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Abstract

The tight coupling of information technology with physical sensing and actuation has
opened the door for privacy leakage and security vulnerability in the localization al-
gorithms of Cyber-Physical Systems (CPS). Also, localization algorithms make use of
resource-constrained sensor nodes. Thus, we need a paradigm shift in the algorithmic
design to localize CPS privately, securely, and efficiently. Interdisciplinary approaches
are required that bring a diverse set of disciplines together to bear on the design process
of the localization. Such approaches should take care of trustworthy, privacy-aware, and
efficiency aspects of the localization process. The objective of this dissertation is tackling
these emerging concerns and developing algorithms to address them effectively.

The contribution of this thesis is multi-fold. We start by tackling the privacy and se-
curity concerns while satisfying the real-time requirements in the localization process.
More specifically, we present PrOLoc (Private Observers for secure Localization), a set
of novel protocols and algorithms for estimating the location of a given target while
guaranteeing the privacy of locations and measurements of the observers. Moreover, and
unlike previously proposed perturbation based techniques, PrOLoc is also resilient to
malicious active false data injection attacks on sensor and link levels. Then, we move
from the centralized estimation algorithms to the distributed ones. More specifically, we
propose D-SLATS (Distributed Simultaneous Localization and Time Synchronization),
a framework comprised of three different and independent algorithms to jointly solve
time synchronization and localization problems in a distributed fashion. The perfor-
mance of a distributed network state estimation problem depends strongly on collabora-
tive signal processing, which often involves excessive communication and computation
overheads on a resource-constrained sensor node. Therefore, we next propose an event-
triggered diffusion Kalman filter, which only collects measurements and exchanges rel-
ative messages between nodes based on a local signal indicative of the estimation error.
This leads to an energy-aware state estimation algorithm, which we apply to the dis-
tributed simultaneous localization and time synchronization problem. Next, we attach
the utmost importance to the security of the distributed estimation algorithms. A secure
distributed state estimation algorithm that works in the presence of modeling and mea-
surement noise between a network of nodes with pairwise measurements is presented.
Reachability analysis is utilized to establish a security layer providing secure estimate
shares for the distributed diffusion Kalman filter. Finally, we touch upon the problem of
Human-Computer Interface (HCI) as an application to the accurate localization. We pro-
pose SeleCon, stands for device Selection and Control, a pointing approach to interacting
with devices, as pointing is arguably a natural way for device selection.
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Zusammenfassung
Die enge Kopplung von Informationstechnologie mit Sensoren und Aktoren birgt
ein erhöhtes Risiko für Datenschutzverletzungen und Sicherheitslücken in den
Lokalisierungsalgorithmen von Cyber-Physical Systems (CPS). Zudem verwenden
Lokalisierungsalgorithmen ressourcenbeschränkte Sensorknoten. Daher wird ein
Paradigmenwechsel im algorithmischen Entwurf benötigt, um die Lokalisierung von
CPS vertraulich, sicher und effizient zu gestalten. Hierbei sind interdisziplinäre
Ansätze gefordert, um den Entwurfsprozess zu bewerkstelligen und dabei auf Ver-
trauenswürdigkeit, Datenschutz und Effizienz der Lokalisierungsalgorithmen zu achten.
Das Ziel dieser Dissertation ist es, diese aufkommenden Herausforderungen mit
Hilfe neuartiger Algorithmen zu bewältigen. Die Beiträge dieser Arbeit umfassen
verschiedene Aspekte. Zu Beginn präsentieren wir PrOLoc (engl.: Private Ob-
servers for secure Localization)—eine Reihe neuartiger Protokolle und Algorith-
men zur Positionsschätzung eines vorgegebenen Ziels, die gleichzeitig das Verber-
gen der Positionen und Messungen der Beobachter gewährleisten. Hierbei werden
neben Datenschutz- und Sicherheitsbedenken gleichzeitig Echtzeitanforderungen im
Lokalisierungsprozess berücksichtigt. Im Gegensatz zu bisherigen störungsbasierten
Techniken erweist sich PrOLoc als robust gegen bösartige Datenmanipulationen auf
Sensor- und Verbindungsebene. Neben zentralisierten Schätzungsalgorithmen werden
im Rahmen dieser Arbeit verteilte Algorithmen untersucht. Hierfür präsentieren wir das
Framework D-SLATS (Distributed Simultaneous Localization and Time Synchroniza-
tion), welches aus drei unterschiedlichen und unabhängigen Algorithmen besteht, um
Zeitsynchronisationsprobleme zusammen mit Lokalisierungsproblemen verteilt zu lösen.
Die Performance einer verteilten Zustandsschätzung in einem Netzwerk hängt stark von
der kollaborativen Signalverarbeitung ab, die oft mit einem erhöhten Kommunikations-
und Rechenaufwand auf einem ressourcenbeschränkten Sensorknoten einhergeht. Da-
her wird als nächstes ein ereignisgesteuerter Diffusion-Kalman-Filter vorgeschlagen,
der nur Messungen sammelt und Nachrichten zwischen Knoten austauscht, die auf
einem lokalen Signal basieren, das auf den Schätzfehler hinweist. Dies führt zu einem
energiebewussten Zustandsschätzungsalgorithmus, der zur verteilten und simultanen
Lokalisierung und Zeitsynchronisation verwendet wird. Im nächsten Schritt beschäfti-
gen wir uns mit der Sicherheit der verteilten Schätzungsalgorithmen. Dazu präsentieren
wir einen sicheren Algorithmus zur verteilten Zustandsschätzung, der Modellierungs-
und Messrauschen in einem Netzwerk von Knoten mit paarweisen Messungen berück-
sichtigt. Für den Security-Layer, der sichere Schätzanteile für den verteilten Diffusion-
Kalman-Filter liefert, wird Erreichbarkeitsanalyse verwendet. Als Anwendungsfall für
die genaue Lokalisierung gehen wir schließlich auf die Mensch-Computer-Schnittstelle
(engl.: HCI) ein. Dazu stellen wir ein Framework, genannt SeleCon (engl.: device Se-
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Zusammenfassung

lection and Control), zur Interaktion mit Geräten vor. Dieses Framework verwendet das
Zeigen mit der Hand auf ein Gerät als eine natürliche Methode zur Geräteauswahl.

viii



Contents

Abstract v

Zusammenfassung vii

List of Figures xiii

List of Tables xvii

List of Symbols xix

List of Abbreviations xxii

1 Introduction 1

2 Resilient Localization with Private Observers Using Partially Ho-
momorphic Encryption 5
2.1 Private and Secure Localization Challenges . . . . . . . . . . . . . . . 6
2.2 Traditional Least Squares Localization . . . . . . . . . . . . . . . . . . 7
2.3 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Attacker Model . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Privacy Definitions . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.4 Utility and Performance Measures . . . . . . . . . . . . . . . . 13
2.3.5 Resilience Definition . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Differential Privacy Techniques . . . . . . . . . . . . . . . . . 13
2.4.2 Secure Multi-Party Computation . . . . . . . . . . . . . . . . . 14
2.4.3 Fully Homomorphic Encryption . . . . . . . . . . . . . . . . . 15
2.4.4 Privacy Through Selective Obfuscation . . . . . . . . . . . . . 15

2.5 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1 Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . 15

2.5.1.1 Paillier Homomorphic Cryptosystem . . . . . . . . . 15
2.5.1.2 Fully Homomorphic Encryption Cryptosystem . . . . 16

2.5.2 Secure Comparison Protocol . . . . . . . . . . . . . . . . . . . 16
2.5.3 Floats Encoding . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Polyhedra-based Localization Algorithm: Least Squares . . . . . . . . 18
2.6.1 Polyhedra-Based Localization . . . . . . . . . . . . . . . . . . 18

ix



Contents

2.6.2 Poly-LSQ: Polyhedra-based Least-Squares Localization . . . . 21
2.6.2.1 Encrypt . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.2.2 Aggregate . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.2.3 Decrypt . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.2.4 Privacy Analysis of the Poly-LSQ Protocol . . . . . . 23

2.6.3 Geometric Dilution Of Precision . . . . . . . . . . . . . . . . . 26
2.7 Polyhedra-based Localization Algorithm: Alternating Projection Approach 26

2.7.1 Localization Using the Alternating Projection Algorithm . . . . 26
2.7.2 Projection onto Boundary of a Polyhedron . . . . . . . . . . . . 29
2.7.3 Poly-AP: Polyhedra-Based Alternating Projection Protocol . . . 30
2.7.4 SMC-Poly-AP: Alternating Projection Algorithm Based on Se-

cure Multiparty Communication . . . . . . . . . . . . . . . . . 33
2.8 Resilient Privacy-Aware Localization . . . . . . . . . . . . . . . . . . . 33
2.9 Communication Overheads . . . . . . . . . . . . . . . . . . . . . . . . 34
2.10 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.10.1 Localization using Fully Homomorphic Encryption . . . . . . . 37
2.10.2 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 39
2.10.3 End-to-end Analysis on Real Hardware . . . . . . . . . . . . . 40

2.10.3.1 Localization error . . . . . . . . . . . . . . . . . . . 44
2.10.3.2 Execution Time . . . . . . . . . . . . . . . . . . . . 45

2.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Distributed Simultaneous Localization and Time Synchronization 47
3.1 Ranging Techniques for Localization . . . . . . . . . . . . . . . . . . . 48

3.1.1 Beaconing methods . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.2 Single-sided Time of Flight Ranging . . . . . . . . . . . . . . . 49
3.1.3 Symmetric Double-Sided Time of Flight Ranging . . . . . . . . 50

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Measurement types . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Proposed Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Distributed Kalman Filter . . . . . . . . . . . . . . . . . . . . 54
3.4.2 Distributed Kalman Filter for Large Scale Systems . . . . . . . 56
3.4.3 Distributed Optimization . . . . . . . . . . . . . . . . . . . . . 59

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.2 Case Study: Static Nodes . . . . . . . . . . . . . . . . . . . . . 61

3.5.2.1 Position Estimation . . . . . . . . . . . . . . . . . . 62
3.5.2.2 Time synchronization . . . . . . . . . . . . . . . . . 63

3.5.3 Case Study: Mobile Nodes . . . . . . . . . . . . . . . . . . . . 64
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

x



Contents

4 Event-Triggered Diffusion Kalman Filter 67
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 State Estimation Algorithms . . . . . . . . . . . . . . . . . . . 68
4.1.2 Centralized Event-Triggered Estimation Algorithms . . . . . . 68
4.1.3 Distributed Event-Triggered Estimation Algorithms . . . . . . . 68

4.2 Triggering Logic Principle . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Event-Triggered Diffusion Extended Kalman Filter Algorithm . . . . . 71
4.4 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.1 Application to Localization and Time Synchronization . . . . . 78
4.5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5.2.1 Fully-Connected Network Case Study . . . . . . . . 80
4.5.2.2 Partially Connected Network Case Study . . . . . . . 82

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Distributed Secure State Estimation Using Reachability Analysis 85
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Distributed Secure State Estimation and Proposed Solution . . . . . . . 86

5.2.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.4 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Secure Measurement Update . . . . . . . . . . . . . . . . . . . . . . . 89
5.4 Secure Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Localization for Enabling IoT Device Selection and Control 97
6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1.1 Inertial-based interaction . . . . . . . . . . . . . . . . . . . . . 99
6.1.2 Wireless-based interaction . . . . . . . . . . . . . . . . . . . . 100
6.1.3 Vision-based interaction . . . . . . . . . . . . . . . . . . . . . 100

6.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3 Pointing Event Detection . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4 IoT Device Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4.1 Spatial Resolution and Gesture Length . . . . . . . . . . . . . . 104
6.4.2 Device Selection by Pattern Matching . . . . . . . . . . . . . . 106

6.4.2.1 Relevant Ranging Features . . . . . . . . . . . . . . 106
6.4.2.2 Classification Methods . . . . . . . . . . . . . . . . 108

6.5 Hand Gesture Recognition . . . . . . . . . . . . . . . . . . . . . . . . 108
6.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.6.1 Pointing Event Detection . . . . . . . . . . . . . . . . . . . . . 110
6.6.2 Device Selection . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.6.2.1 Analysis of Distance Between two Devices . . . . . . 112

xi



Contents

6.6.2.2 Co-linearity Analysis . . . . . . . . . . . . . . . . . 112
6.6.2.3 Power Analysis . . . . . . . . . . . . . . . . . . . . 113

6.6.3 Gesture Recognition . . . . . . . . . . . . . . . . . . . . . . . 114
6.7 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . 115
6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Conclusion 117

Bibliography 119

xii



List of Figures
2.1 Trilateration using ranges from three observers (Si) . . . . . . . . . . . 7
2.2 Objective function based on measurements di from observers Si. . . . . 8
2.3 Communication flow for aggregator based localization. . . . . . . . . . 9
2.4 Secure Multi-Party Computation (SMC)-based setup. . . . . . . . . . . 10
2.5 Discretizing the circle as a polyhedron . . . . . . . . . . . . . . . . . . 19
2.6 Algebraic representation of polyhedra: (a) a hyperplane in R2, (b) a half

space in R2, and (c) a polyhedron defined by f half spaces. . . . . . . . 19
2.7 Polyhedron discretization of range circle under translation and scaling

(varying bi and fixed ai). . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Different geometric configurations showing the size of the intersecting

polyhedron and hence the geometric dilution of precision of the Poly-
LSQ protocol. We plot two cases (a) a target located at (5, 5) within the
convex hull of the observers and (b) a target located at (15, 5) outside the
convex hull of the observers. . . . . . . . . . . . . . . . . . . . . . . . 27

2.9 Several iterations of the alternating projection algorithm for different ge-
ometric configurations—a target at (5,5) inside the convex hull of the
observers in subfigure (a) and at (15,5) outside the convex hull of the ob-
servers in subfigure (b)—showing the resilience of the polyhedra-based
alternating projection to the geometric dilution of precision. . . . . . . . 28

2.10 Projection of z on the nearest and furthest hyper-planes. . . . . . . . . . 30
2.11 Localization error of Poly-LSQ protocol for a moving target with ideal

range measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.12 Localization error of Poly-AP protocol for a moving target with ideal

range measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.13 Localization error of unsecure traditional least squares algorithm for a

moving target with ideal range measurements. . . . . . . . . . . . . . . 39
2.14 Performance analyses for polyhedron-based localization . . . . . . . . 40
2.15 The effect of range estimation noise on localization error. . . . . . . . . 41
2.16 Ranging test bed configuration with four anchor nodes and one target node. 41
2.17 (a) Custom ranging anchor circuit board, (b) ceiling-mounted anchor

node, and (c) mobile ranging target. . . . . . . . . . . . . . . . . . . . 42
2.18 Localization error of Poly-LSQ and Poly-AP protocols. The dotted line

separates the points inside and outside the observers’ convex hull. . . . 42
2.19 Cumulative probability of the localization error. . . . . . . . . . . . . . 43
2.20 Execution time analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.21 Number of range circle samples versus Aggregator execution time where

the number of iterations is fixed at 5. . . . . . . . . . . . . . . . . . . . 44

xiii



List of Figures

2.22 Aggregator execution time (semi-log scale) vs. number of anchors. . . . 45

3.1 Two-party ranging techniques, including (a) beacon-based ranging, (b)
one-way time-of-flight (ToF) ranging, and (c) symmetric double-sided
ToF ranging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 The top of this diagram shows six synchronization events between three
devices, labeled h, k, and j. Each event is classified as type 1, type 2 or
type 3 depending on the number of transmissions sent. . . . . . . . . . 53

3.3 An example of how a system can be divided in three subsystems. . . . . 57

3.4 Example of P (l) values out of original P . . . . . . . . . . . . . . . . . 57

3.5 Experimental setup overview, including, UWB Anchor nodes, motion
capture cameras, and mobile quadrotor UWB nodes. . . . . . . . . . . 60

3.6 CrazyFlie 2.0 quadrotor helicopter with DW1000 UWB expansion. . . . 60

3.7 Average localization error with fully connected network for DKAL algo-
rithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.8 Average localization error with fully connected network for DKALarge
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.9 Average localization error with fully connected network for DOPT algo-
rithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.10 Average localization error with fully connected network. . . . . . . . . 63

3.11 Average localization error where each node has 4 neighbors only. . . . . 63

3.12 Localization errors for DKAL in 3D for a single mobile node. Spatial
errors (left) are shown with corresponding per-axis errors by time (top
right). Additionally, the error is plotted against the mobile node’s dis-
tance from the network centroid (bottom right). . . . . . . . . . . . . . 65

3.13 Localization errors for DKALarge in 3D for a single mobile node. Spa-
tial errors (left) are shown with corresponding per-axis errors by time
(top right). Additionally, the error is plotted against the mobile node’s
distance from the network centroid (bottom right). . . . . . . . . . . . . 65

3.14 Localization errors for DOPT in 3D for a single mobile node. Spatial
errors (left) are shown with corresponding per-axis errors by time (top
right). Additionally, the error is plotted against the mobile node’s dis-
tance from the network centroid (bottom right). . . . . . . . . . . . . . 66

4.1 Every sensor node is running a distributed event-triggered state estimator
to obtain the network state xk,i|i. The trigger logic is based on monitoring
local signal indicative of estimation error, thus linking the transmission
and the sensing decisions to the estimation performance. . . . . . . . . 72

xiv



List of Figures

4.2 A snapshot of 20 seconds of our experiments. The threshold is set to
4m. The 3D localization error and trace value tr(WPL,i|iW

T ) are shown
in the first and second sub-figures, respectively. The measurement and
diffusion flags are the same and shown in the third sub-figure where, a
value of 1 indicates of executing the step, while 0 means skipping the
step at the corresponding time instance. Time Update step is happening
all the time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 The trade-off between the communication overhead saving and the mean
3D localization error of the CrazyFlie for a fully connected network. . . 81

4.4 Effect of changing the threshold value πmax on a fully connected network
and partially connected one. . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Attacks are on links and sensors as shown in sub-figure a. Links are
divided into passive (dashed) and active (bold) links at each time step.
Active links carry a measurement between two nodes. The two sub-
figures b and c show the active and passive links at two time steps. . . . 88

5.2 Localization error at one node of the rotating target where all the mea-
surements are under attack. The measurements only are under attack
while the diffusion step is not under attack. Attacks are generated from
uniform, normal and Pareto pseudo-random distributions, as shown in
(5.13). Y-scales are different in Figures (a) and (b). . . . . . . . . . . . 93

5.3 Localization error at one node of the rotating target where all the diffu-
sion shares are only under attack. Attacks are generated from uniform,
normal and Pareto pseudo-random distributions. Y-scales are different in
Figures (a) and (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Localization error at one node of the rotating target where all the mea-
surements and the diffusion shares are under attack with time varying
values. Attacks are generated from uniform, normal and Pareto pseudo-
random distributions as shown in (5.13). Y-scales are different in Figures
(a) and (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1 Gesture based IoT device selection using wearable devices. . . . . . . . 97
6.2 SeleCon system overview. . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3 An example of inertial data: A user points to a device (TV) and conducts

a moving up gesture (raise volume). . . . . . . . . . . . . . . . . . . . 102
6.4 Ranging errors and angular (spatial) resolution in gesture-based IoT de-

vice selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5 Example ranging traces during pointing. These examples are in an en-

vironment with high spatial diversity where 4R is sufficient to identify
the selected device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.6 Example ranging traces during pointing. These examples are in an envi-
ronment with low spatial diversity where4R is not sufficient to identify
the selected device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xv



List of Figures

6.7 Range difference,4R, for true and false (n̄i∗ and n̄i 6=i∗) as a probability
density function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.8 List gestures supported by SeleCon. . . . . . . . . . . . . . . . . . . . 109
6.9 Hardware prototype of UWB-equipped smartwatch . . . . . . . . . . . 110
6.10 Probability density function of the angular divergence of the pointing

events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.11 The effect of distance between two devices on SeleCon accuracy . . . . 113
6.12 Co-linearity effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.13 Co-linearity effect while pointing from height 75 cm and 140 cm at de-

vices at 75cm in y direction. . . . . . . . . . . . . . . . . . . . . . . . 114
6.14 Confusion matrix of the gesture recognition classifier. . . . . . . . . . . 115

xvi



List of Tables

2.1 Summary of the privacy guarantees for the three proposed protocols. . . 12
2.2 Communication cost analysis with respect to the number of messages for

private localization protocols. . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Communication cost analysis with respect to the message size for private

localization protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Detailed communication cost analysis for Poly-LSQ (left) Poly-AP

(right) protocol with respect to number of messages between different
entities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Detailed communication cost analysis for SMC-Poly-AP protocol with
respect to number of messages between different entities. . . . . . . . . 35

2.6 Detailed communication cost analysis for Level-II Pr (left) and Level-
III Pr (right) protocols [1] with respect to number of messages between
different entities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Analysis of secure least squares localization using Leveled FHE. . . . . 38
2.8 Localization error comparison (m). . . . . . . . . . . . . . . . . . . . . 45

3.1 localization error (m) of different static nodes. . . . . . . . . . . . . . . 64
3.2 Synchronization error (µ seconds) of different nodes with respect to node 0. 64

5.1 The mean and standard deviation of the localization error (m) of the rotat-
ing target at one node with and without the proposed protection algorithm. 96

6.1 Summary of related work. . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Classification results for gesture-based IoT device selection, using col-

laborative technique. Angle is not part of the feature vector. . . . . . . . 109
6.3 Classification results for gesture-based IoT device selection, using col-

laborative techniques. Angle is part of the feature vector. . . . . . . . . 110
6.4 The accuracy of different classifier for gesture recognition. . . . . . . . 115

xvii





List of Symbols

R Set of real numbers
Z Set of integers
T Localization target
S Localization sensor (anchor)
A Aggregator node
Q Query node
‖x‖2 Second norm of vector x

λmax{A} Maximum eigenvalue of a symmetric matrix A
pk Public key
sk Private key

JaKpk Encrypted value of a using public key using Paillier crypto system
⊕ Homomorphic addition
	 Homomorphic subtraction
⊗ Homomorphic self-blinding

JaKFHE
pk Fully homomorphic encryption of a using public key

P(A, b) polyhedron with matrix A and vector b
H Halfspace
A(i) ith row of matrix A
EN(z) Encoding of a float number z
ni Process noise at time step i
vk,i Measurement noise of node k at time step i
fi State update function
hk,i Measurement function
Nk Neighborhood of node k
p Three dimensional position vector
o Clock offset
b Clock bias
c Speed of light in a vacuum
Qi Process covariance matrix at time step i
Rj,i Measurement noise covariance matrix of node j at time step i
dkj,i Counter difference between node k and node j
rkj,i Single-sided two-way distance measurement between node k and node j
Γkj,i Double-sided two-way distance measurement between node k and node j
TRSP Response time between the two pairs of timestamps
TRND Round-trip time
� Kronecker product

xix



List of Tables

Z = 〈c,G〉 Zonotope with c as center and G as generator
� Minkowski sum
akj,i Attack vector on the measurements between node k and node j at time i.
n̄i Smart device
n̄u Smartwatch
pu(t) Position of a user wearing a smartwatch nu at time t
ri(t) Ranging measurements between the smartwatch nu and smart device ni
ts Starting time of the pointing gesture
tf Finishing time of the pointing gesture

N(µr, σ
2
r) Gaussian distribution with a mean µr and a standard deviation σr

θ̃ Pointing angular error
θmin Angle formed by the true device ni∗ , the user nu, and the closest device nj

xx



xxi



List of Tables

List of Abbreviations
CPS Cyber-Physical Systems
HCI Human-Computer Interface
IoT Internet of Things

UWB Ultra-wideband
SCADA Supervisory Control and Data Acquisition

D-SLATS Distributed simultaneous localization and time synchronization
PrOLoc Private Observers for secure Localization
SeleCon Device Selection and Control

SFE Secure Function Evaluation
FHE Fully Homomorphic Encryption
PHE Partially Homomorphic Encryption
GC Garbled Circuits

SMC Secure Multi-Party Computation
Poly-LSQ Polyhedra-based Least-Squares localization
Poly-AP Polyhedra-based Alternating Projection localization

SMC-Poly-AP Secure Multiparty Computation Polyhedra-based Alternating Projection local-
ization

RLWE Ring Learning With Error
GDOP Geometric Dilution Of Precision
DCRA Decisional Composite Residuosity
RSSI Received Signal Strength Indication
TOA Time of Arrival

TDOA Time Difference of Arrival
AOA Angle of Arrival
MLE Maximum Likelihood Estimator
GPS Global Positioning System
TX Transmission
RX Reception

DKAL Distributed Kalman filter for Localization
DKALarge Distributed Kalman filter for Localization of Large scale systems
DICI-OR Distributed Iterate Collapse Inversion Overrelaxation

DW DecaWave
ROS Robot Operating System
EKF Extended Kalman Filter

MMSE Minimum Mean-Squared Error
OSTP Office of Science and Technology Policy
IMU Inertial Measurement Unit
CSI Channel State Information
NIC Network Interface Card
DOF Degree of freedom
SNR Signal to Noise Ratio
SVM Support Vector Machine

xxii



1 Introduction

Position estimation is an essential requirement for different applications, such as mili-
tary [2], indoor and outdoor localization [3], security surveillance, and wildlife habitat
monitoring; it is often a fundamental requirement for Cyber-Physical Systems (CPS).
Advances in localization techniques have enabled a multitude of services, including
navigation, targeted advertisements, and location-aware applications. With the growing
prevalence of powerful mobile computing devices, methods for localization both in out-
door and indoor environments are becoming more wide-spread and more varied. Many
of these localization techniques depend on analyzing various observations of a distinct
phenomenon to infer the location of some object or event whose location is unknown and
possibly changing over time. In such scenarios, measured signals are often captured by
several sensors or observers and then typically communicated to a centralized computer
or an aggregator for post-processing and, eventually, location estimation. For example,
cellular signals from mobile devices can be measured by base stations to infer the lo-
cation of the device based on geometric multilateration, and wireless sensor nodes can
use microphones along with beamforming algorithms to localize the source of specific
acoustic signatures. The final location estimate is then sent to the interested party who
initiated the inquiry.

Location-based services have to deal with challenges to ensure privacy, security, and
efficiency. We are going to discuss these challenges in the next few lines in more de-
tail. First, we discuss the information leakage within the localization process. Next, we
mention security challenges, and then we discuss the need for distributed and efficient
localization algorithms.

Private Localization: Traditionally, the infrastructure which is used for
localization—microphones, radios, light sensors, etc.—are treated as non-private enti-
ties whose locations and measurements are either known or easily inferred. Knowing
both the locations and the measurements of these devices is required for the localization
of other objects. While in many cases the privacy of the locations and measurements
of the observers or the infrastructure is of little concern—for example, WiFi routers in
a public shopping mall—in other cases publicizing this data can have serious security
implications, for example, the infrastructure of military base, the position of observing
soldiers, and observing participants for a particular events. In fact, observer data leakage
can occur easily through one of the following two ways:

• Malicious Aggregators: The locations of observers, as well as the distance mea-
surements, are typically stored at a remote server to perform a joint position es-
timation. In multilateration and multiangulation systems, for example, infrastruc-
ture positions, ranges, and angles are often communicated to a single device, which
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1 Introduction

then performs an optimization routine in order to arrive at an accurate position es-
timate of some target. Upon receiving the sensitive data, a malicious aggregator
could relay this information to interested third parties with more nefarious intents.
In many scenarios, this information can be incredibly sensitive for example the
military signal towers used to locate soldiers in the field, distributed and crowd-
sourced detection of gunshots, or other illicit activities for which the observers
should remain anonymous in order to be protected.

• Aggregator Information Leaks: The aggregation and centralization for the infor-
mation of the observers creates a point of weakness in traditional systems, where
even a trusted aggregator may inadvertently leak sensitive data—e.g., the infa-
mous examples of hackers gaining root access to the WordPress1 server and the
data breach of customers’ information on JCPenny2 servers.

Secure Localization: One of the key components in the localization process is phys-
ical sensing to get distance measurements. However, research evidence shows that the
introduced tight coupling of information technology with physical sensing and actua-
tion leads to more vulnerability and security weaknesses. For instance, the Maroochy
Water Breach [4] made it possible to attack the underlying infrastructure at Maroochy
Water Services in Queensland. Also, one popular attack is the Stuxnet attack on Su-
pervisory Control and Data Acquisition (SCADA) systems, which are used in industrial
process control [5, 6]; other security issues on SCADA networks are shown in [7]. At-
tacks on analog sensors that have increasingly become an indispensable part of many
modern systems are shown in [8]. Moreover, the vulnerability of drones is a perilous
threat if attackers can take control of them [9, 10]. Also, consider the case of generating
a fake GPS signal that appears identical to those sent out by the real GPS [11] to take
over some unmanned aircraft [12]. While considerable research has explored CPS se-
curity using cryptographical techniques, it is not sufficient to ensure CPS security. Such
cyber-security techniques cannot protect against the compromised physical environment
around a sensor node, which may inject a corrupted signal. Thus, researchers came up
with techniques that address the problem of secure state estimation under attacks on
sensors, actuators, and communication network. Secure state estimation allows the esti-
mation of the state of the CPS from corrupted measurements. The state, in our case, is
the location of the target in CPS.

Efficient and Distributed Localization: Centralized algorithms of localization might
attain perfect performance. However, they are neither robust nor scalable to complex,
large-scale dynamical systems with their measurements distributed over a large geo-
graphical region. In order to perform localization using a centralized algorithm, all nodes
should send their measurements to a central entity, which uses conventional techniques
to obtain the location of different nodes. The information is then sent back to every node.
This strategy requires a large communication overhead and has a potentially critical fail-

1http://it.slashdot.org/story/11/04/13/1925244/wordpress-hacked-attackers-get-root-access
2http://www.nbcnews.com/id/22718442/ns/technology and-science security/t/credit-card-data-breach-

could-affect/

2



ure point at the fusion center. Besides ensuring the accuracy of estimating the localiza-
tion, one has to consider power constraints [13], limitations in terms of bandwidth [14],
and limitations in computation [15] and communication [16]. One of the most popular
estimation algorithms for sensor networks is the distributed Kalman filtering algorithm.
Among distributed algorithms, diffusion algorithms have favorable properties with re-
spect to performance and robustness to node and link failures. The performance of the
distributed diffusion Kalman filter [17] depends on frequent measurements and message
exchanges between nodes. On the other hand, the capabilities of individual nodes are
minimal, and they are battery-powered. So, decreasing the communication overhead and
the number of measurements is of great importance.

