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Abstract

Current virtual (vehicle) development processes are characterized by time- and labor-intensive model
conversions between the two strongly decoupled fields of Computer Aided Design (CAD) and Computer
Aided Engineering (CAE). Isogeometric Analysis (IGA) aims at integrating these fields by using a unified
geometry description, in particular the CAD description based on Non-Uniform Rational B-Splines
(NURBS), and therefore has the potential to speed up the current development processes substantially.
In order to enable direct analysis on trimmed multi-patch B-Rep models most widely used in industrial
CAD, IGA was recently extended to Isogeometric B-Rep Analysis (IBRA). Via so-called B-Rep elements,
IBRA allows enforcing coupling and boundary conditions along trimmed edges in a weak sense, for
instance with a penalty approach. However, so far, IBRA has neither been systematically evaluated nor
applied in the context of explicit dynamics, a crucial field for practical applications like crash simulations.

The aim of this thesis is to close this gap by developing Explicit IBRA, the extension of IBRA to explicit
dynamic shell analysis. In particular, this thesis (i) introduces two novel types of penalty-based B-Rep
element formulations for Reissner-Mindlin shells with rotational degrees of freedom, (ii) systematically
studies the as yet unknown effects of trimming and weak penalty-based coupling and boundary condi-
tions on the critical time step, (iii) presents a local selective mass scaling approach for B-Rep elements,
and (iv) proposes a method to stabilize so-called light control points caused by small trimmed elements
– all this with a focus on explicit dynamics and with regard to the required efficiency and conditional
stability. Furthermore, this thesis demonstrates the technical feasibility of an integrated IBRA-based
design-analysis process between a commercial CAD system and a commercial finite element solver.
In fact, Explicit IBRA and the proposed methods were implemented into LS-DYNA via user-defined
interfaces.

The validity and effectiveness of Explicit IBRA and the developed methods is demonstrated by means of
various well-selected benchmark problems reaching from quasi-static linear elastic to highly dynamic
nonlinear cases including plasticity, large deformations and contact. The practical applicability of Explicit
IBRA is shown through explicit dynamic (impact) analyses on two BMW vehicle component models
comprising up to 130 trimmed NURBS patches.

In conclusion, this thesis demonstrates the possibility to perform accurate, efficient and robust explicit
dynamic analysis on trimmed multi-patch NURBS shell structures, thus opening the door towards a fully
integrated CAD/CAE development process for vehicle safety.
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Zusammenfassung

Virtuelle (Fahrzeug-)Entwicklungsprozesse sind aktuell gekennzeichnet durch zeit- und arbeitsintensive
Modellumwandlungen zwischen den beiden stark entkoppelten Bereichen Computer Aided Design
(CAD) und Computer Aided Engineering (CAE). Die Isogeometrische Analyse (IGA) zielt darauf ab, diese
beiden Bereiche durch eine einheitliche Geometriebeschreibung, konkret durch die CAD-Beschreibung
basierend auf Non-Uniform Rational B-Splines (NURBS), zusammenzuführen und hat somit das Po-
tential, die heutigen Entwicklungsprozesse maßgeblich zu beschleunigen. Um Simulationen direkt auf,
im industriellen CAD üblichen getrimmten mehrflächigen B-Rep Modellen zu ermöglichen, wurde IGA
kürzlich auf die Isogeometrische B-Rep Analyse (IBRA) erweitert. Über sogenannte B-Rep Elemente
erlaubt IBRA das Aufbringen von Kopplungs- und Randbedingungen entlang getrimmter Kanten in
einer schwachen Form, etwa über einen Penalty-Ansatz. Bislang wurde IBRA jedoch im Kontext der
expliziten Dynamik, einem wesentlichen Gebiet für praktische Anwendungen wie Crashsimulationen,
weder systematisch untersucht noch eingesetzt.

Ziel der vorliegenden Dissertation ist es, diese Lücke durch die Entwicklung von Explicit IBRA, der
Erweiterung von IBRA auf explizit dynamische Schalensimulationen, zu schließen. Konkret umfasst
diese Arbeit (i) die Einführung zweier neuartiger B-Rep Elementformulierungen für Reissner-Mindlin
Schalen mit Rotationsfreiheitsgraden, (ii) systematische Untersuchungen zum Einfluss von Trimmung
und schwacher penalty-basierter Kopplungs- und Randbedingungen auf den kritischen Zeitschritt, (iii)
eine Methode zur lokalen selektiven Massenskalierung von B-Rep Elementen und (iv) die Entwicklung
einer Methodik zur Stabilisierung von, durch kleine getrimmte Elemente hervorgerufenen „leichten“
Kontrollpunkten (light control points) – all dies mit einem Fokus auf explizite Dynamik und hinsicht-
lich der geforderten Effizienz und bedingten Stabilität. Darüber hinaus demonstriert diese Arbeit die
technische Umsetzbarkeit eines integrierten IBRA-basierten CAD/CAE-Entwicklungsprozess zwischen
einem kommerziellen CAD-Programm und einem kommerziellen Finite-Elemente-Löser. Tatsächlich
wurden Explicit IBRA und die entwickelten Methoden über benutzerdefinierte Schnittstellen in LS-DYNA
implementiert.

Die Validität und Wirksamkeit von Explicit IBRA und der entwickelten Methoden werden anhand mehre-
rer wohl ausgewählter Benchmarkprobleme von quasi-statisch linear elastisch bis hin zu hochdynamisch
nichtlinearen Beispielen inklusive Plastizität, großen Deformationen und Kontakt, demonstriert. Die
praktische Anwendbarkeit von Explicit IBRA wird durch explizit dynamische (Aufprall-)Simulationen
zweier, aus bis zu 130 getrimmten NURBS-Flächen bestehenden BMW Fahrzeugkomponentenmodelle
gezeigt.

Insgesamt zeigt diese Dissertation, dass explizit dynamische Simulationen auf getrimmten mehrflä-
chigen NURBS Schalenstrukturen mit der geforderten Genauigkeit, Effizienz und Robustheit praktisch
durchführbar sind. Dies öffnet die Tür in Richtung eines voll integrierten CAD/CAE-Entwicklungsprozess
für die Fahrzeugsicherheit.
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ĴA Scaled rotational inertia of control point A

Jε Stabilization rotational inertia

MA Mass of control point A

M̂A Scaled mass of control point A

Mε Stabilization mass

P Point load or line load

δP Virtual power

δP int Virtual internal power

δP ext Virtual external power

δP kin Virtual kinetic power

V̄ Prescribed velocity

W Work

xiv



List of Symbols and Abbreviations

δW Virtual work

δW int Virtual internal work

δW ext Virtual external work

δW kin Virtual kinetic work

δW kin Virtual work from B-Rep elements

α Penalty factor or fictitious domain factor

αI , αJ Modal decomposition coefficients

αr Relative penalty factor αr =α/E

α′ Highest possible penalty factor without a time step reduction

αdisp Penalty factor for the displacements

αrot Penalty factor for the rotations

β Stabilization penalty factor

β̄ Global stabilization penalty factor

β̃A Specific stabilization penalty factor for light control point A

δ Trimmed length of one-dimensional bar elements

ε Small perturbation, small scalar value close to zero

εl Small stabilization mass scaling constant

κ Scaling factor for rotational control point inertia

κ(A) Condition number of a matrix A

λI Eigenvalue

λmax Maximum system eigenvalue

λE
max Maximum of all element eigenvalues

ξI Modal damping ratio associated with the eigenfrequencyωI

ωI Eigenfrequency

ωmax Maximum system eigenfrequency

ωe
max Maximum element eigenfrequency

Scalar fields and functions

g Scalar-valued constraint

J1 Jacobian of the mapping from the parameter to the geometry space

J2 Jacobian of the mapping from the Gauss to the parameter space

J̃1 Jacobian of the mapping from the trimming curve parameter space to the geometry space

J̃2 Jacobian of the mapping from the Gauss to the trimming curve parameter space

W (ξ) Weighting function for NURBS

γ Shear angle

ϑ Director rotation angle

ϑ̂ Shell unit normal rotation angle

φ,φ0 Current resp. initial angle between master and slave unit normal shell vectors

ψ Deviation angle (φ−φ0)

xv



List of Symbols and Abbreviations

Base vectors

a i Covariant basis in the current (deformed) configuration, i ∈ {1, 2, 3}

a u, a t, a 3 Basis vectors on a surface boundary ∂ Svisible in the current (deformed) configuration

a 3 Shell unit normal vector on a surface boundary in the current configuration

a t Unit vector along a boundary curve tangent in the current configuration

a u Unit vector in the surface plane and perpendicular to the curve tangent vector a t in the current configuration

e i Global orthonormal coordinate system, i ∈ {1, 2, 3}

Ai Covariant basis in the initial (undeformed) configuration, i ∈ {1, 2, 3}

Au, At, A3 Basis vectors on a surface boundary ∂ Svisible in the initial (undeformed) configuration

A3 Shell unit normal vector on a surface boundary in the initial configuration

At Unit vector along a boundary curve tangent in the initial configuration

Au Unit vector in the surface plane perpendicular to the boundary curve tangent vector At in the initial configuration

Vector fields

a Acceleration
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Chapter 1

Introduction

1.1 Motivation

Passenger cars specifically designed with respect to the highest crash safety requirements greatly reduce the risk
of fatal and serious injuries [1], saving thousands of lives every day. Developing such safe vehicles able to protect
occupants, pedestrians and other road users in various crash scenarios would not be possible without virtual design
tools. Efficient virtual development processes with high predictive quality become ever more important because of
(i) increasing passive safety requirements due to stricter legislation and more comprehensive consumer tests, (ii) a
volatile and highly competitive market that requires ever faster development cycles, and (iii) the desire to consume
less resources for actual hardware crash tests by validating vehicle concepts virtually. Future virtual development
processes are therefore supposed to be both, more efficient and more accurate in their predictions. Pictures of a
Euro NCAP [2] hardware crash test and of a virtual FEA side impact crash test are provided in Figure 1.1.

(a) Euro NCAP hardware crash test [3]. (b) Virtual side impact crash test.

Figure 1.1: Hardware (a) and virtual (b) crash tests. In (b) a part of the movable barrier is hidden for better visibility.

The main shortcoming of the current virtual development process is that it consists of two rather independent
fields: (a) Geometrical design within a Computer Aided Design (CAD) system and (b) functional design by means
of Finite Element Analysis (FEA) tools, also referred to as Computer Aided Engineering (CAE). Because these two
fields are based on different model descriptions, the duration of the current development process, depicted in
Figure 1.2, is dominated by time- and labor-intensive model conversions and synchronization problems. Starting
point of this process is a geometrically precise design model in the CAD system, based on a Non-Uniform Rational
B-Spline (NURBS) boundary representation (B-Rep). This design model is then converted into an analysis model
(FEA), described by an approximate geometry based on (linear) Lagrange polynomials. This conversion is usually
performed in a separate preprocessing program and includes only partially automated model cleaning and meshing
steps. The change of the geometry description in the meshing step is indicated by a change of color from light blue
to light orange in Figure 1.2. After attributes like material properties, boundary conditions and connections between
components are assigned, the analysis can be performed in the FEA solver. Generating a full vehicle FEA model
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through all these steps currently takes several weeks (in each design cycle). After the analysis, results are visualized
and interpreted in a postprocessor. Based on the simulated model behavior, design modifications are made, in
fact, directly on the FEA model within the preprocessor, and simulations of the updated model are run again. The
higher the number of iterations and applied model modifications, the more the FEA geometry will deviate from
the original CAD geometry, which may also have changed in the meantime, yielding significantly different versions
of the same object. At some determined synchronization point in the project timeline, however, the performed
modifications need to be incorporated into the CAD model – a second time- and labor-intensive model conversion
characterized by error-prone data transfer and manual surface reconstruction performed by the design engineer.
This issue is aggravated by the fact that a vehicle needs to be analyzed with respect to several different disciplines
like crashworthiness, stiffness, strength, durability and NVH (noise, vibration, harshness). The focus of this thesis,
however, is on explicit dynamic analysis for crashworthiness design.

The procedure described so far represents only the first of multiple design cycles within a vehicle development
project. For the next design cycle(s), most FEA model components are generated from scratch again including
cleaning and meshing steps as well as the assignment of analysis attributes. Performing all these preprocessing steps
for the same (but updated) components again is necessary because the relation between the FEA model and the
parametric feature-based CAD model was lost. In fact, the FEA model is a “dead” and independent model with a
completely different geometry description, modeling paradigm and data structure. That is, while features like holes,
cut-outs or beadings are actually described as features in the CAD model, they are just a set of nodes and elements in
the FEA model. Geometry modifications require remeshing of the FEA model. Therefore, features in the updated
FEA model will be described by completely different nodes and elements, and corresponding analysis attributes
need to be assigned from scratch again.

In conclusion, the time- and labor-intensive model conversions, the lost connection between the design and the
analysis model and the approximated geometry are the main shortcomings of the current virtual development
process based on FEA.

0 1 2 3 4
0.0

0.5

1.0

0 1 2 3 4
0.0

0.5

1.0

NURBS (Linear) polynomials

Design model Cleaned model FEA model

FEA model

CAD system FEA solverPreprocessor

Manual data transfer &
surface reconstruction FEA model

Postprocessor

Figure 1.2: Current virtual development process comprising geometrical design in a CAD system and functional
design via FEA tools including a preprocessor, a solver and a postprocessor. The CAD geometry description based
on NURBS is indicated in light blue, while the FEA geometry description based on (linear) Lagrange polynomials is
indicated in light orange. All steps indicated by red arrows require significant manual effort and prevent a direct
connection between the design and the analysis model.

Attempts to overcome the issue of cumbersome analysis model generation and decoupling between design and
analysis have been made in the past, some of which resulted in commercially available tools. Two approaches that
aim at incorporating finite element analysis tools into an existing CAD environment are the 3DEXPERIENCE platform
from Dassault Systèmes [4, 5] and Simcenter 3D from Siemens [6]. Both approaches allow pre- and postprocessing
within the CAD environment and promise an association between the design model and the mesh, carry-over of
analysis-related attributes from the design model and faster FEA model generation. Still, an FEA model based on an
approximated geometry description with an inherently different modeling paradigm and data structure is used. Thus,
the association between the design and the analysis model needs to be established artificially in the background
software. Although extensively promoted by software vendors, these approaches have not yet achieved broad usage
in (automotive) industry. Other, more designer oriented tools are for instance SimSolid from Altair [7] and Discovery
Live from Ansys [8]. These tools promise to not require any defeaturing or mesh generation steps and to provide
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fast analysis results. However, both approaches are designer oriented with a focus on quick results and are not able
to replace detailed high-quality FEA [9]. In particular, they do not cover highly dynamic nonlinear explicit analysis
required for different vehicle crash scenarios. Also worth mentioning in this context are immersed methods, for
example the Finite Cell Method (FCM) [10], and meshfree methods [11]. Both methods have in common that they do
not use boundary-fitted meshes and therefore avoid the cumbersome mesh generation process often encountered
within standard FEA.

The focus of this thesis, however, is on Isogeometric Analysis (IGA), introduced by Hughes et al. [12] in 2005. The
main idea behind IGA is to use the accurate NURBS-based geometry description from CAD also for the analysis, thus
avoiding cumbersome geometry conversions within the development process. By adhering to the same geometry
description, IGA has the great potential to unite the as yet separated fields of design and analysis. Because NURBS
basis functions exhibit properties like partition of unity, linear independence and affine covariance, NURBS can be
also used to describe the solution field in an isoparametric sense. Thus, IGA can, broadly speaking, be seen as FEA with
NURBS basis functions or FEA on accurate CAD geometries. Referring to the overall goal for the development process
stated above, IGA has not only the potential to increase its efficiency, but also its predictive accuracy, due to a more
accurate geometry description and the superior approximation properties of the higher-order and higher-continuity
NURBS basis; see for instance Cottrell et al. [13] for structural eigenvalue problems, and Hartmann and Benson [14]
for sheet metal forming problems.

A possible IGA-based development process is depicted in Figure 1.3. Due to the consistent NURBS-based geometry
description throughout the entire process all design, pre- and postprocessing steps can be performed within the
CAD environment. Furthermore, using the same geometry description, the same modeling paradigm and the same
data structure allows maintaining an active parametric relation between the design and the analysis model. In
fact, the so-called analysis-suitable model is intended to be a direct result of the actual CAD process – ideally, if
the design model is changed, the analysis model is updated automatically. For the analysis, the NURBS basis may
be appropriately refined by an algorithm. After the analysis, results can be visualized in the CAD environment
and design changes are directly performed on the design model, yielding an updated analysis model as an output.
In this way, design and analysis remain synchronized throughout the entire process comprising multiple design
cycles. Consequently, multiple redundant model generations and definitions of analysis-related attributes, boundary
conditions or connections between components can be avoided.

Despite its numerous benefits, IGA has not yet achieved a major breakthrough in productive industrial applications.
One reason for this may be the fact that industrial CAD models usually consist of multiple trimmed NURBS surfaces
and that IGA, in its original form, is not directly applicable to such models. However, different approaches to perform
isogeometric analysis on industrial models exist. This thesis addresses this issue with a special focus on explicit
dynamic (crash) analysis. The following section provides a review of the state of the art regarding explicit isogeometric
analysis on industrial models, motivating the research conducted within this work.

NURBS

FEA model

CAD system with pre- & postprocessing features IGA solver

Design model

Analysis-suitable
model

Refined

Parametric
relation

IGA modelIGA model

Analysis results

Figure 1.3: A possible virtual development process using NURBS-based IGA. All design, pre- and postprocessing steps
are performed in the CAD environment. A consistent geometry description, modeling paradigm and data structure
is used within the entire process. The analysis-suitable model is a direct result of the design model connected via
parametric relations. Refinement is performed automatically via an algorithm. Design and analysis are synchronized.

