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Despite the importance of snow in alpine regions, little attention has been given to

the homogenization of snow depth time series. Snow depth time series are gener-

ally characterized by high spatial heterogeneity and low correlation among the time

series, and the homogenization thereof is therefore challenging. In this work, we

present a comparison between two homogenization methods for mean seasonal

snow depth time series available for Austria: the standard normal homogeneity test

(SNHT) and HOMOP. The results of the two methods are generally in good agree-

ment for high elevation sites. For low elevation sites, HOMOP often identifies sus-

picious breakpoints (that cannot be confirmed by metadata and only occur in

relation to seasons with particularly low mean snow depth), while the SNHT clas-

sifies the time series as homogeneous. We therefore suggest applying both methods

to verify the reliability of the detected breakpoints. The number of computed anom-

alies is more sensitive to inhomogeneities than trend analysis performed with the

Mann–Kendall test. Nevertheless, the homogenized dataset shows an increased

number of stations with negative snow depth trends and characterized by consecu-

tive negative anomalies starting from the late 1980s and early 1990s, which was in

agreement with the observations available for several stations in the Alps. In sum-

mary, homogenization of snow depth data is possible, relevant and should be car-

ried out prior to performing climatological analysis.
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1 | INTRODUCTION

Historical time series of meteorological variables represent a
precious and fundamental source of information for environ-
mental studies today. They are used as input data for models,
as validation datasets as well as for the identification of

trends and changes in the dynamic of natural systems. It is
therefore important to apply and develop appropriate tools to
evaluate the quality of the available time series. Among the
various tests performed to assess the quality of historical
time series, the homogeneity test has received significant
attention in climate change studies. Homogenization
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techniques aim to detect, and when possible adjust, the
changes in a time series that cannot be attributed to natural
variations or to climate change (Aguilar et al., 2003). The
change of the measurement equipment or the relocation of
the measuring station are typical examples of factors that
can affect the interpretation of collected data and make a
time series inhomogeneous. Homogenization of time series
consists of two steps: breakpoint detection and the following
adjustment thereof. Several techniques have been developed
for the homogenization of time series such as the standard
normal homogeneity test (SNHT) (Alexandersson, 1986;
Alexandersson and Moberg, 1997), HOMOP (Nemec et al.
2013) (which applies PRODIGE [Caussinus and Mestre,
2004] for breakpoint detection and INTERP (Vincent, 2002)
for the calculation of adjustments), the two-phase regression
method (Easterling and Peterson, 1995), HOMogenizaton
softwarE in R (Mestre et al., 2013), and the multiple linear
regression method (Vincent, 1998). Peterson et al. (1998)
and Aguilar et al. (2003) provide a comprehensive review of
these homogenization algorithms. Vincent (1998), Ducré-
Robitaille et al. (2003), Reeves et al. (2007), Venema et al.
(2012) and others demonstrated the importance of compar-
ing the homogenization results obtained by applying differ-
ent homogenization algorithms in order to highlight their
strengths and weaknesses.

Most of these homogenization algorithms have been
developed for and applied to temperature and precipitation
time series. The homogenization of snow depth time series
had rarely been attempted. The SNHT was used to test the
homogeneity of snow depth time series in the Province of
Trento (Marcolini et al., 2017a) and in the Adige catchment
(Marcolini et al., 2017b). The PRODIGE method was used
to analyse time series in Austria (Koch et al., 2014; Schöner
et al., 2019). Further applications of homogenization
methods to snow depth time series were also reported by
Brown and Braaten (1998). Due to the small number of stud-
ies, it is therefore important to deepen our knowledge on the
homogenization of snow depth time series. Obtaining high-
quality historical snow depth time series is of particular
interest for a variety of applications such as studies dealing
with water resources (Beniston et al., 2003; Barnett et al.,
2005; Beniston, 2006), hydrology (Tuo et al., 2018a;
2018b), winter tourism (Koenig and Abegg, 1997) and
hydropower production (Beniston, 2012). Moreover, snow
depth, which has been measured by the national hydrologi-
cal and meteorological networks since the 19th century, is
an important indicator for climatological studies in alpine
areas (Beniston et al., 1997; Barnett et al., 2005; Marty,
2008; Scherrer et al., 2013). Snow depth is strongly
influenced by temperature and precipitation changes
(Beniston et al., 2003; Bartlett et al., 2004; Barnett et al.,
2005; Beniston, 2006; Kim et al., 2013) at large, synoptic

spatial scales and additionally by wind at local scales. More-
over, snow depth is sensitive to other morphological factors
such as hillslope orientation and elevation. For this reason,
snow depth is also an indicator of climate change in relation-
ship to the morphology of the region (Beniston et al., 2018).
The complexity of snow dynamics makes the homogeniza-
tion of snow depth time series a challenging task (Begert
et al., 2008).

In the present study, we compare the performances of the
SNHT and HOMOP homogenization algorithms by applying
them to an Austrian snow depth time series dataset. These
two methods were selected as they were recently used for
the same purpose in the literature (Marcolini et al., 2017a;
Schöner et al., 2019). To filter out the high-frequency fluctu-
ations of snow depth data on a short (i.e., daily) time scale,
the breakpoint detection and the computation of the adjust-
ment factors are based on seasonal data (i.e., mean snow
depth value computed between November and March). We
also investigate if the detected inhomogeneities are signifi-
cant for the interpretation of anomalous behaviours observed
in the dataset.

2 | DESCRIPTION OF THE
DATASET

Snow depth observations in Austria on a daily time scale
were collected by the Zentralanstalt für Meteorologie und
Geodynamik (ZAMG) and the Hydrographisches Zentral
Bureau (HZB). Individual station datasets cover a time
period spanning from the late nineteenth century until the
present day. The station density varies from region to region
due to the presence of complex mountainous terrain.

