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Abstract—In this paper, we investigate the optimal control
problems of heterogeneous node-based information epidemics.
A node-based Susceptible-Infected-Recovered-Susceptible (SIRS)
model is introduced to describe the information diffusion pro-
cesses taking into account heterogeneities in both network struc-
tures and individual characters. Aiming at guiding information
dissemination processes towards the desired performance, we
propose an optimal control framework with respect to two typical
scenarios, i.e., impeding the spread of rumors and enhancing the
spread of marketing or campaigning information. We prove the
existence of the solutions and solve the optimal control problems
by Pontryagin Maximum Principle and forward-backward sweep
method. Moreover, numerical experiments validate the using of
the node-based SIRS model by comparing with the exact 3" -state
Markov chain model. The effectiveness of the proposed control
rules are demonstrated on both models. Further discussion on the
influence of the parameters provides insights into the strategies
of guiding information diffusion processes.

Index Terms—Information epidemics, optimal control, social
networks.

I. INTRODUCTION

Information spreading via diverse media, e.g., face-to-face
conversations, television and Internet, is indispensable in our
daily lives. It is inevitably influential to our decision making,
opinions, and activities. Thus the studies on information diffu-
sion processes become attractive and have drawn wide interests
in the fields of sociology, psychology, computer science, and
control in recent years [[1]-[3].

As a fundamental issue, mathematical modeling of infor-
mation diffusion has been an interesting topic and multitudes
of models have been reported [4], [5]. Among the models
from diverse points of view, epidemic models have received
great attention due to the similarity between virus spreading
process and information dissemination [6]. The term, infor-
mation epidemics [[7], is deployed to describe the disease-
like spread of information. In particular, viral marketing [8]],
which creates and passes the informative and entertaining
messages to the consumers in a virtual environment, paves the
way for utilizing information epidemics. It potentially reaches
massive audiences at a fast speed by little investment. To this
end, various companies adopt this strategy to achieve rapid
growth. Besides, other information diffusion processes, e.g.,
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the propagation of rumors and campaigning, have also been
reported to have the characteristics of epidemics spreading [9]],
[10]. These examples establish the significant role played by
epidemic models in information diffusion processes.

Armed with information epidemic models, a practical and
natural question arises: how can we guide the information
spreading in our desired manner? This motivates us to ad-
dress the optimal control problem for information epidemics.
In this article, a node-based susceptible-infected-recovered-
susceptible (SIRS) model is utilized and we take into con-
sideration two practical scenarios: 1) impeding rumor propa-
gation and 2) enhancing the spread of marketing or campaign
information.

A. Justification for Using SIRS Model

In light of the similarity between epidemic processes and
information diffusion, we believe that the SIRS model is
suitable for information epidemics over social networks.

In the context of marketing, susceptible individuals are
potential consumers who may accept the information from
certain company. They form the rarget market. An infected
individual passes the message of the companies through her
social contacts, which may result in the infection of her social
neighbors. Once the infected forgets to share a message or
is tired of passing the message, she belongs to the recovered
compartment [[11]]. This susceptible-infected-recovered (SIR)
model described above has been widely accepted to study the
viral marketing strategy [[12f], [13]. However, the SIR model
assumes that the virus can be life-long immunized, which
cannot be guaranteed for many diseases [14]. Inspired by
the phenomenon of short-term immunity [15] in the virus
dissemination, we argue that there exists resusceptible process
[16] in the information epidemics. Specifically, a recovered
individual can turn to be susceptible again spontaneously since
the company will naturally regard her as a member of the
target market. Apart from viral marketing, SIRS model has
been applied to various information diffusion processes [[17].
For example, among all the epidemic models, SIRS model pro-
vides the best interpretation of Internet meme (a phenomenon
of contents or concepts that spread rapidly online) activity data
[18]. Additionally, SIRS model is also applicable for the rumor
propagation [19] and information diffusion in blogspace and
web forums [20], [21].

It is worth noting that the framework proposed in this article
is not restricted to SIRS model but also applicable for other
epidemic models, e.g., susceptible-infected (SI), susceptible-
infected-susceptible (SIS), and SIR, by simple degeneration.



B. Related Work and Contribution

Recent years have witnessed the trend of using the mean-
field approximation (MFA) to study epidemic models. The
pioneering work [22] proposed an N-intertwined SIS model.
Further studies concentrate on the equilibrium analysis of the
SIS model and its extensions [23]], [24]. Although the node-
based SIRS model is a generalization of the SIS model, it has
not been thoroughly investigated [25]].

From epidemiological perspective, previous works on the
control of epidemics models mainly focus on the immunization
problems. Most of the reported strategies are static, e.g.,
the random immunization and the target immunization [26].
Recently, the optimal immunization problem has become more
attractive in the field of system and control. By utilizing
the epidemic threshold [27]], the optimal resource allocation
problem has been addressed on both single-layer and multi-
layer networks [28]], [29]. Note that none of them considers
time-varying control rules, so their methods belong to the static
optimization in essence.

