
Engineering Applications of Artificial Intelligence 83 (2019) 72–84

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Least-squares policy iteration algorithms for robotics: Online, continuous,
and automatic✩

Stefan R. Friedrich a,b,∗, Michael Schreibauer a, Martin Buss a,b

a Technical University of Munich, Department of Electrical and Computer Engineering, Chair of Automatic Control Engineering
(LSR), Theresienstr. 90, 80333 Munich, Germany
b Technical University of Munich, Institute for Advanced Study, Lichtenbergstr. 2a, 85748 Garching, Germany

A R T I C L E I N F O

Keywords:
Reinforcement learning
Policy iteration
Continuous actions
Robotics
Sparsification

A B S T R A C T

Reinforcement learning (RL) is a general framework to acquire intelligent behavior by trial-and-error and many
successful applications and impressive results have been reported in the field of robotics. In robot control
problem settings, it is oftentimes characteristic that the algorithms have to learn online through interaction
with the system while it is operating, and that both state and action spaces are continuous. Least-squares
policy iteration (LSPI) based approaches are therefore particularly hard to employ in practice, and parameter
tuning is a tedious and costly enterprise. In order to mitigate this problem, we derive an automatic online
LSPI algorithm that operates over continuous action spaces and does not require an a-priori, hand-tuned value
function approximation architecture. To this end, we first show how the kernel least-squares policy iteration
algorithm can be modified to handle data online by recursive dictionary and learning update rules. Next,
borrowing sparsification methods from kernel adaptive filtering, the continuous action-space approximation
in the online least-squares policy iteration algorithm can be efficiently automated as well. We then propose
a similarity-based information extrapolation for the recursive temporal difference update in order to perform
the dictionary expansion step efficiently in both algorithms. The performance of the proposed algorithms is
compared with respect to their batch or hand-tuned counterparts in a simulation study. The novel algorithms
require less prior tuning and data is processed completely on the fly, yet the results indicate that similar
performance can be obtained as by careful hand-tuning. Therefore, engineers from both robotics and AI can
benefit from the proposed algorithms when an LSPI algorithm is faced with online data collection and tuning
by experiment is costly.

1. Introduction

For many robotic tasks detailed mathematical modeling is hard or
time-consuming, which makes reinforcement learning (RL) an attrac-
tive alternative to model-based control design. Interacting with the
environment in trial-and-error fashion is the core idea of RL meth-
ods (Sutton and Barto, 1998), allowing to infer desired behavior. While
RL constitutes a general framework to learn sophisticated behaviors
in a multitude of disciplines, robotic tasks are often closely related
to optimal or adaptive control problems. In this context, some RL
methods can be conceived of as direct adaptive optimal control (Sutton
et al., 1992). Some contributions in the field of adaptive dynamic
programming are also relevant, particularly if it is important to keep
a continuous-time formulation, see for example (Vrabie et al., 2012)
and the references therein. For robot control, iterative discrete-time

✩ No author associated with this paper has disclosed any potential or pertinent conflicts which may be perceived to have impending conflict with this work.
For full disclosure statements refer to https://doi.org/10.1016/j.engappai.2019.04.001.
∗ Corresponding author at: Technical University of Munich, Department of Electrical and Computer Engineering, Chair of Automatic Control Engineering (LSR),

Theresienstr. 90, 80333 Munich, Germany.
E-mail addresses: s.friedrich@tum.de (S.R. Friedrich), m.schreibauer@tum.de (M. Schreibauer), mb@tum.de (M. Buss).

RL algorithms are more frequently used, see Kober et al. (2013) for
a comprehensive overview. Selected examples include tracking perfor-
mance improvement of robot manipulators (Pane et al., 2019; Friedrich
and Buss, 2017), aerial transportation with drones (Palunko et al.,
2013), control of autonomous vehicles (Wang et al., 2014; Vankadari
et al., 2018), marine vehicle navigation (Tziortziotis et al., 2016),
pendulum systems (Xu et al., 2014; Deisenroth et al., 2015), human–
robot cooperative manipulation (Palunko et al., 2014), apprenticeship
learning (Mori et al., 2011) and information exchange in cooperative
multi-agent systems (Tolić and Palunko, 2017).

The two main classes of RL algorithms are value-based approaches
and value function free methods, e. g., policy search. On the one
hand, policy based RL is predominant in robotic applications due to
several factors (Deisenroth et al., 2013): a policy search algorithm

https://doi.org/10.1016/j.engappai.2019.04.001
Received 15 June 2018; Received in revised form 21 February 2019; Accepted 1 April 2019
Available online 31 May 2019
0952-1976/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.engappai.2019.04.001
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2019.04.001&domain=pdf
https://doi.org/10.1016/j.engappai.2019.04.001
mailto:s.friedrich@tum.de
mailto:m.schreibauer@tum.de
mailto:mb@tum.de
https://doi.org/10.1016/j.engappai.2019.04.001
http://creativecommons.org/licenses/by/4.0/

S.R. Friedrich, M. Schreibauer and M. Buss Engineering Applications of Artificial Intelligence 83 (2019) 72–84

works with an explicitly pre-structured parametric policy and itera-
tively improves the policy by locally optimizing directly in the space
of parameters. Therefore, suitable policy representations allow to re-
duce the learning problem from the potentially high-dimensional state–
action space to a lower-dimensional optimization problem in parameter
space, greatly simplifying the learning problem in practice (Stulp and
Sigaud, 2013). Moreover, the demand for continuous and possibly
multidimensional action spaces is more naturally covered in policy
based algorithms. On the other hand, a value function based method
constructs a ranking over the state and action sets w. r. t. the expected
long-term reward, thereby implicitly encoding a globally optimal pol-
icy. This approach, however, entails properties that become particularly
problematic for robot control (Deisenroth et al., 2013). Function ap-
proximators (Geramifard et al., 2013) must be employed to represent
the value of a given state/action combination in the oftentimes large
state–action space of robotic systems. Accordingly, the computational
complexity easily becomes intractable due to the curse of dimension-
ality. A particularly recurring research question is therefore how the
action space in continuous domains can be smoothly approximated,
e. g., by discretization and subsequent symbolic post-processing (Al-
ibekov et al., 2018) or heuristically by expert knowledge and fuzzy
representations (Hourfar et al., 2019).

Despite their drawbacks, value function based algorithms are pre-
ferred in some robotic applications in order to avoid the limitations of
policy search, see Kober et al. (2013, Tab. 1). In particular, one needs to
construct suitable policy parameterizations and find good initial policy
parameters for local optimization in policy search. A class of popular
value function algorithms is based on least-squares policy iteration
(LSPI) (Lagoudakis and Parr, 2003). Extensions to approximation-based
LSPI are studied in detail in Bus̆oniu et al. (2010), and an online least-
squares policy iteration (OLSPI) algorithm is derived in Buşoniu et al.
(2010). These algorithms iteratively evaluate and improve the control
policy, are sample-efficient, and have comparatively good convergence
properties due to the least-squares techniques for policy evaluation. For
example, Palunko et al. (2013), Vankadari et al. (2018), Palunko et al.
(2014), Tolić and Palunko (2017), Wang et al. (2014), Tziortziotis et al.
(2016) all employ some form of LSPI.

It is currently, however, rather tedious to apply LSPI algorithms
to practical robotic problems. First of all, there often is a demand
not only for a continuous state but also a continuous action space
representation. Therefore, it is necessary to employ a value function
approximation (VFA) method and the achievable performance depends
considerably on an appropriate representation for the system at hand.
Next, operating online means that data cannot be collected in advance
but has to be obtained incrementally, requiring fast enough processing
cycle times and manageable memory complexity. Finally, it is crucial
to employ well-tuned algorithmic parameters in order to obtain a
performant learning system. For example, Anderlini et al. (2017) report
unexpected behavior of LSPI in the control of a wave energy converter
model, presumably due the radial basis function approximation. In
robotics, this issue can become even more tedious, particularly when
tuning the algorithmic parameters is costly in experimental setups
where merely collecting suitable data can be hard, e. g., in closed-loop
feedback systems. In summary, to leverage the potential of LSPI in
robotics, algorithms are needed that operate online, over continuous state
and action spaces, and automatically handle the VFA.

1.1. Related work

Given the wealth of literature on general RL, we mostly restrict
attention specifically to LSPI class algorithms employing function ap-
proximators to represent the value function. A more extensive treat-
ment of approximation-based RL can be found in Bus̆oniu et al. (2010).
If for example deterministic dynamics can be exploited, fuzzy tech-
niques (Bus̆oniu et al., 2010, Ch. 4) offer a viable alternative to encode
prior expert domain knowledge in the value function. An introduction

to RL with linear function approximators in particular is provided
in Geramifard et al. (2013). In general, however, feature or basis
function (BF) selection and correspondingly ‘‘a memory management
scheme for LSPI’s data [...] is non-trivial’’ (Geramifard et al., 2013,
Ch. 4.5, p. 437). From our perspective, adaptively growing kernel
representations (Schölkopf and Smola, 2002) offer a promising way
to deal with this problem: the very same issue of BF selection with
memory management arises in kernel adaptive filtering (Liu et al.,
2011), and a multitude of sparsification schemes have recently been de-
veloped in the signal processing community. The general VFA problem
is pervasive in high-dimensional RL; hence, we omit an in-depth survey
of the extensive literature on VFA in favor of reviewing kernel-based
RL methods. For a broader perspective, the interested reader is instead
referred to the discussion in Sutton and Barto (1998, Ch. 8), Bus̆oniu
et al. (2010, Ch. 3.6), Geramifard et al. (2013, Ch. 3), and the references
therein.

Kernel methods (Schölkopf and Smola, 2002) have in common that
a sparsified set of features is used to represent a high-dimensional,
implicit feature space only by means of the raw data transformed
by the kernel. With the versatility of Gaussian processes (Rasmussen
and Williams, 2006), kernel methods are also becoming successful
more and more in the field of RL. Several methods exploit such a
representation to model the dynamics, e.g., (Deisenroth et al., 2015;
Polydoros and Nalpantidis, 2017; Vinogradska et al., 2018). We refrain
from reviewing these approaches in more detail as they pursue an
indirect, i. e., model-based, approach.

Several value-based model-free RL methods with non-parametric
value function modeling have been developed, as reviewed next. The
paper Ormoneit and Sen (2002) is an early contribution showing that
the distribution of the estimate may be conceived of as a Gaussian pro-
cess. Jung and Polani (2007) further develop kernel least-squares policy
evaluation (KLSPE), a kernelized online policy evaluation scheme and
demonstrate their results on a high-dimensional benchmark system;
however, a discrete set of pre-defined actions is used. Xu et al. (2007)
develop kernel-based least-squares policy iteration (KLSPI), a flavor
of LSPI where data is selected according to an approximate linear
dependency (ALD) criterion and the value function is represented by
means of a kernel expansion. Closely related papers are Jakab and Csató
(2015) and Yahyaa and Manderick (2014), which employ direct recur-
sive versions of KLSTD respectively KLSPI. These algorithms, however,
are not optimized for online usage and are only applicable to discrete
state sets. Recently, Cui et al. (2017) demonstrate that so-called Kernel
dynamic policy programming (KDPP) is applicable to high-dimensional
robotic systems and the authors also compare to the KLSPI algorithm;
nonetheless, Cui et al. (2017) uses ALD for the dictionary sparsification
step as well and also KDPP is only applicable with a discrete action set.
These approaches have the common advantage that the features are
generated in data-driven fashion but the VFA is still in linear form. A
comparison of these value-based model-free algorithms is summarized
in Table 1. As can be seen, the current kernel-trick based approaches
lack the capability of continuous action space representation.

