TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Agrarsystemtechnik

Multisensor Data Fusion in einem mobilen landtechnischen BUS-System für die Real-time Prozessführung in sensorgestützten Düngesystemen

Ralph Ostermeier

Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. J. Meyer

Prüfer der Dissertation: 1. Univ.-Prof. Dr. H. Auernhammer

2. Univ.-Prof. Dr. M. Faulstich

Die Dissertation wurde am 27.08.2012 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 15.04.2013 angenommen.

Alle Rechte vorbehalten. Die Verwendung von Texten und Bildern, auch auszugsweise, ist ohne Zustimmung des Autors urheberrechtswidrig und strafbar. Das gilt insbesondere für Vervielfältigung, Übersetzung, Mikroverfilmung sowie die Einspeicherung und Verarbeitung in elektronischen Systemen.

© 2013

Im Selbstverlag: Ralph Ostermeier

Bezugsquelle: Technische Universität München

Lehrstuhl für Agrarsystemtechnik

Am Staudengarten 2

85354 Freising

Vorwort

Nach Abschluss dieser Dissertation bedanke ich mich bei allen sehr herzlich, die zum Gelingen dieser Arbeit beigetragen haben.

Mein ganz besonderer Dank gilt Herrn Prof. Dr. H. Auernhammer für die Überlassung des Themas und für die Gesamtbetreuung. Seine engagierte und motivierende Begleitung aller Phasen dieser Arbeit, die gewährten Freiräume sowie die wertvollen Hinweise und Anregungen zur Abfassung schätze ich sehr. Für seine Förderung beginnend mit meiner Diplomarbeit, bei meiner Tätigkeit als Mitarbeiter am Fachgebiet wie auch in meiner außeruniversitären Berufstätigkeit bin ich außerordentlich dankbar.

Weiterhin bedanke ich mich bei Herrn Prof. Dr.-Ing. M. Faulstich für die Übernahme des Koreferats und bei Herrn Prof. Dr. J. Meyer für die Übernahme des Prüfungsvorsitzes.

Danken möchte ich der Deutschen Forschungsgemeinschaft (DFG) für die Finanzierung des IKB-Dürnast-Projektes und allen Mitgliedern der DFG-Forschergruppe IKB-Dürnast für die enge und erfolgreiche Zusammenarbeit als ein Garant für das Gelingen dieser Arbeit.

Mein Dank gilt auch allen Kolleginnen und Kollegen am Lehrstuhl für Agrarsystemtechnik und dem Fachgebiet Technik im Pflanzenbau für die schöne und erlebnisreiche Zeit. Ich bleibe Ihnen freundschaftlich verbunden.

Abschließend möchte ich mich bei meinem derzeitigen Arbeitgeber John Deere, vor allem bei Herrn Dr. G. Kormann und Herrn Dr. T. Engel, für die motivierenden Worte und die eingeräumte Flexibiltät bedanken, um Beruf und Abfassung der Arbeit in Einklang zu bringen.

Ein besonderer Dank gebührt meiner Familie und meinen Freunden.

Inhaltsverzeichnis

Inhaltsverzeichnis

1	EINLEITUNG	1
1.1	Hinführung	1
1.2	Problemstellung	2
1.3	Hinweise zur Textgestaltung	5
2	THEORETISCHE BETRACHTUNGEN UND STAND DES WISSENS	7
2.1	THEORIE DER MULTISENSOR DATA FUSION	7
2.1.1	Grundlagen, Anwendungen, Motivation	7
2.1.2	Definition von Data Fusion	
2.1.3	Sensoren und Sensordaten	10
2.1.4	Funktionale Modelle	
2.1.4.1	JDL Modell und Erweiterungen	
2.1.4.2	Dasarathy's Functional Model	
2.1.5	Prozessmodelle	
2.1.5.1	Hall's taxonomy	
2.1.5.2	Boyd's Decision Loop	
2.1.5.3	Omnibus Process Model	
2.1.5.4	Antony's Data Fusion Process Model	20
2.1.6	Systemarchitektur	22
2.2	MSDF ANSÄTZE UND IMPLEMENTIERUNGEN IN DER MOBILEN AGRARSYSTEMTECHNIK	25
2.2.1	Ortung und Navigation	25
2.2.2	Umfelderfassung	25
2.2.3	Prozesssteuerung für Applikationssysteme	
2.2.4	Zustandsüberwachung und Teleservice	
2.3	REAL-TIME PROZESSFÜHRUNG FÜR SENSORGESTÜTZTE DÜNGESYSTEME IM SENSOR-ANSATZ	
	MIT KARTENÜBERLAGERUNG	28
2.3.1	Methodische Ansätze zur kleinräumigen Bestandesführung - Düngung	28
2.3.2	Prozessführung in der Agrarsystemtechnik	32
2.3.2.1	Prozessleittechnik	
2.3.2.1.1	Steuerung und Regelung.	
2.3.2.1.2	Prozessführungsstrategien	
2.3.2.1.3	Algorithmen und Entwurfsverfahren	36
2.3.2.2	Sensorik	38
2.3.2.3	Kartierung	46
2.3.2.4	Aktorik	50
2.3.2.5	Farm Management Informationssysteme und Geo-Informationssysteme	54
2.3.2.6	Systemarchitektur	58
2.4	LANDWIRTSCHAFTLICHE BUS-SYSTEME	61
2.4.1	Landwirtschaftliches BUS-System nach DIN 9684 - LBS	61
242	Landwirtschaftliches BUS-System nach ISO 11783 – ISOBUS	64