Apart from the immunization problem, some literature con-
sider maximizing the information dissemination under differ-
ent models [30]-[32]. However, the majority of them consider
the macroscopic epidemic models and no network structure is
specified. It is equivalent to assume that there exists a well-
mixed network, i.e., the interaction and influence between each
pair of individuals are identical. This assumption, nonetheless,
can hardly hold in real social networks. Although there exist
some related work, the optimal control design for node-based
information epidemics is still an open problem according to
the recent survey [33].

The previous literature [34] studies the node-based SIS
model and designs a time-varying control law. However, in
their approach, the model needs to be linearized and only
the disease free case is set to be the target. More recent
works [35]], [36] study the optimal control problem for node-
based SIR and SI models, respectively. Whereas, they both
consider only homogeneous transition rates. To the best of our
knowledge, there exists no literature taking into consideration
the optimal control framework on the heterogeneous node-
based SIRS model and dealing with both the immunization
and maximizing dissemination problems.

The main contribution of this article is the design and real-
ization of an optimal control framework for the heterogeneous
node-based information epidemics over social networks. As a
general extension of previous works in homogeneous cases,
we consider the situation where the transition rates between
different compartments are generally different, in light of the
individual diversities in genders, personalities, preferences,
etc. Furthermore, two optimal control problems are proposed
taking into consideration the practical scenarios on imped-
ing rumor spreading and enhancing marketing propagation.
Therefore, this article provides an insight in optimally guiding
information diffusion process from a control theoretical point
of view, which is of great importance for marketing and
campaigning activities. By directly utilizing the nonlinear
model, we prove the existence of the solution and solve the
optimal control problems by Pontryagin Maximum Principle

and numerical algorithms. Moreover, we compare the node-
based STRS model and the exact 3"V -state Markov chain model
by using the Monte Carlo simulations. By implementing the
optimal control law on the Markov chain model, we show the
effectiveness of the proposed control rules in practice. Further
discussion of the influence of the parameters provides valuable
hints for achieving desired information spreading performance.

Note that in our previous conference article [[37]], an optimal
control strategy was designed for the SIS model over an
undirected graph to enhance information diffusion. In this
article, as a general extension, the SIRS model is adopted
inspired by the resusceptible process. Besides, we consider
information epidemics over directed graphs due to the fact
that information flow in social networks is usually directed,
which is technically more difficult since the symmetry owing
to the undirected graphs is negated. Although the optimal
control problem on enhancing the spreading has been studied
in [37], we propose a more practical constraint based on the
limited budget. Furthermore, an extra instance on impeding
rumor spreading is also studied, which is a complement for
the optimal control framework.

The rest of the article is organized as follows. The detailed
instruction on related fields is given in Section [ as preliminar-
ies based on which we introduce the node-based SIRS model
and formulate the optimal control problems. The main results
on optimal control design (the existence of the solution and
the algorithm to solve the problem) are presented in Section
Numerical studies are given in Section

Notations: The set of real numbers is denoted as R. 1 and
T represent a vector whose elements are all 1 and the identity
matrix with proper dimension, respectively. Prob|-] denotes the
probability of certain event. For two vectors £ and ¢, (&,¢)
means [T, ¢T]T.

II. PRELIMINARIES AND MODEL DESCRIPTION

In this section, the knowledge of graph theory and the node-
based SIRS model is introduced.

A. Networks and Graph Theory

We consider a social network described by a weighted
directed graph G(V,E, W) with N (N > 2) nodes, where
YV ={1,2,...,N} and £ C V x V are the sets of nodes
and edges, respectively. The adjacency matrix W = [w;;] €
RN *N is nonnegative and with zero diagonal entries. For two
distinct nodes, w;; > 0 if and only if there exists a link from
node j to ¢. In this case, we say node j listens to node ¢ or
node ¢ can influence node j. For the convenience of further
presentation, the in-neighborhood of node ¢ is also introduced
as

J\/’ii“:{j:wij >0,j€V}.

In this article, we confine ourselves that the graph G is strongly
connected, i.e., W is irreducible.

B. The Node-based SIRS model

In the SIRS model, every node of the graph G are in
one of the three compartments: susceptible (S), infected (I),



Fig. 1: Compartment transition map of the SIRS model on
a 2-node undirected graph. The 9 ellipses represent all the
possible compartmental membership of these two nodes. The
transitions include the infection, recovering, and resusceptible
processes.

or recovered (R), at each time instance. We assume that an
individual is infectious once she is infected. Furthermore, it is
supposed that individuals have no chance of getting infected
unless at least one of her neighbors is infectious. As an
illustrative example, the compartment transitions are presented
in Figure [T} where a two-node connected graph is considered.

