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A B S T R A C T

Hyperspectral dimensionality reduction (HDR), an important preprocessing step prior to high-level data analysis,
has been garnering growing attention in the remote sensing community. Although a variety of methods, both
unsupervised and supervised models, have been proposed for this task, yet the discriminative ability in feature
representation still remains limited due to the lack of a powerful tool that effectively exploits the labeled and
unlabeled data in the HDR process. A semi-supervised HDR approach, called iterative multitask regression
(IMR), is proposed in this paper to address this need. IMR aims at learning a low-dimensional subspace by jointly
considering the labeled and unlabeled data, and also bridging the learned subspace with two regression tasks:
labels and pseudo-labels initialized by a given classifier. More significantly, IMR dynamically propagates the
labels on a learnable graph and progressively refines pseudo-labels, yielding a well-conditioned feedback system.
Experiments conducted on three widely-used hyperspectral image datasets demonstrate that the dimension-
reduced features learned by the proposed IMR framework with respect to classification or recognition accuracy
are superior to those of related state-of-the-art HDR approaches.

1. Introduction

Recently, hyperspectral imaging in sensing techniques has garnered
growing attention for many remote sensing tasks (Plaza et al., 2009),
such as land-use and land-cover classification (Yu et al., 2017; Gan
et al., 2018; Hang et al., 2019), large-scale urban or agriculture map-
ping (Dell’Acqua et al., 2004; Yang et al., 2013; Fan et al., 2015; Xie and
Weng, 2017), spectral unmixing (Henrot et al., 2016; Hong et al., 2017;
Zhong et al., 2016; Hong et al., 2019a), object detection (McCann et al.,
2017; Wu et al., 2018; Li et al., 2018; Wu et al., 2019), and multimodal
scene interpretation (Tuia et al., 2016; Yokoya et al., 2018; Zhu et al.,
2019; Liu et al., 2019), as forthcoming spaceborne spectroscopy ima-
ging satellites (e.g., EnMAP (Guanter et al., 2015)) make hyperspectral
imagery (HSI) available on a larger scale. Although HSI features richer
spectral information than RGB (Kang et al., 2018) and multispectral
(MS) data (Hong et al., 2015), yielding more accurate and dis-
criminative detection and identification of unknown materials, yet the
very high dimensionality in HSI also introduces some crucial drawbacks
that need to be taken seriously: high storage cost, information re-
dundancy, and the performance degradation resulting from the curse of

dimensionality, to name a few. A general but effective solution to these
issues is dimensionality reduction, also referred to as subspace learning. In
this process, we expect to compress the HSI to a low-dimensional sub-
space along the spectral dimension while preserving the highest pos-
sible spectral discrimination.
With the significant support in both theory and practice as well as a

fact that the learning-based strategy is somehow superior to the
manually-designed feature extraction (Hong et al., 2016a), a con-
siderable number of subspace learning approaches have been designed
and applied to hyperspectral data processing and analysis in the past
decades (Licciardi et al., 2009; Huang and Yang, 2015; Hong et al.,
2016b; Luo et al., 2016; Liu et al., 2017; Xu et al., 2018a; Xu et al.,
2019), particularly hyperspectral dimensionality reduction (HDR) (Gao
et al., 2017a; Hong et al., 2017; Gao et al., 2017b) and spectral band
selection (Sun et al., 2015; Sun et al., 2017a). Depending on their dif-
ferent learning strategies, HDR techniques are roughly categorized as
unsupervised, supervised, or semi-supervised strategies.
The classic principal component analysis (PCA) (Martínez and Kak,

2001) is a user-friendly dimensionality reduction method for that is
limited to capturing the underlying topology of the data. Rather,
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manifold learning techniques (e.g., locally linear embedding (LLE)
(Roweis and Saul, 2000), Laplacian eigenmaps (LE) (Belkin and Niyogi,
2003), local tangent space alignment (LTSA) (Zhang and Zha, 2004),
and their variants: locality preserving projections (LPP) (He and Niyogi,
2004), neighborhood preserving embedding (NPE) (He et al., 2005),
large-scale LLE (Hong et al., 2016c), enhanced-local tangent space
alignment (ENH-LTSA) (Sun et al., 2014)), by and large, follow the
graph embedding framework presented in Yan et al. (2007). This fra-
mework starts with the construction of graph (topology) structure and
aim at learning a low-dimensional data embedding while preserving the
topological structure. Some popular and advanced methods have been
proposed based on the graph embedding framework for HDR. For ex-
ample, Ma et al. (2010) proposed to locally embed the intrinsic struc-
ture of the hyperspectral data into a low-dimensional subspace for
hyperspectral image classification. Li et al. (2012) modeled the locally
neighboring relations between hyperspectral data in a linearized system
for HDR. In Huang et al. (2019), a multi-feature manifold discriminant
analysis was developed on the basis of graph embedding framework for
hyperspectral image classification. Authors of Sun et al. (2014) up-
graded the existing landmark isometric mapping approach for the fast
and nonlinear HDR. The same investigators (Sun et al., 2017b) further
extended their work to linearly extract the low-dimensional re-
presentation with sparse and low-rank attribute embeddings for HSI
classification. In Hong et al. (2017), a joint spatial-spectral manifold
embedding is developed to extract the discriminative dimension-re-
duced features. Subsequently, Huang et al. (2019) proposed a general
spatial-spectral manifold learning framework to reduce the dimension
of hyperspectral imagery.
In supervised HDR strategies, the main consideration is the dis-

crimination between intra-class and inter-class, where different dis-
criminative rules are followed: local discriminative analysis (LDA)
(Martínez and Kak, 2001), local fisher discriminative analysis (LFDA)
(Sugiyama, 2007), sparse discriminant analysis (Huang and Yang,
2015), noise-adjusted discriminant analysis (Li et al., 2013), feature
space discriminant analysis (Imani and Ghassemian, 2015), and so on.
Despite the superior class separability, these methods still might fail to
robustly represent the features due to sensitivity to various complex
noises and ill-conditioned statistical assumptions, especially in the case
of small-scale samples. Unlike the aforementioned approaches that seek
to project the original data directly into a discriminative subspace, Ji
and Ye (2009) simultaneously performed dimensionality reduction and
classification under a regression-based framework, in order to find an
optimally latent subspace where the decision boundary is expected to
be better determined. With the local manifold regularization in the
projected subspace, this strategy has been successfully applied and
extended to learn the discriminative representation for supervised HDR
(Hong et al., 2018).
Most previously-proposed HDR methods adhere to either the un-

