting Liu. “Physical Intrusion Detection for Industrial Con-
trol System”. In: 2018 IEEE Conference on Communications and Network
Security, CNS 2018, Beijing, China, May 30 - June 1, 2018. 2018, pp. 1–2.
doi: 10.1109/CNS.2018.8433194.

[Lon+05] Men Long, Chwan-HwaWu, and John Y Hung. “Denial of Service Attacks on
Network-based Control Systems: Impact and Mitigation”. In: IEEE Trans-
actions on Industrial Informatics 1.2 (2005), pp. 85–96. doi: 10.1109/
TII.2005.844422.

[Lyo09] Gordon Lyon. Nmap–Free Security Scanner For Network Exploration & Se-
curity Audits. 2009. url: https://nmap.org/ (visited on August 7,
2019).

[Mad00] Angelika Mader. “A Classification of PLC Models and Applications”. In: Dis-
crete Event Systems: Analysis and Control. Ed. by R. Boel and G. Stremer-
sch. Boston, MA: Springer US, 2000, pp. 239–246. isbn: 978-1-4615-4493-7.
doi: 10.1007/978-1-4615-4493-7_24. url: https://doi.org/
10.1007/978-1-4615-4493-7_24.

[Mah19] Magdi S. Mahmoud. “Architecture for Cloud-Based Industrial Automation”.
In: Third International Congress on Information and Communication Tech-
nology. Ed. by Xin-She Yang, Simon Sherratt, Nilanjan Dey, and Amit Joshi.
Singapore: Springer Singapore, 2019, pp. 51–62. doi: 10.1007/978-981-
13-1165-9_6.

[Mar+13] Jasna D Markovic-Petrovic and Mirjana D Stojanovic. “Analysis of SCADA
System Vulnerabilities to DDoS Attacks”. In: Telecommunication in Modern
Satellite, Cable and Broadcasting Services (TELSIKS), 2013 11th Interna-
tional Conference on. Vol. 2. IEEE. 2013, pp. 591–594. doi: 10.1109/
TELSKS.2013.6704448.

156

https://ics.sans.org/media/ICS-CPPE-case-Study-2-German-Steelworks_Facility.pdf
https://ics.sans.org/media/ICS-CPPE-case-Study-2-German-Steelworks_Facility.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://doi.org/10.1109/MAHC.2008.75
https://doi.org/10.1007/978-3-319-99843-5_5
https://doi.org/10.1007/978-3-319-99843-5_5
https://doi.org/10.1109/CNS.2018.8433194
https://doi.org/10.1109/TII.2005.844422
https://doi.org/10.1109/TII.2005.844422
https://nmap.org/
https://doi.org/10.1007/978-1-4615-4493-7_24
https://doi.org/10.1007/978-1-4615-4493-7_24
https://doi.org/10.1007/978-1-4615-4493-7_24
https://doi.org/10.1007/978-981-13-1165-9_6
https://doi.org/10.1007/978-981-13-1165-9_6
https://doi.org/10.1109/TELSKS.2013.6704448
https://doi.org/10.1109/TELSKS.2013.6704448

[Mat09] John C Matherly. SHODAN the Computer Search Engine. 2009. url: http:
//www.shodanhq.com/help (visited on August 6, 2019).

[May+18] Peter Maynard, Kieran McLaughlin, and Sakir Sezer. “An Open Framework
for Deploying Experimental SCADA Testbed Networks”. In: Proceedings of
Proceedings of ICS & SCADA (2018), p. 92. doi: 10.14236/ewic/ICS
2018.11.

[McL+16] Stephen McLaughlin, Charalambos Konstantinou, Xueyang Wang, Lucas
Davi, Ahmad-Reza Sadeghi, Michail Maniatakos, and Ramesh Karri. “The
Cybersecurity Landscape in Industrial Control Systems”. In: Proceedings of
the IEEE 104.5 (2016), pp. 1039–1057. url: http://dl.acm.org/
citation.cfm?id=3241074.3241078 (visited on August 7, 2019).

[Meu17] Rob van der Meulen. Gartner Says 8.4 Billion Connected ”Things” Will Be
in Use in 2017, Up 31 Percent From 2016. 2017. url: https://www.
gartner.com/en/newsroom/press- releases/2017- 02- 07-
gartner-says-8-billion-connected-things-will-be-in-
use-in-2017-up-31-percent-from-2016 (visited on August 13,
2019).

[Mic19] Microsoft. Troubleshoot blue screen errors. 2019. url: https://support.
microsoft.com/en-us/help/14238/windows-10-troubleshoot
-blue-screen-errors (visited on October 14, 2019).

[Mil+19] Steve Miller, Nathan Brubaker, Daniel Kapellmann Zafra, and Dan Caban.
TRITON Actor TTP Profile, Custom Attack Tools, Detections, and AT-
TACK Mapping. April 10, 2019. url: https://www.fireeye.com/
blog/threat-research/2019/04/triton-actor-ttp-profile-
custom-attack-tools-detections.html (visited on August 14,
2019).

[Mil+90] Barton P. Miller, Louis Fredriksen, and Bryan So. “An Empirical Study
of the Reliability of UNIX Utilities”. In: Commun. ACM 33.12 (December
1990), pp. 32–44. issn: 0001-0782. doi: 10.1145/96267.96279.

[MITa] MITRE Corporation. About CVE. url: https://cve.mitre.org/
about/ (visited on December 11, 2019).

[MITb] MITRE Corporation. Browse Vulnerabilities By Date. url: https://www.
cvedetails.com/browse-by-date.php (visited on August 6, 2019).

[Mor+13] Thomas H Morris and Wei Gao. “Industrial Control System Cyber Attacks”.
In: Proceedings of the 1st International Symposium on ICS & SCADA Cyber
Security Research. 2013, pp. 22–29. url: https://dl.acm.org/citat
ion.cfm?id=2735341 (visited on August 7, 2019).

157

http://www.shodanhq.com/help
http://www.shodanhq.com/help
https://doi.org/10.14236/ewic/ICS2018.11
https://doi.org/10.14236/ewic/ICS2018.11
http://dl.acm.org/citation.cfm?id=3241074.3241078
http://dl.acm.org/citation.cfm?id=3241074.3241078
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://support.microsoft.com/en-us/help/14238/windows-10-troubleshoot-blue-screen-errors
https://support.microsoft.com/en-us/help/14238/windows-10-troubleshoot-blue-screen-errors
https://support.microsoft.com/en-us/help/14238/windows-10-troubleshoot-blue-screen-errors
https://www.fireeye.com/blog/threat-research/2019/04/triton-actor-ttp-profile-custom-attack-tools-detections.html
https://www.fireeye.com/blog/threat-research/2019/04/triton-actor-ttp-profile-custom-attack-tools-detections.html
https://www.fireeye.com/blog/threat-research/2019/04/triton-actor-ttp-profile-custom-attack-tools-detections.html
https://doi.org/10.1145/96267.96279
https://cve.mitre.org/about/
https://cve.mitre.org/about/
https://www.cvedetails.com/browse-by-date.php
https://www.cvedetails.com/browse-by-date.php
https://dl.acm.org/citation.cfm?id=2735341
https://dl.acm.org/citation.cfm?id=2735341

Bibliography

[Nao+17] Laura Nao, Pierluigi Passaro, Egidio Gioia, and Matteo Petracca. “Asym-
metric Multiprocessing Techniques in Smart Devices: Application in a Drone
Navigation System”. In: Software, Telecommunications and Computer Net-
works (SoftCOM), 2017 25th International Conference on. IEEE. 2017,
pp. 1–5. doi: 10.23919/SOFTCOM.2017.8115511.

[Nat16a] National Vulnerability Database. CVE-2016-8366 Detail. 2016. url: http
s://nvd.nist.gov/vuln/detail/CVE-2016-8366 (visited on
December 22, 2019).

[Nat16b] National Vulnerability Database. CVE-2016-8371 Detail. 2016. url: http
s://nvd.nist.gov/vuln/detail/CVE-2016-8371 (visited on
December 22, 2019).

[Nat16c] National Vulnerability Database. CVE-2016-8380 Detail. 2016. url: http
s://nvd.nist.gov/vuln/detail/CVE-2016-8380 (visited on
December 22, 2019).

[Nat17] National Vulnerability Database. CVE-2017-13995 Detail. 2017. url: htt
ps://nvd.nist.gov/vuln/detail/CVE-2017-13995 (visited on
December 22, 2019).

[Nat19] National Vulnerability Database. CVE-2019-10953 Detail. 2019. url: htt
ps://nvd.nist.gov/vuln/detail/CVE-2019-10953 (visited on
December 22, 2019).

[Nel16] Nell Nelson. The Impact of Dragonfly Malware on Industrial Control Sys-
tems. 2016. url: https : / / www . sans . org / reading - room /
whitepapers/ICS/impact-dragonfly-malware-industrial-
control-systems-36672 (visited on December 16, 2019).

[NET] NETRESEC. Network Forensics and Network Security Monitoring. url: h
ttps://www.netresec.com (visited on January 7, 2020).

[Ngu+15] Tan-Sy Nguyen and Thai-Hoang Huynh. “Design and Implementation of
Modbus Slave based on ARM Platform and FreeRTOS Environment”. In:
Advanced Technologies for Communications (ATC), 2015 International Con-
ference on. IEEE. 2015, pp. 462–467. doi: 10.1109/ATC.2015.7388372.

[Nie+17] Matthias Niedermaier, Florian Fischer, and Alexander von Bodisco. “Prop-
Fuzz – An IT-security Fuzzing Framework for Proprietary ICS Protocols”.
In: 2017 International Conference on Applied Electronics (AE), Pilsen. 2017,
pp. 1–4. doi: 10.23919/AE.2017.8053600.

[Nie+18a] Matthias Niedermaier, Alexander von Bodisco, and Dominik Merli. “CoRT:
A Communication Robustness Testbed for Industrial Control System Com-
ponents”. In: 4th International Conference on Event-Based Control, Com-
munication, and Signal Processing EBCCSP 2018. 2018. url: http://
arxiv.org/abs/1904.04286 (visited on August 6, 2019).

158

https://doi.org/10.23919/SOFTCOM.2017.8115511
https://nvd.nist.gov/vuln/detail/CVE-2016-8366
https://nvd.nist.gov/vuln/detail/CVE-2016-8366
https://nvd.nist.gov/vuln/detail/CVE-2016-8371
https://nvd.nist.gov/vuln/detail/CVE-2016-8371
https://nvd.nist.gov/vuln/detail/CVE-2016-8380
https://nvd.nist.gov/vuln/detail/CVE-2016-8380
https://nvd.nist.gov/vuln/detail/CVE-2017-13995
https://nvd.nist.gov/vuln/detail/CVE-2017-13995
https://nvd.nist.gov/vuln/detail/CVE-2019-10953
https://nvd.nist.gov/vuln/detail/CVE-2019-10953
https://www.sans.org/reading-room/whitepapers/ICS/impact-dragonfly-malware-industrial-control-systems-36672
https://www.sans.org/reading-room/whitepapers/ICS/impact-dragonfly-malware-industrial-control-systems-36672
https://www.sans.org/reading-room/whitepapers/ICS/impact-dragonfly-malware-industrial-control-systems-36672
https://www.netresec.com
https://www.netresec.com
https://doi.org/10.1109/ATC.2015.7388372
https://doi.org/10.23919/AE.2017.8053600
http://arxiv.org/abs/1904.04286
http://arxiv.org/abs/1904.04286

[Nie+18b] Matthias Niedermaier, Thomas Hanka, Sven Plaga, Alexander von Bodisco,
and Dominik Merli. “Efficient Passive ICS Device Discovery and Identifi-
cation by MAC Address Correlation”. In: Proceedings of the 5th Interna-
tional Symposium for ICS & SCADA Cyber Security Research. 2018. doi:
10.14236/ewic/ICS2018.3.

[Nie+18c] Matthias Niedermaier, Jan-Ole Malchow, Florian Fischer, Daniel Marzin,
Dominik Merli, Volker Roth, and Alexander von Bodisco. “You Snooze, You
Lose: Measuring PLC Cycle Times under Attacks”. In: 12th USENIX Work-
shop on Offensive Technologies (WOOT 18). 2018. url: http://dl.
acm.org/citation.cfm?id=3307423.3307435 (visited on August 5,
2019).

[Nie+19a] Matthias Niedermaier, Florian Fischer, Dominik Merli, and Georg Sigl. “Net-
work Scanning and Mapping for IIoT Edge Node Device Security”. In: 2019
International Conference on Applied Electronics (AE). 2019.

[Nie+19b] Matthias Niedermaier, Dominik Merli, and Georg Sigl. “A Secure Dual-MCU
Architecture for Robust Communication of IIoT Devices”. In: 2019 IEEE 8th
Mediterranean Conference on Embedded Computing (MECO). 2019, pp. 1–5.
doi: 10.1109/MECO.2019.8760188.