Given the mentioned challenges in the localization process, a paradigm shift in the
algorithmic design to enhance the localization process is essential. Interdisciplinary ap-
proaches that bring a diverse set of disciplines to bear on the design process of localiza-
tion algorithms are required. The objective of this dissertation is tackling these emerging
concerns and developing algorithms to address them effectively. This thesis is a summary
of the work in theses publications [18–32].

The key contributions of this thesis can be summarized as follows:

• We present PrOLoc (Private Observers for secure Localization) in Chapter 2,
which consists of three algorithms for performing localization of a mobile tar-
get based on encrypted measurements from private observers. PrOLoc leverages
the Paillier additive homomorphic cryptosystem to efficiently estimate target po-
sitions in real-time without revealing the locations or measurements of any given
observer. We analyze the performance of the proposed localization algorithms in
terms of computational efficiency and privacy preservation. We evaluate the PrO-
Loc using an end-to-end system of range measurement hardware in a laboratory in
terms of accuracy and efficiency. We provide strong theoretical guarantees regard-
ing observer privacy and resilience for each of the demonstrated algorithms. Our
experiments on real hardware demonstrate that PrOLoc yields accurate location es-
timate at least 500x faster than state-of-art secure function evaluation techniques.

• Distributed Simultaneous Localization and Time Synchronization (D-SLATS) al-
gorithms are proposed in Chapter 3. We propose distributed approaches to achieve
network time synchronization and accurate localization estimates using distributed
filters and optimization techniques. While distributed estimators benefit from im-
proved scalability, the joint estimator presented lends itself more naturally to sen-
sor networks requiring high fidelity, high-frequency synchronization, and local-
ization, e.g., autonomous robotics and indoor pedestrian tracking. Therefore, we
aim to target both advantages by providing accurate, distributed approaches. This
chapter leverages ultra-wideband communication in order to make precise timing
measurements. We take into consideration the scalability factor and show the ad-
vantages and disadvantages of using our algorithms. We demonstrate the benefit
of D-SLATS using custom ultra-wideband wireless devices and a quadrotor. We
achieve micro seconds synchronization error and half meter localization error.
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• Chapter 4 introduces the event-triggered distributed diffusion Kalman filter to re-
duce the communication, computation, and measurements overhead. We show
that our event-triggered estimator is unbiased and derive the relationship between
the triggering signal and the expected error covariance. Then, we apply the pro-
posed algorithm in localizing and time-synchronizing distributed nodes in an ad-
hoc network. We evaluate the proposed strategy on a real testbed using custom
ultra-wideband wireless devices and a quadrotor, representing a network of both
static and mobile nodes. Our experimental results show that we are able to save
86% of the communication overhead, while only introducing 16% performance
degradation.

• We propose in Chapter 5 an approach for distributed linear secure state estima-
tion in the presence of measurement noise and modeling errors. By combining
the diffusion Kalman filter [33] with reachability analysis [34], we provide a new
algorithm for distributed secure state estimation between a network of nodes. We
apply the proposed algorithm on a localization example of a rotating target where
the measurements are under attack.

• We introduce SeleCon (Device Selection and Control) in Chapter 6 which provides
a practical and scalable method of Internet of Things (IoT) device selection and
control using pointing and hand gestures as an application to accurate localization.
Given the popularity and the growing number of IoT devices, selecting one out
of many devices becomes a hurdle in a typical smart home environment. Thus,
we propose SeleCon with a hardware prototype of smartwatch equipped with a
ultra-wideband radio and inertial sensors. We develop machine-learning models
for device selection and hand gesture recognition from ultra-wideband ranging
and inertial sensors data. To interact with a device in our system, people can
point to the device to select it then draw a hand gesture in the air to specify a
control action. The results demonstrate that SeleCon can achieve 84.5% accuracy
for device selection and 97% accuracy for hand gesture recognition.
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2 Resilient Localization with
Private Observers Using Partially
Homomorphic Encryption

It is well established that location information, when associated with a user, can reveal
sensitive information about the user and violate privacy. For example, we can disclose
the health conditions, religious inclination, home address and workplaces of people us-
ing their locations. This motivates the design of a large number of techniques that protect
the privacy of the target user while simultaneously enabling the sharing of location infor-
mation [35–38]. In comparison, relatively insignificant attention has been given towards
protecting the location privacy of the observers that enable the process of localization.
We consider the problem of secure localization of a target while maintaining the privacy
of the participating observers.

This chapter presents PrOLoc which is a set of novel algorithms for private estimating
the location of a given target based on measurements from hidden observers. Algorithms
in PrOLoc re-formulate the localization process to leverage partially homomorphic en-
cryption techniques in order to calculate a location estimate based on encrypted range
measurements from observers with encrypted locations. The resulting encrypted estimate
is then sent to the inquiring party that can only decrypt it without inferring the private
locations or ranges of any given observer. PrOLoc provides strong privacy and security
guarantees. Our technique, by design, produces negligible degradation in localization
accuracy. We can further augment our private technique with residue-checking-based
schemes to incorporate resilience against active attacks. We implemented PrOLoc on a
real-time testbed consisting of four observers to demonstrate its feasibility on energy-
constrained devices.

This chapter is an extended version of our publications in [18, 19]. The rest of this
chapter is organized as follows. The private and secure localization challenges are pre-
sented in Section 2.1. We review the traditional non private least-squares localization in
Section 2.2. The problem setup is presented in Section 2.3. We go through the related
work in Section 2.4. Then, we provide in Section 2.5 the mathematical preliminaries
and basic cryptographic blocks. The main contributions of this chapter are Sections 2.6
and 2.7 where we discuss novel localization algorithms named (i) polyhedra-based local-
ization: least-squares approach and (ii) polyhedra-based localization: an alternating pro-
jection approach. The details of these algorithms are first given for non-privacy-aware
implementations followed by efficient privacy-aware implementations of the proposed
algorithms along with the theoretical guarantees for each. The resilient privacy-aware
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localization is introduced in Section 2.8. The proposed algorithms are evaluated using
a real-time testbed in Section 2.10. Finally, we conclude the chapter by disclosing the
limitations in Section 2.11.

2.1 Private and Secure Localization Challenges
To address privacy requirements and prevent leakage of sensitive observer information,
researchers have begun to re-imagine localization techniques in a more privacy-aware
and privacy-preserving manner. We identify below several challenges that need to be
addressed for any realizable solution:

• Accepted localization accuracy: The accuracy of the localization process is key
for its use in various applications (e.g., navigation, tracking gunshots, monitor-
ing objects). Thus, any proposed solution should aim to re-formulate the existing
localization algorithms in novel ways to preserve privacy, without sacrificing effi-
ciency or localization accuracy.

• Energy-constrained observers: The observers providing the measurements are of-
ten energy-constrained miniature devices. Thus, any solution providing strong pri-
vacy guarantees should also be sufficiently efficient in terms of both computation
and communication costs.

• Adversaries eavesdropping: While the location is in general sensitive information,
there should be a protection against passive adversaries eavesdropping on the pro-
tocol messages and inferring sensitive observer information.

• Resilience under active attacks: The privacy guarantees provided by any solution
should be resilient to collusion attacks and false data injection attacks from active
adversarial observers. As part of a collusion attack, a group of observers can col-
lude between themselves and/or with the aggregator node to reveal the sensitive
information of other participating observers. Similarly, malicious observers can
attempt to degrade the performance of the localization process itself by reporting
false noisy measurements to the aggregator node.

One localization approach is to retain the structure of a given localization function
and model its computation as a “secure function evaluation” (SFE) problem thereby pro-
tecting the privacy of the observers. This would also allow exploiting the repertoire of
efficient multi-round message-passing protocols that have been designed over the years
to perform SFE. However, SFE protocols require all observers to be online during the
execution of a long protocol. This is a major drawback for battery-operated, resource-
constrained sensor nodes that act as observers during the localization process. Even in
cases where power is not a limitation (e.g., military espionage with human agents), it
might not be feasible for an observer (human agent) to remain visible or online for the
required duration for completing the protocol without compromising their location and
hence their safety. Thus, instead of directly using SFE, we explore ways to reformulate
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Figure 2.1: Trilateration using ranges from three observers (Si)

the localization process itself such that we can continue using the tools designed for SFE
without requiring observers to be available after providing their reports.

Yet another method of preserving observer privacy, and one that we extensively use
in our work, is to homomorphically encrypt data prior to transmission and to perform
localization using encrypted data at the server. One way to encrypt data is to use Fully
Homomorphic Encryption (FHE) that allows both addition and multiplication operations
to be performed on the encrypted data itself. However, FHE is computationally very
expensive and impractical for most cases [39]. An alternative strategy is to use partially
homomorphic encryption (PHE) as the Pallier additive homomorphic cryptosystem [40].
Unlike the fully homomorphic cryptosystems, the partial ones have matured in recent
years to a point where they can be carried out with much greater efficiency. Unfortu-
nately, because standard localization algorithms have not been designed with privacy in
mind, they cannot benefit directly from the performance advantage of PHE over FHE
without a dramatic modification in the localization algorithm.

2.2 Traditional Least Squares Localization
The objective of any localization algorithm is to calculate the position of the target,
denoted by zT = (xT, yT) ∈ R2, using all information provided by the m sensors Si
where i is the sensor index as shown in Figure 2.1 with m = 3. One common method
for estimating the target position is by using range measurements di between the sensors
and the target to constrain the target’s position on a 2D plane. Every sensor provides
its known position (xi, yi) and measured distance di to the target location. We consider
the geometric multilateration method, which calculates the target location based on the
geometry imposed by sensor-target range estimates. The ranges measurements of sensor
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Figure 2.2: Objective function based on measurements di from observers Si.

Si are related to the positions by the relation d2
i = (xi − xT)2 + (yi − yT)2. Stating

and rearranging the relations for all the sensors results in the traditional multilateration
method, which can be casted as the solution of the following least-squares optimization
problem:

ẑT = (x̂T, ŷT) = arg min
ẑT∈R2

‖ASẑT − bS‖2
2 , (2.1)

AS :=

2(x2−x1) 2(y2−y1)
...

...
2(xm−x1) 2(ym−y1)

 ,
bS :=

 x
2
2+y2

2−d2
2−(x2

1+y2
1−d2

1)
...

x2
m+y2

m−d2
m−(x2

1+y2
1−d2

1)

 .
where ẑT denotes the estimated value of the target position zT. Note that we use the

subscript S inAS and bS to emphasize the fact that both the matrixAS as well as the vector
bS depend on the (potentially sensitive) information of sensors S. This will play a vital
role in designing our algorithms as we will show in the next section. To better understand
the optimization problem in (2.1), we plot in Figure 2.2 the value of the objective function
‖ASẑT − bS‖2

2 for different values of ẑT. As shown in Figure 2.2, the objective function
has a minimum at the target location. The minimum of this optimization function (and
hence the target location) can be obtained as:

(x̂T, ŷT) = (ATSAS)
−1ATS bS (2.2)

8



2.3 Problem Setup

 . 
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 . 
. .

 

Figure 2.3: Communication flow for aggregator based localization.

To avoid matrix inversion, one alternative in solving (2.1) is to start from any initial
guess and then iteratively enhance this guess by following the slope of the quadratic
shape until we reach the minimum (shown in Figure 2.2). This technique is known as the
gradient descent technique. In this iterative algorithm, we start by choosing any random
initial estimate, e.g. ẑ(0)

T =
[
0 0

]T , and then iteratively update the estimate as:

ẑ
(i+1)
T = ẑ

(i)
T + ηATS

(
bS − ASẑ

(i)
T

)
(2.3)

where η is a design parameter known as the gradient step size and i is the iteration num-
ber. Calculating the target location using (2.3) requires both multiplication and addition
of sensitive information. While this cannot be implemented directly using only additive
homomorphic encryption like Paillier algorithm, it can be implemented using other SFE
techniques like FHE [41], Garbled Circuits (GC) [42], or hybrid SFE (partial homomor-
phic encryption plus Garbled circuits) [43]. However, we show in our experiments in
Section 2.10 that FHE is still far from being used in practice due to its computation cost,
and GC and hybrid SFE require large number of communication rounds between ob-
servers and aggregator which violate our utility measure (observer communication cost).
Rethinking the optimization problem (2.1) from a privacy point of view motives us to
propose PrOLoc.

2.3 Problem Setup

One straightforward approach to privatizing existing localization algorithms would be
to encrypt the sensitive information of each observer using the public key of the inquir-
ing party (the query node) which the party interested in the location of a given target.
The query node could then decrypt all of the sensitive information and apply any of the
various localization algorithms in existence. Such an approach relies on a trusted query
node. However, as underlined in the introduction, such trustfulness is risky to assume.
To address this issue, we propose two problem setups. In the first one, we introduce
an untrusted third party who is assumed to not collude with the untrusted query node

9



2 Resilient Localization with Private Observers Using Partially Homomorphic Encryption

  .
 . 

. 

Figure 2.4: Secure Multi-Party Computation (SMC)-based setup.

for reasons explained in following sections. This untrusted third party (named the ag-
gregator) is responsible for collecting all information from all observers, executing the
localization algorithms in a privacy-preserving fashion, and sending the final estimate to
the query node. This setup is shown in Figure 2.3. In the second setup, shown in Figure
2.4, the observers co-operate together to compute the final location of the target in a se-
cure multiparty computation (SMC) fashion. In what follows, we describe the different
entities involved in the localization process as well as the notions of privacy which we
aim to achieve with our proposed algorithms.

2.3.1 Entities

The localization process involves the following entities:

• Observers (or Sensors) Si: Entities that make some measurements of the target
that is then used for localization. In this chapter, these measurements are range
estimates, as shown in Figure 2.1. We assume that we have m observers (some-
times referred to as Sensors or anchors). Each observer Si (with k being the in-
dex of the observer, i.e. k ∈ {1, . . . ,m}) possesses three sensitive data entities
Si = (xi, yi, di), where (xi, yi) ∈ R2 denotes the x-y position of the ith observer in
2-dimensional space1 and di ∈ R denotes the measured distance between the ob-
server and a target T as described before. The objective of the proposed protocols
in this chapter is to ensure the privacy of all observer locations (xi, yi) as well as
the distance di. Some of the observers are adversarial ones which launch false data
injection attacks by reporting false observer locations (xi, yi) and/or false distance
di.

1For the sake of simplicity we focus on localization in 2-dimensional space, although the described
algorithms can be naturally extended to localization of objects in 3-dimensional space.
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2.3 Problem Setup

• Target T: A passive entity whose location zT = (xT, yT) needs to be computed
using the sensitive information possessed by the observers.

• Aggregator A: An untrusted party which has a known public key pkA and a private
key skA. Upon receiving all encrypted information sent by observers, it applies a
localization algorithm in order to calculate the (encrypted) target location.

• Query Node Q: An untrusted party that has a known public key pkQ and a hidden
private key skQ. The query node is the only node that is entitled to know the target
location. This query node can be physically the same as the target, or it can be
another entity (other than the aggregator, in order to preserve privacy).

Similarly, the SMC-based localization process involves the same previous entities ex-
cept that rather than a single aggregator computing the localization algorithm, the al-
gorithm is computed in a distributed fashion between all observers as shown in Figure
2.4.

2.3.2 Attacker Model
We focus on both active (false data injection) attacks as well as passive (privacy-leaking)
attacks in which all entities involved in the localization process are honest-but-curious.
That is, we assume that observers truthfully report their measured distances and that
the aggregator or the observers in the SMC-based setup are following the localization
algorithms correctly with the exception that some malicious observers may adversarially
send false data about their locations and/or distance to the target.

2.3.3 Privacy Definitions
We define our privacy notions with the intuition that each entity involved in the local-
ization algorithm should learn nothing about the sensitive information possessed by the
other entities even if some of them collude together. However, we note that there exists
some immutable privacy leak whenever the query node is involved. This can be defined
as follows:
Immutable privacy leak: After each run of any localization protocol, the query node
learns that all observers lie inside a circle whose center is the target location zT and
whose radius is the maximum sensing range (or RF communication range) of the ob-
servers. With this definition of immutable privacy leaks, we can define our privacy goals
as follows:

• Observer Obliviousness: By the end of multiple runs of protocol execution, if
all but one observers collude—by exchanging their private values—the coalition
should learn nothing about the remaining observer.

• Aggregator Obliviousness: By the end of multiple runs of protocol execution, if
the aggregator A colludes with all observers but one, the coalition learns nothing
about the remaining observer.

11
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Table 2.1: Summary of the privacy guarantees for the three proposed protocols.

Observer Aggregator Non-colluding Query node
Protocol Obliviousness Obliviousness Aggregator Obliviousness

Obliviousness

Poly-LSQ (Theorem 2.6.3) X X X X
Poly-AP (Theorem 2.7.1) X 7 X X
SMC-Poly-AP X N/A N/A 7

(Theorem 2.7.2)

• Non-colluding Aggregator Obliviousness: A protocol satisfies the non-colluding
aggregator obliviousness property if after multiple runs of the protocol the aggre-
gator A learns nothing about the sensitive information of the observers.

• Query Node Obliviousness: By the end of multiple runs of protocol execution, if
the query node Q colludes with all observers but one, the coalition learns nothing
about the remaining observer other than what is implied by the immutable privacy
leak.

Our proposed protocols named Polyhedra-based Least-Squares localization (Poly-
LSQ), Polyhedra-based Alternating Projection localization (Poly-AP), and Secure Mul-
tiparty computation Poly-AP localization (SMC-Poly-AP) achieve different utility and
privacy guarantees. A summary of their privacy guarantees is given by Table 2.1.

Remark 2.3.1. The traditional privacy notion of a “zero knowledge proto-
col” [44] considers a protocol secure if the adversarial agents do not leak any
information other than what is implied by the final output (the computed target
location obtained by the Query node in our problem). It is crucial to note that the
previous privacy definitions ask for more stringent requirements in the sense that
they require that even the final output should not leak any information about the
sensitive information.

Note that in all the previous privacy notions the aggregator A and query node Q are not
allowed to combine their respective data in any malicious manner to infer more about the
observers. This constraint is implicitly assumed in many privacy-preserving techniques
like differential privacy where a malicious aggregator which does not corrupt the data
correctly leads to hindering the privacy of the system. In practice, such a constraint is
implemented by natural division of labor. Examples of which appear in multi-institution
financial data analysis where an organization aggregates sensitive financial data gathered
from multiple competing financial intuitions and it is trusted not to collude with any
of them [45]. Because of this natural division of labor and this very typical publish-
subscribe model, we can safely assume that the two parties - querier and aggregator -
operate under different authorities and are disallowed to collude.
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2.4 Related Work

2.3.4 Utility and Performance Measures
Recall that localization systems are used in many critical systems (e.g., gunshot detec-
tion) for which the accuracy of localizing the object or the event is pivotal. Therefore,
protocols which establish privacy by degrading localization accuracy by perturbing mea-
surements and/or adding noise (e.g., differential privacy-based techniques) present prob-
lems in a practical setting. Furthermore, as motivated in the introduction, many of the
observers used in localization are battery-powered. Since network interfaces (e.g. radio)
are known to be a major source of power drain [46], it is then crucial to design protocols
that minimize the number of messages exchanged within the protocol. Therefore, we
define the utility notions as follows:

• Localization Error: The distance between the actual target location (ground truth)
and the calculated (or estimated) target location.

• Execution Time: The time needed by the aggregator to fuse the measurements
and produce the final estimate of the target.

• Observer Communication Cost: Total number of bits sent and received by all
observers.

We aim to achieve the best utilities by decreasing the aforementioned utilities mea-
sures.

2.3.5 Resilience Definition
Under a strict minority of malicious active adversaries, we define resilience as a negli-
gible increase in the overall localization error compared to when no active adversaries
are present. The increased communication cost and execution time, incurred to achieve
protocol resilience should also be negligible.

We now provide a brief overview of prior work and comment on the suitability of
existing techniques to our problem setting.

2.4 Related Work
A closely-related problem to localization with private observations is that of secure data
aggregation either in a distributed setting or in the presence of an untrusted aggregator.
We classify the various techniques that have been proposed for the above problem into
the following broad categories and discuss why they are not suitable for our problem
setting.

2.4.1 Differential Privacy Techniques
Differential privacy techniques rely on the addition of structured noise to the data before
sharing it with the aggregator such that the aggregated data preserves the privacy of each

13
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individual datum. Differential privacy [47, 48] provides rigorous privacy guarantees by
requiring the output of the aggregator to not change significantly even if an observer has
opted out of the data collection. More recently, variant schemes such as local differential
privacy [49] and geo-indistinguishability [50] have been designed to ensure differential
privacy for location data. However, to achieve these guarantees in a distributed setting
without a trusted aggregator, each observer needs to add noise to make their own data
differentially private. This results in an aggregated noise that far exceeds the required
amount to ensure differential privacy for the aggregated result, severely degrading the
accuracy of the localization result and making it unsuitable for use in critical systems.

To overcome the addition of excessive noise, a combination of homomorphic encryp-
tion strategies with distributed noise generation has been proposed. In [38], each ob-
server generated his share of the aggregate noise required for differential privacy [51]
and sent encrypted and obfuscated data to the aggregator. In [37], differential privacy
is achieved by perturbing the most significant coefficients of the discrete Fourier trans-
form of the query answers. The distributed noise is generated by participants using a
vector of four Gaussian random variables. The obfuscated values are encrypted using an
additive homomorphic threshold Paillier cryptosystem. The aggregator operates on the
received encrypted values to compute the aggregate sum. Threshold-based decryption is
performed in a distributed fashion using the private key belonging to each participant.
Similarly in [38], homomorphic encryption is used to secure shared data and the encryp-
tion key is generated using the current iteration number and the originally established
key. Differential privacy of the aggregated data is established using noise drawn from
a symmetric geometric distribution. The above techniques are specifically designed for
simple aggregation (mean computation) using collected data whereas in our case the lo-
calization process requires more sophisticated operations making these noise generation
strategies inapplicable.

2.4.2 Secure Multi-Party Computation
A multi-party computation protocol is secure if no information about the private data held
by the parties can be inferred from the messages exchanged during the execution of the
protocol. The only information that can be inferred about the private data is that which
could be inferred from the output of the overall function alone [52,53]. This makes secure
multiparty computation an excellent candidate for secure aggregation without requiring
an aggregator. A comparative study on using SMC for secure aggregation can be found
in [54], where again the aggregation of the data is limited to performing summation op-
erations, which, as noted before, is insufficient for localization purposes. Furthermore,
Yao’s work on garbled circuits [52] has resulted in the construction of general-purpose
SMC circuits [42] that can compute any arbitrary polynomial function over encrypted
data. However, these general-purpose black box techniques are not only complicated to
implement, but also very slow because it requires multiple rounds of message exchanges
and significantly increases the communication cost of the observer. We made these ob-
servations from our experimentation with these techniques and similar conclusions have
also been noted in [55].
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2.4.3 Fully Homomorphic Encryption

Fully Homomorphic Encryption [41] has recently been used as a countermeasure for
server-side information leakages. Over the past few years, significant work (in the form
of an FHE library [56]) has gone into making it practical, and it has been used for com-
putationally expensive tasks over genome data [57] and recently for classification over
encrypted data [58]. However, the resulting scheme is still impractical for real-time
localization services owing to high latencies [59] as reported in our experiments in Sec-
tion 2.10. Separately, the orthogonal problem of maintaining the integrity of the local-
ization process in the presence of colluding observers has been studied in [60] and [61].

2.4.4 Privacy Through Selective Obfuscation

One common technique to preserve privacy is through obfuscation via addition of noise
to specific dimensions of the sensor signal such that, when aggregated, the noise cancels
out (i.e. sums to zero) in the dimension of interest. Specifically in the context of local-
ization, such intermediate data obfuscation has been formulated in [1, 62], where each
node generates random noise which is then added to its private input. Unfortunately, this
technique assumes a non-adversarial setup where the observer nodes are always fully
compliant and follow the designed localization protocol. However, in case of adversarial
nodes that do not add the right amount of noise, and/or colluding nodes that reveal their
noise values, the localization accuracy and the privacy guarantees can be significantly
degraded, violating our model requirements in Section 2.3.2.

2.5 Preliminaries

2.5.1 Homomorphic Encryption

A homomorphic cryptosystem is a cryptographic primitive which supports computation
over encrypted data. This provides the foundation for the proposed protocols. Two of
the most famous homomorphic cryptosystems are Paillier additive homomorphic en-
cryption and the leveled fully homomorphic encryption cryptosystem. We discuss these
cryptosystems briefly below.

2.5.1.1 Paillier Homomorphic Cryptosystem

Our protocols make heavy use of a particular homomorphic cryptosystem named Paillier
additive homomorphic cryptosystem [40]. This is a probabilistic public key cryptography
scheme that allows two important operations, namely (i) addition of two encrypted values
and (ii) multiplication of an encrypted value by a plaintext value. That is, if we denote by
JaKpk the encryption of a using the public key pk then the Paillier cryptosystem supports
two operations namely ⊕, which is addition over encrypted data, (and accordingly 	)
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and ⊗, which is multiplication by a plaintext, such that:

DECRYPTsk(JaKpk ⊕ JbKpk) = DECRYPTsk(Ja+ bKpk) = a+ b

DECRYPTsk(a⊗ JbKpk) = DECRYPTsk(Ja× bKpk) = a× b

where sk is the private key associated with the public key pk. We denote by Z the set
of integers. Note that these two properties can be generalized to perform multiplication
between a plaintext matrix and a vector of encrypted variables. That is given a vector
x ∈ Zn and a matrix M ∈ Zn×n, we can compute M ⊗ JxKpk as:

M ⊗ JxKpk =

M(1, 1)⊗ Jx(1)Kpk ⊕ . . .⊕M(1, n)⊗ Jx(n)Kpk
...

M(n, 1)⊗ Jx(1)Kpk ⊕ . . .⊕M(n, n)⊗ Jx(n)Kpk

 ,
where with some abuse of notation, we use ⊗ in M ⊗ JxKpk to denote the multiplica-
tion of a plaintext matrix M with an encrypted vector JxKpk. An important fact about
Paillier cryptosystem, that we will use later, that its encryption is probabilistic. That
is, given a and b such that a = b, the encryption JaKpk 6= JbKpk in general and simi-
larly 1 ⊗ JaKpk 6= JaKpk in general. The security guarantees of the Paillier cryptosystem
rely on a standard cryptographic assumption named Decisional Composite Residuosity
Assumption (DCRA) [40].

2.5.1.2 Fully Homomorphic Encryption Cryptosystem

The Fully Homomorphic cryptosystem is also a public key cryptosystem which supports
(i) addition of two encrypted values and (ii) multiplication of two encrypted values. If
we denote by JaKFHE

pk the encryption of a using the public key pk then FHE supports two
operations ⊕FHE and ⊗FHE such that:

DECRYPTsk(JaKFHE
pk ⊕FHE JbKFHE

pk ) = DECRYPTsk(Ja+ bKFHE
pk )

= a+ b

DECRYPTsk(JaKFHE
pk ⊗FHE JbKFHE

pk ) = DECRYPTsk(Ja× bKFHE
pk )

= a× b

The security guarantees of the leveled FHE algorithm presented in [63] are based on a
cryptographic assumption named Ring Learning With Error (RLWE) [63]. The protocols
described in this chapter rely on the Paillier cryptosystem, while FHE is used primarily
for comparison.

2.5.2 Secure Comparison Protocol

The second basic block of our protocols is the comparison over encrypted data. In this
protocol, if party A has a set of encrypted data Ja1KpkB , . . . , JamKpkB encrypted using
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the Paillier cryptosystem using the public key of party B, then by the end of this pro-
tocol, entity A knows the index of the maximum (or minimum) value, i.e. A learns
arg max{a1, . . . , am}, and nothing else whenever both A and B are honest-but-curious.
Different instantiations of this protocol are proposed in literature and are either based
on data obfuscation [58] or on Garbled Circuits [43]. We call this secure comparison
protocol SECCOMPARE (Ja1KpkB , . . . , JamKpkB).

2.5.3 Floats Encoding

Recall that cryptosystems are designed to encrypt and decrypt integers. However, local-
ization measurements and algorithms depend on floating point numbers. Hence, there
is a desire to carry out encrypted computation over floating point numbers by encoding
them as integers with an acceptable quantization error. A common encoding is achieved
by scaling all floating point variables by a constant factor [58]. We denote the encode
operation of float number a by EN(a). Let us define φadd and φmul as the accumulated
error after addition and multiplication operation as shown in (2.4) and (2.5), respectively.

φadd :=

∣∣∣∣∣ EN(a+ b)−
(
EN(a) + EN(b)

)∣∣∣∣∣ (2.4)

φmul :=

∣∣∣∣∣ EN(a× b)−
(
EN(a)× EN(b)

)∣∣∣∣∣ (2.5)

Optimal encoding mechanism should have φmul = φadd = 0. Standard work over en-
crypted data represents floating numbers by appropriate scaling. However, float scaling
representation causes φmul to equal the scale factor after each multiplication operation.
Therefore, it can not be used with arbitrary number of float numbers multiplication.

We take a different approach with improved numerical performance as supported by
our experiments in Section 2.10 and as used by Google’s Encrypted BigQuery Client2,
where each float number a is encoded asma×10−ea wherema and ea are positive integers
referred to as the mantissa and the positive part of the exponent, respectively. We omit
the encoding symbol EN for simplicity. It is enough to encrypt only the mantissa to
protect the privacy of the float number. That is, the encryption of a = ma × 10−ea

becomes JaKpk = JmaKpk× 10−ea . By using the addition and multiplication primitives of
the Paillier cryptosystem, we can perform addition and multiplication over this encoding

2https://github.com/google/encrypted-bigquery-client
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as follows:

a = ma × 10−ea , JaKpk = JmaKpk × 10−ea

b = mb × 10−eb , JbKpk = JmbKpk × 10−eb

Multiplication:
JcKpk = a⊗ JbKpk ⇔ JmcKpk = ma ⊗ JmbKpk, ec = ea + eb

Addition:
JcKpk = JaKpk ⊕ JbKpk ⇔{
JmcKpk = JmaKpk ⊕ (10−(eb−ea) ⊗ JmbKpk), ec = eb if ea ≤ eb

JmcKpk = (10−(ea−eb) ⊗ JmaKpk)⊕ JmbKpk, ec = ea if ea > eb

Negative numbers are supported by defining ranges for the encoded number over the
ring r of the Paillier cryptosystem. Positive and negative number ranges are (0, r/3]
and (r/3, 2r/3], respectively. The remaining range (2r/3, r) is used for overflow detec-
tion. The exponent must be negative to support floats. Multiplication leads to decreasing
the exponents and raising the mantissa value to a specific power. On the other hand,
summation picks the smaller exponent to be the resultant exponent. Smaller exponent
representation causes also raising the mantissa value to a specific power. Thus, a combi-
nation of addition and multiplication operations might cause an overflow in the encrypted
domain. The presented encoding accelerates reaching the overflow limits. Decryption
and re-encoding the ciphertext after a specific number of operation is a simple solution to
increase the exponent and decrease the mantissa to avoid overflow. We must also ensure
not to overflow Paillier’s message space while doing secure operations.