The spatial representativeness of ground-based measure-
ments is limited, especially in regions of complex terrain
where precipitation and temperature are highly variable both
in time and space. In addition, large uncertainty in snow
observations is often found due to the transport of snow by
wind, particularly in mountainous regions (Sevruk, 1986;
Rasmussen et al., 2012).

In the present study, we test the homogeneity of a set of
snow depth time series collected at 25 meteorological sta-
tions (14 ZAMG and 11 HZB stations), shown in Figure 1
and detailed in Table 1. These stations are located in differ-
ent representative climatic regions of Austria, and the mean
length of the snow depth time series is roughly 73 years.
The elevations of the selected stations range from 198 m
(station Wien Hohe Warte) to 1,577 m a.s.l. (station Galtür).
Each time series consists of manual snow depth measure-
ments taken at 07 : 00 a.m. Central European Time, ensuring
that the dataset is not affected by changes in the measure-
ment methods as seen in other alpine regions
(e.g., Marcolini et al., 2017a).
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An extensive quality control was performed on the
ZAMG network time series, including tests for internal and
spatial consistency, respectively. Internal consistency was
evaluated by checking observations of different parameters

at the same station such as the temperature, new snow sum
and snow measurement, which should be consistent with
precipitation. Spatial consistency was tested by checking the
snow observations from different stations in the near
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FIGURE 1 Map of the stations
used for the intercomparison
experiment. Reference stations for the
homogenization are not shown. The
black triangles (squares) represent
stations in the ZAMG (HZB)
observational network

TABLE 1 Name, temporal length, location and data provider of the stations to be checked for homogeneity

Name Temporal length Temporal length Location Location Data provider

Galtür January 1, 1936 December 31, 2011 47.57527 12.16277 ZAMG

Innerkrems January 1, 1896 July 31, 2011 46.97194 13.75056 HZB

Kals May 1, 1951 December 31, 2011 47.00472 12.64638 ZAMG

St. Leonhard im Pitztal January 1, 1930 December 30, 2011 47.07611 10.83889 HZB

Holzgau January 1, 1936 December 31, 2011 47.25000 10.33333 ZAMG

Bad Gastein January 1, 1948 December 31, 2009 47.11056 13.13333 ZAMG

Umhausen January 1, 1936 December 31, 2011 47.14250 10.92889 ZAMG

Tamsweg January 1, 1949 June 30, 2008 47.13306 13.80833 ZAMG

Schönberg im Stubaital January 1, 1926 December 30, 2011 47.18389 11.40083 HZB

Untertauern April 17, 1896 December 28, 2011 47.30556 13.50889 HZB

Rauris January 1, 1895 March 31, 2011 47.22361 12.99250 ZAMG

Kelchsau July 1, 1895 December 30, 2011 47.38639 12.13889 HZB

Ötz May 1, 1910 August 31, 2012 47.20583 10.88611 HZB

Schladming January 1, 1961 December 30, 2011 47.39833 13.69528 HZB

Weitensfeld January 1, 1953 December 31, 2011 46.84917 14.19083 ZAMG

Mayrhofen January 13, 1936 December 31, 2011 47.15944 11.85056 ZAMG

Almsee January 1, 1961 December 30, 2011 47.82398 13.95083 HZB

Weitra December 1, 1930 December 31, 2011 48.70222 14.89861 ZAMG

Jenbach April 1, 1955 December 31, 2008 47.38889 11.75806 ZAMG

Göstling an der Ybbs September 1, 1956 November 30, 2012 47.81056 14.93139 HZB

Kufstein January 1, 1936 December 31, 2011 47.57528 12.16278 ZAMG

Frankenfels September 1, 1960 November 30, 2012 47.98222 15.32389 HZB

Klagenfurt April 1, 1950 December 31, 2011 46.64833 14.31833 ZAMG

Oed August 31, 1958 December 30, 2011 48.12278 14.74417 HZB

Wien Hohe Warte January 1 1916 July 31, 2012 48.24861 16.35639 ZAMG
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vicinity. Quality control for most HZB measurements began
in the 1970s, and the raw digitized HZB data were subject to
plausibility checks (e.g., selected internal and external con-
sistency checks depending on data availability) for the
period before 1970 to reject major errors in the time series.

A detailed metadata history exists for the ZAMG stations
and includes descriptions of station relocations and changes
in the observation systems, for example, changes of the
observer. In contrast, only metadata on the stations' reloca-
tions are available for the HZB stations. Since systematic
errors in observations are some of the main error sources in
subsequent trend analyses, it is implied that the time series
of stations that underwent major relocations in the past may
poorly represent “true” temporal variability. With regards to
the reliability of the snow data, the observational error is
assumed to be small compared to artificial shifts in snow
depth time series caused by the station relocations
(e.g., Rasmussen et al., 2012; Terzago et al., 2013).

Figures 2 and 3 show the mean seasonal snow depth
anomalies of five high (above 1,000 m a.s.l.) and five low
(below 1,000 m a.s.l.) elevation stations within the dataset
with respect to a 1961–1990 base period. It can be seen that
the anomalies display both large spatial and temporal vari-
ability. Closer inspection reveals a general increase in con-
secutive negative anomalies starting from the late 1980s and
early 1990s, which was also observed by Marty (2008) and
Reid et al. (2016). The computation was performed using
the initial time series prior to performing the homogenization
of the dataset. Most of the stations have undergone

relocation, introducing possible biases that may yield inho-
mogeneities in the time series and therefore influence the
anomalies shown in Figures 2 and 3.

