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Abstract— Data clustering is recently a common technique
to group similar data with certain features. It enables find-
ing the representative in each cluster as well. However, the
clustering analysis comprises several challenging tasks, e.g.,
feature selection, choice among different clustering algorithms,
defining the optimal cluster number, clustering with the use of
a distance measure dealing with various levels of measurement,
cluster validation, and interpretation of results in the end.
The objective of this paper is the conceptual design of a
scenario catalog including extracted representative near-crash
and crash scenarios. Two clustering algorithms based on k-
covers and k-medoids are applied to data in a naturalistic
driving study under consideration of aforementioned aspects.
Afterwards, the comparison of two clustering algorithms is
conducted based on the cluster representativeness, purity, and
average silhouette width. Moreover, the clusters are visualized
in a two dimensional scenario space by t-Distributed Stochastic
Neighbor Embedding (t-SNE). The derived scenario catalog
covers the selected database at best possible rate and enables
a cost-efficient development of predictive safety functions.

I. INTRODUCTION

Predictive safety functions support the driver by warning
of a critical traffic scenario, assisting him or her during an
evasive maneuver, and intervening in longitudinal and lateral
vehicle control if necessary to prevent a collision or mitigate
its severity. The current announcement of the European New
Car Assessment Programme (Euro NCAP) regarding the high
scenario diversity in two sectors, i.e., Vulnerable Road Users
(VRU) Protection and Safety Assist, reflects the growing
customer’s concern about predictive safety functions in future
road traffic [1]–[3]. This circumstance leads the developers
to extend the current system functionality, i.e., active field of
existing safety functions, as required to deal with upcoming
diverse test scenarios in Euro NCAP. However, there are
other scenarios to be addressed by safety functions in real
traffic. Thus, there is a need to create a representative
scenario catalog which enables an efficient development of
highly available predictive safety functions [4]–[6].

II. RELATED WORK

An overview of all the steps towards a representative sce-
nario catalog is depicted in Fig. 1. The clustering approach is
selected for the purpose of extracting representative scenarios
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Input

• Objective: a certain predictive
safety function with its system,
i.e., configuration of sensor,
function algorithm, and actuator

• Data selection and preprocessing

Clustering

• Feature selection
• Clustering algorithm
• Distance and centrality measure
• Optimal number of clusters
• Cluster validation

Output

Representative scenario catalog
• for a specific predictive safety

function and system
• based on real data
• incl. textual scenario description

Fig. 1. Workflow from data to a representative scenario catalog

from real data by quantifying the similarity of existing
scenarios in a database. A general overview of clustering
algorithms is given in [7]. In the context of traffic scenario
analysis, hierarchical agglomerative clustering, partitional
clustering, and model-based clustering have been mainly
conducted in previous research.

A. Hierarchical Agglomerative Clustering (HAC)

HAC with Manhattan distance and average linkage was
applied to describe pedestrian crash scenarios [8], [9], rear-
end scenarios [10] and cut-in scenarios [11] while an analysis
with Euclidean distance and complete linkage was conducted
to inspect run-off-road scenarios [12]. The utilized linkage
criterion, i.e., agglomeration method, influences the later
cluster structure largely [13, p. 3]. The number of existing
clusters in HAC decreases successively as the dendrogram
grows [14]. The cut-off value for the required total number
of clusters can be defined with the use of coefficients, e.g.,
inconsistency coefficient [9] or local extrema in the pseudo
T - and T 2-statistic as well as cubic clustering criterion [12].

B. Partitional Clustering (PC)

Intersection scenarios were analyzed using partitioning
around medoids (PAM) of k-medoids algorithm where the
optimal number of clusters kopt was estimated by average
silhouette width [13], [15], [16]. In case of analyzing a
large data amount, the further derivatives of the k-medoids



algorithm, e.g., clustering large applications (CLARA) and
clustering large applications based on randomized search
(CLARANS), enable a less time-consuming clustering [17].
Two options regarding the initial selection of medoids, i.e.,
random or takeover from HAC, were discussed and the
results of kopt and average silhouette width were nearly the
same in both options [13].