2.6 Polyhedra-based Localization Algorithm: Least
Squares

In this section, we introduce our first contribution of this chapter: a re-formalization of
the traditional localization algorithm in Section 2.2. We aim to ensure the privacy guar-
antees while depending only on additive homomorphic encryption rather than fully ho-
momorphic encryption or garbled circuits. We call this localization algorithm polyhedra-
based localization, and we describe it in detail in this section. We focus in this section on
the case where no false data injection attack is present and focus only on the problem of
estimating the location of the target node in a privacy-preserving manner. In Section 2.8,
we show how to augment the proposed privacy preserving protocols to achieve resilience
against false data injection attacks.

2.6.1 Polyhedra-Based Localization

The intuition behind the polyhedra-based localization algorithm is as follows. Tradi-
tional geometry-based localization methods like the least squares approach discussed
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Figure 2.5: Discretizing the circle as a polyhedron

Figure 2.6: Algebraic representation of polyhedra: (a) a hyperplane in R2, (b) a half
space in R2, and (c) a polyhedron defined by f half spaces.

in Section 2.2 treat range measurements as a constraint that the target T lies on some
circle whose radius is equal to the estimated distance and whose center is the coordi-
nate of the sensor. In essence, communicating this constraint requires communicating
both radius (di) and center (xSi , ySi), exposing sensitive information about the sensors
themselves. Rather than parameterizing the sensing range as a circle, we seek another
parameterization that can still represent the estimated range without sacrificing sensor
privacy. Towards this end, we propose using polyhedra to represent the sensed range.
As shown in Figure 2.5, we can obtain such polyhedra by sampling the circumference
of the circle representing the measured range. To represent these polyhedra, we start by
reviewing some geometric definitions illustrated in Figure 2.6:

• Hyperplane: a hyperplane in the 2D Cartesian plane represents a line. A hyper-
plane can be parameterized using a unit normal vector a and an offset b such that
all points on the hyperplane are: {z = (x, y) | aT z = b}

• Halfspace: each hyperplane splits R2 into two halfspaces: One halfspace which
lies in the direction of the normal vector and the other in the reverse direction. The
second of these halfspaces can be compactly written as:

H = {z = (x, y) | aT z ≤ b}
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Figure 2.7: Polyhedron discretization of range circle under translation and scaling (vary-
ing bi and fixed ai).

• Polyhedron: a polyhedron is the intersection of f halfspaces and can be repre-
sented using their unit normal vectors and offsets as:

P(A, b) = {z = (x, y) |Az ≤ b} where A =

a
T
1
...
aTf

 , b =

b1
...
bf



Since any polyhedron is parameterized by the matrix A and the vector b, we use the
following shorthand notation: P(A, b). An intrinsic characteristic of polyhedra is the
following:

Fact 2.6.1. For a polyhedron P(A, b), the matrix A (which is the collection of the
normal vectors of the facets) represents only the shape of the polyhedron, specify-
ing neither the location nor the scale of the polyhedron.

Figure 2.7 shows an example of this geometric fact. In Figure 2.7 we show two dif-
ferent polyhedra that have exactly the same matrix A (same normal vectors to facets)
but different b vectors. The resulting two polyhedra have different locations and sizes.
Hence, we use the notationAi and bSi to denote the polyhedron constructed by the ith ob-
server where the subscript Si in bSi is used to stress the fact that the sensitive information
of the observer is encoded inside the vector bSi and not in the matrix Ai.

Given a set of polyhedra from different observers, our objective is to fuse them in order
to calculate the target location. We note that the target lies in the intersection of all of
the m polyhedra constructed by observers. This intersection creates another polyhedron
(denoted by PT) that can be represented as the intersection of all halfspaces of all the m
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polyhedra. That is:

PT = {z = (x, y) ∈ R2 | Az ≤ bS} where A=

A1
...
Am

,bS =

bS1...
bSm


Since the target location lies inside the polyhedron PT, we can calculate the target loca-
tion by solving the following optimization problem:

(x̂T, ŷT) = arg min
(x̂T,ŷT)∈R2

∥∥AẑT − bS∥∥2

2
(2.6)

Such a solution can be calculated as:

(x̂T, ŷT) =
(
A
T
A
)−1

A
T
bS (2.7)

Remark 2.6.2. The major difference between the solution (2.7) in the polyhedra-
based algorithm and the corresponding one in the standard least squares one (2.2)
is the fact that the matrix A does not hold any sensitive information and hence can
be communicated as plaintext compared to the necessity of encrypting the matrix
AS in the standard least squares algorithm.

Hence, by reducing the encryption requirement to only encrypting the vector bS, our
polyhedra-based algorithm is able to use additive homomorphism rather than full homo-
morphism. This in turn results in a much more efficient algorithm in terms of execution
time as reflected by the experimental results shown in Section 2.10. The details of the
protocol are given in the next subsection.

2.6.2 Poly-LSQ: Polyhedra-based Least-Squares Localization

Similarly to the traditional least squares localization algorithm, we implement least
squares to our new localization reformalization using homomorphic encryption. The
algorithm consists of three main functions as follows:

2.6.2.1 Encrypt

The shape of each polyhedron is fixed if we the same circle sampling is used every
time. We can then assume without loss of generality that the matrix A is known to all
parties and is not required to be communicated. Hence, we focus on encrypting the
vectors bSi for all sensors i ∈ {1, . . . ,m}. For each facet, the ith observer encrypts the
corresponding offset vector bSi using the public key of the query node pkQ followed by
another encryption using the public key of the aggregator pkA resulting in the following
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message content:

msgi = JJbSiKpkQKpkA ∀i ∈ {1, . . . ,m} (2.8)

Note that the purpose of the second encryption is to prevent the query node from access-
ing JbSiKpkQ which it could then decrypt using its own private key skQ. Hence, this second
encryption does not need to be carried out using a homomorphic cryptosystem but rather
any public key cryptosystem. For sake of simplicity, and since the Paillier cryptosystem
is indeed a public key cryptosystem, we use the same notation for this second encryption.

2.6.2.2 Aggregate

Once all observers have sent their messages to the aggregator A, the aggregator con-
structs the matrix Ã by stacking all the matrices A together. Similarly, it uses its secret
key skA to decrypt JJbSiKpkQKpkA and constructs the vector JbSKpkQ , i.e.,

A =

A1
...
Am

 , JbSKpkQ =

JbS1KpkQ ,
...

JbSmKpkQ


In the next step, A computes the encrypted value of the target estimate (x̂T, ŷT) as:

(x̂T, ŷT) =
(
A
T
A
)−1

A
T ⊗ JbSKpkQ

Also, our new reformalization allows to solve (2.6) using the iterative gradient descent
method by starting at a fixed initial estimate ẑ(0)

T = (x̂T, ŷT) =
[
0 0

]T and then updating
the estimate iteratively as:

Jẑ(i+1)
T KpkQ = Jẑ(i)

T KpkQ ⊕ ηA
T ⊗

(
JbSKpkQ 	

(
A⊗ Jẑ(i)

T KpkQ

))
,

where η is the gradient step size and must be chosen such that 0 < η < 2/λmax{A
T
A}.

The max eignvalue of symmetric matrix is denoted by λmax{}. Thanks to the polyhedra
representation, the matrix A is plaintext and hence the matrix (A

T
A)−1A

T
computed on

plaintext before using Paillier cryptosystem to multiply it by the encrypted vector JbSKpkQ .
Also, the gradient descent formula can now be executed using the Paillier cryptosystem
as we can multiply by unencrypted matrix A.

2.6.2.3 Decrypt

Finally, the aggregator A sends the computed estimate JẑTKpkQ to the query node Q. The
query node decrypts the message using its private key skQ to retrieve the final estimate
ẑT.
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2.6.2.4 Privacy Analysis of the Poly-LSQ Protocol

We show that the proposed Poly-LSQ protocol satisfies the strong privacy notions. This
is summarized in the following theorem:

Theorem 2.6.3. Assume that all entities are honest-but-curious and under stan-
dard cryptographic assumptions (namely the Decisional Composite Residuosity
assumption), the Poly-LSQ localization protocol ensures (i) observer oblivious-
ness, (ii) aggregator obliviousness, and (iii) query node obliviousness.

Proof. Observer obliviousness: Without loss of generality, assume that observers S1

, . . . ,Sm−1 are colluding together to form an adversarial observer SADV whose objective
is computing the remaining sensor information bSm . After one iteration of the protocol,
the information view of this adversarial observer VSADV is:

VSADV =

(
A, bS1 , . . . , bSm−1 , JJbSmKpkQKpkA , pkQ, pkA

)

As shown by Fact 2.6.1, the matrix A describes only the shape of the polyhedra and
reveals nothing about the location or the size of the polyhedra. Furthermore, the sen-
sor information bS1 , . . . , bSm−1 themselves reveal nothing about the remaining sensor
bSm . Therefore, we conclude that the adversarial SADV needs to break the encryption
of the Paillier cryptosystem to retrieve bSm from JJbSmKpkQKpkA which is ensured under
the DCRA assumption. The same argument holds for multiple rounds of the protocol.

Aggregator obliviousness: We consider an aggregator A which runs gradient de-
scent and, without loss of generality, assume that the aggregator A is colluding with the
observers S1, . . .Sm−1 to form an adversarial aggregator AADV whose objective is com-
puting the remaining sensor information bSm . The information view of this adversarial
aggregator VAADV is:

VAADV =

(
A, bS1 , . . . , bSm−1 , JbSmKpkQ , ẑ

(0)
T , Jẑ(1)

T KpkQ , . . . , Jẑ
(K)
T KpkQ , pkQ, pkA, skA

)
.

Using the same argument used in the observer obliviousness, we conclude that A, bS1 ,
. . . , bSm−1 leaks nothing about bSm . Similarly, the initial estimate ẑ(0)

T is fixed and does
not depend on the sensor information and therefore reveals nothing about bSm . Since all
the remaining information Jẑ(1)

T KpkQ , . . . , Jẑ
(K)
T KpkQ are encrypted using the Paillier cryp-

tosystem which is ensured under the DCRA assumption, we conclude that the adversarial
aggregator leaks nothing about bSm . The same argument holds for multiple rounds of the
protocol.

Query Node Obliviousness: Finally, without loss of generality, assume that the query
node Q is colluding with the observers S1, . . .Sm−1 to form an adversarial query node
QADV whose objective is computing the remaining sensor information bSm . The informa-
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tion view of this adversarial query node VQADV is:

VQADV =

(
A, bS1 , . . . , bSm−1 , JJbSmKpkQKpkA , ẑ

(0)
T , ẑ

(K)
T , pkQ, pkA, skQ

)

Unlike the aggregator obliviousness, the query node has access to ẑ(K)
T which is com-

puted as a function of the sensitive information Sm and hence may be used to reverse
engineer the localization algorithm and leak some information. The remainder of this
proof addresses this issue. To that end, assuming that the protocol is executed L times,
and by collecting all the information from the L executions together, the information
view of this adversarial query node VQADV can be written as:

VQADV =

(
A, bS11 , . . . , bS1m−1

, JJbS1mKpkQKpkA , . . . ,

bSL1 , . . . , bSLm−1
, JJbSLmKpkQKpkA ,

ẑ
(0)
T , ẑ

(K)

T1 , . . . , ẑ
(K)

TL , pkQ, pkA, skQ

)

where we add the superscript 1, . . . , L in S and T in order to distinguish between the
different executions of the protocol. Now, by assuming the role of the adversary, we
would like to reverse the gradient descent equations in order to construct the sensitive
information. We start by rewriting the equations in the unencrypted form

ẑ
(K)
T = (I − ηATA)K ẑ

(0)
T +

K−1∑
j=0

η(I − ηATA)jA
T
bS︸ ︷︷ ︸

Ã

, (2.9)

where we considered only one run for simplicity. Define the matrix Ã ∈ R2×mf as
Ã =

∑K−1
j=0 η(I − ηA

T
A)jA

T
. The matrices A and Ã are known to adversary query

node QADV as the matrix A is known to her. Recall the definition of the vector bS as:

bS =

bS1...
bSm

 ∈ Rmf
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Since bSm is the only remaining sensitive information, we can partition both Ã and bS
accordingly as follows:

Ã=
[
ÃS\Sm ÃSm

]
, bS =

[
bS\Sm
bSm

]
, bS\Sm =

 bS1
...

bSm−1

∈R(m−1)f

where ÃS\Sm ∈ R2×(m−1)f and ÃSm ∈ R2×f results from the corresponding partitioning.
Therefore, we can rewrite (2.9) as

ẑ
(K)
T − (I − ηATA)K ẑ

(0)
T − ÃS\SmbS\Sm︸ ︷︷ ︸

z̃T

= ÃSmbSm

Noting that all the terms on the left hand side are known to the adversary, we can reduce
it once more as:

z̃T = ÃSmbSm (2.10)

where
z̃T = ẑ

(K)
T − (I − ηATA)K ẑ

(0)
T − ÃS\SmbS\Sm . (2.11)

Now, by combining all the information from the L experiments, we can aggregate all
these information as: z̃T1

...
z̃TL

 =

ÃSm
. . .

ÃSm


bS1m...
bSLm

 (2.12)

By defining and examining the dimension of the vectors of the (2.12), we note that:

z̄T :=

z̃T1

...
z̃TL

 ∈ R2L, ĀSm :=

ÃSm
. . .

ÃSm

 ∈ R2L×fL, b̄Sm :=

bS1m...
bSLm

 ∈ RfL

It follows from the dimension of the matrix ĀSm that the vector z̄T has 2L elements
while the vector of the unknowns bSm has fL unknowns. Therefore, for the worst case
when f is equal to 3 (the minimal number of facets that can be used to construct a
polyhedra), then we have the number of unknown variables more than the number of
equations. Therefore, there exist infinitely many solutions to the equation z̄T = ĀSm b̄Sm .
We conclude that for a number of facets f ≥ 3, the mapping between the unknown
variables bSm to the view of the adversary (encoded in the variables z̃T) has a non-trivial
kernel. That in turn implies that, given the adversary view VQADV , there exists infinitely
many indistinguishable sensitive information b̄Sm that lead to the same values observed
by the adversary. Moreover, since the result holds regardless of the number of protocol
runs, we conclude that the query node reveals nothing by observing all the information
from any arbitrary number of protocol runs.
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2.6.3 Geometric Dilution Of Precision

Geometric Dilution Of Precision (GDOP) refers to the degradation of the localization
performance (measured by the error between the actual target location and the calcu-
lated one) due to geometrical arrangement amongst the range vectors between the target
and the observers. This phenomenon is widely observed in many localization systems
including GPS-based localization depending on the geometric positioning of GPS satel-
lites (which represent the observers in our problem setup) compared to the actual target
position [64]. Our experiments shown in Section 2.10 reveal that the proposed polyhedra-
based least squares algorithm is sensitive to geometric positioning of observers.

To better illustrate the sensitivity to the geometric configuration of the observers, Fig-
ures 2.8 show two cases where the locations of the observers are fixed while the target
location is (i) inside the convex hull of the observers at point (5,5) and (ii) outside the
convex hull of the observers at point (15,5). In each case, we plot the entire intersec-
tion polyhedron, as well as, the value of the objective function over the entire space. As
shown in Figure 2.8 for the case (i), the center of the intersecting polyhedron PT lies
exactly at the target location and hence the minimum of the objective function also lies
at the target location. On the other hand, when the target location in case (ii) is out-
side the convex hull of the observers, the center of the intersecting polyhedron PT is
away from the target location and also the minimum of the objective function. We give
a more exhaustive experimental result showing the performance degradation in terms
of localization accuracy for different observer/target configurations in Section 2.10. The
objective of the algorithm discussed in the following section is to handle this degradation
in performance.

2.7 Polyhedra-based Localization Algorithm:
Alternating Projection Approach

The alternating projection algorithm is a method for finding a point in the intersection
of multiple convex sets (e.g. polyhedra). It was initially proposed by John von Neu-
mann [65] for the case when the convex sets are hyperplanes and then extended by
Dykstra for the general case of any convex set [66]. Given convex sets, the algorithm
is guaranteed to converge to a point that minimizes the distance to all convex sets. In this
section, we show how to use the alternating projection approach to reduce the degrada-
tion in performance due to the geometric dilution of precision.

2.7.1 Localization Using the Alternating Projection Algorithm

As discussed in the previous section and in Figure 2.8, we need to find the point that lies
on the boundary of the intersection of all polyhedra generated by observers. Rethink-
ing the polyhedra-based localization algorithm shown in the previous section, we can
formulate the localization problem to that of finding a point that lies on the boundary
of the intersection of all polyhedra generated by observers. Such an algorithm can be
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(a)

(b)

Figure 2.8: Different geometric configurations showing the size of the intersecting poly-
hedron and hence the geometric dilution of precision of the Poly-LSQ pro-
tocol. We plot two cases (a) a target located at (5, 5) within the convex hull
of the observers and (b) a target located at (15, 5) outside the convex hull of
the observers.

applied as follows. Starting from any arbitrary initial estimate, e.g. ẑ(0)
T =

[
0 0

]T , we
start by projecting this estimate onto the boundary of the first polyhedron P1(A1, bS1)
generated by the first observer followed by a projection onto the boundary of the second
polyhedron P2(A2, bS2) and so on until we project onto all m polyhedra. By repeating
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the previous sequence of projections until we reach the maximum number of iterations,
the alternating projection algorithm guarantees that the estimate converges to the target
location. An example of the sequence of points generated by this algorithm is shown in
Figure 2.9 for the two cases when (i) the target is inside the convex hull of the observers
and (ii) the target is outside the convex hull of the observers.

(a)

(b)

Figure 2.9: Several iterations of the alternating projection algorithm for different ge-
ometric configurations—a target at (5,5) inside the convex hull of the ob-
servers in subfigure (a) and at (15,5) outside the convex hull of the observers
in subfigure (b)—showing the resilience of the polyhedra-based alternating
projection to the geometric dilution of precision.
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2.7.2 Projection onto Boundary of a Polyhedron

To complete the description of this algorithm, we need to show how the projection onto
the boundary of a polyhedron can be computed. In this subsection, we describe how such
a projection can be computed in plaintext. In the next subsection, we discuss how such
an algorithm can be implemented in a privacy-preserving manner using additive homo-
morphic encryption. We aim to orthogonally project on the polyhedron by projecting
on the nearest facet. Unfortunately, the description of the polyhedra (given by A and b)
involves hyperplanes not the facets itself. Hence (as shown in Figure 2.10) picking the
nearest hyperplane, with the shortest distance (R7 in Figure 2.10), does not correspond
to picking the nearest facet. To sidestep this issue, we first search for the furthest hyper-
plane, with the longest distance (R4 in Figure 2.10), and then pick the hyperplane on the
other side of the polyhedra. Picking the hyperplane on the other side is an easy task as
the polyhedra is symmetric with ordered hyperplanes 1, .., f .

More formally, the proposed heuristic works as follows. Given a point ẑ and a poly-
hedron P(A, b), we start by calculating the orthogonal distance between the point ẑ and
all the facets. This can be calculated as follows:

rj =
|aTj ẑ − bj|
‖aj‖2

aj = A(j)T , bj = b(j), j ∈ {1, . . . , f}, (2.13)

where A(j) is the jth row of matrix A. The next step is to compare the values of all
the distances rj to select the furthest hyperplane which has the longest distance to ẑ.
Then, we pick the hyperplane on the other side of the polyhedra which has the minimum
distance and its index is denoted by j∗. We compute the projection of ẑ =

(
ẑ(1), ẑ(2)

)
onto the j∗ facet as in (2.14). If the facet is horizontal (aj∗(1) = 0), then the projection
point ẑΠ takes ẑ(1) as x-value and the y-value comes from the facet equation (y =
bj∗/aj∗(2)). If the facet is vertical (aj∗(2) = 0), then the projection point ẑΠ takes
ẑ(2) as y-value and the x-value comes from the facet equation (x = bj∗/aj∗(1)). The
otherwise case comes from shifting the facet to the origin, preforming the projection, and
then shift back to the original position.

ẑΠ =



[
ẑ(1)
bj∗

aj∗ (2)

]
if aj∗(1) = 0

[
bj∗

aj∗ (1)

ẑ(2)

]
if aj∗(2) = 0

1
v
j∗v

T
j∗
vTj∗vj

[
ẑ(1)

ẑ(2)

]
+

([
1 0

0 1

]
− 1

v
j∗v

T
j∗
vTj∗vj∗

)[
0
bj∗

aj∗ (2)

]
otherwise,

(2.14)
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R4

R7

Figure 2.10: Projection of z on the nearest and furthest hyper-planes.

where
vj∗ :=

[
1

aj∗ (1)
−1

aj∗ (2)

]
. (2.15)

2.7.3 Poly-AP: Polyhedra-Based Alternating Projection
Protocol

The Encrypt and Decrypt algorithms of POLY-AP are similar to the POLY-LSQ
protocol. Hence, we focus here on the Poly-AP.Aggregate algorithm as follows.
The protocol starts with the query node Q generating a uniformly random initial estimate
ẑ

(0)
T , encrypting this estimate using its public key, and then sending Jẑ(0)

T KpkQ back to the
aggregator A. It is crucial for the privacy of the POLY-AP protocol that the initial esti-
mate is not known to the aggregator A. Upon receiving all messages from the observers
and the initial state from the query node, the aggregator performs a projection onto the
boundary of the polyhedron of the first observer followed by the second observer and so
forth until reaching the maximum number of iterations.

The basic component of the alternating projection algorithm is to compute the distance
between JẑKpkQ and all the facets of a given polyhedron P(A, JbKpkQ), and then to perform
a comparison between these distances. Thanks to the polyhedron-based representation
chosen in the previous section, we can use additive homomorphism to compute the en-
crypted version of the distances as follows. First note that the A matrix is revealed to all
parties in plaintext. Hence, the observer computes the factor 1

‖aj‖2
in plain text followed

by:

JrjKpkQ =
1

‖aj‖2

⊗
(
aTj ⊗ JẑKpkQ 	 JbjKpkQ

)
(2.16)

30



2.7 Polyhedra-based Localization Algorithm: Alternating Projection Approach

To compute the absolute value JrjKpkQ we need to check the sign of JrjKpkQ (by comparing
the value of JrjKpkQ to zero) and multiplying by −1 if needed. Unfortunately, additive
homomorphic encryption does not preserve order, so such comparisons cannot be di-
rectly computed. Therefore we rely on the the secure comparison protocol (introduced
in Section 2.5.2) to perform comparison between JrjKpkQ and J0KpkQ as follows.

Absolute Value Computation Protocol: The intuition of this protocol is to use the
secure comparison protocol to compute the absolute value of JrjKpkQ . Based on a ran-
dom coin flip, the aggregator issues a call to the query node using either a SECCOMPARE

(JrjKpkQ , J0KpkQ) or a SECCOMPARE(J0KpkQ , JrjKpkQ) followed by sending the following
encrypted values JJrjKpkQKpkA and JJ0KpkQKpkA using the same order used in the call of
SECCOMPARE. Once the query node computes the index of the argument with the maxi-
mum value, instead of returning this index, it assigns the variablesmaxArg andminArg
to JJrjKpkQKpkA and JJ0KpkQKpkA according to its knowledge of which argument has the
maximum value. Finally, the query node returns JJ|rj|KpkQKpkA = maxArg	minArg to
the aggregator. Once the aggregator retrieves the absolute value from the query node, it
decrypts it using its own private key and the rest of the alternating projection algorithm
follows accordingly. The correctness of the absolute value computation protocol is triv-
ial and follows from the fact that one of the arguments is zero and hence does not affect
the value of the addition.

The next step is to compare the values of J|rj|KpkQ for all the facets j ∈ {1, . . . , f}.
Similarly, this can be done by relying on the secure comparison protocol. Once the cor-
rect facet j∗ is known, the final step is to compute the projection itself. Again thanks
to the polyhedron representation and the fact that the A matrix does not need to be
encrypted, the projection JẑΠKpkQ can be performed applying additive homomorphism
to (2.14). The privacy of the proposed algorithm can be summarized as follows.

Theorem 2.7.1. Assume that all entities are honest-but-curious and under stan-
dard cryptographic assumptions (namely the Decisional Composite Residuosity
(DCRA) assumption), the Poly-AP localization algorithm ensures (i) observer
obliviousness, (ii) non-colluding aggregator obliviousness, and (iii) query node
obliviousness.

Proof. Observer obliviousness: It follows the same argument used in the observer
obliviousness of the POLY-LSQ shown in Theorem 2.6.3.

Non-colluding Aggregator obliviousness: Assume that the aggregator A is an adver-
sarial node whose objective is to compute the sensitive sensor information bS1 , . . . , bSm .
Recall that, due to the absolute value computation protocol, the aggregator does not know
the sign of the intermediate results rj for each facet at each projection step. He also does
not know the initial estimate ẑ(0)

T or the final estimate ẑ(K)
T , nor is he allowed to collude

with observers (due to the notion of non-colluding aggregator obliviousness). Hence his
plaintext information view is:

VAADV = (A, j
∗,(0)
1 , . . . , j∗,(0)

m , . . . j
∗,(K)
1 , . . . , j∗,(K)

m , pkQ, pkA, skA).
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where j∗,(k)
s is the index of facet of the sth polyhedron on which the projection is going to

take place within the ith iteration of the alternating projection algorithm. While again the
matrix A reveals no information about the sensitive sensor information, the sequence of
j
∗,(k)
s indeed depends on the sensitive information. In what follows, we argue that there

exist infinitely many assignments for the sensor’s sensitive information which results
in the same sequence of j∗,(k)

s . First, we note that the distance between a point and a
hyperplane is translational invariant. That is, given a point ẑ and a hyperplane h, which
is represented by aT z = b, and any arbitrary vector ∆z = (∆x,∆y), we can translate
both ẑ as ẑ′ = ẑ + ∆z and h as aT (z + ∆z) = b + aT∆z = b′ which is denoted by h′.
Let’s define r as the distance between h and z, and r′ as the distance between h′ and z′.
The mentioned translation preserves the following property:

r′ =
|aT ẑ′ − b′|
‖a‖2

=
|aT (ẑ + ∆z)− (b+ aT∆z)|

‖a‖2

=
|aT ẑ − b|
‖a‖2

= r

That is, by translating both the point and the polyhedron, the distance between both of
them remains constant. Since the surface of the polyhedron is defined as a set of halfs-
paces with corresponding hyperplanes, we conclude that given point ẑ and a polyhedron
P , the projection operation is also translation invariant. That is the index of the facet
for which the projection will take place does not change by performing a translation with
any arbitrary vector ∆z = (∆x,∆y). Therefore, given a set of polyhedra and the se-
quence of indices j∗,(k)

s , and due to the fact that the aggregator does not know the initial
estimate ẑ(0)

T or the final estimate ẑ(K)
T , we conclude there exist infinitely many indis-

tinguishable sensitive information (constructed by considering different values for the
translation vector ∆z) that lead to the same exact aggregator knowledge and accordingly
this knowledge cannot be used to determine the sensitive information uniquely.

Query Node obliviousness: Assume that the query node Q is colluding with the
observers S1, . . .Sm−1 to form an adversarial query node QADV whose objective is com-
puting the remaining sensor information bSm . The only extra information comparing
to the query node obliviousness proof in Theorem 2.6.3 is the information from the
SECURECOMP protocol that the query node knows additionally the index of the argu-
ment with the maximum value. However, since the observers permutes the distance
to the facets before issuing a call to SECURECOMP we conclude that the query node’s
knowledge about the index of the maximum value is useless.
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2.7.4 SMC-Poly-AP: Alternating Projection Algorithm Based
on Secure Multiparty Communication

Finally, in order to remove the dependency on the aggregator, the alternating projection
algorithm described in the previous section can be easily modified to be computed in a
secure multiparty communication fashion. Starting from observer S1, an arbitrary initial
estimate e.g. Jẑ(0)

T KpkQ =
[
J0KpkQ J0KpkQ

]T
is chosen, projected onto the boundary of the

polyhedron P1(A, JbS1KpkQ), and then the result is sent to the second observer. The sec-
ond observer projects the communicated estimate onto the boundary of the polyhedron
P2(A, JbS2KpkQ) and so on until we project onto allm polyhedra. The last node in the ring
of the communication, Sm, sends the final estimate to the query node which decrypts it
using its private key.

Theorem 2.7.2. Assume that both the aggregator A and the query node Q do not
collude, then under standard cryptographic assumptions (namely the Decisional
Composite Residuosity (DCRA) assumption), the SMC-Poly-AP localization algo-
rithm ensures (i) observer obliviousness and (ii) non-colluding query node oblivi-
ousness.

The proof is omitted because it is similar to the proof of Theorem 2.7.1. Similarly to
the previous algorithm, the observer obliviousness follows from the data being encrypted
by the query node public key pkQ. The non-colluding query node obliviousness follows
from the fact that revealing the A matrix as well as performing the secure comparison
operation with the query node does not lead to any privacy leakage. Note that if the
query node colludes with m− 1 observers, then it can retrieve the intermediate projected
results on the m observer. Recall that these intermediate results are points that lie on
the boundary of the polyhedra (since they result from the projection onto the polyhedron
boundary algorithm). By obtaining many of these points, an adversarial query node can
construct the polyhedron of the last observer. Hence, in Theorem 2.7.2 we rely on the
weak notion of a Non-colluding Query Node Obliviousness which is defined as follows:
A protocol satisfies non-colluding query node obliviousness if after multiple runs of the
protocol the query node Q learns nothing about the sensitive information of the observers
other than what is contained in the immutable privacy leak.