supervised or the supervised strategy, yet the labeled and unlabeled
information is less frequently taken into consideration. A straightfor-
ward way to consider the unlabeled samples is the graph-based label
propagation (GLP) (Zhu et al., 2003), which has been successfully ap-
plied to semi-supervised HSI classification (Li et al., 2016) together
with the support vector machine (SVM) classifier. To effectively im-
prove the discrimination and generalization of dimension-reduced
features, some proposed semi-supervised HDR works have been pro-
posed by the attempt to preserve the potentially global data structure
that lies in the whole high-dimensional space. For example, Ma et al.
(2015) followed a graph-based semi-supervised learning paradigm for
HDR and classification, where the graphs are constructed by different
local manifold learning approaches. A general but effective work in-
tegrating LDA with LPP, called semi-supervised local discriminant
analysis (SELD), was proposed in Liao et al. (2013) for a semi-su-
pervised hyperspectral feature extraction.Inspired by GLP, (Zhao et al.,
2014) enhanced the performance of LDA by jointly utilizing the labels
and “soft-labels” predicted by GLP for the semi-supervised subspace

dimensionality reduction. Wu and Prasad (2018) proposed a similar
approach to achieving a semi-supervised discriminative dimensionality
reduction of HSI by embedding pseudo-labels (instead of the similarity
measurement in LPP (Liao et al., 2013)) into LFDA rather than LDA in
Zhao et al. (2014).

1.1. Motivation and objectives

Although these proposed semi-supervised approaches have been
proven to be effective in handling the issue of HDR to some extent, yet
their graph structures for unlabeled samples are constructed either from
the similarity measurement (e.g., using RBF) or from the pseudo-labels
inferred by GLP or pre-trained classifier. The resulting features by using
this type of graph construction strategy is neither robust nor general-
ized, due to the noisy data and labels as well as the scarce labeled
samples. Also, these semi-supervised algorithms, as often as not, at-
tempt to find a single transformation that connects the original data and
the subspace to be estimated. On account of the complexity in the
learning process, the optimal subspace search is hardly accomplished
only by a single transformation. On the other hand, in spite of being
guided by label information, there is still lack of an explicit and direct
connection between the learned subspace and the label space in the
subspace learning strategy interpreted by a single projection, further
causing the performance bottleneck. In addition, these subspace-
learning-based models are commonly treated as a disjunct feature
learning step before classification. In other words, it is unknown what
kinds of features in the learning process may be capable of improving
classification accuracy.
According to these factors, our objectives in this paper can be

summarized as follows: 1) to bridge the to-be-estimated subspace with
the label information more explicitly and effectively; 2) to introduce
many unlabeled samples for improving the model’s generalization
ability; 3) and to refine the quality of class indicators of unlabeled
samples for high discriminative HDR.

1.2. Method overview and contributions

Towards the aforementioned goals, a novel regression-induced
learning model motivated by the joint learning (JL) framework (Ji and
Ye, 2009; Hong et al., 2018) is proposed, which seeks to learn an op-
timal subspace by considering the correspondences between the
training samples and labels on a to-be-estimated latent subspace. We
further extend the JL framework to a multitask regression model with
the joint embedding of labeled and unlabeled samples. In the multitask
framework, we also propose to adaptively learn a soft-graph structure
from the data rather than utilizing a hard-graph (fixed graph) con-
structed manually or generated by additional algorithms, yielding a
high-performance and more generalized label propagation. In the
meantime, to facilitate the use of pseudo-labels more effectively, the
learned graph can be updated after each outer iteration ends, and the
pseudo-labels accordingly refined, thereby enabling the learned fea-
tures to be progressively optimized. More specifically, the main con-
tributions of this work can be highlighted as follows.

• We propose a JL-based variant: a novel iterative multitask regres-
sion (IMR) framework by simultaneously considering few labeled
samples and unlabeled samples in quantity, with the application to
semi-supervised HDR.
• We adaptively learn the connectivity (graph structure) between
samples by aligning the labeled and unlabeled samples in the esti-
mated subspace.
• We deeply integrate the adaptive graph learning with the proposed
multitask regression framework in an iterative manner, making it
possible for pseudo-labels to be gradually updated using the learned
graph in each outer iteration.
• We also design a general solver that originates from the alternating
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direction method of multipliers (ADMM) optimizer for the solution
of our proposed IMR method.

2. The proposed methodology

In this section, we start with a brief review of our model’s corner-
stone, the JL framework, and then extend it to a variant of multitask
learning by synchronously regressing the labeled and unlabeled data.
We will further introduce the proposed iterative multitask regression
(IMR) model by integrating the JL framework with the advanced graph
learning technique, which more effectively propagates labels. Finally,
an ADMM-based optimizer is used for the IMR solution. Fig. 1 illustrates
the workflow of the proposed IMR method.

2.1. Review of the JL model

Let ×Xl
d N be the unfolded hyperspectral data with d bands by N

pixels (or samples), and ×Yl
l N be the corresponding one-hot en-

coded label matrix with l classes by N pixels. We model the original JL
problem (Ji and Ye, 2009) as follows.

+ =Y ASX A SS Imin 1
2 2

s. t. ,l lA S, F
2

F
2 T

(1)

where ×S d Nsub and ×A l dsub denote the subspace projection and
the regression matrix linking the estimated subspace with label in-
formation, respectively, and dsub represents the subspace dimension.
||•||F denotes the Frobenius norm and is the regularization parameter.

Slightly different from the original JL, an improved model with

manifold (graph) regularization is formulated by optimizing the fol-
lowing objective function.

+ + =Y ASX A SX L X S SS Imin 1
2 2 2

tr( ) s. t. ,l l l l lA S, F
2

F
2 T T T

(2)

where =×L D Wl
N N

l l is the Laplacian matrix, ×Wl
N N is an

adjacency matrix (graph), and =D Wl ii i j L i j( ) ( , ) is the corresponding
degree matrix. The term tr denotes the trace of matrix parameterized by
. The JL-based models in Eqs. (1) and (2) have been proven to be
effectively solved with the ADMM optimizer (Hong et al., 2019b). Once
the projection matrix S is learned, the subspace features can be com-
puted by SX.

2.2. Iterative Multitask Regression (IMR)

Labeling in Earth Vision is extremely costly and time-consuming, as
the remote sensing images have a larger-scale and more complex visual
field. This leads to a limited number of labeled samples, which further
hinders improvement of the model’s learning and generalization cap-
ability. To this end, we effectively utilize the information of unlabeled
samples that are largely available by making a regression between the
unlabeled samples and pseudo-labels in the form of multitask learning.

2.2.1. Multitask regression with graph learning
In the multitask framework, we propose a learning-based graph

regularization instead of a fixed graph artificially constructed with the
known kernels (e.g., using Gaussian kernel function), in order to depict
the connectivity (or similarity) between samples. Accordingly, a

Fig. 1. An overview of the proposed IMR framework. In fact, each iterative (t-step) starts with the input of labeled and unlabeled data and ends up the output of the
subspace projections (S t( )), regression matrix (A t( )), and learned graph (W t( )) aligning the labeled with unlabeled samples. With the t-step learned graph, the pseudo-
labels ( +t 1) can be refined.
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multitask regression framework is proposed for semi-supervised HDR
by optimizing the following objective function.