A unifying view of kernel-based RL w. r. t. other regularization
schemes is given by Taylor and Parr (2009). Another related algorithm
is called kernel-based dual heuristic programming (KDHP) (Xu et al.,
2013), whose applicability to hardware was shown in Xu et al. (2014)
using inverted pendulum systems. Its online mechanism, however, is to
run RL over simulated data and then use the final policy on the robotic
system, which contradicts our requirements outlined above. Xu et al.
(2016) compare a batch KLSPI algorithm for unmanned ground vehicle
control with an online actor-critic based on KDHP. Along the same lines
is the more recent (Huang et al., 2017), using a kernelized RL algorithm
for longitudinal control of autonomous land vehicles, operating with
batch samples and ALD sparsification as well. Wang et al. (2014) in
turn approach the problem of cruise control of an autonomous vehicle
by tuning the parameters of a proportional–integral controller online
according to a policy learned with KLSPI. In their approach, the data

73

S.R. Friedrich, M. Schreibauer and M. Buss Engineering Applications of Artificial Intelligence 83 (2019) 72–84

Table 1
Overview of model-free value-based RL algorithms with kernel VFA capability, with LSPI and OLSPI included for comparison. The symbols ✓, (✓), and % correspond to ‘‘yes’’,
‘‘partially’’, and ‘‘no’’.
Approach On-line Continuous Feature selection Admiss. system

dimensionality
Kernel trick Initial policy

requiredRef. Algorithm State Action Automatic Sparsification

Lagoudakis and Parr (2003) LSPI % ✓ % % – low % %

Buşoniu et al. (2010) OLSPI ✓ ✓ % % – low % %

Bus̆oniu et al. (2010) OLSPI with cont. action ✓ ✓ ✓ % – low % %

Xu et al. (2007) KLSPI % ✓ % ✓ ALD mid ✓ ✓

Yahyaa and Manderick (2014) Online KBLSPI (✓) (✓) % ✓ ALD mid ✓ %

Jakab and Csató (2015) KRLSTD % (✓) % ✓ Laplacian low ✓ ✓

Cui et al. (2017) KDPP % ✓ % ✓ ALD high ✓ %

here OKLSPI ✓ ✓ % ✓ Coherence mid ✓ %

here AOLSPI ✓ ✓ ✓ ✓ Coherence mid (✓) %

samples are also collected in advance and the policy is obtained by
running the batch algorithm offline.

Pioneering work to analyze the convergence of KLSPI type al-
gorithms for large-scale or continuous state space markov decision
processs (MDPs) is reported by Ma and Powell (2010). A rigorous
analysis on solving MDPs more generally by policy iteration with kernel
representations is now provided by Farahmand et al. (2016).

1.2. Contributions

Here, our main contribution is to show how the OLSPI algorithm
with a polynomial basis for continuous action representation (Bus̆oniu
et al., 2010) can be endowed with a kernel-inspired automatic feature
selection method of low computational complexity. Hence, we obtain
an automatic OLSPI (AOLSPI) algorithm that preserves the analyz-
ability properties of the LSPI class, yet can be applied in fashion
similar to direct adaptive optimal control. Implementing our algorithm
requires only a relatively small amount of modifications starting from
OLSPI; nonetheless, some critical tuning parameters of the VFA are
removed. Hence, practitioners will benefit by easier deployment to
actual systems.

In deriving the novel algorithm, we have several side contributions.
(1) We start by adding capabilities to the KLSPI from Xu et al. (2007) to
work online in the above sense, i. e., under incremental data collection
and reduced processing burden. Opposed to Jakab and Csató (2015),
Yahyaa and Manderick (2014), we discuss the role of the sparsification
scheme to save computational time, based on advances in the field
of kernel adaptive filtering. We then (2) obtain a modification of
OLSPI’s standard temporal difference (TD) update rule, which also
allows for a kernel-inspired approach to distribute basis functions for
the continuous state and action VFA, without actually applying the
kernel trick to OLSPI. To benefit from enhanced information processing
nonetheless, (3) the similarity measure of the sparsification process is
used to extrapolate learned information to new dictionary elements.
Hence, (4) the convergence of the novel algorithm is shown to be
eventually similar to that of a well-tuned OLSPI with a fixed set of BFs.

The remainder of this article is organized as follows. First, in
Section 2 we recall the main ideas of LSPI and its kernel variant, which
leads to the problem statement. The main contribution is given in
Section 3: an online LSPI algorithm with automatic tuning capability
that is applicable to continuous action space domains. In Section 4 the
proposed algorithms are evaluated in a conclusive simulation study
and their performance is discussed for a wide range of algorithmic
parameters. The article concludes with Section 5, giving an outlook to
some future work.

2. Reinforcement learning & (Kernel-based) least-squares policy
iteration

We start by briefly recalling the main concepts of reinforcement
learning (Sutton and Barto, 1998) in general and least-squares policy

iteration (Lagoudakis and Parr, 2003; Bus̆oniu et al., 2010) in partic-
ular, before proceeding to summarizing the kernel-based LSPI variant
from (Xu et al., 2007). We then concisely state the problem considered
in this article.

2.1. Reinforcement learning

Consider a sequential decision making problem under uncertainty
modeled as an MDP, i. e., a tuple

(

 ,, 𝑃𝑎, 𝑅, 𝛾, 𝑠0
)

, where  is a set
of possible states with 𝑠0, 𝑠, 𝑠′ ∈  and  is a set of possible actions
𝑎 ∈ . The probability distribution 𝑃𝑎(𝑠, 𝑠′) = 𝑃 (𝑠′ | 𝑠, 𝑎) is the model
that describes the chance of landing in successor state 𝑠′ by executing
action 𝑎, currently being in state 𝑠. The fourth element of the MDP is
the reward function 𝑅(⋅), which judges the quality of the transition
from state 𝑠 to 𝑠′, triggered by action 𝑎. The scalar discount factor
𝛾 ∈ [0, 1] is used to set the focus on short- or long-term rewards.
When confronted with an MDP, the goal is to find an optimal policy
𝜋⋆ ∶  ↦  that encodes which actions are best to take in a certain
state. The corresponding optimal action 𝑎⋆ is defined as the action that
maximizes the return 𝐺 =

∑∞
𝑡=0 𝛾

𝑡𝑅𝑡+1, the sum of expected cumulative
future discounted reward.

If the dynamics of an MDP are known, i. e., the transition proba-
bility 𝑃𝑎(𝑠, 𝑠′) is known, the optimal policy can be found via planning
algorithms, most prominently dynamic programming (DP) (Bellman,
1957; Puterman, 1994; Bertsekas, 1995). The goal of maximizing the
return for every possible state leads to the central idea of value-
(or critic-)based methods, i. e., maintaining a ranking of all possible
states 𝑠 ∈  of the MDP with the purpose of finding the optimal
action 𝑎⋆𝑡 in each step 𝑡 that is expected to lead to the highest ranked
successor state 𝑠′. This ranking is called the (state) value function
𝑉𝜋 (𝑠) = E𝜋

[
∑∞

𝑡=0 𝛾
𝑡𝑅𝑡+1 | 𝑠0 = 𝑠

]

. It is important to note that such a
representation can only be created with respect to a policy that de-
termines the state transitions; hence, the subscript 𝜋. Solving an MDP
refers to finding an optimal policy 𝜋⋆ that maximizes the expected
return in all states, 𝜋⋆ = arg max𝜋 𝑉𝜋 (𝑠), ∀𝑠 ∈ ; such 𝜋⋆ always
exists (Puterman, 1994). Usage of the state value function 𝑉𝜋 (𝑠), how-
ever, requires knowledge about the transition probabilities 𝑃𝑎(𝑠, 𝑠′) of
the MDP to evaluate possible successor states. Reinforcement learning
in turn operates on a trial-and-error basis and does not rely on in-
formation about the MDP dynamics. In order to employ the concept
of the value function nonetheless, in unknown environments the state
value function 𝑉𝜋 (𝑠) is extended to the state–action value function
𝑄𝜋 (𝑠, 𝑎) = E𝜋

[

𝐺 | 𝑠0 = 𝑠, 𝑎0 = 𝑎
]

that assigns each state–action pair the
expected sum of rewards when starting from state 𝑠, taking action 𝑎,
and henceforth following 𝜋. Note that 𝑉𝜋 (𝑠) ≜ 𝑄𝜋 (𝑠, 𝜋(𝑠)). The state–
action space is henceforth denoted  ≜  ×, and a state–action
value function 𝑄 ∶  ↦ R entails a (greedy) policy via

𝜋(𝑠) = arg max
𝑎∈

𝑄(𝑠, 𝑎). (1)

The optimal policy 𝜋⋆ is obtained from the optimal state–action value
function 𝑄⋆(𝑠, 𝑎) = max𝜋 𝑄𝜋 (𝑠, 𝑎). Unfortunately, there are as many
state–action value functions 𝑄𝜋 (𝑠, 𝑎) as there are policies 𝜋 and value-
based RL methods aim to learn the optimal 𝑄⋆(𝑠, 𝑎).

74

S.R. Friedrich, M. Schreibauer and M. Buss Engineering Applications of Artificial Intelligence 83 (2019) 72–84

2.2. Least-squares policy iteration

Policy iteration (PI) is one particular method to learn 𝑄⋆(𝑠, 𝑎). PI
tackles the learning problem by starting with some randomly chosen
policy and improving it iteratively until convergence to the optimal
one. To this end, two steps are alternating. The first is policy evaluation,
which refers to computing the state–action value function 𝑄𝜋 (𝑠, 𝑎) of
the current policy. This estimate is then used in the second step, the
policy improvement done via (1). The policy evaluation step requires
to solve the Bellman equation (Bellman, 1957) of the MDP

𝑄𝜋 (𝑠𝑡, 𝑎𝑡) = E𝜋
[

𝑅𝑡+1 + 𝛾𝑄𝜋 (𝑠𝑡+1, 𝑎𝑡+1) | 𝑠𝑡, 𝑎𝑡
]

. (2)

In continuous spaces  or  that typically occur in physical sys-
tems, it is in general not possible to solve the policy evaluation step
exactly. In this case, the state–action value function 𝑄(𝑠, 𝑎) is commonly
approximated as 𝑄̂(𝑠, 𝑎) by means of a linear approximation architec-
ture (Bus̆oniu et al., 2010; Geramifard et al., 2013). To this end, a set
 =

{

𝜙𝑖(𝑠, 𝑎) ∶  × ↦ R, 𝑖 = 1,… , 𝑁𝜙
}

of features is selected, which
consists of 𝑁𝜙 state and action dependent BFs 𝜙(⋅, ⋅). The approximated
value 𝑄̂ for a given state–action tuple (𝑠, 𝑎) is then computed as a
weighted sum of the BFs

𝑄̂(𝑠, 𝑎) =
𝑁𝜙
∑

𝑖=1
𝜙𝑖(𝑠, 𝑎)𝜃𝑖 = 𝜙(𝑠, 𝑎)⊤𝜃. (3)

Solving (2) approximately by minimizing the approximation error in
a least squares sense results in the LSPI algorithm. In its original
form (Lagoudakis and Parr, 2003), this algorithm is offline, i. e., it
requires a batch of transition data samples of interactions with the
environment. Bus̆oniu et al. (2010) present a variant that processes
interactions with the environment on the fly, therefore called OLSPI.
Both algorithms build a matrix 𝐴 and a vector 𝑏 from subsequent
interactions in order to solve the projected Bellman equation by TD
learning according to

𝐴 ← 𝐴 + 𝜙(𝑠, 𝑎)
(

𝜙(𝑠, 𝑎) − 𝛾𝜙(𝑠′, 𝜋(𝑠′))
)⊤ , (4)

𝑏 ← 𝑏 + 𝜙(𝑠, 𝑎)𝑟. (5)

LSPI rebuilds these matrices in every iteration from scratch, whereas
OLSPI continues to update 𝐴 and 𝑏 as long as it interacts with the
environment.

In order to use OLSPI over scalar continuous action domains, or-
thogonal polynomials such as Chebyshev polynomials of the first kind
𝛹𝑗 ∶ [−1, 1] ↦ [−1, 1] of degree 𝑗, 0 ≤ 𝑗 ≤ 𝑀 , are used to construct an
extended feature vector 𝜙(𝑠, 𝑎) ∈ R(𝑀+1)𝑁𝜙 as

𝜙(𝑠, 𝑎) =
⎡

⎢

⎢

⎣

𝜙S(𝑠)𝛹0(𝑎̄)
⋮

𝜙S(𝑠)𝛹𝑀 (𝑎̄)

⎤

⎥

⎥

⎦

, where 𝜙S(𝑠) =
⎡

⎢

⎢

⎣

𝜙1(𝑠)
⋮

𝜙𝑁𝜙
(𝑠)

⎤

⎥

⎥

⎦

. (6)

The benefit of working with the extended feature vector (6) is that the
approximation over the action space  is kept separated from that over
the state space . In (6), without loss of generality, the action space  is
scaled to exploit the orthogonality of the Chebyshev polynomials over
the set ̄ ≜ [−1, 1], with the elements denoted 𝑎̄ ∈ ̄. Thus the policy
improvement step (1) becomes tractable: computing (3) for the current
state 𝑠 results in a polynomial expression over 𝑎̄

𝛹 (𝑎̄) = 𝑐𝑀 𝑎̄𝑀 +⋯ + 𝑐1𝑎̄ + 𝑐0 (7)

which is exactly representable by the coefficients 𝑐𝑗 and it remains to
compute arg max𝑎̄∈̄ 𝛹 (𝑎̄) to find the greedy step (1) efficiently. Fur-
ther details on OLSPI with Chebyshev polynomial approximation are
skipped for brevity and the reader is referred to the literature (Bus̆oniu
et al., 2010, Ch. 5.3, p. 170ff, and Ch. 5.5, p.177ff). If a vector-valued
action space is to be considered, one can simply run several instances
of OLSPI in parallel.

