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A B S T R A C T

Deep learning (DL) algorithms have seen a massive rise in popularity for remote-sensing image analysis over the
past few years. In this study, the major DL concepts pertinent to remote-sensing are introduced, and more than
200 publications in this field, most of which were published during the last two years, are reviewed and ana-
lyzed. Initially, a meta-analysis was conducted to analyze the status of remote sensing DL studies in terms of the
study targets, DL model(s) used, image spatial resolution(s), type of study area, and level of classification ac-
curacy achieved. Subsequently, a detailed review is conducted to describe/discuss how DL has been applied for
remote sensing image analysis tasks including image fusion, image registration, scene classification, object de-
tection, land use and land cover (LULC) classification, segmentation, and object-based image analysis (OBIA).
This review covers nearly every application and technology in the field of remote sensing, ranging from pre-
processing to mapping. Finally, a conclusion regarding the current state-of-the art methods, a critical conclusion
on open challenges, and directions for future research are presented.

1. Introduction

Remote sensing of images has been successfully applied in many
fields, such as classification and change detection. However, remote-
sensing image processing involves a few preprocessing procedures in
addition to classification and change detection; furthermore, it is highly
dependent on the method that is applied. Hence, the remote-sensing
community is always committed to developing remote-sensing methods
for improving the performance of aspects, such as preprocessing, seg-
mentation, and classification. Neural networks, the basis of deep
learning (DL) algorithms, have been used in the remote sensing com-
munity for many years. However, prior to the development of DL, the
remote-sensing community had shifted its focus from neural networks
to support vector machine (SVM) and ensemble classifiers, e.g., random
forest (RF), for image classification and other tasks (e.g. change de-
tection). SVM received much attention due to its ability to handle high
dimensionality data and perform well with limited training samples,
among other things (Mountrakis et al., 2011), while RF gained popu-
larity and ease of use (e.g. relatively insensitive to classification

parameters) and generally high accuracy (Belgiu and Drăguţ, 2016). In
more recent years, however, the advent of DL has led to renewed in-
terest in neural networks. Since 2014, the remote-sensing community
has shifted its attention to DL, and DL algorithms have achieved sig-
nificant success at many image analysis tasks including land use and
land cover (LULC) classification, scene classification, and object de-
tection (Chen et al., 2014; Zou et al., 2015; Chen et al., 2015; Romero
et al., 2016; Cheng et al., 2016; Marmanis et al., 2016; Yu et al., 2017;
Kussul et al., 2017; Sharma et al., 2017; Vetrivel et al., 2018).

Until now, most studies reviewing DL have either been general re-
views concerning the development of the DL algorithm (LeCun et al.,
2015; Zhang et al, 2016), or detailed topical reviews for a few hot
fields, e.g., speech recognition (Hinton et al., 2012) and medical image
recognition (Litjens et al., 2017). Although a few studies involved a
review of DL applications in remote sensing (Liu et al., 2018; Li et al.,
2018a), many important areas of the field have not been researched.
For example, the review by Liu et al. (2018) focused specifically on the
application of DL for remote-sensing data fusion, and ignored its ap-
plication in other important areas of remote sensing (e.g.,
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classification). In other words, a systematic and comprehensive review
concerning the application of DL in the field of remote sensing has not
yet been conducted. Zhu et al. (2017) performed a broader review than
others, but they focused on some relatively uncommon sub-areas of the
remote sensing field (e.g., 3D modeling applications) while ignoring
many other deserving (and more common) sub-areas; e.g., image clas-
sification applications. DL algorithms have been utilized in many di-
verse sub-areas within the remote sensing field, and the quantity of the
related publications is currently increasing remarkably, so it appears
that a more systematic (i.e. quantitative) analysis is necessary to get a
comprehensive and objective understanding of the applications of DL
for remote-sensing analysis. For example, the different applications for
which DL was applied and the problems encountered in such studies are
beneficial information for researchers interested in DL and remote
sensing.

Therefore, the motivation for our study was to conduct a compre-
hensive review of almost all major sub-areas of the remote sensing field
having connections with DL, including image fusion, image registra-
tion, scene classification, object detection, LULC classification, image
segmentation, object-based image analysis (OBIA), and other tasks.
Through a meta-analysis, we identified and categorized the publica-
tions related to DL and remote sensing, and summarized the main sci-
entific advances noted in the literature. Finally, a conclusion, critical
summary, and outlook toward future research are given.

2. DL works focusing on algorithmic advancements

DL is a learning algorithm based on neural networks (Schmidhuber,
2015). A neural network comprises neurons or units with certain acti-
vation a and parameters = W{ , } (Litjens et al., 2017). DL models
(networks) are composed of many layers that transform input data (e.g.,
images) to outputs (e.g., categories) while learning progressively
higher-level features (Litjens et al., 2017). Layers between the input and
output are often referred to as “hidden” layers. A neural network con-
taining multiple hidden layers is typically considered as a “deep” neural
network—hence, the term “deep learning” (Litjens et al., 2017).

Backpropagation-based training of deep neural networks with many
layers became an explicit research subject in the early 1990s
(Hochreiter, 1991), but it was largely ignored by the machine-learning
community at that time. Moreover, it did not receive much attention
from the computer vision and remote sensing communities for quite a
long period of time, mainly because deep neural networks (DNNs) were
considered hard to train efficiently. In the new millennium, however,
DNNs have finally attracted wide attention, mainly by outperforming
alternative machine-learning algorithms in numerous application areas
(Ning et al., 2005; Hinton et al., 2006; Ciresan et al., 2012). In fact,
interest in deep feedforward networks was revived around 2006, and
DL became practically feasible to some extent with the help of un-
supervised learning (Bengio et al., 2007; Hinton and Salakhutdinov,
2006). As one significant early achievement, the convolutional neural
network (CNN)-based AlexNet architecture won the popular ImageNet
contest by a wide margin in 2012 (Krizhevsky et al., 2012). This was
primarily because of its efficient use of graphics processing units (GPU),
rectified linear units (ReLUs), and many training examples. After this
contest, DL subsequently received much greater attention in different
sub-fields of computer vision (Hinton et al., 2012; Litjens et al., 2017),
and it was found to perform well for many applications in the field of
remote sensing (Chen et al., 2014; Zhang et al., 2016; Zhu et al., 2017).

The remainder of this section is devoted to introducing several
commonly used DL models in remote sensing, including the supervised
CNN and recurrent neural network (RNN) models, and unsupervised
autoencoders (AE) and deep belief networks (DBN) models, also in-
cluding recently popular generative adversarial networks (GAN) model.