2.8 Resilient Privacy-Aware Localization

In the previous sections, we focused mainly on the first aspect of the problem, namely
privacy-preserving localization. In this section, we demonstrate how the aggregator-
based previously proposed algorithms can be augmented to achieve resilience as well.
We base our resilience scheme on prior work on residue checking over noisy measure-
ments [67], that was developed for the general case of secure estimation from hetero-
geneous sensors under false data injection attacks. In our scheme, the location error
(or residue) is computed using measurements from subsets of observers and compared
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against the maximum allowable residue. The subset of observers with the minimum
residue is selected. A sufficient and necessary condition for this residue checking scheme
to work is that the maximum number of malicious observers is bm−3

2
c [67], where m

is the number of all observers. While performing residue checking over subsets of ob-
servers is a combinatorial process, it was shown that using combinatorial search methods
like satisfiability (SAT) solvers in conjunction with estimation methods leads to signifi-
cant reduction in search time [67]. Indeed, such residue checking scheme does not work
unless the localization error is bounded. Thanks to the polyhedra-based-localization al-
gorithms discussed previously, and unlike differential privacy and other data corruption
based privacy techniques, this condition follows automatically from the construction of
the protocol.

To augment the polyhedra based localization algorithms with the residue checking
scheme, the aggregator follows the same steps discussed before to compute the location
estimate JẑTKpkQ from all different subsets of m − bm−3

2
c observers. The next step is to

compute the associated residual JξKpkQ = ‖AJẑTKpkQ − JbSKpkQ‖ where ‖.‖ denotes the
sum of absolute values. Thanks to polyhedra-based representation, this residue can be
computed using additive homographic encryption along with the absolute value protocol
discussed before. Once all the residuals from all subsets of observers are calculated, the
next step is to choose the minimum residue. This can be done by invoking the secure
comparison protocol SECCOMPARE(Jξ1KpkQ , . . . , JξhKpkQ)
where h is the number of observer subsets. Finally, the location estimate JẑTKpkQ cor-
responding to the subset of observers that produce the smallest residue is then sent to
the query node for decryption. We call these algorithms resilient Poly-LSQ and resilient
Poly-AP, respectively.

It is essential to note that by the end of the protocol, the query node learns only the
location estimates produced by only one subset of observers (not all location estimates
from all subsets of observers). Then, following the same algebraic construction shown in
the proof of Theorem 2.6.3, we conclude that the resilience scheme described above does
not leak any additional information. Based on this, we formulate the following theorem.

Theorem 2.8.1. Assume that the number of malicious observers does not exceed
bm−3

2
c and under standard cryptographic assumptions (namely the Decisional

Composite Residuosity (DCRA) assumption), the resilient Poly-LSQ and resilient
Poly-AP localization protocol produce resilient location estimates of the target
while satisfying the same privacy guarantees in Theorem 2.6.3 and Theorem 2.7.1,
respectively.

The proof is based on the work [67].

2.9 Communication Overheads

The localization methods described in this chapter require some amount of communi-
cation between all parties involved which are the observers, the aggregator, and the
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Table 2.2: Communication cost analysis with respect to the number of messages for pri-
vate localization protocols.

Protocol Number of Messages

Poly-LSQ m+ 1
Poly-AP mI[G + E] +m+ 1
SMC-Poly-AP mI[G + E + 1] + 1
Level-II Pr [1] m2 +m− 1
Level-III Pr [1] 2m2 + 2m− 1

Table 2.3: Communication cost analysis with respect to the message size for private lo-
calization protocols.

Protocol Message size (bits)

Poly-LSQ [2PS + CS]m+ 2C
Poly-AP [2P + C]mS + 2C +mIC(G + ES)
SMC-Poly-AP 2mIC + 2C +mIC(G + ES)
Level-II Pr [1] [5m2 + 4m− 8]P
Level-III Pr [1] 3mC + [3m2 −m− 1]P

Table 2.4: Detailed communication cost analysis for Poly-LSQ (left) Poly-AP (right)
protocol with respect to number of messages between different entities.

Destination

Source S A Q

S 0 m 0
A 0 - 1
Q 0 0 -

Destination

Source S A Q

S 0 m 0
A 0 - mI[G + E]/2 + 1
Q 0 mI[G + E]/2 -

Table 2.5: Detailed communication cost analysis for SMC-Poly-AP protocol with re-
spect to number of messages between different entities.

Destination

Source S Q

S mI mI[G + E]/2 + 1
Q mI[G + E]/2 −

query nodes. This communication comes at a cost, as the observers may be resource-
constrained devices and the communication links may be with low bandwidth. Thus, an
efficient localization algorithm must be one that reduces communication overheads. We
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Table 2.6: Detailed communication cost analysis for Level-II Pr (left) and Level-III Pr
(right) protocols [1] with respect to number of messages between different
entities.

Destination

Source S Q

S m2 − 1 m
Q 0 −

Destination

Source S Q

S 2m2 −m− 1 2m
Q m −

denote the number of bits required to represent Plaintext and PHE Ciphtertext by P and
C, respectively. Additionally, we denote the number of samples used to discretize range
estimate circles by S, algorithm iterations by I , the number of messages used in secure
comparison by E, and the messages in arg max over an encrypted vector by G. The
cost associated with communication must necessarily incorporate both the length (bits)
of each message, the total number of messages, and the source and destination of each
message as some parties such as the processing server may have more computation and
communication resources than other.

We note that the presented communication overheads can be reduced, if we do not
communicate the A matrix and assume it is fixed in the algorithms. In order to provide
a baseline against which to compare the communication overheads of the methods pre-
sented in this chapter, we compare against the two algorithms proposed by Shu et al. for
hiding the location of observers or anchors [1]. These algorithms—called Level-II and
Level-III by the authors—demonstrate an improvement with respect to prior efforts based
on the concept of oblivious transfers (OT) [68] and homomorphic encryption. Table 2.2
summarizes the required number of messages in our proposed protocols in comparison
to the proposed protocols in [1]. This comparison assumes that localization occurs in R2.
Table 2.3 shows the message size of the transmitted messages in Table 2.2.

Every observer S in both the Poly-LSQ and Poly-AP protocols sends one message to
the aggregator A. The aggregator A then prepares and sends the encrypted target loca-
tion to the Query node Q. Here, the Poly-AP protocol requires G+E messages for each
iteration to find the minimum distance at each observer. Thus, the Poly-LSQ and Poly-
AP protocols require m + 1 and mI[G + E] + m + 1 messages, respectively. The size
of the message sent by an observer to the Aggregator is calculated as 2PS + CS bits,
which is largely dominated by the size of plaintext matrix A and encrypted matrix B.
Furthermore, the final encrypted location sent to the querier is 2C bits, containing the
encrypted 2D localization result. As a comparison, SMC-Poly-AP requires additional
communication cost in order to send the projected point from one observer to the next.
On the other hand, SMC-Poly-AP does not need to send the A or B matrices to the ag-
gregator. As shown in Table 2.2, the Poly-LSQ and Poly-AP protocols perform the best
in terms of message counts, with linear dependencies on the number of observersm. The
SMC-Poly-AP protocol is only marginally worse than Poly-AP in this regard, while both
algorithms from [1] have quadratic dependencies on m. In analyzing the cost of each
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transmission in bits in Table 2.3, we see that again those in [1] have quadratic dependen-
cies on m while Poly-LSQ, Poly-AP, and SMC-Poly-AP have linear dependencies with
slight differences. However, Level-II Pr has an advantage in terms of the message size,
as it avoids encrypted data.

In addition to the number and size of each message, it is important to consider the
source and destination of each message, as the different parties involved usually have
different computation and communication resources. The messages sent between each
party in Poly-LSQ, Poly-AP, and SMC-Poly-AP are summarized in Tables 2.4 and 2.5.
The results show that there is very little communication required from the observers in
either protocol—no more in fact than the minimum m observer messages. The messages
sent between each party in Level-II and Level-III protocols are summarized in Table 2.6,
where there is no aggregator A. In comparison, the number of messages sent by each
observer in these two protocols is more than twice that of either Poly-LSQ or Poly-AP,
and quadratic in the worst case (Level-II Pr and Level-III Pr). This is significant, as
localization systems in practice have many observers in order to reduce the effects of
measurement noise, and oftentimes these observers are battery powered devices with
constrained communication and computation resources.

2.10 Evaluation

In this section, we evaluate the PrOLoc localization protocols described in the previous
sections. We begin with a case study for localization using FHE, followed by a numerical
analysis of the localization performance for each protocol. Then, we present case studies
including an end-to-end experiment using real custom range measurement hardware.

2.10.1 Localization using Fully Homomorphic Encryption

In our first case study, we demonstrate the high cost of performing the traditional least
squares in Section 2.2 using FHE (specifically the leveled FHE library HELib3) and the
real need for our localization reformalization. We basically run the gradient descent in
(2.3) over encrypted numbers. Leveled FHE schemes create an a priori arithmetic circuit
of depth L. Increasing the number of gradient descent iterations requires a deeper circuit
which increases the total execution time with the benefit of decreasing localization error.
Additionally, increasing the number of iterations over scaled values requires wider bit
lengths, causing HElib to fail in some instances. Thus, we provide here measurements of
the execution time for binary multiplication and addition in order to estimate a reasonable
bound on HElib’s total execution time.

We used the Karatsuba algorithm to calculate the number of binary multiplication and
addition operations in each n-digit multiplication [69]. The execution time of primitive
binary encryption, decryption, multiplication, and addition is measured on a Macbook
Pro with an Intel Core i7-4870HQ CPU @2.5GHz using a range of circuit depth levels.

3https://github.com/shaih/HElib
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Table 2.7: Analysis of secure least squares localization using Leveled FHE.

iteration L Mul add Enc. Dec. size Exec. Loc.
[sec] [sec] [sec] [sec] [bytes] Time[min] error [m]

1 27 0.2480 0.0025 0.1440 0.0854 9 4.10 3.172
2 36 0.5059 0.0052 0.3656 0.1593 14 16.745 2.115
3 45 0.7065 0.0085 0.4965 0.2111 21 44.278 1.410
4 54 0.8771 0.0113 0.5447 0.3082 27 81.677 0.940
5 63 1.1742 0.0232 0.7826 0.3845 33 195.52 0.626
6 72 2.2802 0.0233 1.6437 1.0399 40 480.06 0.4178
7 81 2.7026 0.0321 1.8588 1.0549 46 703.12 0.2785
8 90 2.7550 0.0367 2.0965 1.0945 52 865.10 0.0018
9 99 3.2930 0.0514 2.2922 1.1994 59 1260.33 0.0012
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Figure 2.11: Localization error of Poly-LSQ protocol for a moving target with ideal
range measurements.

Table 2.7 summarizes the results for each gradient descent iteration. The reported size
is the number of bytes for each message. The total execution time is calculated based
on the number of required multiplications in the secure least squares. We set HElib’s
security level to 80, resulting in a 1024-bit asymmetric key, and used a circuit depth of
27 for all iterations. As shown in Table 2.7, a single iteration of the FHE protocol results
in 3.17m error and an execution time of 4.1 minutes. After 7 iterations, the error has
reduced to a modest 27 cm error, but this comes at the cost of 703 minutes (=11.7 hours)
of computation time. From this analysis, we see that the traditional localization using
FHE is not practical option.
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Figure 2.12: Localization error of Poly-AP protocol for a moving target with ideal range
measurements.

Figure 2.13: Localization error of unsecure traditional least squares algorithm for a mov-
ing target with ideal range measurements.

2.10.2 Numerical Analysis

Next, we analyze our proposed protocols. We begin with a simulated 400m2 room with
observers at four points (xSi , ySi) ∈ {(0, 0), (0, 10), (10, 0), (10, 10)}. At any point in
time, the target may exist at any point (xT, yT), −5 ≤ xT ≤ 15, −5 ≤ yT ≤ 15. For each
target location, we calculate a position estimate using the previously described secured
and unsecured algorithms. While Poly-LSQ produces low estimation error within the
convex hull of the observers, Figure 2.11 shows it suffers from high localization errors
outside convex hull of the observers. The Poly-AP and SMC-Poly-AP protocols, on
the other hand, produce very low error estimation errors within and outside the convex
hull of the observers, as illustrated in Figure 2.12. Note that we have omitted results
from the SMC-Poly-AP protocol, as it mirrors those from Poly-AP due to the underlying
alternating projection algorithms. The unsecured localization in Figure 2.13 which is
described in Section 2.2 serves as a baseline against which to compare the secured Poly-
LSQ, Poly-AP, and SMC-Poly-AP protocols.
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Additionally, we performed a series of tests in order to investigate the effect of the
number of circle samples and iterations on the localization accuracy of the Poly-AP
and Poly-LSQ protocols. The average absolute localization error is calculated over all
points on a grid using a varying number of circle samples to construct the polyhedra.
Figure 2.14a shows the effect of increasing the number of samples for both the Poly-AP
and Poly-LSQ protocols. While Poly-LSQ is not affected by increased polyhedra edges
beyond 4, Poly-AP benefits greatly from an increased number of samples on the range
circle, converging after 10-20 samples. We performed a similar analysis in order to show
the effect that the number of iterations has on the proposed protocols. Figure 2.14b shows
that increasing the number of iterations has a greater effect on the Poly-AP protocol. The
Poly-LSQ protocol shows a constant localization error across multiple iterations, while
again the Poly-AP alternating projection protocol shows a convergence with increased
number of iterations, greatly outperforming the Poly-LSQ algorithm. Here, Poly-AP has
converged after around 5 iterations.

To investigate the effect that range estimation noise has on each algorithm, we add
normally distributed random noise. The results of these tests are shown in Figure 2.15,
where the average localization error is plotted against the standard deviation of the esti-
mation noise. Here we can see that the Poly-AP and unsecure protocols show comparable
results around a standard deviation of 4m. For very high estimation noise, Poly-LSQ out-
performs both Poly-AP and unsecure protocols, as long as the target remains within the
convex hull formed by the observers. Additionally, Poly-AP outperforms unsecure in
terms of noise rejection with superior localization accuracy over Poly-LSQ.
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Figure 2.14: Performance analyses for polyhedron-based localization

2.10.3 End-to-end Analysis on Real Hardware

In this section, we report the experimental results for a end-to-end analysis of the pro-
posed protocols. We implemented the Paillier cryptosystem and the Java BigInteger li-
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Figure 2.15: The effect of range estimation noise on localization error.

Figure 2.16: Ranging test bed configuration with four anchor nodes and one target node.

brary with full floating point support as described in Section 2.5.3. Both the Aggregator
and Querier are implemented on a Macbook Pro laptop with Intel(R) Core i7-4870HQ
CPUs @ 2.5GHz. We validated our proposed secure localization method using custom
ranging hardware in an 8× 10× 2.4 m2 room with four anchor (observer) nodes capable
of symmetric double-sided time of flight range measurements and one mobile (target)
node of unknown location as illustrated in Figure 2.16. The target node was constrained
to motion on a fixed z plane, allowing the problem to be reduced to localization in R2.
Although the intent of this small-scale experiment is to evaluate the computation and
localization performance of our protocols, we note that security concerns can arise even
indoors, where malicious users may attempt to tamper with, destroy, or steal sensing
hardware used for localization. The details of the ranging hardware for both anchor and
target are described next.

41



2 Resilient Localization with Private Observers Using Partially Homomorphic Encryption

Figure 2.17: (a) Custom ranging anchor circuit board, (b) ceiling-mounted anchor node,
and (c) mobile ranging target.
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Figure 2.18: Localization error of Poly-LSQ and Poly-AP protocols. The dotted line
separates the points inside and outside the observers’ convex hull.

Anchor Ranging Hardware: The anchor nodes used in the following experiments
consist of custom-built circuit boards equipped with ARM Cortex M4 processors at 196
MHz communicating to Decawave DW1000 ultra-wide band radios as shown in Figure
2.17. Each anchor node listens for incoming range messages from a target node and,
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Figure 2.19: Cumulative probability of the localization error.
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(b) Number of iteration versus the execution time where the num-
ber of samples is fixed at 80 samples.

Figure 2.20: Execution time analysis.

upon reception, begins a symmetric double-sided ranging sequence. After completing a
range sequence, each anchor communicates the range estimate to an Android Nexus 5
smartphone to perform the secure communication to the Aggregator localization server.
In effect, the Nexus 5 and custom ranging hardware serve together as a single cohesive
observer node.

Mobile Target Ranging Hardware: The mobile target consists of battery-powered
ARM Cortex M0+ processors with the same DW1000 ultra-wide band radios which are
the same in the anchor. This allows for compatibility in the double-sided ranging tech-
nique used. It is important to note that the transmit power of the anchors is not known by
external parties a priori, so that the target nodes or any other eavesdropping node cannot
determine precisely where the anchor nodes are located. Furthermore, the anchor nodes
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Figure 2.21: Number of range circle samples versus Aggregator execution time where
the number of iterations is fixed at 5.

are capable of changing their transmit power dynamically without detrimental effects on
ranging estimates, further obfuscating their location.

2.10.3.1 Localization error

We evaluated 40 test points in the 8×10 m room using each of the described localization
protocols. The number of samples on each range circle is 80 samples to construct the
polyhedra used in Poly-LSQ and Poly-AP, and the number of iterations for the Poly-
AP protocol is fixed at 4. Figure 2.18 shows the localization errors at each test point,
where point IDs {1, . . . , 14} are within the polytope formed by the edges connecting
each anchor, and point IDs {15, . . . , 40} are outside. The localization error is calculated
as the mean squared error between the location estimate and the ground truth location.
As seen in Figure 2.18, The Poly-LSQ protocol shows the highest error, with excessive
errors when the target is outside the polytope of the anchors. The Poly-AP protocol
provides good localization results compared to the traditional unsecure protocol. Table
2.8 summarizes the average and standard deviation of the localization errors for the three
protocols, and Figure 2.19 shows the cumulative distribution functions for the location
errors. On average, the Poly-LSQ protocol achieves around 1.13m mean error while
both Poly-AP (and equivalently SMC-Poly-AP) and unsecure achieve an average error of
around 23cm. Most importantly, the Poly-AP algorithm closely matches the performance
of the traditional unsecure protocol. This lends credence to partial homomorphism as a
viable method for privatizing observer data when performing high accuracy localization.
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Figure 2.22: Aggregator execution time (semi-log scale) vs. number of anchors.

Table 2.8: Localization error comparison (m).

mean standard deviation

unsecure 0.2341 0.18738
Poly-AP 0.2381 0.18634

Poly-LSQ 1.1309 0.80183

2.10.3.2 Execution Time

Total execution time is determined by several different factors. At the observer side,
execution is dominated by preparing the A and encrypted b matrices. The execution
time on a Nexus 5 smartphone is shown in Figure 2.20a, as a function of number of
circle samples. For 80 samples, as used in the above experiments, execution time on
a Nexus 5 is below 250ms. The number of alternating projection iterations also has a
great effect on the overall execution time at the aggregator side. Figure 2.20b shows
that, while Poly-LSQ has a constant execution time of around 100ms on the aggregator,
Poly-AP protocol has a linear dependency on number of iterations, with 4 iterations
requiring around 1200ms on the aggregator. Finally, an increased number of samples of
the ranging circle also causes an increased execution time on the Aggregator, with Poly-
LSQ protocol showing an execution time of under 100ms for 80 samples while Poly-AP
protocol shows an execution time of around 1800ms for 80 samples. While the Poly-AP
algorithm requires considerably more computation than both Poly-LSQ and unsecure
protocols, it can still be executed in real time on commodity hardware. Additionally, for
the settings used in these experiments—80 polyhedra facets and 4 alternating projection
iterations—the Poly-AP algorithm completes each localization round in just 1.25 seconds
on the aggregator—the bottleneck of the system.
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We compare the execution time of the proposed protocols against two secure function
evaluation schemes, namely (1) Fully Homomorphic Encryption [41] and (2) Garbled
Circuits (implemented using the TASTY tool [43]). As shown in Figure 2.22, the pro-
posed Poly-LSQ and Poly-AP outperform the other algorithms by at least an order of
magnitude. Moreover, and as expected, the FHE implementation is far away from being
practical as it requires more than 4.3 hours to calculate the estimate of the target when
measurements are available from only 3 observers. The Garbled Circuits scales better
compared to FHE, however even for a small number of observers it requires multiple
minutes of computation (on both observers and aggregator) to compute the target posi-
tion. On the other hand, the execution time of the proposed Poly-LSQ is in the range
of hundreds of milliseconds. These results show how our proposed protocols are better
suited to real-time implementations of privacy-aware localization systems.

2.11 Conclusions
To conclude this chapter, we have presented PrOLoc, a set of protocols and algorithms
designed to perform accurate localization in a manner that preserves the privacy of the
observers whose measurements are used to calculate the location estimate considering
a set of those observers can be maliciously injecting false data. We have built PrOLoc
around the Pallier additive homomorphic cryptosystem, redesigning traditional localiza-
tion algorithms to benefit from the privacy guarantees of partial homomorphism. Our
experiments over both simulated and real, custom range measurement hardware demon-
strate that PrOLoc can accurately and efficiently provide localization estimates compa-
rable to traditional, unsecured methods. Specifically, we have provided results indicating
that PrOLoc can yield location estimates that are comparable to state-of-art unsecured
methods while operating in real-time. Also, our experiments on real hardware demon-
strate that PrOLoc yields accurate location estimate at least 500x faster than state-of-art
secure function evaluation techniques. Finally, we have provided strong theoretical pri-
vacy and resilience guarantees for the proposed protocols.
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3 Distributed Simultaneous
Localization and Time
Synchronization

It is important to coordinate timing among networked devices and to provide contextual
information, such as location, with a dramatic increase in the number of wireless devices.
Maintaining a shared notion of time is critical to the performance of many cyber-physical
systems (CPS) such as wireless sensor networks, Big Science [70], swarm robotics [71],
high frequency trading [72], telesurgery [73], and global-scale databases [74]. In addi-
tion, position estimation is necessary for different fields such as military [2], indoor and
outdoor localization [3].

Seeking a solution for time synchronization provides information about the localiza-
tion since time and distance are causally associated with each other. In many cases, ac-
curate time synchronization among nodes is necessary for their precise localization, as is
the case in techniques based on time-of-arrival (TOA) [75] and time-difference-of-arrival
(TDOA) [76] measurements. Moreover, a combined solution to time synchronization and
localization problems in sensor networks could be obtained with less computational ef-
fort by tackling the two problems in a unified approach, instead of considering them as
two separate problems. In order to perform simultaneous time synchronization and local-
ization using centralized algorithms, all nodes must send their measurements to a fusion
center that computes the estimates of position and clock parameters for every node. The
information is then sent back to every node and the process is repeated. This strategy
requires a large communication overhead, might not be energy efficient, and has a poten-
tially critical failure point at the fusion center. This motivates proposing the schemes in
this chapter, where clock models and device locations are solved concurrently in a dis-
tributed fashion. This joint optimization provides a principled way of extracting range
estimates from time synchronization messages, as well as using range measurements to
refine the time synchronization process based on precise models that relate timing varia-
tions, channel propagation delays, and both motion and clock dynamics.

This chapter presents D-SLATS, a framework that is comprised of three different, in-
dependent, and distributed algorithms to achieve network time synchronization and accu-
rate position estimates using time stamped message exchanges, filters and optimization
techniques. DKAL is the first proposed algorithm which is based mainly on the dis-
tributed Extended Kalman Filter (EKF) with diffusion between wireless nodes. DKAL
stands for distributed Kalman filter for localization. DKAL improves some aspects of
the algorithm in [77] by decreasing some of the computational efforts. The second al-
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gorithm, DKALarge is based on the results from [78] and deals with large scale systems
where DKAL might not be the best option. DKALarge stands for distributed Kalman
filter for localization of large scale systems. It is important to note that the modifications
proposed in our work to the algorithms presented in [78] and [77], can be used in the
estimation in general, not only localization. Finally, we present DOPT, an optimization
technique to synchronize and localize the wireless nodes in a distributed fashion. DOPT
stands for distributed optimization algorithm for localization. Since D-SLATS operates
in a distributed fashion, it does not require a fusion center and the results from the three
algorithms can work perfectly with different network topologies. The three algorithms
proposed are evaluated on custom ultra-wideband wireless hardware for networks with
different topologies containing both static and mobile nodes. This chapter leverages
ultra-wideband RF communication to make precise timing measurements. While UWB
has improved non-line-of-sight performance in comparison to signal strength methods
like those based on Received Signal Strength Indication (RSSI), it should be noted that
UWB timing accuracy can deteriorate with increased environmental clutter and signal
attenuation, as described in [79]. We compare the proposed algorithms with a conven-
tional centralized EKF, and we present the accuracy of the node position estimation, as
well as, the time synchronization.

This chapter is based on our publications in [21, 22]. The rest of this chapter is or-
ganized as follows: We review the ranging techniques for the localization process in
Section 3.1. Related work is shown in Section 3.2. Section 3.3 provides an overall
overview about the system model. We then go through D-SLATS algorithms in Section
3.4. Then, Section 3.5 evaluates the introduced algorithms on static and mobile network
of nodes. Finally, Section 3.6 concludes this chapter.

3.1 Ranging Techniques for Localization

Many localization schemes rely on methods for predicting ranges between two devices.
These ranges then serve as constraints in an estimation routine such as geometric trilat-
eration, least squares regression, bayesian likelihood, etc. The generation of these range
measurements—say between an anchor whose location is traditionally known and a tar-
get whose position is normally unknown—may be done in a variety of ways depending
on the application requirements. In general, these ranging techniques can be largely di-
vided into three categories based on the level of cooperation between the ranging party
and the ranged target. These categories are described below for several exemplary rang-
ing modalities as shown in Figure 3.1.

3.1.1 Beaconing methods

The simplest ranging technique involves one party transmitting beacons periodically
while the other party observes these beacons. This technique includes (i) optical and
acoustic signal-strength-based methods, (ii) power-based RF ranging requires where the
RSSI of beacon messages are used in conjunction with knowledge of the transmit power
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Figure 3.1: Two-party ranging techniques, including (a) beacon-based ranging, (b) one-
way time-of-flight (ToF) ranging, and (c) symmetric double-sided ToF rang-
ing.

to infer the distance over which the signal must have traveled, and (iii) TOA, TDOA,
and angle of arrival (AOA) techniques in which beacons from multiple sources are ana-
lyzed jointly along with knowledge of the beacon source locations to constrain a target’s
position in space. In these types of ranging, only the receiving party (the anchors in
our example or oftentimes the target in TOA, TDOA, and AOA methods) are able to
estimate the range. Additionally, many of these techniques suffer from multi-path and
signal fading in cluttered environments, causing high nonlinearities and high errors.

3.1.2 Single-sided Time of Flight Ranging

Many signals can also be used to estimate distance by measuring signal propagation time
and comparing it against the known speed of a given medium—light, sound, etc. In this
scenario, one party sends a signal that is then reflected by the second party. For example,
an ultrasonic chirp or laser pulse can be transmitted and reflected by a physical object
or an RF signal can be sent and then received by a party and retransmitted, effectively
reflecting it to the source. This often requires precise timing hardware, and in the case
of RF signals this inherently requires participation by both the target and the anchor.
Specifically, one party (e.g. the target) will send a range ‘init’ message to the other party
(e.g. the anchor) who must then process the message with some delay treply-A and reply
with a range ‘response’ message. The final round trip time is then measured and used
to infer the propagation delay of the signal and consequently the distance between the
two parties. For signals which are physically reflected such as acoustics and optics, the
sequence is the same but treply-A is, for all practical purposes, zero. In this scenario,
only the party who initiated the ranging sequence (the target in our example) receives
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the precise time of flight measurement, while the other party (e.g. the anchor) can only
make coarse range estimates based on the power of the received signal as in the beaconing
methods described above.

3.1.3 Symmetric Double-Sided Time of Flight Ranging

Measuring signal propagation time requires precise hardware clocks and deterministic
signal transmission times. In single-sided time of flight measurement, even small varia-
tions in measurement clock frequencies can cause large range errors due to the discrep-
ancies in the measured round trip times (and reply times in the case of RF ranging).
To overcome this, many ranging systems rely on double-sided ranging. In double-sided
two-way ranging, a terminating final range measurement is sent by the initiating party af-
ter receiving the range response message. This allows the non-initiating party to greatly
reduce errors due to clock discrepancies between the two parties, resulting in improved
range accuracy. In this scenario, only the non-initiating party receives accurate time of
flight estimates, as the initiating party does not necessarily know the receiving party’s
delay, treply-A. Furthermore, if the receiving party does not publicize the transmit power
of their signal or if the power is variable over time, the initiating party (target) may know
only that the receiving party is within communication range.

3.2 Related Work

We review the related work in concurrent synchronization and localization. Gholami et
al. [80] derived a maximum likelihood estimator (MLE) for joint clock skew and posi-
tion estimation. However, they assume that a number of reference nodes are perfectly
synchronized with a reference clock and transmit their signals at a common time in-
stant. In [81], Denis et al. derived a distributed maximum log likelihood estimator that
fuses clock offset, bias, and range estimates. Similarly, joint time synchronization and
localization is solved in [82] with accurate and inaccurate anchors in terms of time syn-
chronization and localization. Moreover, a weighted least squares solution is proposed
in [83] to achieve joint synchronization and localization using TOAs. While these ap-
proaches outline theoretical estimators, they make several non practical assumptions of
the underlying network such as perfect synchronization among anchor nodes, and do not
evaluate their methods on actual hardware. Recently, ATLAS estimates locations using
a maximum likelihood method and known-position beacon transmitters to synchronize
the clocks of receivers [84]. Positioning using time-difference of arrival measurements
is proposed in [85]. In [86] the problem of solving for the position is investigated based
on time of flight measurements for asynchronous networks using linear least squares.

Accurate RF time-stamping has encouraged research on low error ranging techniques
and their related time synchronization spearheaded by impulse-radio ultra-wideband (IR-
UWB) devices [87]. For instance, Polypoint [88] introduced a RF localization system
which enables the real-time tracking and navigating of quadrotors through complex in-
door environments. Furthermore, clock bias measurements were used in [89] to allow
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for simpler range measurements using one-way TOA/TDOA messages compared to the
more expensive two-way protocols. Another quadrotor localization framework was in-
troduced in [90]. These works are based on the popular DecaWave DW1000 radio1.
Recent developments in UWB communications offer high precision positioning through
which a new range of applications is enabled [91]. Moreover, authors in [88] demon-
strated a 56 cm localization error with frequency 20 Hz and density 0.005 node/m3. On
the other hand, the work in [89] achieves a 28 cm localization error. However, it used
100 Hz frequency with 0.037 node/m3. Finally, authors in [90] shows a 20 cm local-
ization error with frequency 10 Hz given a density of 0.054 node/m3. Hybrid use of
sample-based and Gaussian belief propagation is used in [92].