From a microscopic perspective, the information epidemics
in the SIRS manner can be modeled as a Markov chain. By
denoting X;(t) as the state of node ¢ at time instance ¢, the
state transitions of node ¢ can be described as the following
three Poisson processes:

i) The infection process (S to I). The infection process
is considered as a proactive action, i.e., each infected
individual j infects her susceptible social neighbors with
rate «; > 0 [38]. To this end, we obtain the infection
probability in a sufficiently short time At as

Prob[Xi(t + At) =I|Xi(t) :S}: Z ajwijéxj(t),IAt,
jeNin

where §,, ,, is the Kronecker delta function defined as
5 _J1, ifm=n
™0, if m#En
ii) The recovering process (I to R). The recovering process

of node 4 is passive with transition rate 3; > 0. Thus we
have the recovering probability as

iii) The resusceptible process (R to S). The resusceptible
process of node ¢ is passive with transition rate ; > 0. It
yields that the resusceptible probability is calculated as

Note that Prob[X; = I] = E[dx, 1] and Prob[X; = R] =
E[0x, r]. It follows that the time derivative of the expectations

of dx, 1 and dx, g (marginal probabilities) can be respectively
attained as

dE[S, 1] ol
X1
—ar =E[(1-6x,1—Ix,R) ;ijijdXJ,I — Bidx, 1]
N
= Z ajwiiE[0x; 1] — BiE[dx, 1]
=1
N
— Y ajwi(E[0x, 16x, 1] + E[0x, rdx, 1])
=1
% =BiE[0x, 1] — 7E[dx, Rr],

where dx, 16 x;.1 and 0x,; RO x;.1 are joint events. In the MFA,
the components of these joint events are assumed to be
mutually independent. Bearing in mind this assumption, the
heterogeneous node-based SIRS model for node ¢ in a directed
network G = (V, &€, W) can be described as

N
A0 = (L= () = pE(0) Y aywip}(t) — Birk()

P (t) = Bipi(t) — yipit (1),

where pl(t) and pR(t) are approximations of Prob[X;(t) = 1]
and Prob[X;(t) = R], respectively.

Remark 1. Since there exist 3V possible states of the overall
network, the Markov chain model can hardly implemented
for large N. By using the node-based SIRS model (I), the
dimension of the system is significantly reduced to 2N.
Clearly, far less computational consumption is required in
large scale networks. In addition, the approximation is accurate
if the independence assumption is satisfied, in light of the
central limit theorem. In conjugation with its comprehensive
physical meaning, we believe it is practical and reasonable
to use the model (I) to describe the information diffusion
processes. Nevertheless, as a trade-off, there exists a tolerable
approximation error if the independence condition does not
hold [39]. Numerical experiments to compare the performance
of the Markov chain model and the node-based SIRS model
in digraphs are conducted in Section in detail.

Henceforth we denote p; = [p}, pl]T which takes value in
the following domain

A £ {pi|p; € [0,1],p}* € [0,1],p; + pi* € [0,1]}.

)

Now we are on the way to design optimal control rule to
achieve the desired information diffusion performance.

III. OPTIMAL CONTROL DESIGN

In this section, an optimal control framework is formulated
based on the node-based SIRS model (I) with respect to two
different scenarios.

A. Problem Formulation

To guide the information diffusion process, we introduce
the word-of-mouth communication which is a common way
to influence social neighbors, as is shown in Figure 2] For



Fig. 2: Control framework for node-based SIRS model.

example, in order to enhance (or impede) the information
spreading to node 1, we can influence her in-neighbor (e.g.,
node 2) by increasing (or decreasing) the infection rate. As
a consequence, the infection probability of node 1 will be
changed accordingly. This word-of-mouth way is based on
the fact that the opinion and decision-making of individuals
are influenced by their social neighbors. Inspired by this
phenomenon, a control signal is introduced to interact with the
infection rate. Note that although this kind of strategy is widely
used in the control design for epidemics and information dif-
fusion processes [28]], [30], seldom works have implemented
it for the node-based models. Specifically, for the node-based
SIRS model (), the controlled system can be written as

]- _pz Z aj + uj wij 51‘10%7
j=1
= Bipi — i}
The stacked control input is denoted as wu(t) =
[ui(t),...,un(t)]". Let U(t) = diag(u(t)), the compact

form of the controlled information epidemics reads

p'= (I~ P~ PHW(A+U)p' - By, )
p™ = Bp' —Tp",
where A = diag(aq,...,an), B = diag(f1,...,8~n), ' =
diag(v1,---,yn), p' = (®,...,p%), and P! = diag(p!).
Similarly, p®(¢) and PR (t) are denoted for the recovered
compartment. Note that we have the following admissible set
for the control inputs.

Us{ueR?

Umin < U Sumaxaz:]-a?a"'a

: u; 1s Lebesgue integrable,
N},

where Ui, and umax are scalars. We assume that the product
of Umax and wupi, iS nonnegative, i.e., UmaxUmin > 0.
For instance, in order to enhance the diffusion, an intuitive
approach is to increase the infection rates, i.e., the bounds are
both nonnegative. In this case, uyi, is usually chosen as the
worst acceptable increment of the infection rates while wyax
is roughly estimated according to the budget. It is required
that wmin(t) + «; > 0 such that the underneath mechanism of
the SIRS model is satisfied. Note that u;(t) + a; = 0 indicates
that there is no infection procedure activated by node 7. Based
on the system and the admissible set U/, we propose two
optimal control problems for information epidemics.