+ +

+
= = == s

Y ASX Y ASX A

SXLX S
SS I L L L L L

min tr( )
s. t. , , 0, 0, tr( )

,
l l pl pl

i j i j i j i j

A S L, ,

2 F
2 1

2 F
2

2 F
2

2
T T

T T
, , , ,

(3)

where ×Xpl
d M and ×Ypl

l M denote unlabeled hyperspectral data

and a one-hot encoded pseudo-label matrix, respectively, while
= × +X X X[ , ]l pl

d N M( ) and + × +L N M N M( ) ( ) is a joint Laplacian
matrix. The term >s 0 is a constant to control the scale. Furthermore,
the two fidelity terms in multitask learning are balanced by a penalty
parameter .
To solve (3) effectively, we rewrite the trace term as

= =SXLX S WZ W Ztr( ) 1
2

tr( ) 1
2

,T T
1,1 (4)

where + × +W N M N M( ) ( ) is the to-be-learned joint adjacency matrix
(see Fig. 2 in red). In W, the similarities between X can be measured by
a pair-wise distance matrix ( + × +Z N M N M(2 ) (2 )) on Euclidean space; this
matrix can be computed by =Z SX SX( ) ( )i j i j,

2. Moreover, the op-
erator is interpreted as a term-wise Schur-Hadamard product.
By means of Eq. (4), optimizing problem (3) on a smooth manifold

can be equivalently converted on a sparse graph as follows.

+ +

+
= = = s

Y ASX Y ASX A

W Z
SS I W W W W

min

s. t. , , 0,

.
l l pl pl

i j

A S W, ,

2 F
2 1

2 F
2

2 F
2

4 1,1
T T

, 1,1 (5)

In Eq. (5), the W Z 1,1 is specified as a point-wise weighted 1-norm
with respect to the variable of W, yielding a weighted sparsity.

Algorithm 1. Iterative Multitask Regression (IMR)

Fig. 2. A showcase for joint adjacency matrix (W) (in ), where WL (in )
is a LDA-like graph constr.ucted by labels.
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2.2.2. Optimizing pseudo-labels with graph-based label propagation
In Eq. (3), the pseudo-labels are predicted by using a trained clas-

sifier, e.g., SVM or random forest. Although the model’s performance
can be moderately improved through the use of unlabeled samples and
pseudo-labels, yet the discrimination of the dimension-reduced HSI still
remains limited by only regressing the static pseudo-labels. For this
reason, the labels are dynamically propagated on the learned graph
using GLP, when the model converges in each step1, aiming at itera-
tively refining or optimizing pseudo-labels, as illustrated in Fig. 1. The
updated pseudo-labels together with the other inputs of X X,l pl, and Yl
can be re-fed into the next round of model training, thus progressively
improving the learning and generalization ability of the proposed
multitask model.

2.3. Modal learning

Unlike the previous HDR methods following the graph embedding
framework (Ma et al., 2010; Sun et al., 2014; Hong et al., 2017; Huang
et al., 2019; Huang et al., 2019) that solve low-dimensional embedding
as a problem of generalized eigenvalues decomposition (GED) (Yan
et al., 2007), our model learning process is to iteratively and alternately
optimize several convex subproblems with respect to the variables A S, ,
and W as well as to-be-updated Ypl instead of directly solving the non-
convex problem (5) by the separable strategy of the variables. An im-
plementation of the proposed IMR is summarized in Algorithm 1. Such
optimization strategy has been proven to be effective for solving the
aforementioned issue (Bertsekas, 1997; Boyd et al., 2011) and suc-
cessfully applied in many real cases (Ji and Ye, 2009; Hong et al., 2018;
Hong et al., 2019b; Hong et al., 2019c).

2.3.1. Learning regression matrix (A)
Intuitively, the optimization problem for solving the variable A is a

Tikhonov-regularized least square regression, which is formulated as
follows.

+ +Y ASX Y ASX Amin
2

1
2 2

.l l pl plA F
2

F
2

F
2

(6)

A closed-form solution of Eq. (6) is given by

= + × + +A YH Y H H H H H I( (1 ) ) ( (1 ) ) ,l l pl pl l l pl pl
T T 1 (7)

where =H SXl l and =H SXpl pl.

2.3.2. Learning subspace projections (S)
The variable S can be estimated by solving the following optimi-

zation problem.

+ +
=

Y ASX Y ASX SX L X S
SS I

min tr( )
s. t. .

l l pl pl l l lS 2 F
2 1

2 F
2

2
T T

T (8)

The orthogonality-constrained regression problem in Eq. (8) has
been effectively solved by using an ADMM-based optimization algo-
rithm (Hong et al., 2019b).

2.3.3. Learning graph structure (W)
In the sub-problem, we learn the connectivity (or similarity) be-

tween samples from the data rather than using certain existing distance
measurements. Therefore, the resulting optimization problem can be
formulated as

= =N sW Z W W W Wmin
4

s. t. , 1/ 0, ,k i jW 1,1
T

, 1,1 (9)

whose solution has been obtained with an effective ADMM as well, as
presented in Hong et al. (2019c). Please note that for those samples
with labels, we construct a graph-based local discriminant analysis
(LDA) (Belkin and Niyogi, 2003) in the place of the corresponding part
in the learned graph W, as shown in Fig. 2. The LDA-like graph (WL)
can be expressed by

Fig. 3. An illustration of label propagation used for updating the pseudo-labels, where =Z S Xl
t t

l
( ) ( ) and =Z S Xpl

t t
pl

( ) ( ) denote the low-dimensional feature re-
presentation for the labeled and unlabeled samples, respectively.

Fig. 4. Convergence analysis of the proposed IMR method on three different datasets: Indine Pines, Houston2018, and Berlin EnMap. Note that the relative loss
recorded in the convergence curve is obtained by averaging the loss values of multiple outer iterations in our proposed method.

1 Given the inputs of Xl and Xpl as well as Yl and Ypl, we estimate the variables
of A S, , and L by solving problem (3). This process is defined as a “step” or in
our case an “iteration”.
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=
k

W
X X, and are the samples belonging to the th class;

0 , otherwise,
L i j N i j

( , )

1
k

(10)

where Nk denotes the number of samples belonging to k-th class.