Impact of clock frequency offsets on the accuracy of ranging systems based on TOA
measurements is analyzed in [93]. More application-specific solutions include using
unmanned aerial vehicles to relay GPS information to a network of energy constrained
nodes, who then localize and synchronize themselves to the mobile GPS receiver, while
saving energy [94] and leveraging clock bias estimation to improve RF time-of-flight
estimates for non-UWB transceivers [95]. A linear data model for joint localization
and clock synchronization is proposed in [96]. Its estimates included batch offline least
squares methods. Estimators to precisely estimate range and clock parameters from the
measurements are suggested in [97]. It used master-slave clock synchronization to im-
prove round-trip time estimates. For more complete treatments of localization and syn-
chronization methods, we refer the reader to [98] and [99].

3.3 System Model

Consider a set of N nodes indexed by k ∈ {0, . . . , N − 1} distributed geographically
over some region. We say that two nodes are connected if they can communicate with
each other, and we denote the neighborhood of a given node by the set Nk that contains
all the nodes that are connected to node k. Our state-space model is

xi+1 = fi(xi) + ni

ykj,i = hk,i(xi) + vk,i,
(3.1)

where the state at time i is denoted by xi, and the measurement available to node k from
the neighborhood node j ∈ Nk is represented by ykj,i. The process and measurement
noise are ni and vk,i, respectively, and assumed to be Gaussian. The state update func-
tion is fi and hk,i is the measurement function. The process covariance matrix, and the
measurement noise covariance matrix of node j at time i are denoted by Qi and Rj,i,
respectively. The state vector of node k is the state of the whole network nodes

xk,i = [x̄1,i, ..., x̄N,i]
T (3.2)

1http://www.decawave.com/products/dw1000
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where x̄k,i consists of three components x̄k,i =
[
pTk,i, ok,i, bk,i

]T . We denote the three
dimensional position vector by pk,i. The clock time offset and clock frequency bias are
denoted by ok,i and bk,i, respectively. We adopt a convention where both ok,i and bk,i are
described with respect to the leader node, which can be any node. It is recommended
to pick the leader node in the middle of the network graph to achieve faster time syn-
chronization. It is assumed that the nodes are static and that the clock parameters evolve
according to the first-order affine approximation of the following dynamics,

ok,i+1 = ok,i + bk,iδt,

bk,i+1 = bk,i,
(3.3)

where δt := tL,i+1 − tL,i given that tL is the leader node time which is the global time.
Therefore, we can write the update function for a static node as

f(xk,i) =

 pk,i
ok,i + bk,iδt

bk,i

 . (3.4)

3.3.1 Measurement types

The D-SLATS architecture supports three types of measurements which are distin-
guished by the number of messages exchanged between a pair of nodes. These mea-
surements types are shown in detail in Figure 3.2, where time stamps t0(i) through t5(i)
denote the locally measured transmission (TX) and reception (RX) times stamps, and
TRSP (i) and TRND(i) define, respectively, the response and the round-trip durations be-
tween the appropriate pair of these timestamps. The propagation velocity of radio is
taken to be the speed of light in a vacuum, denoted by c. The three message types are:

• Counter Difference: This is type 1 measurement which is a single transmission
is sent from j to k, yielding two timestamps, one from the TX instant and another
from the RX instant. Type 1 results in finding the counter difference at time i
denoted by dkj,i which is the measurement of the difference between the clocks
of each node. This is a time measurement that includes the effects of propagation
delay Tp.

dkj,i = t5(i)− t4(i) (3.5)

• Single-Sided Two-Way Range: This is type 2 measurement, where a type 1 mes-
sage is followed by a reply message for round-trip timing calculations. Type 2
results in the single-sided two-way range rkj,i which is a distance measurement be-
tween a pair of nodes j and k, with an error proportional to the response turnaround
time TRSP1. This is a noisy measurement due to frequency bias discrepancies be-
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Figure 3.2: The top of this diagram shows six synchronization events between three de-
vices, labeled h, k, and j. Each event is classified as type 1, type 2 or type 3
depending on the number of transmissions sent.

tween k and j.

rkj,i =
c

2
(TRND1(i)− TRSP1(i)) (3.6)

• Double-Sided Two-Way Range: This is type 3 measurement. One last transmis-
sion completes a handshake trio allowing for a more precise round-trip timing cal-
culation. Type 3 results in finding the double-sided two-way range Γkj,i, which is
another distance measurement between nodes k and j based on a trio of messages
between the nodes at time i. The error is proportional to the relative frequency
bias between the two devices integrated over the period. This is a more accurate
estimate than rkj,i due to mitigation of frequency bias errors from the additional
message.

Γkj,i = c
TRND0(i)TRND1(i)− TRSP0(i)TRSP1(i)

TRND0(i) + TRND1(i) + TRSP0(i) + TRSP1(i)
(3.7)

With that, the measurement vector at node k, from node j ∈ Nk has the form

ykj,i =

dkj,irkj,i
Γkj,i

 (3.8)

It is important to note that a subset of these measurements may be used rather than the
full set, i.e, we can have experiments involving just rkj,i, Γkj,i, or dkj,i. The three mea-
surements types can be translated to the state vector according to the clock model from
(3.3) and the physics relating the propagation speed, the duration between the propaga-
tion and the distance between the nodes. Thus, we obtain measurement function in the
following form [100]:

53



3 Distributed Simultaneous Localization and Time Synchronization

hj(xk,i) =

 (oj,i − ok,i) + ‖pj,i − pk,i‖2 /c
‖pj,i − pk,i‖2 + c

2
(bj,i − bk,i)TRSP1

‖pj,i − pk,i‖2 + cR̃kj,i

 (3.9)

where

R̃kj,i :=

(
bk,i − bj,i

)(
TRND0(i)TRND1(i)− TRSP0(i)TRSP1(i)

)
(

1 + bk,i − bj,i
)
TRND0(i) + TRND1(i) + TRSP0(i) +

(
1 + bk,i − bj,i

)
TRPS1(i)

Next, we present our proposed algorithms for distributed localization and time syn-
chronization between sensor nodes.

3.4 Proposed Algorithms

The time synchronization and localization problem focus on finding an estimate for the
clock parameters and the 3D position (i.e the state of the system) using the timestamp
measurements and the model of the system. We denote by x̂k,i|l the estimate of xk,i given
the observations up to time l where every node seeks to minimize the mean-square error
E‖xk,i − x̂k,i|l‖2.

3.4.1 Distributed Kalman Filter

We are seeking a distributed implementation that avoids the use of a fusion center and
instead distributes the processing and communication across the sensor network. Among
distributed algorithms, diffusion algorithms are amenable for easy real-time implemen-
tations, for good performance in terms of synchronization and localization accuracy, and
for the fact that they are robust to node and link failure. Our DKAL algorithm is derived
from the Diffusion Extended Kalman filter presented in [77], which uses the information
form rather than the conventional form. The advantage of the information form over the
conventional form becomes more evident for some categories of problems. For instance,
the information filter form is easier to distribute, initialize, and fuse compared to the
conventional filter form in multisensor environments [101]. Furthermore, it can reduce
dramatically the computation and storage which is involved in the estimation of specific
classes of large-scale interconnected systems [102]. Also, the update equations for the
estimator are computationally simpler than the equations of the conventional form.

We define the following matrices obtained by linearizing the state update and the mea-
surement update functions around some point z.
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Algorithm 1: DKAL
Start with x̂k,0|−1 = x0 and Pk,0|−1 = Π0 for all k, and at every time instant i,
compute at every node k:
Step 1: Measurement update:

Ĥkj,i = H̄j(x̂k,i|i−1) (3.10)

Q̃0 = Pk,i|i−1 (3.11)

Q̃j+1 = Q̃j − Q̃jĤ
T
kj,i(Rj,i + Ĥkj,iQ̃jĤ

T
kj,i)

−1Ĥkl,iQ̃j ∀j ∈ Nk (3.12)

P k
i|i = Q̃N (3.13)

ψk,i = x̂k,i|i−1 + Pk,i|i
∑
j∈Nk

ĤT
kj,iR

−1
j,i [ykj,i − hj(x̂k,i|i−1)] (3.14)

Step 2: Diffusion update:

x̂k,i|i ←
∑
j∈Nk

ckjψj,i (3.15)

Step 3: Time update:

x̂k,i+1|i = fi(x̂k,i|i) (3.16)
Pk,i+1|i = F̄i(x̂k,i|i)Pk,i|iF̄i(x̂k,i|i)

T +Qi (3.17)

F̄i(z) :=
∂fi(x)

∂x

∣∣∣
x=z

, (3.18)

H̄k,i(z) :=
∂hk,i(x)

∂x

∣∣∣
x=z

. (3.19)

Given that, every node monitors the state on the whole network, we tackle the follow-
ing challenges of the proposed algorithm in [77]:

• Taking the inverse of a large matrix is not feasible on embedded devices. A large-
scale network implies inverting a matrix Pk,i|i on each node with dimensionN×N
in (3.20).

P−1
k,i|i = P−1

k,i|i−1 +
∑
j∈Nk

HT
j,iR

−1
j,iHj,i. (3.20)

• The size of P increases dramatically with large-scale systems.

To address the first issue, we propose modifying the measurement update in Algorithm
2 in [77] by using the Binomial inverse theorem. This provides a formula to compute
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Pk,i|i from Pk,i|i−1 without having to invert any N × N matrix. More specifically, if we
consider one neighbor in (3.20), we get

Pk,i|i =
(
P−1
k,i|i−1 +HT

j,iR
−1
j,iHj,i

)−1

. (3.21)

The Binomial inverse theorem states that

(A+ UBV )−1 = A−1 − A−1U
(
B−1 + V A−1U

)−1
V A−1. (3.22)

Applying (3.22) to (3.21) results in

Pk,i|i =
(
P−1
k,i|i−1 +HT

j,iR
−1
j,iHj,i

)−1

(3.22)
= Pk,i|i−1 − Pk,i|i−1Ĥ

T
kj,i(Rj,i + Ĥkj,iPk,i|i−1Ĥ

T
kj,i)

−1Ĥkj,iPk,i|i−1 (3.23)

Repeating (3.23) to all neighbors results in the first step in Algorithm 1. The other
issue of monitoring the whole network state will be addressed by the DKALarge and
DOPT algorithms. The DKAL algorithm is comprised of three main steps: measurement
update, diffusion update section, and time update steps. The algorithm starts with the
measurement update where every node k obtains ψk,i at time step i. Next, in the diffusion
step, information from the neighbors of node k are combined in a convex combination to
produce a new state estimate for the node. The ckj elements represent the weights that are
used by the diffusion algorithm to combine neighborhood estimates. Finally, every node
performs the time update step. The proposed algorithm can be summarized as shown in
Algorithm 1.

3.4.2 Distributed Kalman Filter for Large Scale Systems

As mentioned before, the disadvantage of the DKAL algorithm that the size matrix P
is increasing dramatically for large-scale systems. Therefore, we are going to tackle
these disadvantages by proposing the DKALarge algorithm. The key idea behind the
DKALarge algorithm is to let every node monitor only its neighbors (its subsystem).
Therefore, the size of the x and P will depend only on the number of neighbors which
solves the two disadvantages of the DKAL algorithm. The DKALarge algorithm spa-
tially decomposes a sparsely connected large-scale network before carrying out Kalman
filtering operations. Network connectivity is used to break down the global system into
sets of smaller subsystems, while maintaining inter-subsystem graph rigidity.

Each subsystem is indexed by l and we denote the matrix P of the subsystem by P (l)

and the state of the subsystem by x(l). Figure 3.3 shows an example of how a network can
be broken down into three subsystems. Subsystem l = 0, which corresponds to node n0,
monitors only nodes n0, n1, and n2 so that the subsystem state vector and the P (l) matrix
are with reduced dimension because they only contain information about estimates for
three nodes. Similarly, subsystem l = 3 monitors only nodes n1, n3, and n4, whereas
subsystem l = 4 considers only nodes n3 and n4. The size of the state vectors and the P
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Figure 3.3: An example of how a system can be divided in three subsystems.

Figure 3.4: Example of P (l) values out of original P .

matrices are thus of a reduced form representative of the nodes defined to be in a given
subsystem as shown in Figure 3.4. The important step in this algorithm is to decompose
the whole systems into smaller subsystems and let every node monitors only the nodes
that are in its own subsystem. For the local P matrix, it is known that (P (l))

−1, which
is the normal inverse of the reduced P (l) matrix, does not equal (P−1)(l), which is the
l submatrix of P−1; this represents a challenge in decomposing the whole system into
subsystems. We remove the superscript l for simplicity from now on. The DKALarge
algorithm addresses the previous challenge of distributed matrix inversions by employ-
ing the L-banded inverse on the matrix P , followed by the DICI-OR method presented
in [78] in order to approximate the inverse of the large covariance P matrix. We ap-
proximate P−1 matrices to be L-baneded matrices. This approach of approximation is
studied in the centralized filter in [103] where the information loss due to the approxi-
mation is bounded. The methods which are used for inversion of the local matrix P can
be summarized as follows:
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Algorithm 2: DKALarge
Start with x̂k,0|−1 = Ex0 and Pk,0|−1 = Π0 for all k, and compute at every node
k:
Step 1: Measurement update:

P−1
k,i|i−1

Lbandinv←−−−−− Pk,i|i−1 (3.24)

P−1
k,i|i = P−1

k,i|i−1 +
∑
j∈Nk

HT
kj,iR

−1
j,iHkj,i (3.25)

Pk,i|i
DICIOR←−−−−− P−1

k,i|i (3.26)

ψj,i = x̂k,i|i−1 + Pk,i|i
∑
j∈Nk

HT
kj,iR

−1
j,i (ykj,i − hj,i(x̂k,i|i−1)

Step 2: Diffusion update:

x̂k,i|i ←
∑
j∈Nk

ckjψj,i (3.27)

Step 3: Time update:

Pk,i+1|i = F̄i(x̂k,i|i)Pk,i|iF̄i(x̂k,i|i)
T +Qi (3.28)

x̂k,i+1|i = fi(x̂k,i|i) (3.29)

• L-Banded Inverse: We use the L-banded inversion provided in [104] in order to
obtain an L-banded approximate matrix P−1

k from Pk. The L-banded structure is
necessary in the application of the DICI-OR method stated below. The L-banded
inverse method contains properties for approximating Gaussian error processes,
which help with inverses of submatrices. This has also been studied in [105] and
[106].

• DICI-OR Method: The DICI-OR [78] method uses the L-banded structure of
the P−1

k matrix in achieving distributed matrix inversion from P−1
k to Pk. With

the assumption that the non L-band elements are not specified in the matrix Pk,
a collapse step is effected in order to fill in the non L-band elements. The iterate
step is then employed to produce the elements that lie within the L-band of Pk. The
iterate step can be repeated to achieve quicker convergence in the state estimates.

The DKALarge algorithm leverages L-banded inverse and the DICI-OR method to
achieve a distributed matrix inversion. Unlike DKAL algorithm, where the P matrix and
state vectors x are needed to be maintained at each node, these two methods enable us to
decompose the problem into smaller parts.
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3.4.3 Distributed Optimization

Algorithm 3 tackle the changeless of Algorithm 1. It basically operates by letting each
node monitors its neighbor nodes only, so the size of x̂ is limited locally by the num-
ber of connecting nodes, an improvement comparing to the DKAL algorithm. In this
algorithm, the unconstrained minimizations are solved numerically and simultaneously
at each node by computing the values for the parameters that satisfy the first order opti-
mality conditions. DOPT can be summarize in the steps presented in Algorithm 3.

Algorithm 3: DOPT
Start with x̂k,0 = x0. At every time instant i, do at every node k:
Step 1: Get from neighboring nodes j ∈ Nk their estimated state

x̂j,i =
[
p̂Tj,i, ôj,i, b̂j,i

]T
.

Step 2: Find optimal estimate x̂k,i+1 of node k based on the received estimates
and measured distances:

[ôk,i+1 p̂k,i+1] = argmin
ok,i,pk,i

∑
j∈Nk

(dkj,i − (ok,i − ôj,i)− ‖pk,i − p̂j,i‖2 /c)
2 (3.30)

[ôk,i+1 p̂k,i+1] = argmin
ok,i,pk,i

∑
j∈Nk

(t2(i)− t3(i)− (ok,i − ôj,i)− ‖pk,i − p̂j,i‖2 /c)
2

(3.31)[
b̂k,i+1 p̂k,i+1

]
= argmin

bk,i,pk,i

∑
j∈Nk

(Γkj,i − ‖pk,i − p̂j,i‖2 − cR̃kj,i)
2 (3.32)

The steps in Algorithm 3 have considered type 3 messages which are more accurate.
However, depending on the application considered, type 2 can be enabled instead by
replacing equation 3.32 with equation 3.33.

argmin
bk,i,pk,i

∑
j∈Nk

(rkj,i − ‖pk,i − pj,i‖2 −
c

2
(bk,i − bj,i)TRSP1) (3.33)

3.5 Evaluation

We present the experimental setup, where we conducted our experiments. Next, we
evaluate case studies of our proposed algorithms.
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Figure 3.5: Experimental setup overview, including, UWB Anchor nodes, motion cap-
ture cameras, and mobile quadrotor UWB nodes.

Figure 3.6: CrazyFlie 2.0 quadrotor helicopter with DW1000 UWB expansion.

3.5.1 Experimental Setup
We evaluated the performance of our algorithms on a custom ultra-wideband RF testbed
based on the DecaWave DW1000 IR-UWB radio. The overall setup is shown in Figure
3.5. The main components of our testbed can be summarized as follows:

• A motion capture system capable of 3D rigid body position measurement with
less than 0.5 mm accuracy. The system consists of an eight-camera set-up which
is deployed to provide accurate ground truth position measurements. The ground
truth positions from the motion capture cameras are sent to a centralized server
that uses the Robot Operating System (ROS) [107] with a custom package. The
presented results treat the motion capture estimates as true positions, though we
qualify here that all results are accurate to within the motion capture accuracy. We
adopt a right-handed coordinate system where y is the vertical axis, and x and z
make up the horizontal plane.

• Fixed nodes consist of custom-built circuit boards equipped with ARM Cortex
M4 processors 196MHz powered over Ethernet and communicating to Decawave
DW1000 ultra-wideband radios as shown in Figure 2.17. Each anchor performs a
single and double-sided two-way range with its neighbors. The used Decawave ra-
dio is equipped with a temperature-compensated crystal oscillator with frequency
equals 38.4 MHz and stated frequency stability of ±2 ppm. We installed eight
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UWB anchor nodes in different positions in a 10 × 9 m2 lab. More specifically,
six anchors are placed on the ceiling at about 2.5m height, and two were spotted
at waist height at about 1m to better disambiguate positions on the vertical axis.
Each anchor node is fully controllable over a TCP/IP command structure from the
central server. These nodes are placed to remain mostly free from obstructions,
maximizing line-of-sight barring pedestrian interference.

• A mobile node consists of a battery-powered node also with ARM Cortex M4
processors based on the CrazyFlie 2.0 helicopter2, and equipped with the same
DW1000 radio as shown in Figure 3.6. This allows for compatibility in the single
and double-sided ranging technique used.

Figure 3.7: Average localization error with fully connected network for DKAL algo-
rithm.

Figure 3.8: Average localization error with fully connected network for DKALarge al-
gorithm.

3.5.2 Case Study: Static Nodes
We demonstrate D-SLATS performance first in distributed simultaneous localization and
time synchronization of static nodes. The goal of D-SLATS is to accurately estimate

2Bitcraze CrazyFlie 2.0. https://www.bitcraze.io/
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Figure 3.9: Average localization error with fully connected network for DOPT algo-
rithm.

the positions of all network devices relative to one another, as well as, the relative clock
offsets and frequency biases. This relative localization, or graph realization as it is some-
times called, is a well-researched field. Local minima, high computational complex-
ity, and restrictions on graph rigidity are the main challenges in graph realization prob-
lems [108, 109]. D-SLATS does not put restrictions on the connectivity of the graph. A
centralized Kalman filter (CKAL) is implemented as a baseline for comparison.

3.5.2.1 Position Estimation

The D-SLATS algorithms find relative positions. Therefore, we first superimpose the
estimated positions onto the true positions of each node by use of a Procrustes trans-
formation [110]. Specifically, the network topology as a whole is rotated and translated
without scaling, until it most closely matches the true node positions. Once transformed,
the error of a given node’s position is defined as the `2 norm of the transformed position
minus the true position.

We begin by showing the localization error of a fully-connected network for all algo-
rithms. Figures 3.7, 3.8 and 3.9 show the localization errors for DKAL, DKALarge, and
DOPT algorithms, respectively, with type 3 enabled for all algorithms. Enabling type 3
inherits enabling type 1 and type 2, as type 3 is a replicate of type 1 and type 2. Table
5.1 summarizes the localization error of the eight nodes using the DKAL, DKALarge,
DOPT, and CKAL algorithms. DKAL algorithm achieves 0.311m. While DKALarge
and DOPT algorithms report 0.330m and 0.299m, respectively. Also, we should not that
enabling type 2 only instead of type 3 in our experiments does not have a great effect of
the overall performance.

We summarize the mean error of the position estimation for all nodes and for different
localization algorithms in Figure 3.10. The centralized algorithm outperforms the dis-
tributed algorithms in D-SLATS, as expected. Note that DOPT algorithm has the fastest
convergence time. In a second experiment, we show that D-SLATS supports different
network topologies without requiring the graph to be fully connected. Figure 3.11 shows
the localization error for the network topology where every node is only connected to
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Figure 3.10: Average localization error with fully connected network.

Figure 3.11: Average localization error where each node has 4 neighbors only.

four neighbors. The DKALarge algorithm gave the worst performance as the DICI-OR
algorithms is approximating the full covariance matrix inverse, as described before.

3.5.2.2 Time synchronization

In order to test the time synchronization, we could configure a third party node to send a
query message and compare the timestamp upon receiving that message as done in [111].
However, in order to decrease the uncertainty in our testing mechanism, we choose the
root node to do this job. This testing mechanism is better than others as reported in [28],
and has been used also in [112]. As mentioned before, we choose node 0 to be the ref-
erence node, i.e, ∀i : b0,i := 0 and o0,i := 0. Table 3.2 shows the synchronization errors
for all nodes with respect to node 0. The DKAL algorithm has the best performance,
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Table 3.1: localization error (m) of different static nodes.

Algorithm node 0 node 1 node 2 node 3 node 4 node 5 node 6 node 7 mean std

DKAL 0.518 0.189 0.638 0.228 0.021 0.433 0.126 0.336 0.311 0.209
DKALarge 0.232 0.536 0.394 0.318 0.093 0.400 0.246 0.418 0.330 0.137

DOPT 0.402 0.202 0.530 0.193 0.156 0.309 0.199 0.397 0.299 0.133
CKAL 0.205 0.189 0.208 0.147 0.218 0.075 0.168 0.143 0.169 0.047

Table 3.2: Synchronization error (µ seconds) of different nodes with respect to node 0.

Algorithm node 1 node 2 node 3 node 4 node 5 node 6 node 7 mean std

DKAL 0.807 9.088 1.868 2.332 5.936 9.624 5.342 5.000 3.502
DKALarge 5.223 6.448 5.203 5.339 5.863 3.313 4.222 5.087 1.036

DOPT 2.15 0.891 2.090 2.343 1.651 5.215 3.293 2.520 1.391
CKAL 1.362 2.045 1.440 1.517 1.792 0.267 0.708 1.304 0.617

followed by DKALarge and DOPT algorithms. We should note that the synchronization
errors in Table 3.2 are reported for a fully connected network.

3.5.3 Case Study: Mobile Nodes

We have shown that D-SLATS can be used to localize and synchronize a network of
static nodes. We now present the case of a heterogeneous network containing both static
and mobile node. To the eight anchor nodes topology used in Section 3.5.2, we add one
mobile node in the form of a CrazyFlie quadrotor as shown in Figure 3.6. We analyzed
the results of running D-SLATS based on type 3 measurements with a fully connected
graph.

A number of experiments were performed with quadrotors traveling with variable ve-
locities. Figures 3.12, 3.13, and 3.14 show the results of traveling self-localizing quadro-
tor using DKAL, DKALarge, and DOPT, respectively, for type 3 messages. The left
plot of the three figures shows a 3D comparison of the estimated position and the ground
truth position reported by the motion capture cameras. DKAL algorithm achieved the
best self localization estimation with an RMSE of 75cm. The DKALarge and DOPT
algorithms reported 89cm and 116cm, respectively. The top left subfigures of the three
figures show the 3D localization error. The localization errors in each axis are separately
shown in the top right subfigure. Finally, the location of the mobile node in the network
determines to some extent the accuracy with which it can be localized. A device whose
location is more central to the network (i.e. closer to the centroid defined as the mean of
all node positions) is more likely to be fully constrained in terms of its relative position.
This correlation can be loosely seen in the bottom right of the three figures.
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Figure 3.12: Localization errors for DKAL in 3D for a single mobile node. Spatial er-
rors (left) are shown with corresponding per-axis errors by time (top right).
Additionally, the error is plotted against the mobile node’s distance from
the network centroid (bottom right).

Figure 3.13: Localization errors for DKALarge in 3D for a single mobile node. Spa-
tial errors (left) are shown with corresponding per-axis errors by time (top
right). Additionally, the error is plotted against the mobile node’s distance
from the network centroid (bottom right).

3.6 Conclusions

This chapter describes and evaluates D-SLATS, an architecture for distributed simulta-
neous time synchronization and localization of static and mobile nodes in a network.
Three different algorithms were proposed, namely DKAL, DKALarge, and DOPT, that
perform distributed estimation in a scalable fashion. Several experiments using real, cus-
tom ultra-wideband wireless anchor nodes and mobile quadrotor nodes were conducted
and they indicate that the proposed architecture is reliable in terms of performance, and
efficient in the use of computational resources. D-SLATS is made possible by state-
of-the-art advances in commercial ultra-wideband radios, and continued improvements
to these devices will further underscore the importance of treating temporal and spatial

65



3 Distributed Simultaneous Localization and Time Synchronization

Figure 3.14: Localization errors for DOPT in 3D for a single mobile node. Spatial er-
rors (left) are shown with corresponding per-axis errors by time (top right).
Additionally, the error is plotted against the mobile node’s distance from
the network centroid (bottom right).

variables in a joint fashion. Future directions will deal with testing over a real large scale
network by considering more nodes. Also, a secure estimation of nodes under malicious
attacks is another direction.
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Kalman Filter

State estimation is essential for habitat monitoring, emergency rescue, homeland secu-
rity, military operations, and home automation services [113]. Besides ensuring the ac-
curacy of the state estimation, one has to consider power constraints [13], limitations in
terms of bandwidth [14], and limitations in computation [15] and communication [16].
One of the most popular estimation algorithms for sensor networks is the distributed
Kalman filtering algorithm. Among distributed Kalman filters, diffusion algorithms,
which have been utilized in the algorithms of Chapter 3, have favorable properties with
respect to performance and robustness of node and link failures. The performance of dis-
tributed diffusion Kalman filtering [17] depends on frequent measurements and message
exchange between nodes. However, the capabilities of individual nodes are very limited,
and each node is often battery-powered. Thus, decreasing the communication overhead
and the number of measurements is of great importance. There is no meaning of spend-
ing more resources, while the application need is much less. So the question should
not be how much the algorithm could achieve - it should be - how well the algorithm is
capable of satisfying the application needs while saving the resources?.

We propose an event-triggered diffusion Kalman filter algorithm that restricts the
amount of processing, sensing, and communication-based on a local signal indicative
of the estimation error. Thus, the number of transmission messages compared to the
nominal distributed diffusion Kalman filter algorithm is significantly reduced. In par-
ticular, we characterize the trade-off between the spent resources and the corresponding
estimation performance. A representative application of distributed state estimation is
localization and time synchronization of sensor nodes. More specifically, we apply our
event-triggered diffusion Kalman filer on D-SLATS presented in Chapter 3, which is a
distributed simultaneous localization and time synchronization framework.

This chapter in based on our publication [25]. The rest of this chapter is organized
as follows: Section 4.1 reviews related work. Section 4.2 gives the motivation behind
our chosen triggering condition. We present our proposed algorithm and its theoretical
analysis in Sections 4.3 and 4.4, respectively. Section 4.5 illustrates the application to
localization and time synchronization, presents the experimental setup, and evaluates the
proposed algorithm on static and mobile networks of nodes. Finally, Section 4.6 lists
some concluding and discussion remarks.
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4.1 Related Work
We first discuss general state estimation algorithms followed by centralized and dis-
tributed event-triggered estimators.

4.1.1 State Estimation Algorithms

Distributed estimation algorithms are widely used in wireless networks to reconstruct
the system state from noisy measurements. Algorithms for diffusion least-mean squares
[114], diffusion recursive least-squares [115], and diffusion Kalman filtering [116] have
been proposed. Also, estimation algorithms based on average consensus have been an-
alyzed in [117–119]. The proposed distributed estimation algorithm in [120] deals with
extremely large-scale systems. The main idea is to approximate the inverse of the large
covariance matrix P by using the L-Banded inverse and DICI-OR method [121]; how-
ever, this requires a lot of resources. Due to limited resources in wireless sensor net-
works, many investigations have been made to decrease the communication and compu-
tation overheads, while preserving the performance. This leads to the work in the next
categories.

4.1.2 Centralized Event-Triggered Estimation Algorithms

The event-triggered scheme has already been applied to network estimation problems.
It was first proposed for centralized estimation problems. Send-on-delta is proposed for
Kalman filters in [122], where sensor data values are transmitted only when encountering
a user-defined change. An event-triggered sensor data scheduler has been proposed based
on the minimum mean-squared error (MMSE) in [123]. The variance-based triggering
scheme has been developed in [124], where each node runs a copy of the Kalman filter
and transmits its measurement only if the associated measurement prediction variance
exceeds a chosen threshold. The properties of set-valued Kalman filters with multiple
sensor measurements have been analyzed in [125].

In general, the required communication can be reduced by the event-triggered scheme,
when the sensor and the estimator are not on the same node, as in [126, 127]. Also, a
discrete-time approach is proposed in [128] to address the same concern. The importance
of including the effects of external disturbances and measurement noise in the analysis
of event-triggered control systems is shown in [129]. Event-triggered centralized state
estimation for linear Gaussian systems is proposed in [130]. Finally, the covariance
intersection algorithm is investigated to get a centralized event-triggered estimator [131].