C. Model-Based Clustering (MC)

Besides aforementioned two distance-based clustering ap-
proaches, the latent class clustering (LCC) of MC was
applied in [13] where the clustering was done with a
probabilistic model describing the distributions in data and
the Bayesian information criterion was used to estimate the
optimal number of clusters. Moreover, LCC was utilized for
cyclist scenarios [18] and highway scenarios [19] as well.
However, MC foregrounding the description of underlying
data point distributions was considered as a less appropriate
approach for creating clusters, each of which contains highly
similar scenarios compared to HAC which is a transparent
method focusing on quantifying the similarity [12, p. 99].

III. METHODOLOGY

In the following, the methodological steps of the workflow
in Fig. 1 are presented.

A. Data Selection and Preprocessing

Various classes of test scenarios emerge during the devel-
opment of predictive safety functions, i.e., true positive (TP),
false positive (FP), false negative (FN), and true negative
(TN) as shown in Table I [20]. The aim to be attained in this
paper is to find representative real-world scenarios which can
be assigned to the TP and FP classes.

First, input data are needed, from which representative
scenarios can be extracted. Two requirements towards data
sources are the representativeness of data on the one hand
and the coverage of TP and FP test scenarios on the other
hand. The representativeness of a database correlates with
its case number [21], [22]. Thus, a database with a large
case number is required. Since an accident database does
not contain, inter alia, near-crashes which partly belong
to the FP class, the data from a naturalistic driving study
(NDS) are essential. Due to the fact that the Second Strategic
Highway Research Program (SHRP 2) is heretofore the most
comprehensive NDS in the United States of America, the
following analysis focuses on SHRP 2 [23].

Once a database to be inspected is selected, the variable
types, i.e., levels of measurement, are to be explored so
that the distinction between nominal, ordinal, and metric
variables can be done for the similarity measurements of
scenarios. Furthermore, the data restriction is necessary to
select the data subset which is relevant regarding a certain
predictive safety function and its system, e.g., the single
run-off-road (near-)crashes are irrelevant for autonomous
emergency braking systems with pedestrian detection and
are to be excluded in data preprocessing.

TABLE I
FUNCTION-SPECIFIC SCENARIO CLASSIFICATION BASED ON [20]

Collision

Present Absent

Intervention Present True Positivei False Positiveii

Absent False Negativeiii True Negativeiv

i justified intervention ii non-justified intervention
iiimissing intervention iv justified non-intervention

Road-level (L1)

• Geometry, topology

• Quality, boundaries (surface)

Traffic infrastructure (L2)

• Boundaries (structural)

• Traffic signs, elevated barriers

Temporary manipulation of L1 and L2 (L3)

• Geometry, topology (overlaid)

• Time frame > 1 day

Objects (L4)

• Static, dynamic, movable

• Interactions, maneuvers

Environment (L5)

• Weather, lighting and other surrounding 
conditions

Fig. 2. Five-layer model for scenario description [25, p. 1817]

B. Feature Selection

As a first step in the clustering part, the variables for the
cluster analysis, i.e., features Xi, {i∈N |1 ≤ i≤ µ}, are to be
determined, where i is an index and µ represents the number
of cluster variables. The selection of cluster variables is an
important step in the cluster analysis and only a restricted
amount of variables is to be used since even one additional
unnecessary variable can affect the clustering results largely
[24, p. 350]. For the purpose of describing test scenarios in
the development of predictive safety functions, the cluster
variables in this study are selected from valid variables in
the database based on authors’ domain knowledge with a
focus on the fourth layer in Fig. 2 [25].

After selecting the cluster variables Xi, the codings of
Xi, i.e., variable attributes, are to be inspected and grouped
as necessary since some attributes show a similarity due to
the given coding scheme in the database, e.g., if the vari-
able Visual Obstruction contains {No Obstruction, Sunlight,
Headlights, Building, Trees} and the difference between
Sunlight and Headlights as well as Buildings and Trees is
irrelevant regarding the sensor perception, these attributes
can be grouped as {No Obstruction, Lights, Statistic Obsta-
cles}. It is noted that the data containing at least one variable
attribute Unknown in Xi are to be filtered since Unknown
increases the heterogeneity of data subset unnecessarily.