Situation 1: Aiming at impeding the spread of rumors, we
introduce the following optimal control problem.

t .
/ " TR ) + 0T () Qu(t)dt
0
= po, P0) = pp,pilt) €AVieV,  (3)

min J; =
u(t)eu

s.t. @, p'(0)

where 7 is a positive scalar and () is a constant positive definite
diagonal matrix. p} and p{ are the given initial conditions.
The term 1" p'(¢) describes the (approximated) mathematical
expectation of the number of infected people. The first item of
the cost function in (3) represents the penalty corresponding
to the number of individuals who believe the rumor. Note that
since rumor-free is the desired performance, we only focus on
the compartment I. Besides, the consumption of the control
is also considered as a penalty. The consumption is regarded
as the incentive for each individual so that they can act in a
desired manner.

Remark 2. In immunization problems, the consumption is
usually modeled as a quadratic function [30], [40]. On one
hand, no consumption of the treatment can be described by
a linear function in essence [41]. On the other hand, the
quadratic form characterizes the severity of the side effects
of the drugs [42]. Inspired by the aforementioned works, the
quadratic form is adopted here, since it mimics the nonlinear
increment of the required incentive to better impede the rumor
propagation. The non-quadratic forms of consumption can be
referred to in [33|], which is covered by Situation 2.

Situation 2: Aiming at enhancing the information diffusion
of campaign and marketing, we consider the optimal control
problem as follows.

—s117p'(ty) —

min Jy = srl pR(ty),

u(t)eU

s.t. @), p'(0)

ty N

= po, p(0) = pit,

where sy and si are positive scalars, b;(u;(t)) is the budget
function, and & > 0 is the fixed budget. The cost function
in (@ only considers the terminal performance because for
the political campaign nothing counts but the final number of
supporters on the voting day. Furthermore, the infected and the
recovered are not of the same importance for the campaigner
or product manager. Thus generally there holds s > sg > 0.
Apart from the cost function, it is rationally assumed that in
the constraint, b;(-) is continuous, positive, and increasing in
u;. This is built on the fact that the more increment of the
infection rate, the more budget is needed as the incentives.
Since companies or campaign teams usually have limited
budget, the constant Z is introduced as the upper bound for
the overtime cost. It is worth noting that one can calculate
the maximum resource needed by substituting u,,x into the
budget function. In this article we only consider the case when
PB < > bi(umax)- Since the value of A plays a significant role
in the performance of the controlled information epidemics, its
further discussion is detailed in Section



B. Existence of the Solutions

From a practical point of view, the existence issue should be
examined to ensure that an optimal control problem is solvable
before attempting to calculate the solution. For Situation 1, we
propose the following theorem.

Theorem 1. Given optimal control problem (3), there exist
control signals in U such that the cost function is minimized.

Theorem [I] confirms the existence of the solution to the
optimal control problem in Situation 1. The proof of Theorem
is detailed in Appendix A by using Cesari’s Theorem
[43]]. For Situation 2, we conclude the existence result in the
following theorem.

Theorem 2. Given optimal control problem (@), there exist
control signals in U such that the cost function is minimized.

Taking into account that the optimum is unlikely to be
achieved without sufficient use of the budget, we rewrite the
limited budget constraint in @) as

h(t) = Z bi(ui(t)), h(0) =0, h(t;) = B. (5)

However, since the convexity of b;(u;(t)) in u; is not guar-
anteed, the proof of Theorem [I] is not applicable. Therefore
an alternative approach based on extreme value theorem is
provided in Appendix B to prove Theorem

Remark 3. Theorem [I] and 2] are fundamental for the proposed
control framework in this article. Firstly, they guarantee the
existence of the solutions to the respective optimal control
problems. Secondly, from an operational perspective, they con-
firm the feasibility of designing dynamic resource allocation
strategies to guide information epidemics towards the desired
performance. Based on these two theorems, it only remains to
develop solution techniques.

C. Solutions to the Optimal Control Problems

Since the existence of the solutions is guaranteed, we are
now focusing on solving the optimal control problems in (3]

and ().

Solution to (3): Pontryagin’s Maximum Principle is utilized
here. Denote p = (p', pR) and rewrite the system (@) as p =
F(p,u). the Hamiltonian of the optimal control problem reads:

Hl(paua A) = _T:I'TpI - UTQU + )\TF(pa U),

where A(t) € R?Y denotes the costate vector and the integrand
in (@) is multiplied by -1 to form a maximization problem.
Let A = (ALAR), where AL, \R € RY are the Lagrange
multipliers. Then we can compute the costates equations as
follows

OH1(p,u, A)
ap'(t)
=71 —[(A+U)WT(Z - PR) - B]\T - BAR

+ AW (A4 U)pt + AW (A+U)] TP,
OH1(p,u, A)
S OpR(t)

Alt) = —
(6)

AR() = = ANW(A+U)p' + TR,

I _ g I R _ 4; R ing OH _
where A" = diag(\') and A™ = diag(A ) By solving 52 = 0
at p = p*,u = u*, and A = \*, the optimal control rule can
be expressed as

* 1 —1 plx T Ix
t) = P (t I—-P*(t

u'(t) = 5Q OW (t) )

= PR ()N (1), u*(t) € U,

or more specifically, for each node we have
L (1) O
u} () = min { max {p;q() Zwﬂ(l —pjf,*(t)

T ®)

— p?* (t)))\ﬁ* (t), Umin } s Umax } .