2.3.4. Updating pseudo-labels (Ypl)
Given the labels (Yl) and pseudo-labels (Y pl

t( )) of the t-th step, and the
labeled (Xl) and unlabeled (Xpl) samples, we can correspondingly learn
the joint graph structure (W t( )) in the t-th step from the t-th latent
feature spaces (Z t( )). The learned W t( ) can then be further applied to
infer the pseudo-labels of next step ( +Y pl

t( 1)) by LP, and then the updated
pseudo-labels can be fed into a next-round model learning. This process
is illustrated in Fig. 3. Please note that the model’s iteration will be
suspended as long as the to-be-learned adjacency matrix W is not
changed or the residual error ( ) between the current W t( ) and the
former step W t( 1) are close to zero (e.g., 10 6).

2.4. Convergence analysis and computational complexity

Considering the non-convexity of Eq. (5) when all variables are
considered simultaneously, a common and effective solution for the
optimization problem is using a block coordinate descent (BCD) by
alternatively optimizing each subproblem with respect to A S, , and W
in an alternating strategy. The BCD algorithm has been guaranteed in
theory to converge to a stationary point, if and only if each to-be-esti-
mated variable in Eq. (5) can be exactly minimized (Bertsekas, 1997).
Owing to the convexity in each independent task, a unique minimum
can be ideally found in our case when the Lagrangian parameters used
in ADMM are updated within finitely iterative steps (Boyd et al., 2011).
The same or similar criterion has been successfully applied in various
practical applications (Hong et al., 2017; Zhou et al., 2017; Xu et al.,
2018b; Hong and Zhu, 2018). In addition, we also draw the con-
vergence curves corresponding to the three used datasets, respectively,
by recording the relative loss of objective function of Eq. (5) in each
iteration, as shown in Fig. (4). One can be seen from the figure is that
our model is able to fast reach the state of convergence with more or
less 20 steps.
As observed in Section 2.3:Model Learning, the computational cost

in our IMR model is mainly dominated by matrix products, where the

most costly step lies in solving S, yielding an overall +d N M t( (2 ) )2O

computational cost for Eq. (5).

3. Experiments

3.1. Data description

Three popular and promising HSI datasets – Indian Pines
(Baumgardner et al., 2015), Houston2018 (Le Saux et al., 2018), and
Berlin EnMap (Okujeni et al., 2016) – are used to assess the quantitative
and qualitative performance of the IMR method, as briefly described
below.

3.1.1. Indian pines dataset
The hyperspectral scene located in the northwestern Indiana, USA,

has been widely used in various HSI-related tasks, such as dimension-
ality reduction (Hong et al., 2016b; Hong et al., 2018) and classification
(Dópido et al., 2012). It consists of ×145 145 pixels with 220 spectral
bands covering the wavelength from 400 nm to 2500 nm at intervals of
10 nm. There are 16 classes in the scene that are mostly vegetation, as
detailed in Table 1 along with the number of training and test samples.
Fig. 6 shows the false-color image of the studied scene as well as the
distribution of training and test samples used in Ghamisi et al. (2014),
Hong et al. (2018).

3.1.2. Houston2018 dataset
This dataset is multi-modal data provided for the 2018 IEEE GRSS

data fusion contest, where the HSI was acquired by an ITRES CASI 1500
sensor. The HSI, with dimensions of × ×601 2384 50, was collected
from the wavelengths between 380 nm to 1050 nm at a ground sam-
pling distance (GSD) of 1 m. This is a complex city scene with 20
challenging classes (see Fig. 7 and Table 1 for more details, including
the specific training and test information). Note that we downsampled
the ground truth map to the same GSD with the HSI by the nearest-
neighbor-interpolation.

3.1.3. Berlin EnMap dataset
The EnMap HSI with a GSD of 30 m was simulated by the corre-

sponding HyMap data (Mueller et al., 2002) over a hybrid area that
includes urban, rural, and vegetation in Berlin, Germany, this data is

Table 1
Scene categories of the three HSI datasets used and the corresponding number of training and test samples for each class.

No. IndianPine dataset Houston2018 dataset Berlin EnMap dataset

Class Name TR TE Class Name TR TE Class Name TR TE

1 CornNotill 50 1384 HealthyGrass 711 9088 Forest 656 11075
2 CornMintill 50 784 StressedGrass 3323 29179 Residential 825 56601
3 Corn 50 184 ArtificialTurf 171 513 Industrial 446 3735
4 GrassPasture 50 447 EvergreenTrees 954 12634 Low Plants 673 12006
5 GrassTrees 50 697 DeciduousTrees 350 4698 Soil 688 3040
6 HayWindrowed 50 439 BareEarth 664 3852 Allotment 415 2427
7 SoybeanNotill 50 918 Water 82 184 Commercial 367 4938
8 SoybeanMintill 50 2418 Residential 5375 34387 Water 184 1242
9 SoybeanClean 50 564 NonResidential 7794 215890 – – –
10 Wheat 50 162 Roads 3824 41986 – – –
11 Woods 50 1244 Sidewalks 1455 32547 – – –
12 BuildingsGrassTrees 50 330 Crosswalks 148 1368 – – –
13 StoneSteelTowers 50 45 Thoroughfares 4645 41713 – – –
14 Alfalfa 15 39 Highways 271 9578 – – –
15 GrassPastureMowed 15 11 Railways 391 6546 – – –
16 Oats 15 5 PavedParking 1271 10204 – – –
17 – – – UnpavedParking 20 95 – – –
18 – – – Cars 532 6046 – – –
19 – – – Trains 154 5211 – – –
20 – – – StadiumSeats 503 6321 – – –

Total 695 9671 Total 9867 116123 Total 4254 95064
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openly and freely available from the website2. This image consists of
×797 220 pixels and 244 spectral bands in the wavelength ranging from

400 nm to 2500 nm. The ground truth in the scene is generated by the

Haklay and Weber (2008) in the form of land cover and land use, and
further refined and corrected by means of Google Earth. Table 1 lists the
scene categories and the number of training and test samples, while the
false-color image and corresponding distribution of training and test
samples are given in Fig. 8.

Fig. 5. Visual and quantitative (OA) performance analysis with the different number of iterations in IMR on the three datasets.

2 (http://doi.org/10.5880/enmap.2016.002).
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3.2. Experimental configuration

3.2.1. Evaluation metrics
With the input of different dimension-reduced features, we adopt

the pixel-wise classification as a potential application for quantitative
evaluation in terms of classification or recognition accuracy. More
specifically, three commonly-used indices, Overall Accuracy (OA),
Average Accuracy (AA), and Kappa Coefficient ( ), are computed to
quantify the experimental results using two simple but effective clas-
sifiers: nearest neighbor (NN) and linear SVM (LSVM). In our case, the
two classifiers were selected because those more powerful classifiers
(e.g., kernel SVM, random forest, deep neural network) tend to result in
confusing evaluation, as it is unknown whether the performance im-
provement originates from either these advanced classifiers or the
features itself.