C. Distance and Centrality Measure

In order to quantify the (dis-)similarity of scenarios, a dis-
tance measure is needed. The measure used in this research is
the mixed similarity measure (MSM) calculating the distance
of binary, nominal, ordinal, and metric variables at the same
time [26]. Let Sa and Sb be two scenarios consisting one
attribute from four cluster variables (µ=4), i.e., X1, X2, X3,
and X4, with different levels of measurement, i.e.,

Sa = {s1a, s2a, s3a, s4a}, (1)
Sb = {s1b, s2b, s3b, s4b}, (2)

where {sia, sib}∈Xi, {i∈N |1 ≤ i≤ 4}. Let X1 be binary,
X2 be nominal, X3 be ordinal, and X4 be metric. The MSM
estimates the sub-distance of each cluster variable. For the
binary (B) and nominal variable (N), the matching distance
dBN from [27] is used, which is defined for the dissimilarity
between any two scenarios, i.e., Sa and Sb, as follows,

dBN(Sa,Sb) =
2∑
i=1

δ(sia, sib), a, b ∈ N,

where δ(sia, sib) =

{
0 if sia = sib,

1 if otherwise.
(3)

The sub-distance of ordinal variable dO considers the max-
imum value in X3 while the sub-distance of metric one dM
takes the difference between the maximum and minimum
value in X4 into account [26].

dO(Sa,Sb) =
| s3a − s3b |
maxX3 − 1

, (4)

dM(Sa,Sb) =
| s4a − s4b |

maxX4 −minX4
, (5)

where dO, dM ∈ [0, 1]. The total distance dMSM between Sa
and Sb is the sum of sub-distances of cluster variables [26].

dMSM(Sa,Sb) = dBN + dO + dM. (6)

Using this MSM (6) as a distance measure, two clustering
algorithms based on approximate k-covers (AKC) of HAC
[28] and PAM of PC [29] are applied to the input dataset.
Both algorithms are shown in Algorithm 1 and 2. A measure
estimating the centrality of a data point within its cluster
based on the Euclidean distance was presented in [30] and
is termed centrality measure (CM) in the following. Instead
of the Euclidean distance, the aforementioned MSM (6) is
utilized for the calculation of CM in this paper. The usage
of CM comprises the selection of representative scenarios
in both algorithms, the determining of initial medoids in the
PAM-based algorithm, and the linkage criterion in the AKC-
based algorithm.

Let Ω be the scenario space containing a set of k clusters
(C) and the cluster Cj be a set of mj scenarios (S), i.e.,

Ω = {C1, C2, ..., Ck}, k ∈ N, (7)
Cj = {Sj1,Sj2, ...,Sjmj}, {j,mj ∈N |1 ≤j≤ k}. (8)

A scenario Sjq where {q ∈ N | 1 ≤ q≤ mj} of cluster Cj
contains µ attributes due to the µ cluster variables used in

the analysis. The cluster variable Xi has νi attributes which
are grouped in Section III-B, i.e.,

Xi = {si1, si2, ..., siνi}, {i, νi ∈ N | 1 ≤ i ≤ µ}. (9)

The CM of Sjq in Cj with respect to the other scenarios in
the same cluster, i.e., dCM(Sjq), is expressed as follows [30],

dCM(Sjq) =
mj∑
p=1

dMSM(Sjp,Sjq)
mj∑
r=1

dMSM(Sjp,Sjr)
, p, q, r∈N. (10)

The scenario with the lowest dCM(Sjq) among mj scenarios
in Cj can be considered as the cluster representative in Cj .