3 | DESCRIPTION OF THE
METHODS

3.1 | PRODIGE

The PRODIGE method for breakpoint detection was
developed by Caussinus and Mestre (2004), and it is inte-
grated in the software package HOMOP (Nemec et al.;
2013). In contrast to other homogenization algorithms
(Alexandersson, 1986; Easterling and Peterson, 1995), the
PRODIGE method does not require the creation of a syn-
thetic reference time series representative of the climatic
area of the tested (candidate) time series (cf. the following
paragraph describing the creation of a reference time
series when applying the SNHT method). Instead, the
PRODIGE algorithm defines the interval in each time
series between two change points as reliable homogenous
segments. All of these homogeneous sections are used as
reference series. The tested time series is then compared
to all other series within the same climatic area by calcu-
lating a series of ratios between the tested and each refer-
ence series. This is analogous to the application of the
method commonly applied for the homogenization of pre-
cipitation time series. These ratio series are then tested for
discontinuities, and the detection of the discontinuities is
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based on a penalized log-likelihood criterion (Mestre
et al., 2013) to overcome the increased likelihood of
detection with an increased number of homogeneous seg-
ments (overfitting). The penalized log-likelihood L can be
written as:

L=LK−β*pen Kð Þ, ð1Þ

where LK is the maximum log-likelihood of the best par-
titioned time series into K segments, β is a coefficient of
penalization and pen(K) is a penalty criterion that increases
with increasing number of segments (Picard et al., 2005).
Thus, the final estimated number of breakpoints maximizes
Equation 1. In order to find the optimum number of
breakpoints, penalizing criteria suggested by Caussinus and
Lyazrhi (1997), Jong et al. (2003) and Lebarbier (2005) are
used in the detection process.

The first step in applying PRODIGE consists of identify-
ing the set of time series that belong to the same climatic
area of the tested time series. For this purpose, the following
criteria are applied: (a) the correlation coefficient between
tested and reference time series is larger than 0.7 when con-
sidering daily values; (b) Only reference stations within a
horizontal radius of 100 km centred on the tested station are
considered; and (c) a maximum vertical difference between
the stations where the time series are recorded is less than
300 m. In the present study, the number of reference stations
considered for each tested time series is on average equal to
12, though not all covered the whole observational period of

the tested station. The second step consists of the assignment
of the breakpoint detected in the ratios time series to one of
the two considered time series. In fact, it is unknown a priori
which one of the two time series causes the breakpoint iden-
tified in the ratios time series. If a detected change point
remains constant throughout the set of comparisons of a
tested time series with its neighbours, the breakpoint can be
attributed to the tested station (Caussinus and Mestre, 2004).

The procedure is applied to the mean seasonal snow
depth time series computed using the daily snow depth data
records. Two mean snow depth time series are considered:
the first is the average computed considering the periods
from December to February, while the second considers the
period from November to March (NDJFM). Thus, the ratios
between the mean seasonal snow depth series of the tested
time series and the highly correlated reference time series
are calculated. For each of the three penalizing criteria con-
sidered in the maximum log-likelihood estimate, the
breakpoint is considered reliable if it appears in more than
half of the reference time series. Moreover, breaks were only
considered, if they were detected by at least two of the
penalizing criteria in both seasons. If necessary, the location
of the breakpoint in time was adjusted according to the
available station meta-information.

Once breakpoints were detected, a modified version of
the INTERP method (Vincent et al. 2002) was applied to
adjust inhomogeneities in the daily snow depth data records.
Since ground-based snow depth measurements are character-
ized by high spatial and temporal variability due to a number
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of influencing factors including temperature, wind, radiation,
which could not be accounted for using the adjustment fac-
tor, a simple approach was chosen, for which a reasonable
improvement of the time series can be expected. The compu-
tation of a constant adjustment factor is therefore based on a
seasonal (NDJFM) scale. The equation for calculating the
seasonal adjustment for the best correlated reference station
has the form:

adjustment factor=
median C2

R2

n o

median C1
R1

n o , ð2Þ

where indices 1 and 2 represent the time period after and
before the detected inhomogeneity and C (R) is the accumu-
lated seasonal (NDJFM) snow depth of the candidate (refer-
ence) time series. The final step involves the multiplication
of the inhomogeneous daily scale sub–period before the
breakpoint by the seasonal adjustment factor.

3.2 | The standard normal homogeneity test

The SNHT was introduced by Alexandersson (1986). The
first step of the SNHT is the creation of a standardized ratio
series Z between the tested time series Y and a reference
time series X that should be representative of the climatic
area of Y.

The hypothesis H0 that the time series Y is homogeneous
and its alternative hypothesis H1 that Y contains a
breakpoint at time step a can be formulated as shown in
Equations 3 and 4, respectively:

H0 : Zi 2N 0,1ð Þ i2 1,…,nf g, ð3Þ

H1 :
Zi 2N μ1,1ð Þ i2 1,…,af g
Zi 2N μ2,1ð Þ i2 a+1,…,nf g

�
, ð4Þ

where N(μ, σ2) denotes the normal distribution with mean μ
and SD σ, n is the length of the time series Z and Zi indi-
cates the value of Z at time step i.

We then study the test statistic Tmax defined as

Tmax = max
1≤a≤n−1

T að Þf g= max
1≤a≤n−1

az12+ n−að Þz22
� �

, ð5Þ

where z1 and z2 are the arithmetic averages of the time series
Z up to the time step a and from the time step a+1 to the
end, respectively. If Tmax is above a critical level (Khaliq
and Ouarda, 2007), depending on the length of the time
series Z and on the chosen confidence level of a detected
breakpoint (which in our case is set to α=0.95), the data
point a corresponding to Tmax is taken as the breakpoint.

