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Preface
This thesis is a publication based thesis. It is based on the scienti�c work with the title Intricacies of
DFT+U, Not Only in a Numeric Atom Centered Orbital Framework which is published in The Journal
of Chemical Theory and Computation. The second work is titled Towards a Transferable Design of
Solid-state Embedding Models on the Example of a Rutile TiO2 (110) Surface published in The Journal
of Chemical Physics. The last publication—Mobile Small Polarons Explain Conductivity in Lithium
Titanium Oxide Battery Electrodes–deals with Lithium-Ion Batteries. Due to time constraints at
the end of my PhD period this work has not yet been published within a peer reviewed journal. It
is published on the open access platform arXiv.org.
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Abstract
Density functional theory (DFT) is by far the most employed method when it comes to the
description of extended solid-state systems. Easily explained as it shows great e�ciency and
accuracy regarding the description of metals and classical semiconductors. However, DFT written
in Kohn-Sham formalism has one major drawback which manifests itself in an nonphysical
interaction of the charge density. Even if there is just one electron present, the self-interaction
error (SIE) does not vanish. As a consequence standard DFT is not suitable to describe systems
which are characterized by localized electrons e.g. transition metal oxides or rare earth compounds.
In this publication based thesis, we deal with an extension to the usual Kohn-Sham DFT (KS-DFT)
formalism. This extension is based on the Hubbard model and adds an ad hoc correction term
to the DFT Hamiltonian. The so called DFT+U method will be extensively discussed regarding
its advantages and disadvantages. A focus will be on pitfalls regarding its practical use. The
detailed methodology will be presented in terms of a localized orbital basis set. Further, we
explicitly address the formation of small polarons– which is not accessible using standard DFT—
and show that polarons can serve as an excellent test case for the DFT+U method. Further, we
will demonstrate that polaron formation and DFT+U can also be used to judge the quality of a
solid state QM/MM embedding approach. Moving away from method development work, this
thesis further demonstrates the capabilities of the DFT+U approach by calculating explicitly the
electronic conductivity in lithium titanium oxide (LTO), a promising anode material for future
solid state Li-ion batteries.
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Zusammenfassung
Die Dichte-Funktional-Theorie (DFT) stellt die am häu�gsten verwendete Methode dar, die zur
Beschreibung von ausgedehnten Festkörpern verwendet wird. Dies lässt sich dadurch erklären, dass
diese Methode eine hohe E�zienz und Genauigkeit hinsichtlich der Beschreibung von Metallen
und klassischen Halbleitern aufweist. Jedoch geschrieben im Kohn-Sham-Formalismus, weist
DFT einen Nachteil auf, der sich in einer unphysikalischen Wechselwirkung der Ladungsdichte
manifestiert. Dieser Nachteil zeigt sich dadurch, dass der sogenannte Selbstwechselwirkungsfehler
nicht verschwindet, auch wenn nur ein Elektron im System enthalten ist. Eine Konsequenz
daraus ist, dass Standard DFT nicht in der Lage ist Systeme zu beschreiben, die durch lokalisierte
Elektronen charakterisiert sind. Dies tri�t unter normalen Bedingungen auf Übergangsmetalloxide
und Seltenerdverbindungen zu. In dieser voliegenden publikationsbasierten Dissertation wird eine
Erweiterung des Kohn-Sham DFT Formalismus vorgestellt. Diese Erweiterung fügt einen ad hoc
Korrekturterm zum Hamiltonoperator hinzu und basiert auf dem Hubbardmodell. Im Folgenden
wird auf die sogenannte DFT+U Methode eingegangen und die Vor- und Nachteile ausführlich
diskutiert. Der Fokus ist hierbei auf die Schwierigkeiten gerichtet, die diese Methode hinsichtlich
einer praktischen Anwendung, zur Folge hat. Die Details werden anhand eines lokalisierten
Basissatzes veranschaulicht. Des Weiteren wird explizit auf die Bildung von kleinen Polaronen
eingegangen, welche ein exzellentes Testsystem für DFT+U darstellen und mit herkömmlicher
Standard DFT nicht zugänglich sind. Zusätzlich wird demonstriert, dass die Bildung von Polaronen
und DFT+U genutzt werden kann, um die Qualität eines QM/MM Einbettungsansatzes zu testen.
Im Anschluss wird im Rahmen dieser Arbeit die Fähigkeit dieser Methode beschrieben, indem
unter der Verwendung eines DFT+U Ansatzes die Elektronenleitfähigkeit in Lithiumtitanoxid
explizit berechnet wird, welches ein vielversprechendes Anodenmaterial für zukünftige Festkörper
Lithium-Ionen-Batterien darstellt.
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1 Introduction
This thesis is based on three publications on the topic of polarons in oxide materials. The following
introductory sections are aimed at familiarizing the reader with all relevant aspects of the methods
therein. At the heart of each publication lies the so-called DFT+U approach, therefore, this introduction
will guide the reader, in a step-wise fashion, towards a deeper understanding of this method. The
main focus therein lies in presenting all relevant theory in an easily understandable manner.

Density functional theory (DFT) is the de facto standard when it comes to the description of
extended solid-state systems, [1–5] as it is able to describe systems such as metals and classical
semiconductors with great e�ciency and accuracy.[6] Despite its tremendous success in treating
such systems, simulating systems like transition metal oxides or rare earth compounds is still
challenging. Characteristic for these type of materials is that they often posses partly �lled d-
and f -shells with strong localized electrons.[7–10] In such cases, electrons can not longer be
viewed as a particle in a bath, they still partly retain their atomic orbital character, [11] and thus
are subject to strong Coulomb interactions. Approaching this kind of systems by using semi-
local DFT functionals utterly fails. At the heart of this failure is the well-known self-interaction
error (SIE) which results from an unphysical density-density interaction which is not completely
compensated as it would be in the case of Hartree-Fock (HF) theory. Usually, electron-electron
repulsion is therefore overestimated and it is not possible to describe localized electrons in an
adequate fashion. The electron density simply su�ers from being too delocalized.[12] Several
attempts have been made to cure this failure of DFT. Without going into to much detail here,
so-called hybrid DFT [13, 14] is possibly one of the most popular approaches to reduce the amount
of SIE. However, the evaluation of the corresponding density functional is very costly which limits
its use even on modern computer hardware. A very elegant and e�cient alternative to hybrid
functionals is DFT+U[15–17]. An easy interpretation for DFT+U would be that it describes the
Coulomb interaction more accurately than semi-local DFT does by using a model Hamiltonian
derived from the Hubbard model [18]. Although its use is in principle restricted to systems
characterized by localized electrons, its great strength lies in its simplicity and high e�ciency
regarding computational costs. Both render DFT+U in principle a powerful simulation method
enabling the computation of large extended systems. However, apart from the previously described
bene�ts of using DFT+U, the method is by far not a black box method to use. Choosing the correct
on-site Coulomb-interaction parameter and choosing the correct method for counting the number
of electrons occupying localized states can drastically in�uence the outcome of a calculation. An
important fact that the standard user is usually not fully aware of.

Within all publications linked to this work, DFT+U is the core method for simulating all ground
state properties of the systems in question. Therefore, in a �rst step the detailed origin of the SIE
and its consequences will be addressed. We then move forward to methods which are able to partly
cure for the SIE with a focus on advantages and disadvantages. Afterwards, a detailed description
of DFT+U is given by comparing it with popular methods such as hybrid DFT. The chapter will
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address in detail the origin of DFT+U, aspects such as the de�nition of the DFT+U occupation
matrix or the shape of the projector functions. The latter is a key element in counting the number
of electrons occupying localized states. Overall every relevant aspect of DFT+U will be discussed
regarding its capabilities and limitations. As one part of the thesis was to implement DFT+U into
the Fritz-Haber-Institut ab initio molecular simulations (FHI-aims) [19] package, the next chapter
then describes what is necessary to implement DFT+U in a modern quantum chemistry code. Also
a detailed description of all features is given there.

Furthermore, the scienti�c publications which have been made during the period of this PhD
thesis involve describing the formation of small polarons. At the �rst glance a concept which is
not immediately related to DFT+U. However, a small polaron in this context describes an excess
electron which is trapped on a speci�c lattice cite through the corresponding lattice distortion.[20]
Usually, a polaron is quite sensitive to the underlying electronic structure and can therefore serve
as a perfect test system for the DFT+U scheme. We make use of this fact in a work [21] published in
The Journal of Chemical Theory and Computation, which also explains in detail the implementation
of DFT+U within FHI-aims.

The standard approach to simulate polarons in solid-state systems is to apply periodic boundary
conditions (PBC).[22] However, simulation cells should be rather large in order to prevent inter-
action of polarons with their periodic image. This is even more critical if the overall system in
question possesses a net charge di�erent from zero. Exceedingly large cells are necessary to avoid
spuriously periodic interactions.[23, 24] An elegant way to overcome this drawback is to use a
so-called solid-state embedding approach (QM/MM).[25] Here, one uses a �nite QM-region which
is embedded in a point charge environment (MM).[26] The latter mimics the Madelung potential
of the in principle in�nite crystal.[27] This approach enables studying polarons in the dilute limit
and gives easy accesses for studying charged systems as no PBC are required. Moreover, the
QM-region usually consists of less atoms then a supercell calculation would involve. Hence, a
QM/MM approach enables the use of costly modern higher-rung techniques such as (double-)
hybrid functionals [28] for describing solid-state systems.[29] Therefore, the second scienti�c
work presented in this thesis, deals with the question how accurately a QM/MM approach can
describe sensitive systems like polarons. Again, the sensitivity of polarons serve as an perfect test
case for this kind of approach.

In another scienti�c work, the established the DFT+U infrastructure of FHI-aims is further
used to address the question if a polaron hopping mechanism is responsible for the increase of
electronic conductivity in reduced lithium titanium oxide (LTO)—a promising candidate for anodes
in future solid state Li-ion batteries.[30–33] Further, by calculating hopping activation energies,
we are able to give an upper bound regarding the theoretical possible electronic conductivity in
LTO.

In that sense, the aim of chapter 4 is to make the reader more familiar with the concept of a
polaron.

The �nal chapter of this thesis collects a short summary of all publications made during the
period of this PhD thesis.
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2 Theory
In this chapter, the reader is introduced to the DFT+U formalism and its impact and meaning
w.r.t. electronic structure calculations. The focus lies on the ability of DFT+U at least to partially
correct for the SIE arising from approximations made in the standard Kohn-Sham DFT (KS-DFT)
formalism. This view of DFT+U, as a SIE correction method, is in fact the modern interpretation
of DFT+U. The chapter starts with a general introduction to DFT and an explanation of the arising
SIE followed by a detailed description of how DFT+U is able to cure this de�cit.

2.1 Density-Functional-Theory in a Nutshell
2.1.1 Kohn-Sham DFT
State of the art simulation techniques still rely heavily on DFT due to its tremendous e�ciency
enabling quantum mechanical descriptions of systems consisting of several hundred atoms. The
well known Hohenberg-Kohn theorems [34] lay the theoretical foundations of this theory. They
state that once the ground state density of a system is known, every ground state property can in
principle be described as a functional of the obtained density. Moreover, the Hohenberg-Kohn
theorems also show that there is a variational principle for calculating and �nding the ground
state density.

Modern quantum chemistry codes apply these theorems almost exclusively using the Kohn-
Sham formalism [35] (KS-DFT) which renders DFT a practical computational tool with high
e�ciency. Although, the Hohenberg-Kohn theorems show that it is possible to describe a quantum
system with the corresponding electron density (ρ), only KS-DFT enables fast calculations without
explicitly evaluating the wavefunction of a system. The idea behind KS-DFT is to describe the
electrons as a system of non-interacting particles which are subject to an e�ective potential
designed in such a way that the density of the non-interacting electron system matches the
electron density of the true counterpart. The total energy of the system is then given by

E
[
ρ
]
= Ts

[
ρ
]
+

∫
ρ (r)vext

(
ρ
)
dr + J [r] + Exc

[
ρ
]
, (2.1)

where Ts is the non-interaction kinetic energy and J describes the classical Coulomb repulsion of
a charge density. The external potential vext

(
ρ
)

is an attracting potential due to the presence of
positively charged atomic nuclei. Within KS-DFT all quantum mechanical aspects of an interacting
many-body system are contained in the so called exchange-correlation (xc) functional Exc. The
above description directly leads to the so called Kohn-Sham equations which de�ne the the electron
orbitals Φi ,(

−
52

2 +vext (r) +vJ (r) +vxc (r)

)
Φi = ϵiΦi . (2.2)
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Here vJ (r ) and vxc (r ) denote the Coulomb potential and the xc potential, respectively. The latter,
as the name already suggests, combines to contributions of electron exchange and correlation
interactions. Exchange is a quantum-mechanical interaction which only occurs between particles
being in the same spin state. In case of fermionic particles—electrons—this interaction is also
known as Pauli repulsion and manifests itself as the Pauli exclusion principle [36] which states
that two electrons can not be in the same state at the same time. Correlation instead describes the
e�ect which electrons have on the other electrons due to their own motion.

From the above listed equations it can be easily seen what the implications of the Kohn-Sham
formalism are: The electrons move under an e�ective potential yielding single-particle orbitals
from which the electron density of the true system can be constructed by

ρ (r) =
∑
i

|Φi (r) |2 . (2.3)

In principle, on its own a single Kohn-Sham orbital does not have any physical meaning at all,
only in total they yield the electron density. However, it turns out that in most cases they are very
good approximations to the real orbitals of the system.[37]

The above sketched formalism is in principle exact, however, this only holds true if the exact
xc functional is known. In practice this is not the case and Exc always needs to be approximated.
Obviously an approximated e�ective potential leads to approximated orbitals and hence to an
approximated electron density. In general, the di�culties in �nding a proper xc functional arise
from expressing all missing quantum mechanical many-body features in terms of the underlying
density.[11] However, including missing quantum-mechanical interactions is not the only require-
ment, a proper xc functional should also correct for the errors made in using a non-interacting
electron system. By far the most important error is the so called self-interaction error (SIE)[38,
39]. Without going into detail—the detailed description will be part of section 2.1.2—the SIE arises
from an incomplete cancellation of the errors made using a classical Coulomb description for
modeling the electron-electron repulsion.[40] Although there exist several attempts to overcome
this problem, up to now, none of them is really able to remove the SIE entirely.[11, 12] In general
the SIE leads to an over-delocalized electron density and many failures such as the well-known
band gap problem can be attributed to it. Moreover, it turns out, that the SIE is one of the major
sources for the failing of KS-DFT in yielding a qualitatively incorrect ground state for systems
which are characterized by localized electrons—this is often the case in rare-earth compounds and
transition-metal oxides with partially �lled d- or f -shells.[7–9, 41]

2.1.2 Origin of the Self-Interaction Error
As stated before, one of the major sources for errors in KS-DFT is the self-interaction error (SIE).
It arises from the use of a classical Coulomb description for describing the electron-electron
repulsion of the non-interacting electron system.[11, 40, 42] Within KS-DFT the Coulomb energy
is de�ned in terms of the density as

J
[
ρ
]
=

1
2

∫ ∫
ρ (r) ρ

(
r′
)

|r − r′ |
drdr′ . (2.4)

In that description, the charge density at place r will interact with the charge density at r′.
Obviously, this term does not fully vanish even if there is just one electron in the system.[43]
However, at least for a one-electron system it is easy to de�ne the SIE as it is just the given
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Coulomb contribution. Therefore, in the limit of having one electron, one can easily derive a
�rst requirement for a proper DFT functional, namely that exchange and Coulomb contribution
should cancel each other out. As there is just one electron, of course, the correlation energy should
vanish too.[44] This is exactly the case for HF-theory. The spurious self-interaction contribution is
cancelled out completely by the corresponding exchange term. This self-interaction-free character
of HF is easily veri�ed if one considers the formular for the Coulomb integral,

Ji j =

∫
|Φi (r) |2

1
|r − r′ |

|Φj
(
r′
)
|2drdr′ (2.5)

and for the exchange integral

Ki j =

∫
Φ∗i (r)Φj (r)

1
|r − r′ |

Φ∗j
(
r′
)
Φi

(
r′
)
drdr′ . (2.6)

Here, the self-interaction terms Jii are canceled out by Kii and within the limit of a one-electron
system HF-theory is exact.[45] However, electronic correlation is not included at all. Nevertheless,
in a many-body system, it is not so easy to de�ne a unique mathematical de�nition of the SIE[40,
46] and hence there is no unique recipe to construct the xc functional in such a way that it fully
compensates for the unphysical Coulomb contribution.[39] As a result, up to now, approximated
KS-DFT is not a SIE-free theory at all.[47] Besides the previous mentioned failures of DFT, the SIE
error gives rise to too low orbital energies and leads to an unphysical stabilization of delocalized
states. Especially standard local or semi-local functionals which are based on the local spin-
density approximation (LDA) [34] or on the generalized gradient approximation (GGA)[48] show
a pronounced amount of self-interaction and entirely fail in describing localized electrons.[49, 50]
Furthermore, correctly describing the dissociation of rare gas cation dimers or neutral reactions
such as the hydrogen abstraction reaction H2 + H→ H + H2 is nearly impossible using standard
local or semi-local DFT functionals.[40, 51, 52]. Finally, it should be highlighted, that the systems
described in the appendix are also examples where a description using standard DFT functionals
will lead to a wrong prediction of electronic ground state properties.

2.1.3 Correcting the Self-Interaction error
In literature there exist several attempts for correcting the SIE. One of them is self-interaction
corrected density functional theory (SIC-DFT)[43]. Within SIC-DFT the total energy is given by

ESIC-DFT = EDFT [
ρ
]
+

∑
i

U SIC [
ρi

]
, (2.7)

where U SIC is de�ned as

U SIC [
ρi

]
= −

1
2

∫ ∫
ρi (r) ρi

(
r′
)

|r − r′ |
− Exc

[
ρi,0

]
. (2.8)

In that formula ρi denotes the density of a single Kohn-Sham orbital Φi with ρi , 0 being the
explicit ground-state density. In general, this additional term introduces an orbital-dependent
potential to the usual Kohn-Sham description and the SIE is removed orbital wise.[53] However, it
usually worsens the atomization energy of molecules [54], and it struggles to correctly describe the
stretching of bonds [54] as well as quantities related to thermochemistry.[12] Moreover, without
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going into detail, solving equations 2.7 and 2.8 self-consistently results in a large computational
overhead, thus limiting its usage. In addition, simply adding the SIC correction (cf. eq. 2.7) to the
usual DFT functional, ignores a possible error cancellation between exchange and correlation
contributions.[55] Nowadays new attempts have been made to improve SIC-DFT like Fermi-
Löwdin orbital self-interaction correction (FLO-SIC) which already showed promising results in
small molecular systems.[53, 56–58]

One of the most prominent methods to mitigate the SIE problem is to use hybrid xc-functionals.
The idea behind this class of functionals is in fact quite simple. Considering that HF treats the
exchange interaction exactly and is SIE-free (see above), hybrid functionals simply admix some
percentage of the orbital dependent HF exchange to the xc-functional. Therefore, a general hybrid
functional can be written as

E
hybrid
xc

[
ρ
]
= EKS-DFT

xc + α
(
EHF

x − E
KS-DFT
xc

)
(2.9)

where α denotes the mixing factor which determines the amount of HF exchange. Within hybrid
functionals, HF exchange (EHF

x ) is usually evaluated in the KS-orbital basis. This evaluation is
usually considered to be the bottleneck of these class of functionals as the evaluation of the so
called Fock integrals is computationally rather demanding. Therefore, despite the power of modern
supercomputers, this fact usually restricts the application of hybrid functionals to rather small
systems. Moreover, the quality of the results also depends on α , which adds another ambiguity
as there is no unique way in determining it. Nevertheless, hybrid functionals showed quite a lot
of success in mitigating the SIE in molecular system. Furthermore, they also show remarkable
performance in describing systems such as semi-conductors or oxide materials[59]. To name just
a few, the most prominent hybrid functionals which are used nowadays are HSE06[13], B3LYP[60,
61], or PBE0[14].

As already mentioned DFT+U can also be seen as a SIE correction method. It is usually employed
for the description of localized d- or f -electrons and was originally inspired by the Hubbard-model,
cf. section2.2.1 [18]. Moreover, it can be considered to work in a similar way as hybrid functionals
do, however, its usage is restricted to just a subset of all electrons. Its great strength lies in
the simplicity of its corrective term and its very low computational cost. Generally, the DFT+U
correction is usually applied to LDA or GGA based functionals to describe solid-state systems.
Applying the Hubbard correction to e.g. hybrid functionals usually results in an overcompensation
of the SIE. Nevertheless, there exist also variants of DFT+U which are quite successful in describing
molecular systems.[11, 62] The detailed origin of the DFT+U approach and its advantages and
disadvantages will be explained in section 2.2.

For completeness, methods based on constraint DFT (cDFT) can also be considered to be methods
to compensate for the SIE. Without going into detail, within cDFT a corrective potential is added
to the standard Kohn-Sham description in form of a Lagrange-multiplier. The KS-equations are
then solved self-consistently under some certain constraint. One such constraint can be to �x the
number of electrons located on a certain atom or within a certain fragment of the system. Also
constraining the magnetic moment or the atomic charges is possible.[63–65]

2.2 DFT+U
This section should be seen as an introduction to the DFT+U approach and its theoretical back-
ground. Therefore, all important aspects of the method will be introduced in a step by step fashion.
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2.2.1 The Hubbard Model
The idea behind DFT+U originally comes from the Hubbard model. Within this model one assumes
that strongly localized d- or f -electrons are subject to an on-site Coulomb repulsion. Usually,
the strength of the on-site Coulomb repulsion is described by the Hubbard parameter U . The
Hamiltonian for a 1D lattice is given by

H = U
∑
I

nI ↑nI ↓ − t
∑
I

∑
σ=↑,↓

(
a†I,σaI+1,σ + a

†

I+1,σaI,σ
)
, (2.10)

where the second term describes the movement of electrons between di�erent lattice sites I
with the hopping strength t . This hopping term is also known from the standard tight binding
approach.[66, 67] The �rst term, however, describes the Coulomb repulsion of electrons which are
located at the same lattice site. a†j,σ and aj,σ are the fermionic creation and annihilation operators
with nj,σ = a†j,σaj,σ . Here σ denotes the spin index.[18, 68] As already mentioned previously,
LDA or GGA based functionals are not able to describe localized electrons in an adequate way. As
a remedy, Anisimov et al. [15] suggested to augment semi-local DFT with a correction term based
on the Hubbard model Hamiltonian and accounting for the on-site repulsion of localized electrons.
This has an important implication, namely only the subset of localized electrons are described
via the Hubbard model while all the other electrons are still described on the level of standard
local or semi-local DFT. Although, in principle, the Hubbard correction can be applied to every
state, usually, on-site Coulomb repulsion is strongest for localized d- or f -electrons. Less localized
electrons e.g. states with p character are usually not subject to the Hubbard correction.[11, 69]

2.2.2 Arriving at a DFT+U Description
By adding the Hubbard correction term to the DFT description one obtains the following general
DFT+U functional,

EDFT+U [
ρ
]
= EDFT [

ρ
]
+ E0

U
[
nI

]
− Edc

U
[
nI

]
. (2.11)

Here, E0
U is the energy contribution due to the Hubbard model description. This term now models

the localized electronic states and is directly depending on the orbital occupation nI of these states
at lattice site I . The �rst problem which arises in that description is that all electron-electron
interactions are treated by the standard DFT functional as well. In order to avoid a double-
counting of interactions one therefore has to subtract Edc

U . However, as indicated by equation 2.11
the Hubbard contribution depends on orbital occupation numbers whereas the DFT functional
depends on the electron density.[70] It turned out to be impossible to �nd a direct link between
these descriptions, which means that the double counting correction cannot be derived exactly
and needs to be approximated. Di�erent approximations can seriously a�ect the outcome of a
calculation as, of course, they will alter the DFT+U functional. One possible approximations is
the so called fully-localized limit (FLL). This is in fact the most common one used in literature.
Here, one assumes that the occupation numbers are either 0 or 1.[71] Moreover, it is also assumed
that when having integer occupation numbers the SIE in LDA or GGA should be small which
means that the DFT part itself should be good enough to describe the system. Therefore, E0

U and
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Edc
U should cancel each other out to restore the actual DFT functional. Next to this form there also

exists the around mean-�eld (AMF) formulation for the double-counting correction designed to
describe systems with less localized electrons. There, the basic assumption is that in the limit
of uniform occupancy the DFT+U energy contribution should vanish.[11] In the following, for
simplicity and without loss of generality, only the FLL approximation will be considered. However,
the issue of choosing a proper double-counting correction in a simulation will be addressed later
on.

As shown before, the DFT+U correction in principle contains two di�erent terms, the Hubbard
part and a double-counting correction. However, in literature both are usually combined to one
description,

EDFT+U [
ρ
]
= EDFT [

ρ
]
+ EU

[
nI

]
. (2.12)

In order to gain a better understanding of DFT+U and its impact on the electronic structure of a
system it is best to start with DFT+U in its rotationally invariant formulation. It can be derived in
a mean-�eld sense and one arrives at [11]

E0
U

[
nσImm′

]
=
1
2

∑
I, {m },σ

[ 〈m,m′′ |Vee |m
′,m′′′〉 nσImm′n

−σ
Im′′m′′′

+
(
〈m,m′′′ |Vee |m

′,m′′′〉 − 〈m,m′′ |Vee |m
′′′,m′〉

)
× nσImm′n

σ
Im′′m′′′ ] . (2.13)

Here the orbital occupation numbers enter via elements of the so called DFT+U occupation matrix
nσImm′ .[11, 16] Coming from the Hubbard model, in principle, these are, as already mentioned,
the localized orbitals |m〉 at some certain atomic site I where the indexm denotes the magnetic
quantum number corresponding to a certain angular momentum l . In other words the elements
of these occupation numbers describe the occupations of a certain angular momentum shell
on a speci�c atomic site I . However, using a localized basis set, the localized states are always
represented as linear combination of the present basis functions. This has a quite large impact on
the complete DFT+U approach as one does not know beforehand what the localized states are and
which basis function will contribute most in the linear expansion. Hence, there is an ambiguity
in selecting and clearly identifying these localized states. Usually, the occupation numbers are
obtained via a projection on more or less localized reference functions which where chosen to
resemble the likely shape of the localized orbitals. In practice, as the main focus of DFT+U is to
describe d- or f -electrons, one usually projects on the d- and f -manifold of the underlying basis
sets simply due to the fact that these basis function can be considered to contribute most to the
localized states. This is also consistent with a plane wave basis, however, one does not project
onto the basis functions one is projecting the KS states onto prede�ned reference functions which
are often drawn from atomic reference states. Overall, this already shows that the performance of
DFT+U is signi�cantly depending on the chosen projector functions.