While every scenario, i.e., data point, in the hierarchical
agglomerative AKC-based algorithm at the first stage can be
seen as the initial cluster center, i.e., cluster representative,
the PAM-based algorithm requires a method how to identify
the initial cluster representatives unless they are selected
randomly (see select_initial_medoids in Algorithm 2). For
this purpose, k scenarios with the lowest dCM(Sjq) values in
Ω are selected as initial cluster representative, from which
the swap process starts as shown in [30] (see the while loop
in Algorithm 2). A full description of the swap process is
provided in [29, pp. 103–104] and [31]. In case that there are
only two scenarios in a cluster or there are several scenarios
with the lowest dCM(Sjq) value in a cluster, the cluster
representative is selected randomly among those.

In the agglomeration process of AKC-based algorithm,
i.e., while loop in Algorithm 1, a linkage criterion is required,
with which two most similar clusters are to be merged
(see d2_min and cl_agglom). As a linkage criterion the
cluster representatives are used, each of which is estimated
with CM (10) in a cluster. For d2_min and cl_agglom, the
distance d2_min between a pair of cluster representatives is
measured after each of non-representatives in Ω was assigned
to the nearest certain cluster representative, i.e., cl_assignm,
based on the distance d between the representatives and all
points in Ω. In case that there are multiple pairs of cluster
representatives with the same d2_min values, cl_agglom
groups those in a single step. The number of clusters after
the current agglomerative step is determined in num_of_cl.
Afterwards, the calculation of the representative in each
cluster is carried out using CM (10). It is noted that the
current cluster representatives are termed curr_covers in
Algorithm 1 and curr_medoids in Algorithm 2.

D. Optimal Number of Clusters

After defining the distance measure and the way how to
identify the cluster representative, the optimal number of
clusters kopt needs to be determined systematically. For this
purpose, the scenario-specific average silhouette width σS is
utilized at first, which represents the strength of belonging
to a certain cluster for each scenario [32]. Afterwards, the k-
specific average silhouette width σΩk in the whole scenario
space Ω is calculated, with which the existence and strength
of cluster structures in the scenario space Ω is verified [29].
The number of clusters k is set (see Input in Algorithm 1
and 2) and varied in the range between 2 and N as σΩk



Algorithm 1 Clustering algorithm based on AKC [28]
Input: A set Ω of N points and the number of clusters k
Output: A set of k covers, average silhouette width σ, and

cluster assignments for all N points
1 num_of_cl = N
2 curr_covers = select_initial_covers(Ω, num_of_cl)
3 while (num_of_cl > k) do
4 d = calc_distances(Ω, curr_covers)
5 cl_assignm = assign_points_to_cl(Ω, curr_covers, d)
6 d2 = calc_distances(curr_covers)
7 d2_min = find_most_similar_covers(d2)
8 cl_agglom = merge_cl(cl_assignm, d2_min)
9 num_of_cl = count_cl(cl_agglom)

10 curr_covers = calc_new_covers(Ω, cl_agglom)
11 d = calc_distances(Ω, curr_covers)
12 cl_assignm = assign_points_to_cl(Ω, curr_covers, d)
13 σ = calc_silhouette(Ω, cl_assignm)
14 end while
15 return curr_covers, cl_assignm, σ

is undefined for k=1 [29, p. 85]. In each iteration, σΩk is
estimated and saved to find the maximal σΩk value and its
corresponding k value in the end.

In order to verify whether a certain scenario Sjq in Cj
is assigned to the correct cluster, two types of distances are
required, i.e., the average distance αj of Sjq to all scenarios
in Cj and the average distance βw of Sjq to all scenarios in
another cluster Cw (w 6=j) of Ω. They are formulated as

αj(Sjq, Cj) =
dMSM(Sjq, Cj)

mj − 1
, (11)

where dMSM(Sjq, Cj) =
mj∑
u=1

dMSM(Sjq,Sju). (12)

βw(Sjq, Cw) =
dMSM(Sjq, Cw)

mw
,

{w∈N |1≤w≤ k,w 6=j}. (13)