3



1 Introduction

1.2 State of the art – Explicit isogeometric analysis on industrial models

This section outlines existing approaches, methods and findings relevant for explicit isogeometric analysis on
industrial models and motivates the research conducted within this thesis.

1.2.1 Handling of industrial CAD models within isogeometric analysis

To date, CAD models in (automotive) industry are mainly constructed using the boundary representation (B-Rep)
modeling approach based on Non-Uniform Rational B-Splines (NURBS), in which a three-dimensional physical
object is represented only by its skin, i.e. its bounding surfaces [15, 16]. If the bounding surfaces of a B-Rep model are
topologically connected and thus represent a closed body, such models are referred to as solid models in the CAD
community [17]. In finite element analysis, on the contrary, the term solid model indicates that a physical object is
represented by a full volume discretization and not by a dimensionally reduced midsurface shell model.

In industrial (automotive) CAD, even thin sheet metal components are constructed as solid models (solid in the CAD
sense, i.e. as hollow B-Rep models), to allow accurate packaging space analysis and to provide the precise geometry
for manufacturing. In fact, a vast majority of the body-in-white (BIW) components are such sheet metal components,
which are modeled as shells in FEA1 and therefore require a midsurface representation of the physical component.
For most sheet metal components, the midsurface can be extracted automatically in CAD or preprocessing programs,
for other components this step may not be trivial2. In the following, midsurface B-Rep models are considered as an
output of the design process.

The fact that industrial B-Rep models generally consist of multiple trimmed NURBS surfaces with non-matching
discretizations prevents direct isogeometric analysis on complex CAD geometries with analysis capabilities known
from standard FEA. The main issues are the handling and coupling of trimmed patches during analysis. To enable
isogeometric analysis on complex CAD geometries, various attempts have been made, which may be classified into
global and local approaches according to Marussig and Hughes [16].

Global approaches aim at solving this issue on the geometry side by reconstructing the model, for instance by
remodeling trimmed with untrimmed NURBS surfaces (see [16] and the references therein) or by using different
(untrimmed, unstructured) spline technologies like subdivision surfaces [18–21] and T-splines [22–24]. Local ap-
proaches, on the contrary, aim at solving this issue on the analysis side by enhancing the analysis technology with
features like numerical integration of trimmed NURBS elements, the application of weak coupling and boundary
conditions along trimmed edges/faces, processing of topology information and probably numerical stabilization of
small trimmed elements3.

Global approaches may not require additional analysis capabilities, but again imply a kind of meshing step, which is
not in the initial sense of IGA, and (at least small) deviations from the original geometry. And as in FEA, a “dead”
analysis model, without a relation to the original CAD model and with a different data structure may be created,
leading to the same synchronization problems. Nevertheless, compared to conventional FEA, a more accurate
geometry, a basis of higher order and continuity, and thus higher solution accuracy can be achieved. The main
drawback of using alternative unstructured spline technologies like T-splines for the reconstruction is expected to
be the lacking support within standard CAD systems and exchange formats.

As mentioned above, local approaches require additional analysis capabilities not presented in conventional FEA,
but ideally do not require model modifications. Adhering to the trimmed multi-patch NURBS model furthermore
allows maintaining a consistent feature-based data structure throughout the design process. Still, for accurate and
efficient analysis, the model has to follow certain guidelines, which need to be considered in the construction process
and ideally also within the algorithms of CAD systems. All in all, trimmed NURBS-based B-Rep models are the
quasi-standard in industrial CAD and there is no prospect of change any time soon. Thus, local approaches are
expected to be the most promising way for achieving a full integration of design and analysis in the near future.
Accordingly, the following section provides a more detailed review on isogeometric analysis of trimmed multi-patch
NURBS models and, due to their prevalence, with a particular focus on shells.

1 Only shell elements allow vehicle crash simulations with reasonable computing time.
2 In Section 6.4 of this thesis, more details on a possible modeling approach including a parametrically connected midsurface as a result of

the geometric design process are provided.
3 Due to the fact that local approaches use trimmed geometries for which only a part of the discretized domain is considered as material,

local approaches may be considered as closely related to immersed or fictitious domain methods.
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1.2.2 Isogeometric shell analysis on trimmed multi-patch NURBS models

Numerical integration of trimmed elements

The numerical integration of trimmed NURBS elements is extensively studied in the literature, and various approaches
more or less suitable for certain applications exist, see [16] and the references therein. An ideal integration approach
for trimmed elements is robust (can handle any type of trimmed element), sufficiently accurate and efficient (requires
a minimum number of integration points per trimmed element).

Most approaches aim at integrating the various types of trimmed elements exactly by introducing different forms
of mappings to simple Gauss spaces, see [25–35]. Schmidt et al. [36] proposed a local reconstruction technique in
which each trimmed element is remodeled by a single patch and then accordingly integrated. In [37, 38] resp. [39–41],
quadtree- resp. octree-based sub-cell integration schemes originally developed for FCM [10, 42] are used to integrate
trimmed NURBS shell and solid elements. A potential drawback of the sub-cell integration schemes with regard to
large-scale explicit analysis is the high number of integration points around trimming curves, required for a good
approximation of the integration domain, see [16, 42].

The approaches employed within this thesis are the point elimination algorithm proposed by Nagy and Benson
[43] and the adaptive Gaussian integration procedure (AGIP) proposed by Breitenberger [32]. The former approach
approximates trimming curves via polygons and generates a specific integration rule, optimized for efficiency, for
each trimmed element. The latter uses the exact trimming curves, introduces additional mappings from the trimmed
Gauss space to an untrimmed Gauss space and can thus handle all elements in an equal manner. More detailed
descriptions of these two approaches are provided in Section 2.7. A broad overview on numerical integration schemes
for trimmed elements can be found in [16].

Application of boundary and coupling conditions

The application of boundary and coupling conditions along trimmed edges is crucial for the analysis of trimmed
multi-patch NURBS models. The difficulty lies in the fact that control points are in general not located on trimmed
boundaries and that adjacent patches have non-matching discretizations. This prevents a direct node-by-node
coupling and boundary conditions directly applied on individual control points. Potential alternatives are:

1. Enforcing (linear) coupling constraints analytically by expressing slave degrees of freedom (DOFs) as function
of master DOFs, thus eliminating the constrained DOFs [44–46]. This approach is difficult, if not impossible, to
apply in case of nonlinear constraints along trimmed edges.

2. Enforcing constraints in a strong sense (exactly) only at specified points along the boundary [28, 47]. Benson
et al. [47] used a penalty approach to apply coupling conditions at specific points along arbitrary curves on
surfaces and reported excellent accuracy. Wang et al. [28] used a Lagrange multiplier approach to couple
trimmed patches at specified points along the coupling edge.

3. Applying boundary and coupling conditions in a weak integral sense, i.e. to enforce the constraint approximately
over a certain domain. This is probably the most popular approach in the literature for trimmed and non-
matching NURBS discretizations.

While the first approach can be considered as infeasible for nonlinear analysis of trimmed multi-patch shell struc-
tures, the second approach of enforcing constraints exactly at predefined points seems to be a viable pathway.
However, enforcing constraints exactly at specific points between the generally non-congruent trimming curves
of two intersecting NURBS surfaces, is again only an approximation and may introduce artificial stresses already
in the initial undeformed state. Weak coupling approaches, on the other hand, are more tolerant with respect to
geometrical deviations and are expected to yield smoother and more accurate solutions across coupling edges. The
successful applications of weak coupling approaches to trimmed NURBS patches stated below may confirm this
perception. The following discussion is therefore restricted to weak constraint enforcement approaches.

Weak coupling and boundary conditions

Within IGA, weak coupling and boundary conditions are commonly enforced via: (a) the Lagrange multiplier method,
(b) the penalty method, (c) Nitsche’s method [48] and (d) hybrid approaches of the former methods such as the
augmented Lagrange multiplier method [49]. A lot of research regarding isogeometric analysis on multiple non-
matching NURBS patches was conducted using penalty methods [30–32, 50–54], Lagrange multiplier or mortar-type
methods [50, 52, 55–62] and Nitsche-type methods [37, 40, 41, 50, 63–70], and this list is not even complete.

Only a few of these approaches, however, also cover trimming. Trimmed multi-patch shell and membrane problems
were successfully solved with Isogeometric B-Rep Analysis based on the penalty method [30–32, 52, 54] and the
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Lagrange multiplier method [52]. Nitsche-type methods were used to couple trimmed NURBS patches in [37, 41,
66–68, 70] and to apply boundary conditions on trimmed edges in [40, 71, 72]. Especially relevant in the context of
this thesis are the contributions by Guo et al. [37, 68, 70], in which Nitsche methods are used to couple trimmed
NURBS-based rotation-free Kirchhoff-Love (KL) shells. The applicability of the developed Nitsche-type coupling
approach to nonlinear problems and large multi-patch models (engine bonnet model) is shown in [68].

The focus of this thesis is on explicit isogeometric (crash) analysis. The question is, therefore, how well particular
(domain decomposition) methods are applicable to explicit time integration schemes.

a. The Lagrange multiplier method in its original form introduces additional DOFs and equations to be solved.
Moreover, the resulting system is no longer positive definite. According to Benson et al. [44], “The cost of
enforcing constraints with Lagrange multipliers is prohibitive in explicit calculations due to the cost of solving
linear systems of equations. Constraints are usually imposed approximately with penalty methods or they are
eliminated analytically”.

b. Penalty methods benefit from their simple formulation and efficiency, do not introduce additional DOFs, but
require the definition of a sufficiently high penalty factor in order to obtain accurate results. In fact, excessively
high penalty factors may lead to ill-conditioned stiffness matrices and, more relevant for this thesis, to a
reduction in time step size within explicit schemes. Still, in explicit FEA, penalty methods prevail, mainly due
to their simplicity and efficiency [44, 45].

c. Nitsche-type methods do not introduce additional DOFs or equations, the equation system remains positive
definite, but require the determination of a penalty-like stabilization parameter which may vary during non-
linear analysis [68]. Moreover, the extension of Nitsche coupling to nonlinear analysis is reported to be not
straightforward [68]. Also the computational cost per time step compared to penalty methods is a relevant
aspect to be considered.

To the best of the author’s knowledge, in the literature, none of these approaches has been assessed in explicit
dynamic analysis of trimmed multi-patch NURBS models, especially not with respect to critical time step size and
computational cost per time step.

Constraint formulations for shell coupling

Different types of constraint formulations for enforcing displacement continuity (C 0) and especially rotational
continuity (G 1 continuity as a special case for smoothly joined shells)4 between shells shall be discussed here, since
the latter was found to be a crucial aspect for large deformation scenarios. For (vehicle) crash simulations of complex
shell structures undergoing large deformations, in particular, rotational coupling constraints need to be able to
handle (i) smooth and non-smooth shell interfaces, and (ii) arbitrarily large rotations. Enforcing displacement
continuity is straightforward for all shell formulations, since the displacements on both edges can be simply enforced
to be equal. For rotational continuity, several approaches for different shell formulations have been proposed.

For Reissner-Mindlin (RM) shells with rotational DOFs, the rotations on both edges can be directly enforced to be
equal, which is especially straightforward for rotational DOFs in global coordinates [73]. However, this requires
accurately computed control point rotations in the vicinity of (trimmed) edges. In explicit analysis in which rotational
inertias are scaled such that their modes do not control the critical time step [73], this is not always guaranteed.
For rotation-free Kirchhoff-Love shells, on the other hand, the rotational continuity between patches needs to be
enforced via translational DOFs. Within Isogeometric B-Rep Analysis (IBRA) on rotation-free KL shells [30, 32], a
local coordinate system is introduced along boundary edges. Based on a difference vector between the current and
the initial shell normals at the boundary, the rotation around the edge tangent is computed and enforced to be equal
on both edges. Due to the appearance of the arcsin function with a singularity at π/2, the edge tangent rotation is
restricted to values smaller thanπ/2. This limitation is unfavorable for crash simulations including large deformations
and accordion buckling modes. For Nitsche-type approaches, Guo and coworkers [37, 65, 68] enforced rotational
continuity via constraints on the shell normals of both patches. As reported in [68], these rotational constraints are
restricted to cases with G 1 continuity between patches and can therefore not deal with non-smooth patch interfaces.

In order to avoid such restrictions and singularities, Benson et al. [47] and more recently Herrema et al. [53] proposed
rotational constraints, which are here referred to as blended constraint formulations. The main idea behind these
blended formulations is to define the constraint as a sum of two sub-constraints, of which at least one is always
non-singular. That is, singularities also appear in the sub-constraints at 0, π/2, etc., but never for both at the same
angle. In case both sub-constraints are active, the overall constraint blends between both, hence the name blended

4 The terms displacement and rotational continuity are adopted from [53].
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constraint. In [47] also the angle ϕ between the unit normal vectors of both shells is considered, but the actual
constraint is in fact on the sine of the difference between the initial and the current value of this angle (ϕ −ϕ0).
By applying trigonometric addition theorems, this constraint is divided into two sub-constraints. In [53] the two
sub-constraints are on the difference between initial and current scalar products of (i) unit shell normals and (ii)
one unit shell normal and one in-plane unit vector normal to the boundary, respectively. Both formulations [47, 53]
also hold for arbitrarily large absolute rotations, which makes these blended constraint formulations well-suited for
crash-type problems with large deformations and non-smooth patch interfaces.

Analysis frameworks for trimmed multi-patch shell models

In order to achieve a fully integrated design-analysis workflow based on trimmed NURBS B-Rep models, all of
the aforementioned analysis capabilities need to be covered. Additionally, all necessary information need to be
consistently transferred between the CAD environment and the solver, which requires a suitable data exchange
format that includes geometry, topology and analysis related data. In order to perform the analysis based on this
data, the solver must be able to process topology information and to automatically establish connections between
surface patches. There are basically two analysis frameworks that cover these capabilities and therefore allow direct
analysis on trimmed multi-patch NURBS shell structures.

The first approach, developed by Breitenberger et al., is here referred to as the IBRA approach [30–32, 52]. Within
IBRA, the available geometry and topology information from the B-Rep model are directly used to setup the analysis
model. More precisely, so-called isogeometric B-Rep elements are introduced to couple topologically connected
(trimmed non-matching) patches in a weak sense during analysis, or to apply weak Dirichlet boundary conditions.
The dedicated IBRA exchange format proposed by Teschemacher et al. [52] allows for a consistent data transfer
between the CAD system and the solver, see Section 6.2. The pre- and postprocessing tool TeDA (Tool to enhance
Design by Analysis) [74] furthermore enables performing all steps of the development process within the CAD
environment, see Section 6.1. The related publications [30, 32, 52]mainly used the penalty method to couple rotation-
free Kirchhoff-Love shells. It should be noted, though, that the IBRA framework is not restricted to certain constraint
enforcement methods or shell formulations.

The second approach proposed by Guo et al. [68] is similar, but uses the more common STEP (STandard for the
Exchange of Product model data) format [75] for data transfer between CAD and solver. This approach is based on a
rotation-free Kirchhoff-Love shell formulation and coupling of trimmed non-matching patches is achieved in a weak
sense via a Nitsche-type method.

Both approaches have been successfully applied to nonlinear static shell problems and complex industry-type NURBS
models in [30, 32] and [68]. However, none of them has been applied to explicit dynamic (crash-type) problems
or problems including material plasticity and contact. Their accuracy, efficiency and robustness in such analysis
scenarios is therefore still unknown.

1.2.3 Isogeometric analysis for explicit dynamics

Highly dynamic finite element analyses of large problems with strong nonlinearities like vehicle crash scenarios are
primarily solved with explicit time integration schemes [45, 76]. Due to the conditionally stable nature of explicit
schemes, the time step size is limited by a critical value. Also isogeometric analyses have already been performed
with explicit time integration schemes, but several aspects remain to be answered.

Benson and coworkers [44, 73, 77] developed various NURBS-based shell formulations with and without rotational
DOFs with a focus on explicit dynamics. Successful sheet metal forming and dynamic buckling simulations demon-
strated the applicability of these shell formulations with higher order elements to large deformation explicit dynamic
analysis. For explicit NURBS-based IGA, Hartmann and Benson [14] developed a suitable mass scaling approach as
well a heuristic time step estimate accounting for polynomial degree and type of integration (reduced vs. full), see
also Section 2.9.4. In [14], the authors performed an explicit sheet metal forming simulation with the NURBS-based
Reissner-Mindlin shell developed in [73] and obtained a similar accuracy as with FEA, but with a two times larger
element size and in only 40% of the FEA simulation time. These developments [14, 44, 73, 77] are only a few among
many (also implicit) IGA features [43, 78–80] now firmly implemented and available in the commercial FEA/IGA
solver LS-DYNA [45].

Adam et al. [81] developed a similar heuristic time step estimate for 1D rod and 2D plate problems in explicit IGA
accounting for polynomial degree and continuity of the basis. In fact, the latter was found to have a significant
influence on the critical time step size. They furthermore distinguished between different types of elements based
on the varying shape of basis functions in open knot vector patches. This distinction is based on their finding
that elements near the boundary of open knot vector patches possess a larger eigenfrequency and thus require
smaller time steps. Besides mass scaling, the authors in [81] proposed two remedies to eliminate the time step
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restricting effect of such boundary elements: (i) Increasing the size of elements near patch boundaries and (ii) using
unclamped (non-open) knot vectors. However, the practical applicability of these remedies, especially in standard
CAD programs is unclear. Moreover, the authors evaluated different time step estimates commonly used in explicit
FEA and confirmed their applicability to explicit NURBS-based IGA.

Chan and Evans [82] studied discontinuous Galerkin (DG) isogeometric analysis with explicit time integration for
wave propagation problems. The authors found that NURBS basis of higher continuity allow for larger time steps
than C 0 NURBS and DG finite element discretizations. They furthermore studied the influence of knot positions
within initially uniform open knot vector patches and found that a non-uniform distribution can increase the critical
time step for explicit time integration schemes; in particular, larger knot spans at the patch boundaries. This finding
and the suggestion to increase the size of elements at the patch boundaries by increasing knot spans is similar to
what is reported in [81], where the element size is increased by moving control points.