The corresponding double-counting correction term written using the FLL approximation is
given by [11]

Edc,FLL
U

[
nσImm′

]
=

1
2UInI

(
nI − 1

)
−
1
2 JI

[
n↑I

(
n↑I − 1

)
+ n↓I

(
n↓I − 1

)]
(2.14)

with UI and JI being parameters modeling the Coulomb and exchange contribution and nI =∑
m,σ n

σ
Imm .
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Equation 2.13 shows large similarities with the energy expression known from HF theory1.
In fact, the integrals involved in that description can be interpreted as Coulomb and exchange
contributions. The similarities with equation 2.5 and equation 2.6 can be clearly shown if one
writes the integrals explicitly. For example,

〈m,m′′ |Vee |m
′,m′′′〉 =

∫ ∫
Φ∗Im (r)ΦIm (r)VeeΦ∗Im′

(
r′
)
ΦIm′′′

(
r′
)
drdr′ , (2.15)

Therefore, one can interpret the Hubbard correction as replacing the mean-�eld density-density
interaction with an expression similar to HF.[11] As in HF self-interaction terms are canceled out
by corresponding exchange terms. However, here Vee is the screened Coulomb operator.

Here, the similarities to hybrid functionals become quite obvious.[72] Within hybrid functionals
one is mixing in a part of exact exchange from HF. As the parameter U in DFT+U determines the
strength of the on-site interaction one can also regard the mixing-factor α as the corresponding
counter part in hybrid functionals. However, in hybrid functionals all electron-electron interactions
are treated in the same way involving the evaluation of explicit Fock-integrals, causing high
computational costs. Contrary, within DFT+U the shown integrals are usually factorized and
expressed by parameters. Moreover, only a subset of electrons is subjected to the Hubbard
correction, all other states are still described by standard local or semi-local DFT. Therefore,
in principle, hybrid functionals usually give a more accurate description of the system as they
improve the description of all electronic states in the system.

As Perdew et al. [73] demonstrated, the energy and density of a system is piece-wise linear
w.r.t. to integer electron numbers with lines connecting each integer point. Hence, its derivative
should show discontinuities at these points.[39] This is in fact an important property a density
functional should have. Now, by incorporating the Hubbard correction into DFT one is able to
reintroduce the derivative discontinuity in the exchange-correlation functional [11] This is not
fully surprising, as the Hubbard model itself shows a derivative discontinuity.[39] However, this
derivative discontinuity is only introduced in the subset of the localized states. The main e�ect of
this is that, if the localized states states form the frontier orbitals of the system DFT+U is able to
impose an opening of the band gap proportional to the chosen U parameter.[11]

DFT+U in its simplified Formulation
Equation 2.13 and 2.14 have been introduced to clearly demonstrate how the Hubbard correction
describes localized states. However, usually one uses a simpler formulation of the DFT+U func-
tional. One can assume that localized states retain their atomic character and therefore should
show similar spherical symmetry. As a result one can simplify integrals involved in expression
2.13 and one obtains the so called spherically averaged from [17] of the DFT+U description,

EFLL
U

[
nσImm′

]
=

1
2
∑
I,σ

UI

[
Tr

(
nσI

)
− Tr

(
nσI n

σ
I

)]
. (2.16)

Here, the double-counting correction in the FLL is already incorporated. This formulation is
the de facto standard used in literature.[9, 74–77] Although the clear similarity with HF is lost
in this formulation, it shows similar accuracy as the previously introduced formulation which,

1EHF =
∑N
i 〈Φi |ĥ |Φi 〉 +

1
2
∑N
i

∑N
i,j

[
〈ΦiΦj |

1
|r1−r2 |

|ΦjΦi 〉 − 〈ΦiΦj |
1

|r1−r2 |
|ΦiΦj 〉

]
,

with N being the number of electrons.
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however, does not account for orbital dependent interactions. From eq. 2.16 it is also clear why
the computational overhead of a standard DFT+U calculation is only marginal compared to LDA
or GGA calculations. No integrals need to be evaluated, the only quantity which needs to be
determined is the DFT+U occupation matrix nσI .

From equation 2.16 one can derive the e�ective potential which will enter the Kohn-Sham
Hamiltonian quite easily by

vσ ,FLL
Imm′ =

∂EFLL
U
∂Dσ

i j
= −UI

(
nσImm′ −

δmm′

2

)
. (2.17)

Here, Dσ
i j denotes a general matrix element of the contracted density matrix of the system. The

meaning of this equation can be interpreted as following: if an orbital is fully occupied, meaning
it shows an occupancy of 1, the orbital energy is subject to a down shift of −U2 . On the other
side, if the orbital is empty it is shifted up in energy by U

2 . As a result, if the orbitals form the
frontier orbitals of the system, DFT+U is able to introduce a band gap opening proportional to the
on-site strength U . This fact is illustrated in Figure 2.1 where a band gap is introduced between
the d-bands. Another interpretation is that the DFT+U correction in the FLL approximation acts
as a penalty function which enforces the system to have either full or empty orbitals. This is
analogous to cDFT where an energy penalty is imposed if the electron density does not match the
employed constraint.[63]

As the e�ect of DFT+U is to shift d- or f -bands up and down in energy, one can easily imagine,
that with a high enough U value, at some point, one would shift one band over another. In other
words one could change the energetic ordering of the di�erent bands if theU value is high enough.
In addition the hybridization between the states of course is also a�ected. As a consequence,
improvement of the electronic structure will only take place within a certain range of U values.
A too large U value could lead to overcompensation and hence to an entirely wrong electronic
structure.

2.2.3 The on-site U Parameter
So far it has only been mentioned thatU measures the strength of the on-site repulsion of electrons.
However, the question still remains how to obtain the correct parameter for a certain system. The
problem is thatU depends on the chemical environment of the atomic site in question. In principle
this means one has to determine for each speci�c site a unique interaction parameter. However, in
practice one considers di�erent parameters only for di�erent atomic species. Even worse, it does
not only depend on the chemical environment it also depends on the underlying basis set of the
quantum chemistry code, making it impossible to compare the U parameters between di�erent
codes. The standard strategy to determine the parameter is to simply �t it to some experimental
data. This means one would then choose some experimental observable like e.g. the band gap and
tune the U parameter until simulation and experiment agrees. The obtained U value is then used
in further simulations to predict other material parameters.[11] It is important to note, though,
that such an approach makes DFT+U a semi-empirical method. On the other hand, there is still the
possibility to calculate the U parameter using a linear response approach.[78, 79] A quite elegant
method if there is no experimental data available, however, care must be take to ensure that the
calculated U parameter is still physically meaningful. Both methods have in common, that one
should never use U parameters obtained from di�erent electronic structure packages as this can
in principle lead to the prediction of unphysical results.
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Fig. 2.1: Illustration of the band gap opening between the d-states of a system. The amount of how the band
gap is increased is proportional toU if the localized states are the frontier orbitals of the system. Also
illustrated are the d-orbitals to which the +U correction is usually applied. Unoccupied states are
depicted in transparent color.

2.2.4 Double-Counting Correction
As already mentioned, there are two common approximations for the double-counting correction,
the FLL and AMF approaches. So far, for the sake of simplicity, only DFT+U in its FLL formulation
has been discussed. As already mentioned, FLL is widely employed in literature often without
ever mentioning which double-counting actually was used, simply due to the fact that most
of the quantum chemistry packages do not o�er to switch to other de�nitions. However, one
can consider the FLL as best suited for describing systems which are characterized by strongly
localized electrons. This already justi�es its predominant usage as DFT+U is actually designed
for describing such systems. Nevertheless, it is worth mentioning that there exists also a double-
counting correction for less localized electrons with the around mean-�eld (AMF) description.
As already mentioned in section 2.2.2 within the AMF approximations one assumes uniform
occupancy of the localized states. Like in the FLL where the energy term vanishes if integer
occupation numbers are reached, the energy term in the AMF description vanishes if all orbitals
are equally populated. The energy correction to standard DFT is then given by [11, 70]

EAMF
Us

[
nσImm′

]
=

1
2
∑
I,σ

UI Tr
©­­­«
n

σ
I −

Tr
(
nσI

)
2l + 1


2ª®®®¬ . (2.18)
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Of course the above equation is again written in its spherically averaged form where l denotes
the angular momentum quantum number of the shell to which the Hubbard correction is applied.
Also for this description one can derive a formulation for the e�ective potential which will enter
the DFT Hamiltonian matrix, namely

vσ ,AMF
Imm′ = −UI

©­­­«n
σ
Imm′ −

Tr
(
nσI

)
2l + 1 δmm′

ª®®®¬ . (2.19)

Here, the localized orbitals are subject to an upward or downward shift depending on how the
occupancies are di�ering from the average occupation of the corresponding shell. In other words,
it imposes an energy penalty on the states which di�er from uniform occupancy. In contrast to
FLL which imposes a energy penalty if the occupation number is di�ering from 0 or 1.

Strictly speaking, the truth lies somewhere between the two described limits. Therefore, at-
tempts have been made bridging these two approximation using a linear interpolation scheme.[70]
However, this approach is not frequently used in literature as for example FLL. One reason is that
FLL shows a better ability to describe Mott localization and it is also more suitable for increasing
the band gap in the KS spectrum.[11] As a general note, the double-counting correction has to be
chosen according to the properties of the system in which one is interested in. Of course, a wrong
choice of the double-counting correction could yield an incorrect electronic ground-state.

2.2.5 Obtaining the Occupation Number Matrix
A very important aspect of DFT+U is the question of how one obtains the occupation numbers from
the underlying electron density. The question is related to the problem of identifying the localized
states out of the Kohn-Sham state spectrum. This is not a trivial task due to hybridization of the
orbitals and mixing of the states. In principle, one has to identify the states which contribute to
the localized d- and f -states. Moreover, they should enter the correction according to their weight
depending on how they contribute to the localized states. Such di�culties are closely related to the
problem of �nding the angular momentum character of an orbital or its contribution to the partial
charge of an atom. In the case of assigning partial charges to a speci�c atom, there exist quite a
number of approximations such as the Mulliken method [80] or the Löwdin population analysis
[81]. Both have in common that the contribution of a Kohn-Sham state to a speci�c angular
momentum state or due to a localized orbital is determined by a projection of all Kohn-Sham
states onto a reference representation of a speci�c state, called projector function. Within DFT+U
these projector functions are also often termed Hubbard projectors. Of course, di�erent choices of
projector functions can a�ect the outcome of a calculation and for each system or each element
one has to determine in principle a unique set of projector functions. However, for simplicity and
to avoid excessive computational overhead, common choices for projector functions are the basis
functions of a localized basis set itself. This closely follows the assumption that basis function of
speci�c d- or f -character will largely contribute to the localized states. Nevertheless, there exists
also implementations using for example maximally localized Wannier functions.[62] For more
details regarding the in�uence of the projector functions the reader is referred to [21] which is
also included in the appendix of this thesis.

As this thesis is concerned with the implementation of DFT+U into the FHI-aims package [19],
all working equations regarding the determination of the occupation numbers will be introduced
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in terms of a localized basis set.
As already mentioned, the occupation numbers in DFT+U enter via the so called DFT+U occupation
matrix. This matrix is in general de�ned via a local projection operator, P̂σImm′ .[82] One can then
obtain the corresponding matrix elements of nσI by calculating the projection of all Kohn-Sham
states,

nσImm′ =
∑
γ

fγ 〈Φ
σ
γ |P̂

σ
Imm′ |Φ

σ
γ 〉 . (2.20)

In the above formular fγ denotes the occupation of a certain Kohn-Sham state Φσγ . The indexm
here then denotes the index of the projection function associated to a certain magnetic quantum
number of a speci�c angular momentum shell. The index I is again the atomic site index. In
principle, projector functions here can be the basis functions itself or linear combinations of the
basis functions as long as they can be associated to a certain angular momentum. At that point it
is also quite useful to speak in terms of a localized subspace instead of localized states simply due
to the fact that by projecting onto reference functions only a certain subspace will be a�ected by
the DFT+U correction.[83]

Things get even more complicated as not only the choice of the projector functions a�ect the
description but also the de�nition of the projector operator itself. To date now there is no unique
way to de�ne such a projector which accounts for the number of electrons on an atom.[11, 82, 83]
Within DFT+U three di�erent common choices for the operator exists, di�ering in the way how
they account for the overlap with the surrounding basis functions. In other words, they di�er in
the way how they assign electrons to an atom occupying also neighboring basis functions.

One of the simplest choices for the projection operator is the so-called on-site representation
where the projection operator is given by

P̂σImm′(on-site) = |φ̃σIm′〉 〈φ̃
σ
Im | (2.21)

Here, the φ̃σIm′ determines the Hubbard projectors dual, which are de�ned in terms of the inverse
overlap matrix S−1,

|φ̃σIm〉 =
∑
m′

S−1Imm′ |φ
σ
Im′〉 . (2.22)

They are introduced in order to avoid to carry the overlap matrix, used to orthogonalize the
projections, throughout all calculations.[80, 84]

Another possible de�nition for the projection operator is the dual representation [82],

P̂σImm′(dual) = 1
2

[
|φ̃σIm′〉 〈φ

σ
Im | + |φ

σ
Im′〉 〈φ̃

σ
Im |

]
. (2.23)

In that description the occupation numbers are determined in a similar fashion as in the Mulliken
population analysis. The third variant is the so called full projection operator where one de�nes
the projection as

P̂σImm′(full) = |φσIm′〉 〈φ
σ
Im | . (2.24)

All have in common that they yield Hermitian e�ective potentials which are added to the DFT
Hamiltonian. The on-site de�nition completely neglects the overlap to the surroundings, whereas
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the full de�nitions accounts for the complete overlap with all other sites. The dual representation
can be regarded as an intermediate form between on-site and full. It is also the only de�nition
which yields the correct amount of electrons which are contained in the localized subspace.[82]
From this perspective it seems to be clear that the dual representation should be the best de�nition.
However, studies regarding the performance of the occupation matrices for various transition
metal oxides have shown that there is no clear advantage of any speci�c representation. All
occupation matrices showed nearly identical behavior.[85] This is easily explained that di�erent
counting of electrons can be compensated by simply adjusting theU parameter. For completeness,
it should be noted that all these de�nitions are not fully tensorial-consistent. In other words
products of the occupation matrices are not physically meaningful. Without going into detail, this
would involve de�ning a covariant-contravariant formulation of the DFT+U occupation matrix.
The interested reader is referred to reference [83].

In the special case if the Hubbard projectors are exclusively de�ned as basis functions, one can
easily derive the following working equations for the occupation number matrix elements. For
the on-site de�nition within the

(
2l + 1

)
manifold of a certain subset of the basis set one obtains

nσImm′(on-site) = Dσ
Imm′ , (2.25)

for the full occupation matrix one yields

nσImm′(full) =
∑

Jn, J ′n′
SIm, JnD

σ
Jn, J ′n′S J ′n′, Im′ (2.26)

and �nally for the dual representation the corresponding matrix elements are

nσImm′(dual) = 1
2
∑
Jn

[
Dσ
Im, JnS Jn, Im′ + SIm, JnD

σ
Jn, Im′

]
. (2.27)

Again, Dσ
Jn, J ′n′ =

∑
γ f σγ cσγ , Jnc

σ ∗
γ , J ′n′ is the density matrix of the system with cσγ , Jn being the

expansion coe�cients in a linear combination of atomic orbitals approach. The index n then
denotes a general basis functions located at an atom J of the system. At this point the author would
like to highlight that, due to its simplicity, the on-site representation showed greater numerical
stability as the other de�nitions during the calculations.

2.2.6 The DFT+U Matrix Control Approach
The Hubbard correction to the DFT Hamiltonian is an orbital dependent potential. It acts, as
previously explained, as a penalty function on the occupation of the localized orbitals. This is
problematic as depending on the initial orbital occupation one can get easily trapped in meta-stable
states as they potentially can show a large energy barrier which can not be overcome during an
self-consistent �eld (SCF) cycle.[41, 86] As a result, one can obtain a wrong ground state prediction.
To overcome this drawback of DFT+U one can use the occupation matrix control approach.[10,
86] In this rather simple approach one �xes the occupation matrix of a system and modi�es the
diagonal entries of the occupation matrix. In other words, in order to obtain a certain orbital
con�guration, such as e.g. a polaronic state in a semiconductor, one would then specify the speci�c
con�guration at the beginning of a calculation. There are two possible options, one could either
�x the occupation matrix for a certain number of SCF steps or for the entire run. For the latter,
in order to obtain an SCF solution one would use the obtained density as an input for a second
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calculation without �xing the occupation matrix. Fixing the occupation matrix, in principle acts
like a bias potential analogous to the cDFT approach. The electron density will then adapt to the
enforced orbital con�guration. By this, one can screen di�erent orbital con�gurations in order to
clearly determine the global minimum of the system. Moreover, this approach can also be used to
enforce a speci�c localization of excess charges. In order to illustrate how this simple approach
works Figure 2.2a) schematically depicts an occupation matrix for a 3d-shell of a Ti atom in bulk
TiO2. In Figure 2.2b) this occupation matrix has been modi�ed by setting one of the diagonal
elements to 1.00.

2.2.7 A last Comment on DFT+U Theory
So far, quite a lot of di�erent aspects of DFT+U have been introduced. Despite its rather simple
working equations, its impact on the electronic structure of the studied system can be quite
large. The choice of the double-counting correction, the question which Hubbard projector is
the best for the system, and the ambiguity in the de�nition of the occupation matrix can be
quite confusing, rendering the DFT+U approach a method quite far away from being a black-box
method. Nevertheless, its strength lies in its high e�ciency. In fact if the studied quantity is mainly
characterized by localized d- or f -electrons, DFT+U is able to describe the system with similar
accuracy as a hybrid functional would do. However, DFT+U shows very little computational
overhead compared to standard LDA or GGA calculations [75] enabling the study of large extended
systems. Describing a system accurately requires a correct choice of U as observables can show
large sensitivity regarding the appliedU . Therefore, in practice, one should test how the observable
is changing w.r.t. the applied U value.
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0.12  0.00  0.04  0.00  0.00

0.00  0.13  0.00  0.04  0.00

0.04  0.00  0.09  0.00  0.00

0.00  0.04  0.00  0.13  0.00

0.00  0.00  0.00  0.00  0.09

a) Ti 3d

0.12  0.00  0.04  0.00  0.00

0.00  0.13  0.00  0.04  0.00

0.04  0.00  1.00  0.00  0.00

0.00  0.04  0.00  0.13  0.00

0.00  0.00  0.00  0.00  0.09

b) Ti 3d modified

Fig. 2.2: Displayed in a) is the 3d occupation matrix of a Ti atom in TiO2. In b) the same matrix is shown
however one of the diagonal elements is set to 1.00. As the diagonal elements are related to the
occupation numbers of a speci�c orbital, this can be used to localize an excess charge on this speci�c
atom.
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3 Implementing DFT+U
In this chapter the reader will be introduced step by step to the program work�ow of the DFT+U
implementation in FHI-aims. The chapter will begin with a short introduction of the FHI-aims
basis set and the basis set terminology, which can be rather confusing for users who are not
familiar with FHI-aims in general. In the end we demonstrate in a small scaling test, that DFT+U
shows in fact very little computational overhead. It should also be highlighted, that this chapter
can also be viewed as a small introductory manual for using DFT+U in FHI-aims.

3.1 FHI-aims
The Fritz-Haber-Institut ab initio molecular simulations (FHI-aims) program package [19] is an
all-electron full-potential electronic structure code designed for e�ciency up to large scale atomic
simulations. Its focus lies on DFT o�ering a various number of xc-functionals. However, methods
beyond DFT such as second-order Møller-Plesset (MP2) perturbation theory, the random phase
approximation (RPA), or self-consistent GW are also included in the package. Within FHI-aims
KS-states are expanded using a numeric atom centered orbital orbital basis set, where a general
basis function ϕi is de�ned as

ϕi (r) =
ui (r )

r
Ylm (Ω) . (3.1)

Here, Ylm are real-valued spherical harmonics. The radial part ui is chosen to be a solution of
a Schrödinger-like radial equation. It is numerically tabulated and therefore fully �exible. The
basis set is arranged hierarchically. This means each element speci�c basis set consists of a so
called minimal basis—these are free atom solutions of the corresponding element—followed by
a set of preconstructed basis functions which are subdivided in so called tiers (tier1, tier2, ...).
The latter mainly consists of hydrogen-like basis functions serving as polarization functions1

for the minimal basis set. In general, the hierarchical arrangement is designed in such a way to
yield systematic convergence from fast and qualitative to milli-electronvolt-level total energy
convergence. Numerical integrations are performed on prede�ned logarithmic grids.[60, 87, 88]
According to their accuracy, the grids are termed light, tight and really tight.

In general this terminology can be rather confusing for user not familiar with FHI-aims. There-
fore, as a practical remark, the accuracy of a light tier1 basis set is comparable with a triple-ζ
valence polarized gaussian type basis set.[89]

3.2 General Program Workflow
In a DFT+U-corrected FHI-aims run, the program �rst selects—according to the speci�c input—the
type of Hubbard projectors from which the occupation matrix later will be formed. Within FHI-

1Functions of higher angular momentum are usually added to the basis set for allowing polarization of lower angular
momentum functions.
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aims, two types of DFT+U runs are available, �rst one could simply calculate the DFT+U occupation
matrix from a projection onto the (2l+1) manifold of the minimal basis set. As these basis functions
are basically free atom solutions, one could expect them to be a �rst good approximation to the
localized orbitals in question. This means if one requests the DFT+U correction for a 3d transition
metal, the subspace of the �ve 3d basis functions of the minimal basis set are subject to the Hubbard
correction. Second, as already explained in section 3.1, besides the minimal basis set there are also
polarization functions usually present in a calculation. As a consequence one can end up having
multiple sets of basis functions which belong to the same l channel, however, having a possible
di�erent radial extent. The in�uence of such a basis on the Hubbard correction is not entirely
clear. Should these basis functions also be included for calculating the occupation numbers? This
topic will be discussed in much more detail in the corresponding publication which is summarized
in section 5.1. However, in this situation FHI-aims allows the construction of Hubbard projectors
as a linear combination of all basis functions which show the same l . Thus, in principle, arbitrary
basis-set representable Hubbard projectors could be used in FHI-aims. This gives a lot of �exibility
in de�ning the localized subspace for which the Hubbard correction should account for. Up to
now de�ning Hubbard projectors as explicit linear combination of basis functions is somehow
unique in FHI-aims, however, there exist implementations where multiple sets of polarization
functions are treated as a multiple set of angular momentum shells each with a uniqueU value.[82,
90] For more details according the choice of Hubbard projectors the reader is referred to reference
[21]. As a next step the program checks if the matrix control approach has been requested. If
not, the DFT+U occupation matrix is then constructed for the �rst time using the initial density
matrix of the system. Afterwards, the code will build the e�ective on-site potentials for each
atom for which the Hubbard correction should be applied. After the DFT Hamiltonian matrix
is constructed the e�ective potential is applied. After diagonalization one then can evaluate the
DFT+U energy functional. This will be repeated self-consistently within the standard KS-DFT
routines until all convergence criteria are met. If DFT+U occupation matrix control is enabled,
instead of calculating the occupation matrix, the occupation matrix will be taken from a �le which
can be customized according to the users needs. This procedure then continues in the same way
as without applying matrix control. After evaluating the DFT+U energy description, the program
checks if the total energy is converged within a prede�ned additional convergence criteria—it is
usually not as strict as the standard convergence criteria for the total energy. If this convergence
criteria is ful�lled the occupation matrix is then calculated self-consistently. With this procedure
one can �rst ”preconverge" the density according to a prede�ned orbital con�guration and use it
afterwards as basically the starting point for a SCF solution. In Figure 3.1 the previously described
steps are depicted in a program �ow-chart for better overview.

18



scf cycle
start

end

DFT+U?

select
projectors

D, HDFT

matrix

control?
nI

vImm'

add 

to HDFT

vImm'

EDFT+U

converged?

standard
KS-DFT

read nI

from file

get new

D, HDFT

get new

D, HDFT

get new

D, HDFT

matrix
control
off?

vImm'

add 

to HDFT

vImm'

EDFT+U

yes

no

yes

no

yes

yes

nono

Fig. 3.1: Schematic representation of how the DFT+U correction is applied during a SCF cycle. Also shown how
it changes if the matrix control approach is applied.
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3.3 Full Feature Overview
In the previous section only the general work�ow of DFT+U within the framework in FHI-aims
has been introduced. In addition, the following list will provide an overview of all capabilities of
the current DFT+U implementation in FHI-aims. However, this should not be regarded as a full
keyword list. For a full speci�cation how to use each feature the reader is referred to the FHI-aims
manual.

occupation_matrix: The user can choose between on-site, dual and full representation.
All representations are fully supported.

hubbard_projectors: A projection onto atomic basis functions of the minimal basis set is the
default setting. Alternatively, one can specify a customized Hubbard projector as linear
combination of basis functions.

atomic_forces: Atomic force correction terms are up to now only supported for the on-site
representation.

matrix_control: DFT+U occupation matrix control is provided for all representations. The user
has to provide a �le containing the orbital con�gurations.

dft+u_ramping: Starting from zero the U value will be step-wise increased if a certain conver-
gence criteria was met. Useful, if achieving a SCF solution is quite hard.

double-counting: The code o�ers FLL, AMF and a linear interpolation between both limits as
double-counting correction.

eigenvalues: Allows the calculation of the speci�c eigenvalues of the DFT+U occupation matrix.