[Nie+19c] Matthias Niedermaier, Martin Striegel, Felix Sauer, Dominik Merli, and
Georg Sigl. Efficient Intrusion Detection on Low-Performance Industrial IoT
Edge Node Devices. 2019. eprint: 1908.03964. url: https://arxiv.
org/abs/1908.03964 (visited on August 15, 2019).

[Nov+08] T. Novak and A. Treytl. “Functional Safety and System Security in Automa-
tion Systems – A Life Cycle Model”. In: 2008 IEEE International Confer-
ence on Emerging Technologies and Factory Automation. September 2008,
pp. 311–318. doi: 10.1109/ETFA.2008.4638412.

[OFl] Colin O’Flynn. Pico-python. url: https://github.com/colinoflyn
n/pico-python (visited on August 6, 2019).

[OMN] OMNISIENS. CS3STHLM - The Premier Cyber Security Conference for
ICS/SCADA and Critical Infrastructure. url: https://cs3sthlm.se
(visited on January 7, 2020).

[Pay03] Udo Payer. “State-driven Stack-based Network Intrusion Detection System”.
In: Proceedings of the 7th International Conference on Telecommunications,
2003. ConTEL 2003. Vol. 2. June 2003, 613–618 vol.2. doi: 10.1109/
CONTEL.2003.176969.

[Per08] Chad Perrin. The CIA Triad. 2008. url: http://www.techrepublic.
com/blog/security/the-cia-triad (visited on August 7, 2019).

[Per17] Joshua Pereyda. Boofuzz Fuzzing Framework. 2017. url: https://githu
b.com/jtpereyda/boofuzz (visited on August 6, 2019).

[Pic] Pico Technology. Pico Oscilloscope. url: https://www.picotech.com/
products/oscilloscope (visited on December 22, 2019).

159

https://doi.org/10.14236/ewic/ICS2018.3
http://dl.acm.org/citation.cfm?id=3307423.3307435
http://dl.acm.org/citation.cfm?id=3307423.3307435
https://doi.org/10.1109/MECO.2019.8760188
1908.03964
https://arxiv.org/abs/1908.03964
https://arxiv.org/abs/1908.03964
https://doi.org/10.1109/ETFA.2008.4638412
https://github.com/colinoflynn/pico-python
https://github.com/colinoflynn/pico-python
https://cs3sthlm.se
https://doi.org/10.1109/CONTEL.2003.176969
https://doi.org/10.1109/CONTEL.2003.176969
http://www.techrepublic.com/blog/security/the-cia-triad
http://www.techrepublic.com/blog/security/the-cia-triad
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://www.picotech.com/products/oscilloscope
https://www.picotech.com/products/oscilloscope

Bibliography

[Pla+16] Sven Plaga, Stefan Tatschner, and Thomas Newe. “Logboat - A Simulation
Framework Enabling CAN Security Assessments”. In: 2016 International
Conference on Applied Electronics (AE). September 2016, pp. 215–218. doi:
10.1109/AE.2016.7577276.

[Pla+18] Sven Plaga, Norbert Wiedermann, Matthias Niedermaier, Alexander Giehl,
and Thomas Newe. “Future Proofing IoT Embedded Platforms for Cryp-
tographic Primitives Support”. In: 2018 12th International Conference on
Sensing Technology (ICST) - Wireless Sensor Networks. 2018. doi: 10.
1109/ICSensT.2018.8603610.

[Plu82] David C Plummer. “RFC 826: An Ethernet Address Resolution Protocol”. In:
InterNet Network Working Group (1982). url: https://tools.ietf.
org/html/rfc826 (visited on August 2, 2019).

[Que+09] Carlos Queiroz, Abdun Mahmood, Jiankun Hu, Zahir Tari, and Xinghuo
Yu. “Building a SCADA Security Testbed”. In: 2009 Third International
Conference on Network and System Security. IEEE. 2009, pp. 357–364. doi:
10.1109/NSS.2009.82.

[Rad+18] Harish Radhappa, Lei Pan, James Xi Zheng, and Sheng Wen. “Practical
Overview of Security Issues in Wireless Sensor Network Applications”. In:
International journal of computers and applications 40.4 (2018), pp. 202–
213. doi: 10.1080/1206212X.2017.1398214.

[Ras12] Raspberry Pi Foundation. Raspberry Pi. 2012. url: https://www.rasp
berrypi.org (visited on December 22, 2019).

[Rat+98] John W. Ratcliff and David Metzener. Ratcliff-Obershelp Pattern Recogni-
tion. 1998.

[Raw+17] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuf-
frida, and Herbert Bos. VUzzer: Application-aware Evolutionary Fuzzing.
2017. doi: 10.14722/ndss.2017.23404.

[Ree+12] Jason Reeves, Ashwin Ramaswamy, Michael E. Locasto, Sergey Bratus, and
Sean W. Smith. “Intrusion Detection for Resource-constrained Embedded
Control Systems in the Power Grid”. In: International Journal of Critical
Infrastructure Protection 5.2 (2012), pp. 74–83. doi: 10.1016/j.ijcip.
2012.02.002.

[Ren+10] Huang Renjie, Liu Feng, and Pan Dongbo. “Research on OPC UA Security”.
In: 2010 5th IEEE Conference on Industrial Electronics and Applications.
July 2010, pp. 1439–1444. doi: 10.1109/ICIEA.2010.5514836.

[Ris15] RiskViz Consortium. RiskViz – Risk Map of the Industrial IT-Security in
Germany. 2015. url: https://www.hs-augsburg.de/RiskViz.html
(visited on August 6, 2019).

[Rok+16] Michał Rokitiański et al. Scada-LTS is an Open Source, web-based, multi-
platform solution for building your own SCADA. 2016. url: https://
github.com/SCADA-LTS/Scada-LTS (visited on December 22, 2019).

160

https://doi.org/10.1109/AE.2016.7577276
https://doi.org/10.1109/ICSensT.2018.8603610
https://doi.org/10.1109/ICSensT.2018.8603610
https://tools.ietf.org/html/rfc826
https://tools.ietf.org/html/rfc826
https://doi.org/10.1109/NSS.2009.82
https://doi.org/10.1080/1206212X.2017.1398214
https://www.raspberrypi.org
https://www.raspberrypi.org
https://doi.org/10.14722/ndss.2017.23404
https://doi.org/10.1016/j.ijcip.2012.02.002
https://doi.org/10.1016/j.ijcip.2012.02.002
https://doi.org/10.1109/ICIEA.2010.5514836
https://www.hs-augsburg.de/RiskViz.html
https://github.com/SCADA-LTS/Scada-LTS
https://github.com/SCADA-LTS/Scada-LTS

[Ron10] Armin Ronacher. The Python micro framework for building web applica-
tions. 2010. url: https://github.com/pallets/flask (visited on
December 22, 2019).

[Sad+15] Ahmad-Reza Sadeghi, Christian Wachsmann, and Christian Wachsmann.
“Security and Privacy Challenges in Industrial Internet of Things”. In: 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC). June 2015,
pp. 1–6. doi: 10.1145/2744769.2747942.

[San99] Salvatore Sanfilippo. Hping3 (8)-Linux Man Page. 1999. url: https://
linux.die.net/man/8/hping3 (visited on August 6, 2019).

[Sau+19] Felix Sauer, Matthias Niedermaier, Susanne Kießling, and Dominik Merli.
“LICSTER – A Low-cost ICS Security Testbed for Education and Research”.
In: Proceedings of the 6th International Symposium for ICS & SCADA Cyber
Security Research. 2019. doi: 0.14236/ewic/icscsr19.1.

[Say+13] Naoum Sayegh, Ali Chehab, Imad H Elhajj, and Ayman Kayssi. “Internal
Security Attacks on SCADA Systems”. In: Communications and Information
Technology (ICCIT), 2013 Third International Conference on. IEEE. 2013,
pp. 22–27. doi: 10.1109/ICCITechnology.2013.6579516.

[Sch] David Schweikert. fping. url: https://fping.org/ (visited on August 6,
2019).

[Sch+10] Ragnar Schierholz and Kevin McGrath. “Security Certification–A Critical
Review”. In: ISA Automation Week 2010: Technology and Solutions Event
(2010).

[Sea16] Chad Seaman. Threat Advisory: Mirai Botnet. Tech. rep. Akamai, 2016. url:
https://www.akamai.com/de/de/resources/our-thinking/
threat-advisories/akamai-mirai-botnet-threat-advisory.
jsp (visited on August 7, 2019).

[Sen14] Tomás Senart. HTTP load testing tool and library. It’s over 9000! 2014. url:
https://github.com/tsenart/vegeta (visited on December 22,
2019).

[Sha+11] Rebecca Shapiro, Sergey Bratus, Edmond Rogers, and Sean Smith. “Identi-
fying Vulnerabilities in SCADA Systems via Fuzz-Testing”. In: Critical In-
frastructure Protection V: 5th IFIP WG 11.10 International Conference on
Critical Infrastructure Protection, ICCIP 2011, Hanover, NH, USA, March
23-25, 2011, Revised Selected Papers. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 57–72. isbn: 978-3-642-24864-1. doi: 10.1007/978-
3-642-24864-1_5.

[Sie] Siemens. SIMATIC WinCC V7. url: https://new.siemens.com/
global/de/produkte/automatisierung/industrie-software/
automatisierungs-software/scada/simatic-wincc-v7.html
(visited on December 22, 2019).

161

https://github.com/pallets/flask
https://doi.org/10.1145/2744769.2747942
https://linux.die.net/man/8/hping3
https://linux.die.net/man/8/hping3
https://doi.org/0.14236/ewic/icscsr19.1
https://doi.org/10.1109/ICCITechnology.2013.6579516
https://fping.org/
https://www.akamai.com/de/de/resources/our-thinking/threat-advisories/akamai-mirai-botnet-threat-advisory.jsp
https://www.akamai.com/de/de/resources/our-thinking/threat-advisories/akamai-mirai-botnet-threat-advisory.jsp
https://www.akamai.com/de/de/resources/our-thinking/threat-advisories/akamai-mirai-botnet-threat-advisory.jsp
https://github.com/tsenart/vegeta
https://doi.org/10.1007/978-3-642-24864-1_5
https://doi.org/10.1007/978-3-642-24864-1_5
https://new.siemens.com/global/de/produkte/automatisierung/industrie-software/automatisierungs-software/scada/simatic-wincc-v7.html
https://new.siemens.com/global/de/produkte/automatisierung/industrie-software/automatisierungs-software/scada/simatic-wincc-v7.html
https://new.siemens.com/global/de/produkte/automatisierung/industrie-software/automatisierungs-software/scada/simatic-wincc-v7.html

Bibliography

[Sin+15] Rajni Ranjan Singh and Deepak Singh Tomar. “Network Forensics: Detec-
tion and Analysis of Stealth Port scanning Attack”. In: International Journal
of Computer Networks and Communications Security 4 (2015), p. 8. issn:
2410-0595. url: http://www.ijcncs.org/published/volume3/
issue2/p2_3-2.pdf (visited on August 7, 2019).

[Sla+08] Jill Slay and Michael Miller. “Lessons Learned from the Maroochy Water
Breach”. In: Critical Infrastructure Protection. Boston, MA: Springer US,
2008, pp. 73–82. isbn: 978-0-387-75462-8. doi: 10.1007/978-0-387-
75462-8_6.

[Sou14] Arnaud Soullié. Industrial Control Systems: Pentesting PLCs 101. 2014.
url: https://www.blackhat.com/docs/eu-14/materials/eu-
14-Soullie-Industrial-Control-Systems-Pentesting-PLCs-
101.pdf (visited on August 7, 2019).

[Spi] Spirent. Spirent - Promise. Assured. url: https://www.spirent.com
(visited on December 22, 2019).

[STMa] STMicroelectronics. NUCLEO-F767ZI. url: https://www.st.com/en/
evaluation-tools/nucleo-f767zi.html (visited on December 22,
2019).

[STMb] STMicroelectronics. STM32CubeMX. url: https://www.st.com/en/
development-tools/stm32cubemx.html (visited on December 22,
2019).

[Sto+11] Keith Stouffer, Joe Falco, and Karen Scarfone. “Guide to Industrial Control
Systems (ICS) Security”. In: NIST special publication 800.82 (2011). doi:
10.6028/NIST.SP.800-82r2.

[Str+19] Martin Striegel, Carsten Rolfes, Fabian Helfert, Max Hornung, Johann
Heyszl, and Georg Sigl. “EyeSec: A Retrofittable Augmented Reality Tool
for Troubleshooting Wireless Sensor Networks in the Field”. In: Proceed-
ings of the 2019 International Conference on Embedded Wireless Systems
and Networks. 2019. url: http://dl.acm.org/citation.cfm?id=
3324320.3324343 (visited on August 6, 2019).

[Swa+99] Andy Swales et al. Open Modbus/TCP Specification. 1999. url: http://
irtfweb.ifa.hawaii.edu/~smokey/software/about/sixnet/
modbus/Modbus_TCP_Standard.doc (visited on August 7, 2019).