2.3. Kernel-based policy iteration

A version of LSPI which exploits the kernel trick (Schölkopf and
Smola, 2002) to approximate the state–action value function 𝑄(𝑠, 𝑎)
is presented in Xu et al. (2007). Similar to the linear approximation
architecture, the 𝑄 function is approximated via a weighted sum of
kernel functions, i. e.,

𝑄̂(𝑠, 𝑎) =
𝑁K
∑

𝑖=1
𝑘𝑖(𝑠, 𝑎)𝜃𝑖 = 𝑘(𝑠, 𝑎)⊤𝜃

with 𝑘𝑖(𝑠, 𝑎) ≜ 𝜅
(

(𝑠, 𝑎), (𝑠𝑖, 𝑎𝑖)
)

,

𝑘(𝑠, 𝑎) =
[

𝑘1(𝑠, 𝑎),… , 𝑘𝑁K (𝑠, 𝑎)
]⊤

. (8)

The function 𝜅(𝑥, 𝑥′) ∶  ×  ↦ R denotes the positive definite
symmetric kernel function inducing a reproducing kernel Hilbert space
(RKHS), i. e., the feature space  with inner product ⟨ ⋅, ⋅ ⟩ such that

𝜅
(

𝑥, 𝑥′
)

= ⟨𝛷(𝑥), 𝛷(𝑥′) ⟩ . (9)

The mapping 𝛷 ∶  ↦  is the feature map which is implicitly
defined by the kernel. The set  =

{

(𝑠𝑖, 𝑎𝑖) ∈ , 𝑖 = 1,… , 𝑁K
}

is a
dictionary of 𝑁K ≜ || collected state–action tuples 𝑥 = (𝑠, 𝑎). Roughly
speaking, this set contains a finite number of points representative for
the space spanned by ×. We briefly summarize the main steps of the
KLSPI algorithm: based on the dictionary, the training data is iterated
over in order to recursively solve the projected Bellman equation, lead-
ing to an improved policy. Then, the learning agent interacts greedily
with its environment and produces new data samples. New samples are
added to the dictionary only on per-need basis and the whole process
is repeated until some convergence criterion is fulfilled. The advantage
of the KLSPI algorithm is two-fold: first, the approximation of the 𝑄
function is computed in the RKHS; second, the set  of representative
samples is created in automated fashion. In Xu et al. (2007), this is done
via ALD analysis applied to the dictionary state–action tuples (𝑠, 𝑎): if a
new tuple can be reasonably well represented by a linear combination
of the 𝑁K tuples already contained in the dictionary, its addition to
the dictionary is not considered justified. Formally, the approximation
error is calculated by

𝛿 = 𝐾∗∗ −𝐾⊤
∗ 𝐾

−1𝐾∗, (10)

with 𝐾 ∈ R𝑁K×𝑁K , 𝐾∗ ∈ R𝑁K , and 𝐾∗∗ ∈ R defined by the Mercer
kernel 𝜅, the training data , and the query input 𝑥′ = (𝑠′, 𝑎′) as

𝐾𝑖,𝑗 = 𝜅(𝑥𝑖, 𝑥𝑗), ∀𝑥𝑖, 𝑥𝑗 ∈  (11)

𝐾∗𝑖 = 𝜅(𝑥𝑖, 𝑥′), ∀𝑥𝑖 ∈  (12)

𝐾∗∗ = 𝜅(𝑥′, 𝑥′). (13)

Given a threshold 𝛿0, the ALD criterion states that 𝑥′ is already suf-
ficiently well represented by the dictionary if 𝛿 ≤ 𝛿0. Accordingly, 𝑥′
is added to  if 𝛿 > 𝛿0. For learning, a TD-like update similar to (4)
and (5) is used, employing the vector of kernels 𝑘(𝑠, 𝑎) in place of the
feature vector 𝜙(𝑠, 𝑎):

𝐴 ← 𝐴 + 𝑘(𝑠, 𝑎)
(

𝑘(𝑠, 𝑎) − 𝛾𝑘(𝑠′, 𝜋(𝑠′))
)⊤ , (14)

𝑏 ← 𝑏 + 𝑘(𝑠, 𝑎)𝑟. (15)

Hence, in the notation above it is clear that the core learning
mechanism is quite similar in the LSPI, OLSPI, and KLSPI algorithms.

2.4. Problem statement

With these well-established algorithms in mind, we are now in posi-
tion to emphasize which parts of the algorithms allow for modifications
in order to deploy LSPI more easily to actual robotic systems.

Xu et al. (2007) state that their KLSPI can be used to optimize an
existing policy online. This policy, however, is required to feature some
level of performance. Due to this initial performance guarantee, the

75

S.R. Friedrich, M. Schreibauer and M. Buss Engineering Applications of Artificial Intelligence 83 (2019) 72–84

need for additional exploration is avoided. In spite of these assets, the
KLSPI algorithms alternates between two main steps: data collection,
i. e., greedy interaction with the environment, and subsequent policy
improvement. Data is thus processed in batches. Moreover, it is difficult
to identify the required performance level of the initial policy. Note
that this notion of online mechanism contrasts the requirements that
typically occur in robotics outlined above.

Problem 1 (KLSPI for online learning). Development of an online version
of KLSPI, i. e., data should be processed once it becomes available
while the per-iteration time must not increase significantly during
run-time. ⋄

The OLSPI algorithm from (Bus̆oniu et al., 2010), in turn, is capable
of online processing and continuous action space representations. Yet
it should be clear that the choice of features 𝜙𝑖 is crucial to obtain good
performance in any LSPI algorithm; as pointed out in Geramifard et al.
(2013, Ch. 4.5, p. 436), ‘‘[. . .] the choice of the representation can often
play a much more significant role in the final performance of the solver
than the choice of the algorithm.’’ From a practitioner’s point of view,
this issue is ubiquitous when having to select basis functions in order to
apply approximation-based RL algorithms to robotics, a tuning process
that can be tedious. We therefore aim to automate this process.

Problem 2 (OLSPI with automatic VFA). Derivation of an OLSPI algo-
rithm that is applicable to continuous state–action spaces and automat-
ically selects suitable features in order to reduce hand-tuning of the
VFA, or to obtain a good starting point for subsequent fine-tuning of
OLSPI. ⋄

3. Online, continuous-space & automatic LSPI

This section presents our main result, a set of modifications for
OLSPI in order to solve Problem 2. To this end, we first provide a
solution to Problem 1 and call the resulting algorithm OKLSPI.

3.1. Online kernel least-squares policy iteration

The kernel-based RL approaches reviewed in Section 1.1 select data
points based on ALD analysis. A first recursive version of KLSPI is
presented in Yahyaa and Manderick (2014), however, considering only
a discrete state space, using expensive ALD sparsification as well, and
it lacks a convergence analysis. We therefore begin by adopting a more
efficient sparsification rule.

3.1.1. Sparsification rule
A direct implementation of the ALD criterion (10) requires the

inversion of a Gram matrix 𝐾 ∈ R𝑁K×𝑁K , which results in a basic
complexity of (𝑁3

K) (Rasmussen and Williams, 2006). Clearly, the per-
iteration time will increase significantly with the growing dictionary;
hence, the matrix inversion should be avoided. One alternative ap-
proach is to directly propagate the inverse matrix by recursive updates,
similar as done in Jung and Polani (2007), Yahyaa and Manderick
(2014). However, the complexity is still (𝑁2

K) in this case; moreover,
learning the inverse results in increased sensitivity w. r. t. the numeric
initialization parameters. Recently, other sparsification methods are
becoming more mature and well-understood, see e. g. (Honeine, 2015).
We therefore propose to adopt another sparsification procedure that in-
herently is of only linear complexity: the coherence criterion introduced
in Richard et al. (2009).

The coherence 𝜇 of a dictionary  is defined as

𝜇 = max
𝑖≠𝑗

1≤𝑖,𝑗 ≤||

|𝜅(𝑥𝑖, 𝑥𝑗)|
√

𝜅(𝑥𝑖, 𝑥𝑖)𝜅(𝑥𝑗 , 𝑥𝑗)
,

therefore 𝜇 is large if the dictionary contains points 𝑥𝑖 and 𝑥𝑗 that are
very similar in  as measured by (9). The decision rule whether to

include a new sample 𝑥′ into the dictionary or not is to restrict the
coherence of the dictionary below a threshold 0 ≤ 𝜇0 ≤ 1, i. e., if

max
𝑥𝑖∈

|𝜅(𝑥𝑖, 𝑥′)|
√

𝜅(𝑥𝑖, 𝑥𝑖)𝜅(𝑥′, 𝑥′)
< 𝜇0, (16)

then 𝑥′ can be added to . In the following, we assume that a
unit-norm kernel function is employed, i. e., a kernel that fulfills
‖𝜅(𝑥, ⋅)‖ = 1, ∀𝑥 ∈ . The most well-known kernel with this property
is the Gaussian kernel

𝜅(𝑥𝑖, 𝑥𝑗) = exp
(

−1
2𝜎2

‖𝑥𝑖 − 𝑥𝑗‖
2
)

(17)

and in this case (16) reduces to

max
𝑥𝑖∈

|𝜅(𝑥𝑖, 𝑥)| < 𝜇0. (18)

Hence, the complexity of the sparsification rule is reduced to (𝑁K)
evaluations of the kernel function and a simple element-wise compari-
son.

Remark 1 (Babel criterion). Instead of the maximum similarity of the
data points (i. e., the coherence) as a decision criterion, the cumulative
coherence (Babel criterion) is sometimes considered for sparsification,
see Honeine (2015) for a comparison. In this case, a new data point is
included in the dictionary if
∑

𝑥𝑖∈
|𝜅(𝑥𝑖, 𝑥)| ≤ 𝜇̃0.

Although of linear complexity as well, for the purpose of online RL,
this sparsification is not as suitable as the maximum coherence-based
diversity measure. The rationale behind will be clarified by means of
the simulation study reported in a later part of this article. ⋄

3.1.2. Online dictionary expansion
Rebuilding the matrices 𝐴 and 𝑏 in the TD update (14) and (15) from

scratch after each interaction is the second shortcoming of KLSPI w. r. t.
efficient online data processing. This problem can be circumvented as
follows: recall that 𝐴 is a sum of outer products of the two vectors
𝑢 ≜ 𝑘(𝑠, 𝑎) and 𝑣 ≜

(

𝑘(𝑠, 𝑎) − 𝛾𝑘(𝑠′, 𝜋(𝑠′))
)

. Adding a new feature 𝑥 to
the dictionary  means to add one dimension 𝑢𝑛+1 to 𝑢 and 𝑣𝑛+1 to 𝑣.
The resulting outer product 𝑢̃𝑣̃⊤ becomes

𝑢̃𝑣̃⊤ =
[

𝑢
𝑢𝑛+1

]

[𝑣⊤, 𝑣𝑛+1] =
[

𝑢𝑣⊤ 𝑢𝑣𝑛+1
𝑢𝑛+1𝑣⊤ 𝑢𝑛+1𝑣𝑛+1

]

. (19)

Thus, only one row and column is added while the other entries remain
unaffected. This observation is key to retain the previous values of 𝐴
and 𝑏 during the subsequent rank-1 update. To this end, 𝐴 and 𝑏 need
to be enlarged, e. g., by adding an extra diagonal entry 𝐴new ∈ R to 𝐴
and an extra entry 𝑏new ∈ R to 𝑏 as

𝐴 ← blkdiag(𝐴,𝐴new) ≜
[

𝐴 0
0 𝐴new

]

, 𝑏 ← [𝑏⊤, 𝑏new]⊤, (20)

where blkdiag(⋅) refers to building the block diagonal matrix. From (14)
we then have

𝐴 ←blkdiag(𝐴,𝐴new) +
[

𝑢𝑣⊤ 𝑢𝑣𝑛+1
𝑢𝑛+1𝑣⊤ 𝑢𝑛+1𝑣𝑛+1

]

= (21)

=
[

𝐴 0
0 0

]

+
[

𝑢𝑣⊤ 0
0 0

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(⋆)

+
[

0 0
0 𝐴new

]

+
[

0 𝑢𝑣𝑛+1
𝑢𝑛+1𝑣⊤ 𝑢𝑛+1𝑣𝑛+1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(⋆⋆)

. (22)

Conceptually, the resulting TD update (21) can be conceived of as the
decomposition (22): it corresponds to a TD step (⋆) as if the dictionary
had not been modified, and the additional part (⋆⋆) is a TD step for
the new point starting from 𝐴new. Obviously, the values of 𝐴 and 𝑏
computed during prior iterations remain unchanged and therefore can
be re-used directly after the dictionary is expanded. Further, it is always
possible to choose 𝐴new = 0 and 𝑏new = 0; however, a better method to
obtain 𝐴new and 𝑏new is proposed later in Section 3.3.