Besides the above mentioned features, the code also performs a check of the DFT+U occupation
matrix in each SCF iteration. If not physically meaningful, the code issues a warning and stops
the calculation. Furthermore, the code is designed in such a way, that a di�erent +U treatment—
di�erent U value and di�erent l shell—can be requested for each species.

3.4 Scaling Test
Bulk NiO can be considered a prototypical compound for testing and demonstrating the capabilities
of DFT+U.[70, 82, 83, 85, 91, 92] It belongs to the class of highly correlated materials showing
strong localization of Ni 3d electrons. Standard functionals based on LDA or GGA predict it to
be a Mott-Hubbard type insulator[93] where the Ni 3d form the valance and conduction band
edges.[94] On the other hand, experimental data shows evidence of having a charge-transfer type
band gap where the O 2p states are dominating the top of the valance band.[95] As one of the

20



main e�ects of DFT+U is to shift the states up and down in energy according to their occupancy,
the erroneous description of standard DFT functionals can easily be cured if the Ni 3d states are
subject to the Hubbard correction.
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Fig. 3.2: Scaling behavior of the DFT+U implementation within FHI-aims. The calculations have been carried
out on an Intel Xeon on Platinum 8174 processor. The computational cost of DFT+U is only marginally
higher compared to the PBE calculation.

For the scaling test a preoptimized PBE [48] bulk NiO unit cell consisting of two Ni atoms
and two O atoms served as a starting point. From that structure, supercells have been created
containing up to several hundred atoms. Furthermore, a tier1 basis set and light settings for
the integration grid are employed. For the Hubbard correction, a U value of 3.0 eV and the FLL
have been applied. The Ni 3d atomic basis functions of the minimal basis set serve as Hubbard
projectors.

The calculations have been carried out on an Intel Xeon Platinum 8174 processor applying MPI
parallelization only. Figure 3.2 compares the scaling behavior of the code with a standalone PBE
calculation. Also shown is the percentage of the total computational overhead compared to a pure
PBE calculation.

Not surprisingly, the scaling behavior of FHI-aims is not entirely linear w.r.t. system size.
However, as one can clearly see, there is no signi�cant overhead caused by the DFT+U routines. In
fact, the additional overhead is in the range of 1%. This demonstrates how e�cient DFT+U actually
is and that a DFT+U calculation does not take signi�cantly longer as a LDA or GGA calculation
would do. However, for this calculation basis functions have been served as Hubbard projectors,
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other methods without directly projecting onto basis functions can show larger computational
overhead. In addition, the DFT+U routines themselves do not contain grid operation or diagonal-
ization routines, which means that DFT+U settings are not a�ected by accuracy settings such as
larger basis sets or denser integration grids. In other words, increasing the accuracy will lead to a
signi�cant decrease in the relative overhead. Timing and scaling will always be dominated by
diagonalizing the Hamiltonian matrix of the system independent of the +U correction.
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4 Localized Electrons—Small polarons
This chapter has the aim to brie�y introduce the unfamiliar reader to the concept of small polarons
as all publications within this thesis deal with the correct description of such phenomena.

4.1 The small Polaron Concept
A moving localized charge carrier such as an negatively charged electron or a positively charged
hole will cause ionic displacement within a crystal. The charge carrier in combination with the
lattice distortion can be described as a quasi particle called polaron (cf. Figure 4.1). In some
materials—depending on the interaction strength—the lattice distortion can create a potential
strong enough to cause self-trapping of the charge carrier. Is the induced lattice distortion locally
con�ned this polaron is usually referred to as small polaron. These type of polaronic states are
usually localized within one unit cell of the material.[20]

Fig. 4.1: Schematic representation of a polaron. The negative charge carrier (blue) causes a distortion within
the cationic lattice (red). Lattice distortion and charge carrier together can be described as a quasi
particle, a polaron.

An important feature of small polarons is their temperature dependent movement through the
crystal. Is the temperature large enough, polarons can hop from one lattice site to a neighboring
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one. This process is usually much more relevant than tunneling processes as the hopping on
average occurs more often.[20] Without going into detail, the thermal activation of the polaron
hopping can be described via an Arrhenius-like equation [20, 96],

µ =
eα2ωLO
6kBT

exp

(
−
EA
kBT

)
. (4.1)

Here, µ describes the mobility of a small polaron with α being the hopping distance. e is the
elementary charge. Among all electron phonon interactions it is to be considered that the long-
wave longitudinal optical phonons with constant frequency ωLO are the most relevant ones. Most
important in eq. 4.1 is the hopping activation energy EA. This activation energy or activation
barrier is usually obtained using the Nudge Elastic Band approach [97, 98] or a linear interpolation
of nuclear coordinates between initial polaron location and �nal polaron location. It should be
noted that both approaches require having a well-de�ned transition state or in other words it is
assumed that hopping is an adiabatic process.[50]

Polaron hopping has a signi�cant part in the electronic conductivity in some certain materials,
especially transition metal oxides.[20] Besides their contribution to the electronic conductivity, it
is to be considered that polarons can also play a crucial role in chemical reactions. For example,
photogenerated electrons and holes within TiO2 can get self-trapped. Here, the electron polaron
is located at a Ti atom whereas the ”hole polaron" is forming on an oxygen atom. Furthermore, as
the trapping energy is usually larger at the surface, polarons will move towards the surface and
can drive a possible reaction.[99] The importance of polarons is also known from CO adsorption
on TiO2 as CO shows attractive coupling with surface polarons.[100] Overall, it is to be considered
that polarons play a major role in understanding the properties of polar semiconductors, or
transition metal oxides in general.[100]

4.1.1 A Comment on simulating Polarons
Simulating polarons is usually quite challenging. In the case of electrons, semi-local DFT is gener-
ally not able to describe them in an adequate fashion due to the large amount of self-interaction
error inherent to such functionals. One has to apply at least DFT+U or hybrid functionals to
account for the proper amount of charge localization. Even applying DFT+U or hybrid functionals
does not yield a polaron per se. Symmetry breaking is required [75], which can be achieved by
distorting the crystal lattice by hand or by introducing defects (cf. Figure 4.2). Moreover, the
various possible localization sites within a unit cell show often more or less the same energy
and are usually only separated by a small energy barrier which renders sampling of di�erent
localization patterns quite a hard task. A common strategy is to modify the bonding distance to
neighboring atoms in order to pre-introduce the lattice distortion.[75, 101] Especially if DFT+U is
employed, one can make use of the matrix control approach for sampling polarons.[21] Another
common strategy is to use arti�cial high U values on the sites in order to enforce charge localiza-
tion there.[74] Of course this only works if the charge carrier is an electron. Not to forget that
if one wants to study a single polaron one has to ensure that the polaron does not interact with
its periodic images. As a consequence, simulating polarons makes it necessary to employ rather
large cell sizes [21, 74] or advanced embedding techniques (cf. section 5.2).
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Fig. 4.2: Shown is the spin density of two polarons (blue). The oxygen vacancy on top of the TiO2 (110) surface
causes symmetry breaking and hence polaron localization.[75] Isosurface level 0.05 eÅ−3
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5 Publications
As this thesis is publication based, this chapter should give an overview of the relevant publications
made during the PhD period. It also contains an overview of the detailed contributions of each
individual author. The corresponding original articles and supporting information are included in
the appendix of this work.
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5.1 Intricacies of DFT+U, Not Only in a Numeric Atom CenteredOrbital Framework
Matthias Kick, Karsten Reuter and Harald Oberhofer.
J. Chem. Theory. Comput. 15, 1705-1718 (2019).
DOI:10.1021/acs.jctc.8b01211

5.1.1 Content
This work forms the basis of all scienti�c papers who follow after it. In this work we present
the details of our DFT+U infrastructure in FHI-aims. As already outlined in chapter 3 we give
information about how the Hubbard projectors are de�ned in our implementation. In detail
atomic basis functions or linear combinations of di�erent basis functions can serve as Hubbard
projectors which then determine the occupation matrix. We demonstrate the capability of our
implementation by showing its ability to improve the description of the band gap in a NiO test
system. Furthermore, we found that having a multiple set of polarization functions which belong
to the same angular momentum channel can lead to wrong prediction of ground state properties.
This is easily explained as if the +U correction is only applied to a subset of e.g. 3d basis functions,
only this subset is subject to the penalty imposed by the correction term. In critical cases the
electrons then tend to occupy other basis functions. These basis functions are often not as localized
as the ones which are subject to the Hubbard correction. As a result, one ends up with changing
the character of the localized states entirely. Therefore, building up the Hubbard projectors as a
linear combination of all basis functions with same angular momentum is an elegant remedy to
this problem.

We move on to a more stringent test case, the description of polarons at the Rutile TiO2
(110) surface. In general, polarons can localize at various Ti atoms throughout the simulation
cell. The fact that these various di�erent localization patterns show only a little di�erence in
their relative energies renders sampling a challenging task. However, by making use of the
matrix control approach we are able �nd an elegant and e�cient way to account for all relevant
patterns. Comparing our results with other DFT related polaron studies, we �nd di�erences
regarding the energetic ordering of the di�erent possible localization patterns. By excluding
other possibilities for these di�erences compared to other published results, we concluded that
the use of pseudopotentials in other codes is the main source for these discrepancies. Within a
pseudopotential code the core electrons are only approximated while FHI-aims is a full electron
code. Furthermore, pseudopotentials are often constructed from a LDA or GGA reference. Yet, up
to now it is unclear if this adds some error when used in DFT+U or hybrid DFT calculations.

Moreover, we investigate in detail how di�erently shaped Hubbard projectors in�uence the
description of the polaronic states. Not surprisingly more di�use functions lead to less localized
states, however, this can be partly compensated by applying higher U values. This adds another
ambiguity why in general U values are not comparable between di�erent implementation of
DFT+U

5.1.2 Individual Contributions
The idea to include DFT+U was already part of my master thesis. However, at the beginning of my
PhD we discovered several problems regarding the basis set of FHI-aims which made a complete
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rewrite of all the DFT+U infrastructure necessary. Harald Oberhofer was supervising the entire
project and helped discussing the relevant working equations for the DFT+U implementation. He
was also co-editing the manuscript. A signi�cant part in editing the manuscript was also done by
Karsten Reuter.

All implementation work and deriving the relevant working equations was done by me. I also
performed all the necessary DFT+U and HSE06 simulations for all systems which are described in
the publication. Finally, I also wrote the manuscript and created all �gures using the matplotlib
[102] and the PyMOL package [103].
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5.2 Towards a Transferable Design of Solid-state EmbeddingModels on the Example of a Rutile TiO2 (110) Surface
Matthias Kick and Harald Oberhofer.
J. Chem. Phys. 151, 184114 (2019).
DOI:10.1063/1.5125204

5.2.1 Content
For studying chemical reactions on non-metallic surfaces, there are in principle two di�erent
approaches one could choose in order to model the system in question. Within the slab approach
one applies periodic boundary conditions (PBC) to account for all long range electrostatic e�ects.
This is already achieved with the smallest possible repeating unit cell of the material, however, the
PBC approach can su�er from so called �nite-size e�ects.[104] In that case non-periodicities, such
as defects or adsorbates, show spurious interaction with their own periodic images. Even worse,
if localized charge carriers such as polarons are involved which makes it often necessary to use
large unit cells in order to avoid unphysical interactions. This need of having large supercell sizes
strongly limits the use of higher-rung functional techniques or even the use of wavefunctions
methods. A PBC approach in that case is simply not tractable even with the use of modern
computer hardware. A fact which is quite critical as the chemically most interesting materials
often demand the use of more accurate methods beyond standard semi-local DFT.[105, 106]

A method to overcome these drawbacks is to use so called embedded cluster models. Within
this approach a �nite quantum-mechanically treated cluster is embedded into a point charge
environment in order to capture the long range electrostatic interactions of a possible in�nite
crystal. By construction, such a model system does not su�er from spurious interactions as the
slab approach does by imposing periodic boundary conditions.[107, 108] Usually, by applying an
embedded cluster approach one needs to be careful regarding the choice of the cluster shape. The
clusters stoichiometry has to be aligned with that of the underlying material which otherwise
could lead to spurious charging of the entire system. Moreover, especially in ionic systems, the
cluster should be symmetric to avoid low order multipole moments distorting the potential of the
model.[25]

Confronted with these problems, this work critically addresses the accuracy of an embedded
cluster approach w.r.t. to the applied cluster model shape and its size. We demonstrate that binding
energies are in general quite robust regarding the chosen cluster model as they might bene�t from
a possible error cancellation. However, going to a more sensitive test case e.g. polaron formation
at the TiO2 (110) surface, we can show that the correct description of the ground state can be
critically in�uenced by the shape of the cluster model. Based on our �ndings, we derive criteria for
judging the quality of a certain cluster shape w.r.t. its ability in describing the system in question
as accurately as possible. Moreover, we present a general design rule for cluster models allowing
cluster model construction beyond trial and error. Overall, this work lines up with the previously
mentioned publication on the implementation of DFT+U within FHI-aims by showing a detailed
and systematic way to address the problem of polaron formation with DFT+U in a solid state
embedding environment.
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5.2.2 Individual Contributions
The idea to test the embedded cluster approach w.r.t. to its capabilities in describing polaron
formation accurately arose during the work on the implementation of DFT+U. Right at the
beginning we discovered that correct modeling of the ground state is not possible with the cluster
models given by literature so far. A closer investigation using our own designed cluster models
revealed that the shape of a cluster can critically in�uence its performance. Harald Oberhofer was
supervising the entire project and was also co-editing the manuscript.

All tested cluster models, if not otherwise noted, have been created by me. I also performed all
relevant calculations for all systems which are part of the publication. I wrote the manuscript and
created all �gures using the matplotlib [102] and the PyMOL package[103].

32



5.3 Mobile Small Polarons Explain Conductivity in LithiumTitanium Oxide Battery Electrodes
Matthias Kick, Cristina Grosu, Markus Schuderer, Christoph Scheurer and Harald Oberhofer.
Published on arXiv.org (2020).1
arXiv:2001.00263

5.3.1 Content
Not even since the Nobel Price in chemistry of 2019, which was awarded to three Li-ion battery
researchers, it is clear Li-ion battery technology will play a major role in reducing the production of
greenhouse gases in the mobility sector. However, up to now, battery capacities are still too low to
provide a promising and competitive alternative to fossil fuel based engine technologies and thus
electrically powered vehicles are still rare on the streets. Improving batteries is not only connected
to improving their overall capacity but it also closely related to lowering the time which is required
in order to charge the batteries. Moreover, in order to prevent capacity loss over the lifetime of a
battery increasing their stability regarding charging and discharging is another desired goal. A
promising material envisioned as a potential remedy for these problems is lithium titanium oxide
(LTO). Zero strain insertion, high cycling stability and a stable charge/discharge plateau renders
LTO an excellent anode material for long living batteries. However, its problem lies in its very
low intrinsic electronic conductivity which limits its use. One way to overcome this drawback is
to introduce oxygen vacancies resulting in signi�cant improvement in electronic conductivity
and Li-ion mobility. Yet up to now, the detailed mechanism causing this improvement is not fully
understood. First experimental results indicate the formation of Ti3+ centers in an analogous way
as observed for TiO2.[30–33, 74] Apparently, Ti ions in LTO show a similar chemical environment
as in TiO2 with highly mobile polarons [109] which also cause a signi�cant improvement in the
electronic conductivity of TiO2.

In this work we try to shed more light on the origin of the increased electronic conductivity. In
detail we investigate if a possible polaron hopping mechanism is also responsible for the larger
electronic conductivity. Indeed our results indicate that Ti3+ centers are the results of small polaron
formation. Moreover, by calculating explicitly polaron hopping barriers in LTO we have been
able to gauge their mobility. The obtained barrier heights show that already at room temperature
the electrons are able to overcome the kinetic barrier strongly indicating that indeed a polaron
hopping mechanism is the origin of the observed increase in electronic conductivity. In addition,
by using a simple transition rate theory approach we have been able to calculate an upper bound
for the value of electronic conductivity in blue LTO. Indeed, the electronic conductivity is several
magnitudes above the ionic conductivity in LTO. This implies that it is theoretically possible to
increase the electronic conductivity of LTO in such a way that it is not the limiting factor anymore
regarding the overall conductivity of LTO.

Overall this work can be considered as a �rst step towards a deeper understanding of electron
dynamics in LTO. Moreover, a deep understanding of these dynamics also regarding their interplay
between Li-ion mobility could lead to development of further more advanced battery materials.

1By the end of this PhD thesis this paper has not yet been published in a peer reviewed journal. arXiv.org is an open
access platform for pre prints of scienti�c papers.
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5.3.2 Individual Contributions
Originally the idea arose during a discussion with Cristina Grosu about their attempts to synthesize
blue colored LTO. The blue color of LTO is a result of the presence of oxygen vacancies similar
to reduced TiO2 which shows under the presence of oxygen vacancies the same blue color. First
theoretical test simulations then immediately indicated the presence of small polarons.

The original idea came from Cristina Grosu and me. The pristine LTO bulk structures have
been provided by Markus Schuderer. All further DFT+U related calculations have been performed
by me. I also did all necessary modi�cations to the FHI-aims code. I wrote the manuscript and
created the �gures. Harald Oberhofer was supervising the entire project, was also co-editing the
manuscript and helped creating the �gures. Christoph Scheurer and Cristina Grosu also helped
editing the manuscript. Christoph Scheurer was also the main advisor regarding the battery �eld.
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6 Summary, Conclusions and Outlook
Central to this thesis is the DFT+U approach. Clearly its strength lies in its high e�ciency.
As demonstrated within this work, applying DFT+U causes only little computational overhead
compared to standard LDA or GGA. Not only shown within this work but also in literature, its
accuracy in describing polarons in transition metal oxides is de�nitely comparable with hybrid
DFT approaches. Overall, its ability to cure, at least partly, for the SIE at a very little computational
cost renders this method a very powerful workhorse addressing extended systems. However, as
critically addressed during this work, the choice of the Hubbard U parameter and especially the
choice of projector functions can critically in�uence the prediction of ground state properties.
This might not be the case for rather robust systems such as bulk NiO, but more sensitive systems—
such as polarons—can de�nitely su�er from a bad choice of input parameters. This is even more
critical to see as the standard user is usually not aware of the pitfalls of this method. At a �rst
glance, DFT+U working equations are easy to read but their e�ect on the electronic structure
is not immediately clear. Written and derived for localized orbitals but usually implemented to
act on basis functions, the e�ect on the localized states and on hybridization with surrounding
orbitals is by far not trivial to see. This can be understood as the localized states are usually
always a linear combination of all basis functions in the system, hence, applying the Hubbard
correction just to a subset of these orbitals can lead (in the worst case) to a complete altering of
the underlying electronic structure. In other words, as long as the localized states are mainly
dominated by the subset of basis functions, DFT+U can be an excellent method to describe such a
system. This is exactly the case for polarons occupying a 3d orbital on a transition metal atom.
The polaron state shows almost pure 3d character. As demonstrated, this fact renders these kind
of systems to an excellent test case for any kind of DFT+U implementation. In detail within our
paper [21]—published in The Journal of Chemical Theory and Computation—we addressed the
above mentioned pitfalls of DFT+U in the context of a localized orbital basis set. Critically, for the
correct description of a polaron system are the applied Hubbard projectors. As we could show,
altering the shape of the projector functions leads to di�erent ground state predictions which can
only be partly compensated by changing theU value. As a consequence, results between di�erent
DFT+U implementations are even less comparable. Even worse, as the amount of localization of
the electrons is controlled by both the U value and the projector function shape, a too di�use
projector functions results overall in too delocalized polaronic states.

As it turns out, due to their sensitivity regarding the description of the electronic structure,
polaronic states are also a quite useful test system for checking the accuracy of a solid state
QM/MM embedding scheme. As we could demonstrate in the corresponding publication [110]
within The Journal of Chemical Physics, the accuracy of such an approach does not only depend
on how the di�erent regions are connected but also on the employed shape of the QM-region. A
fact which was not addressed so far in literature. By investigating several QM-region geometries
di�ering in their size and shape we could derive simple guidelines for designing such QM clusters.
Not only the density of states but also the shape of the frontier orbitals have to match with the
periodic reference calculations. This in general enables to design QM-regions beyond the usual
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trial and error approach.
Moving away from method development work to a more application-oriented research �eld

we further used DFT+U to �rstly describe the formation of polarons in LTO—a candidate for
being an anode material in future solid state batteries.[30–33] Furthermore, by using the matrix
control approach we have been able to gauge the polaron mobility. In fact, it turns out that
a polaron hopping mechanism might be responsible for the experimentally observed increase
in electronic conductivity if LTO was exposed to a reductive hydrogen atmosphere. Polaron
hopping barrier heights are small enough for hopping to occur already at room temperature.
Further, by using a simple transition state theory we are able to calculate an upper bound for the
electronic conductivity in LTO. By this we can show that in principle it is possible—by e.g. defect
engineering—to increase the electronic conductivity to be several magnitudes higher as LTO’s
ionic conductivity. An important fact if one considers that the overall conductivity of LTO is by
this not longer limited by electron transport properties.
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Intricacies of DFT+U, Not Only in a Numeric Atom Centered Orbital
Framework
Matthias Kick, Karsten Reuter, and Harald Oberhofer*

Chair for Theoretical Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, Garching
85747, Germany

ABSTRACT: We implemented the popular Hubbard density-functional theory +
U (DFT+U) method in its spherically averaged form in the all-electron, full-
potential DFT code FHI-aims. There, electronic states are expressed on a basis of
highly localized numeric atomic orbitals (NAO), which straightforwardly lend
themselves as projector functions for the DFT+U correction, yielding the
necessary occupations of the correlated Hubbard subspace at no additional cost.
We establish the efficacy of our implementation on the prototypical bulk NiO and
obtain the well-known band gap opening effect of DFT+U. As a more stringent,
real world test system, we then study polaron formation at the rutile TiO2(110)
surface, where our results are in line with both experimental data as well as hybrid
functional calculations. At this TiO2 test system, yet in the bulk, we analyze some
of the intricacies of using the DFT+U correction in a localized, numeric atomic orbital basis set. Specifically, we find that
multiple localized radial basis functions of the same angular momentum can lead to highly erroneous predictions of ground-state
properties. We also demonstrate a number of remedies to this problem. Finally, we highlight the critical influence of the exact
choice of projector functions on DFT+U results using a number of projector functions of different spatial extent and composed
of linear combinations of NAO basis functions. All of our efforts serve to highlight that, contrary to its deceptive ease of use, the
DFT+U is far from the “black-box” approach it is sometimes made out to be.

1. INTRODUCTION
Besides the tremendous success of local-density approximation
(LDA)1 or generalized-gradient approximation (GGA)2

density-functional theory (DFT)1,3 in describing metals or
classical semiconductors,4 corresponding standard Kohn−
Sham DFT still lacks the ability of reliably describing systems
characterized by localized electrons. Especially, transition metal
oxides, lanthanoide or actinoide compounds with partially
filled d- or f-shells, are often not described at a sufficient level
of accuracy.5−8 This failure can largely be attributed to the
incomplete self-interaction error (SIE) cancellation inherent to
these functional approximations, in general yielding an
overestimation of Coulomb repulsion and therefore a bad
description of localized electronic states.9

Prevalent routes to address this problem are hybrid
functional DFT or the so-called Hubbard corrected DFT
functional methods,10,11 widely known as DFT+U. The latter
adds a correction to the LDA or GGA Hamiltonian, which is
inspired by the Hubbard model,12 to cure parts of the SIE in
these approximated DFT functionals. Although hybrid func-
tional DFT calculations become increasingly affordable with
current computer architectures, the great strength of DFT+U
still lies in the simplicity of its corrective term and the
concomitant low computational costs that are only marginally
higher than standard LDA or GGA calculations. In addition,
the +U correction is straightforwardly only applied to specific
species. This renders DFT+U a most appealing tool to study
larger systems or interfacial systems where only one of the
component materials is not adequately described at the

semilocal DFT level (e.g., metal/oxide interfaces). There are
of course other, less approximate approaches to overcoming
the SIE in DFT such as self-interaction corrected DFT (SIC-
DFT).13 However, suffering from high computational cost, this
variant is not commonly used in the literature. On the other
hand, recent developments in size extensive alternatives using
Fermi−Löwdin orbitals (FLO-SIC) showed promising results,
overcoming some of the pitfalls in DFT while at the same time
being computational competitive.14−17 In this work, though,
we focus with the DFT+U method on the currently most
widely used SIE correction schemes.
Here, we present a new implementation of the DFT+U

method in the full-potential, all-electron, numeric atomic
orbital (NAO)-based FHI-aims code. While currently +U
corrections are widely available in most plane-wave DFT
codes, all of these rely on some form of pseudopotential to
describe core states. For most materials and chemical
applications, pseudoization of core electrons does not
noticeably influence the results. Yet, there are exceptions to
this as we will show on the highly sensitive example of polaron
localization in oxygen-deficient TiO2. Furthermore, a localized
basis set code like FHI-aims also allows the use of solid-state
embedding techniques18−20 to circumvent finite size effects
when dealing with, for example, locally charged semiconductor
surfaces, which is not easily achievable in standard plane-wave
codes.
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Unfortunately, a lot of studies found in the literature outside
of the core circle of DFT+U developers tend to treat the
method like a black-box approach, where only the U parameter
needs to be determined, sometimes even simply taken from the
literature. In this work, we will thoroughly demonstrate this
not to be the case at all. Being an effective correction to some
of the failings of semilocal DFT, the +U approach relies on so-
called projector functions based on a set of reference states to
determine to which electrons the correction applies. There is
no unique way to determine such reference states; yet the
literature shows that most localized orbitals of the correct
angular momentum can be employed as references. Thus, the
exact details of the projector functions vary between codes. As
we will show in this work, this not only has a profound
influence on the actual values of the U parameter to be applied
(which by itself invalidates the simple use of literature U values
possibly originating from other codes). Moreover, it can also,
especially in systems with strong hybridization between
frontier orbitals, lead to large deviations in the convergence
behavior of the self-consistent field (SCF) cycle, and even to
widely differing orbital characters.
This work is organized as follows. First, to set the stage for

our implementation, we give a brief review of the theory and
background of the DFT+U approach, where we especially
emphasize the role of the projector functions and reference
states. We then highlight implementation details specific to
DFT+U in FHI-aims and discuss possible pitfalls due to the
nature of the employed NAO basis. We demonstrate the
efficacy of our implementation on a bulk NiO model system,
which constitutes one of the standard tests of the DFT+U
approach. As a much more exacting test-case, we next consider
the relative stabilities of polaronic configurations pinned to an
oxygen vacancy on a rutile TiO2 (110) surface. Because of the
relatively large amount of orbital hybridization in TiO2 and the
strong d-character of the polarons, these prove to be highly
sensitive to both the choice of the U parameter as well as the
nature of the projector function. Therefore, we end this work
with a discussion of the influence of the projectors on the
applicable values of U, the SCF convergence, and the nature of
the resulting frontier orbitals, as well as the interaction of
projector functions with an NAO basis.