3.2.2. Comparison with state-of-the-art baselines
We evaluate the performance of the proposed IMR model visually

and quantitatively in comparison with eight state-of-the-art baselines,
including.

• Non-HDR: original spectral features (OSF);
• Supervised HDR: feature space discriminant analysis (FSDA)

(Imani and Ghassemian, 2015), joint learning (JL) (Hong et al.,
2019b);
• Semi-supervised subspace learning for HDR: semi-supervised
local discriminant analysis (SELD) (Liao et al., 2013), collaborative
discriminative manifold embedding (CDME) (Lv et al., 2017);
• GLP-based semi-supervised HDR: soft-label LDA (SL-LDA) (Zhao
et al., 2014), semi-super- vised fisher local discriminant analysis
(SSFLDA) (Wu and Prasad, 2018).

3.2.3. Implementation preparation
The parameter settings for the algorithms play a key role in per-

formance assessment. A common tactic for model selection is to run
cross-validation on the training set. Following that, we conducted a 10-
fold cross-validation to determine the optimal parameter combination
for the different algorithms. In detail, there parameters that need to be
tuned to maximize the classification performance on the training set
were subspace dimension3 (dsub), selected from 5 to 50 at intervals of 5;
the number of nearest neighbors (k); the standard deviation ( ) in SELD
and SSLFDA, ranging from …{10, 20, , 50} and {10 , 10 , 10 , 10 , 10 }2 1 0 1 2 ,

Fig. 6. False-color image, the distribution of training and test samples as well as classification maps of the compared methods using two different classifiers on the
Indian Pines dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Quantitative performance comparison among the different algorithms with the optimal parameters on the IndianPines dataset in terms of OA, AA, and as well as
accuracy for each class. The best is shown in bold. Note that IMR-3 denotes the IMR with three iterations.

Methods OSF (%) FSDA (%) JL (%) SELD (%) CDME (%) SL-LDA (%) SSLFDA (%) IMR-3 (%)
Parameter d d d( , , ) k d( , , ) d( , , ) d k d( , , ) d( , , , )

220 15 (0.01, 0.01, 20) (10, 0.1, 15) (0.01, 0.01, 20) 15 (5, 0.1, 15) (0.01, 0.1, 0.8, 20)

Classifier NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM

OA 65.89 64.12 64.14 63.67 76.89 71.51 72.09 69.52 74.63 71.41 70.93 73.20 75.26 72.67 82.80 76.04
AA 75.71 73.62 74.52 72.98 84.94 82.54 80.09 75.33 83.25 83.06 82.20 83.96 85.91 83.71 86.27 81.80

0.6148 0.5974 0.5964 0.5912 0.7379 0.6785 0.6838 0.6543 0.7117 0.6773 0.6713 0.6980 0.7200 0.6915 0.8033 0.7266

Class1 51.66 57.15 51.45 49.86 66.47 64.60 63.80 58.02 59.47 56.79 57.73 64.09 70.23 65.46 74.64 73.05
Class2 57.40 53.57 48.47 47.19 72.19 64.54 62.76 56.12 65.31 67.47 59.69 66.84 67.35 61.86 66.20 58.29
Class3 70.65 81.52 69.57 74.46 86.96 83.70 76.09 71.74 73.91 85.87 71.74 83.15 87.50 88.59 86.96 80.98
Class4 88.14 87.25 90.60 83.45 94.63 90.83 93.06 90.60 94.63 92.84 94.63 93.74 94.85 93.51 89.26 82.10
Class5 81.78 80.06 86.80 86.37 90.10 88.09 91.39 85.65 91.25 87.37 88.52 88.95 93.54 89.96 95.55 91.68
Class6 95.90 91.34 97.95 97.49 99.32 95.67 98.63 97.95 97.72 97.72 98.41 97.72 98.41 97.49 98.41 98.18
Class7 66.56 66.45 58.06 62.31 73.31 66.45 63.40 58.93 74.95 72.66 73.20 79.63 75.16 71.90 82.79 64.71
Class8 55.21 42.51 42.97 43.59 63.52 53.80 55.96 55.54 62.82 53.89 54.43 53.23 55.21 52.69 78.41 68.53
Class9 53.01 65.96 71.45 66.49 81.56 75.18 75.53 75.18 68.44 68.44 68.44 69.15 78.01 81.91 83.51 70.74
Class10 98.15 95.06 99.38 99.38 99.38 99.38 99.38 99.38 99.38 99.38 99.38 99.38 99.38 99.38 99.38 99.38
Class11 82.88 82.56 85.53 84.57 89.31 86.25 88.83 89.07 92.12 88.18 87.94 88.91 89.87 88.99 94.50 94.05
Class12 50.91 67.27 77.88 80.61 82.12 80.00 77.58 78.79 80.91 83.64 81.21 85.76 81.52 75.15 74.55 71.82
Class13 97.78 95.56 97.78 95.56 95.56 97.78 95.56 93.33 95.56 97.78 97.78 93.33 97.78 95.56 88.89 91.11
Class14 79.49 58.97 74.36 56.41 84.62 74.36 79.49 64.10 84.62 76.92 82.05 79.49 94.87 76.92 87.18 64.10
Class15 81.82 72.73 100.00 100.00 100.00 100.00 100.00 90.91 90.91 100.00 100.00 100.00 90.91 100.00 100.00 100.00
Class16 100.00 80.00 40.00 40.00 80.00 100.00 60.00 40.00 100.00 100.00 100.00 100.00 100.00 100.00 80.00 100.00

3 For LDA-based approaches, e.g., FSDA, SELD, SL-LDA, and SSLFDA, the class
number minus 1 is set to be dsub (Martínez and Kak, 2001).
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respectively; and the regularization parameters (e.g., and ) in JL,
CDME, and IMR in the range of {10 , 10 , 10 , 10 , 10 }2 1 0 1 2 , while another
regularization parameter in IMR can be selected from …{0.1, 0.2, , 0.9}.
Moreover, initializing the adjacency matrix (W) and pseudo-labels (Ypl)
in IMR is also an important factor in determining the model’s perfor-
mance. We first predict the unlabeled samples using a pre-trained
classifier on the training set; then the predicted results can be naturally
input into the model as pseudo-labels. Likewise, the initialized W can
be given by the labels and pseudo-labels. In addition, note that the
clustering technique (e.g., K-means) is applied to handle the highly
computational complexity caused by the large quantity of unlabeled

samples during the process of model learning. As a trade-off, the
number of cluster centers used in our case is approximately set to be the
same as that of the training samples.