The uniqueness of the solution (§) is based on the criteria
given in Appendix A and H; is strictly concave in u. The
precise illustrations are presented in Appendix C.

According to the terminal term of the cost function, the
transversality conditions read

M) =0, M(tp)=o0. )

Although the optimal control inputs can be analytically pre-
sented as (8], it cannot be directly calculated because p*(t)
and \*(t) are unknown beforehand. To tackle this issue, the
shooting method is used in [30]]. However, in that case, the ar-
bitrary initial condition of a scalar costate is hard to choose, let
alone the situation in equation (6) with 2/N-dimension costate
vector. Thus we introduce a modified forward-backward sweep
method (FBSM) as follows such that it can be used in this V-
dimension optimal control problem.

Algorithm 1 Forward-backward sweep method
[u(0),...,u(end)],

1: Input: p%), pOR, initial guess u =
tolerance e.

2: for k=0:1:end do

3: pl(k + 1) « pl(k) + ATpY (k)

4 pRk+1) « pR(k) + ATPR(K)

5: end for

6: for k =end:—1:2do

7. Mk —1) « M(k) = ATA (k- 1)
8 A(k—1) « AR(k) — ATAR(k —1).
9: end for

10: Compute G according to (8]).

11: if [|u — 1|2 > € then

12: u<+u

13: goto line 2

14: else

15: output u* = 1.

16: end if

In the FBSM above, Euler method is used such that the
continuous model is discretized with sampling period AT'. The
convergence and further properties of FBSM can be referred
to in [44]. In the node-based SIRS model on an N-node
graph, the information diffusion process is characterized by
2N dimensional differential equations. In Algorithm (I} we
have to numerically solve 4N differential equations in each



iteration to calculate @. In conjugation of the convergence
of the algorithm, our algorithm terminates in finite iterations.
Therefore, the complexity is O(N).

Solution to {@): The Hamiltonian here is written as

Hy(p,u,0) = (") '[(Z = P' = PHYW(A+ U)p!

N
— Bp']+ (™) T (Bp' = Tp™) + 0 Y _ bi(wi),
i=1

where 0! € RV, o® € RY, and 0}, € R are the Lagrange

multipliers and o := (0!, 0", 5,). The costates dynamics of
ol and o are similar to those in (@) while
. OHo
on =212 g,
LT

which infers that o is a constant scalar but unknown. If the
budget function is chosen as quadratic form as that in (3)), by
using similar techniques to obtain (7), we attain the control
law as
_ LQ_lpl* (t)WT (I _ PI* (t)

20’h
— PR (t))a™ (), u*(t) € U.

Thus to obtain the value of o}, becomes a natural idea to solve
the problem in {@). An approach combining the FBSM and the
secant method has been reported to be implemented to solve
a similar problem with low dimension in [45]]. However, to
propose an initial guess which leads to a convergent solution
is technically hard, let alone on networks of far larger scale.
One alternative method is proposed in [40] where the value of
op, is obtained by trial-and-error. To deal with this problem,
the Matlab function fmincon is utilized in this article. The
detailed configurations and further discussions are presented
in Section Note that in this case the solution to optimal
control problem (@) may not be unique since the solution is
highly related to the property of b;(u;).

u*(t)

IV. NUMERICAL EXPERIMENTS

In this section, several numerical simulations are conducted
to show 1) the approximation performance of the deterministic
node-based SIRS model in (I corresponding to the 3V-state
Markov chain model, 2) the effectiveness of the optimal con-
trollers designed in the previous section, and 3) the influence
of the parameters towards the controlled information diffusion
process.

A. Comparison between the node-based SIRS model and the
3N -state Markov chain model

In this subsection we focus on the detailed comparisons
between the node-based SIRS model and the 3"V -state Markov
chain model over strongly connected directed networks.

The simulations are conducted on scale-free networks with
homogeneous transition rates. We generate two strongly con-
nected digraphs with 298 nodes. The first graph, denoted as
G1, has 150 edges on average for each node. Whereas, the
average number of edges is 50 for the second graph G,. The
values of the transition rates «, 3, and -y are all limited in the
set {0.1,1} such that the results can cover major range of the

coefficients. Specifically, we choose two sets of configurations:
Da=1,=0.1,and v=0.1,and 2) « = 0.1, B =1, and
v = 0.1. Note that by choosing these two kinds of parameters,
the SIRS model reaches the endemic (non-trivial) equilibrium
and the disease-free (trivial) equilibrium, respectively. Thus
the node-based SIRS model and the 3" -state Markov chain
model are compared in these representative scenarios. The
sampling period and the terminal time are set as AT = 0.01
and ¢y = 30, respectively.

Apart from the node-based SIRS model, another challenge
is to simulate the Markov chain with large /N. Since direct
simulations cannot be expected due to the massive number
of states, we resort to Monte Carlo simulations (MCS) [46]].
By using the foregoing parameters and initial conditions, we
conduct MCS 50000 times to show the performance of the
3N _state Markov chain model. In order to show the difference
between the node-based SIRS model and the 3% -state Markov
chain model clearly, we utilize the average of p'(t), p®(¢),
and the infection and recovering probability obtained by
the MCS. These indices are respectively denoted as p'(t),
PR (1), Phyes(t), and pYog(t). The initial compartments of
the nodes are randomly chosen such that the probability of
being susceptible, infected, and recovered are and %
respectively.