2. THEORY
2.1. General DFT+U Background. The DFT+U approx-

imation to (strongly) correlated electronic systems draws its
inspiration from the Hubbard12 and Anderson lattice models,21

originally formulated to describe magnetic impurities within
certain materials. Common to both models is the assumption
that strongly localized d- and f-electrons are subject to an on-
site electron−electron repulsion. Typically, the strength of this
repulsion is determined by an effective parameter, the so-called
Hubbard U.
Considering one of the most vexing failures of approximate

density functionals, the description of localized electrons,22

Anisimov et al.10 suggested a Hubbard-like description of
strongly correlated electronic states. The remaining electronic
states, on the other hand, are considered to be satisfactorily
treated on the level of standard, semilocal DFT functionals and
thus left unaugmented. In the DFT+U nomenclature, the
collection of states to which the correction is applied is often
called the correlated or localized subspace. At first glance,
simply treating a subset of electrons with an effective model
may seem like a hard to justify, ad hoc interference with

otherwise theoretically rigorous semilocal density functionals.
Yet, modern interpretations of DFT+U showed the method to
rest on much more solid theoretical foundations.23

Specifically, the failure of semilocal DFT to correctly render
localized states can be traced back to an erroneous description
of the total energy with respect to fractional changes to the
number of electrons (or spins) in the system.9 While the exact
energy functional should show derivative discontinuities at
integer numbers of electrons and piece-wise linear behavior in
between, semilocal functionals are nonlinear and continuous. It
can be shown23,24 that the main improvement of augmented
DFT+U functionals over standard, semilocal DFT is the
introduction of a derivative discontinuity into the exchange-
correlation (xc) potential. Regarding the band structure of
nonmetallic solids, the effect of this correction is to restore the
correct fundamental band gap of the material.24 On top of that,
DFT+U can also be regarded as the replacement of the mean-
field density−density interactions with a Hartree−Fock (HF)-
like Hamiltonian25 for d- and f-like states, which are affected
most strongly by the electron delocalization error. Such a
replacement of parts of the DFT functional also forms the basis
of the popular hybrid DFT functionals,26,27 where a part of the
orbital-dependent exact exchange from HF is added to the xc-
functional. In this interpretation, DFT+U, in its simplest but
most common formulation, replaces the computationally
highly expensive nonlocal exchange integrals of hybrid
functionals with just a single effective parameter, U. This
greatly reduces the necessary computational effort, generally
making DFT+U applicable to larger time and length-scale
problems than hybrids. However, in contrast to hybrid DFT,
the DFT+U correction only acts on the subset of states most
strongly affected by the delocalization error. All other states, as
well as interactions between them and DFT+U corrected
states, are expected to be treated properly already on the
semilocal level of DFT. Applying DFT+U to these states would
therefore lead to an erroneous overcorrection.
The first task of a DFT+U implementation is thus to filter

those states that need to be corrected, generally frontier d- or f-
states, out of the whole spectrum of Kohn−Sham (KS) states.
This is generally not straightforwardly possible, due to
hybridization of orbitals and mixing of states. The correction
thus needs to be applied to all KS-orbitals that contribute to
the correlated frontier d- and f-states. Ideally, this correction
should be proportional to the strengths of their contribution,
that is, the coefficients or occupation numbers of the KS-
orbitals in the correlated states. The problem of finding the
right portion of the KS-spectrum to correct is thus analogous
to the problem of finding the angular momentum character of
an orbital or its contribution to the partial charge of an atom,
and unfortunately equally ill-defined. As in the case of partial
charge attribution, there are a number of approximations to
count the contribution of a KS-orbital to a state, such as the
method of Mulliken28 or Löwdin population analysis.29 In all
cases, the contribution of a KS-orbital to a correlated state is
ultimately determined by a projection of the orbital onto a
reference representation of that state |Φ⟩, generally called the
projector function. Thus, next to the choice of the correction
strength parameter U, the projector functions are the most
important factors determining the efficacy of any DFT+U
implementation.

2.2. Projector Functions. Considering that the character
of the correlated states may differ from system to system, each
new system in principle demands a unique set of optimized
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projector functions. In practice, though, most DFT+U
implementations commonly use a set of predefined, sometimes
also called Hubbard, projector functions. These are generally
specific to the respective elements but independent of the
environment, to ensure transferable results.
Because of the effective nature of the DFT+U correction, it

is not strictly necessary for the projector functions to mimic
actual physical orbitals, both in shape and in number. Indeed,
one of the main aims of this work is to study the effect of the
choice of projector functions on observables calculated with
DFT+U. Yet, given that the DFT+U correction demands a
projection of the KS-orbitals {|ψ⟩} on the reference states
{|Φ⟩} at each iteration of the self-consistent field (SCF) cycle,
the choice of projector function also greatly influences the
computational efficiency of the implementation.
To avoid excessive computational overhead in determining

the DFT+U contributions, it is thus convenient to define the
projector functions as a superposition of basis functions of the
underlying DFT code.4,30 The necessary projections ⟨ψ|Φ⟩ are
then simply given by the respective basis function coefficients
of |ψ⟩ and, in the case of nonorthogonal basis functions, the
basis set overlap matrix. As these are quantities already central
to the plain DFT cycle, the only computational overhead
associated with the DFT+U correction is thus the cost of
determining the coefficients of the basis set expansion of the
projector functions themselves. The popular choice of using
projector functions based on maximally localized Wannier
orbitals,30 for example, would add the cost of determining the
Wannier orbitals to each SCF step.
Another popular choice, especially in DFT codes based on

localized basis functions, is therefore to directly use the basis
functions, or predetermined combinations thereof, as projector
functions, for a minimal computational overhead. To this end,
we here introduce the projector functions for an atomic site I
and of magnetic quantum number m and spin σ as an explicit
linear combination of numeric atomic orbital (NAO) basis
functions φIm

σ at this site and of this angular momentum and
spin:

∑ φ|Φ ⟩ = | ⟩σ σcIm
p

Imp Imp
(1a)

with cImp denoting the corresponding expansion coefficient and
the index p labeling the different radial basis functions related
to their specific angular momentum quantum number.
Furthermore, we here also define for completeness the dual
projector functions:

∑ φ|Φ̃ ⟩ = | ̃ ⟩σ σcIm
p

Imp Imp
(1b)

∑φ φ| ̃ ⟩ = | ⟩σ σ

′ ′
′ ′

−
′ ′SImp

m p
Imp m p Im p

,
,

1

(1c)

where S−1 is the inverse overlap matrix of the basis functions.
The dual projector functions serve as an important notational
short-cut to avoid having to carry the overlap matrix, used to
orthogonalize the projections, through all necessary calcu-
lations.28,31

As compared to, for example, Gaussians, the NAO basis
functions employed here have the advantage that they are DFT
solutions of nonspin polarized free atoms32 and can thus be
expected to reflect the character of localized correlated states
very well. Using a linear combination of NAOs additionally

awards us a great flexibility in the choice of projector functions.
In principle, we could use any function as long as they can be
represented by the NAO basis functions present in the
simulation cell. All basis functions thus included in the DFT+U
correction span the correlated subspace and, in our
implementation, are subjected to the same U parameter only
modulated by their expansion coefficient cImp. Note that this
stands, for instance, in contrast to Han et al.,33 where basis
functions can further be grouped into subshells with their own
U values. While their approach allows more flexibility for the
DFT+U correction and serves to avoid some of the problems
due to multiple basis functions of the same angular momentum
participating in the correction (cf., section 5.1), it may also
limit comparability between systems. In our current approach,
we thus decided against subshell grouping.
Finally, it should be noted that all basis functions in FHI-

aims32 are Gram−Schmid orthogonalized to all other basis
functions on the same atom. This means that in our case the
dual projector functions are actually identical to the direct
projector functions.

2.3. Projection Operator and Occupation Matrix. The
contribution of a given KS-orbital to the correlated subspace
could simply be determined just by calculating the overlap of
the orbital with each projector function, individually localized
on each relevant atom. Yet, such an approach would neglect all
direct contributions from neighboring atoms. As a remedy, and
again in direct analogy to, for example, the Mulliken analysis, a
number of different ways to combine the projector functions
have been proposed in the literature,4 as there is again no
single general recipe.24,33,34 Apart from the different projector
functions, most of the differences between existing DFT+U
implementations are due to these differences in the way the
occupancies of the correlated subspace are calculated.
These differences are best discussed on the example of the

occupation matrix nImm′
σ at atomic site I and spin σ, which is the

central quantity in the DFT+U correction to the Kohn−Sham
Hamiltonian. The index m thereby enumerates the correspond-
ing projector function, eq 1a. Mathematically, the DFT+U
occupation matrix is expressed in terms of a local projection
operator, P̂Imm′

σ .34

∑ ψ ψ= ⟨ | ̂ | ⟩σ

γ
γ γ

σ σ
γ
σ

′ ′n f PImm Imm
(2)

where fγ represents the occupation of the γth Kohn−Sham
(KS) state ψ γ

σ.
Of the many possible choices for the projection operator, we

restrict the discussion here to two of the most common ones,
the so-called on-site and dual-representations:33

̂ ‐ = |Φ̃ ⟩⟨Φ̃ |σ σ σ
′ ′P (on site)Imm Im Im (3a)

and

̂ = [|Φ̃ ⟩⟨Φ | + |Φ ⟩⟨Φ̃ |]σ σ σ σ σ
′ ′ ′P (dual)

1
2Imm Im Im Im Im (3b)

respectively.
Both representations, if used in a DFT+U correction, were

shown to successfully compensate for some of the short-
comings of semilocal DFT, widening band gaps and producing
more localized states.33,35 The significant difference between
them is the treatment of the overlap of the projector functions
with their surroundings. The dual approach, thereby, accounts
for this overlap analogously to the popular Mulliken
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population analysis.28 In contrast, the on-site representation
only accounts for the overlaps within the localized subspace of
the given site and neglects the overlaps to other atoms.
Because of this different treatment of overlaps, there is an

even greater distinction between P̂Imm′
σ (on-site) and P̂Imm′

σ

(dual). Considering that the occupation matrices essentially
represent the density matrix of electrons contained in the
correlated subspace, the trace of the occupation matrix should
yield the number of electrons contained in the subspace, which
is known as the sum rule. In ignoring the overlap with
neighboring atoms, the on-site occupation matrix indeed does
not fulfill the sum rule, while the dual representation does.33,34

While this would seem like a clear argument for the dual
representation, earlier detailed studies regarding the perform-
ance of the occupation matrices for various transition metal
oxides showed no clear advantage of using one representation
over the other.35 This can be explained by the simple fact, that
the miscounting of electrons in the on-site case is
straightforwardly compensated by simply applying a different
strength of the DFT+U correction using a different value of U.
This is indeed another strong case against simply using
published values of U, as they might not be transferable
between different implementations using different representa-
tions of the occupation matrix.
Finally, putting all parts together, eqs 2, 3a, and 1a yield the

following on-site occupation matrix:

∑ ρ=σ σ σ σ
′

′
′ ′
*

′ ′n c cImm
p p

Imp Im p Imp Im p
,

,
,

(4a)

where ρImp,Im′p′
σ denotes the contracted density matrix of the

system, ρImp,Im′p′
σ = ⟨φ̃Imp

σ |ρ̂|φ̃Im′p′
σ ⟩ with ρ̂ being the density

operator. Along the same lines, the dual occupation matrix can
be simplified to

∑ ∑ ρ ρ= [ + ]σ

α

σ σ
α α

σ
α

σ
α′

′
′ ′
*

′ ′ ′ ′n c c S S
1
2Imm

p p
Imp Im p p p

,

,
Imp, ,Im Imp, ,Im

(4b)

Here, α denotes a compound index over all NAO basis
function at all sites, of all angular momenta and magnetic
quantum numbers. It thus denotes a superspace to the
correlated subspace, enumerated through the indices I,m, and
p. SImp,α finally is a nonrectangular submatrix of the basis
function overlap matrix.
2.4. DFT+U Energy Functional. The DFT+U occupation

matrices (eq 4a) serve to determine how much each
component of the NAO basis set representation of each KS-
state contributes to the correlated states. On the basis of this,
the DFT+U correction to the DFT energy functional can then
be formulated as10,36

ρ ρ[ ] = [ ] + [ ] − [ ]+E E E Er r n n( ) ( ) I IDFT U DFT U
0

dc (5)

where ρ denotes the electron density and EDFT the density
functional of choice. EU represents the DFT+U energy
correction derived from the Hubbard model, which depends
only indirectly on the electron density via the occupation
number matrix of a correlated state associated with a specific
atom at site I.
Simply adding EU

0 to EDFT would lead to a double-counting
of Coulomb interaction, because all electron−electron
interactions are already included in the standard DFT
functional. Equation 5 therefore also contains a double-
counting (DC) correction functional Edc. This DC-functional

can not be uniquely defined because the DFT energy is a
functional of the charge density, while the Hubbard
contribution depends explicitly on orbital occupations.37 In
any application of the DFT+U approach, Edc therefore has to
be approximated, with common choices being the around
mean-field (AMF) and the fully localized limit (FLL).24 In the
AMF approximation, one assumes a uniform occupation of
each orbital in the correlated subspace. In this limit, an energy
penalty is imposed on fluctuations of occupations differing
from their expected mean value. Within the FLL, on the other
hand, one assumes that the occupations are either 0 or 1; that
is, the electrons are fully represented by a subspace orbital or
not at all.38 Thus, FLL favors the integer occupation of
localized states.37 Therefore, one can consider FLL to be the
adequate correction for systems with strongly localized
electrons and AMF to be most suited for systems with quasi-
homogeneous electron distribution across the whole correlated
subspace.24 A third alternative was later proposed by Pethukov
et al.,37 where Edc is linearly interpolated between the limits of
FLL and AMF. In our implementation, we consider all three
choices. Yet, for the sake of brevity and without loss of
generality, all further formulations, if not otherwise noted, are
written in terms of the fully localized limit.
Following the de facto standard of all DFT+U applications,

our implementation is based on the rotationally invariant,
spherically averaged form of DFT+U, first proposed by
Dudarev and co-workers.11 In this simplified formulation, the
effective DFT+U corrections are spherical averaged, justified
by the fact that the localized correlated states largely retain
atomic character and, hence, spherical symmetry. The
respective DFT+U functional with FLL double-counting
correction reads:

∑= − = [ − ]
σ

σ σ σE E E U Tr Trn n n
1
2

( ) ( )
I

I
I I IU

FLL
U
0

dc
FLL

,

(6)

In this formulation, the strength of the DFT+U correction is
controlled by the effective parameter U, which can, in
principle, be chosen independently for each site I.

2.5. Effective Parameter U. Unfortunately, by virtue of it
being an effective parameter, there is no unique way to
determine the value of U.24 Most commonly, the value of U is
thus adjusted until some observable agrees with higher-rung
DFT or experimental references. This value can then be used
to make predictions on other material properties.24,39 Next to
this semiempirical approach, there also exist approaches to
calculate the value from first principles. For example, in the
linear response approach by Cococcioni et al.,40 the DFT
ground-state energy is calculated for a number of different
electron occupations, and U is calculated from the spurious
curvature of the total energy with respect to fractional
occupations (recall the above-mentioned interpretation of
DFT+U as a correction to restore piece-wise linearity of the
energy functional).
Whichever way the U value is determined, all properties

calculated with DFT+U sensitively depend on it. At the same
time, the calculated or fitted value of U not only depends on
the atoms included in the DFT+U correction, but also on their
surroundings, the lattice parameters, and other physical
properties.24,39,41 Furthermore, it depends on the basis sets
used to resolve the wave functions in the underlying DFT code
and on the projection of the KS-states to determine the
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occupation numbers that enter the +U correction. All of these
factors strongly limit the comparability of different U values
between systems and DFT+U implementations. In general, for
each new system and code, one should redetermine U.
2.6. DFT+U Hamiltonian and Effective Potential.

Finally, for a self-consistent calculation of the DFT+U energy,
it is necessary to derive the DFT+U correction Hamiltonian.
This Hamiltonian enters the usual DFT routines as an additive
matrix on top of the Kohn−Sham Hamiltonian matrix:

= +σ σ σ
+h h hDFT U DFT U (7)

The Hamiltonian correction matrix can be computed by taking
the derivative of the energy (eq 6) with respect to the density
matrix elements.33

ρ
= ∂

∂
σ

αα
σ

′

E
hU

U

(8)

The exact form of the DFT+U Hamiltonian correction matrix
thus again depends on the choice of projector representation.
For the on-site representation, the correction matrix simply
reads:

=σ σ σ σ
′ ′ ′ ′

*
′h c c vImp m p Imp Im p Imm,

,
(9a)

while the dual representation yields a more complicated
Hamiltonian:

∑ ∑ δ δ= [ + ]α α
σ σ σ σ

α α α α′
′ ′

′ ′
*

′ ′ ′ ′ ′ ′h c c v S S
1
2 m m p p

Imp Im p Imm m p mp m p mp,
, ,

,
, , , ,

(9b)

Here, = − −σ σ
′ ′( )v U nImm I Imm

1
2

is the effective potential. It only

depends on the definition of the double-counting correction.
Both correction matrices here are given for the FLL limit of the
double counting correction. For other limits, we refer the
reader to ref 37.

3. IMPLEMENTATION DETAILS SPECIFIC TO
FHI-AIMS

FHI-aims is an all-electron electronic structure code.32 Its main
focus lies on DFT; however, beyond-DFT methods such as
second-order Møller−Plesset (MP2) perturbation theory, the
random phase approximation (RPA), or self-consistent GW are
supported as well.42 In the following, we discuss aspects of
DFT+U specific to our implementation in FHI-aims, as well as
brief basic validation on the standard test case bulk NiO.
3.1. Hubbard Projector Functions in FHI-Aims. In FHI-

aims, KS states are expanded in real-valued NAO basis
functions of the general form:

φ = Ωα
αu r
r

Yr( )
( )

( )lm (10)

where uα(r) are radial functions, which are numerically
tabulated and therefore fully flexible, while Ylm(Ω) are the
real valued spherical harmonics. uα(r) is usually chosen to be a
solution to a Schrödinger-like radial equation of atomic, ionic,
or hydrogen type with an effective nuclear charge Zeff.

43 Strict
localization and thus computational efficiency even for large
systems is ensured through an additional confinement
potential, limiting the spread of all radial basis functions.
The basis set is divided into a minimal basis, which only
includes atomic core and valence functions, and further into

preconstructed basis set levels (called tier1, tier2, ...for use with
semilocal DFT). These sets are hierarchically arranged for
systematic convergence from fast and qualitative to milli-
electronvolt-level total energy convergence. Especially the
hydrogen-like basis functions serve as polarization functions for
the free atom solutions of the minimal basis set. Adding
additional, higher angular momentum quantum number (l)
basis functions to the overall basis set, they allow polarization
of lower l functions. Furthermore, all radial functions are
subject to an on-site Gram−Schmid orthogonalization. The
three-dimensional integrations are performed on overlapping
atom-centered grids.44,45 These grids are predefined and
divided into so-called light, tight, and really tight settings with
increasing numerical accuracy. This terminology might be
rather confusing to non FHI-aims users, for clarity.
In constructing our projector functions as a superposition of

NAOs (cf., section 2.2), it is not clear per se if polarization
functions of higher basis set tiers should also be included or
how the presence of these functions will affect the DFT+U
calculation. Note that this problem is not only specific to FHI-
aims but in general occurs in any DFT+U implementation with
localized basis sets.33 This issue, together with the wider
question of how to choose projector functions for DFT+U, will
be discussed in more detail in section 5.

3.2. NiO. In the literature, NiO, belonging to the class of
strongly correlated materials, has been extensively used as a
prototype material for testing and demonstrating the effects of
DFT+U.33−35,37,46,47 In fact, LDA- or GGA-based functional
approximations predict Ni3d states to dominate both the
valence and the conduction band edges,48 rendering NiO as a
Mott Hubbard-type49 insulator. Contrary to this, experimental
data show that the band gap is of charge transfer type with an
O2p character at the edge of the valence band.50 Several
studies, including our work, show that the DFT+U method can
in fact correct for these shortcomings of plain DFT,4,40,48,51

simply by shifting the erroneous Ni3d valence band past the
O2p levels. Furthermore, we found that the results for NiO
show little dependence on the choice of the projector functions
(vide infra), especially with regard to polarization functions
present in the standard NAO basis. Overall, this renders NiO
an excellent first test case to validate our implementation.
We start with a bulk NiO structure, optimized at the PBE

GGA-functional level2 using a tier1 basis and tight settings for
integration grid. Not surprisingly, as we increase the U value
acting on the Ni3d-states, the band gap increases almost
linearly up to around U = 4 eV as depicted in Figure 1. This
clearly demonstrates the typical downward and upward shift of
occupied and unoccupied 3d states, respectively.24 As only 3d-
states are affected by the Hubbard correction, the deviation
from linear behavior for higher U values is due to two effects.
At the valence band maximum (VBM) Ni3d states shift past
the O2p states, restoring the correct O2p to Ni3d character of
the band gap.40 At the conduction band minimum (CBM),
higher values of U show a crossing of the 4s- with the 3d-
band.46 As the 4s-band is not influenced by the DFT+U
correction, higher values of U show little to no influence on the
gap beyond U = 4 eV. The DFT+U method thus can only
reproduce the correct band gap character in a narrow window.
To nevertheless demonstrate the efficacy of our implementa-
tion, we show in Figure 1 the gap between d-bands only. Here,
one can see a linear increase over the whole plotted range of U
values. Finally, Figure 1 shows slight deviations from the linear
behavior even for the d-band gap. These are found to be due to
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changes in the amount of Nid and Op orbital hybridization as
the U values increase, slightly counteracting the effect of the
DFT+U correction.

4. A REAL WORLD EXAMPLE: POLARONS IN TiO2

So far, we demonstrated the validity of our implementation on
the comparatively simple example of opening the band gap in
NiO. As a more realistic application example, we now further
analyze its reliability by investigating the formation of polarons
at the TiO2 (110) surface, which constitutes a frequently
studied showcase52,53 where, although insensitive to the choice
of U value, the results still depend most sensitively on details of
the DFT+U implementation and the employed computational
settings.
The physics of the problem is as follows: Removing one

bridging oxygen atom from the TiO2 (110) surface results in
two excess electrons. These can be localized at varying Ti
centers around or at the defect site resulting in the formation
of two small trapped polarons. Furthermore, depending on the
electronic spin state, the overall system is either in a triplet or
in an open-shell singlet configuration. Modeling such polarons
in the context of DFT+U has been extensively discussed by
Deskins et al.52 as well as Shibuya et al.53 In general, difficulties
arise from the fact that standard semilocal DFT fails in
localizing the excess electrons. Moreover, different polaron
localization patterns show only little difference in total energy,
making it hard to isolate specific configurations in simulations.
In total, this renders this system a very sensitive test case for
our DFT+U implementation. Focusing on the correct
description of the polaronic states, in the following we will
carefully compare our results with hybrid functional
(HSE0626) and other literature values.
4.1. Computational Details. All structure relaxations have

been performed using our DFT+U variant of the PBE
exchange correlation functional.2 The Ti3d atomic basis

functions were chosen as Hubbard projectors. Furthermore,
all calculations were performed with the above-described
rotationally invariant +U form with the double-counting
correction in the fully localized limit. In fact, FLL-based
double counting corrections are the standard form of DFT+U
used to describe TiO2.

52,54,55 In addition, we always employ
the on-site version of the occupation matrix, if not noted
otherwise. Numerical convergence was reached with default
tight tier1 basis sets for oxygen and titanium, respectively. For
comparison, it has been shown that for TiO2 systems, such a
basis is equivalent in accuracy to a polarized triple-ζ split
valence Gaussian-type orbital basis set.56 However, due to
mixing of the correlated Ti3d-state with the O2p-states,
discussed in detail in section 5.1, we replace the tier1 3d-basis
function with a basis function of the same kind but more
localized, with a modified effective charge of Zeff = 4.4e. Apart
from ensuring the convergence of the DFT+U SCF cycle, this
has little to no effect on the outcome of our calculations, as
shown in section 4.2.1.
We use a periodic (4 × 2 × 5) slab to model the TiO2 (110)

surface, sampling reciprocal space with a (4 × 4 × 1)
Monkhorst−Pack k-point grid.57 The slab was initially cut
from a bulk-optimized geometry calculated with an (8 × 8 × 8)
k-grid. The first three layers of the slab were then fully relaxed
until residual forces fell below 10−3 eV/Å. If not noted
otherwise, all surface slabs have been constructed from the
corresponding optimized bulk unit cells applying the same
value of U.
Furthermore, we conduct a number of reference calculations

with the HSE0626 hybrid functional, which has been shown to
yield excellent descriptions of the electronic structure of
TiO2.