4.1.3 Distributed Event-Triggered Estimation Algorithms

As one of the main goals of sensor networks is to perform estimation distributively,
event-triggered approaches are also applied in these scenarios, including Kalman filters
with covariance intersection [132]. Interestingly, send-on-delta data transmission mech-
anisms are proposed in the event-triggered Kalman consensus filters [133]. Moreover,
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event triggering on the sensor-to-estimator channel and estimator-to-estimator channel
are investigated in distributed Kalman consensus [134]. Transmission delays and data
drops in a distributed event-triggered control system are considered in [135]. Also, mul-
tiple distributed sensor nodes are considered in [136], where the sensors observe a dy-
namic process and sporadically exchange their measurements to estimate the full state
of the dynamic system. Significant deviation from the information predicted from the
last transmitted measurement is monitored to get a data-driven distributed Kalman fil-
ter [132]. For more related work in the domain, the reader is referred to [137].

When it comes to the herein considered event-triggered diffusion Kalman filters, we
only found two previous works. The first one is a partial diffusion Kalman filter [138],
which is mainly addressing the diffusion step. Every wireless node shares only a subset
of its intermediate estimate vectors among its neighbors at each iteration. However, there
is no saving at the measurement update step, which already includes high communication
and measuring overheads. Also, it is not duty cycling the whole communication at the
diffusion step. On the other hand, the concern of the other work in [139] is the measure-
ment update step while neglecting the diffusion step, which also has significant overhead,
as shown in [138]. We consider both the diffusion step and the measurement step; we
temporarily shut-down the sensing and the communication between nodes. Also, we do
not depend on monitoring the change between the expected state and the calculated one.
To the best of our knowledge, our work is the first work in proposing event-triggering
on the diffusion Kalman filter on both steps, based on an internal signal. Also, we are
evaluating the mechanism on a real testbed for localization and time synchronization.

4.2 Triggering Logic Principle
One of the merits of the original centralized Kalman filter is the error covariance matrix.
It is a perfect measure of the expected accuracy of the estimated state and can be utilized
for regulating the resource consumption based on the application need. However, when it
comes to the distributed diffusion Kalman filter, we do not have local access to the error
covariance matrix [17]. Thus, we aim to obtain in this work the expected accuracy of the
estimated state in the distributed diffusion Kalman filter, where the local estimators do
not have access to all the measurements. Towards achieving our goal, let us start by a
background example.

Example 4.2.1. Let us introduce x̂1 as least-mean-squares estimator of x given a zero-
mean observation y1, x̂2 as least-mean-squares estimator of x given a zero-mean ob-
servation y2, and x̂ as least-mean-squares estimator of x given all observations. As a
consequence, we have two separate estimators for x given two separate measurements
and a global estimator given all the measurements. Let P1, P2 and P denote the cor-
responding local and global error covariance matrices. We assume the measurement
noises are uncorrelated and have zero-mean. It can be shown [140, p.89] that the global
and local error covariance matrices are related via

P−1 = P−1
1 + P−1

2 −Rx, (4.1)
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where Rx is the positive-definite covariance matrix of x.

When it comes to the distributed Kalman filter, every node gets access to the mea-
surements of its neighbors plus its local measurements. Thus, we need to introduce two
terms: individual and local estimates. The individual estimate considers only the mea-
surements at the node without its neighbors, while the local one considers the individual
measurements plus the measurements of its neighbors. More specifically, we denote the
individual estimate by x̂ind

k,i|i, which corresponds to the optimal linear estimate of xi given
only the individual measurements at node k without its neighbours, and the individual
error covariance matrix by P ind

k,i|i. The local estimate at node k is denoted by x̂loc
k,i|i and

corresponds to the optimal linear estimate of xi given its individual measurements and
measurements across the neighborhood of node k. The local error covariance matrix is
denoted by P loc

k,i|i. We also denote the global estimate by x̂i|i, which corresponds to the
optimal linear estimate of xi given all observations across all nodes on the network and
its error covariance matrix by Pi|i.

The global error covariance matrix Pi|i provides the notion of the expected estima-
tion error. Thus, we can duty cycle collecting measurements and messaging exchange
processes based on a threshold on the trace of the global error covariance matrix Pi|i.
However, every node has only access to its local matrix P loc

k,i|i in distributed Kalman filter
algorithms and does not have access to Pi|i locally. So let us find out if there is a direct
relation between Pi|i and P loc

k,i|i. Instead of two nodes, we extend (4.1) to N nodes, where
every node only uses its individual measurements [116, p.14]:

P−1
i|i =

N∑
k=1

(P ind
k,i|i)

−1 − (N − 1)Π−1
i , (4.2)

where Πi is the covariance matrix of xi. The individual error covariance matrices P ind
k,i|i

are expected to get smaller with time for observable systems. Therefore, their inverses

in the first term
N∑
k=1

(P ind
k,i|i)

−1 in (4.2) become dominant. Thus, P−1
i|i can be approximated

by

P−1
i|i ≈

N∑
k=1

(P ind
k,i|i)

−1. (4.3)

Now, let us apply (4.1) considering sharing the measurements between the neighbours,
i.e, considering the local estimates. We can find that that the local error covariance P loc

k,i|i
of each node k depends on P ind

l,i|i of each neighbour l as the local estimation process
considers the neighbors measurements. Thus, we can relate P loc

k,i|i to P ind
k,i|i in (4.4) with

the aid of the adjacency matrix A which has unity entry if the corresponding nodes are
neighbors, and zero otherwise. The element at row l and column k of matrixA is denoted
by [A]l,k.
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(P loc
k,i|i)

−1 =
N∑
l=1

[A]l,k(P
ind
l,i|i)

−1 −
( N∑
l=1

[A]l,k − 1
)

Π−1
i , (4.4)

where

[A]l,k =

{
1 if l ∈ Nk,
0 otherwise.

(4.5)

If we consider a set of real weights γk in (4.4), we obtain the following combinations:

N∑
k=1

γk(P
loc
k,i|i)

−1 =
N∑
l=1

N∑
k=1

γk[A]l,k(P
ind
l,i|i)

−1

−
( N∑
l=1

N∑
k=1

γk[A]l,k −
N∑
k=1

γk

)
Π−1
i . (4.6)

Setting the weights in (4.6) such that
N∑
k=1

γk[A]l,k = 1 for all l, and having the first

term again on the right-hand side dominant, as the individual error covariance matrices
are expected to get smaller with time, results in

N∑
k=1

γk(P
loc
k,i|i)

−1 ≈
N∑
l=1

(P ind
l,i|i)

−1. (4.7)

Equating the two approximations in (4.7) and (4.3) results in

P−1
i|i ≈

N∑
k=1

γk(P
loc
k,i|i)

−1. (4.8)

We showed a direct approximation between the matrix Pi|i and local available matrix
P loc
k,i|i. Therefore, we can trigger collecting measurements based on the trace of the local

error covariance matrix P loc
k,i|i, which is available in distributed Kalman filters. This is the

motivation behind our triggering logic.

4.3 Event-Triggered Diffusion Extended Kalman
Filter Algorithm

We consider the event-triggered distributed state estimation problem over a network ofN
nodes distributed over some region in space indexed by k ∈ {0, . . . , N − 1} as shown in
Figure 4.1. Each node represents a sensor and an estimator. Also, we say that two nodes
are connected if they can communicate directly with each other. Consider the following
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4 Event-Triggered Diffusion Kalman Filter

Figure 4.1: Every sensor node is running a distributed event-triggered state estimator to
obtain the network state xk,i|i. The trigger logic is based on monitoring local
signal indicative of estimation error, thus linking the transmission and the
sensing decisions to the estimation performance.

nonlinear time-varying system modeling our nonlinear application

xi+1 = fi(xi) +Gini

ykj,i = hk,i(xi) + vk,i
(4.9)

where xi ∈ Rm is the state at time step i and ykj,i ∈ RLk is the measurement between
node k and its neighborhood node j ∈ Nk at time step i. Furthermore, the process noise
ni and the measurement noise vk,i are assumed to be uncorrelated, and zero mean white
Gaussian noises. The matricesQi andRi are the process covariance and the measurement
noise matrices at time step i, respectively. The state update and measurement functions
are denoted by fi and hk,i, respectively.

We denote the estimate of xi by x̂k,i|s given the observations up to time s, where
every node seeks to minimize the mean squared error E‖xi − x̂k,i|i‖2. To handle the
non-linearity in our model, we linearize (4.9) at a linearization point z, and apply the dif-
fusion Kalman filtering algorithm [17,141]. The resulting state update and measurement
functions are shown in (4.10) and (4.11). The linearization clearly depends on z, and this
point should be the best available local estimate of xi.

F̄i(z) :=
∂fi(x)

∂x

∣∣∣
x=z

, (4.10)

H̄k,i(z) :=
∂hk,i(x)

∂x

∣∣∣
x=z

. (4.11)

Given a linearized model, we subsequently explain our event-triggered diffusion ex-
tended Kalman filter algorithm shown in Algorithm 4. One of the nodes is elected be-
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Algorithm 4: Event-Triggered Diffusion Extended Kalman Filter
Start with x̂k,0|−1 = x0 and Pk,0|−1 = Π0 for all k, and at every time instant i,
compute at every node k:
if tr(WPL,i|i−1W

T ) > πmax then
Step 1: Measurement update:

Ĥkj,i = H̄j,i(x̂k,i|i−1) (4.12)

P−1
k,i|i = P−1

k,i|i−1 +
∑
j∈Nk

ĤT
kj,iR

−1
i Ĥkj,i (4.13)

Ψk,i = x̂k,i|i−1 + Pk,i|i
∑
j∈Nk

ĤT
kj,iR

−1
i [ykj,i − hj,i(x̂k,i|i−1)] (4.14)

Step 2: Diffusion update:

x̂k,i|i =
∑
j∈Nk

ckjΨj,i (4.15)

else
Step 3: Propagation update:

x̂k,i|i = x̂k,i|i−1 (4.16)
Pk,i|i = Pk,i|i−1 (4.17)

Step 4: Time update:

x̂k,i+1|i = fi(x̂k,i|i) (4.18)
Pk,i+1|i = F̄i(x̂k,i|i)Pk,i|iF̄

T
i (x̂k,i|i) +GiQiG

T
i (4.19)

forehand as a leader based on the accessibility of important measurements that facilitates
reaching the best local estimate compared to the followers. We denote the leader node
by subscript L. Choosing a good leader is crucial in saving energy; however, the election
process based on the available estimates is out of the scope of this chapter. Algorithm 4
starts with the measurement update (step 1), where every node k obtains a local estimate
Ψk,i at time step i. Next, information from the neighbors of node k is diffused in a convex
combination to produce a better new state estimate in step 2. The ckj elements represent
the weights that are used by the diffusion algorithm to combine neighboring estimates.
Step 1 and 2 are only executed if the trace of the required part of the leader matrix PL,i|i−1

is more than the user-defined threshold πmax. Explicitly, the triggering event is defined as
tr(WPL,i|i−1W

T) > πmax where W is a weighting matrix to choose the required part of
the PL,i|i−1. If the triggering event is not satisfied, we do not take measurements ykj,i, and
we save the communication overheads in steps 1 and 2. Instead, we perform the propa-
gation update (step 3), where every node considers the new estimates as the old available
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ones x̂k,i|i = x̂k,i|i−1 and its corresponding local matrix Pk,i|i = Pk,i|i−1. Finally, every
node performs the time update (step 4) in all cases.

We want to mention that the analysis in Section 4.2 shows the relationship of the global
error covariance and the available local error covariance during the measurement update
(step 1) in Algorithm 4. However, the diffusion update (step 2) does not take into account
the recursions for these local error covariance matrices as it only combines the estimates
of the neighbors without considering their local error covariance matrices. Also, ex-
changing the P loc

k,i|i between the neighbors to maintain the exact expected estimation error
is a great overhead in sensor networks. Furthermore, the diffusion step decreases the
estimation error, and it is important to have it included. Therefore, we continue with our
modified version of P loc

k,i|i, which we call diffusion error covariance matrix, and denote it
by Pk,i|i in Algorithm 4. Our event triggered algorithm holds also if there is no diffusion
step, which is the case for the popular distributed Kalman filter. Removing the diffusion
step is a special case of our algorithm with zeros in the diffusion weights ckj .

4.4 Theoretical Analysis

Although the extended Kalman filter (EKF) has proven to work well in many nonlinear
practical applications, its general convergence guarantees, even in the centralized ver-
sion, can not be proved [142]. Thus, we limit our analysis to the linear case. We prove
that event-triggered diffusion Kalman filter is an unbiased estimator. Next, we show the
relationship between the diffusion error covariance matrix Pk,i|i and the augmented error
covariance. Consider the following linear time-varying system

xi+1 = Fixi +Gini, (4.20)
ykj,i = Hk,ixi + vk,i. (4.21)

Lemma 4.4.1. The event-triggered diffusion Kalman filter is an unbiased estimator.

Proof. The measurement update step in the linear case results in

P−1
k,i|i = P−1

k,i|i−1 +
∑
j∈Nk

HT
j,iR

−1
i Hj,i, (4.22)

Ψk,i = x̂k,i|i−1 + Pk,i|i
∑
j∈Nk

HT
j,iR

−1
i [ykj,i −Hj,ix̂k,i|i−1]. (4.23)

The estimation error x̃k,i|i−1 at the end of Algorithm 4 is defined and updated according
to

x̃k,i|i−1 := xi − x̂k,i|i−1

= Fi−1x̃k,i−1|i−1 +Gi−1ni−1. (4.24)
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After defining the estimation error at the end of the measurement update by Ψ̃k,i, we have

Ψ̃k,i := xi −Ψk,i

(4.23)
= x̃k,i|i−1 − Pk,i|i

∑
j∈Nk

HT
j,iR

−1
i

[
ykj,i −Hj,i(xi − x̃k,i|i−1)

]
(4.21)
= x̃k,i|i−1 − Pk,i|i

∑
j∈Nk

HT
j,iR

−1
i

[
Hj,ix̃k,i|i−1 + vj,i

]
= Pk,i|i

(
P−1
k,i|i −

∑
j∈Nk

HT
j,iR

−1
i Hj,i

)
x̃k,i|i−1 − Pk,i|i

∑
j∈Nk

HT
j,iR

−1
i vj,i.

(4.25)

Using (4.22) to simplify (4.25) results in

Ψ̃k,i
(4.22)
= Pk,i|iP

−1
k,i|i−1x̃k,i|i−1 − Pk,i|i

∑
j∈Nk

HT
j,iR

−1
i vj,i. (4.26)

Applying the diffusion step (4.15) results in

x̃k,i|i =
∑
l∈Nk

clkΨ̃l,i

(4.26)
=

∑
l∈Nk

clk

[
Pl,i|iP

−1
l,i|i−1x̃l,i|i−1 − Pl,i|i

∑
j∈Nl

HT
j,iR

−1
i vj,i

]
. (4.27)

ExecutingM time updates and propagation updates before the tr(WPL,i|iW
T ) exceeds

the threshold πmax results in

x̃k,i+M+1|i+M

(4.24)
= Fi+M x̃k,i+M|i+M +Gi+Mni+M

(4.16)
= Fi+M x̃k,i+M|i+M−1 +Gi+Mni+M

(4.24)
= Fi+M

(
Fi+M−1x̃k,i+M−1|i+M−1 +Gi+M−1ni+M−1

)
+Gi+Mni+M

=
M∏
j=0

Fi+M−jx̃k,i|i +
M∑
l=1

M−l∏
j=0

Fi+M−jGi+l−1ni+l−1 +Gi+Mni+M .

(4.28)

Inserting (4.27) in (4.28) results in

x̃k,i+M+1|i+M =
M∏
j=0

Fi+M−j

[∑
l∈Nk

clk

[
Pl,i|iP

−1
l,i|i−1x̃l,i|i−1 − Pl,i|i

∑
j∈Nl

HT
j,iR

−1
i vj,i

]]

+
M∑
l=1

M−l∏
j=0

Fi+M−jGi+l−1ni+l−1 +Gi+Mni+M . (4.29)
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Taking the expectations of both sides of (4.29) results in the following recursion given
that we have zero mean noises:

Ex̃k,i+M+1|i+M =
M∏
j=0

Fi+M−j

∑
l∈Nk

clkPl,i|iP
−1
l,i|i−1Ex̃l,i|i−1. (4.30)

Since Ex̃l,0|−1 = 0 as x̂l,0|−1 = 0 and Ex0 = 0 [141], we conclude that the event-
triggered diffusion Kalman filter is an unbiased estimator.

The Kronecker product is denoted by �. The diffusion step (4.15) in Algorithm 4
combines the intermediate estimates from neighbors without combining the correspond-
ing error covariance matrices, as we mentioned before. Thus, we need to find the new re-
lationship between Pk,i|i, and the augmented error covariance. We define the augmented
state-error vector X̃i|i for the whole network as

X̃i|i :=
[
x̃1,i|i, . . . , x̃N,i|i

]T
. (4.31)

We further introduce the following block-diagonal matrices and vi:

Hi := diag(H1,i, . . . , HN,i),

Pi|i := diag(P1,i|i, . . . , PN,i|i),

Pi|i−1 := diag(P1,i|i−1, . . . , PN,i|i−1),

vi := [v1,i, . . . , vN,i]
T .

Lemma 4.4.2. The relationship between the error covariance PX̃ |i = E{X̃i|iX̃ T
i|i} of the

augmented state and the diffusion error covariance Pk,i|i is:

PX̃ |i+M+1 = AiPX̃ |iATi +Bi

(
11

T �Qi+M

)
BT

i

+
M∑
l=1

Di,l

(
11

T �Qi+l−1

)
DT

i,l + EiRi+M+1E
T
i , (4.32)

where

Zi := CTPi+M+1|i+M+1P−1
i+M+1|i+M ,

Ai := Zi

(
IN �

M∏
j=0

Fi+M−j

)
,

Bi := Zi

(
IN �Gi+M

)
,

Di,l := Zi

(
IN �

M−l∏
j=0

Fi+M−j

)(
IN �Gi+l−1

)
,

Ei := CTPi+M+1|i+M+1ATHT
i+M+1R−1

i+M+1. (4.33)
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Proof. Extending (4.27) to the augmented version results in

X̃i+M+1|i+M+1

(4.31)
=
[
x̃1,i+M+1|i+M+1, . . . , x̃N,i+M+1|i+M+1

]T
(4.27)
= CT

 P1,i+M+1|i+M+1P
−1
1,i+M+1|i+M x̃1,i+M+1|i+M

...
PN,i+M+1|i+M+1P

−1
N,i+M+1|i+M x̃N,i+M+1|i+M


− CTPi|iAT

H1,i+M+1R
−1
1,i+M+1v1,i+M+1

...
HN,i+M+1R

−1
1,i+M+1vN,i+M+1

 ,
or equivalently

X̃i+M+1|i+M+1 = CTPi+M+1|i+M+1

(
P−1

i+M+1|i+MX̃i+M+1|i+M −ATHT
i+M+1R−1

i+M+1vi+M+1

)
,

(4.34)

with
C := C � Im A := A� Im, (4.35)

where the element at row l and column k of diffusion matrix C is clk in (4.15). The A is
the adjacency matrix in (4.5). The size of xi in (4.9) is m. Im is the identity matrix with
size m×m. Similarly, extending (4.28) to the augmented version results in

X̃i+M+1|i+M =
(
IN �

M∏
j=0

Fi+M−j

)
X̃i|i +

(
IN �Gi+M

)(
1� ni+M

)
+

M∑
l=1

(
IN �

M−l∏
j=0

Fi+M−j

)(
IN �Gi+l−1

)(
1� ni+l−1

)
. (4.36)

Inserting (4.36) into (4.34) results in

X̃i+M+1|i+M+1 = AiX̃i|i +Bi

(
1� ni+M

)
+

M∑
l=1

Di,l

(
1� ni+l−1

)
− Eivi+M+1. (4.37)

Taking the expectation of both sides of (4.37) results in (4.38) with the assumption that
the state error X̃ , the time instances of modeling noise ni, and the time instances of
measurements noise vi are mutually independent [141].
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PX̃ |i+M+1 = E
{
X̃i+M+1|i+M+1X̃ T

i+M+1|i+M+1

}
(4.37)
= AiE

{
X̃i|iX̃ T

i|i

}
ATi +BiE

{(
1� ni+M

)(
1� ni+M

)T}
BT

i

+
M∑
l=1

Di,lE
{(
1� ni+l−1

)(
1� ni+l−1

)T}
DT

i,l

+ EiE
{
vi+M+1v

T
i+M+1

}
ET

i . (4.38)

Applying the property of Kronecker products that (A�B)(C �D)T = (ACT �BDT )
results in

PX̃ |i+M+1 =AiPX̃ |iATi +Bi

(
11

T �Qi+M

)
BT

i

+
M∑
l=1

Di,l

(
11

T �Qi+l−1

)
DT

i,l + EiRi+M+1E
T
i . (4.39)

The relation (4.39) relates the error covariance PX̃ |i of the augmented state and the dif-
fusion error covariance matrix Pk,i|i and this concludes the proof.

4.5 Evaluation

We start by describing our application to the considered localization and time synchro-
nization problem. Next, we preform case studies to have a satisfying evaluation on the
same testbed used in Section 3.5.

4.5.1 Application to Localization and Time Synchronization

One of the illustrative application to the event-triggering body of work is the distributed
localization and time synchronization problem due to its need for excessive commu-
nication and computation overhead. Therefore, we pick this application to show the
practicality of our proposed algorithm in real life. Our state vector consists of three-
dimensional position vector pk,i, a clock time offset ok,i, and a clock frequency bias bk,i
for all nodes. We adopt a convention where both ok,i and bk,i are described with respect
to the global time clock which is usually the clock of a leader node. Every node is inter-
ested in the state of the whole network. Thus, our state vector is xk,i = [x̄1,i, ..., x̄N,i]

T ,
where x̄k,i =

[
pTk,i, ok,i, bk,i

]T .
The clock parameters evolve according to the first-order affine approximation of the

dynamics ok,i+1 = ok,i + bk,iδi and bk,i+1 = bk,i, where δi := tL,i+1 − tL,i given that tL,i is
the time according to the leader node, which is the global time. Therefore, we can write
the update function as:

78



4.5 Evaluation

fi(x̄k,i) =

 pk,i

ok,i + bk,iδi
bk,i

 . (4.40)

Our framework supports three types of measurements which are distinguished by the
number of messages exchanged between a pair of nodes. The measurement vector sent
from node j ∈ Nk to node k has the form ykj,i = [dkj,i, rkj,i,Γkj,i]

T , where, dkj,i, rep-
resents the counter difference at time step i which is the difference between the clock
offsets of the two nodes k and j. On the other hand, rkj,i represents a noisy measure-
ment due to frequency bias discrepancies between k and j which is formally represented
by single-sided two-way range. Finally, Γkj,i is another distance measurement between
nodes k and j based on a trio of messages between nodes at time index i. This is a more
accurate estimate than rkj,t due to mitigation of frequency bias errors from the additional
message. It is formally called double-sided two-way range. For more details about the
three types of measurements, we refer the reader to Section 3.3.1.

We want to note that the subset of these measurements may be used rather than the full
set, i.e., we can have experiments involving just rkj,i, Γkj,i, or dkj,i. The response time
duration between the first pair of timestamps is denoted by TRSP1. Our measurement
function is:

hk,i(x̄j,i) =

 (oj,i − ok,i) + 1
c
‖pj,i − pk,i‖2

‖pj,i − pk,i‖2 + c
2

(bj,i − bk,i)TRSP1

‖pj,i − pk,i‖2 + cΓ̃kj,i

 (4.41)

4.5.2 Experiments

We consider mainly the communication overhead and its associated accuracy on differ-
ent network topologies to show the effectiveness of our proposed algorithm. We are
concerned in applying the triggering logic based on the expected estimation error of the
location of the mobile node which is a CrazyFlie. The mobile node is elected as the
leader and its diffusion error covariance matrix is PL,i|i in Algorithm 4.

To give the reader an intuition of how we are going to evaluate our algorithm, we
show the results of running a portion of the experiments in Figure 4.2. The mobile node
is flying at different speeds in our lab while trying to save computation and communi-
cation resources. The threshold πmax is set to be 4m. The second sub-figure in Figure
4.2 shows the behavior of tr(WPL,i|iW

T ). All nodes are only executing the time update
step when tr(WPL,i|iW

T ) is less than πmax. As a consequence, we are decreasing the
spent power in measurements, message exchange, and computation overheads. The ef-
fect on the estimated localization error of the mobile node can be seen clearly in the first
sub-figure of Figure 4.2. Once, tr(WPL,i|iW

T ) reaches the threshold πmax, all nodes are
triggered to start measuring and to exchange messages to decrease tr(WPL,i|iW

T ) back
to the allowed range. The third sub-figure in Figure 4.2 demonstrates the time where the
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Figure 4.2: A snapshot of 20 seconds of our experiments. The threshold is set to 4m.
The 3D localization error and trace value tr(WPL,i|iW

T ) are shown in the
first and second sub-figures, respectively. The measurement and diffusion
flags are the same and shown in the third sub-figure where, a value of 1
indicates of executing the step, while 0 means skipping the step at the corre-
sponding time instance. Time Update step is happening all the time.

measurement update step is executed at all nodes. For instance, we can see that the mea-
surement update step happens at the time instances 0.1, 2.7, 4.4, 5.1, 7.0, 10.1, 12.9, 16.4
so that we can notice the decrease in the localization error in the first sub-figure at the
same time instances. Similarly, the diffusion update step happens just after the mea-
surement update step. The time update step is happening all the time. The CrazyFlie
is flown through our lab over four different sessions. Each session was conducted on
a different day with a different number of students in the room. Also, the path of the
CrazyFlie was a random walk for each day. We repeated the experiments while setting
a different threshold, then calculate the number of shared messages between nodes and
the localization error reported by the motion capture system.

4.5.2.1 Fully-Connected Network Case Study

We are going to illustrate the effectiveness of our triggering algorithm by showing the
amount of communication-saving and the associated localization error by applying the
algorithm over a fully-connected network.

Communication Analysis: Figure 4.4a shows the effect of changing the threshold
value πmax on the percentage of the saved message for a fully connected network. Zero
threshold refers to the case of sending all the messages and running the three steps of
the algorithm in a normal fashion. In other words, it corresponds to sending 1, 975, 632
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Figure 4.3: The trade-off between the communication overhead saving and the mean 3D
localization error of the CrazyFlie for a fully connected network.

messages. Remember that every message already corresponds to single-sided or double-
sided two-way range measurements. Thus, the reported number of messages should be
multiplied by two or three, depending on the message ranging type. Setting the threshold
to 1m leads to saving about 86.2% of the overall number of messages. Namely, saving
1, 702, 797 messages. Also, a threshold of 5m ends up with saving 98% of the total
number of messages.

Accuracy Analysis: We conduct the following study to see what is the trade-off be-
tween the 3D-localization error with each threshold value πmax. The error plot in Figure
4.4c summarizes our results of this case study. The red rectangles correspond to the mean
value of the localization error, while the vertical lines represent the standard deviation
around that mean value. At threshold πmax = 0, we are not saving any resources, and
we achieve 0.377m mean localization error with a standard deviation of 0.195m. While,
πmax = 5m results in a 1.1545m mean error with a standard deviation of 0.71m. Finally,
πmax = 10m achieves a 1.923m mean error with a standard deviation of 0.790m. It is up
to the user to set the appropriate threshold based on his need.

Our algorithm restricts the amount of processing, sensing, and communication. Such
a chosen restriction dramatically reduces the amount of communication overhead in the
network, but potentially results in reduced network performance. We analyze the trade-
off between the number of messages sent in the wireless network and the estimation al-
gorithms performance. Figure 4.3 shows the trade-off between the communication over-
head and the mean 3D localization error. Interestingly, saving 86.2% of communication
overhead leads to 16.57% increase in the localization error. This has been calculated by
considering the mean localization error plus the standard deviation at a threshold 0 and
1.
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(a) Effect of changing the threshold value πmax on the per-
centage of the saved message for a fully connected net-
work.

(b) Effect of changing the threshold value πmax on the per-
centage of the saved message for a partially connected net-
work.

(c) Effect of changing the threshold value πmax on the 3D lo-
calization error of the CrazyFlie for a fully connected net-
work.

(d) Effect of changing the threshold value πmax on the 3D
localization error of the CrazyFlie for a partially connected
network.

Figure 4.4: Effect of changing the threshold value πmax on a fully connected network
and partially connected one.

4.5.2.2 Partially Connected Network Case Study

We considered another case study where every node of the nine nodes is connected to
only four neighbors instead of eight neighbors in the previous case study. Again, we are
going to analyze the communication saving and the associated localization error. Figure
4.4b summarizes the results. Interestingly, setting the threshold to 5m leads to saving
about 81.2% of the overall number of messages. Also, a threshold of πmax = 9m ends up
saving 92% of the total number of messages. The error plot in Figure 4.4d summarizes
our results of this case study. Again, the red rectangles correspond to the mean value
of the localization error, while the vertical lines represent the standard deviation around
that mean value. At threshold πmax = 0m, we are not saving any resources, and we
could achieve 2m mean localization error with a standard deviation of 0.6m, where the
network is partially connected as described before. While πmax = 5m results in a 2.6m
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mean error with a standard deviation of 0.49m. Finally, πmax = 10m achieves a 3.46m
mean error with a standard deviation of 0.74m.

4.6 Conclusions
We investigated the energy aware-aspect of the distributed estimation problem for a
multi-sensor system with event-triggered processing schedules. More specifically, we
propose the event-triggered diffusion distributed Kalman filter for wireless networks.
Our algorithm is the first algorithm that temporarily shuts down the measurement and
diffusion steps in the diffusion Kalman filter. We have demonstrated our new algorithm
on the distributed localization and time synchronization application. Several experi-
ments using real, custom ultra-wideband wireless anchor nodes and mobile quadrotor
node were conducted, and they indicate that the proposed algorithm is reliable in terms
of performance, and efficient in the use of computational and communication resources.
Future directions will deal with testing over a large-scale system.
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5 Distributed Secure State
Estimation Using Reachability
Analysis

The Office of Science and Technology Policy (OSTP) assigns a high priority to cyber-
physical systems (CPS) security since the recent attacks launched in the cyber domain
led to calamitous consensuses during the past decades [143]. Therefore, secure state es-
timation has attracted attention due to the rise of new security vulnerabilities and attacks
at the sensor level with potentially life-threatening consequences in the last decade. For
instance, the Maroochy Water Breach [4] made it possible to attack the underlying in-
frastructure at Maroochy Water Services in Queensland. Also, one popular attack is the
Stuxnet attack on Supervisory Control and Data Acquisition (SCADA) systems, which
are used in industrial process control [5, 6].