2.4.3	Ausblick	70
2.5	Entwicklungsprozesse und Vorgehensmodelle	71
2.5.1	Wichtige Vorgehensmodelle	72
2.5.2	Integration der MSDF	75
2.6	Schlussfolgerung	78
3	MSDF-FRAMEWORK UND ZIELSETZUNG	79
3.1	MSDF-Framework für landwirtschaftliche BUS-Systeme	79
3.2	Zielsetzung	81
4	MSDF ISOBUS-LÖSUNG FÜR DIE (KLEINRÄUMIGE) N-DÜNGUNG	83
4.1	RAHMENBEDINGUNGEN	84
4.2	FUNKTIONALES MODELL	86
4.2.1	Informationsquellen	86
4.2.2	Level 0 Processing	87
4.2.3	Level 1 Processing	88
4.2.4	Level 2 Processing	90
4.2.5	Level 3 Processing	90
4.2.6	Level 4 Processing	91
4.2.7	Level 5 Processing oder die Mensch-Maschine-Schnittstelle	91
4.2.8	Datenbank-Management-System	
4.3	Prozessmodell	
4.3.1	Zuordnung der Wissensarten	95
4.3.2	Bestimmung des Problemlösungsparadigmas	
4.4	Systemarchitektur	
4.4.1	Zuordnung der Wissensarten & Prozessmodell-Elemente in einem ISOBUS-System	
4.4.2	Zentraler Data Fusion-Prozessor "In-field Controller"	
4.4.3	Integration Online-Sensorik	
4.4.4	Konkurrierender Zugriff auf Geräteressourcen	
5	SIMULATIONSERGEBNISSE DER MSDF ISOBUS-LÖSUNG FÜR DIE N-	
	DÜNGUNG	117
5.1	Expertensysteme als Systemgrundlage	117
5.1.1	Architektur von Expertensystemen	117
5.1.2	Wissensakquisition	120
5.1.3	Evolutionärer Entwicklungsprozess	121
5.1.3.1	Konzeption und Formalisierung – Ausgewählte Methoden	124
5.2	REALISIERUNG DER SIMULATION	134
5.2.1	Identifikation	135
5.2.2	Konzeption und Formalisierung	137
5.2.2.1	Specification Level	137
5.2.2.2	Task Level	137

5.2.2.3	Problem Solving Level	137
5.2.2.4	Knowledge-base Level	
5.2.2.4.1	Modul "CROP PRODUCTION"	
5.2.2.4.2	Modul "CROP_PRODUCTION-SUM_UP"	
5.2.2.4.3	Modul "CONSTRAINTS"	152
5.2.2.4.4	Modul "CONSTRAINTS-SUM_UP"	154
5.2.2.4.5	Module "AG_ENGINEERING" und "AG_ENGINEERING-SUM_UP"	157
5.2.2.4.6	Modul "SUM_UP"	159
5.2.2.4.7	Modul "EMERGENCY_STOP"	162
5.2.2.4.8	Module "MAIN", "CLEAN_UP", "CLEAN_UP_DEMS"	163
5.2.2.5	Tool Level	163
5.2.3	Implementierung	166
5.2.4	Testen	172
5.2.4.1	Problemlösungsfähigkeit	173
5.2.4.2	Informationstechnische Eignung und Leistung	175
6	EINORDNUNG UND DISKUSSION	183
6.1	ANALYSE- UND ENTWURFSMETHODE	183
6.2	REAL-TIME PROZESSFÜHRUNG	191
6.2.1	Funktionales Modell	192
6.2.2	Prozessmodell	194
6.2.3	Systemarchitektur	200
6.2.4	Verfahrenstechnische Einordnung	211
6.3	SIMULATION	213
6.3.1	Entwicklungsprozess	214
6.3.2	Realisierung der Simulation	
6.3.3	Systemtest (Validation)	
6.4	HERAUSFORDERUNGEN UND GRENZEN EINER MSDF	
7	SCHLUSSFOLGERUNGEN UND AUSBLICK	239
8	ZUSAMMENFASSUNG	247
9	SUMMARY	251
A	ANHANG	271
A.1	VERSUCHSFELD D4 DER TU MÜNCHEN	271
A.2	Entscheidungsbaum zur zweiten N-Applikation mit dem Attribut REIP_2,	
	VERSUCHSFELD D4 DER TU MÜNCHEN, VERSUCHSJAHR 2003	272
A.3	Entscheidungsbaum zur zweiten N-Applikation ohne das Attribut REIP_2,	
	VERSUCHSFELD D4 DER TU MÜNCHEN, VERSUCHSJAHR 2003	273

VIII Inhaltsverzeichnis

A.4	IMPLEMENTIERUNGSDETAILS	DER	SIMULATION	-	SENSOR-ANSATZ	MIT	
	KARTENÜBERLAGERUNG						274
A.4.1	Grundstruktur und Ablaufsteuer	rung in Jl	ESS				274
A.4.2	Faktenbasis und Simulation der	Prozessu	ımgebung				284
A.4.3	Regelwerk						292
A.4.4	Datenbankanbindung						301
A.4.5	Mensch-Maschine-Schnittstelle						305
A.4.5	Mensch-Maschine-Schnittstelle						3