58 Especially, the experimental band alignment of TiO2 is
reproduced within reasonable accuracy using HSE06.59

Moreover, Shibuya et al.53 could demonstrate that both
HSE06 and DFT+U yield similar results regarding the
description of polarons. Therefore, we conclude that in fact
HSE06 calculations can serve here as a very good benchmark
for our implemented DFT+U routines. Nevertheless, for other,
less well-tested systems, one has to keep in mind that HSE06
belongs to the class of range-separated hybrid functionals
incorporating two adjustable parameters for controlling the
amount of exact exchange and the range-separation, both of
which can significantly influence the results.60

As a trade-off between accuracy and computational cost, all
geometry relaxations for the HSE06 reference have been
performed using a standard tier1 basis set and applying light
integration grids. There, forces were relaxed to below 0.01 eV/
Å. Finally, total energies were recalculated using the same
settings as applied for the PBE+U case.

4.1.1. Localization of Polarons. Generally, the excess
electrons can localize at different Ti atoms throughout the
simulation cell. Different localization patterns thereby
represent different local minima of the system, differing only
very slightly in total energy. This renders the sampling of all
configurations a difficult task. To address this problem and to
ensure electron localization at the correct atomic site, we make
use of the occupation matrix control approach.61,62 There, we
fix the occupation matrices of the given atoms to those
obtained from a pure PBE calculation yet with modified
occupations of the target orbitals for the excess electrons. This
means that we simply set the corresponding diagonal entry of
the associated occupation matrix to one. This effectively acts as
a bias potential similar to the constrained DFT approach63−65

Figure 1. (Left panel) Band gap (orange) and gap between d bands
(blue) of bulk NiO for increasing U values. The DFT+U correction
has been applied to the Ni3d-states as described by the respective
basis functions in the FHI-aims NAO basis. To rule out structural
effects, all calculations have been performed for a PBE optimized
structure (i.e., corresponding to U = 0). (Right panels) Density of
states (DOS) and DOS projected onto the Ni3d-states for values of U
= 0 eV (upper panel) and U = 3 eV (lower panel). For the sake of
brevity, only up-spin DOS is shown.
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drawing the polarons toward the intended configuration. We
then perform a structure relaxation with fixed occupation
matrices to appropriately polarize the environment. To achieve
full self-consistency, we use the obtained geometry and wave
function information as an input to perform further structural
relaxations without constraining the occupation matrix. This
procedure allows us to sample a large number of possible
polaron configurations while yielding, at the final stage,
completely unconstrained electronic structures.62,63

4.2. Results and Discussion. 4.2.1. Relative Formation
Energies. The stabilities of different polaronic configurations
with regard to each other are determined by their relative
formation energies:

= −E E Ei iformation, tot, tot,0 (11)

where Etot,i is the total DFT (or DFT+U) energy of a
configuration i and Etot,0 is the total energy of the most stable

polaronic configuration. In this convention, the configuration
lowest in energy has a stabilization of 0.0 eV, while all other,
less stable solutions have positive stabilization energies.
Contrary to ref 66, we specifically do not give absolute
formation energies referenced to the unoptimized, delocalized
state to avoid offsets between hybrid functional calculations
and DFT+U solely due to the different description of the
reference state.
Although the use of the occupation matrix control approach

allows us to localize the electrons at any Ti atom, for the sake
of brevity we restricted ourselves to the most representative
localization patterns of the excess charges. Furthermore, in line
with current literature,52,53 we only consider open-shell singlet
configurations, which are considered to be more stable cas
ompared to triplet configurations. In accordance with the
literature,52 the term open-shell singlet here denotes a broken
symmetry DFT configuration where the number of electrons

Figure 2. Depiction of the site naming convention used in this work. (a) Ti atoms are labeled within the surface layers by numbers, (b) while the
topmost surface layers themselves are labeled S0 and S1. Labeling is only shown for the sites relevant to this study.

Figure 3. Spin densities of the calculated polaronic configurations (at isosurface level 0.1 e Å−3). Spin up density is shown in red, while spin down
density is in green.
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for spin up and spin down density is fixed so that the number
of electrons is the same in both spin channels. To distinguish
the polaron configurations, we rely on a nomenclature based
on a numbering of atomic sites shown in Figure 2: With Sx-m/
Sy-n we specify that one excess electron localizes in surface
layer Sx on atom m and the second excess electron localizes in
surface layer Sy on atom n.
The employed values of U were chosen to reproduce the

location of the oxygen vacancy defect level within the band
gap. Specifically, experimental photoemission data show that
the defect state is located at around 1 eV below the conduction
band.67 We thus selected U values of 2.25, 2.5, and 2.65 eV
yielding gap states between 1.0 and 1.40 eV below the
conduction band for the configurations considered here (cf.,
Figure 3, states S1-4/S1-11). To highlight our warning that U
values should not be compared between different codes, and
especially not between different projectors, we note that these
U values are significantly lower than those used for this kind of
system so far.52,53,68 Mainly, this can be attributed to the
strongly localized character of our atomic NAO Hubbard
projectors, which will be discussed in more detail in section 5.
In analogy to the results of Deskins and co-workers,52 we also
find that relative stabilization energies of polaron formation
remain unaffected by the exact choice of the U value. Hence,
we will mainly focus on results obtained with U = 2.65 eV. As
was already mentioned above, we then compare our DFT+U
results to those obtained with the range-separated hybrid
HSE06 functional. To rule out any further structural effects,
though, the hybrid calculations were performed on the relaxed
DFT+U geometries. In Table 1 we list our calculated results
and compare them to literature values.
Our PBE+U results show that configurations S1-4/S1-11,

S1-3/S1-11, S1-3/S1-10, and S1-4/S1-10 have almost
degenerate total energies, with deviations in the range of
only a few millielectronvolts. Given the intrinsic inaccuracies of
DFT+U, this means that we can not identify a most stable
polaronic configuration. These findings stand in direct contrast
to the work of Deskins et al. and Shibuya et al., who both
identified configuration S1-4/S1-11 to be the most stable
singlet configuration. Interestingly, we find that configuration
S1-3/S1-10 is only 1 meV higher in energy than configuration
S1-4/S1-11, whereas Deskins et al. predict it to be 0.15 eV
higher. Nevertheless, our DFT+U results do agree very well
with our HSE06 references (both at DFT+U geometry and
fully relaxed, see below), thereby demonstrating the validity of
our implementation. Possible sources of the discrepancies
between our results and the literature will be discussed in
section 4.3.

Common to all of our energetically low-lying solutions is
that all have polaron configurations located under a 5-fold
coordinated Ti surface atom. This is in perfect agreement with
previous theoretical and experimental studies.69 For example,
Krüger et al.70 showed with resonant photoelectron diffraction
measurements that the excess charge is dominantly located in
the second layer Ti atoms located under a 5-fold coordinated
surface Ti. In addition, a combined scanning tunneling
microscopy/spectroscopy study by Setvin and co-workers68

shows identical behavior for the excess charge. Even though
our values do not exactly match with other theoretical studies,
we thus point out that our results are perfectly in line with
experimental data, which show that most of the excess charge
is located below the Ti5c row. We confirm these findings by
showing that polarons with this localization pattern have
basically the same total energies. All other combinations show
less favorable relative stabilities.

4.3. Discrepancies As Compared to Literature. While
internally consistent within FHI-aims, our DFT+U and HSE06
results do show a number of discrepancies to earlier published
results. To understand these, we here systematically examine
potential reasons based on the differences between FHI-aims
and other DFT+U capable programs.
For configuration S1-10/S1-11 with both Ti3+-ions adjacent

to each other, Deskins et al.52 report a relative stabilization
energy of 0.06 eV as compared to our finding of 0.23 eV and
that of Shibuya and co-workers53 of 0.28 eV, respectively. As
was already discussed in ref 53, this difference in the work by
Deskins et al. can be attributed to the characteristics of the
underlying basis set used in the different simulations.
We also see discrepancies for polaronic configurations S1-7/

S1-9 and S1-7/S0-7, which our calculation predict to be less
stable. In contrast, here the findings of Deskins et al. and
Shibuya et al. are in good agreement with each other. To shed
more light on the these discrepancies, we performed HSE06
calculations on fixed PBE+U structures (HSE06@PBE+U).
On top of that, we carry out full HSE06 calculations including
relaxations for some selected systems. These results are also
compiled in Table 1 and clearly show that the hybrid
calculations reproduce our PBE+U energetics reasonably
well. At least within the framework of our underlying electronic
structure code, HSE06 and DFT+U give highly consistent
results. This is also supported by the comparison of the on-site
occupation matrices of the Ti3+ centers between PBE+U and
HSE06. Even though HSE06 does not include any DFT+U
corrections, we there calculate the on-site occupation in the
same way as with PBE+U. We obtain essentially identical
orbital localization patterns at both levels of theory, confirming
to one end that PBE+U and HSE06 describe the polaron states

Table 1. Relative Stabilities of Polaronic Configurations at U = 2.65 eV (This Work) and Reference Values from Literaturea

Ti3+-centers PBE+U (this work) HSE06@PBE+U (this work) HSE06 (this work) PBE+U52 PBE+U53 HSE0653

S1-4/S1-11 0.00 0.00 0.00 0.00 0.00 0.00
S1-3/S1-11 6 × 10−3 0.01 0.01 0.02
S1-10/S1-11 0.23 0.26 0.26 0.06 0.28 0.28
S1-7/S1-9 0.40 0.47 0.45 0.23 0.23 0.27
S1-7/S0-7 1.22 1.34 0.96 0.90
S1-3/S1-10 1 × 10−3 −2 × 10−3 0.15
S1-4/S1-10 −5 × 10−3 −6 × 10−3

S0-7/S1-10 0.86 0.90 0.63
aThe relative stabilities are given in eV. The terminology HSE06@PBE+U denotes results where the geometry optimization is done with PBE+U
and total energies are obtained by single point calculations using HSE06.
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in the same way and to the other end the reliability of our DFT
+U implementation. This similarity at both levels of theory
also rules out that the different NAO projector functions used
in our work stand behind the discrepancies, because the
HSE06 calculations are completely independent of any sort of
projector functions and serve as an unbiased reference.
An alternative explanation for the discrepancies between our

results and those from Shibuya et al. and Deskins and co-
workers could be that the differences in the energetics arise
from electrons occupying different orbitals on the Ti3+ centers,
thus effectively yielding different states. However, for
configurations S1-4/S1-11, S1-10/S1-11, S1-7/S1-9, and S1-
7/S0-7, we obtain charge densities identical to those reported
by Shibuya et al. (cf., Figure 3). For configuration S1-3/S1-11,
which is also depicted in ref 69, our orbital localization pattern
also perfectly agrees with the literature results. Another
possibility could be that our modification of the standard
NAO basis (cf., section 4.1) induces the described
discrepancies. To rule this out, we conducted additional
HSE06 calculations on the S1-3/S1-11 system and including
this basis function. However, this did not affect the results
reported in Table 1 in any significant way.
Having thus exhausted all other possible reasons for the

systematic discrepancies between FHI-aims and the literature,
we point out that there is one last difference between FHI-aims
and the program packages used in the works of Shibuya and
co-workers and Deskins et al. in that the latter employ
pseudopotentials to approximate core electrons, while FHI-
aims is a full potential code. Pseudopotentials are commonly
constructed from LDA or GGA reference calculations and
therefore are, in principle, not necessarily transferable to hybrid
DFT or DFT+U applications. Note that the literature shows
that hybrid DFT or DFT+U works remarkably well with
pseudopotentials.66 Yet, it is unclear if this holds true for such
ultrasensitive systems like polarons, and clearly further studies
are needed to shed more light on this issue.

5. CHOICE OF PROJECTOR FUNCTIONS AND
OCCUPATION MATRIX DEFINITION

We already highlighted that our implementation of the DFT
+U method needs much lower values of U to achieve results
similar to other codes. This is, in part, due to our choice of
projector functions. In this section, we therefore further
explore the influence of the exact shape of the Hubbard
projectors and the occupation matrix definition on our results.
To this end, we use two different kinds of functions for the
projectors. First we use atomic-type basis functions, which are
in fact the default choice for Hubbard projectors of a given
element. In addition, we use hydrogen-like radial projector
functions characterized by different effective core charges (Zeff
= 4.4e and 7.0e). We thus generate a series of different
projector functions, which differ in their radial extent, ranging
from a very compact, localized shape to a more diffuse radial
function (Zeff = 4.4e). For comparison, the radial parts of all
three projector functions are depicted Figure 4. However, as all
basis functions of FHI-aims are subject to an on-site
orthogonalization, one can not directly use them as projector
functions. Thus, so as not to add spurious nodes to our
projector functions due to the orthogonalization, we express
each not orthogonalized basis function serving as a Hubbard
projector (cf., Figure 4) in terms of the orthogonalized basis
set.

For our analysis, we choose the TiO2 defect level location
with respect to the conduction band edge and the highest
eigenvalue of the occupation matrix as observables. For the
sake of brevity and without loss of generality, we only show
this for configuration S1-4/S1-11 and for a single Ti3+ center.
First, for both the highest eigenvalue and the defect level

location, we see an almost linear dependence with respect to
the applied U value (cf., Figure 5). Although we used a small
range of U values (from U = 2.25 eV to U = 2.65 eV),
representative for the values used in realistic simulations, we
see a large increase in the shift of the defect state away from
the conduction band edge, at least for the on-site
representation in connection with atomic-like Hubbard

Figure 4. Radial functions of an atomic type (blue) and of two
hydrogen-like Hubbard projectors (orange, green). The hydrogen-like
Hubbard projectors are characterized by their effective core charge
Zeff.

Figure 5. Defect level location within the band gap (upper panels)
and highest eigenvalue of the occupation matrix (lower panels) with
respect to the applied U value and different Hubbard projector
functions. Also shown is the dependence on the occupation matrix
representation (left and right panels). For all calculations, the S1-4/
S1-11 structure obtained from a PBE+U (=2.65 eV) calculation,
applying the on-site definition for the occupation matrix, has been
used. No self-consistent field solution for Zeff = 4.4 at U = 2.65 eV or
higher could be found, indicating that there is no stable solution for
such a diffuse projector.
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projectors. Overall, this effect is less pronounced the more
diffuse the projector function becomes. In general, more
diffuse Hubbard projectors yield a higher defect level position
within the band gap for a given U value. This also holds true
for the charge localization within the correlated subspace,
reflected by smaller eigenvalues of the occupation matrix for
the more diffuse projector functions. We attribute this
tendency to a preference of the excess electrons in occupying
the 3d atomic basis functions. Both effects are also very much
in line with our observation that in production calculations
with our strongly localized NAO projector, we generally need
much lower U values to achieve the same correction as other
implementations. We therefore conclude that within our given
framework the atomic-like projectors are in fact the most
suitable ones for this kind of problem.
For projector functions with Zeff = 4.4e, we do not find a

converged self-consistent field solution for U = 2.65 eV or
higher. This indicates that there is no stable solution for such a
diffuse projector, which effectively tries to shift the charge away
from the Ti atom center to the neighboring atoms, as depicted
for the S1-4/S1-11 configuration in Figure 6. Not surprisingly,

this shows that the degree of charge localization can also be
tuned by choosing localized or less localized projector
functions. In general, this can be compensated by choosing
higher U values, but only up to a certain degree. Beyond that,
the corrective Hubbard potential tries to enforce the target
ground state to match with the shape of the applied projectors
spanning the correlated subspace.
Regarding the dependence on the occupation matrix

definition, we see the same tendencies for the dual
representation; however, higher U values are needed to
match the on-site representation results. Such behavior has
been already observed by Han et al. in the context of the band
gap width.33

In summary, the Hubbard projector shape directly influences
the degree of localization of the excess charge in the system.
To a certain degree, this can be compensated by choosing a
higher U value, which again demonstrates that U values are not
directly comparable between different electronic structure
codes.
5.1. Multiple Polarization Functions in an NAO Basis.

Finally, we investigated the impact of having basis sets with
multiple basis functions belonging to the same angular
momentum channel, which are thus potentially associated
with same correlated subspace. This is a problem unique to
DFT codes with localized basis sets, although it could be less

pronounced for programs with less specialized basis functions
than the NAOs used in FHI-aims. As a test case, we focus on a
bulk rutile TiO2 unit cell applying a standard tight, tier1 basis
set for oxygen and titanium, respectively. As before, we apply
the PBE+U method with on-site representation in the fully
localized limit for the Titanium 3d-states. As projector
functions, only the atomic-type basis functions are used. Yet,
to check the influence of a present polarization function, we
vary the effective core charge (Zeff) of the present 3d tier1 basis
function, specifically not included in the DFT+U projector,
from 1.5e to 4.0e. This demonstrates the interaction of
additional 3d-orbitals of different radial shape with the DFT+U
projector.
Our findings regarding the average occupation of the

different correlated subspaces are compiled in Table 2 for a

number of increasing U values. Thereby, the average
occupation is calculated as the sum of eigenvalues of the
occupation matrix divided by the angular multiplicity of the
correlated subspace, ∑ +m

n
l2 1

mm . TiO2 is characterized by a

strong mixing of Ti3d- and O2p-states, which leads to a
significantly covalent character of the Ti−O bonds.39 Hence,
the use of a pure 3d atomic-like Hubbard projector is less valid,
resulting in the low average occupation numbers listed in Table
2. On applying the corrective U potential, the main effect is to
push the spatial character of the Ti3d-states closer to the free-
atom reference, thereby causing less overlap with the O2p-
states. This results in an even more strongly pronounced
oxygen p-character of the valence states, explaining the slight
decrease in average occupation at higher U values.
At the plain PBE level (U = 0 eV), the presence of additional

polarization functions has no significant impact on the average
occupation as compared to the single shell case. This indicates
that the states are in fact dominated by atomic-type 3d basis
functions instead of polarization functions. If the U value is
increased, a change in the average occupation can be observed
in all cases. However, this change is even stronger for Zeff =
1.5e and 2.7e. This is partly a real effect as higher U values will
alter the hybridization between Ti3d- and O2p-orbitals,
yielding less d character of the valence states.
Yet, another effect of higher U values is the system’s

tendency to occupy the additional polarization function instead
of the more localized atomic basis. As can be seen in Table 2,
this trend increases, the more diffuse the basis function
becomes. To gauge the physically correct occupation of the
correlated subspace, we again performed calculations with the

Figure 6. Electron density of the polaron state in configuration S1-4/
S1-11 calculated with atomic (left) and hydrogen-like Hubbard
projectors with an effective charge of Zeff = 4.4e (right). The Ti3+

atom is located in the center. Densities are obtained with PBE+U
(=2.5 eV) and the on-site representation for the occupation matrix.
Isosurface level 0.05 e Å−3.

Table 2. Average Occupation of the Correlated Subspace at
Different U Values and with Different tier1 3d-Polarization
Functions or without (Single Shell)a

Zeff

U [eV] 1.5 2.7b 4.0 single shell

0.00 0.14 0.15 0.14 0.14
2.25 0.05 0.09 0.12 0.13
3.00 0.04 0.08 0.12 0.11
4.00 0.03 0.07 0.11 0.12
HSE06 0.13 0.12 0.13 0.12

aAs a comparison, we also list the average occupations resulting from
hybrid HSE06 DFT calculations, yet with U = 0 eV, calculated with
the on-site occupation matrix. bHydrogen-like 3d-polarization
function, which is part of the standard default settings for titanium.
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HSE06 functional. The hybrid DFT reference shows that the
average occupation of the correlated subspace is not
significantly affected by the presence of additional 3d basis
functions (see Table 2). Moreover, it should be pointed out
that these results indicate a physically incorrect description of
rutile TiO2 by PBE+U, at least for Zeff = 1.5e and 2.7e. In pure
PBE (U = 0 eV) and HSE06, the atomic-type 3d basis
functions dominate in the mixing with O2p-states. If the U
value is increased in the presence of an additional, more diffuse
polarization function, the situation changes, and the diffuse 3d
basis functions start more and more to mix with the O2p-
states. It should be noted that this effect is independent of the
choice of representation for the occupation matrix and also
occurs for the dual representation.
We attribute this failing of DFT+U to the problem of

defining proper Hubbard projectors and hence the correct
identification of the localized subspace in question, a well-
known general drawback of DFT+U.30 As compared to DFT
+U, in hybrid functionals all interactions among electrons are
treated in the same way involving one mixing factor and
explicit calculations of the Fock-integrals. This makes hybrid
DFT results much more robust with regard to basis set choices.
These findings are particularly relevant for studies with FHI-
aims, where the default basis set for titanium includes the 3d
basis function with an effective core charge of 2.7e. This means
that a simple and straightforward application of the DFT+U
method to TiO2 with an unmodified NAO basis is likely to fail.
One possible way to circumvent this would be to simply
exclude the offending basis function from a simulation. This,
however, requires a careful analysis if any other physical
properties are negatively affected by the thus reduced basis set.
Nevertheless, we here emphasize that this is a very element-
specific and system-dependent problem of the underlying basis
set in FHI-aims and may not cause any concerns in other
simulations at all, especially for system with less covalent
character.
As another, more systematic, remedy, our implementation

also allows the use of Hubbard projectors of arbitrary shape as
long as they can be represented as a linear combination of basis
functions (cf., eq 1b). In the following, we use a free-ion-like
3d titanium radial function and express this function in terms
of basis functions present in the default tier1 set (Figure 7).
This results in expansion coefficients of the atomic and
polarization function (Zeff = 2.7e) of c1 = 0.982 and c2 =
−0.209, respectively. Using this projector, all present 3d basis
functions contribute to the correlated subspace, suppressing
the aforementioned problems of low subspace occupation.
As Table 3 shows, applying the DFT+U correction also for

the 3d polarization functions improves the average occupation
numbers. Thus, the physical correct description of subspace
occupancies is restored by suppressing the nonphysical strong
mixing of the tier1 polarization function with the O2p-states. A
similar effect could have been achieved instead by treating the
polarization functions as a separate 3d-shell.33 Yet, this would
involve using a second U parameter, which needs to be
determined separately, rendering such an approach less
general.
In summary, our findings demonstrate that additional

polarization functions can affect the DFT+U calculation
especially for materials with strong hybridization between
different species. Although we here illustrated this effect for the
FHI-aims NAO basis set and for Ti, it should also be present in
other localized basis sets. Obviously, for some cases, it can be

necessary to include polarization functions in the Hubbard
correction; however, it is not known a priori how this will
affect the accuracy of other predicted physical quantities. Thus,
one should generally be well aware of these issues resulting
from the ambiguity of DFT+U with regard to the Hubbard
projectors and their interplay with localized basis sets.

6. CONCLUSION
We presented our implementation of the Hubbard corrected
DFT+U method within the full-potential all-electron code
FHI-aims. The efficacy of the DFT+U approach thereby rests
in no small part on an appropriate choice of projector
functions defining the correlated subspace to which the
correction needs to be applied. Our implementation allows
the use of arbitrary radial shapes of the Hubbard projectors as
long these projector functions can be represented by a linear
combination of the NAO basis functions of FHI-aims. The
default choice for the projector functions, which serve to gauge
the contributions of each KS-orbital to the correlated states,
are highly localized NAO basis functions derived from free
atom solutions. Besides needing significantly lower values of U
to achieve results similar to those of other DFT+U
implementations, our NAO-based projectors additionally
allow for a computationally highly efficient determination of
the DFT+U correction terms at basically no overhead as
compared to standard semilocal DFT.
As a first example showing the accuracy and efficacy of our

implementation, we calculated the band gap opening of the
often employed NiO test-system with respect to increased
values of U. Our NAO-based projector functions achieve
results very similar to those found in the literature, yet also at
lower U values due to the highly localized reference states.

Figure 7. Free-ion-like Ti3d radial function (red dashed line)
expressed as a linear combination of an atomic and tier1 Ti3d radial
basis function, both part of the standard tight Ti basis set in FHI-aims.
The tier1 radial basis function is subject to a Gram−Schmidt
orthogonalization with respect to the atomic function.