The reference time series X is constructed starting from
k reference stations Sj, where j = 1 … k. The reference sta-
tions fulfil specific requirements as stated in Marcolini et al.
(2017a). This implies that the homogenization analysis is
performed on the period in which X can be defined.
Marcolini et al. (2017a) suggest constructing the reference
time series following two different approaches (Peterson and
Easterling, 1994; Alexandersson and Moberg, 1997) in the
case of mean seasonal snow depth time series. A breakpoint
is considered reliable if the detection is agreed upon between
the two time series or when there is high statistical signifi-
cance. The main difference between these two approaches is
the following. According to Alexandersson and Moberg
(1997), we directly create the reference time series starting
from the raw values of the reference stations. When using
the approach proposed by Peterson and Easterling (1994),
we instead construct the reference time series starting from
the time series of the temporal increments of the reference
stations.

In Marcolini et al. (2017a), the choice of the reference
stations Sj was performed on all available time series of the
investigated region. In the present work, instead, the refer-
ence stations are chosen among the set of stations used to
perform the homogeneity test using the PRODIGE method.
This allows for a more consistent comparison between the
two methods.

A detected breakpoint a is adjusted by multiplying the
tested time series Y by an adjustment factor cf from the first
recorded time stamp until the breakpoint a. The adjustment
factor cf for the mean seasonal snow depth time series is
computed as

cf =
q2
q1

, ð6Þ

with q1 and q2 defined as follows:

q1=σQz1+Q ð7Þ

q2=σQz2+Q, ð8Þ

where σQ and Q are the SD and the mean of the non-
standardized ratio time series Q=X/Y (Alexandersson and
Moberg, 1997).

4 | RESULTS AND DISCUSSION

4.1 | Breakpoint detection

As shown in Table 2, in 56% of the cases, the two algo-
rithms agreed in their analyses of the time series, which
meant both classified the series as homogeneous, or
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identified the same breakpoints. The two algorithms were
said to have identified the same breakpoint if the difference
between the time location of the detected breakpoints was
2 years or less. In fact, SNHT as well as other homogeniza-
tion methods has some level of uncertainty in the identifica-
tion of the correct temporal location of the breakpoint, as
also discussed in Marcolini et al. (2017a) and Lindau and
Venema (2016). Moreover, the temporal location of
breakpoints identified by PRODIGE was sometimes
adjusted using metadata. In eight cases (Innerkrems, Kals,
Holzgau, Umhausen, Mayrhofen, Wien Hohe Warte,
Weitensfeld and Weitra), PRODIGE detected a suspicious
breakpoint. The breakpoints identified in six time series
(Innerkrems, Kals, Holzgau, Umhausen, Mayrhofen and
Wien Hohe Warte) were considered suspicious due to low

snow depth. In fact, they all occurred in winter seasons with
low mean snow depths (beginning of the 1970s, end of the
1980s, beginning of the 1990s, see also Marty, [2008]) and
they are not considered reliable breaks since they cannot be
linked to changes in the observational environment. The
detection algorithm PRODIGE is more sensitive than the
SNHT to changes at low snow depths. The breakpoints
found by PRODIGE in the time series of Weitensfeld and
Weitra were classified as suspicious because they were close
to the end of the tested time series (1 and 3 years from the
end, respectively). Hence, these eight break points were not
adjusted by PRODIGE. In the six cases where the suspicious
breakpoints were caused by low mean seasonal snow depth,
the time series were classified as homogenous by the SNHT.
Since the results would not require the application of an

TABLE 2 Results of the homogeneity analysis

Site Elevation (m a.s.l.)

Results Adjustment factors

PRODIGE SNHT INTERP SNHT

Galtür 1,577 1988 1987 1.22 1.24

Innerkrems 1,520 Y –

Kals 1,352 Y –

St. Leonhard im Pitztal 1,335 1985 – 0.95

Holzgau 1,100 Y –

Bad Gastein 1,092 1972 1974 1.38 1.84

Umhausen 1,041 Y –

Tamsweg 1,026 1983 – 0.83

1998 – 0.73

Schönberg im Stubaital 1,005 – –

Untertauern 1,000 – –

Rauris 934 1973 1973 1.57 2.18

1993 1995 1.64 1.58

Kelchsau 815 – –

Ötz 760 – –

Schladming 730 – –

Weitensfeld 704 Y 1998 0.66

Mayrhofen 643 Y –

Almsee 590 – –

Weitra 572 Y 1975 0.50

Jenbach 530 – –

Göstling an der Ybbs 530 – 2001 1.36

Kufstein 490 – –

Frankenfels 465 – –

Klagenfurt 450 – –

Oed 400 1996 1996 1.22 1.81

Wien Hohe Warte 198 Y –

Note: In the cases in which the result is indicated with Y, PRODIGE-detected suspicious breaks.
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adjustment factor, we consider these results in the cases for
when the two methods agree. In conclusion, the two
methods reached consistent results since both suggest the
same action (i.e., to adjust or not to adjust the time series) in
80% of the stations.

The analysis of the sites St. Leonhard im Pitztal,
Tamsweg, Weitra, Weitensfeld and Göstling an der Ybbs
shows different results for the two methods. We did not find
any correlation between the altitude of the site or its position
and the difference in the results of the algorithms. Moreover,
as discussed later, we were able to consider the difference
between the SNHT result (homogeneous series) and the
PRODIGE result of little practical importance when consid-
ering that the adjustment factor computed for St. Leonhard
im Pitztal by PRODIGE is equal to 0.95.