Limbert et al. [83] used explicit time integration and rotation-free NURBS-based Kirchhoff–Love shells to solve
dynamic membrane problems such as airbag inflation. They reported a similar accuracy, but with a lower number of
DOFs compared to conventional finite element analysis. In his PhD thesis [84], Occelli described the implementation
of LR (locally refined) B-spline solid elements including contact and stable time step estimates for explicit analysis into
the commercial solver Radioss [85]. With this implementation, nonlinear dynamic benchmark problems including
plasticity, large deformations and contact were successfully solved.

Several publications dealt with the development of novel mass matrix formulations and the aim to improve the
accuracy or efficiency of explicit dynamic isogeometric analysis [86–88]. However, only the mass matrix suggested
in [88] has diagonal form and therefore allows decoupling the equation system which only makes explicit analysis
efficient for large problems.

Auricchio et al. [89] and more recently Evans et al. [90] and Marino et al. [91] solved explicit dynamic isogeometric
problems with collocation methods, which require a minimum number of integration points and could therefore
be an efficient alternative to Galerkin methods, especially for explicit analysis. The work from Schillinger et al. [92]
provides a cost comparison between isogeometric collocation, isogeometric Galerkin and finite element Galerkin
methods for an explicit Newmark predictor-multicorrector scheme with two corrector steps. It is worth noting that
the aforementioned approaches use consistent [91], or a combination of consistent and lumped mass matrices in
predictor multi-corrector schemes [89, 90, 92]. Overall, it seems that there is still much work left to do until collocation
methods are applicable to large scale industrial problems including plasticity, large deformations and contact, such
as vehicle crash simulations.

Finally, it should be noted that none of the aforementioned publications on explicit IGA considered trimming and
that the author is not aware of any literature describing the influence of trimming on the critical time step in explicit
isogeometric analysis.

1.2.4 Stabilization techniques for small trimmed elements

Trimming of regular tensor product NURBS patches generally yields small trimmed elements and consequently
basis functions with only small support in the material/physical domain. Concomitant effects are small entries in the
system matrices causing large condition numbers, control points with small mass and stiffness, as well as unstable
solutions, whereby the term (in)stability is left undefined at this point. Similar issues are encountered whenever
a domain discretization is not boundary-conforming, e.g. in meshfree methods, immersed boundary methods,
fictitious domain methods, embedded domain methods, finite cell methods or however named. To overcome these
issues, several stabilization techniques have been developed – some even specifically for IGA and B-spline bases. This
section discusses relevant approaches in the context of IGA and FEA and especially with respect to their applicability
to complex multi-patch NURBS models in explicit dynamic analysis. In the following, the problematic basis functions
with small support5 are referred to as unstable or degenerated basis functions.

Neglecting the contribution of small trimmed elements or basis functions with small support

The probably most straightforward approach to deal with small trimmed elements and basis functions with small
support in the material domain is to simply neglect them during analysis, as done, for example in [71, 72, 93–95].
If the eliminated elements are small, the impact on the solution is negligible. In fact, there is always a trade-off
between solution accuracy and stability/conditioning of the system and it will depend on the intention of the analysis
whether certain elements or basis functions can be eliminated or not. Furthermore, the effect of element and DOF
elimination on the accuracy of weak coupling and boundary conditions has to be considered. Embar et al. [71]

5 The definition of small support is often problem dependent and linked to different criteria such as the location of basis function anchors
or threshold values.
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eliminated trimmed elements smaller than an area-fraction of 10−6. In the context of CutIGA, Elfverson et al. [95]
recently proposed an element selection procedure based on the energy norm of basis functions approximated via
the diagonal elements in the stiffness matrix. Its simplicity and efficiency makes the elimination approach attractive
for explicit analysis. It is, however, also worth noting that eliminating elements and basis functions requires full
access to the corresponding solver routines and consistent bookkeeping.

Fictitious domain stiffness

Another common approach, especially within (isogeometric) FCM, is the application of a small stiffness in the
fictitious (void) domain [42]. For this purpose, numerical integration is performed over the entire domain, while
a factor commonly denoted as α differentiates between the material (α= 1) and the fictitious domain (α= ε� 1).
The value ε is commonly chosen in the range of 10−4 to 10−14 [40–42] or estimated via material parameters [40]. The
additional contributions from the fictitious domain increase the (arbitrarily) small matrix entries of basis functions
with (arbitrarily) small support in the material domain and thus the conditioning. A detailed study on the convergence
properties of FCM using such an extension into the fictitious domain is provided in [96]. In the context of trimmed
NURBS patches with weakly enforced coupling and boundary conditions, this fictitious domain stiffness approach
was successfully applied to linear elastic (thin) solid problems [40, 41] and (nonlinear) elastic shell problems [37,
68]. Potential drawbacks of this approach with regard to existing solver frameworks and explicit analysis are (i) the
necessary ability to perform numerical integration over the fictitious domain and (ii) the increased computational
cost (per time step) due to a higher number of integration points.

Scaling of basis functions / Preconditioning

With a focus on the (isogeometric) finite cell method, De Prenter et al. [97] developed a preconditioner to improve
the condition number of system matrices. In order to eliminate the effect of trimmed basis functions with small
support, the affected basis functions are scaled by the inverse of the square root of the diagonal system matrix entries.
After solving the preconditioned system, the solution is projected back to the original system. In [98], De Prenter et al.
generalized this preconditioning approach to systems which are not symmetric positive definite.

Already in 2008, Mößner and Reif [99] suggested a “skip-and-scale” strategy to stabilize a B-spline basis including
B-splines with only small support in the physical domain. That is, depending on certain criteria, elements are either
neglected (skipped) or appropriately normalized (scaled).

Recently, Buffa et al. [100] investigated the small support issue for Poisson problems solved with IGA on trimmed
geometries and Nitsche’s method. It is worth noting that they differentiated between (i) stability, in the sense of
boundedness and coercivity of a bilinear form, and (ii) bad matrix conditioning. For the former, they suggested
a stabilization technique that approximates the normal derivatives along trimmed boundaries. For the latter the
authors applied a simple diagonal scaling as a kind of preconditioning. However, within explicit analysis, the term
stability is defined differently and the applicability of the proposed approach to explicit IGA is unknown.

Basis function extension / Extended B-splines

A mathematically sound and elegant approach is the use of extended B-spline basis functions. Within this approach,
unstable B-spline basis functions are substituted by extended B-splines, which are a subtle linear combination of
adjacent stable B-spline basis functions. Extended B-splines were originally proposed by Höllig et al. in the context
of the Weighted Extended B-spline (WEB) method [101–103], which uses weight functions (multiplied with the basis)
to define the analysis domain within a non-boundary-conforming discretization. Also in this case, the basis was
found to be unstable and extended B-splines were developed to solve this issue.

In the context of IGA, Höllig et al. [104] proposed a combination of the WEB method with IGA and Marussig et al. [34]
demonstrated the effectiveness of extended B-splines within a collocated isogeometric Boundary Element Method
(BEM). Rüberg and Cirak used extended B-splines to stabilize small cut elements for flow problems with moving
boundaries [105] and fluid-structure interaction problems [106], in combination with Nitsche’s method.

It is important to note that, as the name implies, extended B-splines are limited to B-spline basis functions and that
NURBS-based models require special treatment [16, 34, 107]: One can either convert the NURBS-based model into a
full B-spline-based model or use an independent field approximation, i.e. using a B-spline basis for the solution
field and a NURBS basis for the geometry, which is not in accordance with the isoparametric concept [16, 34, 107].
Furthermore, extending B-splines requires a certain number of stable adjacent basis functions, e.g. in 2D (p +1)(q +1)
basis functions [16]. This can cause problems in case of very narrow and tapered patches, which are unavoidable in
practical applications. Another aspect reported in the literature is that the length of the extrapolation should not be
too high for accurate results [107]. Recently, Marussig et al. [107] used local refinement via THB-splines (Truncated
Hierarchical B-splines) to overcome the two aforementioned issues. Finally, it should be noted that the modified
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B-spline basis along trimmed boundaries also has to be considered when applying (weak) boundary and coupling
conditions, which may require special attention.

A, to some extent, related approach for unfitted Lagrangian finite element methods are aggregation techniques, for
example the one proposed by Badia et al. [108]. Herein, cut elements are appropriately merged with adjacent interior
elements, forming so-called aggregates. Based on that, problematic DOFs are replaced by an extrapolation of DOFs
from interior elements, yielding a new aggregated finite element space with improved conditioning properties. In [108],
the applicability of this approach was demonstrated by solving the Poisson equation on 2D and 3D geometries.

Ghost penalty term

Within CutFEM, a fictitious domain finite element method, the issue of poorly conditioned system matrices due
small cut elements, was solved by adding a ghost penalty term [109, 110]. This additional penalty term is reported to
increase robustness, ensure optimal convergence properties and coercivity. In [110], Poisson, Laplace–Beltrami and
Stoke’s problems were solved with CutFEM in combination with Nitsche’s method and the ghost penalty stabilization.
However, later for CutIGA, the issue of small cut elements and ill-conditioned matrices was solved by eliminating
problematic elements [72, 95], as already mentioned above.

Applicability of stabilization schemes to explicit dynamic analysis

To conclude, many attempts to stabilize basis functions with small support in the material domain have been made
within IGA and FEA. But none of the aforementioned approaches was designed for the use in explicit methods in
which (i) all DOFs can be decoupled (when using a lumped mass matrix), (ii) the system matrices are not assembled
and (iii) no equation systems are solved. Thus, bad matrix conditioning is not the actual reason for stability problems
in explicit analysis of trimmed models. Also the term stability is defined differently in explicit dynamics. Furthermore,
none of the presented attempts has been applied to (a) highly dynamic nonlinear explicit isogeometric analysis
and (b) penalty-coupled trimmed NURBS shell structures including material plasticity and contact. Therefore, their
effectiveness in this context is unknown.

1.2.5 Practical considerations for an integrated IGA-based development process

This section is intended to close the state of the art review regarding explicit isogeometric analysis on industrial
models with a brief overview on crucial practical aspects for an integrated IGA-based development process. This
comprises attempts for an integrated IGA-based design-analysis workflow, a concise review on the (still limited) IGA
activities within commercial software products and guidelines for IGA-suitable CAD modeling.

Attempts for an integrated IGA-based design-analysis workflow

In the literature, several attempts towards a fully integrated design and analysis workflow were made considering
shells [30, 32, 52, 68, 111–113], membranes [31] and solids [84, 112, 114, 115]. Some attempts are based on NURBS [30–
32, 52, 68, 111, 112, 114], others on LR (locally refined) B-splines [84] or T-splines [112, 115]. Most of these attempts
used the CAD system Rhinoceros [116] together with dedicated pre- and postprocessing plug-ins for IGA [30–32,
52, 84, 111–115]. In [30, 32] an analysis in computer aided design (AiCAD) workflow was also realized using the CAD
system Siemens NX [117]. These attempts are just prototypical implementations and not ready for productive usage
in industry. Nevertheless, they demonstrate that it is technically feasible to perform pre- and postprocessing steps
for IGA within the CAD environment, to first extract analysis-related data and to later import analysis results.

IGA implementations in commercial software

IGA capabilities have also been implemented into commercial solvers. Already in 2010, Benson et al. [73] implemented
the first NURBS-based shell formulation via user-defined elements into LS-DYNA. Other shell formulations [44,
77], mass scaling approaches, time step estimates [14], and trimmed elements [43] followed. LS-DYNA therefore
became the first commercial solver with firmly implemented IGA capabilities including the aforementioned features,
various isogeometric shell and solid elements, unstructured spline technologies supported via the Bézier extraction
format [118], different types of contact and basically all LS-DYNA material models [78–80]. Besides that, Elguedj
et al. [114] and Lai et al. [115] implemented NURBS- and T-spline-based solid elements, respectively, via a user-defined
element interface into Abaqus [119], while Occelli [84] implemented solid LR B-spline elements and isogeometric
contact into Radioss [85].

From this overview one might get the impression that all necessary ingredients for an integrated IGA-based design-
analysis process are in place, and that it is just a matter of time until such a process is realized in industry. But in fact,
little effort has been made from CAD vendors to develop and provide appropriate design, pre-, and postprocessing
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tools for commercial use. One reason may be the fact that the analysis industry is relatively small compared to the
CAD industry. This is also a reason why separate preprocessor programs for FEA exist today at all. Nevertheless, the
developers of the preprocessor ANSA recognized the potential of IGA and already implemented first IGA features [120],
particularly aligned with the IGA features in LS-DYNA.

IGA-suitable CAD modeling

Another crucial aspect for an efficient, accurate and robust usage of IGA in industry are guidelines for IGA-suitable
CAD modeling, similar to the FEA modeling guidelines successively developed over the last decades. In the literature,
first attempts and IGA modeling recommendations can be found. In 2010, Cohen et al. [17] already emphasized
that model quality criteria for IGA similar to mesh quality criteria for FEA are required and that such criteria may
be even considered in CAD systems. They referred to this modeling philosophy as analysis-aware modeling for
IGA. Cohen et al. [17] furthermore demonstrated the impact of different model parameterizations and knot vector
definitions on the accuracy of analysis results. Similar considerations regarding analysis-aware modeling can be
found in [111]. A few recommendations regarding NURBS-based models for explicit analysis are provided in [81],
as already mentioned in the previous section. However, the author is not aware of more comprehensive and more
practical investigations on isogeometric analysis model quality criteria for complex models. What is especially lacking
are practical guidelines for trimming and patch coupling (e.g. trimming and coupling locations, shape of trimmed
patches), as well as for explicit analysis (influencing factors on the critical time step size), which still need to be
discovered.

1.3 Aims & Objectives

As described in the state of the art section above, several questions remain to be answered on the way towards a fully
integrated design-analysis process for explicit isogeometric (crash) analysis on industrial models. This thesis aims at
contributing to this overall goal by focusing on

• Shell structures, most widely used in vehicle crash and sheet metal forming simulations.

• Trimmed NURBS-based multi-patch models, the most common geometry description in industrial CAD.

• Weak penalty-based coupling and boundary conditions in the framework of Isogeometric B-Rep Analysis
(IBRA).

This thesis therefore pursues a local approach for handling industrial CAD models within IGA. Having stated the
focus of the thesis, the fundamental research question to be answered is:

How to achieve accurate, efficient and robust explicit dynamic isogeometric analyses on penalty-coupled trimmed
NURBS shell structures in order to enable an integrated design-analysis process for vehicular crashworthiness?

This broad research question can be subdivided into four main aspects. In particular, the aims of this thesis are to

1. Extend the IBRA framework for trimmed NURBS-based multi-patch shell structures to explicit dynamics and
Reissner-Mindlin shells with rotational DOFs.

So far, IBRA including penalty-based B-Rep elements has only been applied to implicit static analysis of rotation-
free Kirchhoff-Love shells. To enable crash-type simulations, IBRA shall be extended to explicit dynamic analysis
within the commercial solver LS-DYNA. In order to capture the significant shear deformations appearing
within vehicle crash simulations, IBRA shall also be extended to the Reissner-Mindlin (RM) shell theory; in
particular to an RM shell formulation with six DOFs (three translations and three rotations) described in global
coordinates as proposed by Benson et al. [73]. This requires the development of an accurate and robust B-Rep
element formulation including rotational DOFs, applicable to large deformation and large rotation scenarios
as well as non-smooth patch interfaces. Furthermore, it shall be investigated if, and under which conditions,
explicit analyses of penalty-coupled trimmed NURBS shells are numerically stable. The final objective is to
compute or at least estimate the corresponding critical time step size considering trimming and penalty-based
B-Rep elements.

2. Identify and study factors influencing the critical time step size within explicit analysis of penalty-coupled
trimmed NURBS shells and develop methods to increase the time step size.

As mentioned in the state of the art section, elements at the boundaries of open knot vector patches restrict
the critical time step. In this context, the first objective is to investigate whether trimming is a suitable mean

11



1 Introduction

to eliminate this time step restriction. The second objective is to study the effect of trimming and especially
the effect of small trimmed elements on the critical time step size, with a particular focus on the influence
of varying polynomial degree and inter-element continuity of the underlying patch. Another crucial aspect
within explicit analysis is the influence of weak penalty-based coupling and boundary conditions on the time
step. Mass scaling is a common approach to increase the time step size in explicit analysis. Thus, it shall be
studied whether mass scaling can be locally applied to specifically eliminate a possible time step reduction
caused by weak penalty-based coupling and boundary conditions.

3. Stabilize trimmed control points with low mass and stiffness in explicit dynamic IBRA effectively and without a
deterioration in accuracy and time step size.

Small trimmed elements lead to basis functions with small support in the material domain and consequently
to control points with small mass and stiffness. When solving equation systems, the main problem is the high
condition number of the system matrices. Within explicit methods, the system matrices are not assembled
and no equation systems are solved. Still, stability issues were observed. The first objective in the context of
stabilization is therefore to identify the actual reason for instabilities in explicit analysis and to classify the type
of instability. Stabilizing problematic control points first requires a suitable criterion to identify these control
points prior to analysis. Finding such a criterion is the second objective. The third objective is to develop
an effective stabilization scheme for highly dynamic explicit analysis that (i) can handle control points with
masses and stiffnesses differing by orders of magnitudes, (ii) is compatible with weak penalty-based coupling
and boundary conditions, (iii) does neither affect the critical time step size nor the solution accuracy, (iv) is
applicable to complex industrial multi-patch NURBS models and (v) can be implemented into an existing solver
environment. Finally, a suitable error measure for assessing the effectiveness of the proposed stabilization
approach shall be developed.