Table 3. Average Occupation of the Correlated Subspace at
Different U Values for the Default tier1 Titanium Basis Set
of FHI-Aims Using a Hubbard Projector Derived from a
Free-Ion-Like Solution

U [eV] 0.00 2.25 3.00 4.00

∑ +
n
l2 1
mm 0.14 0.12 0.11 0.10
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Further, we investigated the presence of multiple polarization
functions belonging to the angular momentum channel of the
correlated subspace but not included in the projector function
itself. Considering that FHI-aims employs an on-site
orthogonalization of basis functions, this can lead to electron
leakage out of the correlated subspace into the other present
basis functions and thereby leading to an erroneous prediction
of the electronic ground state and related physical properties.
As we demonstrated for bulk TiO2, this effect can be
suppressed by expanding the correlated subspace over the
whole angular momentum channel in question, for example, by
using a numeric ionic reference orbital. We emphasize that this
effect is element- and system-specific and will strongly depend
on the basis functions used in the simulation.
As a more stringent and applied test case for our

implementation, we also studied the surface polaron formation
due to an oxygen vacancy in rutile TiO2(110). Comparing our
DFT+U results with hybrid functional (HSE06) calculations,
we showed that our code yields almost identical ground-state
properties. Nevertheless, for both DFT+U and HSE06, we
could not find one single most stable polaronic configuration,
which stands in contrast to previous theoretical studies.52,53,68

Instead, we identified several localization patterns essentially
degenerate in energy. All of these are characterized by Ti3+

located under a 5-fold coordinated surface Ti atom. We
showed that our obtained charge density distributions are
identical to those obtained from the literature, thereby ruling
out the possibility of missing the correct ground-state orbital
occupation of the polaron state. Exhausting all other
possibilities, this difference can likely be explained by the
pseudo potentials applied in earlier studies. Moreover, it
should be pointed out that our results are also in line with
experimental data,69,70 providing additional support for our
findings.
Finally, we then analyzed the influence of the Hubbard

projector shape on the polaronic states. Not surprisingly, more
diffuse projectors lead to less localized excess charge. This is
partly compensated by higher U values, demonstrating again
the incomparability of U values throughout different electronic
structure codes. All in all, our extensive study highlights the
dangers of an uncritical use of DFT+U, in particular in
localized basis set codes, while at the same time emphasizing
the versatility and usefulness of this effective approach, if used
properly.
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ABSTRACT
In this work, we present general and robust transferable principles for the construction of quantum-mechanically treated clusters in a solid-
state embedding (SSE) approach, beyond the still prevalent trial and error approach. Thereby, we probe the quality of different cluster shapes
on the accuracy of chemisorption energies of small molecules and small polaron formation energies at the rutile TiO2 (110) surface as test
cases. Our analyses show that at least the binding energies and electronic structures in the form of the density of states tend to be quite
robust already for small, nonoptimal cluster shapes. In contrast to that, the description of polaron formation can be dramatically influenced
by the employed cluster geometry possibly leading to an erroneous energetic ordering or even to a wrong prediction of the polaronic states
themselves. Our findings show that this is mainly caused by an inaccurate description of the Hartree potential at boundary and surrounding
atoms, which are insufficiently compensated by the embedding environment. This stresses the importance of the cluster size and shape for
the accuracy of general-purpose SSE models that do not have to be refitted for each new chemical question. Based on these observations, we
derive some general design criteria for solid state embedded clusters.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5125204., s

I. INTRODUCTION

Studying chemical reactions on nonmetallic surfaces, the the-
oretical toolbox essentially offers two distinct approaches, the slab
approach based on periodic boundary conditions (PBCs)1 and the
family of nonperiodic cluster models of the surface.2,3 Thereby,
the former naturally captures all long-range effects of, e.g., the
electrostatic potential, in efficiently small unit-cells. At the same
time, though, it suffers from considerable finite-size effects due to
spurious interactions of nonperiodicities such as defects or possibly
even just adsorbates.4 This problem is exacerbated for charged non-
periodicities, such as localized charge carriers in the form of small
polarons, where sometimes exceedingly large unit-cells are neces-
sary in order to compensate for these errors.5,6 Yet, it is precisely
these nonperiodicities that often critically define a material’s sur-
face chemistry.7 At the same time, many of the chemically most

interesting materials demand the use of more accurate methods
than simple semilocal density functional theory (DFT). Right now,
most of these modern higher-rung techniques such as (double-)
hybrid functionals tend to either be very costly8–10 or—like most
wave-function based techniques such as coupled cluster—nearly
impossible to apply in PBCs.11,12

For these reasons, surface cluster models have remained a
popular approach to simulating surface reactions.3,13–21 The obvi-
ous drawback there is the lack of long-range interactions beyond
the quantum mechanically (QM) treated cluster. Borrowing ideas
from the field of theoretical biochemistry,14 the cluster is therefore
often surrounded by a—potentially very large—shell of molecular
mechanical (MM) point charges restoring the long range electro-
statics in an approach known as solid-state embedding (SSE).22,23

Being a nonperiodic surface model, SSE does not suffer from
spurious interactions by construction but, compared to the elegant
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simplicity of PBC approaches, shows considerable ambiguity due to
the shape of the cluster and generally the interface between QM and
MM regions.2

In the literature, one can find unqualified successes of both
approaches, regarding, e.g., binding energies of adsorbates or even
stabilities of (charged) defects.3,9,24–32 Nevertheless, all SSE mod-
els so far always needed to be carefully tuned to a specific prob-
lem.9 This means that for each material, surface termination, and
even each specific chemical question—such as surface adsorption or
surface defect formation—a new cluster model needed to be con-
structed3 in order to yield useful results. Depending on the respec-
tive material, this could be more or less straightforward.20 Usually,
one needs to keep the cluster stoichiometry aligned with that of
the underlying material to avoid spurious charging of the model
and resulting offsets of the electrostatic potential. Furthermore, in
more strongly ionic systems, the cluster should be symmetric to
avoid low order multipole moments distorting the potential of the
model. Scientists thereby mostly relied on highly simplified design
paradigms such as round, hemispherical shapes to minimize the
cluster’s surface area,3,33 paired with a lot of trial and error. The qual-
ity of a cluster is thereby often compared to periodic references,12,16

which are not necessarily always available for the respective
system.

Focusing on the chemistry of a rutile TiO2 (110) surface, in this
work, we first derive robust design rules for general-purpose SSE
cluster models. On the one hand, we show that binding energies
and electronic structures in the form of densities of states (DOSs)
seem to be quite benign and easily reproduced already with small
cluster sizes and nonoptimal cluster shapes. Yet, turning toward
photoelectrochemistry, one of the most thoroughly studied use-
cases of TiO2, we find the reaction defining energetics of sur-
face and subsurface polarons, forming due to a surface oxygen
vacancy, to be a much harder problem for the SSE approach.
Given that polarons crucially depend on not only a correct descrip-
tion of the material’s electronic structure and local electrostatic
potential but also the response of the surroundings of the mate-
rial,34 results strongly depend on both the cluster size and shape.
We analyze in detail the reasons why some cluster shapes fail to
reproduce periodic references in order to extract robust design
criteria, allowing future SSE model construction beyond trial and
error.

II. METHODOLOGY
A. QM/MM setup

All our calculations are based on the solid-state QM/MM
approach developed by Berger and co-workers,9,16 based on earlier
work by Metz and co-workers.22,23 Here, a small region of interest is
treated fully quantum mechanically (QM) on the level of DFT. This
QM-region is then embedded into a much larger polarizable molec-
ular mechanics (MM) region. While the QM-region is only large
enough to describe all relevant local contributions to the physical
and chemical properties of interest, the MM region needs to account
for all remaining long-range influences onto the local region. In the
TiO2 (110) surface models studied here, these influences are mostly
comprised of electrostatic contributions, such as the long-range elec-
trostatic potential and any dielectric responses of the environment to

changes in the charge distribution of the QM-region. Regarding the
crucial interface between QM- and MM-regions, in this approach,
all positively charged Ti-ions in the vicinity of the QM-region are
replaced by norm-conserving pseudopotentials (PPs) to avoid elec-
tron leakage to the otherwise bare coulomb singularities present in
the MM-region. Finally, point charges are placed at the outer bound-
ary of the MM-region. The values of these charges are fitted to repro-
duce the electrostatic potential of the infinite surface.22,23 Following
this approach, we achieve rms errors in the electrostatic potential
between 10−4 and 10−5 V.

In order to achieve a most seamless transition between QM-
region and MM-region, the applied interatomic MM potential
should match the dielectric properties of the QM-region to avoid
spurious dielectric interfaces within the material. Furthermore, the
force-field description in the MM-region should largely match the
QM lattice constants to avoid erroneous confinement stresses during
geometry relaxation of the QM-region.9 In the QM-region, both of
these properties heavily depend on the applied exchange-correlation
(XC) functional, which means that, in principle, one specifically
needs to adapt the force-field to every functional.

Finally, the fact that the oxygen ions in TiO2 are highly polar-
izable provides another challenge to the employed force-field. A
simple rigid ion model would not be able to capture the dielectric
properties of the material. Instead, one has to employ polarizable
models—in our case, in the form of the popular core-shell force-
field35—for the description of the MM-region.16 Self-consistent
polarization of the MM-region is then achieved by a series of microi-
terations,9,22,23 guaranteeing a correct response to changes in the
QM-region.

1. Periodic reference calculations for finite
cluster models

To obtain the finite cluster models, we closely follow the strat-
egy proposed by Berger and co-workers.9,16 Based on optimized
bulk unit cells, a surface slab is generated for every relevant DFT
functional. In detail, c(1 × 1) supercell (110) surface slabs are cre-
ated, consisting of five O-Ti2O2-O trilayers. For all calculations,
the slabs are separated by 50 Å vacuum to avoid spurious interac-
tions between periodic images. Furthermore, the periodic slabs are
electronically decoupled by a dipole correction.

Numerical convergence is achieved with standard tight settings
for atom-centered integration grids and the basis set, within the
FHI-aims36 program package. These settings were found to be com-
parable to or even more accurate than triple-ζ valence polarized
gaussian type basis sets.37 The k-space is sampled using an 8 × 8 × 8
Monkhorst-Pack grid for bulk geometries and an 8 × 8 × 1 grid for
surfaces.38 The top and bottom trilayers are fully relaxed until resid-
ual forces are below 10−3 eV/Å. The thus obtained surface structures
then define the positions of the Ti and O atoms in the later embedded
cluster calculations.

2. DFT and DFT+U calculations
All DFT calculations within this work have been carried

out using the all electron code FHI-aims.36 Calculations, such as
the localization of excess charges as polarons, that demanded an
improved treatment of the electronic structure were performed
with the DFT+U variant39,40 of Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional. Following our earlier work,34 the
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+U correction is thereby applied to the Ti atomic like 3d basis
functions, while double counting of electron-electron interactions
was corrected in the—de-facto standard25,41–43—fully localized-limit
(FLL).44 For all DFT+U related calculations, the on-site definition
of the occupation matrix is used.45 To ensure a better comparability
with our earlier work on periodic TiO2 slabs,34 all DFT+U calcu-
lations here have been conducted with a U value of 2.65 eV. This
U value has been fitted to reproduce the experimentally observed
defect state, which lies about 1 eV below the conduction band
minimum.46

For all studies of adsorption behavior in our SSE models,
we used the revised Perdew-Burke-Ernzerhof (RPBE) exchange-
correlation functional, considered to yield much more accurate
adsorbtion energies for TiO2 compared to standard PBE.47 However,
we also checked our results with the above described DFT+U setup
to find the same trends among different clusters.

B. Interatomic potential for cluster geometries
Polarizability of the MM region is modeled using a core-shell

type additive pair-potential. Thereby, oxygen ions are represented by
two point charges with opposite signs, connected by a spring, where
one point charge represents the nucleus and the other represents
the ion’s valence electron density. In order to avoid inconsistencies
with the PPs saturating the QM-region, the total charges of both
oxygen, that is, the sum of core and shell particles, and titanium
atoms are constrained to the formal charges of −2e and +4e, respec-
tively. Finally, nonelectrostatic interactions between oxygen shells
and between oxygen shells and Ti cores are modeled by Buckingham
pair-potentials,48

Vx−x = A exp(−dx−x
ρ
) − C

d6
x−x . (1)

Here, d is the distance between the interacting species and A, ρ, and
C are the potential parameters. Overall, this leads to nine parameters,
i.e., the strength of the core-shell spring, the respective Buckingham
parameters for O and Ti, and the charge on the oxygen shells, which
need to be adapted to the given description of the QM-region. In
our earlier work, we provided force-field parameters fitted to comply
with generalized-gradient-approximation (GGA) and hybrid func-
tional descriptions of rutile TiO2.9,12 Given that these are not nec-
essarily appropriate for use with the PBE+U-corrected functional
applied in this study, we here performed a refit of the force-field
parameters following the procedures outlined in earlier work.9

Unfortunately, the FHI-aims code does not provide access to
dielectric tensor components for bulk materials. Also, no refer-
ence values for PBE+U could be found in the literature. However,
one can expect the dielectric tensor components—which in TiO2

TABLE I. Bulk rutile TiO2 lattice constants a and c, as well as the corresponding high
frequency dielectric tensor components εa∞ and εc∞. Shown are both the target DFT
values for force-field parametrization and the obtained MM values.

a (Å) c (Å) εa∞ εc∞
PBE+U 4.626 2.971 6.9449 8.2249

MM 4.6296 2.977 6.94 8.22

TABLE II. Optimized force-field parameters for the Buckingham potentials and the
core-shell model. Here, k and r are describing the shape of the spring potential. q is
the charge of the oxygen shells. A, ρ, and C are denoting the Buckingham potential
parameters for shell-shell (s-s) and shell Ti-core (s-Ti) interactions. For more details
on the specific fitting procedure, the reader is referred to Ref. 9.

k r q

9.26 0.089 −2.8319

A ρ C

s-s 24 890 0.1742 50.92
s-Ti 1 975 0.3195 22.27

show considerable anisotropy—to show values comparable to those
obtained for PBE or hybrid functionals. Therefore, we chose the
high-frequency components of the PBE dielectric tensor and the
periodic PBE+U lattice constants as target values for the force-field
fitting procedure. All target properties are listed in Table I, while
the optimized parameters of the resulting MM-potential are given
in Table II.

It should be highlighted that, in principle, a refit of the force-
field parameters has to be done for each applied DFT functional.
This is due to different DFT functionals yielding slightly different
lattice parameters, leading to potential mismatches with the MM
region which should, in general, be avoided whenever possible. This
means for RPBE geometries, one has to apply different force-field
parameters and also has to repeat the procedure for obtaining the
cluster models. We therefore used the same force-field parameters
for RPBE as applied in a previous study of our group.12 The force-
field parameters therein have been constructed in exactly the same
way as described before. All newly generated cluster geometries have
been fully relaxed with these optimized parameters.

III. RESULTS AND DISCUSSION
In order to gauge the quality of the solid state embedding

approach with a specific view on the influence of the cluster shape,
we perform two distinct types of tests. First, we assess the suitabil-
ity of embedded cluster models for molecular adsorption studies by
comparing PBC and cluster results of the adsorption energy of an
OOH-radical, OH-radical, and H2O, which are important species
in the photoelectrocatalytic water oxidation reaction.50,51 As this
example turned out to be rather insensitive to the details of the
embedding, we then move on to a much more stringent test for the
embedded cluster approach in the form of polaron formation near
a surface oxygen vacancy. Being charge carriers localized through
the polarization of their surroundings, polarons are highly sensitive
both to the employed electronic structure method and the descrip-
tion of the environment.34 Their formation energies thus represent
good descriptors for the qualities of the embedded cluster models.
Based on this quality measure, we then analyze the reasons for the
success or failure of a given cluster model. To this end, we compare
their respective electrostatic potentials, densities of states, and fron-
tier orbital geometries to periodic references. This insight, finally,
allows us to formulate general design criteria for embedded cluster
shapes.
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A. Cluster models for molecule adsorption
On rutile TiO2 (110), most small, chemisorbed adsorbate

molecules bind to five-fold coordinated surface Ti atoms.12,28,29,52

Embedded clusters targeted at adsorption studies are thus best cen-
tered on such a Ti atom, centering the adsorbate in the QM region
and keeping boundary effects due to imperfect embedding at a min-
imum. Furthermore, the QM regions have to show the correct stoi-
chiometry of TiO2. None of stoichiometric clusters would then lead
to an artificial creation of Ti3+ centers differing clearly from the sit-
uation of pristine TiO2. This consideration already determines, up
to a certain degree, how a cluster model, in principle, has to be
designed. Obviously, the cluster termination is those mainly dom-
inated by oxygen atoms as otherwise the right stoichiometry cannot
be achieved.

In Fig. 1, we present six such models which mainly differ in
their size and shape, ranging from a rather small cluster consisting
of 17 titanium and 34 oxygen atoms up to a cluster with a total of
168 atoms (Ti58O116), where the Ti17O34 and Ti29O58 cluster mod-
els have been taken from Ref. 3. The clusters thus not only increase
in their size but also vary in their shapes—Ti17O34 and Ti29O58 are
spherically shaped compared to the other four cluster models which
show a more cubic structure.

Our earlier study of physisorption of closed-shell molecules
(such as NH3, CH3, and H2O) on TiO2 SSE models12 showed that
these adsorbates are largely insensitive to the size and shape of the
embedded cluster for a wide range of DFT functionals and even
highly accurate embedded CCSD(T) quantum-chemical reference
calculations. This is not at all surprising, given that such molecules
tend to be bind only weakly to the surface in the first place. While
this insensitivity is definitely a good first sign for the accuracy of
our embedding model, the physisorption of small molecules on
TiO2 is not the most pressing of computational problems. With an
eye on the catalytic activity of the material, we thus turn to much
more strongly chemisorbed species, relevant for water oxidation and
photo-oxidation reactions.28 Specifically, we calculate the adsorption
energies of OH, OOH, and H2O, compared to the relevant periodic
references. The adsorbates’ binding energies are thereby calculated
according to

Eads = Etot(TiO2(110) + ads) − Etot(ads) − Etot(TiO2(110)), (2)

FIG. 1. Differently sized Ti-centered cluster models for adsorption studies: (a)
Ti17O34, (b) Ti28O56, (c) Ti29O58, (d) Ti38O76, (e) Ti44O88, and (f) Ti56O112.

where Etot(TiO2(110) + ads) denotes the total energy of the surface
with adsorbed species, Etot(ads) is the total energy of the gas phase
molecule, and Etot(TiO2(110)) is the energy of the pristine surface.
At this stage, all energies are calculated with the RPBE exchange
correlation functional.47 For the gas phase reference, we considered
the corresponding stand alone neutral adsorbate molecule. Enabling
surface relaxation could lead to errors due a possible wrong relax-
ation behavior of the boundary atoms as this might be more influ-
enced by a possible embedding error. Especially for smaller clusters,

TABLE III. Adsorption energies for OOH, OH, and H2O chemisorbed on a rutile TiO2 (110) surface with (scf-pol) and without
(no scf-pol) self-consistent shell polarization. Also shown are the results for a periodic reference calculation using a 5 × 2
surface supercell.

EOOH
ads (eV) EOH

ads (eV) EH2O
ads (eV)

System scf-pol no scf-pol scf-pol no scf-pol scf-pol no scf-pol

Ti17O34 −0.24 −0.25 −0.69 −0.70 −1.78 −1.81
Ti28O56 −0.28 −0.24 −0.75 −0.72 −1.85 −1.80
Ti29O58 −0.25 −0.23 −0.71 −0.70 −1.83 −1.80
Ti38O76 −0.25 −0.23 −0.73 −0.71 −1.84 −1.80
Ti44O88 −0.24 −0.22 −0.72 −0.70 −1.82 −1.78
Ti56O116 −0.24 −0.23 −0.72 −0.70 −1.84 −1.81

c(5 × 2) PBC −0.21 −0.71 −1.76

J. Chem. Phys. 151, 184114 (2019); doi: 10.1063/1.5125204 151, 184114-4

Published under license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

this can be critical. Therefore, focusing on the influence of the
SSE approach on the electronic properties of the embedded sys-
tem, we here neglect surface relaxation due to adsorption of the
molecules.

The results of this procedure, compared to the respective results
of a PBC calculation using a 5 × 2 supercell, are shown in Table III.
Furthermore, we also show results without self-consistent polariza-
tion of the oxygen shells in the MM-region, that is, with shells fixed
at the equilibrium position of the pristine MM surface.

We find very little dependence on the cluster size. Already the
smallest of our cluster models quite faithfully reproduces the adsorp-
tion energetics of the periodic reference, well within the error of
the underlying DFT functional. Furthermore, for each cluster, we

found self-consistent polarization to contribute little to the adsorp-
tion energies. Overall, we thus find adsorption energetics even of a
radical to still be a rather insensitive test of cluster suitability. While
this seems to show that any cluster size or shape could be used in
a QM/MM calculation, we find this not to be the case as we will
demonstrate on the more stringent example of polaron formation
in Sec. III B.

We note, however, that we here restricted ourselves to the
adsorbtion of single molecules at the center of the cluster. This
way, potential boundary effects of the cluster are largely minimized.
It is therefore easily possible that more complicated adsorption
geometries involving, e.g., larger molecules or dissociative adsorp-
tion could show a stronger dependence on embedded cluster shape

FIG. 2. DOS plots for the three small-
est suggested Ti-centered cluster mod-
els: Ti17O34 [(a) and (b)], Ti28O56 [(c)
and (d)], and Ti29O58 [(e) and (f)]. Shown
are the DOS with [left column: (a), (c),
and (e)] and without [right column: (b),
(d), and (f)] self-consistent polarization of
the oxygen shells. For comparison, the
DOS of a slab reference calculation is
shown in orange in each plot. For all cal-
culations, the RPBE functional has been
used. To align periodic and cluster cal-
culations, the VBM serves as zero of
the energy scale. The DOS plots of the
remaining Ti-centered cluster models are
shown in Fig. 3.
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and size. Such cases are likely going to demand larger clusters. Fur-
thermore, as we do not consider surface relaxation and due to the
fact that we are using a GGA functional, we are not able to capture
the entire physics of even the single molecule adsorption process.
Using functionals which aim to correct for the self-interaction error
and allowing the surface to adapt to the adsorbed radical might yield
a higher sensitivity of the adsorption energy regarding the general
cluster shape.

1. The role of MM polarizability
Before going on to a more stringent test-case, the next impor-

tant point to clarify is the role of the polarizable force-field in
the MM region. While our results showed only minor influences

of the surrounding polarization response onto adsorption ener-
gies, one would assume polar adsorbates to be stabilized by shell
polarization.16

We thus systematically examine the influence of shell polariz-
ability on a cluster’s electronic structure by plotting the density of
states of all six of our cluster models with and without self-consistent
MM polarization in Figs. 2 and 3. We compare them to the DOS of
a periodic reference calculation depicted in orange in Fig. 2 and in
Fig. 3, respectively. Clearly, the DOS of the embedded clusters qual-
itatively resembles the periodic reference very well. Except for the
smallest clusters (Ti17O34, Ti28O56, Ti29O58), where self-consistent
polarization does play a significant role, the chemically important
band edges are reproduced with remarkable accuracy. In the larger

FIG. 3. DOS plots for Ti38O76 [(a) and
(b)], Ti44O88 [(c) and (d)], and Ti56O112
[(e) and (f)]. Shown are the DOS with
[left column: (a), (c), and (e)] and with-
out [right column: (b), (d), and (f)] self-
consistent polarization of the oxygen
shells. For comparison, the DOS of a
slab reference calculation is shown in
orange in each plot. For all calculations,
the RPBE functional has been used. To
align periodic and cluster calculations,
the VBM serves as zero of the energy
scale. The DOS plots of the three small-
est Ti-centered clusters are depicted in
Fig. 2.
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clusters, self-consistent shell relaxation does further improve the
agreement between embedded cluster and PBC results. Here, shell
relaxation thus seems to compensate for some of the shortcomings
of the embedded cluster approach. The smallest clusters do not seem
to benefit from this compensation, showing a much worse DOS
for self-consistent shells than otherwise. Due to the relatively large
ratio of atoms at the QM/MM edge compared to interior atoms,
Ti17O34, Ti28O56, and Ti29O58 do not seem to yield the correct QM
charge distribution. The shoulders appearing near band edges are a
result of energy shifts of the states that are mainly localized on clus-
ter boundary atoms. They are caused by an erroneous description
of the potential at the cluster boundary. In this case, shell polar-
ization seems to lead to an enhancement of the error. This also
explains why earlier studies on small embedded clusters showed a
non-self-consistent approach to be optimal for the reproduction of
the electronic structure.9,12 A deeper investigation of the errors in
the electrostatic potential will be presented in Sec. III B 1.

Nevertheless, Table III shows that even for the smallest clusters,
Eads was very close to the periodic reference. This is either a sign of
fortuitous error cancellation or of the forgiving nature of our chosen
observable. Instead of calculating other adsorption energies, we thus
go on to a much more stringent test case in Sec. III B.

B. Vacancy induced polaron formation
In the literature, a number of studies highlight the complex-

ities involved in modeling polaron formation induced by oxygen
vacancies at the rutile TiO2 (110) surface.25,41,42 First, semilocal
generalized gradient functionals were shown to not yield the nec-
essary degree of electron localization due to the large amount of
self-interaction error inherent to them. Second, even with hybrid
functionals or DFT+U, the correct energetic ordering of different
polaron configurations relative to the vacancy is highly sensitive to
other factors such as the employed pseudopotentials or the projector
functions used for the Hubbard U correction.34,53,54 Finally, polarons
are stabilized through the polarization response of their surround-
ings, which makes them an ideal test-case for the accuracy of our
embedding approach.

In order to achieve symmetry with respect the position of the
oxygen vacancy and thus minimize erroneous multipole moments of
the cluster itself, embedded clusters suitable for the study of polaron
formation are optimally centered on the oxygen vacancy. This corre-
sponds to studying the defects in the dilute limit. Therefore, instead
of the adsorption clusters introduced in Fig. 1, we here use two dif-
ferent clusters, presented in Fig. 4. Moreover, as known from the
literature,25 the most stable polaron configurations are located at

the subsurface layer. In order to capture the correct physics, it is
therefore necessary to have clusters with an appropriately sized
subsurface structure.

From these pristine clusters, we then remove the central bridg-
ing oxygen atom, while leaving the surface overall charge neutral.
Compared to the stoichiometric surface, this leaves two excess elec-
trons which, after structure relaxation, form two small polarons,
trapped around the defect site. These polarons can either be in a
triplet state or open-shell singlet configuration.25 More precisely, in
the commonly applied nomenclature, an open-shell singlet config-
uration corresponds to a configuration where the amounts of elec-
trons for spin up and spin down density are equal, yet spatial dis-
tributions differ. A triplet state, on the other hand, corresponds to a
configuration where one of the spin channels contains two electrons
more than the other.

Although trapped near the defect, these polarons can, in prin-
ciple, localize at different Ti atoms throughout the system, giving
rise to a large number of distinct polaron configurations. Yet, in
general, most configurations show very similar energetics. On top
of that, barriers between different polaronic configurations are gen-
erally small.25 Both these properties tend to make an accurate sam-
pling of polarons, a technically challenging task. As a remedy, we
make use of the so-called matrix control approach,55,56 where the
DFT+U occupation matrix is kept fixed for all Ti atoms during
the geometry optimization of a given polaron configuration. For
Ti atoms where the excess charges should be localized, we sim-
ply set one of the diagonal entries of the corresponding matrix to
one. This way, the corrective Hubbard potential in DFT+U acts
like a bias potential, not unlike the constrained DFT approach,57,58

ensuring localization of the electron at the desired site. In a sec-
ond run, we then use the obtained structures and restart informa-
tion to perform further relaxations without constraining the occu-
pation matrix. This way we achieve full self-consistency of our
results.