Among all βw(Sjq, Cw) values in Ω, the minimum distance
βwmin(Sjq, Cw) is relevant for the scenario-specific average
silhouette width σS(Sjq) that juxtaposes information about
how close Sjq is positioned with respect to the scenarios in
the same cluster and how close Sjq is positioned with respect
to scenarios in the other cluster with minimal distance as
follows [32, pp. 55–56],

σS(Sjq) =
βwmin(Sjq, Cw)− αj(Sjq, Cj)

max(αj(Sjq, Cj), βwmin(Sjq, Cw))
. (14)

The higher σS(Sjq) is, the better the analyzed scenario Sjq
fits into the cluster Cj [13]. The mean of all N scenario-
specific σS(Sjq) values in Ω is the final σ value for the
preset k, i.e.,

σ = σΩk

=
1

N

k∑
j=1

mj∑
q=1

σS(Sjq), (15)

Algorithm 2 Clustering algorithm based on PAM [29]
Input: A set Ω of N points and the number of clusters k
Output: A set of k medoids, average silhouette width σ,

minimum costs, and cluster assignments for all N points
1 curr_medoids = select_initial_medoids(Ω, k)
2 d = calc_distances(Ω, curr_medoids)
3 cl_assignm = assign_points_to_cl(Ω, curr_medoids, d)
4 min_costs = calc_costs(d)
5 repeat = true
6 while (repeat = true) do
7 for h = 1 to N − k do
8 new_medoids

= calc_new_medoids(Ω, curr_medoids, h)
9 new_d = calc_distances(Ω, new_medoids)

10 new_cl_assignm
= assign_points_to_cl(Ω, new_medoids, new_d)

11 new_costs = calc_costs(new_d)
12 if (min_costs > new_costs) then
13 min_costs = new_costs
14 cl_assignm = new_cl_assignm
15 d = new_d
16 curr_medoids = new_medoids
17 break
18 end if
19 if (h = N − k) then
20 repeat = false
21 end if
22 end for
23 end while
24 σ = calc_silhouette(Ω, cl_assignm)
25 return curr_medoids, cl_assignm, σ, min_costs

which is calculated in line 13 in Algorithm 1 and line 24 in
Algorithm 2. The meaning of σ is depicted in Table II [13],
[29]. The optimal number of clusters kopt is estimated when
σ achieves its maximum [29], i.e.,

kopt = argmax
σ∈[−1,1]

σ s.t. k ∈ [2, N ], (16)

where σ=0 for k=N [29, p. 85].

E. Cluster Validation

The cluster validation concludes the cluster analysis. The
output of cluster algorithms is a set of representative scenar-
ios. The representative Sjrep in its cluster Cj can be described
with µ cluster variables (9) as follows (see Table III),

Sjrep = {sj1rep, s
j
2rep, ..., s

j
µrep}. (17)

Besides the average silhouette width σ, the purity mea-
sures, i.e., ρ1 and ρ2, are used to quantify the quality of all
clusters [28]. The measure ρ1 represents the clustering ability
to assign scenarios with dissimilar characteristics in different
clusters, while the measure ρ2 indicates the ability to group
scenarios with identical characteristics in a cluster. Further
information about ρ1 and ρ2 are provided in [28, pp. 14–15].



TABLE II
AVERAGE SILHOUETTE WIDTH σ BASED ON [13], [29]

>Range> Description

−1.00 ≤σ≤ 0.25− No substantial structure has been found.

0.26 ≤σ≤ 0.50
A weak structure has been found that
could be artificial.

0.51 ≤σ≤ 0.70 A reasonable structure has been found.
0.71 ≤σ≤ 1.00 A strong structure has been found.

>rounded to two decimal places

TABLE III
SCENARIO SPACE Ω

C S X1 X2 ... Xi ... Xµ

C1

... ... ... ... ... ... ...

S1rep s11rep s12rep ... s1irep ... s1µrep

... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

... ... ... ... ... ... ...

Cj Sjrep sj1rep sj2rep ... sjirep ... sjµrep

... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

Ck

... ... ... ... ... ... ...

Skrep sk1rep sk2rep ... skirep ... skµrep

... ... ... ... ... ... ...