76

S.R. Friedrich, M. Schreibauer and M. Buss Engineering Applications of Artificial Intelligence 83 (2019) 72–84

Table 2
Online kernel least-squares policy iteration with coherence sparsification and efficient
dictionary expansion.

Algorithm 1 Online KLSPI (OKLSPI)

1 Input: 𝜅(⋅, ⋅) — unit-norm (Mercer) kernel function
0 ≤ 𝛾 < 1 — discount factor
0 < 𝜇0 ≤ 1 — coherence threshold
{0 < 𝜀𝑡 < 1}∞𝑡=0 — exploration schedule
𝛽 > 0 — small positive constant
𝐾𝜃 ∈ N — policy improvement interval
𝑥0 = (𝑠0, 𝑎0) — initial state/action tuple

2  ← (𝑠0, 𝑎0)
3 𝐴, 𝑏, 𝜃, 𝑙 ← 0
4 𝑠𝑡 ← initial state 𝑠0
5 for 𝑡 = 0, 1, 2, 3,… do

6 𝑎𝑡 ←

{

unif. rand. action in  if rand([0, 1]) ≤ 𝜀𝑡
𝜋(𝑠𝑡) else

7 apply 𝑎𝑡, measure 𝑠𝑡+1, 𝑟𝑡+1
8 𝜇 = max

({

|𝜅
(

𝑥𝑖, (𝑠𝑡, 𝑎𝑡)
)

| ∶ 𝑥𝑖 ∈ 
})

9 if 𝜇 < 𝜇0 then
10  ←  ∪ (𝑠𝑡, 𝑎𝑡)
11 𝐴 ← blkdiag(𝐴,𝐴new), 𝑏 ← [𝑏⊤, 𝑏new]⊤

with 𝐴new and 𝑏new according to Eq. (30)
12 end if
13 𝐴 ← 𝐴 + 𝑘(𝑠𝑡, 𝑎𝑡)

(

𝑘(𝑠𝑡, 𝑎𝑡) − 𝛾𝑘(𝑠𝑡+1, 𝜋(𝑠𝑡+1))
)⊤

14 𝑏 ← 𝑏 + 𝑘(𝑠𝑡, 𝑎𝑡)𝑟𝑡+1
15 if 𝑡 = (𝑙 + 1)𝐾𝜃 then
16 𝜃 ← 𝐴−1𝑏
17 𝜋 = argmax

𝑎∈

∑

||

𝑖=1 𝜃𝑖𝜅((𝑠𝑖, 𝑎𝑖), (𝑠, 𝑎))

18 𝑙 ← 𝑙 + 1
19 end if
20 end for

With these measures, we obtain the OKLSPI algorithm in Table 2.
Clearly, the algorithm contains basic building blocks of both the KLSPI
and OKLSPI algorithms. Lines 1–4 initialize the algorithm and the
control loop is set up in line 5. In line 6, either a random exploratory
or the exploitative action is chosen via the standard 𝜖-greedy mecha-
nism. Line 7 describes the interaction with the environment, i. e., the
application of action 𝑎𝑡 and the measurement of the successor state 𝑠𝑡+1
and corresponding reward 𝑟𝑡+1. The lines 8–9 constitute the coherence
sparsification criterion, and if needed the dictionary expansion is done
in lines 10–11. The remaining lines 13–19 constitute the standard ker-
nelized TD update. For the practitioner, we would like to emphasize
that the policy improvement step in line 17 is of conceptual nature
only: it suffices to perform the calculation in line 6 when choosing an
exploitative action.

3.2. Automated online least-squares policy iteration

Albeit online capability, the proposed OKLSPI algorithm only works
with discrete action sets, a shortcoming of major concern for appli-
cation on robotic devices. Recall from (6) that the OLSPI algorithm
handles continuous action spaces by incorporating Chebyshev polyno-
mials of the first kind into an extended feature vector 𝜙(𝑠, 𝑎). However,
an analogous extension of the kernel-based LSPI algorithm is not yet
known because the similarity of the features in the RKHS is computed
implicitly using the kernel trick. In principle, one could analogously
construct a kernel for continuous  by composition with a suitable or-
thogonal polynomial kernel (Pan et al., 2012). Nonetheless, the policy
improvement step (1) could not be solved exactly anymore by means
of a polynomial (7) because this would require to explicitly consider
the feature map 𝛷 of (9). This is, however, contrary to the key idea of

kernel methods that one does not need to know an explicit form of the
feature map but only implicitly define it via (9). Therefore, we propose
to rather combine the automated feature selection of the kernel-based
approach with the OLSPI algorithm, which allows to use continuous
space approximations. To this end, we automate the approximation
over the state space by means of kernels but continue to construct the
action space approximation using orthogonal polynomials. The result-
ing algorithm is termed automated online least-squares policy iteration
(AOLSPI) and provides a solution to Problem 2.

First, we need to build a dictionary over the state space  only,
with an appropriate sparsification rule. To this end, we may simply
adopt the previous approach, i. e., a dictionary S with sparsification
criterion (18). We can now replace the basis function vector 𝜙S(𝑠) in
the extended feature construction (6) by a vector 𝑘S(𝑠)

𝑘S(𝑠) = [𝑘1(𝑠),… , 𝑘𝑁S (𝑠)]
⊤, 𝑘𝑖(𝑠) = 𝜅(𝑠, 𝑠𝑖), 𝑠𝑖 ∈ S ⊂  , (23)

with a unit-norm kernel function 𝜅(⋅, ⋅) and the number of dictionary
elements 𝑁S = |S|. The corresponding feature vector 𝜙̂ is now given
by

𝜙̂(𝑠, 𝑎) =
[

𝑘⊤S (𝑠)𝛹0(𝑎), … , 𝑘⊤S (𝑠)𝛹𝑀 (𝑎)
]⊤ . (24)

Next, the key question is how the growing dictionary can be handled
in OLSPI. As evident from (24), the feature vector 𝜙̂(𝑠, 𝑎) now consists
of stacked state-dependent vectors of BFs 𝑘S(𝑠), which are multiplied
with Chebyshev polynomials of increasing, but maximum order 𝑀 .
Consequently, a new element in the dictionary S leads to an increase
of the feature vector size by 𝑀 +1 elements. Therefore, the adjustment
of matrix 𝐴 and vector 𝑏 after a dictionary update needs to be carried
out differently than in the case of OKLSPI.

Consider how the corresponding TD update 𝛥(𝐴) of matrix 𝐴 is now
calculated using (4):

𝛥(𝐴) = 𝜙̂(𝑠, 𝑎)
(

𝜙̂(𝑠, 𝑎) − 𝛾𝜙̂(𝑠′, 𝜋(𝑠′))
)⊤

=
⎡

⎢

⎢

⎣

𝑘S(𝑠)𝛹0(𝑎)
⋮

𝑘S(𝑠)𝛹𝑀 (𝑎)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑘S(𝑠)𝛹0(𝑎) − 𝛾𝑘S(𝑠′)𝛹0(𝜋(𝑠′))
⋮

𝑘S(𝑠)𝛹𝑀 (𝑎) − 𝛾𝑘S(𝑠′)𝛹𝑀 (𝜋(𝑠′))

⎤

⎥

⎥

⎦

⊤

.

By examining the element of the first row and first column of 𝛥(𝐴)
exemplarily, it can be observed that 𝛥(𝐴) consists of blocks, each
containing a sum of outer products of the state dependent BFs vector.
For example, the first block yields

𝛥(𝐴)(1,1) = 𝑘S(𝑠)𝑘⊤S (𝑠)𝛹0(𝑎)2 − 𝛾𝑘S(𝑠)𝑘⊤S (𝑠
′)𝛹0(𝑎)𝛹0(𝜋(𝑠′)).

Similarly, the other blocks differ only by the values of the Chebyshev
polynomials that are multiplied to the two outer products 𝑘S(𝑠)𝑘⊤S (𝑠)
and 𝑘S(𝑠)𝑘⊤S (𝑠

′). At this point, the reasoning about outer products of
growing vectors (19) applies, i. e., the resulting matrix of the outer
product of the vector of state-dependent BFs needs to be expanded by
an extra row and an extra column. Note that this applies to all of the
blocks in 𝛥(𝐴). By analogous derivation for the TD update of 𝑏 it is
immediate that adding an element at every (𝑁S+1)th index is required.
Formally, we obtain the expansion

𝐴𝑡+1 =
⎡

⎢

⎢

⎣

𝐴𝑡+1 (1,1) … 𝐴𝑡+1 (1,𝑀+1)
⋮ ⋱ ⋮

𝐴𝑡+1 (𝑀+1,1) … 𝐴𝑡+1 (𝑀+1,𝑀+1)

⎤

⎥

⎥

⎦

, (25)

where each block is enlarged as

𝐴𝑡+1 (𝑖,𝑗) = blkdiag(𝐴𝑡 (𝑖,𝑗), 𝐴𝑡,new (𝑖,𝑗)),

𝐴𝑡 (𝑖,𝑗) = 𝑘S(𝑠)𝑘⊤S (𝑠)𝛹𝑖−1(𝑎)𝛹𝑗−1(𝑎) (26)
− 𝛾𝑘S(𝑠)𝑘⊤S (𝑠

′)𝛹𝑖−1(𝑎)𝛹𝑗−1(𝜋(𝑠′)),

and the block-partitioned vector update

𝑏𝑡+1 =
⎡

⎢

⎢

⎣

𝑏𝑡+1 (1)
⋮

𝑏𝑡+1 (𝑀+1)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑏𝑡 (1)
𝑏𝑡,new (1)

⋮
𝑏𝑡 (𝑀+1)

𝑏𝑡,new (𝑀+1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(27)

77

S.R. Friedrich, M. Schreibauer and M. Buss Engineering Applications of Artificial Intelligence 83 (2019) 72–84

Table 3
OLSPI with automatic basis function selection (AOLSPI). Bold line numbers indicate
key differences w. r. t. OLSPI from (Bus̆oniu et al., 2010).

Algorithm 2 Automated OLSPI (AOLSPI)

1 Input: 𝜅(⋅, ⋅) — unit-norm kernel function
𝑀 ∈ N — small integer number, highest

degree of Chebyshev polynomials
0 ≤ 𝛾 < 1 — discount factor
0 < 𝜇0 ≤ 1 — coherence threshold
{0 < 𝜀𝑡 < 1}∞𝑡=0 — exploration schedule
𝛽 > 0 — small positive constant
𝐾𝜃 ∈ N — policy improvement interval
𝑥0 = (𝑠0, 𝑎0) — initial state/action tuple

2 S ← 𝑠0
3 𝐴, 𝑏, 𝜃, 𝑙 ← 0
4 𝑠𝑡 ← initial state 𝑠0
5 for 𝑡 = 0, 1, 2, 3,… do

6 𝑎𝑡 ←

{

unif. rand. action in  if rand([0, 1]) ≤ 𝜀𝑡
𝜋(𝑠𝑡) else

7 apply 𝑎𝑡, measure 𝑠𝑡+1, 𝑟𝑡+1
8 𝜇 = max

({

|𝜅
(

𝑠𝑖, 𝑠𝑡
)

| ∶ 𝑠𝑖 ∈ S
})

9 if 𝜇 < 𝜇0 then
10 S ← S ∪ (𝑠𝑡)
11 𝐴, 𝑏 ← expansion according to Eq. (25) – Eq. (28)
12 end if
13 𝐴 ← 𝐴 + 𝜙̂(𝑠𝑡, 𝑎𝑡)

(

𝜙̂(𝑠𝑡, 𝑎𝑡) − 𝛾𝜙̂(𝑠𝑡+1, 𝜋(𝑠𝑡+1))
)⊤

14 𝑏 = 𝑏 + 𝜙̂(𝑠𝑡, 𝑎𝑡)𝑟𝑡+1
15 if 𝑡 = (𝑙 + 1)𝐾𝜃 then
16 𝜃 ← 𝐴−1𝑏
17 𝜋 = argmax

𝑎∈
𝜙̂⊤(𝑠𝑡, 𝑎𝑡)𝜃

18 𝑙 ← 𝑙 + 1
19 end if
20 end for

with

𝑏𝑡 (𝑖) = 𝑘S(𝑠)𝛹𝑖(𝑎). (28)

Again, 𝐴𝑡,new (𝑖,𝑗) = 0 and 𝑏𝑡,new (𝑖) = 0 are always possible choices and
we give a preferred way to initialize the new entries in the next section.