2.1. Convolutional neural networks

CNN, one of the most extensively used DL models, was originally
designed to process data in the form of multiple arrays (LeCun et al.,
2015). Because of this characteristic, it is well-suited for processing
multiband remote-sensing image data in which pixels are arranged
regularly. To be specific, the CNN consists mainly of three different
types of hierarchical structures: convolution layers, pooling layers, and
fully connected layers. At each layer, the input image is convolved with
a set of K kernels = W W WW { , , , }K1 2 and added biases = b b{ , , }K1 ,
each generating a new feature map Xk . These features are subjected to
elementwise nonlinear transform (·), and the same process is repeated
for every convolutional layer l: = +W X bX ( * )k

l
k
l l

k
l1 1 1 . Compared

with traditional MLPs (Multi-Layer Perceptrons), in CNNs the values of
pixels within a neighborhood of a certain size are aggregated using a
permutation invariant function, typically the max or mean operation.
At the end of the convolutional stream of the network, fully connected
layers (i.e., regular neural-network layers) are usually added, where
weights are no longer shared (Litjens et al., 2017). Later, some popular
CNN architectures, e.g., ALEXNET (Krizhevsky et al., 2012), VGG
NETWORKS (Simonyan and Zisserman, 2014), RESNET (He et al.,
2016) such as the fully convolutional network (Long et al., 2015) and
also a recent development for GoogleNet called Inception-v4 (Szegedy
et al., 2017) are discussed.

2.2. Recurrent neural networks

As an alternative widely used supervised learning model, the RNN
model was traditionally used for a discrete sequence analysis. In an
RNN, the input and output data can be of varying length. Therefore,
certain tasks that involve sequential inputs, such as speech and lan-
guage processing, often benefit more from the RNN. In fact, the most
exciting application of backpropagation (if available) is to train RNNs.
With the unfolding in time of the computation involved in the forward
computation, RNNs will generate very deep feedforward networks to
learn long-term dependencies like regular DNNs; thus, it is difficult to
learn and store information for very long (Bengio et al, 1994). To ad-
dress this problem, an explicit memory was used to augment the net-
works. Therefore, several specialized memory units have been devel-
oped—for example, the long short-term Memory cell (Hochreiter and
Schmidhuber, 1997) and gated recurrent unit (Cho et al., 2014). With
the development of their architecture and ways of training (Sutskever,
2012), RNNs have been successfully and extensively applied in pre-
dicting the next character in the text, or the next word in a sequence
(Sutskever et al., 2011; Mikolov et al., 2013) and have been extended to
other more complex tasks of remote-sensing images. (e.g., Ho Tong
Minh et al., 2018; Mou et al., 2017; Ienco et al., 2017; Lyu et al., 2016).

2.3. Autoencoders (AEs) and stacked autoencoders

Normally, autoencoders (AEs) are designed to learn a compressed
and distributed dataset representation. The number of hidden units in
one hidden layer is smaller compared with the input or the output, and
this is the most important feature of AE. Therefore, an AE can accom-
plish the purpose of data compression and dimensionality reduction
through one hidden layer. Hence, AEs are mostly used for the proces-
sing of feature hierarchy. AEs (Zhu et al., 2017) are simple networks
that map an input x to a latent representation through one hidden layer
h, and = +h f x(W ). HereW is a weight matrix to be estimated during
training, is a bias vector, and f indicates a nonlinear function. Sub-
sequently, the reconstructed input could be expressed
as = +f h(W ), which was reconstructed by a reverse mapping and
using the same weight to decode the latent representation, =W WT ,

= T .
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As the name implies, a stacked AE (SAE) (or deep AEs) is a neural
network consisting of multiple layers of AEs, where the outputs of each
layer are wired to the inputs of the following layer. It is formed by
stacking AE layers. In the field of remote sensing, such multilayer AEs
are usually used for feature representation and have produced good
effects (Zabalza et al., 2016; Abdi et al., 2017; Gong et al., 2017; Chen
et al., 2017; Hao et al., 2018), particularly in spectral–spatial feature
learning (Abdi et al., 2017; Wang et al., 2018a).

2.4. Restricted Boltzmann machines and deep belief networks

A restricted Boltzmann machine (RBM) (Hinton, 2012) is a gen-
erative stochastic undirected neural network consisting of a visible
layer x and a hidden layer h. The layers are connected, whereas the
units in the layers are not connected. As two-layer networks, RBMs
present a particular type of Markov random field. For a particular state
(x, h) of visible and hidden units, an energy function is defined as the
joint configuration of the units. Like SAEs, DBNs each consist of mul-
tiple layers of RBMs, except that the individual layers in DBNs are
trained using the RBM model, instead of AEs in an unsupervised
manner. Final fine-tuning is performed by adding a linear classifier to
the top layer of the DBN and implementing a supervised optimization
procedure. In fact, the DNNs are first trained in an unsupervised
manner (pretraining) and then the stacked network is fine-tuned. This
usually yields good results, for example, SAEs and DBNs.

2.5. Generative adversarial networks

Generative adversarial networks (GANs) (Goodfellow et al., 2014)
have recently become a very popular category of unsupervised DL
models. The GAN contains a system of two networks contesting with
each other: a generative network and discriminative network. The
generative network learns to map from a latent space to a particular
data distribution of interest (e.g., images), while the discriminative
network discriminates between the real data and the generated data
produced by the generative network. The target of training the gen-
erative network is to “fool” the discriminative network by producing
examples that appear realistic that have the true data distribution. The
discriminative network is generally a standard convolutional network
to produce probabilities. Both networks try to optimize a different and
opposing loss function in a zero-zum game (Oliehoek et al., 2017). In
the last three years, GANs have been successfully applied in many
computer vision and image processing applications (Isola et al., 2017;
Lin et al., 2017; Zhan et al., 2018).

3. Methods and data to review DL in remote sensing application

3.1. Study selection and data extraction by meta-analysis method

To identify articles concerning remote-sensing image analyses using
DL, a title/abstract/keyword search was performed in the Scopus da-
tabase using the search query: “deep learning” AND “remote sensing”
(search date: June 2, 2018). After eliminating the review articles, 402
relevant documents were obtained, including 221 peer-reviewed arti-
cles and 181 conference papers. Subsequently, various types of in-
formation were extracted from each of the journal articles, including
the “study area”, “study target”, “DL model used”, and “accuracy”
(Table 1). This database served as the basis for further statistical ana-
lysis. The intent was to reveal quantitatively the research status of DL
for different remote sensing applications. When investigating the 221
articles in detail, 45 were determined to be unrelated to this meta-
analysis and thus discarded. The final database contained the records of
the remaining 176 relevant articles, and the parameters in Table 1 were
extracted by reviewing each paper in detail. It is noted that here con-
ference papers are not involved in this meta-analysis due to their low
quality with very simple results.