Moreover, the representativeness of the representative
Sjrep in its cluster Cj and the representativeness of k clusters
in Ω are inspected. Those are termed γCj and γΩ . For each
variable Xi, the number of scenarios with representative
attribute sjirep in the cluster Cj is defined as ηji. The rep-
resentativeness of the representative scenario Sjrep with its
attributes (17) in Cj is formulated as

γCj =
1

µ

µ∑
i=1

ηji
mj

. (18)

The representativeness of all k clusters in Ω is expressed
as the mean of γCj values weighted according to the cluster
content mj , i.e.,

γΩ =

k∑
j=1

mj

N
γCj . (19)

In this paper, ρ1, ρ2, γCj , and γΩ are calculated for the binary
and nominal cluster variables since the ordinal ones, e.g.,
level of service, are diverse and the metric ones, e.g., velocity
with a decimal place, are even more.

IV. EXEMPLARY ANALYSIS AND RESULTS

A. Data Preprocessing

The SHRP 2 dataset [33] contains 1465 crashes and 2710
near-crashes, and 20 000 balanced sample baseline events.
The data are restricted by criteria in Table IV and the re-
maining 973 rear-end striking events between two motorists
are analyzed. A full description of variables and attributes is

TABLE IV
FILTER CRITERIA

1. eventSeverity1: Crash or Near-crash
2. vehicle1SubjectConfig: Same trafficway and same direction
3. vehicle3Config: Unknown accident type or No impact×
4. incidentType1: Rear-end striking
5. motorist2Location:
• In front of the subject vehicle
• In front and to the immediate left of the subject vehicle
• In front and to the immediate right of the subject vehicle

6. motorist2Type: Automobile, SUV, Van, or Pickup
7. preIncidentManeuver†:
• Going straight (constant speed, accelerating,

with unintentional drifting) or starting in traffic lane
• Decelerating in traffic lane or stopped in traffic lane

8. precipitatingEvent:
• Other vehicle ahead - stopped on roadway more than 2 seconds
• Other vehicle ahead - slowed and stopped 2 seconds or less
• Other vehicle ahead - at a slower constant speed
• Other vehicle ahead - decelerating
• Other vehicle lane change - left in front of subject
• Other vehicle lane change - right in front of subject

9. vehicle1EvasiveManeuver1†:
• No reaction
• Braked
• Steered to left or right
• Braked and steered left or right
• Accelerated
• Accelerated and steered left or right

× For only two motorists † Subject vehicle

TABLE V
CLUSTER VARIABLES

i Xi νi Description

1 visualObstructions[B] 2 If driver’s vision obscured
2 motorist2Location[N] 3 Position of other vehicle
3 preIncidentManeuver[N] 2 Vehicle maneuver, ca. 2-6 s

prior to critical event
4 precipitatingEvent[N] 6 Critical event
5 vehicle1EvasiveManeuver1[N] 6 Subject driver’s reaction
6 trafficDensity[O] 7 Level of service
7 v_mean_precEv[M] Mean ego-velocity in km/h

between critical event and
2 s before critical event

8 v_mean_coll[M] Mean ego-velocity in km/h
between (near-)crash and
0.5 s before (near-)crash

[B] binary, [N] nominal, [O] ordinal, [M] metric

provided in [34]. The selected cluster variables Xi and the
number of attributes νi are listed in Table V.

B. Results

Two clustering algorithms presented in Section III are
applied to the aforementioned restricted dataset. The optimal
number of clusters kopt is estimated at the maximum of the
average silhouette width σ in Fig. 3. Both of the maximal val-
ues, i.e., σAKC

max and σPAM
max , represent that reasonable structures

exist in Ω according to Table II. Thus, AKC-based algorithm
creates 60 clusters at σAKC

max while the PAM-based algorithm
generates 12 clusters at σPAM

max . The analysis deduces that an
agglomerative bottom-up approach seldom groups outliers
with the other faraway scenarios, which is reflected in the
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Fig. 3. Cluster validation with quality measures