After proposing distributed estimation algorithms in Chapters 3 and 4, we attach the
utmost importance to the security of the distributed estimation algorithms. We provide
a solution for attacks on the sensor. More specifically, we propose an approach for dis-
tributed linear secure state estimation in the presence of measurement noise and model-
ing errors. By combining the diffusion Kalman filter [33] with reachability analysis [34],
we provide a new algorithm for distributed secure state estimation between a network
of nodes. We apply the proposed algorithm to a localization problem of a rotating tar-
get. This chapter is based on our publication [24, 32] and is organized as follows. We
review the related work in Section 5.1. After we introduce the problem and the pro-
posed solution in Section 5.2, the secure measurement update is presented in Section 5.3
and secure diffusion in Section 5.4. The applicability of the algorithm is demonstrated
in Section 5.5. This is followed by a discussion of the algorithm and a conclusion in
Section 5.6.

5.1 Related Work
We review the different techniques that have addressed the problem of secure state es-
timation against sensor attacks in centralized dynamical systems. Fawzi et al. show
the impossibility of accurately reconstructing the state of a system if more than half of
the sensors are attacked [144]. The presence of process and measurements noise offers
attackers an additional possibility to tamper with CPS sensors, thereby making the detec-
tion task more challenging. Another work in [145] uses brute force search for studying
the observability of linear systems under adversarial attacks; however, this approach is
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not applicable to large-scale systems. A practical solution is proposed in [146] that
considers jitter, latency and synchronization errors. Graph-theoretic conditions for the
detectability of attacks for a noiseless system are shown in [147]. Also, a measure of the
stealthiness of attacks in stochastic control systems is proposed in [148, 149].

The replay attack is commonly defined as observing and recording sensor readings and
replying them afterward while carrying out an attack. This kind of attack is considered
in [150] where all sensors were attacked and the attacker does not have any model knowl-
edge. Another work considered a stochastic game for detecting replay attacks [151].
Also, a solution for denial of service attacks under Gaussian noise is proposed in [152].
Furthermore, false data injection is solved by proposing an ellipsoidal algorithm where
the strategy of the attacker is formulated as a constrained control problem [153].

Next, we review the related work in the distributed setting. Distributed processing
mitigates the computation load by getting rid of the fusion center in centralized fusion
and estimation. Pasqualetti et al. [154] propose a fully decentralized solution for at-
tack identification. However, they only consider noiseless systems. Distributed secure
controllers based on a virtual fractional dynamic surface are designed in [155]. Also, a
consensus-based protocol is utilized for distributed secure state estimation in [156].

5.2 Distributed Secure State Estimation and
Proposed Solution

We target to estimate the full state vector of a system in a distributed fashion by observing
physical signals through sensory devices which are under attack. The distributed process-
ing aims to get rid of the required fusion center in the centralized version. In order to
deviate the system from its correct operation, an attacker endeavors to either a) physically
attack the sensor environment, b) attack the sensor hardware, c) break the communication
links in the CPS, or d) modify the sensor readings (e.g., by delaying packets in time-of-
flight based localization). We first discuss our threat model and preliminaries followed
by a mathematical formulation of the distributed secure state estimation problem.

5.2.1 Threat Model
We consider attackers that directly compromise the readings of various sensor groups and
man-in-the-middle attackers that endeavor to modify the data transfer between sensors,
as shown in Figure 5.1.a. Our assumptions are:

• The adversary can commit to unbounded attack values.

• The adversary additionally has no prior knowledge of the system parameters.

• The adversary can corrupt all sensors and has unlimited computational power.

• The selection of attacked sensors is unknown to the system and can change dy-
namically over time.
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5.2.2 Preliminaries
We state some preliminaries around the proposed solution.

Definition 5.2.1. (Zonotope) A zonotope Z = 〈c,G〉 ⊂ Rn consists of a center c ∈ Rn

and generator matrix G ∈ Rn×e. We define G as e generators g(i) ∈ Rn (i = {1, .., e}),
where G = [g1, ..., ge] [34]. A zonotope is a set

Z =
{
c+

e∑
i=1

βig
(i)
∣∣∣− 1 ≤ βi ≤ 1

}
. (5.1)

2

Given two zonotopes Z1 = 〈c1, G1〉 and Z2 = 〈c2, G2〉, we define [34]:

1. Minkowski sum:
Z1 � Z2 =

〈
c1 + c2, [G1, G2]

〉
(5.2)

2. Linear map:
LZ1 =

〈
Lc1, LG1

〉
(5.3)

We define the reachable set as the set of possible solution xi which can be reached at
each time step. In this work, reachable sets are represented by zonotopes due to their
favorable computational complexity as discussed in [34].

5.2.3 System Model
We consider a set of N nodes indexed by k ∈ {0, . . . , N − 1} distributed geographically
over some region. The neighborhood of a node k is denoted by the set Nk which con-
tains the nodes connected to node k; the size of Nk is mk. Every node is interested in
estimating the state x̃ of the network securely. We assume that network connectivity is
fixed with time and the measurements trace follows a predefined sequence. We consider
a discrete-time, linear system model with pairwise measurements taken per time step i.

x̃k,i+1 = F̃ix̃k,i + ñk,i

ykj,i = H̃kj,ix̃k,i + ṽk,i + akj,i ,
(5.4)

where x̃k,i ∈ Rnk is the state of node k at time i ∈ N and ykj,i ∈ Rmk is the measurement
sent to node k from the neighboring node j ∈ Nk. The process and measurement noises
are denoted by ñk,i and ṽk,i, respectively. All vectors and matrices are real-valued and
have proper dimensions. The attack vector akj,i is a vector which models how an attacker
corrupts the sensor measurements between node k and node j at time i. A non-zero
element in the vector a corresponds to the attacked values on the corresponding sensor,
otherwise the measurement is not attacked. Thereby, the additive attack vector akj,i can
account for both a malicious node k and a corrupted link kj. Moreover, the attack values
can be constant or time-varying. The modeling noise ñk,i and measurement noise ṽk,i
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Figure 5.1: Attacks are on links and sensors as shown in sub-figure a. Links are divided
into passive (dashed) and active (bold) links at each time step. Active links
carry a measurement between two nodes. The two sub-figures b and c show
the active and passive links at two time steps.

are assumed to be unknown but bounded by zonotopes: ñk,i ∈ IQi
= 〈 0, Qi〉 and

ṽk,i ∈ IRi
= 〈0, Ri〉.

5.2.4 Proposed Solution

Our proposed solution is based mainly on a diffusion Kalman filter [157] - which was
studied in Chapters 3 and 4 - integrated within a secure state estimation concept [27] and
combined with reachability analysis [34]. The original non-secure diffusion Kalman fil-
ter consists of three main steps, namely, measurement update, time update, and diffusion
update. By ensuring the security of all the steps of the diffusion Kalman filter, we can
obtain a secure distributed state estimator. Thus, our solution consists of:

1. Secure measurement update: Every node shares its measurements with its neigh-
bors and does some internal processing. Protecting the measurement update is
achieved by extending secure state estimation in [27] for the distributed case.

2. Secure diffusion: Every node shares its network state estimate with its neighbors
and combines the estimates in a convex way. We protect the diffusion step by
accepting the shared estimate if and only if it is within the accepted region of the
reachability analysis.

3. Time update: Every node updates its state, which is trivially protected as no data
is exchanged.

We will describe the protection of the measurement update and secure diffusion in
more detail in the following sections.
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5.3 Secure Measurement Update

Typically, sensor nodes have one radio for one type of measurement. Thus, one link
is activated per node at each time step for performing measurements (like calculating
the pairwise distances between nodes). For instance, node1 performs measurement with
node3 at t1 in Figure 5.1.b. Then, it will perform measurement with node4 at time t2
in Figure 5.1.c. At the same time, node2 performs measurements with node4 then with
node3, as shown in Figures 5.1.b and 5.1.c. We have five links with five attacks to be
mitigated in Figure 5.1 according to (5.4). Related work typically considers collecting
the measurements from all the links and performs the estimation at once. This results in
a very complex problem with the number of unknown attacks to be equal to the number
of links, which is usually much more than the number of nodes.

In contrast, we propose solving the problem from another perspective: We define the
links between node2 and node4 and between node1 and node3 in Figure 5.1.b as ”active”
links (bold) which carry measurements. The other links (dashed) in Figure 5.1.b are
called ”passive” links. The time horizon of the measurements is divided into time steps
where each node performs a measurement at each time step. We do not estimate the
attack on passive links at the corresponding time steps. So, for example at time t1 in
Figure 5.1.b, why do we trouble ourselves to estimate a23,1? At each time instant i,
each node performs measurement with one neighbor. Note that due to this principle, it
is possible to denote the attack akj,i only by ak,i, i.e., neighbor j is uniquely defined by
time step i and node k. With this idea, the number of attacks at each time instant equals
the number of nodes, instead of the number of links. Therefore, we drastically simplify
the secure state estimation problem. All the links for each node are modeled using one
variable at different time steps. This even works while attacking all the links with time-
varying attacks as we will show in Section 5.5. This concept is repeated at each node
k as every node is interested in estimating the network state. In short, we consider the
attack variables attached to nodes instead of links at different time steps.

More formally, we utilize our idea to change the general model in (5.4) by including
the attack value in the state of the node initiating the measurement. Following this pro-
cedure, the state of node k is extended to xk,i = [x̃T

k,i, a
T
kj,i]

T yielding a modified system
model

xk,i+1 = Fixk,i + nk,i,

ykj,i = Hkj,ixk,i + vk,i.
(5.5)

Proposition 5.3.1. System model (5.4) is equivalent to system model (5.5) under the
assumption that the measurements processing is done for each node with one neighbor
at each time step for a network with pairwise measurements.

Proof: We get rid of j in akj,i in (5.4) by choosing xk,i = [x̃T
k,i, a

T
kj,i]

T where the
variations in j would be presented by changing the time step i, i.e., the couple i and k
uniquely defines the neighbor j because node k can only communicate with one node at
time i. The matrices F̃i and H̃kj,i are changed accordingly to matrices Fi and Hkj,i, re-
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spectively. We assume that the network connectivity is fixed with time and the sequence
in the measurement trace is predefined. 2

A valid question would be how to model the time-evolution for time-varying attacks
ak,i? We choose to set ak,i+1 = ak,i+nk,ai , and the variance of the modeling noise of the
attack entries nk,ai accounts for the time-varying aspect of the attack and for changing
the links between time steps. This lets us move from specifying specific dynamics for the
attacks. Another question would be how to obtain bounds on nk,ai . Our proposed solution
is to use reachability analysis [34] and only accept the measurements that let the state
stay inside the expected reachable set. Also, it should be noted that, since high attack
values can be easily detected by threshold methods (e.g., if the reported distance is far
beyond the range of the area where the network is employed), critical attacks can occur
within a limited interval, which can be represented by the modeling covariance. This
concept - of modeling a time-varying signal using the modeling noise - has been applied
in localization in Section 3.3 where we use a stationary model for process updates of a
flying quadrotor. As long as the quadrotor moves in the range of the modeling noise, we
would be able to localize it correctly.

To move forward with utilizing reachability analysis in our solution, we need to define
the following sets:

Definition 5.3.2. (Predicted State Set) Given system (5.5) with initial state x0 ∈ 〈c0, G0〉,
the reachable state setZk,i of node k is defined as the set of all possible solutions xi which
can be reached given xi−1. IQi

is the zonotope which bounds modeling noise [158, p.4]

Zk,i = FiZk,i−1 � IQi
. (5.6)

2

Definition 5.3.3. (Measurement State Set) Given system (5.5), the measurement state
set Skj,i of node k is defined as the set of all possible solutions xi which can be reached
given ykj,i and vi. This measurement set is a strip [158, p.4]:

Skj,i =
{
xi

∣∣∣|Hkj,ixi − ykj,i| ≤ Rj,i

}
. (5.7)

2

Definition 5.3.4. (Corrected State Set) Given system (5.5) with initial state x0 ∈
〈c0, G0〉, the reachable corrected state set Zk,ψi

of node k is defined as the intersection
between Zk,i and Skj,i [158, p.4]:

Zk,ψi
= Zk,i ∩ Skj,i. (5.8)

2

We denote the predicted and the filtered estimates of xi at time step i obtained by node
k as x̂k,i+1|i and x̂k,i|i, respectively. The main algorithm is summarized in Algorithm 5.
We start with zonotope Z0 = 〈c0, G0〉 where the center c0 equals the expected initial
estimates x0.
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5.3 Secure Measurement Update

Every measurement ykj,i restricts the state to be in a strip Skj,i as shown in (5.7). Every
node corrects the reachable set (zonotope Zk,i|i−1) by determining the set of consistent
states with the model and the measurements received from each neighbor. Therefore,
we need to find the intersection between the family of strips in (5.7) and the zonotope
Zk,i|i−1. This results in calculating the corrected over-approximated zonotope Zk,ψi

for
node k. We extend the work [159] in the following theorem to find the required intersec-
tion.

Theorem 5.3.5. The zonotope Z = 〈c0, G0〉, the family of m strips Skj,i (5.7), and the
vectors λkj,i ∈ Rn are given. The intersection between the zonotope and the strips can
be over-approximated by a zonotope Zk,ψi

= 〈c(λ), G(λ)〉, where

c(λ) = c0 +
∑
j∈Nk

λkj,i(yj −Hkj,ic0) (5.9)

G(λ) =
[
(I −

∑
j∈Nk

λkj,iHkj,i)G0, λk1,iR1,i, ..., λkmk,iRmk,i

]
. (5.10)

Proof: Let x ∈ (Z ∩ Sk1 ∩ ... ∩ Skm), then there is a z, where

x = c0 +G0z, (5.11)

where G0 has full rank. We would like to highlight that the over-approximation comes
from choosing x ∈ (Z ∩ Sk1,i ∩ ... ∩ Skm,i). Then, adding and subtracting∑
j∈Nk

λkj,iHkj,iG0z results in

x = c0 +
∑
j∈Nk

λkj,iHkj,iG0z + (I −
∑
j∈Nk

λkj,iHkj,i)G0z. (5.12)

Given that x is inside the intersection of the zonotope Z and the family of strips, then
x ∈ Skj,i, ∀j ∈ Nk, i.e., there exists a bj ∈ [−1, 1] in (5.7) for the jth strip so that:

Hkj,ix− yj = Rj,ibj. (5.13)

Inserting (5.11) in (5.13) results in

Hkj,iG0z = yj −Hkj,ic0 +Rj,ibj. (5.14)

Inserting (5.14) in (5.12) results in
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5 Distributed Secure State Estimation Using Reachability Analysis

x= c0 +
∑
j∈Nk

λkj,i(yj −Hkj,ic0 +Rj,ibj) + (I −
∑
j∈Nk

λkj,iHkj,i)G0z

= c0 +
∑
j∈Nk

λkj,i(yj −Hkj,ic0) + (I −
∑
j∈Nk

λkj,iHkj,i)G0z +
∑
j∈Nk

λkj,iRj,ibj

= c0 +
∑
j∈Nk

λkj,i(yj −Hkj,ic0)︸ ︷︷ ︸
c(λ)

+
[
(I −

∑
j∈Nk

λkj,iHkj,i)G0, λk1,iR1,i, ..., λkmk,iRmk,i

]
︸ ︷︷ ︸

G(λ)


z
b1

..
bmk



= c(λ) +G(λ)


z
b1

..
bmk

 2

Choosing an appropriate λ: In order to find an appropriate over-approximation for
the intersection of a zonotope with a family of strips, λ is typically chosen to minimize an
approximation criterion. The authors in [159] proposed two approaches for intersecting
a zonotope with a strip. The first approach is a segment-minimization approach which
has a low computational complexity by minimizing the Frobenius norm of G(λ). The
second approach provides a better approximation; it is a volume-minimizing approach
and requires solving a convex optimization problem.

However, if we take a careful look at (5.15), which is the measurement update equation
that propagates the measurement effect into the estimates in the diffusion Kalman filter
[157], we can find that the structure is very similar to our formula (5.9) which finds the
new center of the intersection of a zonotope with a family of strips.

ψk,i = x̂k,i|i−1 + Pk,i|i
∑
j∈Nk

HT
kj,iRj,i

−1[ykj,i −Hkj,ix̂k,i|i−1]

(5.15)

Thus, we choose to use the λ that is aligned with diffusion Kalman filter theory at each
node k as shown in step 1 of Algorithm 5:

λkj,i = Pk,i|iH
T
kj,iRj,i

−1 (5.16)

We choose the center of the reachable set on every node k as the estimate ψk,i. Also, as
the size of the generators is increasing in each step by doing the previous measurement

92



5.4 Secure Diffusion
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Figure 5.2: Localization error at one node of the rotating target where all the measure-
ments are under attack. The measurements only are under attack while the
diffusion step is not under attack. Attacks are generated from uniform, nor-
mal and Pareto pseudo-random distributions, as shown in (5.13). Y-scales
are different in Figures (a) and (b).

update, we reduce the order of the corrected zonotope Zk,ψi
= 〈ψk,i, Gk,ψi

〉 order by
the method from [160, p.7]. This illustrates Step 1 of Algorithm 5.

5.4 Secure Diffusion
Every node shares its own local estimate ψk,i with its neighbors in the diffusion step
[157]. Then every node averages the shared estimates ψj,i from the neighbors to achieve
a better estimate of the system state. The averaging is based on some weights wkj,i for
each neighbor j [157]. However, these shares may be under attack. Thus, we make use
of reachability analysis to protect against attacks during the diffusion step.

We propose to let every node compute the next corrected state set Zk,ψi
. Then, the

combination in the diffusion step [157] is executed over shares ψj,i inside the corrected
reachable set Zk,ψi

of the node. If the share ψj,i is outside its corrected set, it would
be marked as ”attacked share” and thus excluded. Thus, we can limit the effect of the
attack on the diffusion shares ψj,i. More specifically, we assign the weight to zero if the
share is outside the reachable set Zk,ψi

. Shares inside Zk,ψi
take new weights ŵkj,i where∑

j∈Nk

ŵkj,i = 1.

wkj,i =

{
0 if ψj,i /∈ Zk,ψi

ŵkj,i else
(5.17)

This illustrates Step 2 of Algorithm 5.

5.5 Evaluation
Our proposed algorithm is implemented in Matlab 2017 on a similar example to the one
presented in [157], where a network of eight nodes attempts to track the position of a ro-
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5 Distributed Secure State Estimation Using Reachability Analysis

Algorithm 5: Secure Diffusion Kalman Filter
Start with x̂k0|−1 = x0, Pk,0|−1 = Π0 and zonotope Zk,0|−1 = 〈x̂k,0|−1, Gk,0|−1〉.
For all k, and at every time instant i, compute at every node k:
Step 1: Measurement update (Section 5.3):

P−1
k,i|i = P−1

k,i|i−1 +
∑
j∈Nk

HT
kj,iR

−1
j,iHkj,i

λkj,i = Pk,i|iH
T
kj,iR

−1
j,i

ψk,i = x̂k,i|i−1 +
∑
j∈Nk

λkj,i(ykj,i −Hkj,ix̂k,i|i−1)

Gψk,i|i = [(I −
∑
j∈Nk

λkj,iHkj,i)Gk,i|i−1, λk1,iR1,i,

..., λkmk,iRmk,i]

Reduce the order of the corrected zonotope Zk,ψi
= 〈ψk,i, Gk,ψi

〉 order by
Girard method [160, p.7].
Step 2: Diffusion update (Section 5.4): Filter ψj,i based on the reachability
analysis, i.e. average ψj,i from neighbors if they are within the expected
reachable set and assign the weights wkj,i accordingly. (wkj,i = 0 if
ψj,i /∈ Zk,ψi

).

x̂k,i|i =
∑
j∈Nk

wkj,iψj,i

Gk,i|i = Gk,ψi

Step 3: Time update:

x̂k,i+1|i = Fix̂k,i|i

Pk,i+1|i = FiPk,i|iF
T
i +Qi

Gk,i+1|i = [FiGk,i|i, Qi]

tating object. All computations run on a single thread of an Intel(R) Core(TM) i7-8750
with 16 GB RAM. We made use of Cora [161–163] for zonotope operations. Our exam-
ple is quite representative for secure state estimation, since it includes modeling noise
and measurements noise. The state of each node consists of the unknown 2-dimensional
position of the object combined with the attack on the measurements. The state matrix
in (5.5) is

F =

 0.992 −0.1247 0
0.1247 0.992 0

0 0 1

 , (5.12)
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5.5 Evaluation
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Figure 5.3: Localization error at one node of the rotating target where all the diffusion
shares are only under attack. Attacks are generated from uniform, normal
and Pareto pseudo-random distributions. Y-scales are different in Figures
(a) and (b).
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Figure 5.4: Localization error at one node of the rotating target where all the measure-
ments and the diffusion shares are under attack with time varying values.
Attacks are generated from uniform, normal and Pareto pseudo-random dis-
tributions as shown in (5.13). Y-scales are different in Figures (a) and (b).

and the measurement matrix Hkj,i is [0 1 1] or [1 0 1] in the sequence of the taken
measurements. This means that the nodes take measurements of the unknown position
of the object either in the x or y direction and the measurements are under attack ak,i. We
generate the attacks ak,i as following:

ak,i =


2 rand + 4 if t < 1/3Tsim,

randp(3, 2) + 8 if 1/3Tsim < t < 2/3Tsim,

2 randn + 50 if t > 2/3Tsim,

(5.13)

where rand and randn return pseudo-random values drawn from the standard uni-
form distribution on the open interval (0,1) and the standard normal distribution, respec-
tively. On the other hand, randp(3, 2) generates values form the Pareto distribution,
where the shape equals 3, and the scale equals 2.The total simulation time is denoted by
Tsim.

The implemented random attacks have time-varying statistics, as shown in (5.13). The
simulations without protection and with protection are shown in Figures 5.2a and 5.2b,
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5 Distributed Secure State Estimation Using Reachability Analysis

Table 5.1: The mean and standard deviation of the localization error (m) of the rotating
target at one node with and without the proposed protection algorithm.

Insecure Secure

Steps under attack mean std mean std

Measurement step only 31.558 28.119 3.306 1.523
Diffusion step only 219.325 136.567 3.194 1.474

Measurement and diffusion steps 250.161 164.489 3.220 1.518

respectively, by attacking the measurement step only. Then, we attack the diffusion
shares ψk,i using the three presented random generators. The insecure and secure ver-
sions run on the same values of random numbers for a fair comparison and the diffusion
step only is under attack. The outputs are shown in Figures 5.3a and 5.3b. Finally, we
attack both the measurement and diffusion steps and report the output in Figures 5.4a
and 5.4b. We obtain the reported means and standard deviations in Table 5.1 with and
without the proposed protection on the same set of attacks. The mean is around 3m for
the secure version with a standard deviation around 1.5 regardless of the attack type.

5.6 Conclusions
We combine reachability analysis with secure state estimation to obtain a secure and
fully distributed estimator. Our approach works for discrete-time, linear systems affected
by disturbances, and measurement noises. Our proposed solution is fully distributed and
does not require a fusion center. Our algorithm is the first algorithm that combines reach-
ability analysis with secure state estimation. We consider attacks on the sensor levels as
well as the communication links. At each time step, estimation output is supervised by
reachability analysis to provide secure estimation shares. Reachability analysis allows
us to have secure diffusion in distributed secure state estimation. We demonstrate the ap-
plicability of our approach with a simulation of a rotating target where the measurements
and the diffusion shares are under attack.
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6 Localization for Enabling IoT
Device Selection and Control

There is widespread interest in having smart devices in the last decade. These devices
penetrate every aspect of our daily lives in many forms including mobile phones, smart-
watches, thermostats, and door locks. Also, smart home controllers, e.g., Amazon Echo1

and Google Home2, represent another recent wave of smart devices that are catching a
lot of attention and gaining remarkable popularity. The development of smart devices
has been fueled by research progress in several directions, such as improved network
connectivity, reliability, and availability. The advancement in machine learning and data
analysis also allows us to make semantics inferences from the sensory data streamed
from these devices. However, making an easy and natural control interface for many
surrounding devices at home remains an unsolved problem. Human interaction with
machines in daily use should be intuitive and simple. Thus, much effort has been in-
vested in the Human-Computer Interface (HCI) domain to enable more natural forms of
interactions between humans and devices.

Different forms of interaction have been proposed, such as speech recognition [164],
face recognition [165], gaze/eye-tracking [166], and hand gesture tracking [167]. How-
ever, despite this tremendous effort, we are still far from having a natural way to control
and interact with devices. Vision-based methods (e.g., [168]) present a serious invasion
of the user’s privacy and they work only when sufficient lighting is provided in the room

1http://amazon.com/echo
2https://madeby.google.com/home/

Figure 6.1: Gesture based IoT device selection using wearable devices.
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6 Localization for Enabling IoT Device Selection and Control

assuming all objects are in the view without obstruction. Similarly, approaches based
on speech recognition also invade privacy because they contentiously record audio and
release it to remote cloud servers to interpret users’ commands.

The hand gesture is a natural and effective communication method. Hand gesture
recognition has received much attention, especially in the HCI domain. Different sens-
ing modalities have been proposed to recognize hand gestures, including cameras [168],
depth sensors, Wi-Fi signals [169, 170], and body-worn inertial sensors [171–173]. The
last approach, in particular, fits well into the smart home scenario because of the wide
adoption of smartwatches and other wearable devices that are equipped with inertial sen-
sors. However, only a few existing gesture-based control systems have reached end users
because there is no scalable and practical solution that fits into everyday life, yet. For
example, a typical smart home may have tens of devices connected to each other, in-
cluding lights, thermostats, locks, and other appliances. Current smart devices typically
require every single family member to install applications for controlling these devices.
It might additionally burden the users to assign semantic labels for each device such as
“living room light 2” or “northeast door.” With the increasing number of devices in users’
surroundings, this process becomes cumbersome.

Existing hand gesture recognition methods do not well address the device selection
problem. Although a body of literature has proposed different gesture recognition so-
lutions [167, 170, 172–182], none of these techniques can select a device and control it
without increasing the appliance installation overhead. For example, if a user wants to
turn on the light in the living room, how does a smart home system know which device is
intended? In fact, without augmenting the previous gesture recognition techniques with a
position estimation technique coupled with predetermined locations of all smart devices,
none of the existing techniques can be used to directly control a specific device based
on human gestures unless a special gesture is assigned to each individual device. This
motivates us to develop a new technology to enable accurate and scalable IoT device
selection and control.

Towards achieving a scalable and practical architecture for selecting and giving com-
mands to smart home devices, we design SeleCon, a gesture-based system that aims to
provide a natural device selection and control method for users to interact with smart
IoT devices. A user can simply point his arm towards the target device to select it, as
shown in Figure 6.1. SeleCon stands for devise selection and control. SeleCon is able to
identify which IoT device is selected by monitoring the direction of the wrist movement.
The user then draws a gesture in the air to give a command to the selected device.

As smart devices can be placed in arbitrary locations and users can move over time,
inertial sensors alone are not sufficient to identify the intended target. Therefore, we
designed and implemented a smartwatch prototype equipped with an ultra-wideband
(UWB) transceiver, and we use pair-wise ranging measurements between the smartwatch
and the IoT devices to identify the target. The intuition behind our device selection pro-
cess is that when a user points towards a given device, the smartwatch attached to the
wrist of the user will get closer to the chosen device after the transition of the pointing
event. We use different machine learning algorithms to verify our hypothesis. We also
develop machine learning models for recognizing hand gestures for giving commands to
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6.1 Related Work

Table 6.1: Summary of related work.

Research Pointing Gesture Requirements
Detection Recognition

SeleCon 3 3 Smart watch.
WristQue [182] 3 3 Pre-calibration of magnetic fields.

and full localization using UWB
WiTrack [169] 3 7 Does not require the user

to carry any device.
Inertial Gestures [183] 7 3 Smart watch.
Kinect Pointing [184] 3 7 Kinect within 3.5m.

target devices. One major challenge is that UWB is known to be power-hungry com-
pared to inertial sensors. To address this problem, we use the low power inertial sensors
to implement a motion-based triggering module so that UWB ranging is turned on only
after potential pointing actions are detected. Therefore, SeleCon can effectively reduce
the operating time of the UWB transceiver to save energy.

This chapter is based on our publication in [23]. The rest of the chapter is organized
as follows: Section 6.2 provides an overview of the proposed SeleCon system architec-
ture. Section 6.1 summarizes the related work. We then go through SeleCon module
by module. Pointing event detector is illustrated in Section 6.3. Section 6.4 introduces
a simplified formulation for pointing gesture recognition problem, highlights the chal-
lenges in pointing gesture recognition, and introduces device selection algorithm using
pattern matching. The language of gestures is introduced in Section 6.5. Section 6.6 eval-
uates SeleCon. Current limitations and future work are shown in Section 6.7. Finally,
Section 6.8 concludes this chapter.

6.1 Related Work

To examine various interaction modalities that are used to communicate with IoT de-
vices, including device selection and device control, we broadly partition prior work into
three groups and compare the most related work in Table 6.1.

6.1.1 Inertial-based interaction

Previous research showed that inertial sensors are good at capturing local movements.
For instance, it has been demonstrated that inertial sensors can be used for full body pos-
ture [172]. As wristbands become more and more popular, a body of literature explores
the sensing boundary in this form factor. Xu et al. [185] point out that it is possible to
track arm-level [173], hand-level [167, 179], and finger-level gestures [171, 186]. Shen
et al. also show that since wrist position is determined by both the shoulder and the el-
bow motions [187], the full arm posture can be sensed even by a wristband. Based on
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this work, several interesting sensing applications such as driving [180,188], whiteboard
writing [189], gaming control3 [190], and writing or drawing in the air [181, 183, 185]
have been developed. Researchers found inertial sensors are capable of capturing subtle
hand movements, and sensitive information can be leaked when a user types [191–193].
Interestingly, WristQue [182] combines environmental and inertial sensing with pre-
cise indoor localization, using UWB for pointing and gestures recognition. However,
WristQue needs magnetic field pre-calibration and full localization information, which
are critical limitations in that work. SeleCon aligns with all these works and employs
inertial sensors for two use cases: Accurate pointing action detection to save energy and
hand gesture recognition for controlling devices.