3.2. Conference papers

Conference papers were excluded from our meta-analysis due to
their (typically) lower level of academic rigor than peer-reviewed ar-
ticles, and because many were likely expanded into journal papers after
presenting at the conferences. However, from the 181 conference pa-
pers retrieved by the Scopus search, we found that the topic is now well
represented at the major international remote sensing conferences
(Table 2). Three major remote sensing academic societies, in particular,
have been major outlets for contributions related to DL in the field of
remote sensing; namely the IEEE Geoscience and Remote Sensing So-
ciety (IGARSS), the International Society for Photogrammetry and Re-
mote Sensing (ISPRS), and the Society of Photo-Optical Instrumentation
Engineers (SPIE). Another notable finding was that the first DL-related
special issue appeared in the SPIE Journal of Applied Remote Sensing
(Ball et al., 2017), followed by the “Deep Learning for Remotely Sensed
Data” special issue of the ISPRS Journal of Photogrammetry and Remote
Sensing in 2018.

3.3. Peer-reviewed articles

For the unfiltered 221 peer-reviewed journal papers, a majority of
the articles were published in the 17 journals listed in Table 3 (the
journal of only one publication is not showed here). In total, these 17
journals accounted for 171 articles, or 77% of all of the relevant peer-
reviewed journal papers related to DL and remote sensing. In terms of
the number of published articles, the top five journals were, in order,
IEEE Geoscience and Remote Sensing Letters, ISPRS Journal of Photo-
grammetry and Remote Sensing, Remote Sensing, IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, and IEEE
Transactions on Geoscience and Remote Sensing.

Table 1
Twelve attributes used for DL and remote sensing.

# Attribute Categories

1 Remote sensing
data

Type: Hyperspectral, SAR, Lidar, other

2 Study area Type: Urban, agriculture, other
3 Study target Type: Image fusion, scene classification or object

detection, LULC classification, seg., other
4 DL model Type: CNN, RNN, AE, DBN, other
5 Processing unit Type: Pixel, object
6 Accuracy Value
7 Training samples Value
8 Area of study site Value
9 Resolution Value (high resolution, moderate, coarse)
10 Paper type Type: Journal, conference
11 Year Value
12 Journal Value

Table 2
Conferences/workshops identified as relevant, and number of relevant papers.

Title of conference/workshop #

International Geoscience and Remote Sensing Symposium (IGARSS) 33
International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences – ISPRS Archives
28

Proceedings of SPIE – The International Society for Optical Engineering 20
RSIP 2017 – International Workshop on Remote Sensing with Intelligent

Processing, Proceedings
7

2017 Joint Urban Remote Sensing Event, JURSE 2017 6
Workshop on Hyperspectral Image and Signal Processing, Evolution in

Remote Sensing
6

Proceedings – International Conference on Image Processing, ICIP 4
38th Asian Conference on Remote Sensing – Space Applications: Touching

Human Lives, ACRS 2017
3
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4. Results and brief overview

A simple statistical analysis was conducted using the above data to
analyze the current status and trends in the use of DL within the remote
sensing field. This included calculating: (1) the number of conference
papers and peer-reviewed journal articles published annually from
2008 to 2018, as shown in Fig. 1; based on the latest Scopus data from
March 9, 2019); (2) the number of journal articles focusing on different
sub-areas of remote sensing (i.e. different study targets), as shown in
Fig. 2; (3) the usage frequency of different DL models, as shown in
Fig. 3; (4) the spatial resolution of the remote-sensing images DL
models were used to analyze, as shown in Fig. 4; and (5) the types of
regions that were studied most frequently, as shown in Fig. 5. Finally, a
statistical analysis was conducted to assess the level of accuracy that DL
models achieved for three types of classification tasks: LULC classifi-
cation, object detection, scene recognition, as shown in Fig. 6.

Due to the typically greater timeliness of conference papers (e.g.
shorter paper length/faster peer-review process than journal papers),
applications of DL in remote sensing were mainly presented in this
format at the initial stage. In particular, the International Geoscience
and Remote Sensing Symposium (IGARSS) and Proceedings of SPIE -
The International Society for Optical Engineering, respectively, in-
cluded 33 and 20 academic articles concerning the application of DL in
remote sensing (as described in Table 2). As of 2018, however, the
number of journal papers on this topic now outnumbers the number of
conference papers, demonstrating the growing maturity of the research.

As shown in Fig. 2, most studies focused on LULC classification,
object detection, and scene classification. For conducting these

Table 3
Journals identified as relevant, and number of relevant papers.

Name of journal #

IEEE Geoscience and Remote Sensing Letters 33
ISPRS Journal of Photogrammetry and Remote Sensing 29
Remote Sensing 25
IEEE Journal of Selected Topics in Applied Earth Observations and Remote

Sensing
20

IEEE Transactions on Geoscience and Remote Sensing 18
Journal of Applied Remote Sensing 14
International Journal of Remote Sensing 8
ISPRS International Journal of Geo-Information 4
Journal of Hydrometeorology 3
Journal of Sensors 3
Geophysical Research Letters 2
Neurocomputing 2
Pattern Recognition 2
Photogrammetric Engineering and Remote Sensing 2
Proceedings of the IEEE 2
Remote Sensing of Environment 2
Soft Computing 2
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analyses, the studies mainly adopted publically-available benchmark
image datasets. For example, LULC classification studies mostly focused
on hyperspectral data or high-spatial-resolution images, i.e., the Re-
flective Optics System Imaging Spectrometer (ROSIS-03) “University of
Pavia” dataset, the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) “Indian Pines” dataset (Chen et al., 2014, 2015; Mou et al.,
2017), and the “Vaihingen” benchmark dataset (http://www2.isprs.
org/commissions/comm3/wg4/semantic-labeling.html) (Marcos et al.,
2018; Audebert et al., 2018). Therefore, there are a limited number of
studies that have completely focused on the actual practical applica-
tions of DL for these remote sensing tasks. While the use of DL models
for segmentation, fusion, and registration were less frequently in-
vestigated, many journal articles still highlighted that the models were
relatively successful for these tasks (Kemker et al., 2018; Xing et al.,
2018a; Wang et al., 2018b). This demonstrates that DL has significant
and diverse prospects in the field of remote sensing, which distinguishes
it from the other conventional classification algorithms in the analysis
of remote-sensing images. Here, “others” in Fig. 2 consisted of tasks that
only a few studies focused on, e.g. analysis of network media data (Li
et al., 2017a), time series analysis (Das and Ghosh, 2016; Cai et al.,
2018), and retrieval of precipitation data (Tao et al., 2016).

As shown in Fig. 3, the CNN model has been the most commonly
used for remote-sensing image analysis, followed by the AE model
(including the SAE model). The RNN, DBN, and GAN models, and
particularly the RBM model, were much less commonly used. As earlier
mentioned in Section 2.1, the higher popularity of CNN is likely be-
cause it has unique characteristics that make it highly suitable for
processing multiband remote-sensing image data in which pixels are
arranged regularly.