result that kopt of the AKC-based algorithm is higher than
kopt of the PAM-based algorithm. Therefore, many outliers
have their own clusters in the AKC-based algorithm as
illustrated in Fig. 4. Consequently, the AKC-based algorithm
can be considered as less robust towards outliers than the
PAM-based algorithm. Moreover, the analysis shows that
ρ2 is around 0.4 at σmax, which means the algorithms are
barely capable of grouping the equivalent scenarios in the
same cluster while they are able to separate the different
scenarios at σmax as ρ1 outlines. This result indicates that
there are many almost identical scenarios in several clusters.
γΩ shows a similar tendency to ρ1 in the whole range while
ρ1 correlates with ρ2 inversely. It is noted that only binary
and nominal variables are considered for ρ1, ρ2, and γΩ .
The noisy curves of PAM-based algorithm can result from
its swap process in each iteration.

Each cluster representative of the largest clusters in the
AKC-based algorithm, which cover at least 75% of N
scnearios with mj in total, is exemplary depicted in Table VI.
Furthermore, the distribution of metric variables is illustrated
in Fig. 5 where a high diversity of velocity values in several
clusters is apparent.

V. DISCUSSION

The clustering of rear-end striking near-crashes and
crashes is conducted with eight variables by applying the
AKC-based and PAM-based algorithm in combination with
MSM and CM.

AKC is an agglomerative clustering approach and requires
less computing time than the optimal k-covers algorithm
(OKC) to achieve the same quality of clustering [28, p. 16].
To authors’ knowledge, there is no research dealing with
AKC or OKC in traffic scenario analysis. The implemented

linkage criterion measures the distance between cluster repre-
sentatives calculated in each agglomerative iteration. Other
criteria, e.g., average linkage or Ward’s method, are to be
applied as well since the agglomeration method affects the
results significantly [13, p. 3]. An overview of linkage criteria
is given in [7, p. 647].

In comparison to AKC, PAM is a commonly used al-
gorithm in previous studies, e.g., [13], [15], [16]. Another
less time-consuming derivative of the k-medoids algorithm,
i.e., CLARA, considers only a part of the input data, which
can lead to a local minimum during the distance calculation
in the swap process [17]. Thus, the PAM was preferred in
this study. The initial medoids are selected not randomly but
based on CM (10). A further option is to utilize the final
cluster representatives of HAC, e.g., AKC-based algorithm,
to analyze the influence of the initial medoids on the swap
process and final cluster structures in a similar way to [13].

The results regarding kopt indicate that the PAM-based
algorithm is robust towards outliers while the AKC-based
algorithm is bottom-up and seeks the most similar data
points globally in each step. Since there can be relevant
rare scenarios, i.e., outliers, in the traffic occurrence or a
database, which are to be considered in the development of
predictive safety functions, the outliers are also important.
Thus, the merging of rare scenarios and a large cluster is
to be avoided. Alternatively, a weighting scheme for rare
scenarios is needed to prevent the clustering of outliers.

The results of AKC-based and PAM-based algorithm using
MSM and CM show that a high ρ1 value can be achieved at
σmax while ρ2 is still low. The next step is to explore how to
optimize both of the purity measures at σmax. Due to the lack
of consideration of ordinal and metric variables in the calcu-
lation of purity measures, a new measure is required, which
takes into account all the levels of measurement in cluster
variables. Moreover, the entropy renders the inhomogeneity
of clusters measurable [36]–[38]. The comparison between
entropy value before and after the clustering can indicate the
ability of a cluster algorithm to reduce the inhomogeneity in
input data.

The sensitivity analysis of cluster variables, i.e., features,
is an essential step to better understand the influence of
a single cluster variable, its type, and its distribution. The
diverse velocity values in clusters in Fig. 5 indicate that
dM (5) in MSM must be weighted and prioritized since the
velocity values show a high granularity and dM achieves the
maximal distance, i.e., dM =1, less often than the matching
distance dBN (3) of binary and nominal variables. As another
option, the clustering can be conducted with binary, nominal,
and ordinal variables in the initial dataset at first and with
metric variables in the clustered data subsets afterwards.