4. Set up an integrated IBRA-based design and analysis process between commercial software programs.

The integration of design and analysis with a focus on vehicular crashworthiness is the main motivation for this
thesis. Accordingly, the possibility to set up an integrated design and analysis process between a commercial
CAD and a commercial (explicit crash) solver shall be demonstrated. Using the IBRA framework comprising
pre- and postprocessing tools for Rhinoceros as well as an appropriate data exchange format, the objective is to
(i) extract the necessary geometry, topology and analysis information from the exchange format, (ii) convert the
data into a solver-compatible format, (iii) implement B-Rep elements into the (explicit crash) solver LS-DYNA
and (iv) convert analysis results into a suitable format for postprocessing in the CAD environment.

1.4 Overview

The remainder of this thesis closely follows the structure defined by the above aims & objectives. Chapter 2 provides
the essential fundamentals, comprising the basic concepts of trimmed NURBS-based B-Rep CAD, differential geome-
try of trimmed surfaces, continuity and refinement within IGA. It furthermore gives a brief overview on shell theories
required to appropriately extend the B-Rep element formulation from Kirchhoff-Love to Reissner-Mindlin shells, and
describes the RM shell used within this thesis in more detail. It also provides information on the employed numerical
integration procedures for trimmed elements, Isogeometric B-Rep Analysis (IBRA) – the basic idea this thesis builds
upon – as well as on the corresponding penalty-based isogeometric B-Rep elements. Finally, this chapter introduces
explicit dynamic analysis including the central difference scheme, stability conditions and common stable time step
estimates.

Chapter 3 presents Explicit IBRA, the extension of IBRA to explicit dynamics and RM shells. This includes the required
adaptations towards explicit dynamics as well as considerations on suitable B-Rep element formulations accounting
for shear deformations and rotational DOFs. Basically two types of B-Rep edge element formulations are proposed in
this chapter: The standard and the enhanced B-Rep edge element formulation for coupling, Dirichlet and Neumann
conditions. The enhanced formulation enforces additional constraints on the shell normals, providing higher accuracy
and extra robustness in highly dynamic large deformation scenarios. Control point forces and stiffness matrices
are derived for all B-Rep edge element formulations. Finally, this chapter demonstrates under which conditions
penalty-coupled trimmed NURBS shells yield stable explicit analyses and how to determine the critical time step
size.

Chapter 4 deals with the stable time step size within Explicit IBRA, in particular with (i) trimming as a mean to
eliminate the negative effect of elements at the boundary of open knot vector patches, (ii) the influence of trimming
for varying polynomial degree and inter-element continuity and (iii) the effect of weak penalty-based coupling and
boundary conditions. Theoretical considerations are supplemented with minimal numerical examples in one and
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1.4 Overview

two dimensions. Furthermore, this chapter proposes a local selective mass scaling approach for penalty-based B-Rep
elements.

Chapter 5 addresses stability issues encountered in highly dynamic analysis of models with small trimmed elements
and proposes a suitable stabilization scheme. First, the actual reasons for the occurring instabilities in explicit
dynamic analysis are studied, followed by the negative consequences on the analysis and a rough classification of
the appearing instability. A detailed explanation of the proposed penalty-based stabilization scheme forms the core
of this chapter. Subsequently, it is shown that the stabilization scheme does not affect the numerical stability of the
overall analysis and that time step estimates are further on applicable. Finally, a suitable error measure is introduced
and the effectiveness of the proposed stabilization scheme is demonstrated via minimal numerical examples.

Chapter 6 presents a prototypical implementation of an integrated CAD/CAE process based on IBRA and the
corresponding exchange format, between the commercial CAD program Rhinoceros and the commercial (explicit
crash) solver LS-DYNA. This chapter aims at highlighting the benefits compared to conventional CAD/CAE processes,
namely a CAD environment for design, pre- and postprocessing, a uniform geometry description and a consistent
feature-based data structure. It furthermore presents a brief overview on the employed IBRA exchange format with its
various data extraction levels and aspects regarding the implementations via a user-defined interface into LS-DYNA.
Finally, suggestions for analysis-aware CAD modeling are made.

In Chapter 7, the validity and effectiveness of Explicit IBRA and the corresponding developments is assessed by means
of various well-selected benchmark examples, reaching from quasi-static linear elastic to highly dynamic nonlinear
elasto-plastic shell problems including contact. These benchmark examples are solved on penalty-coupled trimmed
multi-patch NURBS models and compared to results obtained from untrimmed NURBS or FEA models. Finally, the
practical applicability of the Explicit IBRA framework is shown through dynamic analysis on two industrial models:
the exterior skin and the reinforcement structure of a BMW engine bonnet, comprising up to 130 trimmed NURBS
patches.

If considered useful, these chapters are closed with a brief summary. Chapter 8 summarizes the most important
findings, developments and practical implications of this thesis, and finally provides suggestions for improvement
and further research.
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Chapter 2

Preliminaries

The aim of this chapter is to review fundamental concepts on which this thesis builds upon and to introduce the
corresponding notation. This comprises the basics of Non-Uniform Rational B-Splines (Section 2.1), trimmed NURBS-
based B-Rep CAD modeling (Section 2.2), differential geometry (Section 2.3), geometric continuity (Section 2.4) and
specifically refinement within IGA (Section 2.5). In order to comprehend the developments proposed in subsequent
chapters, Section 2.6 reviews shell analysis in general and the underlying Reissner-Mindlin shell formulation in
particular. Furthermore, Section 2.7 describes the procedures deployed for the numerical integration of (trimmed)
elements. Section 2.8 provides an overview on Isogeometric B-Rep Analysis (IBRA) and the concept of isogeometric
B-Rep elements. Finally, Section 2.9 reviews explicit dynamic analysis, the central difference method, stability
conditions, and common time step estimates – aspects that are all vital for this thesis.

2.1 Non-Uniform Rational B-Splines (NURBS)

Non-Uniform Rational B-Splines (NURBS) are the common technology to describe geometries in industrial CAD.
NURBS are also the original basis for IGA [12] and the basis for the IBRA framework [30, 32], in which NURBS are used
to describe both, geometry and displacement fields. In this section, only the basic concept of NURBS, required for the
notation and subsequent definitions, is provided. More details on B-splines and NURBS can be found in [121–123].
Since NURBS are a generalization of B-splines, the concept of B-splines is described first and then extended to
NURBS.

B-spline basis functions Ni ,p (ξ) are piecewise polynomial functions, uniquely defined through the knot vector Ξ and
the polynomial degree p . The knot vector Ξ is defined as a set of non-decreasing parametric coordinates

Ξ = {ξ1,ξ2, . . . ,ξn+p+1}, (2.1)

where n is the number of B-spline basis functions associated with this knot vector. The so-called knotsξi ≤ ξi+1 divide
the parameter space into knot spans. In case of equidistant knot spans, a knot vector is called uniform, otherwise
non-uniform. Non-zero knot spans [ξi ,ξi+1] define the elements for isogeometric analysis. A knot vector may also
have multiple knot values, which has an effect on the shape and continuity of basis functions. That is, a knot value
with multiplicity mi reduces the continuity between elements to C p−mi . The continuity of the basis within an element,
however, remains to be C∞. For more information on the concept of continuity the reader is referred to Section 2.4.
If the first and the last knot value have multiplicity of p +1, the knot vector is denoted as an open knot vector. With
the Cox-de Boor recursion formula, B-spline basis functions are computed as

Ni ,0(ξ) =

(

1 if ξi ≤ ξ<ξi+1

0 otherwise
(2.2)

Ni ,p (ξ) =
ξ−ξi

ξi+p −ξi
Ni ,p−1(ξ) +

ξi+p+1−ξ
ξi+p+1−ξi+1

Ni+1,p−1(ξ). (2.3)

By assigning a control point Pi to each basis function Ni ,p , a B-spline curve C (ξ) of degree p is defined as

C (ξ) =
n
∑

i=1

Ni ,p (ξ)Pi . (2.4)
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Figure 2.1: Cubic B-spline curve in (a) and corresponding basis functions in (b) generated from the open knot vector
Ξ = {0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 0.8, 0.8, 1, 1, 1, 1}.

An example of a cubic B-spline curve with the corresponding n = 10 basis functions is provided in Figure 2.1. This
B-spline curve is generated from an open knot vector Ξ = {0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 0.8, 0.8, 1, 1, 1, 1}. Due to the fact
that the knot value 0.8 has multiplicity m8 = 3, the basis function N7,3 is only C 0 continuous with a maximum value
of one (see Figure 2.1a) and the B-spline curve is interpolatory at control point P7. The piecewise linear connection
of control points as shown with dashed lines in Figure 2.1b is denoted as the control polygon.

In order to allow for the exact description of a larger set of geometrical entities including conic sections, the concept
of B-splines is generalized to NURBS. Introducing a weighting factor wi for each control point Pi and normalizing
the B-spline basis functions with a weighting function W (ξ) yields the NURBS basis functions Ri ,p (ξ). A NURBS
curve C (ξ) is then defined similarly to Eq. (2.4) as

C (ξ) =
n
∑

i=1

Ni ,p (ξ)wi Pi

W (ξ)
=

n
∑

i=1

Ni ,p (ξ)wi Pi
n
∑

k=1
Nk ,p (ξ)wk

=
n
∑

i=1

Ri ,p (ξ)Pi . (2.5)

Extending B-spline and NURBS curves to surfaces is straightforward, as a surface is basically the tensor product
extension in two parametric dimensions ξ and ηwith two knot vectors Ξ and H. A B-spline surface S (ξ,η) is then
given as

S (ξ,η) =
n
∑

i=1

m
∑

j=1

Ni ,p (ξ)M j ,q (η)Pi j =
nm
∑

A=1

NA(ξ,η)PA (2.6)

with n basis functions Ni ,p of degree p in ξ-direction, m basis functions M j ,q of degree q in η-direction and n ×m
control points Pi j . For a more concise notation, the univariate basis functions Ni ,p and M j ,q can be expressed as
bivariate functions NA(ξ,η) associated with the control points PA . A NURBS surface S (ξ,η) can then be similarly
described as

S (ξ,η) =
nm
∑

A=1

NA(ξ,η)wA PA
nm
∑

B=1
NB (ξ,η)wB

=
nm
∑

A=1

RA(ξ,η)PA . (2.7)

In the following, both B-spline and NURBS basis functions are denoted as NA in order to conform with the familiar
finite element notation.

2.2 Trimmed NURBS-based B-Rep CAD

As the name implies, Isogeometric B-Rep Analysis (IBRA) bases on the B-Rep modeling approach, the quasi-standard
in industrial CAD. This section therefore provides a brief overview on the basics of trimmed NURBS-based B-Rep
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CAD models. The term B-Rep stands for boundary representation and indicates the fact that a three-dimensional
physical model is only represented by its outer boundary (skin) rather than by its complete volume. That is, the
boundary representation separates the inside of an object from its outside.

The data structure of B-Rep models consists of two parts, namely (i) geometry data and (ii) topology data, which allows
for a clear and definite model description [15, 16, 30]. While the geometry part describes (the shape of) surfaces (S),
curves (C) and points (P), the topology part defines how the corresponding topological entities faces (F), edges (E),
and vertices (V) are related to each other [15, 16, 30]. In a simplified manner, one can imagine faces as portions of
surfaces, surrounded by sets of ordered edges, the so-called loops, and edges as segments of curves limited by two
vertices [15]. In Figure 2.2 for instance, the two adjacent faces F1 and F2 are connected by their common edge E2.

As described in the previous section, B-spline and NURBS surfaces (patches) rely on a tensor product structure, which
limits the topology to rectilinear surfaces. To overcome this limitation in topological complexity, B-Rep surfaces
are often trimmed [124]. The concept of trimming can be described as dividing a NURBS patch into visible Svisible

and void domains Svoid by means of trimming curves, see Figure 2.2a. To clearly define which part of the model is
intended to be visible and which one to be void, connected trimming curves form a trimming loop with a specified
orientation: a clockwise orientation indicates an inner loop, while a counter-clockwise orientation indicates an outer
loop [125]. The trimming curves are usually defined in the parameter space (ξ,η) of the underlying surface patch,
and often as B-spline or NURBS curves, see Eq. (2.8). A number of M trimming curves C̃ k (ξ̃), as shown in Figure 2.2c,
can be described as

C̃ k (ξ̃) =







ξk (ξ̃)

ηk (ξ̃)







=
nk
∑

i=1

N k
i ,l (ξ̃) P̃ k

i , k = 1, 2, . . . , M , (2.8)

with the trimming curve parameter ξ̃, the trimming curve parameters ξk and ηk in the parametric space of the
patch, the polynomial degree l and the nk control points P̃ k

i defined in the parametric space of the patch. The actual
curves C k (ξ̃) in the physical space, which bound the visible surface domain Svisible as shown in Figure 2.2a, are then
obtained by applying the surface mapping S (ξ,η) to the curves C̃ k (ξ̃) as

C k (ξ̃) = S (ξk (ξ̃),ηk (ξ̃)) =
nm
∑

A=1

NA(ξk (ξ̃),ηk (ξ̃)) PA , k = 1, 2, . . . , M . (2.9)

It is worth noting that trimming does not change the mathematical description of the underlying patch, it just
considers certain domains in- or outside of trimming loops as void. This also applies to trimmed curves, limited by
points.

Industrial B-Rep models generally consist of multiple intersecting surfaces, trimmed along intersection curves.
Due to the fact that the resulting intersection curves can have excessively high polynomial degrees [126], an exact
representation is, in general, practically infeasible. For this reason, both the intersection curve in the physical space
and the two trimming curves in the corresponding patch parameter spaces are approximated by simplified curves,
leading to small gaps and overlaps between intersecting patches [15, 16, 30]. A direct downstream analysis must
therefore be able to deal with such non-watertight B-Rep models; as will be shown in Chapter 7, Isogeometric B-Rep
Analysis is able to do so. More information on B-Rep modeling and trimming can be found in [15] and [16, 124, 125],
respectively, and the references provided therein.

The focus of this thesis is on shell structures, which are characterized by the fact that one body dimension (shell
thickness) is much smaller than the other two. The actual shell continuum is therefore reduced to a surface repre-
sentation with an assigned wall thickness. In such case the B-Rep surface model describes the whole object rather
than only its boundary, enabling a direct application of isogeometric B-Rep analysis. The IBRA framework including
trimming and weakly enforced boundary conditions is, however, not restricted to shell structures and can be also
extended to solids. This would then result in a methodology similar to the isogeometric Finite Cell Method (FCM),
see for instance [42]. Compared to shell structures, though, some additional effort is required to generate a trivariate
volume parametrization from the model boundary.

In the following, a trimmed B-Rep model shall be considered as the domainΩ composed of multiple subdomainsΩ(a )

such that

Ω =
⋃

a

Ω(a ) ∈R3. (2.10)

Each of these subdomains Ω(a ) shall be described by a trimmed surface S (a )visible and its boundary Γ (a ). This boundary

described by ∂ S (a )visible shall again consist of multiple curves such that

∂ S (a )visible =
⋃

k

C (a )k =
⋃

k

∂ S (a )k . (2.11)
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The corresponding descriptions of Ω(a ) and Γ (a ) in the surface parameter space are denoted as Ω̃(a ) and Γ̃ (a ), respec-
tively.
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Figure 2.2: Trimmed surface B-Rep model represented in geometry space (a), as an abstract topology (b), and in
parameter space (c). Figure taken from [54] in a slightly modified form.

2.3 Differential geometry of trimmed surfaces

To allow for a discussion on shell kinematics and mechanics, the basic concepts of differential geometry for surfaces,
surface boundaries and trimming curves are provided in this section.

2.3.1 Surfaces

As stated in Eq. (2.7), a point on a surface Svisible in a 3D Euclidean space can be described by two parameters, see
Figure 2.3. In particular, a point on a shell midsurface in the initial (undeformed) configuration shall be described by its
position vector X (Θ1,Θ2) as a function of the parametersΘ1 andΘ2; the same applies to the position vector x (Θ1,Θ2)
in the current (deformed) configuration. These parameters are defined as curvilinear, contravariant coordinates with
the common notation Θ1 and Θ2 [30, 127]. The corresponding covariant bases A1, A2 in the initial and a 1, a 2 in the
current configuration are defined as the tangent vectors along the Θα curves and obtained as the partial derivatives
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with respect to the coordinates Θα:

Aα =
∂ X

∂ Θα
, a α =

∂ x

∂ Θα
, (2.12)

where α ∈ {1, 2}. Based on the midsurface description, a material point in the shell body is described via a position
vector X ∗ resp. x ∗ in the initial resp. current configuration as

X ∗(Θ1,Θ2,Θ3) = X (Θ1,Θ2) +Θ3D 3, x ∗(Θ1,Θ2,Θ3) = x (Θ1,Θ2) +Θ3d 3, (2.13)

where Θ3 is a contravariant coordinate in thickness direction along the shell director d 3, that is, a line of constant Θ1

and Θ2. In the initial configuration and in case the deformed director d 3 remains normal to the midsurface, the
director coincides with the third basis vector (D 3 = A3 and d 3 = a 3) defined as

A3 =
A1× A2

‖A1× A2‖
, a 3 =

a 1×a 2

‖a 1×a 2‖
. (2.14)

The displacement vectors on the midsurface and in the shell body are then computed as

u (Θ1,Θ2) = X (Θ1,Θ2)−x (Θ1,Θ2), u ∗(Θ1,Θ2,Θ3) = X ∗(Θ1,Θ2,Θ3)−x ∗(Θ1,Θ2,Θ3) (2.15)

2.3.2 Surface boundaries

For subsequent discussions on coupling and boundary conditions, the differential geometry of surface boundaries
and a corresponding orthonormal coordinate system are introduced, closely following the notation in [127]. As shown
in Eqs. (2.8) and (2.9), a curve C (Θ̃) on a surface S may be described by a curve C̃ (Θ̃) in the parameter space (Θ1,Θ2) of
the surface1. This gives an implicit curve description C (Θ̃) = S (Θ1(Θ̃),Θ2(Θ̃)) controlled by the curve parameter Θ̃. By
describing the surface boundary ∂ Svisible in this way, a point on the surface boundary is obtained as x (Θ1(Θ̃),Θ2(Θ̃)).
An orthonormal coordinate system (a t, a 3, a u) aligned with the surface boundary as depicted in Figure 2.3 can then
be defined as follows. The first basis vector a t pointing along the curve tangent is obtained by partially differentiating
the implicit curve description with respect to Θ̃, applying the chain rule and normalizing as

a t =
â t

‖â t‖
, â t =

∂ x

∂ Θ̃
=
∂ x

∂ Θ1

∂ Θ1

∂ Θ̃
+
∂ x

∂ Θ2

∂ Θ2

∂ Θ̃
. (2.16)

The second basis vector is identified as the surface normal vector a 3 already introduced in Eq. (2.14) as

a 3 =
a 1×a 2

‖a 1×a 2‖
. (2.17)

Based on that, the third basis vector, pointing away from the surface, is computed as the cross product of the previous
two:

a u = a t×a 3. (2.18)

The same of course applies to the initial configuration with At, Au and A3

2.3.3 Trimming curves in parameter space

Applying weak coupling and boundary conditions requires numerical integration along trimmed surface boundaries
and hence trimming curve tangent vectors, see Section 2.8.3, Eqs. (2.39) and (2.37). The trimming curve definition C̃ (ξ̃)
in Eq. (2.8) establishes the link between the trimming curve parameter ξ̃ and the surface parameters (ξ, η) of a spatial
point on a surface boundary ∂ Svisible. Differentiating C̃ (ξ̃) partially with respect to the trimming curve parameter ξ̃,
the tangent vector in the parameter space is obtained as

t̃ =







t̃1

t̃2







=
∂ C̃ (ξ̃)

∂ ξ̃
=







∂ ξ

∂ ξ̃
∂ η

∂ ξ̃







. (2.19)

1 There is no particular need to differentiate between the curve parameters Θ̃ and ξ̃. However, here Θ̃ is used to describe curves on surfaces
and surface boundaries in the familiar differential geometry notation, while ξ̃ indicates trimming curves and general curve parametrizations.
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Figure 2.3: Differential geometry of trimmed surfaces, following [32, 127].