3.2.4. The number of iterations in the proposed IMR
According to the model’s stopping criteria in Algorithm 1, our IMR

method generally converges to a desirable solution that corresponds to
a well-learned adjacency matrix (W) out of three or four iterations. To
support the results more effectively, we further investigate the effects of
assigning a different number of iterations in IMR for the three datasets.
Fig. 5 gives both visual and quantitative results with the increase of the

Fig. 7. False-color image, the distribution of training and test samples as well as classification maps of compared methods using two different classifiers on the
Houston2018 dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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IMR’s iterations4. Note that the IMR with iterative 0 equivalently de-
grades to a version without label propagation. The OAs are clearly
much lower without using an iterative strategy to update pseudo labels
(iterative 0) than when using several iterations. Intuitively, this proves
the superiority of the iterative strategy by gradually optimizing the
pseudo-labels. It is worth noting, however, that the performance gain
starts to slow down after two iterations and then remains essentially
stable in the follow-up iterations, as the variable W is hardly changed
any further. Similarly, for the different number of iterations, there is a
consistent trend in the compactability of intra-class and the separability
of inter-class. To summarize, we determine the number of iterations in
the IMR to be 3 (IMR-3 for short); it will be used for comparison in the
following experiments.

3.3. Results and analysis

3.3.1. The Indian pines dataset
Fig. 6 presents the classification maps for different HDR compared

methods using two classifiers on the Indian Pines dataset; Table 2
correspondingly lists the quantitative results obtained under the op-
timal parameter combination.
Using the NN classifier, there is basically the same classification

performance in OSF and FSDA. Despite an improved supervised criteria,
FSDA still yields poor classification accuracy, since directly projecting
the original data into a discriminative subspace with the limited
amount of labeled samples is very challenging, especially when dealing
with noisy data (e.g., HSI) with various spectral variabilities. Overall,
the classification performance by considering the unlabeled samples is
better than that without considering them. It should be noted, however,
that inspired by latent subspace learning, the JL model dramatically
outperforms FSDA (more than 10% improvement), but also improves
the OAs of around 4%, 6%, 2%, and 1%, respectively, compared to those

semi-supervised HDR approaches (SELD, CDME, SL-LDA, and SSLFDA).
This intuitively indicates the superiority of the regression-based JL
model for feature learning. Following the JL-like model, the proposed
IMR framework achieves the best performance owing to the multitask
learning framework, where the labeled and unlabeled samples can be
jointly regressed, and to the iterative updating strategy of pseudo-la-
bels. There is a similar trend in classification performance using the
LSVM classifier, yet its performance is relatively weaker than those with
the NN classifier. The possible reason for that is the few training sam-
ples available, further leading to the poor estimation of decision
boundary for the SVM-like classifier learning.
Furthermore, we can observe from Table 2 that our IMR not only

outperforms other HDR methods in terms of OA, AA, and , but it also
obtains highly competitive results for each class, particularly for those
classes with a relatively limited number of training samples in com-
parison with the number of test samples, such as Corn-Notill, Grass-
Trees, Soybean-Notill, Soybean-Mintill, Soybean-Clean, and Wheat. This
provides powerful evidence of the effectiveness of transferring the un-
labeled samples to the learned subspace and the superiority of itera-
tively optimizing pseudo-labels.

3.3.2. The Houston2018 dataset
Classification performance using the different low-dimensional

feature representations is evaluated on the Houston2018 dataset both
visually and quantitatively, as shown in Fig. 7 and listed in Table 3,
respectively. The optimal parameters used for different compared
methods are given in Table 3 as well. Likewise, due to more challenging
categories in this scene and small-scale training set, the ability to
classify the materials for the LSVM is limited. This might explain a
phenomena in Table 3, that is, why the NN-based classifier, to some
extent, performs better than the SVM-based one for many compared
methods.
More specifically, OSF yields a poor classification performance, due

to the highly redundant spectral information and the sensitivity to
noise. Unlike OSF that directly uses the original spectral features as the
input features, FSDA and JL are apt to discriminate the materials due to

Table 3
Quantitative performance comparison among the different algorithms with the optimal parameters on the Houston2018 dataset in terms of OA, AA, and as well as
accuracy for each class. The best is shown in bold. Note that IMR-3 denotes the IMR with three iterations.

Methods OSF (%) FSDA (%) JL (%) SELD (%) CDME (%) SL-LDA (%) SSLFDA (%) IMR-3 (%)
Parameter d d d( , , ) k d( , , ) d( , , ) d k d( , , ) d( , , , )

50 19 (0.01, 0.01, 25) (10, 0.1, 19) (0.01, 0.01, 20) 19 (10, 0.1, 19) (0.01, 0.01, 0.9, 30)

Classifier NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM

OA 52.75 59.14 60.92 63.12 62.93 63.50 61.10 62.72 62.02 63.62 58.78 64.62 63.59 63.70 71.55 68.37
AA 46.77 42.97 55.15 50.85 56.72 50.87 55.21 50.71 54.81 51.07 53.26 52.65 58.51 52.94 81.41 67.07

0.4232 0.4883 0.5161 0.5397 0.5390 0.5450 0.5187 0.5352 0.5261 0.5462 0.4921 0.5534 0.5506 0.5501 0.6468 0.6065

Class1 78.43 89.50 59.65 71.67 72.42 83.11 59.56 71.24 65.14 69.06 58.23 69.91 72.56 82.59 80.46 80.75
Class2 81.91 89.35 82.86 89.19 83.52 88.92 84.58 89.11 83.12 88.91 83.96 89.08 89.05 91.46 86.38 89.25
Class3 100.00 100.00 100.00 100.00 100.00 99.21 100.00 100.00 100.00 97.62 100.00 100.00 100.00 100.00 100.00 99.21
Class4 74.15 88.95 86.38 81.57 86.12 91.12 85.53 87.39 81.89 82.44 84.01 87.81 87.97 90.70 87.97 f90.90
Class5 14.94 9.68 30.05 15.03 27.33 12.14 28.86 15.79 27.84 14.60 27.25 19.78 28.10 16.64 80.05 30.05
Class6 11.32 12.00 13.45 12.00 19.28 17.26 15.25 12.00 20.18 15.70 12.89 12.00 12.00 12.00 95.07 31.17
Class7 60.00 31.11 60.00 57.78 60.00 55.56 60.00 55.56 60.00 55.56 84.44 60.00 60.00 51.11 100.00 95.56
Class8 77.97 85.46 85.46 87.89 84.63 86.37 85.54 86.92 81.33 88.84 85.90 85.70 87.29 89.95 86.67 89.37
Class9 56.49 63.84 65.25 68.01 67.23 67.52 64.88 67.45 68.41 68.27 62.54 71.53 65.07 65.58 71.81 68.84
Class10 37.17 39.19 39.79 46.20 43.24 49.03 40.53 45.15 39.07 50.21 38.07 46.77 48.92 47.65 45.00 49.92
Class11 31.97 34.29 34.42 40.81 38.91 39.14 35.94 37.45 35.72 39.67 31.33 36.21 43.78 41.38 43.17 45.00
Class12 5.95 0.00 6.25 0.00 10.12 0.30 5.65 0.00 6.55 0.30 5.65 0.00 17.86 0.00 37.20 1.79
Class13 48.04 65.54 57.83 59.12 63.10 63.52 60.34 62.03 59.57 62.04 58.51 64.73 65.54 69.59 67.30 73.69
Class14 10.89 0.00 18.48 9.43 20.98 4.01 15.52 7.76 16.40 8.18 18.56 4.80 16.52 8.09 86.02 29.24
Class15 8.10 1.35 62.92 34.50 37.75 18.85 54.51 29.65 67.77 32.17 40.64 34.19 31.00 24.80 99.63 81.09
Class16 52.11 42.82 70.81 73.87 76.58 73.17 74.02 70.96 62.02 66.74 64.73 58.19 85.17 73.75 91.13 85.13
Class17 88.89 0.00 72.22 22.22 88.89 16.67 77.78 27.78 72.22 33.33 61.11 61.11 100.00 44.44 100.00 88.89
Class18 48.59 72.46 63.98 73.15 67.98 76.54 59.01 76.26 56.38 77.50 59.49 62.66 72.81 73.43 87.85 70.95
Class19 23.55 0.93 35.60 29.03 35.44 19.61 34.21 25.71 34.05 25.41 30.35 30.89 43.78 29.27 90.73 69.88
Class20 24.98 32.89 57.69 45.57 50.85 55.43 62.46 46.08 58.51 44.95 57.63 57.69 42.69 46.26 91.71 70.56