As shown in Fig. 4, DL models are most frequently used to analyze
remote-sensing images with spatial resolutions of 10m or finer. In fact,
the image data cited in the more than 100 studies had a spatial re-
solution of finer than 2m. This suggests that remote-sensing data with a
high spatial resolution benefits more from DL, probably because such
data contains rich spatial feature information. DL models have been
shown to be quite successful in extracting high-level feature informa-
tion from such data, which is very useful for various image analysis
tasks.

Fig. 5 shows the number of published articles concerning DL in
different types of study areas (e.g., “urban areas”, “vegetated areas”,
and “water areas”). In this study, both cropland and forests are cate-
gorized under vegetated areas. Other types of study areas (including
roads, snow, soil, and wetland) were very few in number, and are not
listed here individually. As shown in Fig. 5, most of the studies per-
tained to urban areas. Here, the statistics do not include the studies that
used the benchmark datasets, because the benchmark datasets can be
classified into many types and have no specific application types.

Fig. 6 shows a box plot graph of classification accuracy regarding
the types of study target, including the accuracy of scene classification,
object detection, and LULC classification. Scene classification had the
highest median classification accuracy (∼95%), object detection has
the second-highest median classification accuracy (∼92%), and LULC
classification has the lowest median classification accuracy (∼91%).
This can be ascribed to the studies’ overwhelming use of benchmark
datasets for object detection and scene classification, as these bench-
mark datasets were specifically developed for DL. The accuracy of DL
algorithms (and all classification algorithms) for LULC classification is
highly dependent on the number of LULC classes considered as well as
the spectral/spatial distinction between classes. Most studies involving
LULC classification attempted to map several LULC classes, so the
median classification accuracy was slightly lower and the variability of
classification accuracy was much higher compared with other two ap-
plications. Evidently, because of the uniqueness of its application in
remote sensing, it is necessary to further develop and explore the ap-
plication of DL in remote sensing, especially for LULC classification.
Even so, this median accuracy (∼91%) of the LULC classifications using
DL is already significantly higher than the accuracy of other classifiers
in supervised object-based image classification (including RF, SVM,
decision trees, etc.). Because in our previous survey there is no classifier
with a median accuracy of more than 90% for supervised object-based
image classification (Ma et al., 2017).

5. Application of DL in remote sensing

This review briefly shows the statistical analysis of DL-based studies
in the field of remote sensing. Fig. 7 provides a visual representation of
the highest-frequency terms appearing in the title and abstract of the
peer-reviewed literature, where higher-frequency results are in a larger
font size. From this figure it appears that CNN is more popular than
other DL models (matching the results of Fig. 3), and spectral-spatial
features of images are utilized for analysis. The main focus of the stu-
dies is on classification tasks (i.e., LULC classification, object detection,
and scene classification), but several other applications are worth
mentioning including fusion, segmentation, change detection, and re-
gistration. Therefore, it appeared that DL could be applied to almost
every step of the remote-sensing image processing. Subsequently, a
taxonomy related to DL in remote sensing (Fig. 8) from preprocessing to
accuracy assessment was drawn, and, as a result, the review given

Fig. 6. Distribution of overall accuracies for three classification sub study tar-
gets (LULC classification, object detection, scene classification).

Fig. 7. Tag cloud of this review.
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below mainly focused on these topics (shown in Fig. 8), to show the
contribution and future works of DL for remote sensing application.

5.1. Image fusion

As a fundamental task in the field of remote sensing imagery, re-
mote sensing image fusion techniques aim to obtain an image that si-
multaneously has high spectral and spatial resolutions. A typical ex-
ample of remote sensing image fusion is known as pan-sharpening,
which indicates the fusion of a low-resolution multi-spectral (MS)
image and a high-resolution panchromatic (PAN) image to achieve a
high-resolution MS image. Another instance is the fusion of a low-re-
solution hyper-spectral (HS) image and a high-resolution MS image to
generate a high-resolution HS image. Remote sensing image fusion can
be regarded as an image super-resolution problem for the low-resolu-
tion source image, aided by the high-resolution source image. Inspired
by the progress achieved in DL-based image super-resolution, many DL
based remote sensing image fusion methods have been proposed in the
last few years, indicating the distinct advantages over traditional
methods owing to the better capability of DL models in characterizing
the complex relationship between the input and the target images (Liu
et al., 2018).

(1) MS and PAN image fusion (pan-sharpening): The pioneering work
on DL-based pan-sharpening introduces a SAE model to generate a di-
rect mapping between the low- and high-resolution MS image patches
(Huang et al., 2015). The PAN images are employed to train the model
based on the assumption that the MS and PAN images share the same
relationship between low- and high-resolution versions. An improved
work on SAE-based pan-sharpening adopts a deep metric learning ap-
proach to learn the refined geometric multi-manifold embedding via
multiple stacked sparse autoencoders (Xing et al., 2018a). In addition to
SAE, the CNN has recently emerged as a very active DL model in remote
sensing image fusion. Masi et al. (2016) proposed a CNN-based pan-
sharpening method by applying a three-layer convolutional network,
which is originally used for natural image super-resolution. The source
MS image and PAN image are stacked together as the input, and the
target high-resolution MS image is adopted as the output, leading to an
end-to-end mapping. Since then, several improved works on CNN-based
pan-sharpening have been proposed. Wei et al. (2017) proposed a much
deeper network that contains 11 convolutional layers for pan-shar-
pening through residual learning. Yuan et al. (2018) introduced a
multiscale and multidepth CNN architecture for fusion of MS and PAN
images. Shao and Cai (2018) proposed a two-branch convolutional
network (one for MS image and the other for PAN image) for pan-
sharpening to adequately extract spectral and spatial features. Scarpa
et al. (2018) integrated a target-adaptive tuning phase into the con-
volutional network for pan-sharpening, aiming to overcome the diffi-
culty of insufficient training data for a specific fusion task.

(2) HS and MS image fusion: Palsson et al. (2017) firstly proposed a
DL-based HS and PAN image fusion method through a 3D-CNN. To
ensure the computational efficiency, PCA is applied to reduce the di-
mension of the HS image before it is fed to the network, and the final
fused HS image is reconstructed by performing the inverse PCA

transformation on the network output. Yang et al. (2018) presented the
HS and MS image fusion method with a two-branch convolutional
network, which is applied to characterize the relationship between the
spectrums of low-resolution and high-resolution HS images. The input
of one branch is a pixel in the up-scaled low-resolution HS image while
the other is its corresponding spatial neighborhood in the high-resolu-
tion MS image. Dian et al. (2018) proposed the HS and MS image fusion
method by combining a deep convolutional network and a model-based
approach. The model-based approach plays both roles of pre-processing
and post-processing, for the CNN-based module.