6.1.2 Wireless-based interaction

Prior work attempts to use RFID [175, 176] and audio [177] for gesture recognition.
However, they are not feasible because an RFID reader typically has a coverage limit of
10m2. Also, ambient sound may add noises and decrease the accuracy. Perhaps WiFi
is a better medium to “observe” interactions between humans and devices as several
works have demonstrated WiFi can mimic human sensations as in WiSee [170], WiHear
[194], and WiFinger [195]. One popular technique is leveraging the Doppler effect to
detect moving objects [174] which allows the system to “see through the wall” [169];
Kim et al. also exploit this phenomenon to monitor human activities [196]. Extracting
information Channel State Information (CSI) from the Network Interface Card (NIC) is
another technique to sense the environment, such as occupancy detection [197], typing
[178], falling detection [198], and activities involving body displacements in general
[199, 200]. Though gesture recognition via WiFi has been proved possible, none of this
previous work is capable of identifying which device is pointed at by a user. This is
because WiFi cannot give good range resolution. In contrast, UWB can provide high
resolution of ranging measurement, which makes it a promising technology for indoor
localization [201]. In SeleCon, we choose UWB for device selection because pointing is
instant and the distance between wrist start and stop positions is short.

6.1.3 Vision-based interaction

Microsoft Kinect4 and other commercial products employ both an RGB and a depth
camera to track the human skeleton. Sharing the same idea, Digiteyes [202] reports 27
degrees of freedom (DOF) hand model at a speed of 10 Hz. This technique has also been
applied on detecting human gestures [168] and sign language [203]. Jing et al. [184]
recognize pointing events using Kinect. Perhaps intuitive to humans, vision-based ap-
proaches, however, suffer from requiring a line of sight and good lighting conditions, and
also impose severe privacy invasion. HeatWave [204] and HeatProbe [205] use thermal
cameras to detect and track how users interact with appliances.

3Nintendo wii. http://www.nintendo.com/wii
4https://developer.microsoft.com/en-us/windows/kinect
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6.2 System Overview

Figure 6.2: SeleCon system overview.

6.2 System Overview

We present SeleCon for device selection and control. The different stages in the SeleCon
processing pipeline is presented in Figure 6.2. Broadly speaking, our system can be di-
vided into three different stages in the following chronological order: the listening stage,
the pointing stage, and the command stage. In listening stage, SeleCon detects all poten-
tial wrist motion events using the low-power inertial sensors. After a hand motion event
is detected, SeleCon moves into the pointing stage. Our system uses the inertial sensor
to verify whether the user has started pointing to a target device. Concurrently, SeleCon
turns on the UWB transceiver to perform distance ranging between the smartwatch and
the surrounding smart devices for a predefined time window. If the pointing action is
verified by our system, SeleCon performs machine learning algorithms over UWB time
series to determine which device is selected. The last step is the command stage. Sele-
Con again leverages the inertial sensors, exploits machine learning algorithms to classify
the hand gestures. Figure 6.8 shows the supported gestures in our system. Figure 6.3
shows an example of inertial sensor data over a valid device interaction session. A ses-
sion includes two parts, a pointing event followed by a gesture to give the command to a
device. Note that the entire process is finished within 2 seconds.
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6.3 Pointing Event Detection
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Figure 6.3: An example of inertial data: A user points to a device (TV) and conducts a
moving up gesture (raise volume).

We aim to save energy by using a pointing gesture as the preamble of one device
interaction session. Since UWB is 10x more power consuming than inertial sensors, it
is infeasible to turn on the UWB for device selection for a long time. To cope with this
issue, we use wrist motion as a trigger and enables the UWB only when a user tries to
select a device. The movement trigger module in the listening stage aims at using low
power inertial sensors to detect local wrist movements. As demonstrated in Figure 6.3,
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the motion of pointing is fast and the duration is no longer than 0.5 seconds. Thus, as
long as a user starts moving her wrist, SeleCon enters the pointing stage and turns on the
UWB transceiver. All the wrist movements are then passed to the pointing verification
module, which checks whether the motion is a pointing gesture based on the inertial time
series data. Below we provide the details of the movement trigger module and pointing
verification module.

Movement Trigger Module: It aims to identify all the possible pointing events based
on inertial sensors. However, if we make the module over sensitive, the UWB transceiver
will wake up more frequently, causing the above-mentioned energy concern. In our
design, we make the movement trigger module responsive enough so that even slow
pointing gestures can be captured. Whenever a possible pointing event is captured, the
movement trigger mobile turns on the UWB transceiver, records both inertial data and
UWB ranging data for a couple seconds, and then passes the collected data to the pointing
verification module which verifies whether the detected motion is a pointing gesture.

Pointing Verification Module: Many false pointing events are likely to be included
since the movement trigger module is set to capture small wrist movements. The goal
of the pointing verification module is to keep those events that are intended to point
to objects. The pointing verification module combines a number of heuristics to verify
the pointing gestures from inertial measurements. Figure 6.3 shows both accelerometer
and gyroscope data collected within a valid pointing event. Note that the gravity has
been removed from the accelerometer data, processed in the hardware level. Since a
pointing gesture is a fast action, it will cause high acceleration showing as a spike in
accelerometer data (e.g., at t = 0.5). On the other hand, though people have different
habits to point towards objects, people naturally rotate their elbow joints and fully stretch
their arms, making the smartwatch mounted on the wirst facing a different orientation.
The orientation difference is reflected on gyroscope data, which measures the angular
velocity, demonstrated in Figure 6.3. We pick an acceleration and an angular velocity
magnitude threshold such that true pointing events can be distinguished from incorrect
ones. Though the magnitude of inertial data is a good indicator of pointing gestures, it
is still not robust enough to remove all false events. Users usually hold their arms for a
short period (i.e., a couple hundred milliseconds) after pointing to an object. Therefore,
if inertial sensors are stable for a predefined length, we consider this as a pointing event.

6.4 IoT Device Selection

After the system has detected a pointing event, it is time to determine which device is
selected by processing the UWB ranging measurements in the device selection module.
Assume that we have a network of N IoT devices and a single user in a room. We
denote the position of each device n̄i for i ∈ 1, ..., N by pi ∈ R3. Similarly, the position
of the smartwatch n̄u (i.e., user’s wrist) is denoted by pu(t) at time t. SeleCon gets
the ranging measurements between the smartwatch n̄u and any smart device n̄i from
the UWB transceiver, and we denote the measurement by ri(t) at time t. Consider the
user is pointing to a target IoT device whose index is denoted by i∗. Since pointing
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is a process to move the wrist closer to the target device, mathematically speaking, the
distance between n̄i∗ and n̄u should decrease the most comparing with any other n̄i where
i 6= i∗. By collecting the pairwise ranging measurements between the smartwatch and
every smart device, we can find out i∗ by solving the following minimization problem:

i∗ = arg min
i

(
‖pi − pu(tf )‖2 − ‖pi − pu(ts)‖2

)
= arg min

i

(
ri(tf )− ri(ts)

) (6.1)

where ts and tf are the start and finish time of the pointing gesture, respectively. In
order to measure the distance between the user and any IoT device, we consider both
single-sided and double-sided two-way ranging techniques, which are described in Sec-
tion 3.3.1. In the single-sided two-way ranging, two devices i and j take turns to send
message to the other ones. The distance is derived by the round trip time of the message
transfer. Double-sided two-way ranging can be seen as an extension of the single-sided
technique, and the difference is that the first device i sends the third message to j so that
the round trip time can be also acquired from the second device. This approach usu-
ally gets a better ranging accuracy because the third message compensates for the clock
drift. However, both aforementioned ranging techniques have a range estimation error
of around 10cm to 30cm, which can impact the device selection accuracy. The possible
reasons of the large ranging errors are the range noise, the pointing length, and the spatial
diversity. In the following subsections, we will present the challenges to distinguish the
target device from the incorrect ones, and then provide the features that have potential to
identify the correct device.

6.4.1 Spatial Resolution and Gesture Length

When a user points to an IoT device, the length of that gesture inherently defines a signal-
to-noise ratio (SNR). We denote this length `, and we assume that the range error follows
a non-zero mean Gaussian distribution e ∼ N(µr, σ

2
r). This error is not necessarily i.i.d,

but for the sake of simplicity, we assume that the range error is independent across time.
Ideally, the start wrist position pu(ts), the end wrist position pu(tf ), and the selected
device pi∗ should fall on a straight line. However, when a user points to a device, the
eyes, the wrist, and the device are not co-linear, causing the pointing angular error θ̃.
Additionally, if there is a device close to the true device, our system may be mistaken
and select the wrong one.

We define the angle formed by the true device n̄i∗ , the user n̄u, and the cloest device
n̄j in terms of angle as θmin, illustrated in Figure 6.4. In the case of high spatial diversity,
i.e., when θmin is quite large and when ` is large with respect to σ2

r , it is relatively easy
to distinguish the correct device n̄i∗ that a user is pointing to from any other devices n̄j
for j 6= i∗. Figure 6.5 shows the ranging difference measured from both target device n̄i∗
and other devices n̄j over time in a high spatial diversity area. The range difference at
the kth sample is defined as the delta of current range value and the start range value, or
4Ri(t) = ri(tf )−ri(ts). Each trace in Figure 6.5 represents a pointing gesure measured
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by a device. The true traces which are plotted in blue correspond to the distance estimates
between the user and n̄i∗ , and the false traces plotted in red are those corresponding to
any other device. As we can see in the figure, the true traces show the range differences
are negative, as the user moves her wrist closer to the target device. In contrast, most red
traces measured from other devices are positive. These two kinds of traces can be easily
separated.

Figure 6.4: Ranging errors and angular (spatial) resolution in gesture-based IoT device
selection.

Figure 6.5: Example ranging traces during pointing. These examples are in an envi-
ronment with high spatial diversity where 4R is sufficient to identify the
selected device

In the case of low spatial diversity, the simple metric 4R no longer suffices as a
reliable metric for discerning the desired IoT device from other IoT devices. For instance,
Figure 6.6 shows estimated range differences for a low spatial diversity environment,
which we deployed the IoT devices as illustrated in Figure 3.5. The result shows that true
range measurement traces have similar a pattern in high spatial diversity case (i.e., blue
traces in Figure 6.5), but the false traces from some other devices overlap with the true
traces. Figure 6.7 plots the distribution of ranging differences4R. As we can see, there
is an overlap between true and false range differences within −0.5m to −0.8m. Thus, in
order to provide higher device selection accuracy, we need to explore other metrics. In
the following subsection, we explore a more principled approach to the device selection
problem, keeping device power and computational overheads in mind.
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Figure 6.6: Example ranging traces during pointing. These examples are in an environ-
ment with low spatial diversity where 4R is not sufficient to identify the
selected device

Figure 6.7: Range difference, 4R, for true and false (n̄i∗ and n̄i 6=i∗) as a probability
density function.

6.4.2 Device Selection by Pattern Matching

We have demonstrated that the estimated distance change,4R, is insufficient to reliably
identify the target device to which the user is pointing. Additional features have to be
explored to find correct devices. We first present features considered in our system, and
explain how we determine the selected devices by the proposed classification algorithm.

6.4.2.1 Relevant Ranging Features

SeleCon considers the following features:
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Linear Fit: Although the wrist path of a point gesture is curved as illustrated in Fig-
ure 6.4, in reality the path is close to a straight line. Any divergence from this fit could
indicate that the range estimated trace could belong to an undesired device. More specif-
ically, if we estimate a linear fit describing the range estimate between n̄u and n̄i for a
given device i and noise v at sample index k, we describe the fitting error as the mean
squared residual MSR = 1

K

∑
k v

2
k, where K is the number of ranging samples when

pointing. Intuitively, a lowMSR indicates a good linear fit and consequently more likely
being the true trace. We use this feature to enhance the pointing recognition process.

First Path Loss: Path loss is defined as power density reduction from a transmitter
to a receiver. The accurate timing provided by UWB radios is enabled by measuring
the energy in the radios accumulator corresponding to the communication along the first
path. One consequence of this accurate timing is that the same energy can be used to
estimate the power of the communication along the first path of communication typically
the line-of-sight path. Since people rarely point to an object which is out of their sight,
the chosen device is likely to report low first path loss, denoted by fploss.

Range Data: If there are two devices which align along the direction that a user points
towards, naturally we consider that the user is interacting with the closer one. Thus, the
distance between a device and a user also plays an important role. To estimate this
distance, we use the raw range result as a feature.

Angular Divergence: As a user points from pu(ts) to pu(tf ), she is attempting to
point as closely towards a device as possible. In an ideal case, the line between start
and finish is perfectly co-linear with the coordinates of the IoT device itself. In practice,
however, there is some angular divergence θ̃ as shown in Figure 6.4. In order to calculate
this angle, we must know the device position pi as well as the start and stop position
of the user’s hand. This requires a collaborative position estimate among multiple IoT
devices, which assumes a certain device density and additionally consumes more power
due to added communication costs. When possible, however, θ̃ can be used to increase
the accuracy of gesture-based IoT device selection.

We combine the previous features into an aggregate feature vector, defined as

f = [4R,MSR, fploss, r̂(ts), θ̃]
T (6.2)

For each pointing event, there are N different data points corresponding to the feature
vectors computed from the ranging measurements between the user’s smartwatch and
each of the N surrounding devices. Only one among these data points corresponds to
the true target device n̄i∗ while the remaining N − 1 are not selected. Thus, we label
a feature fi as 1 for the true device n̄i∗ and 0 otherwise. Although we have included
the expensive feature θ̃ in our feature vector f definition, we report the system accuracy
based on different experiments that uses a feature vector with and without this feature
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being included. We believe that these experiments mimic diverse settings and provide
more realistic results for sparse deployments and restricted energy reserves.

6.4.2.2 Classification Methods

From each feature vector we can estimate whether a particular IoT device is selected
or not, but this approach ignores any potential communication or collaboration between
connected IoT devices. Another option in the classical classification methodology is to
have a single centralized server classifies based on the feature vectors from IoT devices.
However, this collaborative classification is not scalable and has a high communication
cost. On the other hand, in non-collaborative classification, each IoT device operates
independently, attempting to classify itself as selected or unselected. Other than the
communication with n̄u required for range estimates, no additional communication is
performed. This saves power, but it comes at the cost of very high selection errors. We
do not want multiple devices to be selected at the same time. Therefore, we choose to do
collaborative classification; devices are allowed to communicate. Rather than sending
entire feature vectors, however, each device will send only a summary of their classi-
fication results and indicate the certainty with which the classification was made. This
allows the network to arrive at a consensus of maximum certainty of which device was
selected, enabling collaboration without prohibitively high communication overheads.

6.5 Hand Gesture Recognition

The second half of a pointing session is a hand gesture to control the target device. Indi-
vidual devices can be configured to execute different actions in response to the different
gestures. Hand gesture is arguably one of the intuitive ways for describing actions and
does not require moving closer to the target device. Currently, SeleCon supports 11 dif-
ferent gestures which can be assigned to up to 11 different operations for each individual
device. Our system can be easily extended to support additional gestures, but we believe
this number is satisfactory for the needs of most devices. The list of supported gestures
is shown in Figure 6.8.

Our gesture recognition module relies on the measurements from the inertial sensors
in our smartwatch. Namely, we use three axes of both accelerometer and gyroscope
measurements. According to our language definition, a user should point to the device
first then draw a gesture command in the air. Therefore, after the end of the pointing
action, we collect 3 seconds of inertial measurements. From these samples, we compute a
feature vector consisting of the following features along every axis of both accelerometer
and gyroscope:

• The three quartiles (25%, 50%, 75%).

• Standard deviation σ
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S5 S6 S7 S8

S9 S10 S11

S1 S2 S3 S4

Figure 6.8: List gestures supported by SeleCon.

Table 6.2: Classification results for gesture-based IoT device selection, using collabora-
tive technique. Angle is not part of the feature vector.

Single-sided Double-sided
Collaborative Classifier ranging accuracy (%) ranging accuracy (%)

Voting on SVM (linear) 41.46 43.29
Voting on SVM (quadratic) 48.78 50.00

Voting on SVM (rbf) 50.60 55.48
Voting on RF 78.04 80.48

• Skewness:

skewness = E

[(
X − µ
σ

)3
]

• Kurtosis:

Kurtosis =
E [(X − µ)4]

(E [(X − µ)2])2

As a result, in total we have 36 features. We use these features to train a machine
learning classifier to recognize different gestures.
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Table 6.3: Classification results for gesture-based IoT device selection, using collabora-
tive techniques. Angle is part of the feature vector.

Single-sided Double-sided
Collaborative Classifier ranging accuracy (%) ranging accuracy (%)

Voting on SVM (linear) 45.12 46.34
Voting on SVM (quadratic) 50.00 56.70

Voting on SVM (RBF) 64.63 66.46
Voting on RF 81.09 84.14

Figure 6.9: Hardware prototype of UWB-equipped smartwatch

6.6 Evaluation
We deployed a custom ultra-wideband RF testbed based on the DecaWave DW1000 IR-
UWB radio5 for evaluation of SeleCon. The whole experimental setup overview is shown
in Figure 3.5. Our testbed consists of smart devices anchor nodes, an UWB-equipped
smartwatch (Figure 6.9) and a motion capture system as described in Section 3.5

6.6.1 Pointing Event Detection
To evaluate the accuracy of pointing event detection, we conduct the following two ex-
periments. The first experiment evaluates how well our system can capture pointing
events. We ask three participants to wear our smartwatch and perform at least 50 point-
ing events. The participants are instructed to naturally point to any device (e.g., an anchor
node) without restrictions. During the data collection sessions, participants could move
freely within the testbed area. We used the OptiTrack motion capture system6 to collect
smartwatch location traces and post-processed the pointing events. The detection rate is
91.9%.

With such a promising detection rate, one might naturally ask for the false alarm rate.
This has to be broken down to two further questions: (1) How frequent does the UWB
radio have to be active? (2) What is the false alarm rate in reporting pointing events? To
answer these questions, we conduct a second experiment to collect non-pointing inertial

5http://www.decawave.com/products/dw1000
6https://www.optitrack.com
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data from five students. Participants are allowed to do any activity they want as long as
no pointing gestures are involved. We collect 11.6 hours of data in total. Our results show
that SeleCon only has to enable the UWB ranging for only 8.0% of the time. SeleCon
reports 73 false events in total, with an average of 6.29 false events per hour.

To further reduce the false event rate, SeleCon considers the result from the gesture
recognition module. Since a valid command should include a gesture, if the gesture
recognition module returns none of these 11 predefined gestures, we discard the pointing
event. This further step decreases the false alarm rate to 2.5 false events per hour.

6.6.2 Device Selection

Figure 6.10: Probability density function of the angular divergence of the pointing
events.

In order to evaluate the pointing-based IoT selection system, we perform a series of
pointing events using our prototype of the UWB-enabled smartwatch. For groundtruth
collection of the users’ wrist motion, we attach a set of infrared reflectors to the smart-
watch prototype. We use the OptiTrack motion capture system to track the realtime
positions. We collected 200 pointing events to various devices in total performed by var-
ious users. We evaluated the accuracy of different classification techniques for device
selection. The results of collaborative classification schemes using support vector ma-
chine (SVM) and random forest (RF) are shown in Table 6.2 where the angle θ̃ is not
part of the feature vector. Table 6.3 shows the result of different classification schemes
under collaborative schemes in which the angle θ̃ is part of the feature vector. The used
angular divergence in pointing has the shown probability density function in Figure 6.10.
The ground truth angular divergence is calculated by processing the motion capture logs
while pointing.

Collaborative classification achieves a good accuracy. This is due to the voting scheme
among all the N IoT devices, which follows non-collaborative classification. We com-
municate classification certainties between all devices, arriving at a maximally certain
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positive label. In particular, in the case of SVM we communicate the margin between
a datapoint and its n-dimensional polytope. In the case of RF, we communicate the
numerical average of the ensemble prediction. We report the results with and without
the expensive feature θ̃ in order to provide more realistic results for sparse deployments
and restricted energy reserves. We will also show the results for both single-sided and
double-sided ranging.

In doing so, we achieve for single-sided ranging without the feature θ̃ an accuracy
of 50.6% for collaborative RBF SVM, and 78.04% for collaborative RF. Collaborative
linear and quadratic SVM show 41.46% and 48.78% accuracy, respectively. On the other
hand, using double-sided ranging messages achieves 80.48% accuracy for collaborative
RF. Other classifiers results are shown in Table 6.2. Introducing the feature θ̃ enhanced
the accuracy. Collaborative RF achieves the best accuracy of 84.14% and 81.09% for
double-sided ranging and single-sided ranging, respectively. Collaborative RBF stands in
rank two position with accuracy 64.63% and 66.46% for single-sided ranging and double-
sided ranging, respectively. We report only accuracy, because at any given pointing event
we know that only a single IoT device out of N possible is selected. The accuracy is the
percentage of times we choose the correct device. Recall that our testbed size is 9m-by-
10m, where on average every deployed device is 3.5m apart. We should mention that
the reported accuracy is the average accuracy when standing in different positions in the
room. This accuracy depends on the co-linearity between the devices with respect to
the user’s position. We will analyze the effect of co-linearity between devices and the
distance between them regarding accuracy in the next subsections.

6.6.2.1 Analysis of Distance Between two Devices

We study the effect of the distance between two devices on the accuracy of selecting one
of them. We conducted an experiment where the user points to one of two devices. We
change the distance between the two devices from 30cm to 2m and compute the accu-
racy of device selection at each distance. Figure 6.11 shows how the selection accuracy
changes with the change of the distance between devices. We emphasis that the reported
accuracy in Tables 6.2 and 6.3 is the average accuracy across different positions. On the
other hand, the reported accuracy in Figure 6.11 is the result of standing in one position
in the middle of the testing environment. Therefore, the reported accuracy in Figure 6.11
is better than the previous results.

6.6.2.2 Co-linearity Analysis

We also study the effect of co-linearity between different devices and the user’s position
on the reported accuracy. The co-linearity is defined in terms of the angle α in the x-z
plane as shown in Figure 6.12. Two devices are co-linear if α = 180. In order to analyze
the co-linearity effect on the reported accuracy, we conducted two sets of experiments.
Two devices are places at a height of 75cm, i.e, their position is 75cm in y direction.
In the first set of experiments a user is asked to keep pointing to the two devices while
standing, i.e, from height 140cm in the y direction. On the other hand, the second set of
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Figure 6.11: The effect of distance between two devices on SeleCon accuracy

Figure 6.12: Co-linearity effect.

experiments is conducted while sitting, i.e, from height 75cm in the y direction. Figure
6.13 shows the co-linearity effect while pointing from height 75cm and 140cm on devices
at 75cm in the y direction. Again, we emphasize that the conducted experiments were
done while standing roughly in the middle of the 9x10m2 room. Therefore, the reported
accuracy is much higher than the average accuracy in Tables 6.2 and 6.3.

6.6.2.3 Power Analysis

Our device selection technique targets IoT devices that are potentially battery powered.
Because of this, care has to be taken to ensure that power consumption is minimized.
Here we briefly analyze the power consumption for just the mobile (e.g. smartwatch)
device that the user wears. Note that in practice, some of the stationary (anchor) IoT
devices may be battery powered as well, and in these cases a low power sniffing strategy
should be employed for listening to messages from the mobile device. For the mobile
case, we will ignore the energy cost of computation for classification, as this is dwarfed
by the energy required to transmit and receive using the DW1000 UWB transceivers.

In the idle case (when the smart watch is not ranging and is idle, listening for a pointing
gesture), 6µW of power are consumed. When transmitting or receiving UWB frames,
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Figure 6.13: Co-linearity effect while pointing from height 75 cm and 140 cm at devices
at 75cm in y direction.

there is a 5ms wakeup period during which 3mW of power are consumed, followed by
a 260mW power demand for 200µs for TX and a 370mW power demand for RX. We
will ignore the sleep power consumption (6 µW ) for now, as it will be shadowed by
the processing consumption and analog conversions for gesture detection on the smart
watch. These power numbers are derived from radio datasheets7. For N IoT devices,
energy consumption during each pointing session is calculated as follows:

E = K ·N∗(Ewake + 2 · (ETX + TRXPRX)) (6.3)
= K ·N∗(15µJ + 2 · (52µJ + 370µJ))

with a listen period of TRX = 1ms following each transmission (and expected response).
HereN∗ represents all nodes within communication range, rather than the full number of
networked devices, and K is the number of range measurements calculated per node—
roughly 20, in the above experiments. ForN = 8, as is the case in the results shown here,
we have E = 137.4mJ per point. For today’s smart wearables, a battery a capacity with
between 750 and 1400 mWh is common—this corresponds to a range between 2.7kJ and
5kJ in each battery, meaning that if, for example, 100 pointing gestures are made each
day, there is a 0.27% to 0.5% overhead in battery life. This is a very reasonable price to
pay for the added convenience of high fidelity gesture-based IoT device selection. With
improvements in commodity UWB hardware, however, it is likely that this overhead will
decrease further.

6.6.3 Gesture Recognition

To evaluate our hand gesture recognition module, we collected 1290 gestures samples
from volunteers who were given the freedom to wear the watch on their left hand or
right hand. On average, we collected 117 samples for each gesture from the supported

7http://www.decawave.com/products/dw1000
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Table 6.4: The accuracy of different classifier for gesture recognition.

Classifier Accuracy

SVM (Linear) 97.03%
SVM (quadratic) 96.50%

SVM (RBF) 93.12%
RF 95.48%
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Figure 6.14: Confusion matrix of the gesture recognition classifier.

gestures shown in Table 6.8. We used the collected measurements to evaluate the per-
formance of different classification algorithms at the gesture recognition module. Table
6.4 shows the accuracy of the Gesture Recognizer module. Linear SVM achieves about
97%. Quadratic SVM achieves an accuracy of 96.5%. Then, Random Forest comes the
third with 95.48% accuracy. Finally, SVM with RBF kernel achieves 93.12%. Figure
6.14 shows the confusion matrix of the gesture recognition. In summary, SeleCon has a
robust gesture recognizer module with 11 gestures which should be sufficient to control
any IoT device.

6.7 Limitations and Future Work

While we are very positive about SeleCon’s current capabilities, we admit the following
limitations in our architecture:
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• SeleCon requires the user to wear a custom smartwatch equipped with both an
inertial measurement unit (IMU) and an ultra-wideband radio.

• Currently, SeleCon cannot be used by more than one user simultaneously.

• We assume that smart devices around the user are also equipped with UWB radio.
Although one might argue that these assumptions are too strict, we anticipate that
UWB radios will permeate the IoT scene in the next few years, given their success
and growing adoption rate.

We believe that the next step is to integrate SeleCon in the real-life deployment of
many smart homes, collect user reviews and enhance the system architecture. Also,
enhancing the pointing recognition accuracy by considering more features is another
feasible future work. Supporting multiple users at the same time is a key challenge in the
current SeleCon implementation.

6.8 Conclusions
In this chapter, we have described and evaluated SeleCon which is a system for IoT de-
vice selection and control. SeleCon provides a simple and intuitive interface to interact
with a myriad of smart devices through pointing actions and hand gestures. Our approach
is the first approach that does pointing detection and gesture recognition without mag-
netic pre-calibration. All smart devices have to be UWB enabled, and users only need
to wear a custom smartwatch equipped with inertial sensors and UWB transceiver. We
have designed and implemented hardware prototypes of both the custom smartwatch and
the smart devices anchor nodes. SeleCon employs different machine learning classifiers
to accurately identify the selected target device from the UWB ranging measurements.
In addition, SeleCon supports a language of 11 different gestures to provide control of
the selected device. We also presented an energy-saving approach which uses the low-
power inertial sensors to trigger UWB such that UWB can be in sleep mode in 92% of
the time. Our experimental results demonstrate that SeleCon achieves 84% accuracy for
device selection even with a high device deployment density, and our system achieves
97% accuracy for hand gesture recognition.
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To conclude this thesis, we have presented PrOLoc in Chapter 2, a set of algorithms to
achieve localization while preserving the privacy of the observers. We have built PrOLoc
around the Pallier additive homomorphic cryptosystem, redesigning traditional localiza-
tion algorithms to benefit from the privacy guarantees of partial homomorphism. Our
experiments and timing analyses over both simulated and real, custom range measure-
ment hardware demonstrate that PrOLoc can accurately and efficiently provide localiza-
tion estimates comparable to traditional, unsecured methods. Our experiments on real
hardware demonstrate that PrOLoc yields accurate location estimate at least 500x faster
than state-of-art secure function evaluation techniques. We then touch upon the problem
of distributed localization and its correlated time synchronization problem in Chapter 3.
We proposed the algorithms namely, DKAL, DKALarge, and DOPT, that perform dis-
tributed estimation in a scalable fashion. Several experiments using real, custom ultra-
wideband wireless anchor nodes and mobile quadrotor nodes were conducted and they
indicate that the proposed architecture is reliable in localizing static and mobile nodes.
Next, we work on the energy-aware aspect of the distributed estimation problem for a
multi-sensor system. More specifically, we propose an event-triggered diffusion Kalman
filter and apply it to the problem of distributed localization and time synchronization in
Chapter 4. Our event-triggered algorithm is the first algorithm that temporarily shuts
down the measurement and diffusion steps in the diffusion Kalman filter. Furthermore,
we tackle the problem of attacks on the sensor level by proposing an approach for dis-
tributed linear secure state estimation in the presence of measurement noise and modeling
errors. By combining the diffusion Kalman filter with reachability analysis, we propose
a new algorithm for distributed secure state estimation between a network of nodes and
we apply the proposed algorithm on the problem of the localization of a rotating target
in Chapter 5. Finally, we show an application to accurate localization. More specifically,
we tackle the problem of device selection and control in Chapter 6 with the aid of ma-
chine learning algorithms and accurate localization. Our approach is the first approach
that does pointing detection and gesture recognition without magnetic pre-calibration.

Future work towards realizing the goals laid out in this thesis can be divided into the
following thrusts:

• Enhancing the privacy guarantees of the proposed privacy-aware algorithms in
Chapter 2.

• Extending the linear distributed secure state estimator in Chapter 5 to the nonlinear
case while considering the introduced error due to linearization in the reachability
analysis.
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• Consider a more powerful attacker who knows the system parameter in Chapter 5.

• Generalize the diffusion strategy to traditional set-membership estimation in Chap-
ter 5.

• Extending the device selection and control in Chapter 6 to multi-users pointing and
controlling devices at the same time.

• Fusing inertial-measurement-based path estimates with sparsely available UWB
range estimates given only a single anchored device in an indoor localization set-
ting.
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