[Tei+12] André Teixeira, Daniel Pérez, Henrik Sandberg, and Karl Henrik Johansson.
“Attack Models and Scenarios for Networked Control Systems”. In: Pro-
ceedings of the 1st international conference on High Confidence Networked
Systems. ACM. 2012, pp. 55–64. doi: 10.1145/2185505.2185515.

[Tex14] Texas Instruments. Datasheet: SN74LVCH16245A 16-bit Bus Transceiver
With 3-state Outputs. 2014. url: http://www.ti.com/lit/ds/symli
nk/sn74lvch16245a.pdf (visited on August 6, 2019).

162

http://www.ijcncs.org/published/volume3/issue2/p2_3-2.pdf
http://www.ijcncs.org/published/volume3/issue2/p2_3-2.pdf
https://doi.org/10.1007/978-0-387-75462-8_6
https://doi.org/10.1007/978-0-387-75462-8_6
https://www.blackhat.com/docs/eu-14/materials/eu-14-Soullie-Industrial-Control-Systems-Pentesting-PLCs-101.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Soullie-Industrial-Control-Systems-Pentesting-PLCs-101.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Soullie-Industrial-Control-Systems-Pentesting-PLCs-101.pdf
https://www.spirent.com
https://www.st.com/en/evaluation-tools/nucleo-f767zi.html
https://www.st.com/en/evaluation-tools/nucleo-f767zi.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://doi.org/10.6028/NIST.SP.800-82r2
http://dl.acm.org/citation.cfm?id=3324320.3324343
http://dl.acm.org/citation.cfm?id=3324320.3324343
http://irtfweb.ifa.hawaii.edu/~smokey/software/about/sixnet/modbus/Modbus_TCP_Standard.doc
http://irtfweb.ifa.hawaii.edu/~smokey/software/about/sixnet/modbus/Modbus_TCP_Standard.doc
http://irtfweb.ifa.hawaii.edu/~smokey/software/about/sixnet/modbus/Modbus_TCP_Standard.doc
https://doi.org/10.1145/2185505.2185515
http://www.ti.com/lit/ds/symlink/sn74lvch16245a.pdf
http://www.ti.com/lit/ds/symlink/sn74lvch16245a.pdf

[Til11] Filippo Tilaro. Assessment and Testing of Industrial Devices Robustness
against Cyber Security Attacks. 2011. url: http://cds.cern.ch/reco
rd/1398647/files/WEPMU029.pdf (visited on August 7, 2019).

[Tun+18] Andrea Tundis, Wojciech Mazurczyk, and Max Mühlhäuser. “A Review of
Network Vulnerabilities Scanning Tools: Types, Capabilities and Function-
ing”. In: Proceedings of the 13th International Conference on Availability, Re-
liability and Security. ARES 2018. Hamburg, Germany: Association for Com-
puting Machinery, 2018. isbn: 9781450364485. doi: 10.1145/3230833.
3233287. url: https://doi.org/10.1145/3230833.3233287.

[Wan+06] Yong Wang, Garhan Attebury, and Byrav Ramamurthy. A Survey of Secu-
rity Issues in Wireless Sensor Networks. February 2006. doi: 10.1109/
COMST.2006.315852.

[Web+06] S. Webster, R. Lippmann, and M. Zissman. “Experience Using Active and
Passive Mapping for Network Situational Awareness”. In: Fifth IEEE In-
ternational Symposium on Network Computing and Applications (NCA’06).
July 2006, pp. 19–26. doi: 10.1109/NCA.2006.23.

[Wed+15] Adam Wedgbury and Kevin Jones. “Automated Asset Discovery in Indus-
trial Control Systems: Exploring the Problem”. In: Proceedings of the 3rd
International Symposium for ICS & SCADA Cyber Security Research. ICS-
CSR ’15. Ingolstadt, Germany: BCS Learning & Development Ltd., 2015,
pp. 73–83. isbn: 978-1-78017-317-7. doi: 10.14236/ewic/ICS2015.8.

[Xie+14] Feng Xie, Yong Peng, Wei Zhao, Yang Gao, and Xuefeng Han. “Evaluat-
ing Industrial Control Devices Security: Standards, Technologies and Chal-
lenges”. In: IFIP International Conference on Computer Information Sys-
tems and Industrial Management. Springer. 2014, pp. 624–635. doi: 10.
1007/978-3-662-45237-0_57.

[Yoo+16] Hyunguk Yoo and Taeshik Shon. “Grammar-based Adaptive Fuzzing: Eval-
uation on SCADA Modbus Protocol”. In: 2016 IEEE International Confer-
ence on Smart Grid Communications (SmartGridComm). November 2016,
pp. 557–563. doi: 10.1109/SmartGridComm.2016.7778820.

[Zal18] Michał Zalewski. p0f v3. 2018. url: http://lcamtuf.coredump.cx/
p0f3/ (visited on August 6, 2019).

[Zhu+10] Bonnie Zhu and Shankar Sastry. “SCADA-specific Intrusion Detec-
tion/Prevention Systems: A Survey and Taxonomy”. In: Proceedings
of the 1st Workshop on Secure Control Systems (SCS). Vol. 11.
2010. url: https : / / pdfs . semanticscholar . org / 1027 /
2f29fff747d7efccab3b58d64ffd1112c811.pdf (visited on Decem-
ber 19, 2019).

163

http://cds.cern.ch/record/1398647/files/WEPMU029.pdf
http://cds.cern.ch/record/1398647/files/WEPMU029.pdf
https://doi.org/10.1145/3230833.3233287
https://doi.org/10.1145/3230833.3233287
https://doi.org/10.1145/3230833.3233287
https://doi.org/10.1109/COMST.2006.315852
https://doi.org/10.1109/COMST.2006.315852
https://doi.org/10.1109/NCA.2006.23
https://doi.org/10.14236/ewic/ICS2015.8
https://doi.org/10.1007/978-3-662-45237-0_57
https://doi.org/10.1007/978-3-662-45237-0_57
https://doi.org/10.1109/SmartGridComm.2016.7778820
http://lcamtuf.coredump.cx/p0f3/
http://lcamtuf.coredump.cx/p0f3/
https://pdfs.semanticscholar.org/1027/2f29fff747d7efccab3b58d64ffd1112c811.pdf
https://pdfs.semanticscholar.org/1027/2f29fff747d7efccab3b58d64ffd1112c811.pdf

Bibliography

[Zhu+11] Bonnie Zhu, Anthony Joseph, and Shankar Sastry. “A Taxonomy of Cyber
Attacks on SCADA Systems”. In: Internet of things (iThings/CPSCom),
2011 international conference on and 4th international conference on cyber,
physical and social computing. IEEE. 2011, pp. 380–388. doi: 10.1109/
iThings/CPSCom.2011.34.

[Zil+10] Amir Zilberstein and Lior Frenkel. Protection of Control Networks Using a
One-way Link. US Patent 7,649,452. January 2010.

[Zim+15] Christopher Zimmer, Balasubramany Bhat, Frank Mueller, and Sibin Mo-
han. “Intrusion Detection for CPS Real-time Controllers”. In: Cyber Physical
Systems Approach to Smart Electric Power Grid. Ed. by James D. Khaitan
Siddhartha Kumarand McCalley and Chen Ching Liu. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 329–358. isbn: 978-3-662-45928-7. doi:
10.1007/978-3-662-45928-7_12. url: https://doi.org/10.
1007/978-3-662-45928-7_12.

164

https://doi.org/10.1109/iThings/CPSCom.2011.34
https://doi.org/10.1109/iThings/CPSCom.2011.34
https://doi.org/10.1007/978-3-662-45928-7_12
https://doi.org/10.1007/978-3-662-45928-7_12
https://doi.org/10.1007/978-3-662-45928-7_12

Acronyms

ACK acknowledgment

API Application Programming Interface

APT Advanced Persistent Threat

ARP Address Resolution Protocol

ARP 1 Address Resolution Protocol - Who has

ARP 2 Address Resolution Protocol - Probe

ARP 3 Address Resolution Protocol - Request TPA=SPA, THA=0

ARP 4 Address Resolution Protocol - Reply TPA=SPA, THA=SHA

BSI Federal Office for Information Security

CERT@VDE . . Cyber Emergency Response Team at the Association of Elec-
trical Engineering, Electronics and Information Technology

CIA Confidentiality, Integrity and Availability

CoRT Communication Robustness Testbed

CPE Common Platform Enumeration

CPS Cyber-Physical System

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSV Comma-Separated Values

CVE Common Vulnerabilities and Exposures

DDoS Distributed Denial of Service

DHCP Dynamic Host Configuration Protocol

DMA Direct Memory Access

DoS Denial of Service

165

5 Acronyms

DuT Device under Test

ERP Enterprise Resource Planning

FTP File Transfer Protocol

Gb/s Giga bits per second

GRE Generic Routing Encapsulation

HAL Hardware Abstraction Layer

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HMAC Keyed-Hash Message Authentication Code

HMI Human Machine Interface

I2C Inter Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

ICMP Internet Control Message Protocol

ICS Industrial Control System

ICS-CERT Industrial Control System Computer Emergency Response
Team

IDE Integrated Development Environment

IDS Intrusion Detection System

IEC International Electrotechnical Commission

IIoT Industrial Internet of Things

ILC Inline-Controller

IoT Internet of Things

IO Input/Output

IP Internet Protocol

IPS Intrusion Prevention System

IRQ Interrupt Request

IT Information Technology

JSON JavaScript Object Notation

166

kb/s kilo bits per second

KDE Kernel Density Estimation

LED Light-emitting Diode

LICSTER Low-cost ICS Security Testbed for Education and Research

LwIP Lightweight IP

M2M Machine to Machine

MAC Media Access Control

MCU Microcontroller Unit

MES Manufacturing Execution System

MitM Man-in-the-Middle

MOSFET Metal-oxide-semiconductor Field-effect Transistor

Ms/s Mega samples per second

Mb/s Mega bits per second

NIC Network Interface Card

NSE Nmap Scripting Engine

OLED Organic Light Emitting Diode

OS Operating System

OSI Open Systems Interconnection

OT Operational Technology

PC Personal Computer

pcap packet capture

pcap-ng packet capture - next generation

PCB Printed Circuit Board

PDF Probability Density Function

PLC Programmable Logic Controller

PoC Proof of Concept

PRU Programmable Realtime Unit

167

5 Acronyms

PSK Pre-shared Key

RA Registration Authority

RAM Random-Access Memory

RAMS Reliability, Availability, Maintainability and Safety

RAMSST Reliability, Availability, Maintainability, Safety, Security and
Testability

RAT Remote Access Trojan

ROM Read-only Memory

RST reset

RTOS Real-Time Operating System

RTU Remote Terminal Unit

RX Receive

SCADA Supervisory Control and Data Acquisition

SD Secure Digital

SHA Sender Hardware Address

SNMP Simple Network Management Protocol

SoC System-on-a-Chip

SPA Sender Protocol Address

SPI Serial Peripheral Interface

SRA Safety, Reliability and Availability

SSH Secure Shell

ST Structured Text

STM STMicroelectronics

SWD Serial Wire Debug

SYN synchronize

TAP Terminal Access Point

TCP Transmission Control Protocol

168

THA Target Hardware Address

TPA Target Protocol Address

TTL Time to Live

TX Transmit

UART Universal Asynchronous Receiver Transmitter

UDP User Datagram Protocol

URL Uniform Resource Locator

USB Universal Serial Bus

US-CERT United States Computer Emergency Readiness Team

VLAN Virtual Local Area Network

VM Virtual Machine

169

Appendix
AppendixA

Contents of the appendix

A.1 Search Engine Parameters . 172
A.2 Programmable Logic Controller Cycle Time Measurements 176
A.3 Schematic of the BeagleBone Measurement Printed Circuit Board 182
A.4 Schematic of the Dual Microcontroller Unit Printed Circuit Board 183
A.5 Schematic of the Remote Input/Output Printed Circuit Board 184

Additional materials are included in the appendix for better understanding of the
measurement results and demonstrator setups.

171

A Appendix

A.1 Search Engine Parameters

The search engine parameters and Uniform Resource Locator (URL) with which the
queries were made are listed in the following. As far as specified, these are the search
engine’s standard calls.

Table A.1 shows the queries of the Shodan search engine, which are used to get an
overview of Internet-facing PLCs (see Table 1.1).

Table A.1: Search engine parameters for Shodan.