5.2. Image registration

Image registration is a method of aligning two or more images
captured by different sensors, at different times or from different
viewpoints (Zitova & Flusser, 2003; Ye et al., 2017). It is a fundamental
preliminary step for many remote sensing analysis tasks, for example,
image fusion, change detection, image mosaic, etc. In general, image
registration includes the following four steps (Zitova and Flusser,
2003): (1) feature extraction, (2) feature matching, (3) transformation
model estimation and, (4) image resampling. Feature extraction plays a
crucial role in image registration because it decides what type of feature
is to be used for image matching. Since deep learning, as a fully data-
driven scheme, can automatically learn the features from images, it has
been applied to remote sensing image registration recently. Most of the
image registration methods using deep learning are based on a Siamese
network (Bromley et al., 1994; Merkle et al., 2017; He et al., 2018;
Hughes et al., 2018a; Wang et al., 2018b). The basic idea of these
methods is to train a deep neural network consisting of two parts. The
first part is used to extract features from image patches by training a
siamese or pseudo-siamese network. Subsequently, the second part is
used to measure the similarity between these features for image
matching. In addition, the GANs are applied to image matching and
registration (Merkle et al., 2018; Hughes et al., 2018b). These methods
first translate an image into the other one by training the GANs, en-
abling the two images to have similar intensity or feature information.
Subsequently, feature extraction and the matching are carried out be-
tween the two artificially generated images, which effectively improves
the performance of image matching. Besides image-to-image registra-
tion, DL is also applied for image-to-map registration. Zampieri et al.
(2018), designed a chain of scale-specific neural networks, to register
cadastral maps of buildings as well as road polylines onto aerial images.
Subsequently, Girard et al., improved the scale-specific neural networks
by introducing the multi-task learning, which improved the registration
performance (Girard et al., 2018). In general, remote sensing image
registration by DL has become an active research subject in recent
years. However, at present there are no public training datasets for
remote sensing image registration, and training samples have to be
made manually before applying the DL technique. Owing to the di-
versity of remote sensing data, i.e., images captured at different re-
solution, at different times (or by different modalities), it will be an
important challenge and laborious task to establish large public training
datasets for image registration.

Image preprocessing ClassificaitonAccuracy assessment

Deep learning in 
remote sensing

Fusion Segmentation Registration Land cover/land 
use classification

Scene 
classification 

Object 
recognition

Change detection

...

Fig. 8. The taxonomy containing four tasks: image preprocessing, classification, change detection, and accuracy assessment.
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5.3. Scene classification and object detection

Proceding to scene classification and object detection, firstly it is
essential to know their differences, as both have similar remote-sensing
applications and are frequently confused. In this study, scene classifi-
cation is defined as a procedure to determine the image categories from
numerous pictures—for example, agricultural scenes, forest scenes, and
beach scenes (Zou et al., 2015)—and the training samples are a series of
labeled pictures. However, object detection aims to detect different
objects in a single image scene — for example, airplanes (Zhong et al.,
2018), cars (Ding et al., 2018), and urban villages (Li et al., 2017b) —
and the training samples are the pixels in a fixed-sized window or
patch.

For scene classification, Cheng et al. (2018) imposed a metric
learning regularization term on CNN-derived features to optimize a new
discriminative objective function for training the CNN model, and they
successfully applied it to scene classification. To the best of our
knowledge, most of the scholars are focusing on developing the DL
algorithm for remote sensing, and prefer to use stable benchmark da-
tasets (Xia et al., 2017), including the RSSCN7 dataset (Zou et al., 2015;
Yang et al., 2017), UC-Merced dataset (Zhao and Du, 2016; Scott et al.,
2017), and WHU-RS dataset (Xia et al., 2010; Zhong et al., 2016; Han
et al., 2017), and there are few studies related to the use of real data.
Therefore, it appears necessary to focus greater attention on how to
apply the scene classification techniques to implement remote-sensing
applications practically. For example, typically the application of a
scene classification technique to the accuracy assessment of remote-
sensing image classification is advantageous, as pointed out by Xing
et al. (2018b) (the details are shown in Section 5.7). In addition,
compared with the benchmark datasets used in scene classification, the
volumes of available remote-sensing datasets as training set are parti-
cularly limited in practical application. Therefore, the performance of
DL methods in remote-sensing scene classification is restricted. Subse-
quently, many studies have begun to exploit how to extend training
samples (e.g., transfer learning and data augmentation) to enhance the
efficiency of DL in remote sensing. For example, Marmani et al. (2016)
exploited a pretrained CNN to extract an initial set of representations.
Afterwards, Han et al. (2017) proposed a semi-supervised generative
framework to generate a new training set, by combining pretrained
CNN and SVM classifiers. Scott et al. (2017) employed the transfer
learning to preserve the deep visual feature extraction learned over an
image corpus, from a different image domain. Yu et al. (2017) applied
three operations (flip, translation, and rotation) to generate augmented
data and obtain a more descriptive deep model by using these aug-
mented data as training data.

For object detection from remote-sensing images, in addition to the
limitation of training samples, the biggest challenge is to effectively
deal with the problem of object rotation variations (Cheng et al., 2016;
Yu et al., 2016). Therefore, Cheng et al. (2016) proposed learning a new
rotation-invariant layer on the basis of the existing CNN architectures to
advance the performance of multiclass object detection, which included
the detection of ships and airplanes. However, in this study, a bench-
mark dataset was used for object detection, i.e., the NWPU VHR-10
dataset (Cheng and Han, 2016). Nevertheless, studies have been carried
out to detect target objects for many practical applications in remote
sensing — for example, Vetrivel et al. (2018) integrated CNN features
and 3D point cloud features from oblique aerial images to detect
buildings damaged by an earthquake. Li et al. (2017b) proposed a novel
unsupervised DL method to detect urban villages from high-resolution
images by learning a data-driven feature. Ding et al. (2018) enhanced
the structure of the base VGG16-Net algorithm for improving the pre-
cision of airplane and car detection, whereas Chen et al. (2018a) used
transfer learning to implement end-to-end airplane detection by im-
proving the efficiency of training samples at the fine-tuning phase. In
addition, Wu et al. (2016) used a DBN model to extract aircraft by in-
tegrating object shapes. Because of the ultra-high-resolution

characteristics of unmanned aerial vehicles (UAVs), Kellenberger et al.
(2018) even tried using CNNs to detect mammals in UAV images, and Li
et al. (2017c) used CNNs to detect oil palm trees in QuickBird images.

As mentioned above, we found that current studies preferred to
extract certain specific type(s) of objects (airplanes, cars, etc.) from
high-resolution images through a fixed window size, either through
scene classification or object detection. However, more data and object
types of objects are encountered in practical remote-sensing applica-
tions—for example, medium-resolution Landsat data and Sentinel data.
Therefore, how to design the effective algorithms to overcome the
difficulties emerging from different-scale objects (the different type of
objects often appears at different scales in remote-sensing images, and
also the same object can have variable size in different-scale remote-
sensing images) is an urgent problem in both subfields (Deng et al.,
2018).