We adopt the same systematic nomenclature of polaron con-
figurations as used in Ref. 34. In this convention, the surface layers
are marked with the letter “S” followed by the atom number on
which the excess electron is located. We illustrate this nomencla-
ture, adapted to our cluster models, in Fig. 5. Due to the finite sizes
of our clusters, we are not able to sample the entire range of different
localization patterns, especially for the smaller Ti46O92. Instead, we
choose four representative polaron configurations for the rutile TiO2
(110) surface. This way we can capture two different subsurface con-
figuration (S1-4/S1-11, S1-3/S1-11), two polarons located directly at
the surface (S0-3/S0-6), and a configuration where one polaron is
directly centered at the defect site and one directly below the defect

FIG. 4. Defect-free TiO2 (110) surface
cluster models [(a) Ti46O92, (b) Ti60O120]
for vacancy and polaron formation stud-
ies. Ti atoms are shown as gray spheres,
and oxygen atoms are shown as red
spheres. The surface oxygen vacancies
were created by removing one of the
bridging oxygen atoms in the cluster cen-
ter. The Ti46O92 cluster model was ini-
tially suggested in Ref. 3.
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FIG. 5. Illustration of the site naming convention for polaron configurations in the
Ti60O120 model. In (a), the Ti atoms are numbered within a surface layer. In (b),
the relevant surface layers are labeled by S0 for the first layer and by S1 for the
second layer. The same numbering scheme also applies to the Ti46O92 cluster
model and the periodic slab reference.

site in the center of the QM-region (S0-7/S1-7). We start our analysis
by calculating the relative stabilities of the different configurations,
given by

Erel = Ei
QM/MM − E0

QM/MM. (3)

Here, Ei
QM/MM is the total energy (QM and MM contributions)

of a given configuration i and E0
QM/MM is the total energy of the

most stable configuration, which—again following common con-
vention25,41—serves as our energy zero. This allows us to com-
pare our results not only between different cluster models but also
between the used QM/MM setup and periodic calculations. It should
be pointed out that no long-range electrostatic correction has been

TABLE IV. Relative polaron stabilities in eV. They have been calculated according to
Eq. (3) for the two embedded cluster models (Ti46O92 and Ti60O120) and a periodic
reference (PBC). The most stable configuration is taken as the energy zero. Other,
less stable polaron configurations thus show positive relative energies. σ denotes the
spin state of the system, which can be either a triplet (t) or an open-shell singlet (s)
configuration. The convention and naming of the different polaronic configurations
were taken from Ref. 34.

System Ti46 Ti60 PBC σ

S1-4/S1-11 . . . 0.0 0.0a s
S1-3/S1-11 . . . −0.19 6 × 10−3a s
S0-7/S1-7 . . . 1.29 1.22a s
S0-3/S0-6 0.00 1.23 1.14 s
S0-3/S0-6 0.00 1.23 1.14 t

aResults marked with “superscript a” were taken from Ref. 34.

FIG. 6. Spin up (red) and spin down density (blue) of S1-3/S1-11 within the Ti60O119

embedded cluster model. Isosurface value 0.015 eÅ−3.

applied, as earlier work9 showed that results are already well con-
verged with the self-consistent polarization response, at least for
neutral defect systems.

Earlier works on polaron localization in TiO2
25,41 showed the

open-shell singlet configuration to be the energetically most sta-
ble one. Therefore, we concentrate most of our efforts here on the
energetics of open-shell singlet spin polarons. In contrast, however,
earlier embedded cluster calculations by Berger et al.9 reported the

FIG. 7. Monopole (l = 0) component of the Hartree potentials of Ti atoms at S1-4 (a)
and S1-13 (b) in the Ti60O120 cluster model (orange). The corresponding potentials
from a periodic reference calculation are reproduced in green. Here, r is uniform in
all directions.
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(S0-3/S0-6) triplet configuration to be even more stable. While this
could have been a size effect of the employed cluster models, we
do not rule out this possibility and also include this configuration’s
triplet state into our analysis. The relative stabilities calculated in
both cluster models are given in Table IV.

1. Results compared to PBC references
In the Ti46O92 cluster, we were not able to find any other

polaronic configuration besides S0-3/S0-6. Even taking the self-
consistent DFT+U correction from the larger Ti60O120 as a con-
straint, none of the other target configurations were found. While
this is somewhat consistent with earlier embedded cluster results,9

Ti46O92 is clearly not suitable for quantitative studies of polaron sta-
bilities. This is easily arguable, as Ti46O92 does not yield the polaron
configurations as one yields using a PBC approach. We will address
the mechanisms for the failure of this cluster in Sec. III B 2 in order
to extract the design criteria behind successful embedded cluster
models.

In the Ti60O120 cluster, all five polaron configurations were
found to be stable. As a showcase, Fig. 6 shows the obtained spin
density of S1-3/S-11. In contrary to conventional PBC, though,
where the configurations S1-3/S1-11 and S1-4/S1-11 were degen-
erate, the cluster model showed S1-3/S1-11 to be more stable by
roughly 0.2 eV. This discrepancy can be explained by observing that
single polarons in TiO2 are not entirely located at single Ti atoms
but are slightly delocalized toward neighboring Ti and O atoms.41

In a cluster approach, these neighboring atoms might already be

located at the edge of the QM region, which—due to an imper-
fect embedding—can suffer from a degraded description of the local
electronic structure, compared to the cluster interior. In order to
shed more light on this error, we depict in Fig. 7 the monopole
component of the Hartree potential for the Ti atoms located at the
off center S1-4 position [Fig. 7(a)] and the S1-13 boundary posi-
tion [Fig. 7(b)] of the Ti60O120 model. Note that in FHI-aims, the
full electrostatic potential is treated as a multipole moment expan-
sion, yet with radial dependencies splined on a logarithmic grid for
improved accuracy. The monopole components plotted in Fig. 7 are
these radial functions for l = 0, with l being the angular momen-
tum quantum number. Given that the energy of a localized charge
is to a large degree determined by the local electrostatic potential,
polarons represent a very sensitive probe to the accuracy of the
reproduction of the Hartree potential in an embedded cluster. Ide-
ally, the Hartree potential of an embedded cluster should exactly
match that from a PBC calculation. However, this only holds true
for the atoms within the cluster, such as, e.g., the Ti atom at S1-4.
On the contrary, the Hartree potential at the edge (S1-13) differs
quite a lot from the corresponding potential of a PBC reference
calculation. This explains the energetic discrepancies of polaron
configuration S1-4/S1-11 compared to PBC as the polaron at S1-4
shows a partial delocalization toward S1-5. Of course, an erroneous
description of the S1-4/S1-11 configuration will cause an offset in
all other relative stabilities and limits the comparability with the
PBC approach. However, even with pinning the energy scale to the
S1-3/S1-11 configuration, we still obtain a small offset of around
0.1 eV between Ti60O120 and the supercell calculation. It should be

FIG. 8. Density of states of Ti46O92 [(a)
and (b)] and Ti60O120 [(c) and (d)] with
[on the left, (a) and (c)] and without
[on the right, (b) and (d)] self-consistent
polarization of the oxygen shells. Dis-
played are both the DOS of the embed-
ded cluster calculation (blue) and the
DOS of the periodic slab reference
(dashed orange line). For both embed-
ded cluster and slab reference calcula-
tion, a U value of 2.65 eV was employed.
The VBM serves as zero for the energy
scale.
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pointed out that this difference is not caused by differing orbital
configurations of the polarons as both PBC and embedded cluster
results show identical orbital occupations. One possible reason for
the remaining difference could result from possible finite size effects
in the QM/MM setup. Especially for the subsurface polaron con-
figuration, an even larger cluster model might be necessary to cap-
ture the entire reorganization energy. Nevertheless, given that the
energy discrepancies are quite small, we conclude that our QM/MM
setup is, in fact, capable of describing even ultrasensitive systems
such as polarons, at least for large enough cluster models and if
the polarons in question are located far enough from the cluster
boundary.

2. Difference between the cluster models
The question now remains, why the two cluster models studied

here show such a difference in performance with respect to polaron
localization. At first glance, it would seem that the Ti46O92 cluster
model is simply too small. Earlier studies41 showed that each polaron
state also has contributions from neighboring basis functions, which
for the more peripherally localized polarons, such as S1-4/S1-11,
could pose a serious problem. If this were the only reason, however,
one should be able to localize the electrons in pattern S1-3/S1-11 or
in pattern S0-7/S-7, as both electrons reside on Ti atoms well within
the center of the cluster.

a. Density of states. We start our analysis by comparing the
DOS of both bridging oxygen-centered cluster models with the cor-
responding slab reference in Fig. 8. For completeness, we again
include both the DOS before and after self-consistent polarization
of the oxygen shells. In the larger Ti60O120 cluster, the DOS quite
accurately reproduces the periodic reference, both with and with-
out self-consistent shell polarization. The Ti46O92 model, on the
other hand, shows large deviations from the PBC DOS, especially
at the band edges. This is the case even when no self-consistent
polarization is applied, albeit less pronounced. Compared to our
adsorption-optimized cluster models (cf. Sec. III A), Ti46O92 should
be large enough to compensate for an imperfect embedding and
should yield a DOS comparable in quality with the Ti44O88 cluster
model. Instead, however, the performance regarding the Ti46O92 is
closer to a much smaller cluster like Ti28O56.

b. Frontier orbital shape. Considering that the error in the
DOS is most pronounced at the band edges, in a next step, we thus
investigated the general shapes of the frontier orbitals of the used
cluster models. Figure 9 shows the HOMO and LUMO calculated
with a supercell approach. Widely known in the literature41,43,59 and
also confirmed by our calculations, the HOMO is dominated by a
linear combination of oxygen 2p orbitals. In contrast, the LUMO is
dominated by Ti 3d states. In the embedded Ti46O92, however, the
situation is quite different. In this system, the HOMO is also domi-
nated by oxygen 2p orbitals, but charge density tends to accumulate
at the cluster boundary (Fig. 10). While the HOMO might be correct
in a broad, qualitative sense, the LUMO shows a completely differ-
ent shape compared to PBC, being entirely located at the bottom
of the cluster. Thus, in Ti46O92, the electronic structure of even the
defect-free system without polarons is already far from the periodic
reference. At the same time, polaronic states are strongly influenced
by both the energetic alignment of frontier orbitals34 and their local

FIG. 9. HOMO (a) and LUMO (b) of the pristine periodic rutile TiO2 (110) surface.
The HOMO is dominated by a linear combination of oxygen 2p states, while Ti 3d
orbitals determine the character of the LUMO. Isosurface value 0.015 eÅ−3.
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FIG. 10. HOMO (a) and LUMO (b) of the pristine Ti46O92 cluster model. For the
HOMO, there is a tendency to accumulate charge at the cluster boundary. The
LUMO shows unphysical localization at the bottom of the cluster. Isosurface value
0.015 eÅ−3.

structure,25 which partly explains the failure of Ti46O92. In compar-
ison, the Ti60O120 cluster model renders both the HOMO and the
LUMO shape of the periodic reference broadly correctly (Fig. 11).
This is made possible by the cluster’s more cubic shape compared

FIG. 11. HOMO (a) and LUMO (b) of the pristine Ti60O120 cluster model.
In this model, both the shapes of HOMO and LUMO, respectively, resemble
that of the PBC reference (Fig. 9) with remarkable accuracy. Isosurface value
0.015 eÅ−3.

FIG. 12. The monopole (l = 0) component of the Hartree potential for the central
row of Ti atoms of the polaron-optimized cluster models Ti46O92 and in model
Ti60O120 compared to a PBC reference. Shown is a surface Ti atom (a), a mid
layer Ti atom (b), and one bottom layer Ti atom (c).
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to spherical form of Ti42O92, which more naturally resembles the
periodicity of the supercell approach.

c. Hartree potential. Finally, in order to investigate the
unphysical charge accumulation at the boundaries of Ti42O92, we
plot in Fig. 12 the monopole components of the Hartree potential
for the central row of Ti atoms for each layer in a cluster and the
PBC reference. For the first Ti atom, which is directly located under
the bridging oxygen row in the center, all cluster models (Ti46O92
and Ti60O120) show excellent agreement with the periodic slab. For
the Ti atom, in the second layer, the Ti60O120 model still shows per-
fect agreement with the slab calculation for Ti46O92; however, we
observe slight deviations from the slab potential. This situation is
greatly exacerbated on the third layer Ti atom. Here, the Ti46O92
model shows a huge error in the Hartree potential, whereas Ti60O120
is still in good agreement with the periodic reference. At this point,
it should be highlighted that this huge error in the Hartree poten-
tial is not unique to this single atom but holds true for all atoms
that are located directly at each cluster’s boundary. From this per-
spective, it becomes clear that the inability of locating polarons in an
S1-3/S1-11 configuration is a direct result of the erroneous descrip-
tion of the boundary atoms as the actual polaron state is also partly
located at neighboring titanium and oxygen atoms.

C. Design criteria for embedded cluster models
Having understood the role of a cluster’s shape and its

local electrostatic potential in determining its suitability in an

embedding setup allows us to now formulate more general crite-
ria for the cluster design. The natural error estimate thereby is the
maximum deviation of the Hartree potential ΔVHa(at)—using again
the monopole component—from its periodic counterpart at each
atom (at) within the QM region. To be precise, we are calculating
the maximum error according to

ΔVHa(at) = max{∣VPBC
Ha (r; at) − VQM/MM

Ha (r; at)∣}, (4)

where VPBC
Ha (r) and VQM/MM

Ha (r) denote the Hartree potential for
the periodic reference calculation and for the QM/MM approach,
respectively. The corresponding results are depicted in Figs. 13 and
14 in the form of a histogram of the amount of atoms showing spe-
cific errors in their Hartree potentials. Owing to the especially fitted
embedding environments, most atoms of each cluster thereby show
only very minor to no deviations. Larger errors can be found on
atoms close to or directly at the cluster’s boundary. In general, as
the cluster size increases, the surface to volume ratio decreases. This
straightforwardly explains why larger clusters tend toward smaller
errors in the potential and thus their electronic properties. A larger
cluster can better compensate for errors in the embedding scheme.
This view is further reinforced by the respective frontier orbital
shapes plotted in Fig. 15, where again larger cluster models achieve
better agreement with the periodic reference. However, as discussed
before, by just considering the cluster size, one would expect the
Ti46O96 cluster model to show equal or better performance than the
Ti44O88 model. Regarding the DOS (see Fig. 8) and the shapes of the

FIG. 13. Histogram of the number of
atoms (at) showing given errors in their
respective Hartree potentials ΔVha(at)
(l = 0 component). Here, ΔVha is defined
as the maximum deviation from a peri-
odic reference calculation. Ordering is
according to the size of the cluster start-
ing with (a) Ti17O34, (b) Ti28O56, (c)
Ti29O58, and (d) Ti38O76.
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FIG. 14. Histogram of the number of
atoms (at) showing given errors in their
respective Hartree potentials ΔVha(at)
(l = 0 component). Here, ΔVha is defined
as the maximum deviation from a peri-
odic reference calculation. Ordering is
according to the size of the cluster start-
ing with (a) Ti44O88, (b) Ti46O92, (c)
Ti56O112, and (d) Ti60O120.

frontier orbitals (see Fig. 10), this is obviously not the case. Although
for Ti44O88 there still is some accumulation of the LUMO at the
bottom of the cluster, the overall orbital shapes resemble the peri-
odic reference much better (see Fig. 15). The smaller cluster Ti38O76
even outperforms Ti46O96, both with regard to HOMO and LUMO
shapes (see Fig. 15) as well as the DOS (Figs. 2 and 3). It is thus not
necessarily the size of the cluster that governs its performance, but
rather the number of atoms exposed to the cluster boundary, i.e.,
those with very erroneous local potentials. This clearly shows that
by simply enlarging the cluster size, the results do not necessarily
have to converge to those from a PBC approach, which one would
otherwise intuitively assume. Notably, the number of atoms exposed
to the cluster boundary seems to be the reason for the better perfor-
mance of the Ti38O76 and Ti44O88 model compared to the Ti46O96
cluster. The more cubic shapes of Ti38O76 and Ti44O88 avoids very
exposed rows of atoms like those on the bottom of Ti46O96, which
suffer from huge deviations in the Hartree potential, thus giving rise
to wrong frontier orbital shapes. It should be highlighted that these
observed errors can not be fully explained by having a potentially
erroneous embedding environment. If one compares Ti28O56 with
Ti29O58—differing in size only by three atoms—one would expect
an equally poor performance; however, Ti28O56 resembles the fron-
tier orbitals shape much better than Ti29O58 [see parts (c)–(f) of
Fig. 15]. This direct comparison between clusters of almost the same
size again clearly indicates that the shape of the cluster plays an

important role if all features of a PBC reference should be repro-
duced. Note, though, that this does not influence their performance
in single-site adsorption studies, cf. Sec. III A, and thus cannot serve
to derive a more detailed design criterion.

At that point, one could argue that a spherical shape would suit
best as a design criterion as it shows the smallest surface to volume
ratio. However, as demonstrated, a more cubic shape leads to a better
description of frontier orbitals. Obviously, one has to find a trade-off
between both the reduction in erroneous atoms and maintaining the
overall periodic shape of the underlying material.

Furthermore, one “simple” solution to the problems of the clus-
ter shape could arguably be to make the clusters larger and larger,
approaching the limit of an infinitely extended, periodic crystal. As
long as these large clusters do not suffer from any low order mul-
tipoles due to their shape,16 the influence of erroneous atoms at the
boundary should decrease compared to the large bulk of atoms at the
interior of the cluster. Indeed, our results also point toward larger
clusters generally yielding more accurate results. However, one of
the main reasons for the use of solid state embedding models is
the balance they strike between highly accurate electronic structure
methods with the efficiency of having just a small number of atoms
to treat. Our study thus represents a useful step toward the reliable
design of solid state embedded models employing the smallest pos-
sible quantum region to still yield good agreement with periodic
references.
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FIG. 15. Frontier orbitals of proposed cluster models for adsorption studies,
Ti17O34 [(a) and (b)], Ti28O56 [(c) and (d)], Ti29O58 [(e) and (f)], Ti38O76 [(g) and (h)],
Ti44O88 [(i) and (j)], and Ti56O112 [(k) and (l)]. HOMOs are given on the left column
(a), (c), (e), (g), (i), and (k), while LUMOs are in the right column (b), (d), (f), (h), (j),
and (l). As the cluster size decreases, errors due to imperfect embedding become
more and more pronounced, making it harder for the cluster to correctly render the
HOMO and LUMO shapes of a periodic reference calculation. Isosurface value
0.015 eÅ−3.

Finally, although the above guidelines for the cluster design
have only been directly tested on the rutile phase of TiO2, they
should be transferable to other phases of TiO2 and even other
materials. The—chemically highly important—frontier orbitals need

to be well represented in the nonperiodic cluster model in order
to accurately reflect the complex electronic states such as the
formation of polarons in the material. In rutile TiO2 (110), we have
shown that this necessitates mostly square cluster shapes due to
the periodicity of especially the lowest unoccupied frontier state.
While other materials could show different geometries of the fron-
tier states, a cluster shape that reflects these geometries is very likely
always going to minimize embedding errors.

IV. SUMMARY AND CONCLUSION
In this work, we critically analyzed the performance of a com-

mon solid-state QM/MM embedding setup. Specifically, we focused
on the influence of the size and shape of the cluster on the sim-
ulation results by studying the chemisorption of small molecules
and formation of small polarons at the rutile TiO2 (110) surface.
Often in the literature,3,9,16 the density of states or the adsorption
energy of small molecules serves as a quality measurement of the
employed computational approach. Yet, in light of our results, this
should only be considered as one part of the puzzle. Especially if
one deals with more complicated phenomena, the DOS or small
molecular adsorption energies might prove to be too insensitive
to give a full overview of a method’s quality. In the case of deal-
ing with ultrasensitive systems such as polaronic states, it turns out
that it is crucial that all features of the periodic counter part refer-
ence, e.g., the shape of the frontier orbitals, are reproduced by the
embedded cluster approach as well. We found that the observed
robustness of adsorption energies vs cluster size or shape can be
explained by the remarkable agreement of the Hartree potential
at the central adsorption site with periodic references. In general,
for adsorption energy studies where the adsorbate is located at a
central cluster atom, very small cluster geometries already proved
to be sufficient. However, as seen from our polaron localization
results, one has to ensure that the observed physical phenomena
are not affected by the erroneous description of cluster boundary
atoms.

As a guideline for the cluster design, our analysis demonstrates
that both the shape of the frontier orbitals and the density of states
can give first hints of judging the quality of the used geometries.
Moreover, the overall objective should be a reduction in the num-
ber of atoms with an erroneous Hartree potential. These two crite-
ria seem to compete, to a certain degree, in that the former would
call for a more rectangular cluster, mimicking a supercell in PBC,
while the latter would favor (hemi-)spherical clusters in order to
reduce the number of boundary atoms. Yet, we found that for real-
istically sized, i.e., not too large, clusters, the round shape often
leads to highly exposed rows of atoms with Hartree potentials far
from the periodic reference. Overall, we thus recommend the use
of mostly rectangular cluster shapes for SSE models because these
tend to render the electronic structure of the extended material most
faithfully. The overall goal should be to mimic the electronic struc-
ture of the pristine periodic reference as accurate as possible, lay-
ing an accurate basis for further simulation of more complicated
phenomena.

Finally, although the exact details of the ideal embedded cluster
structure might vary between different embedding approaches, we
fully expect our general conclusions to hold beyond our specific SSE
approach and the here studied TiO2 (110).
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SUPPLEMENTARY MATERIAL
In the supplementary material, we depict the adsorption

geometries of OH, OOH, and H2O used in this study. Furthermore,
we provide structure files for the QM clusters used here.
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Abstract

Lithium titanium oxide Li4Ti5O12 (LTO) is an intriguing anode material promis-

ing particularly long lived batteries, due to its remarkable phase stability during

(dis)charging of the cell. However, its usage is limited by its low intrinsic electronic

conductivity. Introducing oxygen vacancies can be one method to overcome this draw-

back, possibly by altering the charge carrier transport mechanism. We use Hubbard

corrected density-functional theory (DFT+U) to show that polaronic states in combi-

nation with a possible hopping mechanism can play a crucial role in the experimentally

observed increase of electronic conductivity. To gauge polaronic charge mobility, we

compute relative stabilities of different localization patterns and estimate polaron hop-

ping barrier heights. With this we finally show how defect engineering can indeed raise

the electronic conductivity of LTO up to the level of its ionic conductivity, thereby

explaining first experimental results for reduced LTO.

1



Introduction

Energy storage solutions such as Li-ion batteries (LIB) are a key technology in the transition

from a fossil fuel based economy to a society based on sustainable resource management.1,2

Despite the tremendous advancements in battery research over the last few years,3 durability

and especially storage capacity still need significant improvements for batteries to represent

a viable alternative e.g. in the transport and mobility sectors.2,4 One promising material

envisioned as a potential remedy for these problems in conventional as well as all-solid

state batteries (ASSB) is lithium titanium oxide (LTO).2 Zero strain insertion, high cycling

stability and a stable charge/discharge plateau render LTO an excellent anode material for

long living batteries.2,4–6 Its general use, however, is still limited by the fact that LTO suffers

from a very low intrinsic electronic conductivity.7,8 One way to overcome this drawback is

to expose LTO to a reductive hydrogen atmosphere at elevated temperatures, leading to the

formation of oxygen vacancies. As experimental data shows,9 this not only causes a color

change from white to blue but also lowers electronic resistance and impedance. Moreover,

this blue LTO also shows improved Li-ion mobility compared to pristine white LTO.9

Unfortunately, neither of these improvements in carrier mobility are currently fully under-

stood from a mechanistic viewpoint. Yet, first hints at the nature of the improved electronic

conductivity in LTO emerged recently with the experimental discovery of paramagnetic

Ti3+ centers.8–11 The significance of these becomes apparent considering an analogous case

in TiO2, where oxygen vacancies are known to lead to the formation of small polarons mainly

localized on Ti sites.12–14 While these polarons are somewhat attracted to the vacancy it-

self,15,16 they were also shown to be very mobile, with kinetic barriers that can easily be

overcome at room temperature.17 In this context we studied the formation and stability of

polarons in bulk LTO, as well as the kinetic barriers separating them. Especially the latter

strongly hints at a polaron hopping mechanism as the source of the observed improvement

of electronic conductivity in blue LTO.
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Results

For our analysis we considered a 2× 2× 1 supercell of Li4Ti5O12 (LTO) in its most stable6

spinel configuration,18 and created an oxygen vacancy at the energetically most favorable

of the symmetry inequivalent sites (cf. supplementary material). This realization of the

structural Li/Ti disorder is known to exhibit a Ti-deficient zone separating titanium layers

as illustrated in Figure 1. It therefore lets us examine the interplay between structure, in the

form of Li-rich and Li-poor regions, and function of the material. Removing a neutral oxygen

atom from the simulation cell gives rise to two excess electrons, which can form two polaronic

Ti3+ centers. In standard semi-local LDA19 or GGA20 based DFT these can generally not be

described at all due to the functionals’ well known charge and spin delocalization errors.21

As a cost-efficient remedy, we here make use of the popular Hubbard corrected22–24 variant

of the PBE20 functional (PBE+U) in combination with the matrix control approach.25,26

This combination has not only been shown to yield easy access to all manners of polaron

configurations but also to yield excellent results compared to the computationally much

more expensive hybrid DFT functionals.15 Given the great structural complexity of defect-

rich LTO, there is a large number—
(
40
2

)
= 780—of unique polaron localization patterns

even in our relatively small simulation box. To distinguish them we calculated their relative

stability according to Erel = Etot,i − Etot, min , where Etot,i denotes the total energy of

a given simulation box calculated with DFT and Etot, min denotes the total energy of the

most stable structure found so far. Hence, following standard procedures,12 the most stable

configuration serves as zero point of our energy scale, with all other configurations possessing

positive relative energy.