The resulting automated online least-squares policy iteration (AOL-
SPI) algorithm is summarized in Table 3. Compared to the OLSPI
algorithm reviewed in Section 2, only the lines 8–12 have to be added.
It is therefore straightforward to enhance existing OLSPI implementa-
tions in order to realize the automatic VFA capability. Note that, as
opposed to OKLSPI, the kernel activation in lines 8–10 only depends
on the system state 𝑠, whereas the dependency of the extended feature
vector 𝜙̂ on the action 𝑎 is captured via the Chebyshev basis as in
OLSPI. Therefore, the implementation of policy improvement remains
tractable by means of the polynomial (7).

3.3. Similarity-based information extrapolation in TD update

Next, we examine how the online algorithms presented above pro-
cess information after the dictionary expansion step. In a single TD
update step, the algorithms in this article spread information over
multiple elements of 𝐴 and 𝑏, based on the similarity of the dictionary
points w. r. t. the current and successor states, see (14) and (15) with
(8), respectively (26) and (28) with (23). This mechanism is essential
for learning, but partly disabled in the case of AOLSPI and OKLSPI: a
new BF that was added to the dictionary some time after the learning
process had started clearly missed out on the information that had
been spread in the previous interactions with the environment. Taking
𝐴new = 0 and 𝑏new = 0 assumes that there is not yet any information

Fig. 1. Visualization of the proposed similarity-based information extrapolation (29)
for the TD update of 𝑏: according to (15), in each iteration, every entry of the vector
𝑏 receives a certain amount of the reward 𝑟 determined by the kernel activation.
Therefore, 𝑏 accumulates the rewards corresponding to each element 𝑥 ∈  ⊂ . When
the dictionary is expanded by a new element 𝑥𝑡, 𝑏new can in consequence approximately
be initialized with a weighted average of the collected rewards of the most similar
dictionary points. Note that similarity is considered in the feature space : in the
depicted example, 𝑥1 and 𝑥4 contribute most.

about the corresponding part of the state space—after all, it is a new
point in the dictionary. By the subsequent interactions of the system
with its environment, the information gap of the new BF will be closed
asymptotically.

The dependency of the TD step on the similarity of the current
and next states w. r. t. the dictionary elements implies, however, that
regions of matrix 𝐴 and vector 𝑏 which correspond to similar BFs
should also have similar values in 𝐴 and 𝑏. Hence, the similarity to
the existing grid points as measured by the kernel function can be used
to extrapolate entries of 𝐴 and 𝑏 to a new dictionary element. This idea
is visualized in Fig. 1. While in this section, the formulas are derived
to perform an approximative initialization, the numerical example in a
later section will demonstrate its utility. Since the structure of 𝐴 and
𝑏 is dependent on the algorithm, the corresponding extrapolation rules
are different and the OKLSPI-specific extrapolation is introduced first
and then ported to AOLSPI.

3.3.1. OKLSPI
For the derivation of the basic extrapolation rule, let us revisit the

TD update rule of 𝑏 given in (15), which is repeated here for the reader’s
convenience:

𝑏 ← 𝑏 + 𝑘(𝑠, 𝑎)𝑟.

Observe that the elements of 𝑏 are updated by a fraction of the received
reward 𝑟 as determined by the similarity of the current sample (𝑠, 𝑎)
with the elements of the dictionary. Grid points similar to each other
will thus feature approximately the same values 𝑏𝑖. Thus, we can
safely assume that the true value of 𝑏new of a new BF should be of
same magnitude as the values of 𝑏 corresponding to the most similar
dictionary points. The value of the new element 𝑏new can therefore be
obtained by extrapolation of the existing elements of 𝑏 weighted by the
corresponding similarity, i. e.,

𝑏new =
∑

||

𝑙=1 𝑘𝑙(𝑠, 𝑎)𝑏𝑙
∑

||

𝑙=1 𝑘𝑙(𝑠, 𝑎)
. (29)

Extrapolating new elements of 𝐴 is not as straightforward. Let us
write out the TD update rule of 𝐴 from (14) in expanded form:

𝐴 ← 𝐴 + 𝑘(𝑠, 𝑎)𝑘(𝑠, 𝑎)⊤ − 𝛾𝑘(𝑠, 𝑎)𝑘(𝑠′, 𝜋(𝑠′))⊤.

The TD update of 𝐴 consists of a subtraction of two outer products
𝑘(𝑠, 𝑎)𝑘(𝑠, 𝑎)⊤ and 𝑘(𝑠, 𝑎)𝑘(𝑠′, 𝜋(𝑠′))⊤. Recall that the coherence-based
sparsification rule entails that the elements of the dictionary are dis-
similar to a certain extent. Consequently, the first outer product mainly
updates elements on the diagonal of 𝐴. If the samples (𝑠, 𝑎) and (𝑠′, 𝜋(𝑠′))
differ, the second outer product mainly affects off-diagonal elements.
To extrapolate these elements, knowledge about the previous evolution
of the policy would be required. In summary, we can assume that the
update of the on-diagonal elements still mainly depends on the kernel

78

S.R. Friedrich, M. Schreibauer and M. Buss Engineering Applications of Artificial Intelligence 83 (2019) 72–84

vector 𝑘(𝑠, 𝑎). Hence, an initialization for the new diagonal element
𝐴new of the expanded matrix is obtained by a weighted average over
the other diagonal elements as

𝐴new =
∑

||

𝑙=1 𝑘𝑙(𝑠, 𝑎)𝐴𝑙𝑙
∑

||

𝑙=1 𝑘𝑙(𝑠, 𝑎)
.

The strength of the extrapolation can be varied by actively restricting
the number of considered grid points to a set ̃ ⊆ , yielding

𝐴new =
∑

|̃|

𝑙=1 𝑘𝑙(𝑠, 𝑎)𝐴𝑙𝑙
∑

|̃|

𝑙=1 𝑘𝑙(𝑠, 𝑎)
, 𝑏new =

∑

|̃|

𝑙=1 𝑘𝑙(𝑠, 𝑎)𝑏𝑙
∑

|̃|

𝑙=1 𝑘𝑙(𝑠, 𝑎)
. (30)

The set ̃ can be taken, for example, by ranking the similarity to
the new BF and selecting only a percentage 𝑝e ≤ 1 of most similar
points. We call this approach trust radius in the following. The complete
dictionary ̃ =  is used for 𝑝e = 1; for ̃ = ∅ in turn, the conservative
initialization of the new elements with zero 𝐴new = 0 and 𝑏new = 0 is
recovered.

3.3.2. AOLSPI
For the AOLSPI algorithm of Table 3, we adopt the extrapola-

tion method of OKLSPI. It is essentially the same mechanism, yet
applied separately to the segments of 𝐴 and 𝑏. When enlarging the
vector 𝑏 as (27), the newly added entry 𝑏𝑡+1,new (𝑖) in every segment
𝑏𝑡+1 (𝑖), 𝑖 = 1…𝑀 + 1, is an average of the other elements of the 𝑖th
block segment of 𝑏, weighted by the similarity of the corresponding
BF grid point to the grid point of the new BF, i. e.,

𝑏𝑡+1,new (𝑖) =

∑

|̃|

𝑙=1 𝑘𝑙(𝑠)𝑏𝑡 (𝑖)(𝑙)
∑

|̃|

𝑙=1 𝑘𝑙(𝑠)
. (31)

The values of 𝐴 are extrapolated again in a more conservative way
by considering only the block elements on the diagonal. Within these
blocks 𝐴𝑡+1 (𝑖,𝑖), the Chebyshev polynomials are equal. Hence, the two
outer products are scaled by the same value and (26) simplifies to
𝐴𝑡 (𝑖,𝑖) = 𝑘S(𝑠)𝑘⊤S (𝑠)𝛹

2
𝑖 (𝑎) − 𝛾S𝑘S(𝑠)𝑘⊤S (𝑠

′)𝛹𝑖(𝜋(𝑠′))𝛹𝑖(𝑎).

Now as in the case of OKLSPI, within the corresponding block, the
first outer product 𝑘S(𝑠)𝑘⊤S (𝑠) updates mainly on-diagonal elements. The
other outer product 𝑘S(𝑠)𝑘⊤S (𝑠

′) further updates on-diagonal elements if
𝑠 and 𝑠′ are similar; otherwise, off-diagonal elements are updated de-
pending on the policy 𝜋. The interpolation is therefore again restricted
to the diagonal elements of the related block and the initialization of
the new element is correspondingly

𝐴𝑡,new (𝑖,𝑗) =

∑

|̃|

𝑙=1 𝑘𝑙(𝑠)𝐴𝑡 (𝑖,𝑗)(𝑙,𝑙)
∑

|̃|

𝑙=1 𝑘𝑙(𝑠)
. (32)

The number of used grid points can be selected according to a trust
radius approach as in (30).

3.4. Convergence analysis

In this section, we briefly comment on the convergence of the novel
algorithms. Recall that AOLSPI automates the process of selecting basis
functions for OLSPI; further it is clear that the VFA plays a crucial role
in the performance of OLSPI.

Remark 2 (Performance guarantees of online LSPI). Unfortunately, to
the best of the authors’ knowledge, even the asymptotic properties of
OLSPI with a fixed set of BFs are not yet completely understood, cf.
(Buşoniu et al., 2012, Ch. 3.6.1, p. 97). The basic reason behind is
that the policy improvement step in OLSPI is taken according to only
an approximation of the value function. In consequence, the policy
evaluation error may become large and the performance assertions of
the basic LSPI (Lagoudakis and Parr, 2003) do not necessarily carry
over to the online case (Buşoniu et al., 2010). ⋄

Concerning the approximation architecture, however, Ma and Pow-
ell are able to show (Ma and Powell, 2009; Powell and Ma, 2011) that
under certain conditions, approximate policy iteration with Chebyshev
polynomials converges in the mean. Thus, our effort is to show that
the modifications introduced in this article do at least preserve the
convergence properties of the prior algorithms. First, observe that,
as proven by Richard et al. (2009, Prop. 2), the size of the feature
vector 𝜙 converges to a fixed size at some time 𝑇 , namely when
the state space is completely covered with BFs as governed by the
sparsification procedure and the fixed threshold 𝜇0. Henceforth, in all
subsequent samples 𝑡 > 𝑇 , AOLSPI reduces to OLSPI as will be shown
next. In the first place, the samples collected during 0 ≤ 𝑡 ≤ 𝑇 only
contributed partly to the TD update (4) and (5) of 𝐴 and 𝑏. This is
because the associated BFs had not been part of the dictionary yet,
hence the corresponding entries could not be updated. However, after
convergence of the dictionary, i. e., considering 𝑡 > 𝑇 , the feature vector
basis is now fixed. We may hence think of the incomplete updates
during 0 ≤ 𝑇 as some corrupted feature vectors 𝜙c affecting 𝐴 and 𝑏.
In the limit, the learning mechanism described by (4) and (5) becomes

𝐴 = lim
𝑁→∞

1
𝑁

𝑇
∑

𝑖=0
𝜙c(𝑠𝑖, 𝑎𝑖)

(

𝜙c(𝑠𝑖, 𝑎𝑖) − 𝛾𝜙c(𝑠′𝑖 , 𝜋(𝑠
′
𝑖))
)⊤

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
→0

+ lim
𝑁→∞

1
𝑁

𝑁
∑

𝑖=𝑇+1
𝜙(𝑠𝑖, 𝑎𝑖)

(

𝜙(𝑠𝑖, 𝑎𝑖) − 𝛾𝜙(𝑠′𝑖 , 𝜋(𝑠
′
𝑖))
)⊤,

𝑏 = lim
𝑁→∞

1
𝑁

𝑇
∑

𝑖=0
𝜙(𝑠𝑖, 𝑎𝑖)𝑟𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
→0

+ lim
𝑁→∞

1
𝑁

𝑁
∑

𝑖=𝑇+1
𝜙(𝑠𝑖, 𝑎𝑖)𝑟𝑖.