In Figure 4, four time series are shown. The first plot
shows the time series of Galtür, where both homogenization
methods detect the same breakpoint. The second plot shows
the time series of Untertauern, where both algorithms classi-
fied the time series as homogeneous. The time series for
Tamsweg (Figure 4c) saw different results from the two
homogenization methods. Finally shown in Figure 4d are the
time series of Mayrhofen, which are classified as homoge-
neous by the SNHT and as suspicious by PRODIGE.

4.2 | Adjustment of the inhomogeneities

As described in Section 3, the adjustment of a breakpoint
was performed by multiplying the first part of the time series
from the beginning up to the breakpoint by an adjustment
factor. Due to the multiplicative approach, it is only possible
to modify the registered snow depth but not to add new

snow days to the adjusted time series. The adjustment fac-
tors of the time series where the two algorithms detected
breakpoints (Bad Gastein, Galtür, Rauris and Oed) are in
agreement (see Table 2), that is, in both cases they indicate
an adjustment factor larger than 1. However, we observe that
on average the deviation between the two adjustment factors
is 20%, with SNHT values being generally larger than the
ones computed using INTERP. Note that the SNHT is pri-
marily intended to be applied for the detection and adjust-
ment of one single breakpoint. It is well known
(Alexandersson and Moberg, 1997) that its performance in
the detection and adjustment of multiple breakpoints as seen
in the station Rauris is generally poor, particularly for early
breaks.

There are several possible reasons explaining the vari-
ability in the computed adjustment factors. First, the two
mathematical expressions reported in Equation 2 and Equa-
tion 6 are not equivalent. The second and probably more
important factor is that the candidate station is not necessar-
ily compared to the same set of reference stations, since the
procedures used by the two methods to select them are dif-
ferent (see Sections 3.1 and 3.2).

4.3 | Identification of the cause for the
breakpoint

Metadata can be used to find the cause of a breakpoint in a
time series. As described above, our dataset consists entirely
of data that have been collected manually using the same
procedure throughout the entire period. Therefore, the most
important metadata are those concerning the relocation of
the station given in Table 3. As can be deduced from the

FIGURE 4 Example of the time
series used for the intercomparison
experiment. In the upper panel (a), a
time series where both the used
algorithm found the same unique
breakpoint is shown. The time series
of Untertauern (b) is homogeneous
according to the results of both the
algorithms. The third plot (c) shows a
time series where PRODIGE and
SNHT found different breakpoints.
Finally, in plot (d) is shown an
example of a time series which was
classified as homogenous by the
SNHT and as suspicious by
PRODIGE (suspecious breakpoint
in 1993)
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TABLE 3 Metadata of station relocation for the dataset

Site Latitude Longitude Elevation (m) Start date End date Environment

Galtür 46.96667 10.18333 1,583 - March 31, 1989 Narrow valley, village

46.96444 10.19361 1,648 April 1, 1989 November 30,
1996

Narrow valley, village
boundary

46.96806 10.18556 1,577 December 1, 1996 August 31, 2008 Narrow valley, village

46.96806 10.18556 1,587 September 1,
2008

December 31,
2011

-

Kals 47.00000 12.65000 1,347 - June 30, 1984 Valley, village

47.00000 12.63333 1,350 July 1, 1984 May 31, 1992 -

47.00333 12.64611 1,338 May 1, 1993 December 31,
2007

-

47.00472 12.64639 1,352 January 1, 2008 December 31,
2011

-

St. Leonhard im
Pitztal

47.06778 10.86611 1,370 - December 16,
1985

Valley, village boundary

47.07667 10.83667 1,335 December 17,
1985

July 28, 2008 Valley, village

47.07611 10.83889 1,329 July 29, 2008 December 30,
2011

-

Holzgau 47.26250 10.34917 1,100 - September 16,
2005

Valley, village

47.26250 10.34222 1,080 September 17,
2005

December 31,
2011

-

Bad Gastein 47.11667 13.13333 1,082 - December 31,
1975

Valley, village

47.11667 13.13333 1,100 January 1, 1976 October 31, 1995 -

47.09278 13.12083 1,100 November 1,
1995

December 31,
2009

-

47.11056 13.13333 1,092 January 1, 2010 March 31, 2011 -

Umhausen 47.13750 10.93389 1,041 - September 30,
2003

Valley, village

47.13917 10.92889 1,041 October 1, 2003 December 31,
2011

-

Tamsweg 47.11667 13.80000 1,019 - December 5,
1956

Valley, village boundary

47.13333 13.83333 1,019 December 6, 1956 November 30,
1960

-

47.11667 13.80000 1,012 December 1, 1960 February 28,
1983

-

47.13333 13.80000 1,012 March 1, 1983 May 31, 1998 -

47.12472 13.81000 1,025 June 1, 1998 June 30, 2008 Valley, village

47.13306 13.80833 1,026 July 1, 2008 March 31, 2011 -

Schönberg im
Stubaital

47.18333 11.40000 1,010 - February 15,
1993

Valley, village

47.18750 11.40472 1,005 February 16, 1993 January 22, 2009 -

47.18389 11.40083 1,009 January 22, 2009 December 30,
2011

-

Untertauern 47.30556 13.50861 1,000 - September 6,
1992

Valley, village
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TABLE 3 (Continued)