An exhaustive computational sampling is complicated further by the fact that the elec-

trons can localize both in a triplet or an open-shell singlet configuration.12,13 On the other

hand, many of these patterns are, if not fully degenerate, at least very close in energy. For

a first demonstration of the existence and mobility of polarons in LTO and their influence

on the electronic conductivity a complete sampling of all configurations is therefore not nec-
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essary. Instead, we focus on triplet configurations and localization patterns representative

for the system as a whole. In detail, we considered 13 patterns with different distances

to the defect site, localized within different Ti layers in the bulk unit cell. To distinguish

them, we adapt a naming convention used in our earlier work15 to the case of LTO, cf. Fig-

ure 1. We found the most stable defect position to be located in the center of the Ti-rich

region of our layered LTO model (black circle in Figure 1, cf. also supplementary material).

This localization is not at all surprising, as it allows the O-vacancy to be as far as pos-

sible from the Li-rich zone of our simulation cell and the structural distortions caused by

it. Using this defect position throughout, Table 1 lists our obtained results regarding the

relative stability of different polaron localization patterns. We found that the most stable

Table 1: Relative stabilities of the most representative polaronic configurations. The systems
are ordered by their relative stabilities. A complete list of calculated systems can be found
in the supplementary information. Also shown is the shortest periodic distance between the
two Ti3+ centers (dTi3+−Ti3+).

For vertical layer–layer distances see Fig. 1.

system Erel [eV] dTi3+−Ti3+ [Å] system Erel [eV] dTi3+−Ti3+ [Å]
L3-7/L2-9 0.00 6.6 L5-1/L3-12 0.45 7.9
L3-8/L3-4 0.12 6.0 L4-2/L4-4 0.75 5.9
L3-7/L3-12 0.13 7.9 L1-1/L1-4 0.77 10.0
L2-7/L2-8 0.14 5.9 L5-5/L4-2 0.82 7.9
L3-9/L3-12 0.23 3.0 L4-3/L4-4 1.00 6.0
L2-9/L2-12 0.26 2.9 L5-1/L5-5 2.59 6.0

configurations are those where one polaron is located in L2 and the other is located in L3

(cf. Figure 2a), followed by configurations where both polarons are either located in L2 or

L3. The main difference is that “same-plane” polarons approach each other more closely

and hence Coulomb repulsion is more pronounced compared to the most stable L3-X/L2-Y

configurations. Furthermore, our analysis shows that there is also a tendency for polarons

to be less stable the closer they are located to the defect site. This is clearly indicated by

the configurations where both excess electrons are localized on Ti atoms belonging to layers

L4 or L5 (see supplementary information for detailed distances to the defect site). Both of
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Figure 1: Sketch of the site naming convention of the different localization patterns. Lx-
m/Ly-n specifies the localization of one electron within layer Lx on atom m with the second
electron localized in layer Ly on atom n. Additionally, the position of the oxygen vacancies
is marked with a black circle. Titanium atoms are depicted as grey spheres, oxygen atoms
are shown as red spheres. On the right, arrows and numbers indicate the average inter layer
titanium distance within the given unit cell.

these effects compete with each other, such that polarons try to adopt configurations with

maximal distances to the defect and between each other. This situation seems similar to

TiO2 where the oxygen defect is acting as a charge trapping center.27,28 However, in LTO one

can not directly extract a clear stability trend with the distance to the defect, as positively

charged Li-ions also show some influence on the overall stabilities of the polarons.29 Indeed,

our choice of LTO cell allows us to quantify their influence, considering the fact that all our

most stable defect configurations are located next to the Li-rich zone situated between L2

and L3.

Finally, in order to gauge the polaron mobility we calculate hopping barriers between

our most stable configuration and adjacent Ti atoms. To this end, we again make use of the

matrix control approach,25,26 but with a modified occupation matrix scheme outlined in the

supplementary material. This approach allows us to restrain the electronic configuration of

the system along a pre-selected reaction coordinate x, which linearly interpolates between

two stable polaronic states, localized at neighboring atoms. Representatively for all hopping

processes in the system we compute the “in-plane” transition of L3-7/L2-10 (x = 0.0) to

L3-7/L2-9 (x = 1.0) and the “out-of-plane” transition of L3-7/L1-3 (x = 0.0) to L3-7/L2-9
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(x = 1.0).

We illustrate this pathway in Figure 2, which in a) shows the spin density of the final

state L3-7/L2-9 and in b) depicts we the relaxation of atoms from their respective sites in

the pristine crystal for the transition from L3-7/L2-10 to L3-7/L2-9 via a transition state.

We thereby only depict O atoms nearest to the involved Ti sites as only these show any

significant distortion during a full geometry optimization. Figure 2b clearly shows relaxation

of the O-atoms towards the respective Ti3+ sites in the initial (L2-10, blue) and final (L2-9,

red) states, indicating a small polaron hopping mechanism. A similar picture arises for the

transition from L3-7/L1-3 to L3-7/L2-9 (not pictured).

The energy profiles of these two transitions are depicted in Figure 3. As highlighted

by the dashed black lines, the hopping barriers for transition L3-7/L2-10 to L3-7/L2-9 and

for transition L3-7/L1-3 to L3-7/L2-9 are 186 meV and 583 meV respectively, with the later

being much larger due to the already significant energy difference of 485 meV between the

two stable states. With these barrier heights we can roughly estimate the in- and out-of-

plane conductivity based on a simple hopping model (cf. supplementary material) and using

an experimentally measured density of Ti3+ centers of 13.1 at%30 as a measure for the charge

carrier density. For the in-plane conductivity we thus find a value of 95.3 mS/cm, while the

significantly higher out-of-plane hopping barrier results in a much smaller conductivity of

17×10−6 mS/cm. To put these results into context, even our lower bound for the conductivity

of reduced LTO is already five orders of magnitude higher than the pristine material,30

while our ideal upper bound is of the order of the ion conductivities in currently employed

electrolytes.31 Note that the estimate for the ideal conductivity rests on the assumption that

there are no other, significantly higher barriers along the whole pathway of charge percolation

through the crystal. This implies a distribution of defects aligned along the [100] axis of the

crystal. Considering the fairly high density of oxygen defects present in blue LTO, such a

case is certainly achievable.
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Discussion

To conclude, our stability analysis clearly indicates that the experimentally observed Ti3+

centers in reduced LTO can in fact be the result of small polaron formation. Moreover,

comparatively small barrier heights indicate that charge hopping dynamics can already occur

at room temperature. This renders a polaron hopping mechanism to be the most likely origin

of the increased electronic conductivity observed in blue LTO. Indeed a simple conductivity

model puts even the worst estimate of 17 × 10−6 mS/cm five orders of magnitude above

pristine LTO. On the other hand, the ideal predicted case based on an in-plane hopping

mechanism would lead to a conductivity of 100 mS/cm, which, though significantly lower

than that of other anode materials,31–33 is nevertheless comparable to the ion conductivities

of the pristine material and super–ionic conductors.2,10,34 Moreover, the existence of polarons

also hints at a mechanism for the improved ion diffusivity in blue LTO, which is about twice

that of pristine LTO.30 The presence of polarons, which we have shown to localize near

Li-rich regions, could serve to “soften” the environment for Li-diffusion by screening the

positive charge carriers. Thus, both, the ideal polaron conductivity of blue LTO, and its

improved Li diffusivity, would make it a suitable option for an anode material for use in

tomorrow’s batteries. Note that our results show a very wide range of potential conductivity

values, depending on defect patterning, local crystal structure and crystal orientation. Our

study thus highlights the potential and also pitfalls of defect engineering as a means for the

generation of mobile charge carriers in otherwise insulating materials.

Methods

All necessary calculations have been carried out using the FHI-aims35 code. To account

for adequate electron localization we used the DFT+U23 variant of the PBE20 exchange

correlation functional. The Ti 3d atomic like basis functions served as Hubbard projectors

and a U value of 2.65 eV has been applied. In detail we used the rotationally invariant
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a) b)

Figure 2: a) Spin density of the most stable configuration L3-7/L2-9 of our simulation.
Isosurface level 0.015 eÅ−3. b) Top: cut through the simulation cell showing the L2-layer,
showing the distortion of the lattice at the transition state. Atoms in cyan indicating the L2-
9 and L2-10 positions respectively. Darker red colors indicate a stronger movement during
the transition from L3-7/L2-10 to L3-7/L2-9. Note that only nearest neighbor oxygen atoms
show significant movement, indicating indeed the hopping of a small polaron. Bottom:
schematic of the movement of oxygen atoms from their undistorted sites for the transition
from L3-7/L2-10 (left) to L3-7/L2-9 (right) via a transition state (center). Circles filled in
red hues indicate a predominant movement of the respective O atom towards the Ti atom
at L2-9 (red circle filled with grey), while blue hues depict a movement towards L2-10 (blue
circle filled with grey). Circles filled in green hues show movement not clearly aimed at either
Ti atoms. In all cases darker colors indicate stronger movement.
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Figure 3: Calculated barrier profiles for the transition L3-7/L2-10 to L3-7/L2-9 (a) and
L3-7/L1-3 to L3-7/L2-9 (b). In both plots x = 1.0 is equal to configuration L3-7/L2-9. The
lowest lying configuration in energy serves as zero point for the energy scale. Also shown is
the spin density of the corresponding transition state. Isosurface level 0.015 eÅ−3.

8



+U form24 with the double-counting correction in the fully localized limit36. Numerical

convergence has been reached using a tight tier1 basis employing a 2 × 2 × 1 k-point grid.

Geometries have been relaxed until residual force fell below 10−2 eV/Å. For more detailed

information the reader is referred to our supporting information.
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1 Structures

1.1 Pristine bulk structures

Spinel lithium titanium oxide (LTO, Li4Ti8O12) crystallizes in the Fd3m (No. 227) space

group. The O atoms form a face center cubic packing (fcc) and occupy the 32e sites within

the cubic unit cell. The titanium atoms and one quarter of the lithium atoms are octahedral

cooordinated by oxygen and occupy the 16d sites. The ratio between Li and Ti atoms at

these octahedral sites is 1
6
:5
6
. The remaining Li atoms occupy the 8a sites.1

The mixed occupancy of Ti and Li at the 16d sites can not be realized with the con-

ventional cubic unit cell of Fd3m as there are only sixteen possible sites resulting in a no

integer ratio of Li and Ti atoms if the mixed occupancy would be considered. A suitable

1



subgroup that allows for the right stoichiometry within a single unit cell is R3m (No. 166).

The unit cell of this space group is hexagonal. Within this cell the mixed occupancy can be

easily realized. It contains 12 sites corresponding to the 16d sites in Fd3m. Among them one

has to distribute two Li atoms and ten Ti atoms to achieve the correct ratio. In total this

yields
(
12
2

)
= 66 possibilities. Among these one can identify 6 unique structures the others

are equivalent by symmetry. All of those are different in energy and are denoted c0001 to

c0006. All LTO structure are shown in Figure 1.

These configurations are the starting point for our analysis. We performed pure PBE2

calculations. Table 1 list the obtained results. Among all systems, c0002 is identified to be

the most stable configuration. Therefore, we continue our analysis using the c0002 structure.

Table 1: Relative stabilities, ELTO
rel , of the different pristine bulk structures. Most stable

structure c0002 serves as zero point for the energy scale.

system ELTO
rel [eV]

c0001 0.72

c0002 0.00

c0003 2.14

c0004 4.38

c0005 0.77

c0006 0.36

1.1.1 Computational details

Calculations have been performed using the PBE2 functional as it is implemented in the

CASTEP3 code using a 4 x 4 x 2 k-point grid. Structures have been fully relaxed until

forces where below 10-2 eV/Å in combination with a plane wave basis set using an energy

cut-off of 600 eV.

2



c1 c2 c3

c4 c5 c6

Figure 1: Shown are the different LTO unit cells. Ti atoms are shown in light blue, oxygen
atoms are red and Li atoms are shown as green spheres. Tetrahedral and octahedral sites
are depicted accordingly.
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1.2 Defect bulk structures

Within the c0002 unit cell one can identify nine unique O vacancies all others are equivalent

due to symmetry (see Figure 2). For this purpose the Site Occupancy Disorder (SOD)

package4 has been used.

We embedded each of the nine unique oxygen vacancies into 2 x 2 x 1 supercells, yielding

a supercell based on three standard defect free unit cells and one with O vacancy. This

structural variety of LTO makes computational sampling rather demanding, therefore, as a

first starting point we performed full geometry relaxations using only the PBE functional

within FHI-aims. Our results are showed in table 2 where the different structures are named

from v1 to v9 according to the position of the oxygen vacancy in the primitive cell. Again,

the most stable configuration serves as zero point for the energy scale.

We like to highlight, that in principle one has to consider here all possible configurations

of this system to find the true configuration which is lowest in energy. Therefore, this should

be seen just as a first attempt to tackle the problem. Considering, neutral, single and doubly

charged oxygen defects in combination with all possible localization patterns of polarons is

by far not tractable as one has to go beyond LDA or GGA approximations in order to

correctly describe the defect states.

Among all nine different vacancy configurations we use the most stable one (v3) as the

starting point for all further polaron calculations. The supercell of configuration v3 is shown

in Figure 3.

1.2.1 Computational details

All calculations have been performed using the PBE functional as implemented in the FHI-

aims code with preoptimized structures obtained from CASTEP calculations. Reciprocal

space has been sampled using a 2 x 2 x 2 Monkhorst-Pack5 k-point grid. The structures

were fully relaxed until forces have been below 10-2 eV/Å applying a light tier1 basis set.

4



Figure 2: Single unit cell of the c2 LTO structure. Ti atoms are shown in light blue, Li atoms
are shown in green and oxygen atoms are displayed as red spheres. The different position
for an oxygen vacancy are named from v1 to v9. Double naming indicates a symmetry
equivalent site.
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Table 2: Relative stabilities, ELTO+Ov
rel , of the different bulk structures with O vacancy. Most

stable structure v3 serves as zero point for the energy scale.

system ELTO+Ov
rel [eV]

v1 1.58

v2 1.95

v3 0.00

v4 0.38

v5 1.06

v6 0.87

v7 1.13

v8 0.78

v9 1.13

o

Figure 3: Supercell structure consisting of four LTO c2 cells including the v3 vacancy. The
O vacancy is marked with a black circle. Li atoms are purple. O atoms are shown as red
spheres. Ti atoms are shown as grey spheres.
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2 Polaron calculations

2.1 Localizing the Polarons

From a methodological point of view, a key aspect of DFT+U is the choice of the correct

projector-dependent Hubbard U value.6,7 A common strategy would be to choose the value

according to the experimentally determined defect position within the band gap.7,8 However,

owing to the relative novelty of blue LTO, there are no such results to be found in the

literature. From TiO2 the gap state position is experimentally known to be about 1 eV below

the conduction band minimum (CBM)9. Arguably, titanium atoms in both LTO an TiO2 are

embedded in a similar chemical environment, leading to a similar position of the defect state

within the band gap. This assumption is further supported by the observation that both

defective TiO2 and LTO show the same blue color.10–12 Based on this approximation, all our

analysis are conducted with a U value of 2.65 eV, yielding gap states at around 1 eV below

the CBM for the most stable polaronic configurations found. For localizing the electrons at

different Ti atoms we made use of the matrix control approach13,14. We started with the

occupation matrices obtained from a pure PBE2 run and used this as input for the matrix

control routines. To obtain electron localization in specific orbitals on a specific Ti atoms,

we modified the corresponding diagonal matrix element to 1. Afterwards, full geometry

optimization is performed by fixing this modified occupation matrix. To obtain full self-

consistency, we used the obtained geometry and the wave function information as input for

a second run without constraining the occupation matrix. Table 3 contains the complete list

of calculated polaron systems and their relative stabilities. The relative stabilities have been

calculated according to

Erel = Etot,i − Etot, most stable structure , (1)
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where Etot,i is the total energy of a specific configuration and Etot, most stable structure is the

total energy of the most stable configuration. By this, all other less stable configurations

show positive energies.8

Table 3: Relative stabilities of the calculated polaronic configurations. Here, we only consid-
ered triplet configurations. Furthermore, dVO

indicates the distance form the Ti3+ center to
the next periodic oxygen vacancy in the unit cell. Only the distances within the unrelaxed
defect supercell have been considered.

system Erel [eV] dVO
[Å] system Erel [eV] dVO

[Å]

L3-7/L2-9 0.00 6.52/7.47 L3-9/L3-12 0.23 5.05/6.55

L3-7/L2-11 0.01 6.52/8.63 L2-8/L2-12 0.23 9.45/7.38

L3-7/L2-10 0.01 6.52/8.50 L2-8/L2-11 0.23 9.45/8.63

L3-7/L2-7 0.02 6.52/7.43 L3-9/L3-10 0.26 5.05/4.92

L2-7/L3-5 0.07 7.43/4.95 L5-1/L3-9 0.43 2.08/5.05

L3-8/L3-4 0.12 6.51/4.93 L5-1/L3-12 0.45 2.08/6.55

L3-11/L3-12 0.12 6.34/6.55 L3-7/L1-3 0.49 6.52/6.69

L3-7/L3-12 0.13 6.52/6.55 L4-2/L4-4 0.75 3.71/3.68

L2-7/L2-8 0.14 7.43/9.45 L4-3/L4-2 0.77 6.99/3.71

L2-7/L2-12 0.15 7.43/7.38 L1-1/L1-4 0.77 6.84/6.70

L3-5/L3-6 0.19 4.95/4.81 L5-5/L4-2 0.82 6.22/3.71

L3-5/L4-2 0.19 4.95/3.71 L4-3/L4-4 1.00 6.99/3.68

L3-7/L3-9 0.20 6.52/5.05 L5-1/L5-5 2.59 2.08/6.22

2.2 Computational details

Electronic structure calculations have been performed entirely using the FHI-aims program

package15. All structure optimizations have been performed with applying the DFT+U16–18

variant of the PBE exchange correlation functional using the fully-localized limit (FLL)6 as

double counting correction. The Ti 3d atomic basis functions serve as Hubbard projectors

in each run. Only the on-site representation19 for the DFT+U occupation matrix have been

used in combination with a U value of 2.65 eV. Numerically convergence have been already

reached with a tight tier1 basis set. Reciprocal space has been sampled using a 2 x 2 x
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Figure 4: Site naming convention of the different localization patterns. Lx-m/Ly-n thus
specifies the localization of one electron within layer Lx on atom m with the second electron
localized in layer Ly on atom n. The position of the oxygen vacancy is also marked with a
black circle. Titanium atoms are depicted as grey spheres, oxygen atoms are shown as red
spheres.

2 Monkhorst-Pack5 k-point grid. The structures were fully relaxed until forces have been

below 10-2 eV/Å.

If not otherwise noted, all structures related to the polaron calculations have been fully

optimized with PBE+U(=2.65) only.

3 Barrier calculations

3.1 Obtaining the barrier profile

For the barrier profiles we again make use of the matrix control approach. However, instead

of fixing all the occupation matrices we only fix the occupation matrices of the atoms between

which we assume electron hopping to occur. In detail we studied the hopping of one electron

from L3-7/L2-3 to L3-7/L1-9 and from L3-7/L2-10 to L3-7/L2-9. For this we define a

reaction coordinate x which describes the occupation matrices of both atoms between the
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hopping process. The occupation matrix n′ for a certain atom A and a certain atom B is

then defined according to

n′A = xnTi3+

A + (1− x)nTi4+

A , (2a)

n′B = (1− x)nTi3+

B + xnTi4+

B . (2b)

nTi3+ is the occupation matrix where the excess electron is fully localized at a certain atom,

this occupation matrix is obtained from a full self-consistent calculation as it is described

in section 2.1. nTi4+ is the occupation matrix at a certain atom if none of the excess elec-

trons is localized. Going from L3-7/L2-10 to L3-7/L2-9 this means nTi3+

A belongs to the

self-consistent occupation matrix of L2-9 in system L3-7/L2-9 and nTi4+

A belongs to the oc-

cupation matrix of atom L2-9 in the L3-7/L2-10 system. Occupation matrix nTi3+

B would

then be the self-consistent occupation matrix of atom L2-10 in system L3-7/L2-10 and nTi4+

B

corresponds to the self-consistent occupation matrix of atom L2-10 in system L3-7/L2-9.

As a next step we performed full structure relaxations with applying the above described

constraints. This means that our chosen reaction coordinate directly translates also to a

structural change along the reaction path. Table 4 lists the obtained energies with respect

to the configuration lowest lying in energy. However, this is the energy with applied con-

straints from the matrix control approach. In addition, in order to further judge the quality

of this approach we use the obtained wave-function information from the saddle point and

evaluate the DFT+U functional again without constraining the occupation matrices (red

points in Figure 5). This gives a direct estimate how the electron density is able to adapt

to the applied bias potential. For the transition L3-7/L2-10 to L3-7/L2-9 depicted in Figure

5a both energies agree remarkable well, with a difference of only about 6 meV. For the other

transition considered here, L3-7/L1-3 to L3-7/L2-9, (Figure 5b) the difference is with 56 meV

significantly larger. To analyse this further, we calculated the difference in the sum of the

diagonal elements between applied occupation matrix n′ and the actual occupation matrix

10



Table 4: Listed are the points calculated for the barrier profile which is shown in figure 5. All
points have been calculated from the matrix-control run. The lowest energy configuration
serves as zero point for the energy scale. The notation in brackets corresponds to the self-
consistent polaron configuration.

x L3-7/L2-10 → L3-7/L2-9 L3-7/L2-3 → L3-7/L1-9

[eV] [eV]

0.00 0.008 0.485

(L3-7/L2-10) (L3-7/L1-3)

0.10 0.024 0.501

0.25 - 0.565

0.30 0.123 0.583

0.40 0.170 -

0.45 - 0.483

0.50 0.186 0.416

0.60 0.166 0.280

0.70 0.118 0.162

0.80 - 0.074

0.90 0.016 0.019

1.00 0.000 0.000

(L3-7/L2-9) (L3-7/L2-9)
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Figure 5: Calculated barrier profile for the transition L3-7/L2-10 to L3-7/L2-9 (a) and L3-
7/L1-3 to L3-7/L2-9 (b). x = 1.0 is equal to configuration L3-7/L2-9. Blue points are
energies obtained with fixed occupation matrix according to eq. 2a in both subfigures. Red
points are DFT+U energies calculated from the wave-function obtained from the matrix
control run. The lowest lying configuration in energy serves as zero point for the energy
scale. Also shown is the spin density of the corresponding transition state. Isosurface level
0.015 eÅ−3.

n determined from the wave function at the transition state points, ∆ =
∑

n |n′nn| − |nnn|.

For transition L3-7/L2-10 to L3-7/L2-9 the highest deviation is for the occupation of L2-9

with a value of 0.036. Contrary, for transition L3-7/L1-3 to L3-7/L2-9 our analysis yields

a deviation of 0.176 for the occupation matrix at L2-8. This large difference is due to the

electron not only being located at L2-8 and L1-3 but also at neighboring titanium atoms.

This might indicate that the applied bias potential does not fit the transition state equally

well as in the case of the L3-7/L2-10 to L3-7/L2-9 transition and hence is responsible for

the observed difference in barrier height. However, this problem is closely related to the

problem of defining proper fragments in CDFT.20 Yet, given the fact that this specific tran-

sition already shows a significant energy difference of 485 meV between the two stable states,

this discrepancy is most likely of minor importance. Our new approach is thus capable of

gauging hopping barriers at nearly no overhead over standard DFT calculations. Our results

which we obtain for a U value of 2.65 eV are listed in table 5. It should be highlighted, that
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Table 5: Barrier heights calculated from the density obtained from the matrix control run.

x L3-7/L2-10 → L3-7/L2-9 L3-7/L2-3 → L3-7/L1-9

[eV] [eV]

0.30 - 0.526

0.50 0.180 -

the obtained barriers sensitively depend on the applied U value, however, this is a general

aspect of DFT+U and not a result of the here applied strategy for obtaining the barrier

profiles. Moreover, hybrid functionals should suffer from this drawback too. The U value in

DFT+U determines the strength of the on-site coulomb repulsion and hence it determines

the amount of how DFT+U will accounts for the self-interaction error. In hybrid functional

the mixing factor determines the amount of exact exchange and hence how much a specific

hybrid functional accounts for the self-interaction error.

3.1.1 Marcus reaction coordinate

Going along reaction coordinate x the polaron hopping from atom A to atom B occurs as

the system passes the transition state. By again exploiting the matrix control approach

one is able to constrain the electron at a certain atom and thus preventing the electron to

hop. In figure 6 we are showing the corresponding results. Blue dots have been obtained as

described in section 3.1, for orange dots we use the structure obtained for a certain x and

use the occupation matrix control to constrain the polaron to one specific site. No geometry

relaxation have been allowed during that procedure.

In a next step, this allows to define a new reaction coordinate according to,

∆E = E (x,A)− E (x,B) . (3)

Here, E (x,A) is the energy if the electron is located on atom A. Whereas E (x,B) is the

energy if the electron is located at atom B. For both energies the same geometry has been
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used. In Figure 7 we show the new reaction profile. Clearly, Figure 7b indicates an early

transition state for the hopping from L3-7/L1-3 to L3-7/L2-9.

0.00 0.25 0.50 0.75 1.00
x

0.00

0.20

0.40

0.60

0.80

E[
eV

]

a)

0.00 0.25 0.50 0.75 1.00
x

0.00

0.20

0.40

0.60

0.80

1.00

1.20

b)

Figure 6: Full reaction profile according to reaction coordinate x which defines the occupation
matrices according to eq. 2a and eq. 2b respectively. Blue curve and blue points have been
obtained according to the description in section 3.1. L3-7/L2-10 to L3-7/L2-9 is shown in (a)
and L3-7/L1-3 to L3-7/L2-9 is depicted in (b). x = 1.0 is equal to configuration L3-7/L2-9.

3.2 Computational details

For the barrier calculations we applied the same computational settings as described in

section 2.2.
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