4 Here, we just showcase the results of four iterations, since in our case the
model has usually converged around the number of iterations.
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the utilization of the label information. Further, taking the unlabeled
samples into account is of great benefit in finding a better decision
boundary, yielding a possible performance improvement, as shown in
those subspace-based learning semi-supervised HDR methods (e.g.,

SELD, CDME). It is worth noting that the regression-based JL model is
provided with nearly identical performance to those semi-supervised
HDR approaches using both NN and LSVM classifiers, even though the
powerful GLP is utilized (e.g., SL-LDA, SSLFDA). As expected, the

Fig. 8. False-color image, the distribution of training and test samples as well as classification maps of compared methods using two different classifiers on the EnMap
Berlin dataset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 4
Quantitative performance comparison among the different algorithms with the optimal parameters on the Berlin EnMap dataset in terms of OA, AA, and as well as
accuracy for each class. The best is shown in bold. Note that IMR-3 denotes the IMR with three iterations.

Methods OSF (%) FSDA (%) JL (%) SELD (%) CDME (%) SL-LDA (%) SSLFDA (%) IMR-3 (%)
Parameter d d d( , , ) k d( , , ) d( , , ) d k d( , , ) d( , , , )

244 7 (0.01, 0.1, 20) (10, 0.1, 7) (0.01, 0.01, 15) 7 (25, 0.1, 7) (0.1, 0.01, 0.8, 20)

Classifier NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM NN LSVM

OA 53.97 67.87 61.51 67.77 62.56 68.47 61.55 69.86 60.88 69.05 60.53 66.01 60.87 70.13 67.39 75.03
AA 57.47 66.04 64.61 65.98 64.71 65.90 63.79 65.76 62.88 65.13 63.87 65.34 65.96 67.36 69.05 69.36

0.3781 0.5372 0.4711 0.5299 0.4821 0.5392 0.4702 0.5540 0.4621 0.5469 0.4619 0.5142 0.4668 0.5620 0.5411 0.6222

Class1 61.82 79.41 76.14 74.43 78.50 76.25 75.54 78.57 73.35 80.55 78.61 80.15 74.18 80.26 80.48 81.91
Class2 51.39 67.42 57.50 68.11 58.89 68.94 57.70 70.92 57.80 69.92 55.75 64.37 55.92 70.32 64.81 77.61
Class3 43.72 55.56 55.26 56.79 56.79 57.40 51.35 54.00 49.16 58.31 49.02 53.47 51.94 53.65 61.95 61.85
Class4 60.06 70.63 70.66 69.71 70.40 70.66 72.62 71.78 71.16 71.02 72.51 72.83 71.71 72.91 74.76 73.60
Class5 89.54 87.63 89.90 91.68 90.46 92.43 90.89 92.47 92.11 92.96 90.69 93.36 92.83 90.59 91.87 88.82
Class6 59.21 66.50 61.93 65.55 61.48 64.40 58.71 60.77 61.35 62.22 60.53 64.81 67.33 64.94 68.44 65.06
Class7 32.46 40.06 38.01 40.54 37.04 38.29 37.26 38.80 30.96 28.03 33.29 30.34 42.89 42.45 36.55 42.79
Class8 61.51 61.11 67.47 61.03 64.09 58.78 66.26 58.78 67.15 58.05 70.53 63.37 70.85 63.77 73.51 63.29

Fig. 9. Sensitivity analysis on the regularization parameters (e.g., , , and ) of the IMR in Eq. (5).

Fig. 10. Sensitivity analysis on the subspace dimension in the proposed IMR method.

Fig. 11. Sensitivity analysis to the size of training set using the NN and LVSM classifiers for the used three datasets.
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performance of the IMR framework, which optimizes the pseudo-labels
in an iterative fashion, is dramatically superior to that of others with
the OA’s increase of approximately 8% (NN) and 5% (LSVM).
More intuitively, the proposed IMR performs better at identifying

each material than other methods. In particular, when facing the ex-
tremely unbalanced sample distribution (see Table 1), our method
gradually improves the quality of the pseudo-labels, thereby making the
model develop a more powerful learning ability. Table 3 also reveals an
interesting but unsurprising result: for those classes with a very limited
number of training samples (e.g., Deciduous Trees, Bare Earth, Water,
Crosswalks, Highways, Unpaved Parking, and Stadium Seats), the IMR
makes a significant performance gain (an increase of at least 50% for
these classes) with the aid of iterative pseudo-label learning.