Protocol Port Query URL
Modbus 502 TCP port:502 https://www.shodan.io/

search?query=port%3A502

Siemens S7 102 TCP port:102 https://www.shodan.io/

search?query=port%3A102

DNP3 20000 TCP port:20000 source
address

https://www.shodan.io/

search?query=

port%3A20000+source+address

BACnet 47808 TCP port:47808 https://www.shodan.io/

search?query=port%3A47808

Niagara Fox 1911 TCP port:1911,4911
product:Niagara

https://www.shodan.io/

search?query=port%3A1911%

2C4911+product%3ANiagara

Ethernet/IP 244818 TCP port:44818 https://www.shodan.io/

search?query=port%3A44818

Phoenix
PCWorx

1962 TCP port:1962 PLC https://www.shodan.io/

search?query=

port%3A1962+PLC

Codesys 2455 TCP port:2455 operat-
ing system

https://www.shodan.io/

search?query=port%3A2455+

operating+system

172

www.shodan.io
https://www.shodan.io/search?query=port%3A502
https://www.shodan.io/search?query=port%3A502
https://www.shodan.io/search?query=port%3A102
https://www.shodan.io/search?query=port%3A102
https://www.shodan.io/search?query=port%3A20000+source+address
https://www.shodan.io/search?query=port%3A20000+source+address
https://www.shodan.io/search?query=port%3A20000+source+address
https://www.shodan.io/search?query=port%3A47808
https://www.shodan.io/search?query=port%3A47808
https://www.shodan.io/search?query=port%3A1911%2C4911+product%3ANiagara
https://www.shodan.io/search?query=port%3A1911%2C4911+product%3ANiagara
https://www.shodan.io/search?query=port%3A1911%2C4911+product%3ANiagara
https://www.shodan.io/search?query=port%3A44818
https://www.shodan.io/search?query=port%3A44818
https://www.shodan.io/search?query=port%3A1962+PLC
https://www.shodan.io/search?query=port%3A1962+PLC
https://www.shodan.io/search?query=port%3A1962+PLC
https://www.shodan.io/search?query=port%3A2455+operating+system
https://www.shodan.io/search?query=port%3A2455+operating+system
https://www.shodan.io/search?query=port%3A2455+operating+system

A.1 Search Engine Parameters

Table A.2 shows the queries of the Censys search engine, which are used to get an overview
of Internet-facing PLCs (see Table 1.1).

Table A.2: Search engine parameters for Censys.

Protocol Port Query URL
Modbus 502 TCP protocols:

"502/modbus"
https://censys.io/ipv4?q=

protocols%3A+%22502%

2Fmodbus%22

Siemens S7 102 TCP protocols:
"102/s7"

https://censys.io/ipv4?q=

protocols%3A+%22102%2Fs7%22

DNP3 20000 TCP protocols:
"20000/dnp3"

https://censys.io/ipv4?q=

protocols%3A+%2220000%

2Fdnp3%22

BACnet 47808 TCP protocols:
"47808/bacnet"

https://censys.io/ipv4?q=

protocols%3A+%2247808%

2Fbacnet%22

Niagara Fox 1911 TCP protocols:
"1911/fox"

https://censys.io/ipv4?q=

protocols%3A+%221911%2Ffox%

22

Ethernet/IP 244818 TCP Not available Not available
Phoenix
PCWorx

1962 TCP Not available Not available

Codesys 2455 TCP Not available Not available

173

www.censys.io
https://censys.io/ipv4?q=protocols%3A+%22502%2Fmodbus%22
https://censys.io/ipv4?q=protocols%3A+%22502%2Fmodbus%22
https://censys.io/ipv4?q=protocols%3A+%22502%2Fmodbus%22
https://censys.io/ipv4?q=protocols%3A+%22102%2Fs7%22
https://censys.io/ipv4?q=protocols%3A+%22102%2Fs7%22
https://censys.io/ipv4?q=protocols%3A+%2220000%2Fdnp3%22
https://censys.io/ipv4?q=protocols%3A+%2220000%2Fdnp3%22
https://censys.io/ipv4?q=protocols%3A+%2220000%2Fdnp3%22
https://censys.io/ipv4?q=protocols%3A+%2247808%2Fbacnet%22
https://censys.io/ipv4?q=protocols%3A+%2247808%2Fbacnet%22
https://censys.io/ipv4?q=protocols%3A+%2247808%2Fbacnet%22
https://censys.io/ipv4?q=protocols%3A+%221911%2Ffox%22
https://censys.io/ipv4?q=protocols%3A+%221911%2Ffox%22
https://censys.io/ipv4?q=protocols%3A+%221911%2Ffox%22

A Appendix

Table A.3 shows the queries of the ZoomEye search engine, which are used to get an
overview of Internet-facing PLCs (see Table 1.1).

Table A.3: Search engine parameters for ZoomEye.

Protocol Port Query URL
Modbus 502 TCP +port:"502" https://www.zoomeye.org/

searchResult?q=%2Bport%3A%

22502%22&t=all&is_dork=0

Siemens S7 102 TCP +port:"102" https://www.zoomeye.org/

searchResult?q=%2Bport%3A%

22102%22&t=all&is_dork=0

DNP3 20000 TCP +port:20000 +ser-
vice:"dnp"

https://www.zoomeye.org/

searchResult?q=port:

20000%20%2Bservice:

%22dnp%22&t=all&is_dork=0

BACnet 47808 TCP +port:47808 https://www.zoomeye.org/

searchResult?q=port:47808

Niagara Fox 1911 TCP +port:1911 https://www.zoomeye.org/

searchResult?q=port:1911

Ethernet/IP 244818 TCP +port:44818 https://www.zoomeye.org/

searchResult?q=port:44818

Phoenix
PCWorx

1962 TCP +port:1962 https://www.zoomeye.org/

searchResult?q=port:1962

Codesys 2455 TCP +service:"CoDeSyS"https://www.zoomeye.org/
searchResult?q=%2Bservice%

3A%22CoDeSyS%22&t=

all&is_dork=0

174

www.zoomeye.org
https://www.zoomeye.org/searchResult?q=%2Bport%3A%22502%22&t=all&is_dork=0
https://www.zoomeye.org/searchResult?q=%2Bport%3A%22502%22&t=all&is_dork=0
https://www.zoomeye.org/searchResult?q=%2Bport%3A%22502%22&t=all&is_dork=0
https://www.zoomeye.org/searchResult?q=%2Bport%3A%22102%22&t=all&is_dork=0
https://www.zoomeye.org/searchResult?q=%2Bport%3A%22102%22&t=all&is_dork=0
https://www.zoomeye.org/searchResult?q=%2Bport%3A%22102%22&t=all&is_dork=0
https://www.zoomeye.org/searchResult?q=port:20000%20%2Bservice:%22dnp%22&t=all&is_dork=0
https://www.zoomeye.org/searchResult?q=port:20000%20%2Bservice:%22dnp%22&t=all&is_dork=0
https://www.zoomeye.org/searchResult?q=port:20000%20%2Bservice:%22dnp%22&t=all&is_dork=0
https://www.zoomeye.org/searchResult?q=port:20000%20%2Bservice:%22dnp%22&t=all&is_dork=0
https://www.zoomeye.org/searchResult?q=port:47808
https://www.zoomeye.org/searchResult?q=port:47808
https://www.zoomeye.org/searchResult?q=port:1911
https://www.zoomeye.org/searchResult?q=port:1911
https://www.zoomeye.org/searchResult?q=port:44818
https://www.zoomeye.org/searchResult?q=port:44818
https://www.zoomeye.org/searchResult?q=port:1962
https://www.zoomeye.org/searchResult?q=port:1962
https://www.zoomeye.org/searchResult?q=%2Bservice%3A%22CoDeSyS%22&t=all&is_dork=0
https://www.zoomeye.org/searchResult?q=%2Bservice%3A%22CoDeSyS%22&t=all&is_dork=0
https://www.zoomeye.org/searchResult?q=%2Bservice%3A%22CoDeSyS%22&t=all&is_dork=0
https://www.zoomeye.org/searchResult?q=%2Bservice%3A%22CoDeSyS%22&t=all&is_dork=0

A.1 Search Engine Parameters

Table A.4 shows the queries of the Ditecting search engine, which are used to get an
overview of Internet-facing PLCs (see Table 1.1).

Table A.4: Search engine parameters for Ditecting.

Protocol Port Query URL
Modbus 502 TCP service:Modbus http://www.ditecting.com/

index.php/home/Result/

index.html?query=

service%3AModbus

Siemens S7 102 TCP service:Siemens s7 http://www.ditecting.com/

index.php/home/Result/

index.html?query=

service%3ASiemens%20s7

DNP3 20000 TCP service:DNP3 http://www.ditecting.com/

index.php/home/Result/

index.html?query=

service%3ADNP3

BACnet 47808 TCP service:BACnet http://www.ditecting.com/

index.php/home/Result/

index.html?query=

service%3ABACnet

Niagara Fox 1911 TCP port:1911 http://www.ditecting.com/

index.php/home/Result/

index.html?query=port%3A1911

Ethernet/IP 244818 TCP service:EtherNet/IP http://www.ditecting.com/

index.php/home/Result/

index.html?query=

service%3AEtherNet/IP

Phoenix
PCWorx

1962 TCP service:PCWorx http://www.ditecting.com/

index.php/home/Result/

index.html?query=

service%3APCWorx

Codesys 2455 TCP port:2455 http://www.ditecting.com/

index.php/home/Result/

index.html?query=port%3A2455

175

www.ditecting.com
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3AModbus
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3AModbus
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3AModbus
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3AModbus
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3ASiemens%20s7
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3ASiemens%20s7
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3ASiemens%20s7
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3ASiemens%20s7
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3ADNP3
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3ADNP3
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3ADNP3
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3ADNP3
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3ABACnet
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3ABACnet
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3ABACnet
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3ABACnet
http://www.ditecting.com/index.php/home/Result/index.html?query=port%3A1911
http://www.ditecting.com/index.php/home/Result/index.html?query=port%3A1911
http://www.ditecting.com/index.php/home/Result/index.html?query=port%3A1911
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3AEtherNet/IP
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3AEtherNet/IP
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3AEtherNet/IP
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3AEtherNet/IP
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3APCWorx
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3APCWorx
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3APCWorx
http://www.ditecting.com/index.php/home/Result/index.html?query=service%3APCWorx
http://www.ditecting.com/index.php/home/Result/index.html?query=port%3A2455
http://www.ditecting.com/index.php/home/Result/index.html?query=port%3A2455
http://www.ditecting.com/index.php/home/Result/index.html?query=port%3A2455

A Appendix

A.2 Programmable Logic Controller Cycle Time Measurements

The appendix lists additional measurement results for every PLC in the testbed. The
attack with the most influence for each controller is marked with a grey background. The
red marking here shows the highest value..

A.2.1 Mean Idle Cycle Time

Table A.5 shows the mean cycle times without network load (tidle) of the different PLCs
used in Section 3.3.

Table A.5: Overview of the mean idle cycle time of each PLC.
PLC Mean idle cycle time
Wago 750-889 (1) 2000 µs
Wago 750-8100 (2) 10071 µs
Wago 750-880 (3) 1999 µs
Wago 750-831 (4) 2000 µs
Siemens S7-1211 (5) 223 µs
Siemens S7-1212 (6) 30500 µs
Siemens ET200-SP (7) 4500 µs
Siemens S7-314 (8) 206 µs
Siemens S7-1516F (9) 108 µs
Siemens Logo! 8 (10) 171 µs
Phoenix ILC 151 ETH (11) 1000 µs
Phoenix ILC 150 ETH (12) 1085 µs
Phoenix ILC 171 ETH (13) 1000 µs
ABB PM554-TP-ETH (14) 1000 µs
Crouzet EM4 (15) 1999 µs
Schneider M221 (16) 2000 µs

176

A.2 Programmable Logic Controller Cycle Time Measurements

A.2.2 Overview

The measurement results of the network load tests of all measured PLCs are shown in
the following tables.