The limit in the first summand in both expressions exists and ap-
proaches zero as 𝑁 → ∞ because the sum of bounded matrices is
bounded. By substitution of 𝑖 = 𝑇 + 1 with 𝑖 = 0 and reformulation, the
remaining solution in the limit approaches that of the OLSPI algorithm

𝐴⋆ = lim
𝑁→∞

1
𝑁

𝑁
∑

𝑖=0
𝜙(𝑠𝑖, 𝑎𝑖)

(

𝜙(𝑠𝑖, 𝑎𝑖) − 𝛾𝜙(𝑠′𝑖 , 𝜋(𝑠
′
𝑖))
)⊤

𝑏⋆ = lim
𝑁→∞

1
𝑁

𝑁
∑

𝑖=0
𝜙(𝑠𝑖, 𝑎𝑖)𝑟𝑖, 𝜃⋆ = (𝐴⋆)−1𝑏⋆.

In principle, (sub-)optimality of 𝜃⋆ could be established according
to Lagoudakis and Parr (2003, Th 7.1), i. e., the error norm of the
performance of the policies w. r. t. the optimal performance is in the
limit bounded by some constant, subject to the restrictions of Remark 2
concerning online LSPI.

In summary, it is shown that the limit convergence behavior is inde-
pendent of the specific dictionary sparsification method as long as || is
finite, and that further the dictionary expansion and data extrapolation
scheme introduced above do not void the general performance behavior
of OLSPI. On the contrary, our simulation studies reported in the next
section suggest that the speed of convergence may be considerably
improved using AOLSPI and the scheme from Section 3.3.

Analogously to the previous line of argumentation, the conver-
gence of the OKLSPI algorithm could be analyzed given the technical
assumptions in Ma and Powell (2010), Powell and Ma (2011).

3.5. Complexity analysis and optimized implementation

Let us briefly argue that the additional computational complexity
w. r. t. OLSPI induced by our modifications is linear in the number
of dictionary elements 𝑛 = ||, i. e., an additional (𝑛) operations
must be performed to implement either of the OKLSPI or AOLSPI
algorithms. Consider OLSPI as starting point, as it is the underlying
online algorithm in both cases. For the AOLSPI algorithm, the only
additional operations are those of lines 8–12 in Table 3. Note that
𝑘S(𝑠𝑡) must be computed to obtain 𝜙̂(𝑠, 𝑎) of (24) one way or the other.

79

S.R. Friedrich, M. Schreibauer and M. Buss Engineering Applications of Artificial Intelligence 83 (2019) 72–84

Summarizing the remaining elementary scalar operations, we have
an additional computational complexity of (𝑛) operations. A similar
line of reasoning is applicable to OKLSPI: in terms of complexity, we
can think of Table 2 as an instance of OLSPI with a discrete action
space. Again, counting the remaining operations to grow the dictionary
corresponding to lines 8–12 in Table 2, the added complexity is (𝑛).

For implementation, an optimized version of the basic LSTD-Q
algorithm is given in Lagoudakis and Parr (2003, Fig. 6), analogously
for KLSTD in Jakab and Csató (2015), that avoids the (𝑛3) inver-
sion of 𝐴 by means of the matrix-inversion lemma. Our algorithms
are amenable to such an approach as well: recall that the dictionary
expansion and information extrapolation steps exploit the prevailing
diagonal entries in the matrix structure. Therefore, similar steps could
be applied when propagating the inverse matrix. Our simulation studies
indicate, however, that the performance of the resulting algorithm is
much more sensitive w. r. t. the numeric initialization parameter needed
to avoid an ill-posed system. We therefore refrain from discussing the
details here and suffice it to say that the approximations concerning
the block matrix structure with single block diagonal elements remain
unaffected by learning the inverse matrix directly. Thus, an optimized
implementation of AOLSPI or OKLSPI based on Sherman–Morrison is
feasible in principle, albeit at the cost of a more sensitive parameter
set.

4. Simulation study example

Due to the limitations of value-based RL algorithms discussed in the
introduction, policy search algorithms may be a more suitable choice
for example in high-dimensional robotic learning control problems. If,
however, an LSPI approach is appropriate for the control problem at
hand, the algorithms proposed in this article constitute an online value-
based approach capable of efficient, automatic VFA. Therefore, the task
of having to explicitly distribute basis functions in a multidimensional
space is avoided. While it is not expected that the presented online al-
gorithms generally outperform their hand-tuned counterparts, a similar
level of performance should be attained as by OLSPI in a well-tuned
setting. In order to exemplify the two novel algorithms and evaluate
their performance, we consider two standard LSPI benchmark scenarios
and compare the results to those obtained with the established LSPI
algorithms using well-tuned parameters.

4.1. OKLSPI and the car on the hill problem

We will first illustrate how the OKLSPI algorithm of Table 2 in-
deed solves Problem 1. In other words, it is demonstrated that the
online dictionary expansion and sparsification measures proposed in
Sections 3.1 and 3.3 are adequate. To this end, let us consider the car
on the hill problem, a standard benchmark in approximate RL that can
be found in Bus̆oniu et al. (2010) and the references therein. In this
task, a point mass (the car) should climb a hill by applying a horizontal
force; however, the force is not strong enough to climb the hill directly.
Therefore, the car needs to swing back and forth first in order to pump
energy in the system. Normalizing quantities to their base SI units,
the hill is modeled as a function 𝐻(𝑝), where 𝑝 ∈ [−1, 1] denotes the
horizontal position of the car:

𝐻(𝑝) =

⎧

⎪

⎨

⎪

⎩

𝑝2 + 𝑝, if 𝑝 < 0,
𝑝

√

1+5𝑝2
otherwise.

With the discrete control input 𝑢 ∈ {−4, 4}, 𝑔 = 9.81 the gravitational
constant, and 𝑝̇ ∈ [−3, 3] the velocity of the car, the continuous-time
dynamics are given by Bus̆oniu et al. (2010, p. 160)

𝑝̈ = 1

1 +
(

d𝐻(𝑝)
d𝑝

)2

(

𝑢 − 𝑔
d𝐻(𝑝)
d𝑝

− 𝑝̇2
d𝐻(𝑝)
d𝑝

d2𝐻(𝑝)
d2𝑝

)

Table 4
OKLSPI parameter settings for the car on the hill problem.
Parameter Value

Discount factor 𝛾 0.97
Exploration factor 𝜀 0.95
Minimum exploration 𝜀min 0.05
Number of BF 𝜙 dynamic
Kernel function 𝜅 (34)
RBF variance 𝛴 diag(0.1, 0.2, 0.1)
Update interval 𝐾𝜃 5

With the reward function

𝑅 =

⎧

⎪

⎨

⎪

⎩

−1, if 𝑝 < −1 or |𝑝̇| > 3
1, if 𝑝 ≥ 1 and |𝑝̇| ≤ 3
0, otherwise,

the cost landscape as well as optimal 𝑄-functions are discontinuous
and therefore hard to approximate as shown in Bus̆oniu et al. (2010,
Ch. 4.5.4). The experiments reported next were conducted with MAT-
LAB R2018a, using the ode45 solver for numeric integration and a
sample time of 𝑡S = 0.1 s for discretization.

Let us first give an intuition how the sparsification criterion affects
the dictionary growth and the computation times. In order to com-
pare the behavior of OKLSPI with coherence sparsification according
to Section 3.1.1 to that of ALD sparsification, we also implemented
Algorithm 1 with lines 8–9 replaced by the ALD criterion given from
(10)–(13). Next, a simple parameter sweep over 99 learning runs
with OKLSPI is conducted for the threshold parameters 𝛿0 of ALD
chosen in a logarithmic scale between [10−5, 101], respectively 𝜇0 of
coherence chosen linearly in the interval [0.01, 0.99]. The parameters
of the OKLSPI algorithm are set according to Table 4 unless stated
differently. Each simulation run consists of 75 trials and during each
trial of 2 s, the algorithm is granted 2∕0.1 = 20 interactions with the
system before being reset to a random admissible initial state. Being an
online algorithm, it is essential to use sufficient exploration during the
data generation and we simply use the 𝜀-greedy mechanism. Thereby,
the exploration probability in time step 𝑡 is governed by

𝜀𝑡 = max
(

𝜀
(

1 −
𝑡S ⋅ 𝑡

0.75𝑡max

)

, 𝜀min

)

, (33)

where 𝑡max = 2 s is the duration of a single learning trial. We use a
Gaussian kernel function

𝑘𝑖(𝑥) = exp
(

−1
2
(𝑥 − 𝑥𝑖)⊤𝛴−1(𝑥 − 𝑥𝑖)

)

. (34)

In order to evaluate the influence of the sparsification criterion on
the execution times of the algorithm, we used a straightforward im-
plementation to approximately measure the calculation times 𝑡exec for
each trial. The experiment was done on a Linux machine with the
processor set to a constant CPU frequency of 1.8GHz. The results of
this experiment are shown in Fig. 2.

Fig. 2(a) shows how the dictionary size || grows with increasing
trials; the depicted runs were obtained by choosing values of 𝛿0 and
𝜇0 such that the amount of kernel functions in the dictionary is in
the same order of magnitude for both sparsification methods. It can
be seen that the execution times increase notably when ALD is used,
particularly if the dictionary size is in the magnitude of hundreds.
The outliers in the plot are presumably due to the imprecise method
of measuring 𝑡exec. In order to show the trend more clearly, Fig. 2(b)
depicts the plot of 𝑡total =

∑75
𝑖=1 𝑡exec,𝑖 over the average dictionary

sizes 𝐷̄ = 1
75

∑75
𝑖=1 |𝑖| for all the 99 runs. The measured results are

consistent with the theoretical discussion in Section 3.1.1 concerning
the complexity of the sparsification criteria. These results illustrate that
the per-iteration time remains reasonable using the proposed OKLSPI
algorithm with coherence sparsification and 𝐾𝜃 high enough (for the
fully optimistic case 𝐾𝜃 = 1, the algorithm performs more expensive
policy improvement steps in each iteration).

80

S.R. Friedrich, M. Schreibauer and M. Buss Engineering Applications of Artificial Intelligence 83 (2019) 72–84

Fig. 2. Comparison of the execution times of OKLSPI in the car on the hill problem. It can be seen that the times increase with increasing dictionary size || and that the increase
is much stronger when using ALD sparsification. Therefore, the coherence criterion is more suitable for online reinforcement learning control with automatic VFA.

Fig. 3. Performance of OKLSPI in the car on the hill problem with 𝜇0 = 0.9,
corresponding to an average dictionary size of ̄

|| ≈ 240. The figure depicts the mean
score 𝐺̄ according to (35) over the 90 runs (thick lines) and the corresponding 95%
confidence intervals (shaded areas). The TD update information extrapolation after
insertion of a new dictionary element is according to Section 3.3 with the trust radius
𝑝e = 1.

In order to investigate the performance of the proposed OKLSPI
algorithm, the following procedure is used. The algorithm is evaluated
over 𝑁eval = 90 independent runs, where each run consists of 75
trials each starting from a random initial state and given 𝑡max∕𝑡S = 20
interactions with the system for learning. To assess the quality of the
policy over time, after each trial, the average return is calculated
obtained when following the current policy without exploration for
three initial states 0 = {[−0.8, 0]⊤, [−0.4, 0]⊤, [0, 0]⊤}, i. e.,

𝐺̄ = 1
|0|

|0|
∑

𝑖=1

𝑁test
∑

𝑗=1
𝛾𝑗𝑅𝑗 . (35)

The second and third initial states do not allow to drive the car up the
hill just by applying the maximum input but require the policy to swing
back and forth.

A plot of a representative learning curve is shown in Fig. 3 for
𝜇0 = 0.9 and similar plots are obtained for a wide range of the spar-
sification parameter 𝜇0. The utility of the TD extrapolation scheme ac-
cording to (30) becomes evident as well, although its effect varies with
the number of useful similar dictionary elements, i. e., it depends on 𝜇0.
This example demonstrates how straightforward it is to implement and
tune the algorithm, opposed to alternative value-based approaches that
require more tedious tuning of the approximation architecture such as
fuzzy Q-iteration, cf. (Bus̆oniu et al., 2010, Ch. 4.5.4).

Finally, let us remark that we refrain from trying to compare the
performance to that of offline KLSPI. It is not clear how to construct
a meaningful assessment: being an offline algorithm, KLSPI was not
designed to operate under online conditions and one would need to find
an unbiased test scenario. As KLSPI re-iterates over its growing training
data set from the beginning in each iteration, the number of direct
interactions with the test system would somehow have to be restricted
in order to enforce a quantitatively similar number of updates of the
estimated matrices 𝐴 and 𝑏 as in the online algorithms.