3.3.3. The Berlin EnMap dataset
For the Berlin EnMap dataset, the visual comparison of eight dif-

ferent algorithms in the form of classification maps is shown in Fig. 8.
Table 4 details the comparison by means of three quantitative indices:
OA, AA, and .
With a very high spectral dimension (244), OSF only holds a 53.97%

accuracy when using the NN classifier. The performance of supervised
HDR methods (SFDA and JL) is obviously superior to that of OSF, with
an increase of at least 8% using the NN classifier. This reveals the im-
portance of HDR in the follow-up hyperspectral data analysis.
Furthermore, these methods exhibit balanced accuracies using the
LSVM classifier, where JL shows a better classification performance
owing to its well-designed architecture in the regression-based latent
subspace learning. SELD learns the subspace projections by not only
considering the label information but also computing the similarities
between the unlabeled samples, yielding an effective semi-supervised
low-dimensional embedding. However, the similarities between sam-
ples are usually measured by certain fixed functions, i.e., radial basis
function (RBF), in the high-dimensional space, leading to poor robust-
ness and ability to generalize. CDME implements an automatic simi-
larity measurement by collaboratively representing the connectivity
between the samples for the low-dimensional embedding. By the means
of the soft (or pseudo) labels instead of using similarity measurement,
SL-LDA and SSFLDA jointly use the labels and pseudo-labels to find a
high discriminative subspace in a semi-supervised embedding ap-
proach.
Beyond the two subspace-based (SELD and CDME) and two GLP-

based (SL-LDA and SSFLDA) semi-supervised strategies, we propose to
iteratively optimize the pseudo-labels and feed them into a multitask
regression framework in order to find a latent optimal subspace where
the final decision boundary for different classes can be easily de-
termined. On the other hand, our proposed IMR for each of the classes
in the studied image exceeds the vast majority of compared methods
except the material of Commercial, thereby further revealing the IMR’s
advantages in low-dimensional representation learning.

3.4. Parameter sensitivity analysis

3.4.1. On the regularization parameters
The quality of low-dimensional features extracted by the proposed

IMR model is, to some extent, sensitive to the selection of three reg-
ularization parameters ( , , and ) as shown in Eq. (5). For this reason,

we experimentally investigate the effects of different parameter setting
in terms of OA via the NN classifier. The resulting analysis on the three
datasets is quantified in Fig. 9, where the parameter combinations of

= = = = = =( 0.8, 0.01, 0.1), ( 0.9, 0.01, 0.01), and =(
= =0.8, 0.1, 0.01) obtain the optimal classification performance on

the test set for the Indine Pines dataset, Houston2018 dataset, and
Berlin EnMap dataset, respectively. The results regrading the parameter
setting are basically consistent with those obtained by cross-validation
on the training set (see the Section 3.2.3: Implementation Prepara-
tion). Thus, the cross-validation strategy can be effectively used to
determine the model’s parameters so that other researchers can produce
the results for their tasks.

3.4.2. On the subspace dimension
Apart from the regularization parameters, we analyze the perfor-

mance gain in using the different subspace dimension of our IMR
method, since a proper subspace dimension tends to reach a trade-off
between discrimination and redundancy of the dimension-reduced
product. For this purpose, the corresponding experiments are con-
ducted by using the NN classifier to see the classification performance
with the gradually-reducing dimension. As can be seen from Fig. 10,
with the increase of subspace dimension, the IMR’s performance
sharply increases to around 20 for first dataset, 30 for the second da-
taset, and 20 for the last dataset, respectively, then starts to reach a
relatively stable state, and finally decreases with a slight perturbation
when the subspace dimension is approaching to that of original spectral
signature.

3.4.3. On the training set size
Although the IMR adopts the semi-supervised learning strategy by

jointly accounting for the labeled and unlabeled samples, yet the HDR’s
performance is determined by the number of training samples to a great
extent. This is, therefore, indispensable to investigate the sensitivity
with an increasing size of training set. To highlight and emphasize the
effectiveness and superiority of our proposed method in the HDR issue,
we arrange the classification task by resetting the training set randomly
selected from all labeled samples out of 10 run with the different pro-
portions in the range of 5% to 50% at a 5% interval and the rest as the
test set, and the average classification accuracies are reported by in-
tegrating the ten outputs in the end. Fig. 11 shows a similar trend in
OAs with two classifiers (NN and LSVM) on the three different datasets,
that is, the classification performance improves with the size of training
set, faster in the early, and later basically stabilized. This also indicates
that our semi-supervised method is not heavily dependent on a large-
scale training set, which can hold a desirable and competitive perfor-
mance in HDR, even when only small-scale labeled samples are used for
training. On the other hand, we can observe an interesting conclusion
on the first two datasets from the Fig. 11 that the NN classifier out-
performs the LSVM one when the training samples are insufficient, e.g.,
less than around 15% of total samples. This could be well explained by
the fact that LSVM is a learning-based classifier depending on the
adequate samples for training an effective model, which is also sup-
ported by the experimental results yielding the higher OAs using the
LSVM than those using the NN while using more training samples.
Furthermore, with the increasing of training samples, the performance
gain is prone to gradually become slow and meet the bottleneck,

Table 5
Time cost for the HDR of different methods on the three datasets.

Datasets Time Cost (s)

OSF FSDA JL SELD CDME SL-LDA SSFLDA IMR

Indine Pines – 0.06 4.60 9.68 1.85 2.32 3.13 51.05
Houston2018 – 0.09 41.25 192.22 12.06 12.77 24.88 132.41
Berlin EnMap – 0.22 48.81 57.81 10.82 11.48 25.20 75.72
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probably due to the lack of the spatial information modeling.

3.5. Computational cost in different methods

The experiments for HDR conducted by different methods are im-
plemented for simulation on a laptop with the CPU i7-6700HQ
(2.60 GHz) and a 32 GB random access memory (RAM). Herein, we
assess the operational efficiency of the compared HDR approaches in
terms of running time, as listed in Table 5.
In general, the running time of supervised HDR is much less than

that of semi-supervised HDR, such as between supervised discriminant
analysis (FSDA) and semi-supervised discriminant analysis (SELD,
CDME, SL-LDA, and SSFLDA). The conclusion is just as much applicable
to another group, that is, JL and our proposed IMR. Remarkably, al-
though the newly-proposed IMR model seems to be operationally
complex compared to other HDR methods, yet as it turns out, the IMR
shows the computationally efficiency and the time cost is acceptable,
mainly owing to the fast matrix-based computing power in regression-
based techniques.

4. Conclusions

To facilitate the use of unlabeled samples effectively and efficiently,
we propose a novel regression-based semi-supervised HDR model,
called iterative multitask regression (IMR), which 1) simultaneously
bridges the labeled and unlabeled samples with the labels and pseudo-
labels in a multitask regression framework; and 2) progressively up-
dates the pseudo-labels in an iterative fashion. This model provides us a
new insight into the solutions of HDR-related problems. We conducted
extensive experiments on three convincing and challenging HSI data-
sets, demonstrating that our method (IMR) is capable of extracting
more discriminative features by allowing for the unlabeled samples and
by optimizing the pseudo-labels.
It should be noted, however, that while there has been a desirable

performance boost in IMR, it is still limited to working well only by
linearly learning the low-dimensional feature representations for com-
plex nonlinear cases. For this reason, our future work will address the
HDR issue in a more complex scene and extend our framework to a
nonlinear one with possible spatial information modeling.
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