Table A.6: Cycle time in µs during attacks against Wago devices
Device Attack Mean Pre Mean Att Mean Post Median Pre Median Att Median Post Min Pre Min Att Min Post Max Pre Max Att Max Post

75
0-
88
9
(1
)

zgrab modbus 2000 2213 2000 1816 2356 2164 54 237 1467 2579 52024 2538
zgrab http 2000 2000 2000 2167 1826 2227 1491 274 1447 2502 2539 2559
syn 2000 2000 2000 1841 2010 2225 505 1579 1316 2562 2413 2697
snmp 2000 2000 2000 2142 1800 2140 1393 973 1413 2620 2633 2594
http 2000 2000 2000 2054 2168 2165 1430 1442 1483 2574 2568 2531
hping udp flood 2000 140044 2000 2226 1633 2202 1406 414 1471 2603 8397008 2519
hping S P U flood 2000 18282 2000 1806 2346 2166 279 1533 1447 2533 8067682 2628
hping c1 1 C17 flood 2000 2000 2000 1784 1760 1772 425 775 463 2713 2620 2641
arp 4 2000 199062 2000 2228 1789 1828 1445 604 243 2557 5526857 2559
arp 3 2000 182637 2000 1758 1636 2235 684 597 1332 2530 5085928 2687
arp 2 2000 306792 2000 1789 1639 1800 1408 584 386 2598 6540940 2511
arp 1 2000 375307 2000 1831 1640 2167 1420 566 1487 2601 11540100 3365

75
0-
81
00

(2
)

zgrab modbus 10101 19148 10093 10334 10398 10334 7160 8303 9553 30389 779529 30408
zgrab http 10071 10073 10084 10327 10332 10334 9575 2486 7683 30407 30414 30428
syn 10091 13545 10097 10330 10355 10334 7261 791 717 39742 90279 30434
snmp 10063 10064 10057 10324 10330 10333 5876 9569 9569 30440 30432 30385
http 10064 10057 10088 10334 10326 10329 9559 9575 8140 30403 30428 30407
hping udp flood 10054 14724 10074 10334 10353 10334 9579 1431 9549 30432 89676 39737
hping S P U flood 10066 14163 10066 10329 10348 10334 4387 8005 1819 30415 109617 30399
hping c1 1 C17 flood 10091 10053 10078 10337 10333 10331 7087 8057 9569 30429 30394 30452
arp 4 10113 11131 10085 10333 10348 10332 9451 9562 9571 30452 39632 40511
arp 3 10054 11493 10054 10323 10350 10332 9580 4960 9521 30390 40462 30401
arp 2 10081 11472 10060 10336 10341 10331 9549 9543 9562 49663 40400 30401
arp 1 10081 11332 10074 10338 10340 10335 9557 7883 9563 30395 49598 30389

75
0-
88
0
(3
)

zgrab modbus 1999 2214 1999 1702 2337 1780 581 248 581 3388 61882 3556
zgrab http 1999 1998 2000 1717 1701 2148 580 583 580 3384 3445 3472
syn 1999 2019 1997 1712 2308 1733 581 1624 309 3426 2639 3392
snmp 1997 1996 1996 1727 1723 1721 581 308 23 3475 3385 3453
http 1999 1999 2000 1709 1716 2284 581 377 582 3430 3385 3451
hping udp flood 1997 178903 1997 1731 1630 1727 580 332 580 3444 6283455 3491
hping S P U flood 1998 87062 1996 1732 1634 1722 153 601 339 3384 42502647 3469
hping c1 1 C17 flood 1998 1997 1996 1727 1728 1729 578 580 581 3410 3381 3484
arp 4 1999 160511 1995 1774 1630 1724 577 575 580 3440 5400406 3392
arp 3 1997 162632 1998 1717 1712 1740 581 557 580 3445 3761630 3446
arp 2 1999 465689 1998 1734 1629 1734 574 612 580 3386 10973587 3487
arp 1 1998 575663 1997 1732 2372 1725 581 617 580 3390 9987443 3392

75
0-
83
1
(4
)

zgrab modbus 2000 2233 2000 1890 2334 1903 320 337 1230 3448 96089 3226
zgrab http 2000 2000 2000 2003 2192 2162 1439 1371 1385 3308 3367 3440
syn 2000 1999 2000 1809 2006 2010 1326 1568 1447 2649 2448 2567
snmp 2000 2000 2000 2232 1784 2233 547 578 1367 3342 3382 2646
http 2000 2000 2000 1918 2002 1862 1407 1418 1336 3316 3208 3157
hping udp flood 2000 75698 2000 1819 2336 2038 920 338 1457 2600 3869519 3043
hping S P U flood 2000 18353 2000 1798 2326 2204 236 1521 1396 3424 7968669 3246
hping c1 1 C17 flood 2000 2000 2000 2044 2180 2248 1085 1411 562 2678 3151 3399
arp 4 2000 151997 2000 2200 1676 2020 1374 315 1074 2641 3321851 2650
arp 3 2000 244520 2000 2002 2344 1910 1390 568 1484 2633 4065957 2531
arp 2 2000 653732 2000 1777 2368 2133 1440 605 73 2606 7627166 2684
arp 1 2000 467949 2000 1762 2366 2146 61 586 982 2646 6923920 2672

177

A Appendix

Table A.7: Cycle time in µs during attacks against Siemens devices
Device Attack Mean Pre Mean Att Mean Post Median Pre Median Att Median Post Min Pre Min Att Min Post Max Pre Max Att Max Post

S7
-1
21
1
(5
)

zgrab s7 223 233 223 192 141 192 110 108 110 1336 1572 1360
zgrab https 223 223 223 192 192 192 109 109 54 1377 1320 1365
zgrab http 223 223 223 192 192 192 92 37 108 1304 1324 1344
szl 223 223 223 192 192 192 109 108 108 1353 1395 1354
syn 223 325 223 192 161 191 91 108 109 1413 1638 1389
snmp 223 223 223 192 192 192 110 110 109 1237 1297 1283
http 223 223 223 192 192 192 89 111 26 1371 1252 1346
hping udp flood 223 310 223 191 167 191 16 108 109 1372 1945 1363
hping S P U flood 223 343 223 191 166 191 109 109 107 1312 1736 1337
hping c1 1 C17 flood 223 223 223 191 191 191 104 109 106 1414 1348 1414
arp 4 223 306 223 192 168 191 109 108 12 1340 1756 1207
arp 3 223 301 223 192 156 191 85 62 108 1299 1645 1361
arp 2 223 317 223 192 160 191 110 108 20 1003 1612 1371
arp 1 223 317 223 192 160 191 109 108 57 1339 1587 1354

S7
-1
21
2
(6
)

zgrab s7 30497 38125 30500 30968 39129 29073 20327 4211 28939 32061 44032 32063
zgrab https 30500 30501 30500 29075 30501 29068 28940 28810 28937 32062 32069 32068
zgrab http 30501 30500 30489 30502 29073 30501 28938 28938 5919 32064 32063 32068
szl 30500 30494 30500 29072 30498 29077 28939 15975 28941 32066 32065 32063
syn 30486 30760 30501 29075 31974 30500 276 28938 28450 32062 41043 32061
snmp 30494 30489 30494 30502 30502 30499 15425 4873 15925 32064 32064 32068
http 30489 30500 30490 30501 29076 30504 5396 28939 6947 32063 32061 32067
hping udp flood 30487 30669 30496 29078 31967 30502 2286 28780 18996 33002 38999 32063
hping S P U flood 30490 30676 30500 30498 31974 29074 6812 28937 28938 32065 39011 32064
hping c1 1 C17 flood 30501 30500 30496 30498 29074 30501 28939 28936 19497 32064 32066 32063
arp 4 30490 30671 30500 30501 31968 29074 7606 28940 28939 32057 38026 32062
arp 3 30501 30671 30500 30500 31970 29075 28243 28499 28937 32065 38434 32063
arp 2 30501 30699 30500 30504 31973 29070 28936 28418 28943 32063 39578 32062
arp 1 30486 30720 30500 29075 31971 29074 895 28933 28938 32067 40011 32064

E
T
20
0-
SP

(7
)

zgrab s7 4575 4530 4422 3947 3947 3944 1943 949 1054 33946 28054 36054
zgrab https 4610 4571 4512 3947 3947 3947 1943 1943 1943 36054 35949 31943
zgrab http 4468 4523 4608 3947 3947 3947 1054 945 1943 41949 30052 36054
szl 4517 4634 4470 3947 3947 3947 1054 1943 1943 29948 31947 40056
syn 4647 4395 4583 3947 3944 3946 1055 944 1053 36058 34059 44054
snmp 4440 4383 4310 3947 3944 3943 1198 1943 1054 32055 38056 32055
http 4477 4437 4572 3944 3944 3947 1055 1943 548 27945 34055 56056
hping udp flood 4425 4551 4645 3944 3947 3947 948 945 1943 31945 35948 32055
hping S P U flood 4506 4574 4505 3947 3947 3947 1943 945 945 26054 33945 28054
hping c1 1 C17 flood 4475 4275 4620 3944 3943 3947 1943 945 794 37947 33944 33948
arp 4 4451 3869 4587 3947 2058 3947 405 945 944 32056 26055 30057
arp 3 4576 3921 4459 3947 2058 3947 1943 944 1943 34054 29947 36054
arp 2 4541 4492 4505 3946 3947 3947 945 1054 1943 30056 33948 29948
arp 1 4450 4400 4408 3947 3947 3947 1055 105 1943 30056 30052 37946

S7
-3
14

(8
)

zgrab s7 206 271 206 223 253 223 117 114 116 619 880 619
zgrab https 206 206 206 223 223 223 117 117 117 674 660 619
zgrab http 206 206 206 223 223 223 117 117 117 674 619 619
szl 206 258 206 223 252 223 75 114 117 633 880 674
syn 206 266 206 223 253 223 116 114 116 619 853 661
snmp 206 206 206 223 223 223 117 117 117 619 646 619
http 206 206 206 223 223 223 116 117 117 660 661 620
hping udp flood 206 265 206 223 252 223 117 3 117 619 922 619
hping S P U flood 206 267 206 223 253 223 102 112 117 660 853 633
hping c1 1 C17 flood 206 206 206 223 223 223 117 117 117 619 620 619
arp 4 206 264 206 223 252 223 16 115 117 674 840 619
arp 3 206 265 206 223 252 223 117 114 117 619 840 661
arp 2 206 267 206 223 253 223 117 114 117 674 881 619
arp 1 206 267 206 223 253 223 75 115 117 619 840 633

S7
-1
51
6F

(9
)

zgrab s7 108 130 108 131 135 131 18 18 15 576 509 584
zgrab https 108 108 108 131 131 131 18 18 18 616 588 588
zgrab http 108 108 108 131 131 131 18 16 18 580 592 601
szl 108 108 108 131 131 131 18 17 18 589 592 580
syn 108 129 108 131 135 131 19 18 18 581 584 608
snmp 108 108 108 131 131 131 18 19 18 621 580 561
http 108 108 108 131 131 131 18 22 18 565 592 576
hping udp flood 108 128 108 131 135 131 18 18 15 588 593 588
hping S P U flood 108 128 108 131 135 131 16 18 18 600 573 619
hping c1 1 C17 flood 108 108 108 131 131 131 22 18 18 565 564 617
arp 4 108 129 108 131 135 131 18 18 19 577 585 581
arp 3 108 129 108 131 135 131 18 18 22 592 597 635
arp 2 108 129 108 131 135 131 17 19 18 569 581 576
arp 1 108 129 108 131 135 131 22 22 18 604 608 621

Si
em

en
s
Lo

go
!
8
(1
0)

zgrab modbus 171 354 171 260 282 260 32 23 30 1420 2456 1443
zgrab http 171 171 171 259 259 260 32 32 32 1459 1445 1436
syn 171 420 171 260 285 260 32 20 32 1474 2170 1430
snmp 171 171 171 260 260 260 18 32 32 1494 1446 1477
http 171 171 171 260 260 260 22 32 32 1437 1454 1435
hping udp flood 171 373 171 260 282 259 32 21 18 1440 2141 1481
hping S P U flood 171 365 171 259 281 260 32 22 19 1429 2181 1502
hping c1 1 C17 flood 171 171 171 260 260 260 18 32 18 1445 1429 1453
arp 4 171 289 171 259 289 260 29 32 32 1479 1716 1460
arp 3 171 290 171 259 289 259 32 19 32 1433 1714 1453
arp 2 171 756 171 259 277 259 32 20 32 1454 96776 1435
arp 1 171 791 171 260 276 260 19 17 32 1434 96160 1453

178

A.2 Programmable Logic Controller Cycle Time Measurements

Table A.8: Cycle time in µs during attacks against Phoenix Contact devices
Device Attack Mean Pre Mean Att Mean Post Median Pre Median Att Median Post Min Pre Min Att Min Post Max Pre Max Att Max Post

IL
C

15
1
E
T
H

(1
1)

zgrab modbus 1000 1001 1000 994 1044 945 636 10 498 1363 4227 1338
zgrab http 1000 1000 1000 992 1097 1070 545 624 644 1329 1417 1351
syn 1000 1003 1000 998 1029 1080 642 14 629 1330 4253 1385
snmp 1000 1000 1000 916 1127 910 125 568 160 1404 1465 1337
http 1000 1000 1000 899 1018 971 646 627 626 1368 1340 1336
hping udp flood 1000 1001 1000 882 1012 980 470 31 329 1360 4228 1397
hping S P U flood 1000 1002 1000 1142 1031 934 632 55 550 1423 3186 1385
hping c1 1 C17 flood 1000 1000 1000 1068 926 1142 614 360 595 1387 1365 1409
arp 4 1000 1002 1000 964 1072 854 84 13 519 1374 4231 1426
arp 3 1000 1003 1000 1008 1072 946 702 27 630 1285 4226 1348
arp 2 1000 1003 1000 1011 1063 925 133 18 84 1383 4260 1398
arp 1 1000 1003 1000 873 1056 1056 253 7 568 1400 4238 1450