2.4 Geometric and parametric continuity

Since continuity plays a significant role in this thesis – be it the continuity between coupled NURBS patches or the
continuity of the underlying basis functions – the concept of continuity shall be briefly explained here, see also [32,
123, 128]. In general one must differentiate between geometric and parametric continuity, which are also commonly
interpreted as physical and mathematical continuity, respectively [123].

2.4.1 Geometric continuity

Geometric continuity can be easily explained by considering two curve segments C 1(ξ̃) and C 2(ξ̃)with ξ̃ ∈ [0, 1]. If
the two curve segments are joined, i.e. if the end point of one curve (ξ̃= 1) is equal to the starting point of the other
curve (ξ̃= 0), the resulting curve is G 0 continuous at the join:

C 1(1) = C 2(0). (2.20)

If the curve tangent vectors at the join point into the same direction

∂ C 1(1)

∂ ξ̃
= c
∂ C 2(0)

∂ ξ̃
, (2.21)

the resulting curve is said to be G 1 continuous where the curve segments join. Please note that the constant c > 0
indicates that the tangent vectors do not necessarily have the same magnitude.

2.4.2 Parametric continuity

Parametric continuity is indeed similar to geometric continuity, but more restrictive, i.e. parametric continuity
implies geometric continuity, but not vice versa [123]. The only exception is C 0 continuity which is identical to
G 1 continuity, see Eq. (2.20). For C 1 continuity, the curve tangent vectors do not only need to point into the same
direction, they also need to have the same magnitude [123], leading to the condition

∂ C 1(1)

∂ ξ̃
=
∂ C 2(0)

∂ ξ̃
. (2.22)
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More generally, a curve generated from two curve segments is regarded as C n continuous if the nth derivatives of
two curve segments at the join have the same direction and magnitude [123], yielding the condition

∂ n C 1(1)

∂ ξ̃n
=
∂ n C 2(0)

∂ ξ̃n
. (2.23)

2.4.3 Applications

The extension of geometric and parametric continuity from curves to surfaces is straightforward and requires the
consideration of two parametric directions (ξ,η). The actual conditions for G 1 continuity of B-spline and NURBS
surface imposed on control points can be found in [128].

In Chapter 3, G 0 and G 1 continuity between trimmed NURBS patches shall be enforced by means of penalty-based
B-Rep edge elements. In Chapter 4, the effect of continuity of the underlying NURBS basis functions on the critical
time step is studied.

2.5 Refinement in isogeometric analysis

Because of the variable order and continuity of the NURBS basis, IGA allows for a larger variety of refinement
schemes than known from standard FEA. That is, instead of only varying the element size via h-refinement and
varying the polynomial degree via p -refinement, IGA also allows for a variation in the continuity of the basis [12, 121].
Furthermore, the regular tensor product nature of NURBS patches in IGA, allows for (i) automatic refinement by
relatively simple algorithms and (ii) refinement that neither alters geometry nor parametrization, see for instance [12,
121, 122]. This is a clear advantage over standard FEA on unstructured meshes.

Since Chapter 4 contains a detailed study on the influence of continuity on the critical time step size of trimmed
NURBS models, the corresponding refinement schemes to create models of varying continuity shall be briefly
reviewed here.

• Knot insertion: Inserting a knot at a new knot value, partitions an existing element into two elements. If this
new knot is only inserted once, the continuity of the basis at this knot is C p−1. Because of a possibly higher
continuity, knot insertion is not identical to h-refinement known from FEA, which always leads to C 0 continuity.
To reproduce h-refinement exactly, the new knot needs to be inserted p times.

• Order elevation: Order elevation allows increasing the polynomial order of a basis with an arbitrary degree of
continuity. Order elevation is indeed similar to the known p -refinement from FEA, but without the restriction
of an initial basis with C 0 continuity. Thus, p -refinement can be considered as a special case of order elevation
in which the continuity is always C 0.

• k -refinement: This new type of refinement allows increasing the order and continuity of a basis, which is not
possible in standard FEA.

The simple example in Figure 2.4 demonstrates the difference between p - and k -refinement. Starting point for
both types of refinement is the single-element knot vector Ξ = {0,0,4,4} for p = 1, in which knots at three distinct
positions 1, 2 and 3 are inserted with a multiplicity depending on the type of refinement. Within p -refinement
in Figure 2.4a, each knot value is inserted p times, where p is the desired polynomial degree, followed by order
elevation. In that way a four element patch with C 0 continuity across element boundaries is achieved for all p . Within
k -refinement in Figure 2.4b, on the other hand, order elevation is performed on the single-element knot vector. Only
afterwards, new knots with multiplicity mi = 1 are inserted, leading to a four element patch with C p−1 continuity
across element boundaries. One can furthermore see that for p -refinement the number of basis functions per each
element, and thus also the number of control points per each element, increases by one as the degree is increased by
one. Within k -refinement, on the contrary, only the total number of basis functions and control points increases as
the degree is increased by one. This shows that p -refinement leads to a much denser control point distribution and
a much higher number of DOFs than k -refinement. More detailed information on the different refinement schemes
for NURBS can be found in [12, 121, 122].
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Figure 2.4: Comparison between p -refinement (a) and k -refinement (b) for p=1 to 4.

2.6 Shell analysis

Since extending IBRA from Kirchhoff-Love (KL) to shear deformable Reissner-Mindlin (RM) shells is a core aspect of
this thesis, the fundamental assumptions, kinematics and differences of both shell theories are briefly discussed in
Section 2.6.1. More detailed descriptions can be found in [49, 127, 129]. Section 2.6.2 furthermore provides a concise
overview on the formulation and implementation of the NURBS-based RM shell from Benson et al. [73] used within
this thesis.

2.6.1 Shell theories

For beam and shell structures, kinematic and kinetic assumptions are made. Among a vast number of specific
theories, the two most common theories are referred to as the Euler-Bernoulli theory and the Timoshenko theory for
beams, and the Kirchhoff-Love theory and the Reissner-Mindlin theory for shells.

The main assumptions for the Euler-Bernoulli beam theory and the Kirchhoff-Love shell theory are: (i) straight
cross-sections remain straight and (ii) normals remain normal to the midsurface. Thus, transverse shear strains are
neglected. This is regarded as a good assumption for relatively thin beams and shells.

The main assumptions for the Timoshenko beam theory and the Reissner-Mindlin shell theory are: (i) straight
cross-sections remain straight, but (ii) normals do not necessarily remain normal to the midsurface. Thus, transverse
shear strains are accounted for, which is vital for rather thick beams and shells.

In Section 2.3, a material point x ∗(Θ1,Θ2,Θ3) in the shell body is described by a midsurface position vector x (Θ1,Θ2)
and the coordinate Θ3 in thickness direction along the director d 3. The director is crucial for the shell kinemat-
ics and a distinguishing characteristic between the Kirchhoff-Love and Reissner-Mindlin shell theories. A direc-
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Figure 2.5: Kinematics of a shear deformable Reissner-Mindlin shell, following [127].

tor d 3(Θ1,Θ2) is defined as a unit vector pointing into the direction of material points initially normal to the midsurface
at point x (Θ1,Θ2). Thus, the initial director D 3 coincides with the initial unit normal vector A3, independent of the
underlying shell theory. As stated above, for KL shells shear deformations are neglected and normals are assumed
to remain normal to the midsurface; therefore d 3 = a 3 always holds. The kinematics of an RM shell are different
as depicted in Figure 2.5: Due to shear deformations, the director d 3 deviates from a 3 by the shear angle γ. Since
both d 3 and a 3 are of unit length, γ can, for small values, be determined as

γ= ‖γ‖= ‖d 3−a 3‖, (2.24)

where γ (in bold) is the difference vector between a 3 and d 3, see also Figure 2.5. The difference vector ŵ and the
corresponding rotation vector ϑ̂ and rotation angle ϑ̂ (not depicted in Figure 2.5) between the unit normal vectors a 3

and A3, uniquely defined by the midsurface displacement u (Θ1,Θ2), can be determined via

ŵ = a 3− A3 = ϑ̂×a 3. (2.25)

Based on this, the director displacement vector w and the director rotation vector ϑ are defined as

w = d 3− A3 = (d 3−a 3) + (a 3− A3) = γ+ ŵ =ϑ×a 3. (2.26)

To distinguish translational from rotational motion, the displacement of a material point in the shell body can be
described as

u ∗ =u +Θ3 w =u +Θ3(ϑ×a 3). (2.27)

From this decomposition one can see that the translational part u requires the three midsurface displacements ui

as free variables, while the rotational part ϑ is uniquely defined by two independent parameters in case the drilling
rotation around the director is neglected [129]. Thus, five independent parameters are required to describe RM shell
kinematics. For KL shells Eq. (2.27) also holds, when neglecting the shear contribution γ in w . However, the rotational
part then only consists of the unit normal rotation given in (2.25), which is uniquely defined by the midsurface
displacement u (Θ1,Θ2), leading to only three independent variables for KL shells [129].

This difference can also be seen in the number of boundary conditions to be prescribed for a shell, which is crucial for
the derivation of patch coupling conditions within this thesis. Considering the surface boundary coordinate system
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described by a t, a 3 and a u as depicted in Figure 2.3, RM shells require in total five boundary conditions2 for the
three translations of the shell midsurface and the two rotations around a t (bending) and a u (twisting), respectively
(see Basar and Krätzig [127], pages 122–123). The drilling rotation around a 3 is usually neglected. For KL shells,
on the contrary, the twisting rotation around a u is not a free, prescribable variable, due to the absence of shear
deformations. For this reason, only four boundary conditions may be prescribed for KL shells [127].

2.6.2 A Reissner-Mindlin shell formulation with rotational DOFs

In this thesis, IBRA is extended from KL to RM shells and from implicit static to explicit dynamic analysis. To achieve
this, the Explicit IBRA framework [54] relies on the explicit dynamic isogeometric (crash) features of LS-DYNA [78,
79]. Therefore the isogeometric Reissner-Mindlin shell with rotational DOFs developed by Benson et al. [73], now
available in LS-DYNA, is used for Explicit IBRA. Although Explicit IBRA can also be applied to other shell formulations,
the shell formulation from [73] is exclusively considered within this thesis and described next.

This shear deformable NURBS-based shell formulation relies on the degenerated solid approach by Hughes and
Liu [130], see also [45]. It is based on an updated Lagrangian formulation and uses corotational coordinate systems
defined at the integration points. The principle of virtual power3 with internal, external and kinetic terms for the
three-dimensional degenerated solid is given as

δP =δP int−δP ext+δP kin =
�

V
(σ :δD )dV −

��
ΓV

t ·δv dΓV +
�

V
b ·δv dV

�

+
�

V
ρa ·δv dV = 0, (2.28)

with the Cauchy stressσ, the traction t , the body force b , the mass density ρ, the velocity v , the acceleration a , the
volume V , the surface area ΓV and the virtual velocity δv . The virtual rate of deformation δD is computed as

δD =
1

2
(δL +δL T ), L =

∂ v

∂ x
, (2.29)

with the spatial velocity gradient L . By using a linear through-thickness interpolation, a spatial point x (ξ) of the shell
body in the current (deformed) configuration is defined in a discretized way equivalent to Eq. (2.13) as

x (ξ) =
∑

A

NA(ξ,η)

�

xA +
hA

2
ζŷA

�

. (2.30)

The parametric coordinates ξ= {ξ,η,ζ}T comprise the in-plane coordinates ξ and η, and the out-of-plane coordi-
nate ζ ∈ [−1, 1]. The control point coordinates are denoted as xA , the shell thickness as hA , and the director (or unit
fiber vector) as ŷA . Similar to Eq. (2.27), where the overall motion is divided into a translational and a rotational part,
the velocity v is described as a function of the translational velocity vA and the angular velocityωA at the control
points,

v (ξ) =
∑

A

NA(ξ,η)

�

vA +
hA

2
ζωA × ŷA

�

. (2.31)

In the following, the control point force vector and the stiffness matrix are given in a generalized form, including
translational and rotational parts, identified by the superscripts v andω, respectively. Please note that the stiffness
matrix is actually not required for the explicit analysis, but for the considerations on time step size based on the max-
imum eigenfrequency in Chapter 4, as well as for the stabilization approach presented in Chapter 5. The generalized
residual force f computed from the stresses can then be given as

f=







fv

fω







=−
�

V





(B v )T

(Bω)T



σdV , (2.32)

where the Cauchy stress tensor is represented as a vector in Voigt form,σ = {σ11,σ22,σ33,σ12,σ23,σ31}T , and the
strain-displacement matrices B v and Bω, see [73].

2 It should be noted that for each condition either traction forces (moments) or displacements (rotations) can be described, not both.
3 Despite the fact that the derivations in Chapter 3 are based on the principle of virtual work, the principle of virtual power is used in this

section in order maintain the notation from [73]. Nonetheless, by substituting the virtual velocity δv with a virtual displacement δu , the virtual
power terms can be easily transformed into virtual work terms.
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The generalized material tangent stiffness matrix is then defined as

K =





K v v K vω

Kωv Kωω



=
�

V





(B v )T

(Bω)T



C
�

B v Bω
�

dV , (2.33)

where K v v , Kωω, and K vω denote the translational, rotational, and mixed contributions, respectively, and where C
is the material tangent constitutive matrix. To allow for efficient explicit analysis through decoupled equations of
motion, the mass matrix is lumped through row summing, which gives the control point mass as

MA =
�

V
ρNA dV = h

�
Ω
ρNA dΩ, (2.34)

with dV = hdΩ, where h and dΩ are the shell thickness and the differential surface area, respectively. The rotational
control point inertia is computed as a function of the control point mass

JA = κ
h 3

12

�
Ω
ρNA dΩ = κ

h 2

12
MA . (2.35)

The scaling factor κ is chosen such that the rotational modes do not restrict the critical time step size [73]. Finally,
some remarks on the shell implementation, relevant for the coupling formulations in Chapter 3 shall be mentioned.
Remark 2.1: Although, as stated in the previous section, five DOFs are sufficient to describe the kinematics of RM
shells, this shell formulation is based on a six DOF implementation with three translational and three rotational
DOFs. According to [73] this choice is motivated by a computationally simpler usage of angular velocities in global
coordinates. Moreover, for practical non-smooth models, finite element shell formulations with six DOFs and
element-wise directors are commonly used, since this facilitates the treatment of kinks and intersections [129].
However, on smooth surfaces the three rotational DOFs cause singularities in the drilling stiffness (rotation around
director ŷA). To eliminate this singularity, a small amount of drilling stiffness is introduced, see [73].
Remark 2.2: For explicit analysis, the rotational inertias are scaled with κ such that the rotational modes do not
restrict the critical time step size, see also [14, 45, 73, 131, 132]. This may lead to significantly higher rotational inertias,
directors significantly deviating from the shell normal and thus artificial thinning [73]. To avoid this, the director
(fiber vector) ŷA is not updated via angular velocities, but instead identified as the unit normal vector computed from
translational DOFs [73]. Angular velocities are only used to evaluate the strain rate in Eq. (2.29) via the velocities in
Eq. (2.31).
Remark 2.3: In LS-DYNA currently two variants of this shell formulation are available, which differ in the way the
shell normals are defined. The first variant is the one described in [73], where the shell normals are associated with
control points. The second variant evaluates the normals at integration points and computes the director ŷA via
the so-called lifting operator method as described in [77]. This ensures exact normals at the integration points and
superior results.

More details on this shell formulation can be found in the related publications [45, 73, 77, 130].