The feature selection can be supported by the principle
component analysis as shown in [13]. As an alternative
approach, a set of risk-inducing variables in [5], [6] can be
used as features. Furthermore, the similarity measurement
of time series data is to be conducted as presented in [39].
However, it is noted that the number of variables needs to be
low with respect to the case number in the input data [40].
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Fig. 4. Visualization of cluster structures in Ω using t-distributed stochastic neighbor embedding (t-SNE) [35] (4: representative)

TABLE VI
8 OF 60 REPRESENTATIVE SCENARIOS IN AKC-BASED ALGORITHM

Cj mj Description

3 311 Subject: Going straight, Vehicle in front: Decelerating while v_mean_precEv=50.83 km/h,
Evasive maneuver: braked, No visual obstacles, Traffic density: B∗, v_mean_coll=23.39 km/h

2 130 Subject: Going straight, Vehicle in front: Slowed and stopped 2 seconds or less while v_mean_precEv=18.67 km/h,
Evasive maneuver: braked, No visual obstacles, Traffic density: B∗, v_mean_coll=9.70 km/h

9 83 Subject: Slowing in lane, Vehicle in front: Decelerating while v_mean_precEv=53, 32 km/h,
Evasive maneuver: braked, No visual obstacles, Traffic density: B∗, v_mean_coll=28.48 km/h

5 68 Subject: Slowing in lane, Vehicle in front: Decelerating while v_mean_precEv=61.45 km/h,
Evasive maneuver: braked and steered, No visual obstacles, Traffic density: B∗, v_mean_coll=34.55 km/h

11 48 Subject: Slowing in lane, Vehicle in front: slowed and stopped 2 seconds or less while v_mean_precEv=30.67 km/h,
Evasive maneuver: braked, No visual obstacles, Traffic density: B∗, v_mean_coll=8.02 km/h

1 44 Subject: Going straight, Vehicle in front: stopped on roadway more than 2 seconds while v_mean_precEv=42.66 km/h,
Evasive maneuver: braked, No visual obstacles, Traffic density: B∗, v_mean_coll=9.36 km/h

6 36 Subject: Going straight, Vehicle in front right: lane change while v_mean_precEv=60.48 km/h,
Evasive maneuver: braked, No visual obstacles, Traffic density: B∗, v_mean_coll=47.02 km/h

14 36 Subject: Slowing in lane, Vehicle in front: - stopped on roadway more than 2 seconds while v_mean_precEv=39.31 km/h,
Evasive maneuver: braked, No visual obstacles, Traffic density: B∗, v_mean_coll=4.68 km/h
∗Level of service B: Flow with some restrictions
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Fig. 5. Distribution of metric variables in clusters shown in Table VI

VI. CONCLUSIONS

In order to reduce the test effort during the development
of predictive safety functions, representative scenarios are
needed, which cover a database at best possible rate. For
this purpose, two distance-based clustering methods, i.e.,
approximate k-covers and partitioning around medoids of
k-medoids, were implemented using the mixed similarity
measure and centrality measure to quantify the distances of
four different levels of measurement and identify the repre-
sentative in each cluster. As a linkage criterion, the distances
between multiple cluster representatives were utilized. The
selection of initial medoids was done based on the centrality
measure. The algorithm based on the approximate k-covers
delivered a higher number of clusters and did not merge
outliers with the closest large clusters. The outliers, i.e., rare
scenarios, in a database can be relevant for a certain predic-



tive safety function and system. Judging from the average
silhouette width, the algorithm based on the approximate k-
covers was considered as a better suited approach for the
given dataset even though both of the algorithms showed
the similar purity measures and representativeness of cluster
representatives. However, a broad distribution regarding ve-
hicle velocity values within the same clusters was noticed.
In further steps, the influence of selected features, especially
metric features, on clustering results is to be inspected by
conducting a sensitivity analysis. Besides metric features, the
similarity measurement of time series data is also necessary
for the distinct scenario description in the future.
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