IL
C

15
0
E
T
H

(1
2)

zgrab modbus 1086 1086 1086 1111 1110 1111 953 269 952 4244 6313 4089
zgrab https 1085 1085 1085 1111 1111 1111 434 6 341 4244 4240 4241
zgrab http 1085 1085 1085 1111 1111 1111 929 953 954 4232 4244 4244
szl 1084 1084 1084 1110 1111 1111 534 954 124 4242 4242 4240
syn 1085 1088 1084 1111 1111 1111 953 952 287 4239 4260 4244
snmp 1083 1084 1085 1111 1111 1111 917 954 952 4244 4239 4244
http 1085 1085 1085 1111 1111 1111 954 520 93 4244 4244 4244
hping udp flood 1086 1087 1088 1111 1111 1111 437 952 256 4246 4259 4244
hping S P U flood 1086 1088 1085 1111 1111 1111 787 952 297 4244 4338 4246
hping c1 1 C17 flood 1086 1086 1086 1111 1111 1111 809 953 232 4240 4240 4246
arp 4 1086 1091 1086 1111 1111 1111 267 469 953 4241 4247 4245
arp 3 1085 1090 1086 1111 1111 1111 952 455 953 4246 6160 4242
arp 2 1084 1091 1085 1111 1111 1111 953 927 475 4242 6295 4243
arp 1 1084 1090 1084 1111 1111 1111 841 953 540 4238 6156 4246

IL
C

17
1
E
T
H

(1
3)

zgrab modbus 1000 1000 1000 982 994 993 730 56 717 1275 4202 1279
zgrab https 1000 1000 1000 949 988 992 719 718 727 1274 1275 1271
zgrab http 1000 1000 1000 807 802 988 718 100 718 1274 1274 1278
szl 1000 1000 1000 799 1190 799 625 701 157 1271 1297 1272
syn 1000 1003 1000 994 1123 1001 701 54 774 1297 4219 1228
snmp 1000 1000 1000 849 867 850 299 182 466 1232 1228 1227
http 1000 1000 1000 799 994 799 261 727 272 1330 1271 1271
hping udp flood 1000 1002 1000 1002 1070 964 755 40 722 1222 4221 1279
hping S P U flood 1000 1001 1000 852 1013 856 254 22 88 1232 4239 1222
hping c1 1 C17 flood 1000 1000 1000 856 1024 889 119 698 755 1222 1222 1222
arp 4 1000 1003 1000 851 1085 852 540 22 147 1224 4217 1245
arp 3 1000 1003 1000 806 1078 1004 261 9 769 1518 4235 1226
arp 2 1000 1003 1000 855 1082 1191 206 25 715 1228 4244 1276
arp 1 1000 1003 1000 850 1075 855 468 8 592 1228 4263 1229

Table A.9: Cycle time in µs during attacks against ABB devices
Device Attack Mean Pre Mean Att Mean Post Median Pre Median Att Median Post Min Pre Min Att Min Post Max Pre Max Att Max Post

P
M
55
4-
T
P
-E

T
H

(1
4)

zgrab modbus 1000 1143 1000 1074 1079 1076 908 97 903 1916 3100 1097
zgrab http 1000 1000 1000 926 1072 926 510 903 626 1099 1097 1097
syn 1000 1107 1000 1000 1079 1074 903 895 232 1095 5089 1911
snmp 1000 1000 1000 1074 1074 1076 523 902 904 1916 1095 1097
http 1000 1000 1000 1073 1076 925 905 904 732 1097 1097 1095
hping udp flood 1000 1070 1000 1074 1079 1074 905 662 903 1096 3919 1910
hping S P U flood 1000 1073 1000 925 1078 926 747 231 542 2087 3099 1098
hping c1 1 C17 flood 1000 1000 1000 1073 1074 924 906 903 839 1094 1915 1096
arp 4 1000 1000 1000 1074 1002 1073 902 901 902 1097 1101 1095
arp 3 1000 1000 1000 926 1000 926 114 901 238 1096 1099 1097
arp 2 1000 1010 1000 927 1074 926 72 897 240 2079 3909 1096
arp 1 1000 1014 1000 1000 1075 1072 903 322 903 2086 3091 1096

Table A.10: Cycle time in µs during attacks against Crouzet devices
Device Attack Mean Pre Mean Att Mean Post Median Pre Median Att Median Post Min Pre Min Att Min Post Max Pre Max Att Max Post

em
4
(1
5)

zgrab modbus 1999 1999 1999 1999 1999 1999 435 1841 1992 2006 2007 2006
zgrab http 1999 1999 1999 1999 1999 1999 920 1992 1992 2006 2006 2006
syn 1999 1999 1999 1999 1999 1999 565 1992 1991 2006 2006 2006
snmp 1999 1999 1999 1999 1999 1999 615 793 1992 2006 2006 2006
http 1999 1999 1999 1999 1999 1999 1634 861 1992 2006 2006 2006
hping udp flood 1999 1999 1999 1999 1999 1999 1992 1992 170 2006 2006 2007
hping S P U flood 1999 1999 1999 1999 1999 1999 768 984 1593 2010 2006 2006
hping c1 1 C17 flood 1999 1999 1999 1999 1999 1999 1992 1992 1381 2006 2005 2006
arp 4 1999 1999 1999 1999 1999 1999 1571 557 1992 2006 2005 2006
arp 3 1999 1999 1999 1999 1999 1999 1992 1988 1992 2005 2010 2006
arp 2 1999 1999 1999 1999 1999 1999 1992 1992 1991 2006 2006 2006
arp 1 1999 1999 1999 1999 1999 1999 1069 1992 1992 2006 2006 2006

Table A.11: Cycle time in µs during attacks against Schneider devices
Device Attack Mean Pre Mean Att Mean Post Median Pre Median Att Median Post Min Pre Min Att Min Post Max Pre Max Att Max Post

M
od

ic
on

M
22
1
(1
6)

zgrab modbus 2000 2152 2000 2000 2001 2003 134 1944 188 2034 54041 2045
syn 2000 2852 2000 1998 2002 2000 644 1943 742 2045 52012 3008
snmp 2000 2000 2000 2000 2000 2000 1464 1703 1953 2051 2056 2048
hping udp flood 2000 10774 2000 2000 8003 2000 1208 1782 1948 2035 67019 2054
hping S P U flood 2000 7773 2000 2000 4002 2000 1266 48 686 2035 76015 2050
hping c1 1 C17 flood 2000 2000 2000 2000 2000 2000 1964 1317 1951 2051 2051 2051
arp 4 2000 9004 2000 2000 8000 2000 1943 1621 1967 2057 102011 2033
arp 3 2000 9050 2000 2000 8002 2000 1953 1946 1134 2047 97013 2048
arp 2 2000 2628 2000 2001 2002 2000 1968 1935 1798 2033 36006 2033
arp 1 2000 2494 2000 2000 2002 2001 1953 1275 1967 2048 35005 2034

179

A Appendix

A.2.3 Wago at Different Rates

The Wago PLCs offer the possibility to limit the bandwidth of the network traffic. In or-
der to evaluate whether this is sufficient as a protective measure, various bandwidths were
tested. However, the evaluation showed that only a very strong bandwidth limitation of
64 kb/s is effective.

Table A.12: Cycle time in µs during attacks against Wago devices at 64 kb/s
Device Attack Mean Pre Mean Att Mean Post Median Pre Median Att Median Post Min Pre Min Att Min Post Max Pre Max Att Max Post

75
0-
88

9
(1
) arp 4 2000 2001 2000 2132 2199 1755 1207 598 890 2783 3702 2665

arp 3 2000 2001 2000 2149 2198 2178 1284 376 1292 2716 3691 2709
arp 2 2000 2004 2000 2099 2152 1816 1342 598 1225 2684 4403 2782
arp 1 2000 2004 2000 1786 2154 1754 481 244 1154 2775 4516 2629

75
0-
81

00
(2
) arp 4 9999 9999 9997 10320 9697 9715 9573 9565 214 10478 10456 10462

arp 3 9999 9999 9998 10323 10008 9736 9568 9555 5315 10470 10462 10457
arp 2 9999 9999 9998 10288 9699 9746 9570 9502 2781 10495 10448 10491
arp 1 9997 10005 9999 9737 10016 10312 2408 6947 9566 10488 30394 10474

75
0-
88

0
(3
) arp 4 2000 2009 1998 2276 2302 1715 580 352 580 3382 4387 3387

arp 3 2000 2007 1998 1840 2298 1710 581 357 579 3417 4386 3419
arp 2 1999 2010 1998 1757 2302 1704 580 518 581 3402 5377 3430
arp 1 2000 2011 1998 1795 2300 1708 578 288 580 3384 4699 3391

75
0-
83

1
(4
) arp 4 2000 2003 2000 2088 2163 2008 1377 322 1358 3042 4398 3368

arp 3 2000 2003 2000 2226 2162 1981 1375 312 1411 3373 4385 3347
arp 2 2000 2004 2000 2220 2112 2240 519 306 1353 3514 4433 3343
arp 1 2000 2004 2000 2156 2112 2238 1383 58 638 2618 4413 3343

Table A.13: Cycle time in µs during attacks against Wago devices at 1 Mb/s
Device Attack Mean Pre Mean Att Mean Post Median Pre Median Att Median Post Min Pre Min Att Min Post Max Pre Max Att Max Post

75
0-
88

9
(1
) arp 4 2000 2002 2000 2034 2224 2140 1403 588 1481 2983 3686 2516

arp 3 2000 2001 2000 1859 2227 2001 1321 543 1481 2678 3661 2531
arp 2 2000 2004 2000 2002 2179 1810 1302 174 896 3293 4617 2518
arp 1 2000 2004 2000 2026 2199 1826 1384 588 1115 2608 4585 2669

75
0-
81

00
(2
) arp 4 9998 9999 9998 9823 10259 9808 7934 9510 6628 10539 10514 10538

arp 3 9999 9999 9997 10270 9752 9798 9515 9445 2508 10557 10516 10565
arp 2 10002 10116 9999 10266 10333 10258 9523 9522 9520 30375 30404 10583
arp 1 10001 10135 9998 9806 10331 9756 370 9567 6016 30432 30418 10560

75
0-
88

0
(3
) arp 4 1998 2037 1997 1701 2363 1695 544 145 576 3419 4515 3423

arp 3 1998 2036 1997 1714 2363 1695 582 581 425 3442 4491 3437
arp 2 1998 2038 1998 1704 2311 1695 580 579 290 3386 5568 3414
arp 1 1998 2041 1999 1711 2313 1747 576 584 576 3388 5434 3411

75
0-
83

1
(4
) arp 4 2000 2003 2000 2009 2205 1993 812 525 1130 3412 4410 3364

arp 3 2000 2003 2000 2192 2215 1773 1400 430 748 2631 4447 3403
arp 2 2000 2004 2000 1828 2170 2226 23 417 1425 3341 4719 2958
arp 1 2000 2004 2000 2166 2140 2215 1162 454 589 3370 4641 3439

Table A.14: Cycle time in µs during attacks against Wago devices at 8 Mb/s
Device Attack Mean Pre Mean Att Mean Post Median Pre Median Att Median Post Min Pre Min Att Min Post Max Pre Max Att Max Post

75
0-
88

9
(1
) arp 4 2000 2111 2000 1867 2362 1853 75 531 236 2612 8139 2533

arp 3 2000 2111 2000 1916 2362 2066 1295 535 1489 2707 8923 2523
arp 2 2000 2272 2000 2197 1690 2276 1360 343 1476 2608 107437 2538
arp 1 2000 2278 2000 2195 1676 1756 1297 287 271 2716 92413 2590

75
0-
81

00
(2
) arp 4 9999 11163 9997 10305 10344 9764 9565 4078 85 10508 30475 10486

arp 3 10002 11296 9999 10028 10344 10304 9546 9539 9562 30380 30493 10489
arp 2 9999 11488 9999 10319 10351 9747 9550 2775 8522 10473 30476 10450
arp 1 9999 11424 9998 10017 10347 9726 9534 5075 6532 10515 49692 10495

75
0-
88

0
(3
) arp 4 1999 2116 2000 1709 2313 2299 576 410 580 3420 9521 3447

arp 3 1997 2115 1998 1702 2343 1707 582 451 575 3380 9676 3414
arp 2 1998 2267 1997 1702 1695 1730 580 226 579 3418 90386 3480
arp 1 1998 2261 1996 1700 1693 1696 579 253 580 3385 142657 3449

75
0-
83

1
(4
) arp 4 2000 2137 2000 2264 2334 2199 1436 329 1432 3346 9737 3403

arp 3 2000 2139 2000 2092 2334 1994 1347 328 1348 2648 9769 3382
arp 2 2000 2276 2000 2222 2107 2009 627 262 1441 3432 114800 3345
arp 1 2000 2269 2000 2144 1719 1815 305 352 530 3398 100319 3335

180

A.2 Programmable Logic Controller Cycle Time Measurements

Table A.15: Cycle time in µs during attacks against Wago devices at 16 Mb/s
Device Attack Mean Pre Mean Att Mean Post Median Pre Median Att Median Post Min Pre Min Att Min Post Max Pre Max Att Max Post