2.7 Numerical integration of trimmed elements

As described in [12], untrimmed elements can be numerically integrated with standard Gaussian quadrature rules.
The numerical integration of trimmed elements, on the contrary, requires more sophisticated methods. At present,
numerous different approaches can be found in the literature, thoroughly summarized in the review paper by
Marussig and Hughes [16], see also Section 1.2.2. The integration method primarily used within this thesis is the
so-called Adaptive Gaussian Integration Procedure (AGIP) developed by Breitenberger [32], see also [52], which allows
for a uniform treatment of trimmed and untrimmed elements. Considering surface elements defined by non-zero
knot spans ξ ∈ [ξs ,ξe ] and η ∈ [ηs ,ηe ], the corresponding surface area |Ωe| is computed as

|Ωe|=
�
Ωe

dΩ =
� ξe

ξs

� ηe

ηs

J1 dξdη=
�
G

J1 J2 dG =
nqp
∑

l=1

J1 J2w A
l =

nqp
∑

l=1

J1w̃l , (2.36)

where w A
l denotes the quadrature weight, w̃l = J2w A

l the quadrature weight including the deformation-independent
Jacobian J2 and nqp the number of quadrature points. The Jacobians J2 and J1 and the corresponding mappings
from the Gauss to the parameter space and from the parameter to the geometry space are depicted in Figure 2.6. The
Jacobian J1 is defined as

J1 =













∂ x

∂ ξ
×
∂ x

∂ η













=




a 1×a 2





, (2.37)
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and the Jacobian J2 as

J2 =

�

�

�

�

∂ ξ

∂ ξG

∂ η

∂ ηG

�

�

�

�

or J2 =

�

�

�

�

∂ ξ

∂ ηG

∂ η

∂ ξG

�

�

�

�

(depending on the rotation), (2.38)

where ξG and ηG are the coordinates in the Gauss space. With Eq. (2.36), both untrimmed and trimmed elements can
be integrated. While untrimmed elements employ the standard Gaussian quadrature point locations and weights,
trimmed elements require some additional treatment, described as follows. First, the relevant trimming curve
segments and trimming curve control points of a trimmed element are appropriately mapped from the parameter
space to the Gauss space. This mapping may involve shifting, scaling and rotating and is defined such that the
trimming curve segment can be described by the parameter ξG in the Gauss space, see the highlighted element in
Figure 2.6. This kind of mapping is only feasible if the trimmed element fulfills the following requirements: (i) not
more than one assigned decoupled and not closed trimming curve segment, and (ii) the trimming curve segment
must not have undercuts in at least one of the two parametric directions [32]. If this is not the case, the integration
domain is bisected accordingly, until both requirements are fulfilled. Based on this, an auxiliary NURBS surface Ŝ is
generated in the Gauss space. This auxiliary surface Ŝ in the Gauss space is then treated as an untrimmed element
in the geometry space. That is, Ŝ is mapped into a pseudo parameter space and then into an untrimmed Gauss
space, where (p +1)× (q +1) standard Gaussian quadrature points (ξl ,ηl )with weights wl are generated. The two
additional mappings represented by Ĵ1 and Ĵ2 are equivalent to (2.37) and (2.38). Applying the inverse mappings to
these Gauss points finally yields the desired quadrature point locations (ξA

l ,ηA
l ) and the weights w A

l = Ĵ1 Ĵ2wl in the
original trimmed Gauss space. For more details on AGIP the reader is referred to [32], pages 87–95, and [52].

As previously stated, many different numerical integration approaches for trimmed elements are available in the
literature; the AGIP described above is one of them. It gives exact results, but can lead to a rather high number
of quadrature points in case the integration domain needs to be bisected multiple times. In comparison to that,
the standard in explicit finite element crash simulations is using one integration point per linear element. Even if
IGA permitted a significantly lower number of elements in total, the numerical efficiency of current finite element
analyses would be hard to reach. Another approach, developed with a focus on efficiency, is the point elimination
algorithm proposed by Nagy and Benson [43]. This algorithm is based on a polygonal trimming curve approximation
and optimizes the number, location and weight of integration points specifically for each trimmed element, while
fulfilling the moment-fitting equation up to a prescribed tolerance. That is, an optimization problem is solved for
each trimmed element in a preprocessing step. Compared to AGIP, the point elimination algorithm can be considered
as more efficient, but its accuracy depends on the quality of the trimming curve approximation and the predefined
tolerance for the moment-fitting equation. The numerical examples in Chapter 7 are solved with AGIP, except for
the energy absorbing tube and the industrial examples, which use the point elimination algorithm.

Parameter space 2D

ξ̃

1

-1
-1 1

ηG
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-1 1
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Geometry space Gaussian space 2D

Parameter space 1D Gaussian space 1D

η
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Figure 2.6: Mappings involved in the numerical integration of 2D surface and 1D B-Rep edge elements, taken
from [54] in a slightly modified form.
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2.8 Isogeometric B-Rep Analysis (IBRA)

Isogeometric B-Rep Analysis developed by Breitenberger et al. at the Chair of Structural Analysis of the Technical
University of Munich [30, 32], is the essential basis of this thesis. This section therefore provides the most important
concepts of IBRA including (i) the numerical integration of trimmed elements, (ii) the definition of isogeometric
B-Rep elements for the weak enforcement of coupling and boundary conditions, and (iii) penalty-based B-Rep
element formulations for Kirchhoff-Love shells as described in the original work on IBRA [30, 32].

2.8.1 Overview

Isogeometric B-Rep Analysis was the first methodology that allowed performing structural shell analysis directly
on trimmed NURBS-based multi-patch models used in industrial CAD. To achieve a full integration of design and
analysis, IBRA uses both geometry and topology information directly from B-Rep CAD models, i.e.

• NURBS basis functions (possibly refined) to describe both the geometry and the displacement field of the
simulation model,

• trimming curves to separate a patch into material and void domains, and to define the integration domains,

• topology information including faces, (common) edges and vertices, to establish coupling and boundary
conditions.

Another characteristic of IBRA is that coupling and boundary conditions along trimmed edges are enforced in a
weak, integral sense via so-called B-Rep elements, for instance with a penalty approach. In addition to that, the IBRA
framework also includes

• pre- and postprocessing plug-ins (TeDA) [74] for the CAD programs Rhino [116] and Siemens NX [117],

• a sophisticated data exchange format to transfer all required information including material and simulation-
specific parameters, between CAD and analysis [52].

This actually allows setting up a closed design-analysis workflow between the CAD program and the solver, without
the need for manual user interaction outside the CAD environment. More detailed information on TeDA and the
IBRA exchange format is provided in Chapter 6.

2.8.2 Numerical integration of trimmed elements

A robust, accurate and reasonably efficient numerical integration procedure is an essential building block for IBRA.
Among other integration methods like the Nested Jacobian Approach [30], the Adaptive Gaussian Integration Proce-
dure (AGIP) [32] presented in Section 2.7 is the current method of choice within IBRA. For Explicit IBRA [54], however,
also the Point Elimination Algorithm from Nagy et al. [43]was shown to be a well-suited integration procedure for
trimmed NURBS elements. More information on numerical integration is provided in Section 2.7.

2.8.3 Isogeometric B-Rep elements

When dealing with the analysis of trimmed multi-patch models, the challenging task is to enforce continuity between
and boundary conditions on trimmed patches. The difficulty lies in the fact that (i) adjoining patches generally have
non-matching discretizations and that (ii) control points are not directly located on trimming curves, so a direct
DOF-wise enforcement is not possible. Alternative ways to enforce constraints are described in Section 1.2.2.

Within IBRA, coupling and boundary conditions are enforced in a weak integral sense. This involves the numerical
solution of integral terms along the coupling or boundary domains (in general topological B-Rep entities) for instance
with standard quadrature rules. In order to achieve accurate results, the numerical integration is not performed over
the entire boundary domain, but over finite domains. That is, the B-Rep entity is subdivided into finite elements,
the so-called isogeometric B-Rep elements or just B-Rep elements for short. Depending on the dimension of the
boundary domain and the type of boundary condition to be enforced (point, curve or surface), isogeometric B-Rep
elements can take the form of zero-dimensional vertex, one-dimensional edge or two-dimensional face elements. A
favorable aspect of B-Rep elements is that no additional control points or basis functions are introduced. Instead,
a B-Rep element acts upon the existing control points and basis functions with non-zero support on the B-Rep
element domain, see Figure 2.7.

The different types of B-Rep elements are very similar and basically only differ by the dimension of their integration
domain. In the following, the focus is on B-Rep edge elements, since enforcing one-dimensional curve boundary
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conditions along edges is the most important case for shell analysis. In accordance with the description given
above, a B-Rep edge element is then defined as a subdomain Γe of a trimming curve C k (ξ̃) in the geometry space
or equivalently as a subdomain Γ̃e of a trimming curve C̃ k (ξ̃) in the parameter space of the underlying patch, as
depicted in Figure 2.7.

A well-suited definition of the spatial extent of B-Rep elements is the following: Start (ξ̃s) and end points (ξ̃e) of a
B-Rep edge element are defined at (i) intersections of the trimming curve C̃ k (ξ̃)with master and slave knot lines and
(ii) knot values of the underlying trimming curve. In case of boundary conditions, the slave side is omitted and the
identification of start and end points is straightforward. For coupling conditions, on the other hand, mappings from
the slave to the master patch parameter space are required, realized via a closest point projection in the geometry
space. Figure 2.8 depicts this process of subdividing a coupling edge into B-Rep elements, denoted as clipping in [32].
The start and end points ξ̃s and ξ̃e, respectively, are then given as parameters of the master curve. A more detailed
description of this operation can be found in [32].

One can compute the length of a B-Rep edge element as

|Γe|=
� ξ̃e

ξ̃s

J̃1 dξ̃=
� 1

-1
J̃1 J̃2 dξG , (2.39)

where J̃2 and J̃1 are the Jacobians of the mappings from the Gaussian space G to the trimming curve parameter
space and from the trimming curve parameter space to the geometry space, respectively, as shown in Figure 2.6. The
Jacobian J̃1 is defined as

J̃1 =













∂ x

∂ ξ̃













=













∂ x

∂ ξ

∂ ξ

∂ ξ̃
+
∂ x

∂ η

∂ η

∂ ξ̃













=




a 1 t̃1+a 2 t̃2





 (2.40)

and the Jacobian J̃2 as

J̃2 =
∂ ξ̃

∂ ξG
. (2.41)

Due to the required approximations described in Section 2.2, the master and slave curves (C m
k (ξ̃) resp. C s

l (ξ̃)) in
the geometry space, which are described by the curves C̃ m

k (ξ̃) and C̃ s
l (ξ̃) in the corresponding parameter spaces,

do not necessarily coincide. The numerical integration is therefore always performed along the master side, which
implies the determination of quadrature points on the master curve. The default choice in this thesis is pmax+1 Gauss
points per B-Rep edge element, where pmax =max{p m, q m, p s, q s}with the polynomial degrees p resp. q in ξ- resp.
η-direction of the master and slave patches. The evaluation of slave basis function values and derivatives, however,
still requires integration points on the slave patch. These integration points are determined from the integration
points of the master patch, again via mappings and closest point projections in geometry space.

For a clear distinction between different domains and boundary conditions, the boundary domain is in the following
assumed to consist of the subsets Γ (a )C , Γ (a )D , and Γ (a )N for coupling, Dirichlet, and Neumann conditions, respectively.

The same applies to Γ̃ (a ) with the subsets Γ̃ (a )C , Γ̃ (a )D , and Γ̃ (a )N .

2.8.4 Penalty-based B-Rep element formulation

This section describes the penalty-based B-Rep element formulation for rotation-free KL shells proposed in the
original work on IBRA [30, 32]. This will later on in Chapter 3 help pointing out the distinct features and main novelties
of the B-Rep element formulation for RM shells with rotational DOFs proposed in this thesis and [54]. The B-Rep edge
element formulation is based on the boundary terms of the weak form for KL shells, see for instance [32] and[127],
given as

δW =
�
Γ

�

n ·δu +m t ·δθ t

�

dΓ (2.42)

=
�
Γ

�

ntδut+nuδuu+n3δu3+mtδθt

�

dΓ , (2.43)

where n and m denote traction forces and moments, respectively, and where the indices t, u and 3 indicate the
directions of a local coordinate system along a (trimming) curve C k (ξ̃) as shown in Figure 2.3. From Eq. (2.42) one
can identify three translational terms in all three directions (t, u, 3), and one rotational term around the t-direction.
This means that for KL shells three translational and one rotational boundary conditions may be described. As will
be shown in Section 3.2, this is different for shear deformable RM shells. In order to only enforce rotational coupling

28



2.8 Isogeometric B-Rep Analysis (IBRA)

Geometry space
B-Rep edge element Γe (slave side)

B-Rep edge element Γe (master side)

(a) B-Rep edge elements on master and slave side of two coupled trimmed patches in geometry space. One B-Rep edge element together with
the involved master and slave control points are highlighted in orange and blue, respectively.

Parameter space B-Rep edge element basis functions (master side)

B-Rep edge element basis functions (slave side)

Γ̃e
ξ̃s

ξ̃e

ξ̃s ξ̃e

Γ̃e

Quadrature points

slave

master

master + slave

B-Rep edge element basis functions

(b) Basis functions of the two trimmed patches in parameter space. The basis functions corresponding to the highlighted B-Rep edge element
master and slave control points in (a) are displayed in orange and blue, respectively.

Figure 2.7: Definition of B-Rep edge elements [54].
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(a) Closest point projection of slave curve parameters onto the
master curve.

(b) Clipped master curve: all intersections are defined by pa-
rameter values of the master curve.

Figure 2.8: Clipping operation including closest point projections, taken from [32].

conditions around the t-direction, a corresponding local coordinate system along edges is required, see Figure 2.3.
Moreover, the Kirchhoff-Love shell [133] employed in the original version of IBRA [30, 32] has no rotational DOFs.
The rotation θt around a t is, for each patch, therefore computed via the displacement vector w between the initial
and current unit normal vector A3 and a 3 as described in Eqs. (2.25) and (2.26).

Internal coupling conditions

For the case of internal coupling conditions between two (trimmed) patches, the traction forces must fulfill the
equilibrium

n =n m =−n s, with n = nta t+nua u+n3a 3, (2.44)

where the superscripts m and s indicate the master and slave subdomains Ωm and Ωs, respectively. The same holds
for the moment along an internal boundary:

m =m m =−m s, with m =mta t. (2.45)

Considering the boundary terms on both master and slave side in Eq. (2.42), gives the virtual work for internal KL
shell boundaries as

δW =
�
Γm

C

�

n · (δu m−δu s) +m · (δθm−δθ s)
�

dΓ (2.46)

=
�
Γm

C

�

nt(δu m
t −δu s

t ) +nu(δu m
u −δu s

u) +n3(δu m
3 −δu s

3) +mt(δθ
m
t −δθ

s
t )
�

dΓ . (2.47)

Within IBRA, the traction force n between the master and the slave boundary is defined as a function of the boundary
displacement difference

n =−αdisp(u m−u s), (2.48)

where αdisp is a penalty factor, representing the stiffness of the coupling condition. Please note the slightly different
notation compared to [30, 32]. The moment m t acting around the trimming curve tangent vector a t between two
patches, see Figure 2.3, is similarly defined as

mt =−αrot(θm
t −θ

s
t ), (2.49)

where αrot is now the rotation penalty factor. Inserting conditions (2.48) and (2.49) into Eq. (2.46) then gives the
virtual work of B-Rep edge elements for internal boundary conditions, split into displacement and rotation parts, as

δW B-Rep,disp =−αdisp

�
Γm

C

(u m−u s) · (δu m−δu s)dΓ , (2.50)

δW B-Rep,rot =−αrot

�
Γm

C

(θm
t −θ

s
t ) · (δθ

m
t −δθ

s
t )dΓ . (2.51)
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Dirichlet boundary conditions

For Dirichlet boundary conditions, the traction force and moment are defined similarly to (2.48) and (2.49), with the
difference that the displacements and rotation are prescribed on one domain as u D and θD

t , respectively. Since the
variations δu D and δθD

t vanish, the virtual work of B-Rep edge elements for Dirichlet boundary conditions can be
written as

δW B-Rep,disp =−αdisp

�
ΓD

(u −u D) ·δu dΓ , (2.52)

δW B-Rep,rot =−αrot

�
ΓD

(θt−θD
t ) ·δθt dΓ . (2.53)

Neumann boundary conditions

Also Neumann boundary conditions may be applied via B-Rep edge elements. In that case, the traction forces resp.
moment in the virtual work expression for KL shell boundaries (2.42) are prescribed directly as n N resp. m N

t , without
the need for a penalty formulation. This leads to the B-Rep edge element formulation

δW B-Rep,disp =
�
ΓN

n N ·δu dΓ , (2.54)

δW B-Rep,rot =
�
ΓN

m N
t ·δθt dΓ . (2.55)

The B-Rep edge element formulations for coupling and Dirichlet boundary conditions presented in this section
are, as in the original work on IBRA [30, 32], based on weakly enforced penalty constraints. Besides that, also other
constraint enforcement approaches such as the Lagrange multiplier method or Nitsche’s method may be utilized for
B-Rep elements, see [50, 52].

2.9 Explicit dynamic analysis

In accordance with the main focus of this thesis, namely explicit isogeometric (crash) simulations, this section explains
the essential aspects of explicit dynamic analysis. After a brief motivation of why to use explicit time integration (for
crash simulations), the central difference method (CDM) is specifically discussed. Finally, the well-known stability
condition and different stable time step estimates for the CDM are introduced, in order to assess Explicit IBRA with
respect to explicit time integration in subsequent chapters. This particularly involves the influence of trimming,
weak penalty-based coupling and boundary conditions, and the proposed stabilization scheme.

2.9.1 Time integration of dynamic problems

In the following, the semi-discrete (only spatial discretization) second order equations of motion without damping
in the form

Man = fext,n (dn , t n )− f int,n (dn , t n ), (2.56)

at time t n shall be considered, with the vector of control point accelerations an = d̈n and the external and internal
control point forces as a function of control point displacements and time. Progressing the solution in time requires
suitable time integration methods, which may be classified into implicit and explicit methods. Without going into
details regarding construction and properties of distinct time integration methods (see for instance [49, 76, 134]),
only aspects relevant for automotive crash simulations shall be discussed here.