Site Latitude Longitude Elevation (m) Start date End date Environment

47.30556 13.50889 1,000 September 7,
1992

December 28,
2011

-

Rauris 47.21667 13.00000 945 - October 31, 1973 Valley, village boundary

47.25000 13.00000 945 November 1,
1973

June 30, 1989 -

47.25000 12.98333 916 July 1, 1989 December 31,
1993

-

47.22361 12.99250 934 January 1, 1994 March 31, 2011 Valley, village

Kelchsau 47.38333 12.13333 760 - June 30, 1978 Valley, village

47.38806 12.13333 815 July 1, 1978 11/06/2000 -

47.39528 12.13778 800 June 12, 2000 June 29, 2005 -

47.38639 12.13889 815 June 30, 2005 December 30,
2011

-

Ötz 47.20361 10.90000 775 - July 21, 1980 Narrow valley, village

47.20500 10.89139 765 July 22, 1980 June 17, 1998 -

47.20583 10.88694 760 June 18, 1998 May 4, 2010 -

47.20583 10.88611 760 May 5, 2010 August 31, 2012 -

Schladming 47.39247 13.68639 740 - December 31,
2003

Valley, village

47.39833 13.69528 730 January 1, 2004 December 30,
2011

-

Weitensfeld 46.85000 14.20000 715 - August 31, 1985 Valley, village

46.84444 14.19639 705 September 1,
1985

August 31, 2007 -

46.84917 14.19083 704 September 1,
2007

December 31,
2011

-

Mayrhofen 47.15000 11.85000 643 - September 30,
1992

Valley, village

47.15944 11.85056 643 October 1, 1992 December 31,
2011

-

Almsee 47.76750 13.95556 590 - 02/07/2007 Valley, village

47.82398 13.95083 574 July 3, 2007 December 30,
2011

-

Weitra 48.69806 14.89889 580 - July 31, 2003 Lowland, village boundary

48.70222 14.89861 572 August 1, 2003 July 31, 2012 -

Jenbach 47.38333 11.75000 530 - June 30, 1994 Valley, village

47.38889 11.75806 530 July 1, 1994 December 31,
2008

-

Göstling an der
Ybbs

47.81944 14.93083 544 - January 1, 2002 Lowland, village boundary

47.81056 14.93139 530 January 3, 2002 November 30,
2012

Lowland, village

Kufstein 47.57417 12.16389 492 - March 15, 2000 Valley, village

47.57528 12.16278 490 March 16, 2000 December 31,
2011

-

Klagenfurt 46.65000 14.33333 447 - March 31, 1991 Valley, city boundary, rural
area
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table, most of the stations were relocated several times over
their history. Still, the number of detected breakpoints was
relatively low in comparison to the number of relocations
that occurred in the past. This means that relocation of a sta-
tion does not always cause a statistically significant
breakpoint in the time series. However, all breakpoints
detected using the PRODIGE method that were not classi-
fied as suspicious correspond to station relocations. For
results obtained using the SNHT method, only the
breakpoints detected for Weitra and Weitensfeld are not
associated with station relocations. This result is not indica-
tive of a poorly performing statistical test since the metadata
may be incomplete and does not include other sources of
possible breakpoints such as a change in the operator taking
the measurement.

The information contained in Table 3 does not provide
a detailed explanation of why the relocation of a station
causes a breakpoint. For example, elevation is one of the
most sensitive factors that affects mean seasonal snow
depth; however, we observe that breakpoints occur even
with no change in elevation (e.g., Tamsweg station), and
that even in cases with large changes in elevation, no
breakpoints are identified (e.g., 55 m for Kelchsau station).
The breakpoints associated with station relocation often
correspond to significant changes in the surrounding envi-
ronment (e.g., station relocation from the village boundary
with isolated low buildings or trees to areas moderately
covered by low buildings, and change in the density of the
residential area). The small size of the dataset means a
causal relation between station relocation and occurrence of
the breakpoint cannot be found. A physically based valida-
tion of the results provided by homogenization methods for
mean seasonal snow depth time series should be attempted
in future studies.

4.4 | Implication for time series analysis

The adjustment of an inhomogeneous time series has an
effect on climatological analysis. We compare, for example,
the anomalies of three time series with those of the
corresponding adjusted time series. Note that the application
of an adjustment factor influences the mean of the time
series, which is later used for the computation of the anoma-
lies. As a consequence, the anomalies of the adjusted time
series show changes not only before, but also after the loca-
tion of the corrected breakpoint.

Figure 5 shows the results for the station of Galtür. The
upper panel shows the anomalies with respect to the period
1961–1990 of the original time series, after smoothing with
a 5-year moving average. The second and third panels show
the anomalies of the time series after the adjustments com-
puted by the SNHT and INTERP methods, respectively. The
anomalies of the adjusted time series are very similar
because the values of the adjustment factors are very close
to each other (1.22 for INTERP and 1.24 for the SNHT).
Both adjusted time series show more pronounced negative
anomalies starting from the late 1980s than the original
(before adjustment) series. The Alpine region is comprised
of regions that are characterized by different variability in
the snow depth due to several factors such as location, eleva-
tion and influence of different weather patterns. However,
the anomalies of the adjusted time series described above are
more consistent with the results of other studies when refer-
ring to the same time period in the Alpine region (see
e.g., Beniston et al., 2003; Marty, 2008; Valt and Cianfarra,
2010; Marcolini et al., 2017a) than the original time series.