The comparison results are presented in Figure [3] and
Figure [] with respect to the aforementioned two categories
of configurations. In Figure [3] all the trajectories approach
the endemic equilibrium. It is clear that the approximation
is accurate on graph G;. However, there exist evident dis-
crepancies between the results of MCS and the node-based
SIRS model on graph Gs. Specifically, at the terminal time, the
approximation errors are |p'(t7) — ph;og(ty)| = 0.0041 and
PR (ts) — Pcs(ts)| = 0.0038 on graph G;. While on graph
Go, the errors are 0.0358 and 0.0314, respectively. In Figure
[ all the trajectories approach the disease-free equilibrium.
Apparently, the approximation in this case is accurate on both
graphs. Any of the approximation errors is less than 1074,
Thus we observe that 1) The approximation is more accu-
rate in densely connected communities; 2) the approximation
behaves better when the node-based SIRS model converges
to the disease-free equilibrium; and 3) the accuracy of the
approximation is acceptable. These statements are consistent
with the previous work [8]], [47] regarding the performance of
the MFA applying to epidemic models.
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B. Performance of the Optimal Control Law

The performance of the node-based SIRS model under opti-
mal control (3)) and (4) are examined to show the effectiveness
of the designed control strategy.

We implement the optimal control law on Gj. The
transition rates «;, (3;, and ~; are randomly chosen in the
intervals (0.55,0.65), (0.15,0.25), and (0.3, 0.4), respectively.
This guarantees the heterogeneity of the SIRS model. The
initial conditions are set to be identical to the ones in Section
Since the steady states of the diffusion process in
fixed graphs are highly dependent on the transition rates,
optimization rather than optimal control is a more direct way
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to reach the desired performance. In that regard, we mainly
focus on the transient states but not the steady states of the
information epidemics. Thus in this subsection we set the
terminal time as ¢ty = 6 and the sampling period as AT = 0.1.

For Situation 1, the weight r is set to 5. Note that the
weighting matrix () is chosen to be diagonal and its entries
read

q; = q|~/\/;m|7vz S V7

where ¢ is a scalar set as 0.1 in this case and |N"| is
the cardinality of the in-neighborhood set of node 7. The
weighting matrix () mimics the fact that the more individuals
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Fig. 5: The performance of the node-based SIRS model and
the Markov chain model with optimal control (3) and without
control. The subfigures shows the value of 17 p!(t), 1T p®(¢),
and Jy (t), respectively. The abbreviations w.c. and wo.c. stand
for with control and without control, respectively.

one can influence, the more resources she deserves to obtain.
By doing this, rumors are less possible to spread via her social
connections. Thanks to the strong connectivity of the network,
one has ¢; > 0, i.e., @ is positive definite. The bounds of inputs
are set as [—0.35,0].

Figure [5] shows the performance of optimal control in (3)
by comparing with the cases without control. In addition,
the optimal control rule is implemented to the Markov chain
model by using MCS (50000 times). It is clear that the rumor
propagation is impeded since both the trajectories of 17p!
and 1Tp§wc g drop significantly within the terminal time. Note
that no big discrepancies exist between the controlled node-
based SIRS model and Markov chain model. It yields that
the proposed control rule is applicable in the real information
epidemics. To show the control implemented to the specific
individuals, two typical nodes labeled 7 and 292 are selected.
These two nodes possess (one of) the most and least number
of in-neighbors, respectively. As is presented in Figure [6] the
initial condition pL(0) = 0 and piy,(0) = 1. Under the
optimal control, plg, decreased vastly and the increment of
pt is retarded. It is notable to point out that during most of
the controlled period, usg2 stays on the boundary while ur
is only in a low level. This phenomenon is due to the fact
that the consumption is linear in the number of in-neighbors.
Since node 7 possesses more in-neighbors, more consumption
is needed for implementing the control law; and vice versa
for node 292. The terminal value of u; is zero based on the
control law in (8) and the transversality condition of A! in (9).

For Situation 2, the performance of optimal control to
enhance the information spreading with a limited budget is
presented in Figure [7] In addition, the optimal control rule is
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implemented to the Markov chain model by conducting MCS
50000 times. The control inputs are now limited in [0, 1], i.e.,
Umin = 0 and umax = 1. The initial conditions are the same
with the ones in Section[IV-A] The budget 4 is chosen as 150.
For simplicity, the budget function is still in quadratic form,
ie., bi(u(t)) = qul(t). Besides, the weights sy and sy are
set as 5 and 1, respectively. The solution to @) is obtained by
fmincon, where we choose the initial guess of all the input
as Umax and the sqp algorithm is used. As is manifested
in Figure [/| the optimal control can increase the diffusion
extraordinarily and the budget is adequately utilized during the
time interval. Notice that there exists small discrepancy in the
value of —.J(t) between the controlled SIRS model and the
Markov chain model. The reason may be the inputs for some
nodes are quite small. This tiny increment of the infection
rate in the node-based SIRS model is more effective than
in the MCS. But it is evident that the proposed control rule
does enhance the information diffusion. Detailed information
of the two nodes with the most and the least in-neighbors are
presented in Figure [§] The contributions to —.J5 of these two
nodes are remarkably increased at ¢y. The control input w92
stays at the upper bound most of the time while u; stays at
a low level. According to the input in Figure 8] it is apparent
that the budget is not sufficient enough to support the maximal
resources allocated to each individual. It is also worth noting
that solving @) on G; by fmincon is slow. Future work should
focus on developing fast algorithms for information epidemics
on large scale networks.