One distinctive characteristic of explicit time integration methods is that advancing the solution to time t n+1 (or
updating displacements and velocities at time step n + 1) only requires information from previous time steps.
Additionally using a diagonal lumped mass matrix allows to decouple the equation system and to perform all
operations on an element level. Thus, in fact, no equations are solved. This makes explicit methods very attractive
and efficient for large problems like automotive crash simulations, because both the inversion and storage of huge
matrices can be avoided. Because no system of equations is solved, explicit procedures are also more robust in
strongly nonlinear problems for which implicit solution procedures tend to have convergence problems. Automotive
crash simulations with strong nonlinearities of all kind including large deformations, plasticity, contact and buckling
is again a perfect example. However, explicit methods are, in contrast to implicit methods, only conditionally stable.
That is, for a stable solution the time step size needs to be smaller than a critical value, see the derivation of the critical
time step for the central difference method in Section 2.9.3 below. Explicit methods therefore require significantly
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smaller time steps, in general. This disadvantage fades though for highly dynamic problems for which the accuracy
of the solution requires relatively small time steps anyway, regardless of the applied method.

2.9.2 Central difference method

Within this thesis, the practically well-established explicit central difference method (CDM) [45, 49] is used for Explicit
Isogeometric B-Rep Analysis in LS-DYNA; however, also other explicit time integration methods could be used. To
eliminate the time derivatives in the equations of motion (2.56), the velocity ḋ= v and the acceleration d̈= a, are
expressed by central differences as

ḋn+1/2 = vn+1/2 =
dn+1−dn

∆t
, (2.57)

d̈n = an =
vn+1/2−vn−1/2

∆t
, (2.58)

for which constant time increments ∆t are assumed here. By rearranging the terms, one can transform these
difference formulas into integration formulas, used to update displacements and velocities, thereby progressing the
solution in time:

dn+1 = dn +∆t vn+1/2, vn+1/2 = vn−1/2+∆t an (2.59)

By inserting (2.57) into (2.58), the acceleration can be expressed solely in terms of displacements, yielding the finite
difference approximation for the second derivative of a function as

an =
dn+1−2dn +dn−1

(∆t )2
. (2.60)

The error made through this finite difference approximation is of order (∆t )2 in the displacements [49, 76]. Insert-
ing (2.60) into the semi-discrete equations of motion (2.56) gives

1

(∆t )2
M
�

dn+1−2dn +dn−1
�

= fext,n − f int,n , (2.61)

clearly showing that the calculation of dn+1 only requires information from previous time steps – a characteristic
of explicit time integration schemes. One can furthermore see that the only matrix to invert for computing dn+1 is
the mass matrix M . As already mentioned above, using a diagonal lumped mass matrix renders the inversion of M
trivial, decouples the equation system and (only) makes explicit methods very efficient.

For explicit analysis of shells with rotational DOFs, the equations of motion for a control point A may be expressed
in generalized coordinates as

M Aan
A = f

ext,n

A − f
int,n

A , (2.62)

with the generalized control point mass M A , the generalized accelerations an
A = {(a

n
A )

T , (ω̇n
A )

T }T . The rotations and
angular velocities of a control point A are then updated similarly as their translational counterparts:

θn+1
A = θn

A +∆tωn+1/2
A , ωn+1/2

A =ωn−1/2
A +∆t ω̇n

A . (2.63)

2.9.3 Stability of the central difference method

The focus in this section is on the stability of the CDM. As mentioned above, explicit time integration schemes are
only conditionally stable, that is, only numerically stable under the condition that the time step size does not exceed
a critical value. Determining this critical value is therefore essential. Within this thesis, numerical stability shall be
defined in the sense of Liapunov as follows, see also [49], p. 391, Eq. (6.6.1).

Definition 2.1: Numerical stability. A numerical procedure is considered as numerically stable if the difference
between two solutions u n

A and u n
B with slightly different initial conditions u 0

A and u 0
B remains small and bounded.

To be more precise, a numerical solution u n
A is stable if





u n
A −u n

B







2
≤C ε ∀n > 0 for all u 0

A such that




u 0
A−u 0

B







2
≤ ε, (2.64)

with a small initial perturbation ε > 0 and an arbitrary constant C > 0.
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2.9 Explicit dynamic analysis

Due to difficulties in assessing numerical stability for nonlinear systems, one commonly assesses the stability of
the linearized system and then transfers the result to the nonlinear case [49]. For explicit analysis this means that
the critical time step is computed for the linearized system and then, together with a suitable safety factor, used for
solving the nonlinear system. This entails frequent linearizations of the system equations during analysis. For linear
stability analysis, the linearized equations of motion including damping shall be considered as

Md̈+ Cḋ+ Kd= fext, (2.65)

where the overline indicating generalized coordinates is omitted for brevity; still, both translational and rotational
DOFs are considered. For convenience, the linear equations of motion are commonly diagonalized and decoupled
by means of a modal decomposition. This decomposition exploits the orthogonality of the eigenvectors yI of the
undamped eigenproblem

KyI =λI MyI , (2.66)

with the eigenvalues λI . To enable the diagonalization of the damped system (2.65), C can be expressed as a linear
combination of M and K , that is, as a Rayleigh damping matrix. Based on that, linear stability analysis yields the
critical time step size of the central difference method as a function of the eigenfrequency ωI (λI = ω2

I ) of the
undamped system and the associated modal damping ratio ξI

∆tcrit =min
I

2

ωI

�
q

ξ2
I +1−ξI

�

=min
I

2
p

λI

�
q

ξ2
I +1−ξI

�

. (2.67)

The full linear stability analysis, closely following [49], is provided in Appendix A. As this derivation shows, the stability
condition (2.67) holds for any system in the form of (2.65) that fulfills the following two premises: (i) symmetry and
positive semidefiniteness of M and K and (ii) describing C as a Rayleigh damping matrix. Within this thesis, damping
shall be neglected, so the second premise becomes irrelevant. The crucial requirement for the developments in
subsequent chapters (B-Rep element formulations, stabilization scheme, etc.) will therefore be that the mass and
stiffness matrices remain symmetric and positive semidefinite. Otherwise condition (2.67) can no longer be used to
determine the critical time step of the central difference method.

2.9.4 Stable time step estimation

For determining the critical time step size through (2.67), only the maximum system eigenvalue needs to be computed
instead of all. Still, for large systems even computing only the maximum eigenvalue yields significant computational
costs. Moreover it should be noted that the eigenvalues alter during nonlinear analysis and since condition (2.67) is
determined for linearized equations, it only provides a decent time step estimation around the linearization point.
That is, an accurate time step estimation requires multiple linearizations and eigenvalue evaluations. For these
reasons, computationally more efficient time step estimates are desired for practical applications. In order to assess
the applicability of time step estimates to explicit analysis on penalty-coupled trimmed NURBS shells in subsequent
chapters, a brief overview on the most common estimates in FEA and IGA is provided next.

Heuristic element estimate

The simplest and most common time step estimate in practical FEA is based on a characteristic element length l e
c

(which may be updated during the simulation) and the material wave speed c . This heuristic approach estimates the
critical time step in the absence of damping by

∆tcrit ≤min
e

l e
c

c
. (2.68)

This approach involves two approximations on the maximum system eigenfrequency in the stability condition (2.67).
The first one uses the element eigenvalue inequality [49, 135, 136], i.e. the fact that the maximum system eigen-
value λmax is bounded from above by the maximum of all element eigenvalues λE

max:

|λmax| ≤ |λE
max| where λE

max =max
I ,e
λe

I . (2.69)

With this upper bound, the problem of determining the maximum system eigenvalue can be replaced by the numeri-
cally less expensive problem of finding the maximum of all element eigenvalues. More details about the eigenvalue
inequality are given in [49, 135, 136]. For the case of a one-dimensional rod with lumped masses, the maximum
element eigenvalue λmax can be determined as a function of element length l and wave speed c as λmax = 4c 2/l 2.
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Inserting this relation into Eq. (2.67) and neglecting damping then yields Eq. (2.68). This estimation is closely related
to the popular CFL condition [137] originally developed for the finite difference method. However, this relation
can, together with a heuristically determined characteristic element length l e

c , also be applied to multi-dimensional
meshes [45], which is the second approximation. Hartmann and Benson [14] recently developed a heuristic estimation
for the characteristic length of NURBS-based elements in IGA as

lc = S min(‖l 1‖,‖l 2‖) with l 1 =
∂ x

∂ ξG
min

i
(wi ), l 2 =

∂ x

∂ ηG
min

i
(wi ). (2.70)

Herein, l 1 and l 2 are computed as the partial derivatives of the spatial coordinate with respect to the Gauss pa-
rameters ξG and ηG , respectively, times the minimum of the standard quadrature weights for one-dimensional
integration wi in the respective direction. The empirically determined scale factor S depends on the polynomial
degree and the integration rule; see [14] for more details. This is the currently used stable time step estimate for IGA
in LS-DYNA. Adam et al. [81] proposed a similar heuristic time step estimation based on the element length and on a
scalar value accounting for polynomial degree and also regularity of the B-spline basis functions. Such heuristic
element estimates are attractive, since they only require element lengths and the material wave speed, and avoid
solving any eigenvalue problem.

Nodal estimate based on the Gershgorin circle theorem

The nodal time step estimate for explicit IGA suggested by Adam et al. [81] and inspired by the work of Flanagan
and Belytschko [138] is another possible approach. It bounds the maximum system eigenfrequency λmax required
in (2.67) by means of the Gershgorin circle theorem [139, 140]. This theorem states that all eigenvalues of a matrix
lie within circles around the diagonal values with radii equal to the sum of the absolute off-diagonal entries of the
corresponding row.

Definition 2.2: Gershgorin disc. Consider a complex square matrix A = [ai j ] ∈ Cn×n , n ∈ N and a closed disc
B(x0, R0)⊆C, with a center x0 ∈C and a radius R0 ∈R+. A Gershgorin disc is then defined as

Di

�

ai i , Ri

�

=Di

�

ai i ,
∑

j 6=i

|ai j |
�

= {x ∈C
�

� |ai i − x | ≤
∑

j 6=i

|ai j |}, (2.71)

with a center of ai i and a radius of Ri =
∑

j 6=i |ai j |.

Definition 2.3: Gershgorin circle theorem. Each eigenvalue λ ∈ C of A = [ai j ] ∈ Cn×n , n ∈ N, lies within at least

one of the Gershgorin discs Di

�

ai i , Ri

�

, which means that

λ ∈
⋃

i

Di . (2.72)

In the explicit dynamic setting the real matrix A= M−1 K = [ai j ] ∈Rn×n , n ∈Nwith only real positive eigenvalues is
considered. Thus, for each eigenvalue λ, the following holds:

λ≤max
i

�

ai i +Ri

�

. (2.73)

In that sense, the stiffness matrix K can be diagonalized (lumped) by row summing of absolute values as

K̃i i = Ki i +
∑

j 6=i

|Ki j |, (2.74)

for which the following holds:

λM−1 K
max ≤λM−1 K̃

max . (2.75)

That is, the maximum eigenvalue of the lumped system M−1 K̃ provides an upper bound for the eigenvalues of the
original system M−1 K . Due to the fact that the eigenvalues of a diagonal matrix are equal to its entries, the maximum
eigenvalue of M−1 K̃ can be computed as

λM−1 K̃
max =max

i

�

K̃i i

Mi i

�

. (2.76)
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2.9 Explicit dynamic analysis

By combining this with Eq. (2.67) without damping, one obtains a conservative and computationally cheap estimation
for the critical time step of the original system M−1 K as

∆t M−1 K̃
crit =

2
s

max
i

�

K̃i i
Mi i

�

≤∆t M−1 K
crit . (2.77)

This conservative estimate is reported to be an accurate approximation and outperforms the element estimate in
case of non-uniform meshes [81]. In Section 4.5, this estimate will be employed to achieve a local selective mass
scaling of control points involved in penalty-based B-Rep elements. Please note that damping may be considered in
Eq. (2.67) when inserting Eq. (2.76).

Power iteration method

With the power iteration method [140], the maximum system eigenvalue in (2.67) can be accurately estimated by
an iterative scheme. It is a common alternative for cases in which the element time step estimate is not sufficiently
accurate or characteristic element lengths are not expedient, e.g. in [14, 73, 77, 81, 141]. It is therefore briefly explained
here. An n ×n matrix A with real elements, n linearly independent eigenvectors yJ , and a unique maximum eigen-
valueλmax shall be assumed, together with an arbitrary n-dimensional vector x0. The power iteration method exploits
the fact that the directions of the vector xν = Aν x0 converge towards the ones of the eigenvector ymax associated
with λmax for ν→∞. Together with a proper normalization, the corresponding iterative scheme can be written as

xν+1 =
Aν xν
‖Aν xν‖

. (2.78)

The maximum eigenvalue λmax can then be obtained by means of the Rayleigh quotient

R =
x∗νA xν
x∗ν xν

→λmax for ν→∞, (2.79)

where x∗ denotes the conjugate transpose of x. A number of twelve iterations is reported to be sufficient for the
stable time step estimation in explicit isogeometric shell analysis in [73]. In conclusion, the power iteration method
provides a highly accurate time step estimation, but also higher computational costs compared to the heuristic
element estimate and the nodal estimate.

In the following chapters, the applicability of these three time step estimates to Explicit IBRA including trimming,
weak penalty-based coupling and boundary conditions, and the proposed stabilization scheme will be assessed.
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Chapter 3

Explicit Isogeometric B-Rep Analysis

This chapter on Explicit IBRA forms the core of this thesis as it presents the extension of IBRA to (i) explicit dynamic
analysis and (ii) Reissner-Mindlin shells. For the extension to RM shells with rotational DOFs [73], two novel penalty-
based B-Rep edge element formulations are proposed: The standard B-Rep element formulation, presented in
Section 3.3 and previously in [54], introduces forces and moments along boundaries solely via constraints on the
respective translational and rotational DOFs. The enhanced B-Rep element formulation presented in Section 3.4 aims
at increasing the numerical robustness and accuracy of B-Rep edge elements by additionally enforcing rotational
continuity between (trimmed) patches via a constraint on the shell normals, uniquely defined by translational
DOFs. For both B-Rep edge element formulations, the corresponding control point forces and stiffness matrices are
derived from the boundary terms of the weak forms for internal (coupling) and Dirichlet boundary conditions; for
the standard element formulation also the control point forces for Neumann boundary conditions are derived. By
means of the derived stiffness matrices, Section 3.5.1 investigates the effect of both B-Rep edge element formulations
on the stability of the explicit central difference scheme. Finally, Section 3.5.2 discusses the applicability of common
time step estimates to problems with penalty-based B-Rep elements.

3.1 Extension of IBRA to explicit dynamics

For the extension of IBRA to explicit dynamic analysis, the principle of virtual work (equivalent to the principle of
virtual power in Eq. (2.28)) is formally extended with a B-Rep term δW B-Rep:

δW =δW int−δW ext+δW kin+δW B-Rep = 0. (3.1)

Within the explicit analysis procedure, one furthermore needs to consider the control point forces and moments
from B-Rep elements in Eq. (2.62) when computing the accelerations:

M Aan
A = f

ext,n

A − f
int,n

A − f
B-Rep,n

A . (3.2)

In the two subsequent sections, the corresponding virtual work terms, control point forces and moments, and stiffness
matrices are derived for different types of B-Rep element formulations and boundary conditions. It should be noted
that the stiffness matrices are not used within the explicit analysis, but only for the investigations on numerical
stability and time step size in Section 3.5.

3.2 Extension of IBRA to shear deformable Reissner-Mindlin shell theory

Isogeometric B-Rep Analysis (IBRA) in its original form was developed for and applied to thin shells according to
the Kirchhoff-Love shell theory. In this section, IBRA is extended to thick shells described by the shear deformable
Reissner-Mindlin shell theory.
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3 Explicit Isogeometric B-Rep Analysis

3.2.1 Boundary conditions

Kirchhoff-Love shells

The basic assumptions for the KL and RM shell theories are provided in Section 2.6.1. As stated in [32] and [127], the
boundary terms of the weak form (virtual work) for KL shells are given as

δW =
�
Γ

�

n ·δu +m t ·δθ t

�

dΓ (3.3)

=
�
Γ

�

ntδut+nuδuu+n3δu3+mtδθt

�

dΓ , (3.4)

where the indices t, u, and 3 are the directions of a local coordinate system introduced along a (trimming) curve C ,
see Figure 2.3. As can be seen, the moment m t only has one contribution in t-direction, since the contributions in u-
and 3-direction are dependent variables in the KL theory, which may only be prescribed implicitly via n , see [127],
p. 172. This is in accordance with the fact that in the KL theory, the kinematics of the shell continuum are uniquely
described by the kinematics of the shell midsurface [127], p. 163. For IBRA with KL shells in [30, 32], rotational
boundary constraints were therefore only enforced around the t-direction, i.e. around the (trimming) curve tangent.

Reissner-Mindlin shells

For the RM shell theory, due to the considered shear deformations, two rotational boundary conditions around
the u- and t-direction may be prescribed in addition to the three translational boundary conditions in u-, t- and
3-direction [127], p. 122. The corresponding weak form for the boundary terms (see [127], p. 122, Eq. (3.3.51)) is thus
given as

δW =
�
Γ
(n ·δu +m ·δθ ) dΓ (3.5)

=
�
Γ

�

ntδut+nuδuu+n3δu3+mtδθt+muδθu

�

dΓ . (3.6)

For IBRA with RM shells, rotational constraints may therefore be enforced around the t- and u-direction, i.e. a bending
constraint around the trimming curve tangent a t, and a twisting constraint around the vector perpendicular to the
surface normal a 3 and the curve tangent a t.