5.4. Land-use and land-cover (LULC) classification

As stated earlier, many DL studies have focused on scene classifi-
cation, probably because numerous benchmark datasets can be used for
this application in DL. Our review of the LULC classification studies in
this section does not include these scene classification studies because
they do not pertain to the actual LULC mapping in the remote-sensing
images. For example, several studies (Luus et al., 2015; Wang et al.,
2017a; Weng et al., 2017) used the UC Merced dataset, but all of them
were named land-use classification. In general, it was found that DL
algorithms were typically utilized for classifying high-resolution
images, owing to the fine structural information (i.e. spatial details) of
LULC objects in these types of images. Although there are also many
freely available medium-resolution (10m-30m) satellite images for
LULC mapping, including Landsat and Sentinel-2 data, it is difficult to
apply conventional DL algorithms directly to these images because of
the lack of such fine structures (Sharma et al., 2017). Therefore, Sharma
et al. (2017) proposed a patch-based CNN which was more suitable
than the pixel-based CNN for medium images. In addition, while most
studies focused on classification of optical images, Lv et al. (2015) used
a DBN model to classify synthetic-aperture radar images.

Early studies concerning LULC classification based on DL mostly
focused on feature representation or learning, while the final classifi-
cation used other simpler classifiers (Tuia et al., 2015). This was mainly
because deep features show powerful ability in image representation
and understanding (Li et al., 2018b), by providing high-level spatial
information which is created by hierarchical structures (Liang and Li,
2016) rather than generating low-level features (Zhao and Du, 2016).
for example, Romero et al. (2016) proposed unsupervised deep feature
extraction for classification by using greedy layerwise unsupervised
pretraining. Additionally, Zhao and Du (2016) presented a multiscale
CNN algorithm to learn spatial-related deep features to classify hyper-
spectral remote imagery.

Regarding the DL model used in LULC classification, CNN has been
received the greatest attention at all times (Maggiori et al., 2017). In-
itially, however, DBNs (Chen et al., 2015; Tuia et al., 2015; Liu P et al.,
2017) and AEs (Chen, et al., 2014) were also used quite frequently.
There were also number of studies in which specific improvements to
the DL model(s) were proposed for the purpose of more accurate LULC
mapping. For example, Marcos et al. (2018) proposed a CNN archi-
tecture with rotation equivariance and applied it to two sub-decimeter
land cover semantic-labeling benchmarks (Vaihingen dataset). With the
increased presence of CNN applications in remote sensing, Zhu et al.
(2018) for the first time introduced the GAN as a regularization tech-
nique to the CNN model in the classification of hyperspectral remote-
sensing images. The result of this prevented the overfitting phenom-
enon in the training process. Moreover, they proposed two strategies to
process spectral features and spectral-plus-spatial features—i.e., 1D-
GAN for spectral vectors and 3D-GAN for spectral-and-spatial features.
Experimental results revealed that this method could significantly
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improve LULC classification accuracy compared with the traditional
CNN. Following Zhu et al. (2018), Hamida et al. (2018) for the second
time proposed using the 3D-DL strategy to process spectral-spatial
features. It combines the traditional CNN network with the twist of
applying 3D convolution operations to enable joint spectral-and-spatial
information processing, while traditional 1D convolution operators
only inspect the spectral content of the data. Experimental results re-
vealed that, in the CNN model, the 3D-DL strategy appears to be a
generally accepted method to process spectral-spatial features in better
manner.

A supervised DL model usually requires a large number of training
samples. In the field of remote-sensing, labeling the observed data to
prepare training samples for each LULC class is highly time- and/or
cost-intensive. Therefore, some augmentation techniques were devel-
oped for increasing the size and/or efficiency of the training dataset,
e.g., transfer learning (Lyu et al., 2018) and active learning (Liu et al.,
2017a) techniques. Along these lines, Shin et al. (2016) used transfer
learning to overcome the restrictions on the number of training sam-
ples, while Fu et al. (2018) used active learning for multispectral (ob-
ject-based) image classification, and Liu et al. (2017a) implemented it
for hyperspectral image classification. In addition, a large number of
studies are beginning to focus on implementing a high-precision DL
model by using a small number of samples (Pan et al., 2017; Yu et al.,
2018). For example, Yu et al. (2018) proposed an unsupervised con-
volutional feature fusion network to formulate an easy-to-train but ef-
fective CNN representation of remote-sensing images. Lin et al. (2017)
proposed an unsupervised model based on GANs, using only unlabeled
data for learning a representation.

Regarding the data source used for DL in LULC classification, most
studies used only a single image scene, although some used multisource
remote-sensing data (e.g., hyperspectral and high-resolution image
data, lidar data, and topographic data) (Xu et al., 2018a). Time-series
remote sensing imagery, however, was rarely analyzed using DL algo-
rithms. Lenco et al. (2017) used multi-temporal remote sensing data
(Pléiades imagers) and RNNs to perform LULC classification, but only
three dates of imagery were used for this analysis (July and September
in 2012, and March in 2013). This approach differs from the general
time-series analysis approaches in the field of remote sensing. Hence, it
is necessary to further conduct time series analysis concerning the ap-
plication of DL in open-source remote-sensing images with large
quantities of inventory data (e.g., Landsat or Sentinel data). For ex-
ample, for the purpose of classification through remote-sensing time
series, is it possible to import long time series information of pixels or
objects to the DL model (e.g., RNN), similarly to importing the hyper-
spectral feature series of pixels or objects? Mou et al. (2017) had al-
ready used RNNs for analyzing hyperspectral pixels as sequential data
and then determined pixel categories, because RNNs are mainly de-
signed to handle sequential data.

DL has been widely applied in diverse study areas, including urban
areas, vegetated areas, forest areas, and wetlands (Shao et al., 2017;
Isikdogan et al., 2017; Audebert et al., 2018; Ho Tong Minh et al., 2018;
Liu and Abd-Elrahman, 2018). As one of the most important fields of
research in remote sensing, urban remote-sensing mapping has received
much attention. Although numerous methods have been proposed for
urban LULC classification, the accuracy and efficiency of these methods
cannot always meet the needs of urban management and analysis in
practice (Huang et al., 2018), and the area scope processed by these
techniques is often small. In particular, studies concerning high-re-
solution remote-sensing images are mostly characterized by methodo-
logical innovation. From the perspective of practical application ana-
lysis, Lyu et al. (2018) recently used RNN DL model to minimize
seasonal urban spectral variance, and consequently ensured a high
classification accuracy of approximately 96% for urban LULC maps of
one year. Moreover, their approach integrated a transfer learning
strategy, thus attaining the possibility to reuse the training samples in
different periods for conducting urban LULC mapping and change

analysis. Huang et al. (2018) used units of a regular size to represent the
irregular mapping units derived from street blocks, and then generated
a practical land use map by deep CNNs. Yao et al. (2017) used a similar
method to detect urban land use distributions by integrating Baidu
points of interest and a Word2Vec model. However, their units of
processing were generated based on road networks and cannot re-
present the actual LULC objects accurately. In addition, there are stu-
dies concerning the recognition of trees along urban streets through DL
(Branson et al., 2018). Making thorough use of such Internet data as
Google Maps, DL allows full play to its advantage in target detection.