75
0-
88

9
(1
) arp 4 2000 2826 2000 2238 2288 1782 1493 555 1152 2519 493534 2602

arp 3 2000 2791 2000 2161 2330 2162 1451 346 1480 2548 358603 2533
arp 2 2000 2821 2000 1819 2302 1802 869 560 756 2601 479991 2659
arp 1 2000 2822 2000 2169 2322 2244 1349 606 1413 2652 497548 2601

75
0-
81

00
(2
) arp 4 9998 9999 9998 9823 10259 9808 7934 9510 6628 10539 10514 10538

arp 3 9999 9999 9997 10270 9752 9798 9515 9445 2508 10557 10516 10565
arp 2 10002 10116 9999 10266 10333 10258 9523 9522 9520 30375 30404 10583
arp 1 10001 10135 9998 9806 10331 9756 370 9567 6016 30432 30418 10560

75
0-
88

0
(3
) arp 4 1999 2775 1997 1735 1693 1698 61 453 580 3448 360654 3382

arp 3 1997 2785 1996 1728 1695 1726 577 566 578 3386 453659 3488
arp 2 1996 2806 1998 1728 1692 1725 579 561 580 3429 384598 3386
arp 1 1998 2833 1998 1735 1694 1732 580 567 582 3424 437690 3383

75
0-
83

1
(4
) arp 4 2000 2798 2000 2218 1740 2203 1343 541 1387 2681 389171 3093

arp 3 2000 2811 2000 2216 1733 2170 1399 564 133 3369 424686 3385
arp 2 2000 2818 2000 2195 1731 2200 442 569 275 2647 451619 3389
arp 1 2000 2850 2000 2006 2264 2060 1359 394 723 3337 511724 3285

181

A Appendix

A.3 Schematic of the BeagleBone Measurement Printed
Circuit Board

For the IO signal measurements of the PLCs, a 24V logic analyzer with continuous
monitoring was developed. The Programmable Realtime Units (PRUs) of a BeagleBone
device were used for the measurement task, which are only capable to handle 3.3V as
inputs. Due to this, a level shifter PCB from 24V to 3.3V was developed (see Figure A.1).

1
2

3
4

5
6

1
2

3
4

5
6

A B C D

A B C D

D
a
te

:

K
iC

a
d
 E

.D
.A

.
 k

ic
a
d
 5

.0
.2

-b
e
e
7
6
a
0
7
0
u
b
u
n
tu

1
8
.0

4
.1

R
e
v
:

S
iz

e
:
A

4

Id
:
1
/1

T
it

le
:

F
ile

:
B

e
a
g
le

B
o
n
e
-B

la
c
k
-C

a
p
e
.s

c
h

S
h
e
e
t:
 /

G
N

D
D

GNDD

GNDD

GNDD

GNDD

+
3
V

3
+

5
V

+
3
V

3
+

5
V

S
Y

S
_
5
V

S
Y

S
_
5
V

V
D

D
_
A

D
C

GNDA_ADC

S
Y

S
_
R

E
S

E
T

N
P

W
R

_
B

U
T

1

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2 2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
93

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4 4
0

4
1

4
2

4
3

4
4

4
5

4
6

5
6

7
8

9

P
9 BeagleBone_Black_Header

1

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2 2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
93

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4 4
0

4
1

4
2

4
3

4
4

4
5

4
6

5
6

7
8

9

P
8 BeagleBone_Black_Header

C
H

0
1

C
H

0
2

C
H

0
3

C
H

0
4

C
H

0
5

C
H

0
6

C
H

0
7

C
H

0
8

C
H

0
9

C
H

1
0

C
H

1
1

C
H

1
2

C
H

1
3

C
H

1
4

1
D

IR
1

1
B

1
2

1
B

2
3

G
N

D
4

1
B

3
5

1
B

4
6

V
C

C
B

7

1
B

5
8

1
B

6
9

G
N

D
1
0

1
B

7
1
1

1
B

8
1
2

2
B

1
1
3

2
B

2
1
4

G
N

D
1
5

2
B

3
1
6

2
B

4
1
7

V
C

C
B

1
8

2
B

5
1
9

2
B

6
2
0

G
N

D
2
1

2
B

7
2
2

2
B

8
2
3

2
D

IR
2
4

2
O

E
2
5

2
A

8
2
6

2
A

7
2
7

G
N

D
2
8

2
A

6
2
9

2
A

5
3
0

V
C

C
A

3
1

2
A

4
3
2

2
A

3
3
3

G
N

D
3
4

2
A

2
3
5

2
A

1
3
6

1
A

8
3
7

1
A

7
3
8

G
N

D
3
9

1
A

6
4
0

1
A

5
4
1

V
C

C
A

4
2

1
A

4
4
3

1
A

3
4
4

G
N

D
4
5

1
A

2
4
6

1
A

1
4
7

1
O

E
4
8

U
1

7
4
L
V

C
H

1
6
2
4
5

W
1
4

R
1

1
0
0
k

+
3

V
3

+
3

V
3

+
3

V
3

+
3

V
3

G
N

D
D

G
N

D
D

G
N

D
D

O
E

G
N

D
D

+
3

V
3

G
N

D
D

G
N

D
D

+
3

V
3

G
N

D
D

O
E

R
2
9

0
R

3
0

0

R
3
1

0
R

3
2

0

R
3
3

0
R

3
4

0

R
3
5

0
R

3
6

0
R

3
7

0
R

3
8

0

R
3
9

0
R

4
0

0

R
4
1

0
R

4
2

0

+
3
V

3

G
N

D
D

C
1

1
0
0
n

C
2

1
0
µ

C
3

1
0
µ

C
4

1
0
µ

C
5

1
0
0
n

C
6

1
0
µ

C
7

1
0
µ

C
8

1
0
µ

C
H

0
1

C
H

0
2

C
H

0
3

C
H

0
4

C
H

0
5

C
H

0
6

C
H

0
7

C
H

0
8

C
H

0
9

C
H

1
0

C
H

1
1

C
H

1
2

C
H

1
3

C
H

1
4

D
1

G 2

S
3

Q
1

B
S

1
7
0

G
N

D
D

S
Y

S
_
R

E
S

E
T

N

R2
10k

+
3
V

3

O
E

D1

D3

D7

D11

D15

D19

D23

D5

D9

D13

D17

D21

D25

D27

D2

D4

D8

D12

D16

D20

D24

D6

D10

D14

D18

D22

D26

D28

+
3
V

3

G
N

D
D

G
N

D
D

R
4
5

1
0
0

R
4
6

1
0
0

R
4
7

1
0
0

R
4
8

1
0
0

R
4
9

1
0
0

R
5
0

1
0
0

R
5
1

1
0
0

R
5
2

1
0
0

R
5
3

1
0
0

R
5
4

1
0
0

R
5
5

1
0
0

R
5
6

1
0
0

R
5
7

1
0
0

R
5
8

1
0
0

W
1
3

W
1
2

W
1
1

W
1
0

W
9

W
8

W
7

W
6

W
5

W
4

W
3

W
2

W
1

R43
9k1
R27
9k1
R25
9k1
R23
9k1
R21
9k1
R19
9k1
R17
9k1
R15
9k1
R13
9k1
R11
9k1
R9
9k1
R7
9k1
R5
9k1
R3
9k1

G
N

D
D

R44
1k

R28
1k

R26
1k

R24
1k

R22
1k

R20
1k

R18
1k

R16
1k

R14
1k

R12
1k

R10
1k
R8
1k
R6
1k
R4
1k

IN
0

1
IN

0
2

IN
0

3
IN

0
4

IN
0

5
IN

0
6

IN
0

7
IN

0
8

IN
0

9
IN

1
0

IN
1

1
IN

1
2

IN
1

3
IN

1
4

IN
0

1
IN

0
2

IN
0

3
IN

0
4

IN
0

5
IN

0
6

IN
0

7
IN

0
8

IN
0

9
IN

1
0

IN
1

1
IN

1
2

IN
1

3
IN

1
4

W
1
5

G
N

D
D

B
e
a
g
le

b
o
n
e
 H

e
a
d
e
r

R
e
s
e
t

2
4
V

 t
o
 3

V
 D

e
v
id

e
r

L
e
v
e
l
S

h
if
te

r
to

 3
.3

V
 f
o
r

th
e
 B

e
a
g
le

b
o
n
e

Figure A.1: Schematics of the developed measurement adapter for BeagleLogic.

182

A.2 Programmable Logic Controller Cycle Time Measurements

A.4 Schematic of the Dual Microcontroller Unit Printed
Circuit Board

To implement a robust PLC architecture, a dual MCU setup was developed. The base-
board is a NUCLEO-F767ZI development board from STM, which handles the net-
work communication. A custom PCB with a STM32F030 controls IO operations. The
schematics of the own developed PCB can be seen Figure A.2.

1
2

3
4

5
6

1
2

3
4

5
6

A B C D

A B C D

D
a
te

:
lu

n
.
3
0
 m

a
rs

 2
0
1
5

K
iC

a
d
 E

.D
.A

.
 k

ic
a
d
 5

.0
.2

-b
e
e
7
6
a
0
7
0
u
b
u
n
tu

1
8
.0

4
.1

R
e
v
:

S
iz

e
:
A

4

Id
:
1
/1

T
it

le
:

F
ile

:
K

iC
a
d
_
S

h
ie

ld
.s

c
h

S
h
e
e
t:
 /

1 2 3 4 5 6 7 8

P1
Power

1 2 3 4 5 6

P2
Analog

1 2 3 4 5 6 7 8

P4
Digital

1 1
02 3 4 5 6 7 8 9

P3
Digital

R
e

s
e

t

Vin

IOREF

A
0

A
1

A
2

A
3

A
4

(S
D

A
2

)
A

5
(S

C
L

2
)

0
(R

x
)

2 1
(T

x
)

3
(*

*)
45

(*
*)

6
(*

*)
789

(*
*)

1
0

(*
*/

S
S

)
1

1
(*

*/
M

O
S

I)
1

2
(M

IS
O

)
1

3
(S

C
K

)

A
R

E
F

+
5

V
+

3
.3

V
A

4
(S

D
A

)
A

5
(S

C
L

)

P5

P6

P7

P8

H
o

le
s

S
h

ie
ld

 f
o

r
A

rd
u

in
o

 t
h

a
t

u
s
e

s
th

e
 s

a
m

e
 p

in
 d

is
p

o
s
it
io

n
lik

e
 "

U
n
o

"
b

o
a

rd
 R

e
v
 3

.

B
O

O
T

0
1

N
R

S
T

4
P

A
0

6

P
A

1
7

P
A

1
0

1
8

P
A

1
3

1
9

P
A

1
4

2
0

P
A

2
8

P
A

3
9

P
A

4
1
0

P
A

5
1
1

P
A

6
1
2

P
A

7
1
3

P
A

9
1
7

P
B

1
1
4

P
F

0
2

P
F

1
3

VDD
16

VDDA
5

VSS
15

U
1

S
T

M
3
2
F

0
3
0
F

4
P

x

U
S

A
R

T
1
_
T

X

U
S

A
R

T
1
_
R

X

S
P

I1
_
N

S
S

S
P

I1
_
S

C
K

S
P

I1
_
M

IS
O

S
P

I1
_
M

O
S

I

I2
C

1
_
S

C
L

I2
C

1
_
S

D
A

S
W

D
IO

S
W

C
L
K

1

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2 2
0

3
4

5
6

7
8

9

J
1

C
o
n
n
_
0
2
x
1
0
_
O

d
d
_
E

v
e
n

+
3

.3
V

+
3

.3
V

S
W

D
IO

S
W

C
L
K

N
R

S
T

N
R

S
T

S
W

D

Y
1

8
M

H
z

R
5

0
R

C
5

2
2
p
F

C
6

2
2
p
F

P
F

0
P

F
1

P
F

0

P
F

1

+
3

.3
V

+
3

.3
V

C
1

1
0
0
n
F

C
2

1
0
0
n
F

C
3

1
µ
F

C
4

1
µ
F

+
3

.3
V

P
W

R

F
R

E
Q

S
T

M
3

2
F

0

D
1

L
E

D

R
1

3
3
0
R

+
3
.3

V

L
E

D

P
A

0

P
A

1

P
B

1

D
2

L
E

D

R
3

3
3
0
R

D
3

L
E

D

R
4

3
3
0
R

D
4

L
E

D

R
1
2

3
3
0
R

P
A

0
P

A
1

P
B

1

R
1
1

0
R

R
1
0

0
R

R
9

0
R

R
8

0
R

R
7

0
R

R
6

0
R

R13 10k

A
4

(S
D

A
)

A
5

(S
C

L
)

1
1

(*
*/

M
O

S
I)

1
2

(M
IS

O
)

1
3

(S
C

K
)

1
0

(*
*/

S
S

)

R14 10k

R15 10k

R16 10k

R17 10k

R18 10k

R19 10k

R20 10k

+
3

.3
V

12345

J
3

C
o
n
n
_
0
1
x
0
5

+
3

.3
V

P
A

0

P
A

1

P
B

1

C
O

N 123

J
4

C
o
n
n
_
0
1
x
0
3

U
S

A
R

T
1
_
T

X

U
S

A
R

T
1
_
R

X

U
S

A
R

T

R
2

0
R

R
2
1

0
R

R
2
2

0
R

Figure A.2: Schematics of the developed dual MCU extension board.