Another interesting example of how the adjustment of a
time series can influence a climatological analysis is shown
in Figure 6, where the anomalies of the Bad Gastein time
series before and after the adjustment are shown. All

TABLE 3 (Continued)

Site Latitude Longitude Elevation (m) Start date End date Environment

46.65000 14.33333 447 April 1, 1991 August 31, 1996 -

46.64833 14.31833 450 September 1,
1996

December 31,
2011

-

Oed 48.11472 14.74583 360 - December 31,
1995

Lowland, village boundary

48.12278 14.74417 393 January 1, 1996 December 30,
2011

Lowland, village

Wien Hohe Warte 48.24861 16.35639 198 - December 31,
1992

City, high density residential
area

48.24861 16.35639 198 January 1, 1993 July 31, 2012 -

Note: In italics, we indicate the stations for which at least a reliable breakpoint was detected. Bold values are used when the detected break is in agreement with the
relocation, within an interval of maximum 5 years.
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anomalies in this case were also affected by the breakpoint
adjustment and were smoothed using a 5-year moving aver-
age. In the original time series, we see two periods with
large anomalies in the 1970s (negative) and in the 1980s
(positive). Furthermore, a slight increase in the snow depth
after 2000 is observed. After the adjustment of the time
series with the factors computed by INTERP, there are some
remarkable differences. Large positive anomalies appear
from the beginning of the time series until the late 1960s.
The corrected time series also display negative anomalies
from the late 1980s until 2000, with the following period
characterized by little variability. A similar pattern is also
seen in the time series adjusted by the SNHT, although the
negative anomalies starting at the end of the 1980s are more
evident than in the previous case and continue until present

day with the exception of 2004. The positive anomalies at
the beginning of the 1980s are very small in comparison.
Again, the corrected time series are in better agreement with
what was observed in previous studies, with a reduction in
mean seasonal snow depth starting from the late 1980s. The
homogenization analysis and the subsequent adjustment of
the time series may therefore reduce the uncertainty in the
detection of climate change.

If the value of the adjustment factors is close to 1, the
correction of the inhomogeneity has little influence on cli-
matological analysis. This is the case for the St. Leonhard
im Pitztal time series shown in Figure 7.

Even after the application of the adjustment factor, the
anomalies of the time series of Galtür, Bad Gastein and
St. Leonhard im Pitztal (Figures 5–7) differ from each other

FIGURE 5 Anomalies for the
period 1961–1990 of the time series of
Galtür before (a) and after the
adjustment of the detected breakpoint
in 1988 ((b) for SNHT and (c) for
INTERP). Note that the adjustment
factor is applied to the part of the time
series preceeding the location of the
breakpoint

FIGURE 6 Anomalies for the
period 1961–1990 of the time series of
Bad Gastein before (a) and after the
adjustment of the detected breakpoint
in 1972 ((b) for SNHT and (c) for
INTERP). Note, that the adjustment
factor is applied to the part of the time
series preceeding the location of the
breakpoint
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due to the different characteristics of the area in which the
stations are located (e.g., the altitude, the regional variabil-
ity). This is important in order to characterize the relation-
ship between snow depth and other related climatic and
environmental factors.

4.5 | Implication for trend analysis

The homogenization of a time series influences the results of
the statistical tests that are commonly used in time series
analysis. In this study, the Mann–Kendall non-parametric
statistical test (Mann, 1945; Kendall, 1975) was used to
detect the presence of any decreasing or increasing trend in
the snow depth time series. In addition, the Theil–Sen
method (Sen, 1968) is applied to estimate the slope magni-
tude of the trend line (strength of the trend). Table 4 shows
that 40% of the original time series display a significant neg-
ative trend at a 95% confidence level. The results obtained
after the correction of the time series using HOMOP and
SNHT change the percentage of time series with significant
negative trends to 44% in both cases. In five cases, the
adjusted time series display the same negative trend as the
original series (Weitra, Galtür, St. Leonhard im Pitztal,
Tamsweg, Weitensfeld), but the p-value of the test and of
the Sen slope generally shifts towards a more significant
negative trend. The homogenized time series show a differ-
ent trend (from positive to negative) in comparison to the
original time series for the stations Bad Gastein, Rauris,
Göstling an der Ybbs and Oed, although the p-value is larger
than .05. Several studies have identified the occurrence of
negative trends in snow related variables throughout the
entire Alps (Beniston et al. (2003); Marty, 2008; Valt and
Cianfarra (2010); Marcolini et al. (2017b)), and particularly
in Austria (Schöner et al. (2019)). The set of homogenized

time series using the SNHT method leads to the identifica-
tion of more time series displaying a more negative trend
than the set of homogenized time series obtained using
HOMOP. However, since the dataset is limited, neither of
the two methods can be determined to be superior to the
other. Moreover, the interpretation of the results shown in
Table 4 depends on the chosen confidence level. Our analy-
sis aims at highlighting any uncertainty that may affect the
trend analysis of snow depth data, depending on whether a
homogenization technique is applied or not. While the detec-
tion of breakpoints in a time series is of unquestionable
importance as a quality-check of the available dataset, the
inclusion of adjusted time series for this kind of analysis is
still a matter of discussion (Marty 2008; Marcolini et al.
2017a).

5 | CONCLUSIONS

To the best of our knowledge, this is the first study to com-
pare two snow depth homogenization algorithms.

The main outcome of this work shows that homogeniza-
tion of snow depth time series is possible and necessary for
climatological analysis. This conclusion is drawn after
applying two different homogenization methods (SNHT and
HOMOP) to time series from a number of Austrian stations.

The dataset consists of manual snow depth measure-
ments; hence, it was not possible to identify the influence of
the measurement method on the homogeneity of the time
series. We believe that this constitutes an important advan-
tage for the analysis we performed, since it allows a focus
on the comparison of the two methods for a relatively simple
situation, where breakpoints are mainly caused by station
relocation. As shown in Marcolini et al. (2017a), merging
datasets collected using different methods can also be an

FIGURE 7 Anomalies for the
period 1961–1990 of the time series of
St. Leonhard im Pitztal before (a) and
after the adjustment (INTERP) of the
detected breakpoint in 1985 (b). Note
that the adjustment factor is applied to
the part of the time series preceeding
the location of the breakpoint

4526 MARCOLINI ET AL.



important source of inhomogeneity in the time series and
should be investigated further in future studies.