4.2. AOLSPI controlling the inverted pendulum

The second example system is the inverted pendulum with the
parameters also taken from (Bus̆oniu et al., 2010). In order to balance
the pendulum in the upright position, it is essential to use a continuous
action-space representation; otherwise, undesired chattering around
the unstable equilibrium will occur. Therefore, AOLSPI will be mainly
compared to the relevant baseline algorithm OLSPI in this example.

The pendulum system consists of a DC-motor with a pole attached
and the goal is to steer the pole into the upright position and balance
it there. The dynamics are governed by

𝛼̈ = 1
𝐽

(

𝑚𝑔𝑙 sin(𝛼) − 𝑏𝛼̇ − 𝐾2

𝑅
𝛼̇ + 𝐾

𝑅
𝑢
)

, (36)

where 𝛼 describes the current angle of the pole, 𝛼̇ the angular ve-
locity, and 𝛼̈ its angular acceleration. The values of the constants
𝐽 , 𝑚, 𝑔, 𝑙, 𝑏, 𝐾, and 𝑅 are set identically as in Bus̆oniu et al. (2010). The
upright position is defined by 𝛼 = 0. For the simulation study, we
employed a 4th order Runge–Kutta solver and a model discretization
with sampling time 𝑡S = 0.005 s. The variable 𝑢 ∈ p denotes the input
torque of the DC motor and is restricted to the continuous interval
p = [−3Nm, 3Nm]. The state 𝑠 = [𝛼, 𝛼̇]⊤ of the inverted pendulum
consists of the angle 𝛼 ∈ [−𝜋, 𝜋] and the angular velocity 𝛼̇, which
is bounded by |𝛼̇| ≤ 𝛼max, 𝛼max = 15𝜋 rad s−1. In the following, the
physical units are omitted for brevity and the quantities are given in
SI unless stated differently. The state space of the system is given by
p = [−𝜋, 𝜋] × [−15𝜋, 15𝜋]. The reward function is chosen as 𝑅p(𝑠, 𝑎) =
− 𝑠⊤diag(5, 0.1) 𝑠−𝑎⊤𝑎 and punishes angular deviations from the upright
position, high angular velocities, and large control inputs.

In order to quantify the quality of a policy, we use the following
metric: for a finite set of initial states 0, the average 𝐺̄u of the total
undiscounted sum of rewards obtained from all initial states of 0 when
using the current policy for 𝑁test = 50 time steps is calculated, i. e.,

𝐺̄u = 1
|0|

|0|
∑

𝑖=1

𝑁test
∑

𝑗=1
𝑅𝑗 . (37)

Note that this score function does not discount the rewards. The reward
obtained when the pendulum is already swung up and needs to be
balanced in the upright position is considered equally important during
evaluation as the actual bang–bang like swing-up. Consequently, the
effect of a discrete action set is not hidden from the performance score
as it could occur with a discounted reward. As the initial state set
0 ⊂ P, we distribute 35 states over p as

0 = {−𝜋,−𝜋
2
, 0, 𝜋

2
, 𝜋} × {−10𝜋,−3𝜋,−𝜋, 0, 𝜋, 3𝜋, 10𝜋}.

The parameters of each algorithm evaluated in the simulation study
are given in Table 5. To assess the performance of the algorithms, we
evaluate 𝑁eval = 90 independent runs per algorithm. Each run consists
of 300 trials of 0.75 s of interaction, i. e., the system is reset to a random

81

S.R. Friedrich, M. Schreibauer and M. Buss Engineering Applications of Artificial Intelligence 83 (2019) 72–84

Table 5
Parameters used in the inverted pendulum study.

Parameter OLSPI OKLSPI aOLSPI

Discount factor 𝛾 0.99 0.99 0.99
Exploration factor 𝜀 0.95 0.95 0.95
Number of BFs |𝜙| 11 × 11 dynamic dynamic
RBF variance 𝛴 diag(0.2, 50) diag(0.2, 50, 0.1) diag(0.2, 50)
Coherence threshold 𝜇 – 0.5 0.5
Update interval 𝐾𝜃 5 5 5
Degree Chebyshev 𝑀 2 – 2
Action space  p [−3, 0, 3] p

Fig. 4. Distribution of the size of the dictionary built by AOLSPI.

start state after 𝑁trial = 150 interactions. The exploration in time step
𝑡 is again governed by (33), where 𝜀min = 0.05 and 𝑡max = 0.75 s is the
duration of a single learning trial.

In order to compare the AOLSPI with its hand-tuned counterpart,
let us consider the number and placement of the Gaussian BFs over
the state space p. With the coherence threshold 𝜇0 = 0.5, the AOLSPI
algorithm creates dictionaries with || = 121.43 elements on average;
the distribution of the dictionary size over the 90 independent runs
is depicted in Fig. 4. In order to compare the performance to that of
OLSPI, we henceforth set the number of BFs to 𝑁𝜙 = 121 and cover
the state space with a regular grid. The resulting placement of the
BFs is shown in Fig. 5. It can be observed that the automated kernel
function selection by AOLSPI results in a less evenly distributed grid.
However, the distance between each of the BFs is approximately similar
when selected according to the coherence-based update rule (18). We
also report our findings with the Babel criterion, cf. Remark 1. This
sparsification rule is less suitable for online RL. Intuitively, this is
because the BFs are not well spread over the state space. As can be
seen in Fig. 5, rather many BFs are instead created along a particular
trajectory until the threshold is reached; none can be added afterwards.
Hence, the generalization capability of the value function 𝑄 suffers
severely. This effect will not occur if (i) the data is supplied in random
order to the learning algorithm or (ii) a suitable forgetting factor
is included in the dictionary handling. In the design of OKLSPI and
AOLSPI, neither is the case.

Next, the performance of the AOLSPI algorithm is investigated.
Fig. 6 shows the mean score of the 90 independent runs for both
the well-tuned OLSPI and the AOLSPI algorithms. On the one hand,
with OLSPI it occurs easily that the performance is far worse than
depicted; it is not obvious how to select the BF grid parameters ap-
propriately beforehand. On the other hand, note that the placement
as shown in Fig. 5 and overall necessary number of BF is obtained
automatically by AOLSPI. Performance does not suffer from this online
BF selection mechanism if the information spreading mechanism from
Section 3.3 is employed. It is also confirmed that the initialization of
new matrix/vector entries without extrapolation from previous itera-
tions requires a much higher number of trials until convergence; in our
simulation, AOLSPI without extrapolation does not even reach the same
performance level within the given 300 trials.

The simulation results shown in Fig. 6 further underline the benefit
of using a continuous action space representation for the pendulum
problem. Note that the performance is measured according to (37),
i. e., undesired chattering of the pendulum around the unstable equilib-
rium is notably penalized. Hence, although the OKLSPI algorithm fully
uses the kernel trick, it fails to reach a similar level of performance
as the other algorithms which employ the continuous action space
approximation based on Chebyshev polynomials.

We now examine the influence of the extrapolation from Section 3.3
closer w. r. t. the performance of AOLSPI. In order to assess the influ-
ence, we performed additional runs with AOLSPI and the trust radius
varying between only a little (𝑝e = 0.1), a medium amount (𝑝e = 0.5),
and nearly full (𝑝e = 0.9) extrapolation. The results are shown in Fig. 7.
All existing BFs may be used to build ̃ in this particular simulation
study. This is expected due to the Gaussian kernel (34) and the spread
according to Table 5, which yields low correlations quickly for distant
BFs. If, depending on the parameters, the information is not well spread
during the dictionary update, it may nonetheless be useful to set 𝑝e < 1.

4.3. Additional discussion of the similarity-based extrapolation

With the simulation results reported above, the utility of the pro-
posed TD information update rule is already evident. We nonetheless
discuss in closer detail how (31) and (32) predict useful values for
the initialization after the dictionary expansion, hence allowing for
more efficient TD updates. Unfortunately, a quantitative evaluation of
the extrapolation is not feasible because no ground truth is available
for yet incompleted dictionaries. Instead, we exemplarily examine the
estimation of 𝐴𝑡,new (𝑖,𝑖) and 𝑏𝑡+1,new (𝑖) in an a posteriori analysis. To
this end, we consider one of the matrices explicitly. Let us take 𝐴150
and 𝑏150 at the end (𝑡 = 150) of run 1, trial 1. Given 𝑀 = 2 and
𝑁S = || = 121 at the end of this trial, we have 𝐴150 ∈ R363×363

and 𝑏150 ∈ R363. The (diagonal) values of 𝐴150 and 𝑏150 are now one
after another set to zero and estimated according to (31) and (32),
based on the remaining (diagonal) values of 𝐴150 and 𝑏150. The result
is illustrated in Fig. 8. It can be seen that the similarity weighting
interpolation approach can reflect the trend of the elements of 𝐴 and
𝑏, although the peaks may be missed. As expected, the estimates are
rather conservative because (31) and (32) essentially compute locally
weighted means, i. e., the relevant neighborhood is determined by
the variance of the BFs functions. Hence, in order to capture either
highly varying or very smooth relations in 𝐴 and 𝑏, one would be
forced to tune the variances. At this point, one would not reduce the
burden of parameter tuning by means of this approach. However, as
shown by Fig. 7, it is sufficient to add a rough prediction to improve
the convergence speed. In summary, the diagonal similarity-weighting
extrapolation (31) and (32) constitutes a simple yet efficient method to
accelerate the online learning process in the face of dynamic dictionary
growth.

5. Summary and future work

We investigate the well-known least-squares policy iteration algo-
rithms KLSPI and OLSPI in view of their applicability to intelligent
real-time automation, e. g., robotic control problems. The KLSPI al-
gorithm is reformulated for incremental data collection, yielding the
proposed OKLSPI for online usage. To this end, we adopt an efficient
sparsification scheme from kernel adaptive filtering and derive a re-
cursive dictionary expansion scheme with corresponding parameter
update rule. The OLSPI can be endowed with an automatic basis
function selection method by a similar course of action, effectively
reducing the amount of required hand-tuning. The resulting AOLSPI
algorithm is applicable to continuous state–action domains as well.
A similarity-based TD information extrapolation scheme recovers the
learning performance of the basic algorithms and we show that the
convergence properties remain unaffected by our modifications. The
utility of the novel algorithms is finally demonstrated by means of an
illustrative simulation study.

The proposed algorithms constitute within the value function based
approaches a further step towards the important goal of powerful
online learning robot control. While the novel AOLSPI algorithm allows
for continuous action space representations, this is not yet the case
for OKLSPI, leaving room for future work. Moreover, automating the
selection of the kernel hyper-parameters remains an important yet in
general challenging research question.

82

S.R. Friedrich, M. Schreibauer and M. Buss Engineering Applications of Artificial Intelligence 83 (2019) 72–84

Fig. 5. Placement of the BFs over the state space p. The grid had to be set manually for OLSPI (yellow crosses), whereas the AOLSPI VFA bases were obtained automatically. Note
that the typical inverted pendulum traces become visible using the Babel criterion (red triangles), whereas coherence sparsification (blue circles) leads to a good approximation
throughout the state space.

Fig. 6. Performance comparison of OLSPI and AOLSPI. The figure depicts the mean score according to (37) over the 90 runs (thick lines) and the corresponding 95% confidence
intervals (shaded areas). The TD update information extrapolation after insertion of a new dictionary element is according to Section 3.3.

Fig. 7. Effect of the trust radius on AOLSPI learning performance. The graph depicts the quality of the policy in the subsequent trials computed according to (37). A clear
improvement in convergence is apparent for approximately 𝑝e ≥ 0.5, i. e., the 50% most similar features are used for information extrapolation according to (31)–(32).

Fig. 8. As no ground truth is available to reflect the online situation, this graph shows an a posteriori comparison of estimated diagonal entries of 𝐴150 and estimated entries of
𝑏150 w. r. t. their true values. Although this comparison cannot accurately reflect the situation during the online algorithmic execution, it is apparent that the corresponding values
will be predicted correctly to a certain extent.

83

S.R. Friedrich, M. Schreibauer and M. Buss Engineering Applications of Artificial Intelligence 83 (2019) 72–84

Acknowledgments

This work was supported in part within the ERC Advanced Grant
SHRINE Agreement No. 267877 and in part by the Technische Univer-
sität München–Institute for Advanced Study (www.tum-ias.de), funded
by the German Excellence Initiative.

References

Alibekov, E., Kubalík, J., Babus̆ka, R., 2018. Policy derivation methods for critic-only
reinforcement learning in continuous spaces. Eng. Appl. Art. Intell. 69, 178–187.