C. Influence of the Parameters

The solutions to the optimal control problems (3) and (@) are
inevitably influenced by the parameters therein. The impacts
of the main parameters are discussed in this subsection. An
E-R random graph of 30 nodes with connectivity probability
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Fig. 7: The performance of the node-based SIRS model

and the Markov chain model with optimal control (@) and
without control. The subfigures show the value of —J3(¢) and
consumption, respectively. The abbreviations w.c. and wo.c.
stand for with control and without control, respectively.
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0.1 is generalized. The initial conditions are randomly chosen
in the interval (0,0.01). The transition rates in Section [[V-B]
are adopted with slight modification.

In Situation 1, the boundary of the input and the terminal
time play significant role to impede the rumor spreading. The
comparisons among different configurations of i, and ¢y
are studied. In this case, «; is within the interval (0.75,0.85)
and Uy 1s set to 0. The simulations are conducted under
the same initial conditions and network topology while i,
changes from —0.1 to —0.5 with step 0.1 and ¢y increases
from 3 to 7 with step 2. As is shown in Figure 0] we can
conclude that generally with shorter terminal time and larger
input bound, better performance can be achieved to impede
rumor spreading. Specifically, with the same terminal time,
the lager |umin| is, the less people tend to believe the rumor.
However, the decrement of the infected is retarded. From the
view of time limit, with identical u,i,, the longer time we
plan to impede the dissemination, the more widely the rumor
spreads. The reason underneath is that the rumor also spreads
meanwhile we take the control action. Note that for the case
when wuniy, = —0.5, the approximated numbers of infected
nodes at the terminal time are very similar for different ¢y,
which infers that for certain long period of time, the bound of
input plays the dominant role in the performance of the system.
Thus to impede the spread of rumors, we should wisely make
decisions on the resources we can allocate and start as early
as possible.

In Situation 2, the role of the budget as well as terminal
time are selected for further inspection. In this case, «; is
within the interval (0.25,0.35) and wpi, is set to 0. The
simulations are conducted via changing % from 4 to 20 with
step 4 and ¢y from 4 to 6 with step 1. In Figure[T0} we show the
corresponding variation of —.J5 under different configurations.
It yields that the more budget we have, the better diffusion we
can obtain, which also means that more people would buy
the product or vote for the desired campaigner. Akin to the
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result on impeding rumors, for identical budget, more people
turn to be infected in longer diffusion time. However, the
effect of time expansion is weakened as time interval increases
because the limited sources are distributed for longer periods.
To conclude, the budget is the dominant factor in marketing
or campaigning in a short period of time.

V. CONCLUSION

Focusing on information diffusion processes on social net-
works, a heterogeneous node-based SIRS model is introduced
in this article. An optimal control framework based on inter-
acting with the infection rate is proposed, following which two
scenarios, i.e., to impede rumor spreading and to enhance the
diffusion in marketing or campaign, are separately described.
The solutions to the optimal control problems are proved
to exist and obtained by Pontryagin Maximum Principle. A
modified forward-backward sweep algorithm and fmincon are
utilized to obtain the solution numerically. Several simulations
are conducted to show the performance of the optimal control
law, as well as the effectiveness of the SIRS model as an
approximation of the Markov chain model. By comparing the
performance of the system under different configurations, we
conclude that 1) it is effective and critical to start to impede
the rumor spreading as early as possible and 2) enough budget
is the key factor to enhance the diffusion in a short period of
time.

Future works on this topic, which are still open and promis-
ing, lie on establishing diffusion models with uncertainties,
designing decentralized control strategies, and developing fast
algorithms for large scale networks.

APPENDIX
A. Proof of Theorem |

We first show the properties of the node-based SIRS model
in the following two lemmas, which are necessary for the proof
of the existence of the solution to (3).



Lemma 1. Consider the system in (I). If p;(0) € A, then
pi(t) € A, vt > 0.

Proof. Assume that for a time instance 7 > 0 there exists
pi(T) € A. We have the following three cases: 1) if pl(7) =
0, then pi(7) > 0, VpR(7) € [0,1], 2) if pf(7) = 0, then
pR(7) >0, Vpi(7) € [0,1], and 3) if pl(7) + pR(7) = 1, then
pH(7)+pR(7) < 0. From 1) and 2), we have p!, p} > 0 and in
conjugation with 3), we have p£ + le < 1, which is equivalent
to p;(t) € A, Vit > 0, if p;(0) € A. O

Lemma 2. The node-based SIRS model @) is globally Lips-
chitz continuous in p(t), where p(t) = (p',p®).