183

A Appendix

A.5 Schematic of the Remote Input/Output Printed Circuit
Board

As open components were required for this work, a remote-controlled IO device was
developed on the basis of a NUCLEO-F767ZI development board. The schematic of the
Remote IO extension board is shown Figure A.3.

1
2

3
4

5
6

1
2

3
4

5
6

A B C D

A B C D

D
a
te

:
lu

n
.
3
0
 m

a
rs

 2
0
1
5

K
iC

a
d
 E

.D
.A

.
 k

ic
a
d
 5

.0
.2

-b
e
e
7
6
a
0
7
0
u
b
u
n
tu

1
8
.0

4
.1

R
e
v
:

S
iz

e
:
A

4

Id
:
1
/1

T
it

le
:

F
ile

:
K

iC
a
d
_
S

h
ie

ld
.s

c
h

S
h
e
e
t:
 /

1 2 3 4 5 6 7 8

P1
Power

1 2 3 4 5 6

P2
Analog

1 2 3 4 5 6 7 8

P4
Digital

1 1
02 3 4 5 6 7 8 9

P3
Digital

R
e

s
e

t

Vin

IOREF

A
0

A
1

A
2

A
3

A
4

(S
D

A
2

)
A

5
(S

C
L

2
)

0
(R

x
)

2 1
(T

x
)

3
(*

*)
45

(*
*)

6
(*

*)
789

(*
*)

1
0

(*
*/

S
S

)
1

1
(*

*/
M

O
S

I)
1

2
(M

IS
O

)
1

3
(S

C
K

)

A
R

E
F

+
5

V
+

3
.3

V
A

4
(S

D
A

)
A

5
(S

C
L

)

P5

P6

P7

P8

H
o

le
s

S
h

ie
ld

 f
o
r

A
rd

u
in

o
 t

h
a
t

u
s
e

s
th

e
 s

a
m

e
 p

in
 d

is
p

o
s
it
io

n
lik

e
 "

U
n

o
"

b
o

a
rd

 R
e

v
 3

.

R
2
7

R

R
2
8

R

+
5

V

A
5

(S
C

L
)

R
2
9

R

R
3
0

R

+
5

V

A
4

(S
D

A
)

R
3
1

R

R
3
2

R

+
5

V

1
3

(S
C

K
)

R
3
3

R

R
3
4

R

+
5

V

1
2

(M
IS

O
)

R
3
5

R

R
3
6

R

+
5

V

1
1

(*
*/

M
O

S
I)

R
3
7

R

R
3
8

R

+
5

V

1
0

(*
*/

S
S

)

R
3
9

R

R
4
0

R

+
5

V

9
(*

*)

R
4
1

R

R
4
2

R

+
5

V

8

11
0 23456789

P
9

CONN_01X10

R
1
0

R

R
9

R

R
8

R

R
7

R

R
6

R

R
5

R

R
4

R

R
3

R

R
2

R

R
1

R

R16
R

R18
R

R15
R

R17
R

0
(R

x
)

1
(T

x
)

23
(*

*)
45

(*
*)

6
(*

*)
7

+
5

V

A
0

1

A
1

2

A
2

3
GND

4
S

D
A

5

S
C

L
6

W
P

7

VCC
8

IC
1

A
T

E
C

C
5
0
8
A

A
5

(S
C

L
)

A
4

(S
D

A
)

+
5

V

C
1

C

R19
R

R20
R

+
5
V

+
5

V

P
F

1
2
/d

e
v
ic

e
4

P
D

1
5
/d

e
v
ic

e
3

P
D

1
4
/d

e
v
ic

e
2

P
A

7
/R

M
II

P
A

6
/d

e
v
ic

e
1

P
A

5
/d

e
v
ic

e
0

P
B

9

P
B

8

P
F

1
3

P
E

9

P
E

1
1

P
F

1
4

2
4
V

G
N

D

P
E

1
3

P
F

1
5

P
G

1
4

P
G

9

1 2 3 4

J
1

C
o
n
n
_
0
1
x
0
4
_
M

a
le

A
4

(S
D

A
)

A
5

(S
C

L
)

+
3

.3
V

D
1

L
E

D

R21
R

D
2

L
E

D

R22
R

D
3

L
E

D

R23
R

D
4

L
E

D

R24
R0

(R
x
)

1
(T

x
)

2
3

(*
*)

R25
R

R26
R

R43
R

R44
R

R
4
5

1
0
k

R
4
7

2
k
2

R46
10k

R48
10k

P
G

9
R

4
9

1
0
k

R
5
1

2
k
2

R50
10k

R52
10k

P
G

1
4

o
u
t1

o
u
t2

o
u
t1

o
u
t2

2
4
V

2
4
V

2
4
V

o
u
t1

/1
0

o
u
t2

/0
9

o
u
t3

/0
8

o
u
t4

/0
7

V
C

C
/0

1

G
N

D
/0

2

in
1
/0

3

in
2
/0

4

in
3
/0

5

in
4
/0

6

1

2 3

Q
2

B
S

S
8
3
P

1

23

Q
1

B
S

S
1
3
8

1

23

Q
3

B
S

S
1
3
8

1

2 3

Q
4

B
S

S
8
3
P

R12
10k

R14
10k

R11
10k

R13
10k

Figure A.3: Schematic of the Remote IO extension board.

184

Index

A
ABB26, 47, 80, 179
Abstract iii
Acknowledgements .xvii
Acronym165
Advisory 7, 8, 42
Appendix 176
Application 16
Architecture 11,

36–38, 62, 66, 70,
84, 93, 94, 98, 101,
105, 117, 120, 132,
133

Arduino . 63–65, 68, 92,
135

ARP 48, 76, 77, 79, 81,
82, 109, 123

Attacker 3,
12, 13, 27, 45, 101,
123, 125, 129, 138

B
Background . .11, 35, 43
Beaglebone . 28, 29, 182
BeagleLogic 28, 29, 182
Benchmark 33, 67, 110,

121, 138
Bibliography 145
Broadcast 76
Building block61,

73, 89, 91, 97, 115,
127

C
Censys 3, 4, 82, 116, 173
CERT 2, 7
Certification 44

CIA 12, 20, 21, 140
Conclusion 34,

42, 60, 70, 87, 96,
113, 125, 142, 143

CPE 7, 80
Crouzet . 31, 47, 57, 80,

179
CVE 7, 8, 80
Cycle time . . 17–19, 29,

39, 43, 62, 65

D
Devices 4, 31
Display . . . 95, 104, 120,

135, 136
Ditecting 3, 4, 175
DoS 43, 50, 51

E
ERP 12
Evaluation . 39, 86, 107,

121, 138, 140

F
Framework . . 37, 38, 84,

98, 105, 120, 132
FreeRTOS . . 64, 93, 131
Future work 144
Fuzzing 35, 36

G
Gartner 1

H
Hardware 26, 28,

63, 65, 68, 91, 92,
106, 133, 135, 137,
182–184

Historian 12, 96
HMI . 12, 66, 92, 94, 95,

106, 108, 120, 121,
133–136

I
ICS 11, 20
IDE37, 39, 41, 42
IDS 97
IEC 62264 11
IEC 62443 144
IIoT . . 5, 25, 27, 44, 61,

70, 93, 115, 125
Implementation . 63, 91,

105, 119, 131
Industrial automation

pyramid . . 11, 94,
132

Interarrival 80, 102
Introduction . 1, 25, 35,

43, 61, 73, 91, 93,
97, 115, 127

K
Kurzfassungv

L
Lifecycle 22
Limitation 86, 104
LwIP . . 64, 93, 105, 131

M
MAC . 73, 75–77, 79, 83
MCU . . .61, 64, 91, 105,

119, 123
Measurement 19,

27–29, 33, 36, 39,

185

Index

45, 46, 50–59, 68–
70, 79, 83, 85, 86,
107, 110, 112, 122,
139

MES 12
Moxa 26, 80, 83

N
Network . . . 31, 115, 123
Nmap 58, 59, 86

O
Open-source . . . 91, 132,

182–184
OpenPLC . . . 31, 94, 95,

132
Outlook . 42, 59, 70, 87,

113, 125, 142, 143
Overview iii, v, 1, 10, 27

P
PCB 65, 68, 92, 135
Phoenix . 26, 40, 47, 56,

80
Phoenix Contact 7, 179
PLC 12, 16–18,

23, 31, 37, 40, 41,
64, 80, 83, 85, 95,
103, 131, 132

PLCScan 57, 58, 86, 116
Program 18, 22
Protection 141, 144
Protocol . . 4, 31, 37, 40,

102

Publication 5

R
Rack setup 94, 95
Real-time 12, 57, 60, 63,

64
Related work 35, 43, 61,

74, 99, 116, 129
Research questions . . . 5
RiskViz 58
Robustness 23, 27

S
Safety 22, 43, 62
SCADA . 11, 12, 94, 96,

136
ScadaLTS 94, 96
Scan cycle time 17
Scanning 57–59, 84,

117–119, 122
Schematic27
Schneider 26, 47, 54, 80,

179
Search engine4,

172–175
Setup . 4, 27, 30, 31, 33,

37, 38, 40, 45–47,
61, 66, 68, 94, 102,
121, 133, 137

Shodan . . . 3, 4, 82, 172
Siemens . 26, 31, 47, 55,

80, 178
Software 37, 64, 92, 123

SPI 65, 183, 184
STM 105, 183, 184
Structure 9–11
Structured text . 18, 20,

132
Symbols . 38, 49, 52, 63,

78, 103

T
Testbed 4, 23, 25–27, 30,

31, 80, 93–95, 121,
127, 128, 131

U
Update 16, 22
User program 15, 17–20,

22, 29, 36, 65, 133

V
Virtual machine . 27, 46

W
Wago . 7, 17, 26, 31, 47,

52, 53, 58, 69, 70,
80, 180, 181

Webserver . . .8, 66, 107,
108, 134

Wiring 138

Z
Zgrab 47, 55, 56, 59, 86
ZoomEye 3, 4, 174

186

	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Contribution
	Structure of the Thesis

	Industrial Control System Background Knowledge
	Timeline on Industrial Control System Attacks
	Programmable Logic Controller Application
	Programmable Logic Controller Overview
	Programmable Logic Controller (Scan) Cycle Time
	Structured Text User Program
	Attack on the Programmable Logic Controller Cycle Time
	Noteworthy Industrial Control System Characteristics

	Communication Robustness of Programmable Logic Controllers in Terms of Security
	Communication Robustness Testbed for Industrial Internet of Things Components
	Introduction
	Communication Robustness Testbed
	Devices under Test in the Testbed
	Experiments with Communication Robustness Testbed
	Conclusion

	Fuzzing Proprietary Industrial Devices
	Introduction
	Related Work and Motivation
	Concept
	Framework Architecture
	Framework Evaluation
	Conclusion

	Impact of Network Traffic on Industrial Control System Devices
	Introduction
	Related Work
	Certification Programs
	Attacker Model
	Materials and Methods
	Experiments, Results, and Discussion
	Conclusion

	Dual-MCU Setup for Robust Industrial Internet of Things Devices
	Introduction
	Concept and Background
	Proof of Concept Implementation
	Benchmarking
	Conclusion

	Efficient Passive Network Scanning for Industrial Control Systems
	Introduction
	Passive Network Scanning
	Media Access Control Addressing
	Device Identification Challenges
	Using Media Access Control Addresses for Device Discovery and Identification
	Framework and Evaluation
	Conclusion

	Modular Building Blocks to Enhance Industrial Control System Security
	Open Industrial Control System Components for Secure Operation
	Introduction
	Remote IO/Edge Node
	Open-source Testbed
	Conclusion

	Intrusion Detection on Industrial Internet of Things Edge Devices
	Introduction
	Background
	Concept
	Implementation
	Evaluation and Measurement Results
	Conclusion

	Network Scanning on Industrial Internet of Things Edge Devices
	Introduction
	Related Work
	Concept
	Proof of Concept Implementation
	Evaluation
	Conclusion

	Low-cost Industrial Control System Testbed for Education and Research
	Introduction
	Industrial Control System Testbed
	Testbed Implementation
	Evaluation and Benchmarking of the Testbed
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Acronyms
	Appendix
	Search Engine Parameters
	Programmable Logic Controller Cycle Time Measurements
	Schematic of the BeagleBone Measurement Printed Circuit Board
	Schematic of the Dual Microcontroller Unit Printed Circuit Board
	Schematic of the Remote Input/Output Printed Circuit Board

	Index