Anderlini, E., Forehand, D.I.M., Bannon, E., Abusara, M., 2017. Control of a realistic
wave energy converter model using least-squares policy iteration. IEEE Trans.
Sustain. Energy 8 (4), 1618–1628.

Bellman, R., 1957. Dynamic Programming. Princeton University Press, NJ USA.
Bertsekas, D.P., 1995. Dynamic programming and optimal control, vol. 2, 1. Athena

Scientific Belmont, MA.
Buşoniu, L., Ernst, D., Schutter, B.D., Babus̆ka, R., 2010. Online least-squares policy

iteration for reinforcement learning control, In: Proc. Amer. Control Conf., ACC,
2010, pp. 486–491.

Buşoniu, L., Lazaric, A., Ghavamzadeh, M., Munos, R., Babuška, R., De Schutter, B.,
2012. Least-squares methods for policy iteration. In: Wiering, M., van Otterlo, M.
(Eds.), Reinforcement Learning: State-of-the-Art. In: Adaptation, Learning, and
Optimization, vol. 12, Springer, Heidelberg, Germany, pp. 75–109.

Bus̆oniu, L., Babus̆ka, R., De Schutter, B., Ernst, D., 2010. Reinforcement Learning and
Dynamic Programming Using Function Approximators, vol. 39. CRC press.

Cui, Y., Matsubara, T., Sugimoto, K., 2017. Kernel dynamic policy programming:
Applicable reinforcement learning to robot systems with high dimensional states.
Neural Netw. 94, 13–23.

Deisenroth, M.P., Fox, D., Rasmussen, C.E., 2015. Gaussian processes for data-efficient
learning in robotics and control. IEEE Trans. Pattern Anal. Mach. Intell. 37 (2),
408–423.

Deisenroth, M.P., Neumann, G., Peters, J., 2013. A survey on policy search for robotics.
Found. Trends Robot. 2 (1–2), 1–142.

Farahmand, A., Ghavamzadeh, M., Szepesvári, C., Mannor, S., 2016. Regularized policy
iteration with nonparametric function spaces. J. Mach. Learn. Res. 17 (139), 1–66.

Friedrich, S.R., Buss, M., 2017. A robust stability approach to robot reinforcement
learning based on a parameterization of stabilizing controllers, In: IEEE Int. Conf.
Robot. Autom., ICRA, 2017, pp. 3365–3372.

Geramifard, A., Walsh, T.J., Tellex, S., Chowdhary, G., Roy, N., How, J.P., 2013. A tuto-
rial on linear function approximators for dynamic programming and reinforcement
learning. Found. Trends Mach. Learn. 6 (4), 375–451.

Honeine, P., 2015. Approximation errors of online sparsification criteria. IEEE Trans.
Signal Process. 63 (17), 4700–4709.

Hourfar, F., Bidgoly, H.J., Moshiri, B., Salahshoor, K., Elkamel, A., 2019. A reinforce-
ment learning approach for waterflooding optimization in petroleum reservoirs.
Eng. Appl. Art. Intell. 77, 98–116.

Huang, Z., Xu, X., He, H., Tan, J., Sun, Z., 2017. Parameterized batch reinforcement
learning for longitudinal control of autonomous land vehicles. IEEE Trans., Syst.
Man, Cybern., Syst. PP (99), 1–12.

Jakab, H.S., Csató, L., 2015. Sparse approximations to value functions in reinforcement
learning. In: Koprinkova-Hristova, P., Mladenov, V., Kasabov, N.K. (Eds.), Artificial
Neural Networks. Springer, Cham, pp. 295–314.

Jung, T., Polani, D., 2007. Kernelizing LSPE(𝜆), In: IEEE Int. Symp. ADPRL, 2007, pp.
338–345.

Kober, J., Bagnell, D., Peters, J., 2013. Reinforcement learning in robotics: A survey.
Int. J. Robot. Res. 32 (11), 1238–1274.

Lagoudakis, M.G., Parr, R., 2003. Least-squares policy iteration. J. Mach. Learn. Res.
4, 1107–1149.

Liu, W., Principe, J.C., Haykin, S., 2011. Kernel Adaptive Filtering: A Comprehensive
Introduction, vol. 57. John Wiley & Sons.

Ma, J., Powell, W.B., 2009. A convergent recursive least squares approximate policy
iteration algorithm for multi-dimensional Markov decision process with continuous
state and action spaces, In: IEEE Int. Symp. ADPRL, 2009, 66–73.

Ma, J., Powell, W.B., 2010. Convergence analysis of kernel-based on-policy approxi-
mate policy iteration algorithms for Markov decision processes with continuous,
multidimensional states and actions. In: Dept. Oper. Res. Financial Eng. Princeton
Univ, pp. 1–40.

Mori, T., Howard, M., Vijayakumar, S., 2011. Model-free apprenticeship learning for
transfer of human impedance behaviour, In: 11th IEEE-RAS Int. Conf. Humanoid
Robots, 2011, pp. 239–246.

Ormoneit, D., Sen, Ś., 2002. Kernel-based reinforcement learning. Mach. Learn. 49 (2),
161–178.

Palunko, I., Donner, P., Buss, M., Hirche, S., 2014. Cooperative suspended object
manipulation using reinforcement learning and energy-based control. In: 2014
IEEE/RSJ Int. Conf. Intell. Robot Syst. IROS, pp. 885–891.

Palunko, I., Faust, A., Cruz, P., Tapia, L., Fierro, R., 2013. A reinforcement learning
approach towards autonomous suspended load manipulation using aerial robots,
In: IEEE Int. Conf. Robot. Autom., ICRA, 2013, pp. 4896–4901.

Pan, Z., Chen, H., You, X., 2012. Support vector machine with orthogonal legendre
kernel, In: Int. Conf. Wavelet Anal. Pattern Recogn., 2012, 125–130.

Pane, Y.P., Nageshrao, S.P., Kober, J., Babus̆ka, R., 2019. Reinforcement learning based
compensation methods for robot manipulators. Eng. Appl. Artif. Intell. 78, 236–247.

Polydoros, A.S., Nalpantidis, L., 2017. Survey of model-based reinforcement learning:
Applications on robotics. J. Intell. Robot. Syst. 86 (2), 153–173.

Powell, W.B., Ma, J., 2011. A review of stochastic algorithms with continuous value
function approximation and some new approximate policy iteration algorithms for
multidimensional continuous applications. J. Control Theory Appl. 9 (3), 336–352.

Puterman, M.L., 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons.

Rasmussen, C.E., Williams, C.K.I., 2006. Gaussian processes for machine learning. In:
Adaptive Computation and Machine Learning. MIT Press.

Richard, C., Bermudez, J.C.M., Honeine, P., 2009. Online prediction of time series data
with kernels. IEEE Trans. Signal Process. 57 (3), 1058–1067.

Schölkopf, B., Smola, A.J., 2002. Learning with Kernels: Support vector machines,
regularization, optimization, and beyond. In: Adaptive Computation and Machine
Learning Series. MIT Press.

Stulp, F., Sigaud, O., 2013. Robot skill learning: From reinforcement learning to
evolution strategies. Paladyn J. Behav. Robot. 4 (1), 49–61.

Sutton, R.S., Barto, A.G., 1998. Reinforcement Learning: An Introduction. MIT press,
Cambridge.

Sutton, R.S., Barto, A.G., Williams, R.J., 1992. Reinforcement learning is direct adaptive
optimal control. IEEE Control Syst. 12 (2), 19–22.

Taylor, G., Parr, R., 2009. Kernelized value function approximation for reinforcement
learning. In: Proc. 26th Int. Conf. Mach. Learn., ICML. ACM, pp. 1017–1024.

Tolić, D., Palunko, I., 2017. Learning suboptimal broadcasting intervals in multi-agent
systems. IFAC-PapersOnLine 50 (1), 4144–4149, 20th IFAC World Congress.

Tziortziotis, K., Vlachos, K., Blekas, K., 2016. Reinforcement learning-based motion
planning of a triangular floating platform under environmental disturbances, In:
24th Medit. Conf. Control Autom., MED, 2016, pp. 1014–1019.

Vankadari, M.B., Das, K., Shinde, C., Kumar, S., 2018. A reinforcement learning
approach for autonomous control and landing of a quadrotor, In: Int. Conf.
Unmanned Aircraft Syst., ICUAS, pp. 676–683.

Vinogradska, J., Bischoff, B., Peters, J., 2018. Approximate value iteration based on
numerical quadrature. IEEE Robot. Autom. Lett. 3 (2), 1330–1337.

Vrabie, D., Vamvoudakis, K.G., Lewis, F.L., 2012. Optimal adaptive control and
differential games by reinforcement learning principles. In: Control, Robotics &
Sensors. IET.

Wang, J., Xu, X., Liu, D., Sun, Z., Chen, Q., 2014. Self-learning cruise control using
kernel-based least squares policy iteration. IEEE Trans. Control Syst. Technol. 22
(3), 1078–1087.

Xu, X., Hou, Z., Lian, C., He, H., 2013. Online learning control using adaptive critic
designs with sparse kernel machines. IEEE Trans. Neural Netw. Learn. Syst. 24 (5),
762–775.

Xu, X., Hu, D., Lu, X., 2007. Kernel-based least squares policy iteration for
reinforcement learning. IEEE Trans. Neural Netw. 18 (4), 973–992.

Xu, X., Lian, C., Wang, J., He, H.-G., Hu, D., 2016. Actor–critic reinforcement learning
for autonomous control of unmanned ground vehicles. Sci. Robot. 42.

Xu, X., Lian, C., Zuo, L., He, H., 2014. Kernel-based approximate dynamic programming
for real-time online learning control: An experimental study. IEEE Trans. Control
Syst. Technol. 22 (1), 146–156.

Yahyaa, S., Manderick, B., 2014. Knowledge gradient for online reinforcement learning.
In: Duval, B., van den Herik, J., Loiseau, S., Filipe, J. (Eds.), Agents and Artificial
Intelligence. In: ICAART 2014 LNCS, vol. 8946, Springer, Cham, pp. 103–118.

84

http://www.tum-ias.de
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb1
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb1
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb1
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb2
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb2
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb2
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb2
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb2
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb3
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb4
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb4
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb4
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb6
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb6
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb6
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb6
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb6
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb6
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb6
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb7
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb7
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb7
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb8
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb8
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb8
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb8
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb8
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb9
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb9
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb9
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb9
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb9
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb10
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb10
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb10
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb11
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb11
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb11
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb13
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb13
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb13
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb13
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb13
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb14
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb14
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb14
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb15
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb15
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb15
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb15
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb15
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb16
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb16
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb16
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb16
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb16
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb17
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb17
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb17
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb17
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb17
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb19
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb19
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb19
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb20
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb20
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb20
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb21
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb21
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb21
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb23
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb23
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb23
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb23
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb23
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb23
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb23
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb25
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb25
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb25
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb26
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb26
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb26
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb26
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb26
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb29
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb29
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb29
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb30
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb30
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb30
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb31
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb31
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb31
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb31
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb31
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb32
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb32
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb32
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb33
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb33
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb33
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb34
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb34
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb34
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb35
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb35
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb35
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb35
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb35
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb36
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb36
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb36
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb37
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb37
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb37
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb38
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb38
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb38
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb39
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb39
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb39
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb40
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb40
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb40
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb43
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb43
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb43
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb44
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb44
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb44
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb44
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb44
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb45
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb45
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb45
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb45
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb45
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb46
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb46
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb46
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb46
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb46
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb47
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb47
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb47
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb48
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb48
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb48
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb49
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb49
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb49
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb49
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb49
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb50
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb50
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb50
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb50
http://refhub.elsevier.com/S0952-1976(19)30078-8/sb50

	Least-squares policy iteration algorithms for robotics: Online, continuous, and automatic
	Introduction
	Related work
	Contributions

	Reinforcement learning & (Kernel-based) least-squares policy iteration
	Reinforcement learning
	Least-squares policy iteration
	Kernel-based policy iteration
	Problem statement

	Online, continuous-space & automatic LSPI
	Online kernel least-squares policy iteration
	Sparsification rule
	Online dictionary expansion

	Automated online least-squares policy iteration
	Similarity-based information extrapolation in TD update
	OKLSPI
	AOLSPI

	Convergence analysis
	Complexity analysis and optimized implementation

	Simulation study example
	OKLSPI and the car on the hill problem
	AOLSPI controlling the inverted pendulum
	Additional discussion of the similarity-based extrapolation

	Summary and future work
	Acknowledgments
	References