The detection of breakpoints in mean seasonal snow
depth time series is possible since HOMOP and SNHT agree
in most cases, showing a good reliability in localizing
breakpoints. The biggest challenge encountered was that
HOMOP sometimes detected suspicious breaks during par-
ticularly snow-scarce seasons in low elevation sites, while
SNHT classified the time series as homogeneous. Our rec-
ommendation to solve this issue is to verify the occurrence
of the break using either metadata or a different homogeni-
zation method. The identification of possibly suspicious
breaks is a matter of great importance to prevent unneeded
adjustments of the time series, which already represent the
“true” variation of the snow depth.

For both algorithms, it is vital to compare the statistical
results with the metadata, that is, all the available

documentation of changes that are not due to natural factors
and that may have affected the measurements such as reloca-
tion of the station or change in the measuring equipment.
We suggest that if the detected breakpoints cannot be con-
firmed with the metadata, the classification of the time series
as inhomogeneous should be supported by further robust
arguments such as the detection of the same breakpoint
using different homogenization methods.

The adjustment factors computed by INTERP and SNHT
are generally in agreement, although the available sample is
too small to derive statistically significant conclusions. As it
has also been discussed in Peterson et al. (1998), the adjust-
ment of an inhomogeneous time series is not straight for-
ward and it is more difficult than the identification of a
breakpoint. This study further highlights how the magnitude
of the homogenization factors is method-dependent. It is
important to remember that homogenized time series are not

TABLE 4 Theil–Sen slope (cm/season) and results of the Mann–Kendall trend test for all 25 time series

Site

Original HOMOP SNHT

Sen slope p-value Sen slope p-value Sen slope p-value

Galtür −0.410 .086 −0.866 .002 −0.893 .002

Innerkrems −0.569 .002 −0.569 .002 −0.569 .002

Kals −0.362 .008 −0.362 .008 −0.362 .008

St. Leonhard im Pitztal −0.240 .068 −0.192 .112 −0.240 .068

Holzgau −0.442 .031 −0.442 .031 −0.442 .031

Bad Gastein 0.082 .575 −0.033 .711 −0.233 .131

Umhausen −0.205 .029 −0.205 .029 −0.205 .029

Tamsweg −0.130 .074 −0.090 .123 −0.130 .074

Schönberg im Stubaital −0.104 .046 −0.104 .046 −0.104 .046

Untertauern −0.304 .160 −0.304 .160 −0.304 .160

Rauris 0.044 .660 −0.155 .238 −0.273 .064

Kelchsau −0.214 .054 −0.214 .054 −0.214 .054

Ötz −0.099 .010 −0.099 .010 −0.099 .010

Schladming −0.118 .094 −0.118 .094 −0.118 .094

Weitensfeld −0.323 .000 −0.323 .000 −0.168 .004

Mayrhofen −0.204 .010 −0.204 .010 −0.204 .010

Almsee −0.049 .738 −0.049 .738 −0.049 .738

Weitra 0.026 .255 0.026 .255 0.059 .016

Jenbach −0.139 .003 −0.139 .003 −0.139 .003

Göstling an der Ybbs 0.069 .503 0.069 .503 −0.000 1.000

Kufstein −0.143 .063 −0.143 .063 −0.143 .063

Frankenfels −0.083 .195 −0.083 .195 −0.083 .195

Klagenfurt −0.159 .002 −0.159 .002 −0.159 .002

Oed 0.001 .980 −0.010 .581 −0.039 .101

Wien Hohe Warte −0.031 .130 −0.031 .130 −0.031 .130

Note: Positive (negative) Theil–Sen slopes indicate increasing (decreasing) tendency. Bold values indicate a statistical significance at a 95% confidence level. The
corrected station time series are highlighted in italics (left column). The trend test is valid for the winter seasons from NDJFM between 1961 and 2010.
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equivalent to homogeneous time series (Peterson et al.,
1998) as their adjusted values are not uniquely defined. The
consideration or the exclusion of adjusted time series for cli-
matological analysis is therefore subjective. The homoge-
nized part of the time series must be considered a
statistically justified estimate of the true values.

The homogenization of mean seasonal snow depth time
series is necessary as it affects both the evaluation of the
anomalies, trend analysis performed with Mann–Kendall
tests and the estimation of the Theil–Sen slope. The homog-
enized dataset showed an increase in the number of stations
with negative snow depth trends and with consecutive nega-
tive anomalies starting from the late 1980s and early 1990s,
which was in agreement with the observations available for
several stations in the Alps.

In this work, we purposefully did not rank the perfor-
mance of the two methods. As also outlined in Marcolini
et al. (2017a), it is not always appropriate to rank the differ-
ent homogenization algorithms in terms of performance as
they are statistical tests and they are inherently affected by
uncertainty. As a general suggestion, we should not rely on
the results of a single test in the case of mean seasonal snow
depth time series due to the inherent complexity in the
homogenization of these datasets. Instead, we recommend
the application of multiple and fundamentally different tests
to verify the reliability of the identified breakpoints and their
correction factors. A breakpoint identified by different
methods is more reliable than a breakpoint that emerges
from only a single test, that is, only under the specific statis-
tical assumptions on which the test is based.

It is quite clear, though, that further studies are needed to
improve the capability of the breakpoint detection algorithm
to identify artificial shifts in snow depth time series. With
the methods used in this study, daily snow depth data cannot
be corrected, as the multiplicative correction factor does not
generate new snow days. Hence, further research is needed
to develop robust methods to correct daily snow depth time
series. In the future, it would also be interesting and impor-
tant to test the performances of other homogeneity tests on a
snow depth dataset and compare their outcomes with the
results of PRODIGE and the SNHT.
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