Regarding the application of DL for LULC classification, a few new
methods specific to different data features have been developed in
addition to conventional approaches. In the field of classification of
agricultural remote-sensing images, Cai et al. (2018) built a crop clas-
sification model by applying DNNs to time-series images. In this model,
the ReLU is used as the activation function. In the study, time series
images were skillfully divided by time steps, and then spectral values at
different time points were used as input information of the DNN model,
thereby, allowing it to take full advantage of both the time series in-
formation and the features of the DNN model. This strategy opens a new
path to the currently prevailing classification of land cover in time-
series through the DNN model. A larger number of improved DNN
models are expected to be extensively applied in processing of the time-
series remote-sensing images. Furthermore, Liu and Abd-Elrahman
(2018) proposed a Multiview OBIA-framework-based DCNN. It trains
the DCNN model for classification based on the spectral differences
between the images acquired by UAVs from different angles of view.
This method is similar to the idea concerning training the DNN model
through time series information (Cai et al., 2018). The two instances
above provide a novel idea concerning LULC classification through DL.

5.5. Semantic segmentation

Semantic segmentation aims to assign land cover labels to each pixel
in an image. Facilitated by deep CNNs, especially by the end-to-end
fully convolutional network (FCN) (Long et al., 2015), interest in se-
mantic segmentation of remote sensing images has increased in recent
years. It is noted that semantic segmentation discussed in this part re-
fers to the dense prediction of pixel labels rather than pixel-by-pixel
classification.

State-of-the-art semantic segmentation frameworks for remote sen-
sing images are sequentially composed of encoder and decoder sub-
networks. The main advantage of DCNN for semantic segmentation is
its capability to explore the multi-level context information over very
large receptive fields. However, it comes at a cost of low spatial re-
solution for the segmentation result, in which blurry class boundaries
and the loss of object details become a challenge. To deal with this
problem, four main strategies have been adopted in the remote sensing
domain: (1) Developing no-downsampling encoder network by atrous
convolution (Sherrah, 2016) or combing features from multiple re-
solutions (Zhang et al., 2017a; Chen et al., 2018b; Marmani et al.,
2016); (2) Improving the decoder network by designing symmetric
unconvoluted layers and skip connections (Liu et al., 2017b; Chen et al.,
2018c; Kemker et al., 2018); (3) Using an ensemble of multiple net-
works with different initializations or different structures (Zhang et al.,
2017b; Marmani et al., 2016); and (4) Post-processing the semantic
segmentation results by using a probabilistic graph model (Sherrah,
2016; Liu et al., 2017b; Zhao et al., 2017a), by fusing segments pro-
duced by unsupervised segmentation (Zhao et al., 2017a), by use of an
overlay strategy (Liu et al., 2017b; Chen et al., 2018c), or by using a
filtering method (Xu et al., 2018b). Although active efforts have been
imposed on these aspects, it remains a challenging issue to balance the
trade-off between strong downsampling (which allows for richer con-
text information extraction) and accurate boundary localization (which
requires local details) for semantic segmentation of remote sensing
images.
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In addition to the above challenge, other problems specific to se-
mantic segmentation of remote sensing images have been addressed in
remote sensing domain, including: (1) Overcoming the difficulty of the
high variety of geographic objects in very high spatial resolution images
(Wang et al., 2017b); (2) Addressing the problem of class balancing
caused by small objects by designing medium frequency balancing
strategy (Liu et al., 2017b); and (3) Exploring multi-spectral bands or
multi-modal data using hybrid networks (Sherrah, 2016; Audebert
et al., 2018; Marmani et al., 2016) or training new network instead of
fine tuning trained network in computer vision domain (Kemker et al.,
2018; Xu et al., 2018b).

According to the semantic segmentation results reported on
benchmark datasets, e.g. the ISPRS datasets (Rottensteiner et al., 2012),
DCNN-based semantic segmentation can achieve excellent segmenta-
tion accuracies, indicating its substantial potential. However, the re-
sults on datasets with higher levels of difficulty, e.g., RIT-18 (Kemker
et al., 2018) show that the improvement of networks for semantic
segmentation need to be further explored in the future. DCNN-based
semantic segmentation is not limited to LULC mapping or information
extraction from 2D remote sensing images. Indeed, some of the pio-
neering works explored other interesting applications of semantic seg-
mentation, such as the semantic segmentation of large-scale 3D scenes
(Zhang et al., 2018a), and the extraction of building footprints and
building heights (Zhuo et al., 2018), which hints at expanding the ap-
plications of DCNN-based semantic segmentation in the future.

5.6. Object-based image analysis

When different DL models are used for object classification, the
processing methodology varies significantly because of the unit of the
polygon. For example, Zhang et al. (2017c) directly imported the
spectral, spatial, and texture features of objects to an SAE model,
thereby training the parameters of the network. In contrast, Zhao et al.
(2017b) used a patch-based CNN method to combine the deep features
with object-based classification. Normally, present object-based classi-
fication through the CNNs is essentially required, first to the generate
patches, and then represent the types of objects through pixel classifi-
cation (Zhao et al., 2017b; Fu et al., 2018) except the methods of patch
generation and segmentation that vary to a certain extent. For example,
Guo et al. (2018) created pre-segment objects through graph-based
segmentation, fused similar objects through a selective search method,
and then extracted bounding boxes of potential ground objects. Sub-
sequently, it was possible to add the bounding boxes to the training
dataset to use the DL classification model, that perform the pixelwise
classification. To apply CNN to urban mapping, Huang et al. (2018)
processed the irregular mapping units derived from street blocks to
generate a practical land-use map. However, the processing units were
generated based on road networks, making it impossible to accurately
represent all of the LULC features present. Recently, Fu et al. (2018)
segmented objects through multiresolution segmentation, and gener-
ated patches using the barycenters of segmentation objects as centers
and fixing the window at 32×32 and 64×64, and subsequently
classified the patches through CNNs. The classification results obtained
by them were closer to actual land cover. Based on the patch strategy,
Zhang et al. (2018b) proposed the object-based CNN method for urban
land use classification by using a standard CNN model. The method
proposed by Zhang et al. (2018b) was similar to that proposed by Fu
et al. (2018). The study by Fu et al. (2018) further analyzed the impact
of different patch sizes (from 16 to 144 at a regular step of 16). They
argued that a larger patch size is more beneficial to the classification by
an object-based CNN. Especially, as another novel strategy that com-
bines the DL with OBIA, Tong et al. (2018) now rely on DNNs to predict
the type of land use on a pixel level by patch-wise classification, and
then vote to determine the segmented object’s type on an object level by
the pseudo-labels of pixel.