Proof. The system in is denoted as p(t) = F(p(t),u(t))
for simplicity. Since u(t) is a function of ¢, we can directly
consider the Lipschitz continuity of F'(p,t) in p. Let p :=
(p', pP) satisfy [@). Then we use 1-norm to prove the Lipschitz
continuity.

1F(.8) = FGp. ) = 18 =8l + 15 = 57
= Nwmax(amax + umax)HpI — ]31”1

+ Wimnax(Qmax + Umax Z Z pip} — P}

1=1 j=1 (10)
+ Wiax (max + Umax Z Z pip; — biDy|

=1 j=1

+ 2/8maprI - ||1 +'7m<1x||p _pRHh

where Wy = max; j Wij, Qmax = Max; ai: ﬁmax =
max, ﬁl, and Wmdx = maxl ~;. By rewriting plpj — plpj as
Png plpj +pzpj pzpj, one can have

Z Z Iplp) —

71]1

< ZIMIZIPJ pj|+2|pj|2|pz il

< 2N||P AT
and similarly there holds
N N
DD Ipfrl -
i=1 j=1
By Substituting (I1)) and (I2) into (I0), it follows that
[1F(p,t) = F(p,t)[lx < Lip — plh,

where L = max{4Nwmax(Oémax + umax) + 2/Brnaxa Nwrnax
(max + Umax) + Ymax } > 0 is the Lipschitz constant. O

Pips]

(1)

Prpsl < N(llp' = p Iy + Ip™ = p%1). (12)

Based on Lemma [T] and 2] we provide the following proof
for the existence of the solution to by examining the
conditions given by Cesari’s Theorem in [43]].

i) The admissible input set &/ and the set of solutions to

Cauchy problem, i.e. p = F(p,u), p'(0) = p§, p?(0) =
p&, is apparently non-empty since F'(p,u) is Lipschitz
in p [48, Theorem 3.2].

ii) We prove that F(p,u) is bounded by Ci(1 + ||p|| +

), where C’l is a constant. Since v is bounded, we

only need to show there exists a constant C7 such that
C1(1+ ||p||) upper bounds F'(p,u). Note that

1F(p, )2
N N

S (amax + Umax) Z Z 1 - pz pz |wUpj|

i=1 j=1

+ Z |Bipi| + Z 8P} — vipi'|

é N(wmax(amax + umax) + 2ﬁmax) ||pIH1
+ 'YmaprR”L

Generally, since N > 7pax, we choose C; =
N (Wnax (Omax+Umax) +2Bmax) such that || F(p,u)|[; <
Ci(1+ [p]).

iii) F(p,w) is linear in u and the integrand satisfies the in-
equality 717 p'+u T Qu > Cyl|ul|S? — Cy with constants
Cs,C3, and Cy. It is required that Cy > 0, C3 > 1,
which can be fulfilled by choosing Cy = Anin{Q}.
C3=28.IldC4:0.

Thus all the conditions of Cesari’s Theorem are satisfied,
which infers the existence of the solution to the problem
described as (3).

B. Proof of Theorem [2]

Based on the extreme value theorem [49, Theorem 4.16],
we prove the existence of the solution to (@). First we
show that the solution of the node-based SIRS model
is continuous. From Lemma [2] the model is Lipschitz
continuous. Moreover, F(p(t),u(t)) is obviously bounded.
To attain the continuous dependence on parameter u(t), the
following proposition needs to be validated.

Proposition 1. Given ||u — 4|| < §, 6 > 0, there exists p >0
such that |F(p,u) — F(p, )| < p

Proof. 1-norm is utilized here to prove the proposition. By
direct calculation, we have

1E(p,u) = F(p, @)

S)SUE

Jj=1

N
< Zi:l ‘1 —pi —pi wmax2|uj — ]
j=1

< Nwma)(”u - ’EL||1

Let ¢ = Nwpaxd, the result in the proposition can be
obtained. O]

wl]pj

Now we can come to the result that F'(p,u) is continuous
in u. Define the following set for the constraint

ty N
S={u: / D bi(ui(r))dT = B, tmmin < wi(t) < tmax },
0 =1

which is compact. Along with the compact set U, the product
S x U is also compact. Since the conditions of [49, Theorem
4.16] are all satisfied, there exists a solution to (Ef[)



C. Proof of the uniqueness of the solution to (3)

This proof follows the idea of the proof in [43, Theorem
6.2]. If the optimal control problem (3) is solved by (8), it
is evident that p* and A* are continuous on interval [to,ty].
Hence, they are bounded therein. In conjugation with ii) in
Appendix A, there exists some constant C5 such that the
following inequality holds

ATF(p )| < [IACL (L + [Ipll + Ilull) < Cs (1 + [Jul]).

Bearing in mind that iii) in Appendix A holds, it yields that

—Hy = r1Tp'+u" Qu=ATF(p,u) > Colull*~C5(1+]ul))-

Consequently, there holds —||ul|"*H; — oo as [jul| — oo.
Besides, since @ is positive definite, it implies H; is strictly
concave in u. Based on the proof in [43, Theorem 6.2], H;
reaches its maximum at a unique u* on i for every t € [to, t¢].
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