5.7. Others

In addition to the above conventional application areas in remote-
sensing image analysis, DL can also be applied in other areas (e.g.,
acquisition of validation data for classification accuracy, acquisition of
classification training sample data, and data prediction) in a novel
manner because of its high accuracy.

Xing et al. (2018b) were the first to apply CCNs to precision eva-
luation for LULC mapping, using geotagged photos for land cover va-
lidation through DL. Specifically, they used a VGG-16 network to first
automatically tag the LULC types represented in the photos. Later, they
used the photos as validation samples to compare with the results of a
remote-sensing image-based LULC classification at the associated po-
sitions, and finally to calculate the classification accuracy of the derived
LULC map. This method can significantly reduce the complexity and
labor required for the conventional validation process, particularly for
the validation of classification results of land cover within the given
scope of a large area.

Regarding the acquisition of training samples for land cover map-
ping, DL has the advantage of high scene recognition precision. Because
of this advantage, and the availability of big social network media data
(e.g., photos with location information), Chi et al. (2017) expressed a
view that large quantities of tagged data could be automatically gen-
erated from location-based social media photos, thereby increasing the
number of training samples available for remote-sensing image classi-
fication.

Considering the high-precision performance of DL, some studies
built a relationship between multisource spatial data through a DL
model and then predicted locational space data based on the known
spatial data. For example, Ghamisi and Yokoya (2018) established an
image-to-digital-surface-model (DSM) translation rule by a conditional
generative adversarial network to simulate the DSM from a single op-
tical image. Li et al. (2017d) estimated ground-level PM2.5 by fusing
satellite and station observations, and they considered geographical
distance and spatiotemporally correlated PM2.5 in a DBN.

Furthermore, DL is also applied to other specific areas related to
remote sensing, including compression artifact reduction (Zhang et al.,
2018c), network media data analysis (Li et al., 2017a), time series
analysis (Das and Ghosh, 2016; Cai et al., 2018), and retrieval of pre-
cipitation data (Tao et al., 2016). In particular, the time series analysis
is a promising application area of DL in remote sensing for classification
and change detection, while a study by Das and Ghosh (2016) has
proved the capability of DL in spatiotemporal prediction of remote-
sensing data. Unfortunately, the studies in this regard are few. Since
Lyu et al. (2016) first exploited recurrent neural networks in DL for
bitemporal change detection using Landsat data, there have been few
studies in this regard (Cai et al., 2018).

6. Conclusions

In this study, publications related to DL in almost all sub-areas of the
remote sensing field were systematically analyzed through a meta-
analysis. Subsequently, several main subfields using DL in remote
sensing were summarized, including image fusion, image registration,
scene classification, object detection, LULC classification, segmenta-
tion, OBIA, and even accuracy assessment. Eventually, a deeper review
was conducted to describe and discuss the use of DL algorithms in all of
these subfields, which differentiates our study from previous reviews on
DL and remote sensing. Therefore, from this review, one can find the
various remote sensing applications where DL is being used, and the
specific opportunities and challenges for different subfields.

For scene classification, object detection, semantic segmentation,
and LULC classification, a supervised DL model (e.g., CNN) must be
based on large quantities of training samples. In practice, the acquisi-
tion cost of training samples is relatively high, and therefore some
augmentation techniques are desirable for increasing the size or
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efficiency of training datasets, e.g., through transfer learning or active
learning. Unsupervised DL models are also attractive for overcoming
the training data limitations because they allow for training of the deep
network using rich unlabeled data available in the world, e.g., the GAN
model introduced recently.

For comparing different DL algorithms (or DL algorithms with other
algorithms), it appears necessary to create standard (benchmark) da-
tasets for different remote-sensing image processing tasks and appli-
cations. For medium-resolution and low-resolution satellite image data,
in particular, there is a lack of benchmark datasets, while several high-
resolution benchmark datasets exist (PatternNet, UCMD, aerial image
dataset) (Zhou et al., 2018). This lack of benchmark datasets for some
types of images and applications may be restricting the development of
DL in these areas. Therefore, for medium-resolution and low-resolution
remote-sensing images and other remote-sensing data with common
features, it is important to create general remote-sensing ground re-
ference datasets suited to different practical applications (e.g., classi-
fication), or develop new methods to extend this reference data
(Lanaras et al., 2018), because DL has been massively applied to other
sorts of remote-sensing data (Sharma et al., 2017; Chen et al., 2017).

For LULC classification, DL showed superprecision performance
compared with traditional classifiers (e.g., RF and SVM). Nevertheless,
the performance of DL in LULC classification is still inferior compared
with scene classification and object detection. This may be attributed to
the frequent use of benchmark datasets in scene classification and ob-
ject detection for previous studies. Therefore, developments in DL for
LULC classification are expected because of the diversity of remote-
sensing images, and this will have further application in practical re-
mote-sensing images; LULC classification also used standard hyper-
spectral data or high-resolution images repeatedly in previous pub-
lications, instead of real remote-sensing data.

DL models has also been adapted within the remote sensing field to
allow for their implementation for non-standard image processing
tasks, e.g., object-based image analysis and time series analysis. For
object-based image classification, a patch-based strategy is a generally
accepted method (Huang et al., 2018; Fu et al., 2018), which integrates
CNNs with OBIA. The critical issue with this approach is how to de-
termine the values of the relevant parameters (e.g., patch size), because
classification accuracy is largely affected by these parameter values.
Time series analysis, a common processing task in remote sensing, has
been the focus of very few studies involving DL. Therefore, it is ne-
cessary to further explore the application potential of DL in time series
analysis (e.g., Landsat or Sentinel), in particular, as DL actually pos-
sesses some advantages for the processing of time series data, e.g., the
RNN was traditionally applied to a discrete sequence analysis.

For remote sensing image preprocessing, DL models including SAEs
and CNNs have been considerably successful recently in remote sensing
image fusion, and therefore, more DL models such as RNNs and GANs
are expected to be introduced into this field for further developments.
The important limitation of DL in image registration is the lack of
available public training datasets, which should be a future endeavor of
the remote sensing community. For semantic segmentation, the im-
provement of the network structure, especially the decoder network,
remains a challenge to strike the balance between the global context
and the local details. Furthermore, in addition to experiments on
benchmark datasets, the applications of real remote sensing images
deserve further research in the future.
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