3.2.2 Internal boundary conditions for Reissner-Mindlin shells

Now, internal boundary conditions as shown in Figure 3.1 are considered. In order to fulfill the equilibrium along
internal boundaries, the following must hold for traction forces:

n =n m =−n s, with n = nta t+nua u+n3a 3, (3.7)

where the superscripts indicate master and slave sides, although no distinction between the two sides is required at
this point. Similarly, the following must hold for the traction moments:

m =m m =−m s, with m =mta t+mua u. (3.8)

With Eq. (3.5) the virtual work term for internal RM shell boundaries can then be written as

δW =
�
Γm

C

�

n · (δu m−δu s) +m · (δθm−δθ s)
�

dΓ (3.9)

=
�
Γm

C

�

nt(δu m
t −δu s

t ) +nu(δu m
u −δu s

u) +n3(δu m
3 −δu s

3) +mt(δθ
m
t −δθ

s
t ) +mu(δθ

m
u −δθ

s
u)
�

dΓ , (3.10)

where the integration is performed along the master boundary Γm
C . Based on the (internal) boundary terms of the

virtual work for RM shells provided in Eqs. (3.5) and (3.9), a B-Rep edge element formulation including translational
and rotational DOFs is presented in the following section.
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3.3 The standard B-Rep edge element formulation – Translational and rotational DOFs

u m(ξ̃, t ) u s(ξ̃, t )

θm(ξ̃, t ) θ s(ξ̃, t )
ωm(ξ̃, t )

ωs(ξ̃, t )

v m(ξ̃, t ) v s(ξ̃, t )

Ωm
0

Ωm

Ωs
0

Ωs

Γm
C

Γ s
C

Initial configuration

(surface patches separated)

Current configuration at time t

(surface patches separated)

x

y

z

Initial configuration

Ωm
0

Ωs
0

A3
At

Au

A3

Au

At

a t

a u

a 3

a t

a u

a 3

Figure 3.1: Kinematics for a B-Rep edge element formulation between trimmed master and slave patches (Ωm andΩs).
The coupled master and slave patch are separated for clarity as indicated by dashed lines.

3.3 The standard B-Rep edge element formulation – Translational and rotational DOFs

In this section, the standard B-Rep edge element formulation first proposed by Leidinger et al. [54] is presented. In
contrast to [54], the following derivations use the mechanically motivated (internal) shell boundary formulations
from [127] (see Eqs. (3.5) and (3.9)) as a starting point. Therefore, the principle of virtual work instead of the principle
of virtual power is used throughout this thesis. However, the two principles are equivalent and interchangeable (as
mentioned in [49], p. 55). This choice allows for a proper interpretation of the involved variables and a consistent
derivation for all formulations including the enhanced B-Rep edge element formulation presented in Section 3.4.

3.3.1 Element formulation for coupling conditions

The starting point for the B-Rep edge element formulation for internal boundaries is the corresponding virtual work
term from Eq. (3.9), split into a translational and a rotational part

δW B-Rep,disp =
�
Γm

C

n · (δu m−δu s)dΓ =
�
Γm

C

�

nt(δu m
t −δu s

t ) +nu(δu m
u −δu s

u) +n3(δu m
3 −δu s

3)
�

dΓ , (3.11)

δW B-Rep,rot =
�
Γm

C

m · (δθm−δθ s)dΓ =
�
Γm

C

�

mt(δθ
m
t −δθ

s
t ) +mu(δθ

m
u −δθ

s
u)
�

dΓ . (3.12)
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In Eqs. (3.11) and (3.12), the traction force n and the moment m need to be prescribed, respectively. By employing a
penalty approach, n can be expressed in the form

n =αdisp g disp(u , v , t ), (3.13)

where αdisp is a constant penalty factor. The actual constraint is denoted as g (u , v , t ) = 0, potentially depending
on interface displacements, velocities and time. For Explicit IBRA a pure displacement-based, rate-independent
constraint

g disp(u , t ) =u m−u s, (3.14)

is found to be satisfactory, although also other formulations may be justifiable. This constraint may also be interpreted
as a kind of gap function. With this constraint the interface traction vector is defined as

n =αdisp (u m−u s). (3.15)

At this point, the importance of specifying the constraint g disp in terms of displacements instead of absolute coor-
dinates x should be emphasized. Although this might be indifferent for simple plane geometries, it is crucial for
curved geometries, for which NURBS-based B-Rep models are generally not watertight, i.e. small gaps and overlaps
appear between patch boundaries. Defining g disp in terms of absolute coordinates could already lead to stresses in
the initial state and consequently distorted results.

Inserting Eq. (3.15) into (3.11) then yields the translational virtual work contribution of penalty-based B-Rep edge
elements along internal boundaries

δW B-Rep,disp =αdisp

�
Γm

C

(u m−u s) · (δu m−δu s)dΓ . (3.16)

With a similar penalty approach, the moment in Eq. (3.12) can be expressed in the form

m =αrot g rot(θ ,ω, t ), (3.17)

again with a constant penalty factor αrot, and the rotational constraint g rot(θ ,ω, t ) = 0, potentially depending on
interface rotations, angular velocities and time.

As can be seen from Eq. (3.12), the moment vector m is assumed to act in the surface tangent plane spanned by a t

and a u, see Figure 2.3. The component m3 is not present. It would therefore be sufficient to only consider mt and mu

in the constraints. This is usually done in the classical shell theory and in five-DOF shell implementations [49]. The
Reissner-Mindlin shell to be coupled [73] is, however, based on a six DOF implementation with three translational
and three rotational DOFs. The reason for this choice is reported to be a computationally simpler usage of angular
velocities in global coordinates [73]. In such cases all three components of the moment need to be prescribed, as
also stated in [49]. Therefore, and to avoid the introduction of a local coordinate system, the rotational constraint is
formulated in global coordinates including moments in all three spatial directions.

As for the translations, the constraint is defined as rate-independent

g rot(θ , t ) = θm−θ s, (3.18)

leading to the penalty-based interface moment vector

m =αrot (θm−θ s). (3.19)

Inserting Eq. (3.19) into Eq. (3.12) gives the rotational virtual work contribution of penalty-based B-Rep edge elements
along internal boundaries as

δW B-Rep,rot =αrot

�
Γm

C

(θm−θ s) · (δθm−δθ s)dΓ . (3.20)

3.3.2 Element formulation for Dirichlet boundary conditions

The B-Rep edge element formulation for Dirichlet boundary conditions can be derived from the case of internal
boundary conditions in a straightforward manner. For this purpose, the kinematic quantities along the boundary Γ s

C
of the slave domain Ωs in Eqs. (3.16) and (3.20) are formally replaced by prescribed kinematic quantities. That is, the
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3.3 The standard B-Rep edge element formulation – Translational and rotational DOFs

slave displacement vector u s(ξ̃, t ) and the slave rotation vector θ s(ξ̃, t ) are replaced by a prescribed displacement
u D(ξ̃, t ) and a prescribed rotation θ D(ξ̃, t ), yielding

g disp(u , t ) =u −u D, (3.21)

g rot(θ , t ) = θ −θ D. (3.22)

Integrating along the Dirichlet boundary ΓD and using the fact that the virtual displacement δu D = 0 and the virtual
rotation δθ D = 0, the virtual work terms for Dirichlet boundary conditions are obtained as

δW B-Rep,disp =αdisp

�
ΓD

(u −u D) ·δu dΓ , (3.23)

δW B-Rep,rot =αrot

�
ΓD

(θ −θ D) ·δθ dΓ . (3.24)

The redundant superscript m is skipped, because only one domain Ωm is considered.

3.3.3 Element formulation for Neumann boundary conditions

For the B-Rep edge element formulation for Neumann boundary conditions, Eq. (3.5) is used as a starting point.
Prescribing the traction force as n =n N(ξ̃, t ) and the moment as m =m N(ξ̃, t ), and integrating along the Neumann
boundary ΓN , the virtual work terms for translations and rotations can be computed as

δW B-Rep,disp =
�
ΓN

n N ·δu dΓ , (3.25)

δW B-Rep,rot =
�
ΓN

m N ·δθ dΓ . (3.26)

3.3.4 Control point forces and stiffness matrices for coupling conditions

In this section the discrete control point force and stiffness matrix expressions for B-Rep edge elements along internal
boundaries are derived from the virtual work terms presented in Section 3.3.1 above. In the two subsequent sections,
this is done in a very similar manner also for B-Rep edge elements of Dirichlet respectively Neumann type.

Following the isoparametric concept, the displacements are discretized with the same NURBS basis functions as the
geometry, see Eq. (2.7), yielding

u (ξ,η) =
nm
∑

A=1

NA(ξ,η)uA . (3.27)

In the virtual work terms presented above, displacements at the patch boundaries appear. Such displacements along
a physical boundary curve C k (ξ̃), see Eq. (2.9), are obtained by evaluating the surface mapping in Eq. (3.27) along a
curve in the surface parameter space C̃ k (ξ̃), see Eq. (2.8), as

u k (ξ̃) =u k (ξk (ξ̃),ηk (ξ̃)) =
nm
∑

A=1

NA(ξk (ξ̃),ηk (ξ̃))uA . (3.28)

This means that the displacements along patch boundaries are computed from control point displacements uA as a
function of the curve parameter ξ̃. The same discretization and evaluation, of course, also applies to velocities v ,
rotations θ and angular velocitiesω. Introducing the control point sets Mm resp. Ms for the subdomainsΩm resp.Ωs,
and their union M=Mm ∪Ms, the displacement constraint g disp can be written as

g disp(ξ̃) =u m(ξ̃)−u s(ξ̃) =
∑

I∈Mm

NI uI −
∑

J∈Ms

NJ uJ =
∑

A∈M
±NAuA =

∑

A∈M
ϕAuA , (3.29)

with

ϕA =±











NA

NA

NA











. (3.30)
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3 Explicit Isogeometric B-Rep Analysis

For A ∈Mm the sign in ϕA is positive, for A ∈Ms negative. Introducing the matrix of basis functions Φ= [. . . ,ϕA , . . .],
A ∈M and the vector of control point displacements ddisp = {. . . , uT

A , . . .}T , A ∈M, the sum in Eq. (3.29) can be
replaced by a matrix multiplication. The displacement constraint can then be written as

g disp =Φddisp. (3.31)

For the rotational case, the vector of control point rotations drot = {. . . ,θT
A , . . .}T with A ∈M is introduced, which

allows expressing the rotational constraint similarly as

g rot =Φdrot. (3.32)

To facilitate a consistent derivation for translations, rotations and different element formulations, a generally appli-
cable approach for penalty-based constraints is desired. From Eqs. (3.16) and (3.20), one can recognize the general
form of the virtual work for a weakly enforced penalty constraint along a domain Γ as

δW p =α
�
Γ

g ·δg dΓ . (3.33)

Exploiting the fact that

δW p =
∂W p

∂ g
δg , (3.34)

the potential of a weakly enforced penalty constraint can, in a general form, be identified as

W p =
1

2
α

�
Γ

g 2 dΓ . (3.35)

One can verify this by inserting Eq. (3.35) into (3.34). Based on W p the general form of a penalty force vector is
defined as the partial derivative of the potential with respect to the vector of displacements d as

(fP )T =
∂W

∂ d
=α

�
Γ

g T ∂ g

∂ d
dΓ . (3.36)

The general form of a penalty stiffness matrix is then defined as

K P =
∂ 2W

∂ d∂ d
=α

�
Γ





�

∂ g

∂ d

�T
∂ g

∂ d
+ g T ∂ 2 g

∂ d∂ d



 dΓ . (3.37)

For a linear constraint g the second term containing the second derivative of the constraint vanishes. By inserting
the different types of constraints g into (3.35), (3.36) and (3.37), the potential, the vector of control point forces
and the stiffness matrix can be obtained, respectively. The same is valid for the rotational contributions. Thus, by
inserting the displacement constraint g disp (3.31) and the rotation constraint g rot (3.32), respectively, into Eq. (3.35),
one obtains the translational and rotational contributions to the potential

W B-Rep,disp
C =

1

2
αdisp

�
Γm

C

(ddisp)TΦT Φddisp dΓ , (3.38)

W B-Rep,rot
C =

1

2
αrot

�
Γm

C

(drot)TΦT Φdrot dΓ . (3.39)

Inserting (3.31) into Eq. (3.36) gives the vector of control point forces for penalty-based B-Rep edge elements along
internal boundaries as

fB-Rep
C =αdisp

�
Γm

C

ΦTΦdΓ ddisp, fB-Rep
A,C =αdisp

�
Γm

C

ϕAϕB dΓ uB , (3.40)

where A, B ∈M and where the summation over repeated indices applies. Equivalently, the vector of control point
moments is obtained by inserting (3.32) into the general form (3.36) as

mB-Rep
C =αrot

�
Γm

C

ΦTΦdΓ drot, mB-Rep
A,C =αrot

�
Γm

C

ϕAϕB dΓ θB . (3.41)
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3.3 The standard B-Rep edge element formulation – Translational and rotational DOFs

The translational resp. rotational stiffness matrix contributions are obtained by inserting (3.31) resp. (3.32) into
Eq. (3.37)

K B-Rep,disp
C =αdisp

�
Γm

C

ΦTΦdΓ , K B-Rep,disp
AB ,C =αdisp

�
Γm

C

ϕAϕB dΓ , (3.42)

K B-Rep,rot
C =αrot

�
Γm

C

ΦTΦdΓ , K B-Rep,rot
AB ,C =αrot

�
Γm

C

ϕAϕB dΓ , (3.43)

Since the translational and rotational contributions are formally identical, a more concise notation is achieved by us-
ing generalized quantities, identified by an overline as (·): the generalized control point displacements uA = {uT

A ,θT
A }

T ,

the generalized force vector fA = {fT
A , mT

A }
T , the extended diagonal matrix of basis functions ϕA = ±diag{NA , NA ,

NA , NA , NA , NA}, and the diagonal matrix of penalty factors α= diag{αdisp,αdisp,αdisp,αrot,αrot,αrot}. Equations (3.40)
and (3.41) can then be summarized as

f
B-Rep

A,C =α
�
Γm

C

ϕAϕB dΓ uB . (3.44)

Furthermore, the generalized penalty stiffness matrix can be written as

K
B-Rep

AB ,C =α
�
Γm

C

ϕAϕB dΓ . (3.45)

3.3.5 Control point forces and stiffness matrices for Dirichlet boundary conditions

Similar to the coupling conditions above, the control point force and stiffness matrix expressions are derived for
Dirichlet boundary conditions in this section. Here, the displacements and rotations are discretized as

u =
∑

A∈M
ϕAuA =Φddisp and θ =

∑

A∈M
ϕAθA =Φddisp, (3.46)

with Φ = [. . . ,ϕA , . . .], A ∈M, where M is the set of all control points in the considered domain and with ϕA from
Eq. (3.30) with only positive signs. The translational and rotational constraints from (3.21) and (3.22) can be conse-
quently expressed as

g disp =Φddisp−u D, (3.47)

g rot =Φddisp−θ D. (3.48)

To obtain the translational and rotational contributions of the potential, these Dirichlet constraints are inserted into
the general form (3.35), respectively, leading to

W B-Rep,disp
D =

1

2
αdisp

�
ΓD

h

(ddisp)TΦT Φddisp−2 (ddisp)TΦT u D +
�

u D
�T

u D
i

dΓ , (3.49)

W B-Rep,rot
D =

1

2
αrot

�
ΓD

h

(drot)TΦT Φdrot−2 (drot)TΦT θ D +
�

θ D
�T
θ D

i

dΓ . (3.50)

By either computing the partial derivative of W B-Rep,disp
D and W B-Rep,rot

D with respect to ddisp and drot, or by inserting
the Dirichlet constraints (3.47) and (3.48) into Eq. (3.36), the control point forces and moments, respectively, are
obtained as

fB-Rep
D =αdisp

�
ΓD

�

ΦTΦddisp−ΦT u D
�

dΓ , fB-Rep
A,D =αdisp

�
ΓD

�

ϕAϕB uB −ϕAu D
�

dΓ , (3.51)

mB-Rep
D =αrot

�
ΓD

�

ΦTΦdrot−ΦT θ D
�

dΓ , fB-Rep
A,D =αrot

�
ΓD

�

ϕAϕB θB −ϕAθ
D
�

dΓ . (3.52)

The stiffness matrices can again be obtained by either differentiating (3.51) and (3.52) with respect to the ddisp

and drot, or by inserting (3.47) and (3.48) into Eq. (3.37). As can be seen from Eqs. (3.51) and (3.52), only the first
terms are dependent on control point displacements and rotations, while the second terms depend on prescribed
displacements and rotations, respectively. That is, only the first terms provide a contribution to the stiffness matrices
for Dirichlet boundary conditions, which are obtained as

K B-Rep,disp
D =αdisp

�
ΓD

ΦTΦdΓ , K B-Rep,disp
AB ,D =αdisp

�
ΓD

ϕAϕB dΓ , (3.53)

K B-Rep,rot
D =αrot

�
ΓD

ΦTΦdΓ , K B-Rep,rot
AB ,D =αrot

�
ΓD

ϕAϕB dΓ . (3.54)
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3 Explicit Isogeometric B-Rep Analysis

Although this seems formally identical to the case of coupling conditions, it should be noted that Φ and ϕA differ
slightly since only basis functions of one domain instead of two are involved for Dirichlet boundary conditions.
Employing the generalized quantities introduced in the previous section and the generalized displacement vector
u = {u T ,θ T }T , Eqs. (3.51) and (3.52) can be summarized by

f
B-Rep

A,D =α
�
ΓD

�

ϕAϕB uB −ϕAu D
�

dΓ . (3.55)

In the same way Equations (3.53) and (3.54) can be concisely expressed as

K
B-Rep

AB ,D =α
�
ΓD

ϕAϕB dΓ , (3.56)

which is again similar, but not identical to the case of coupling conditions.

3.3.6 Control point forces for Neumann boundary conditions

For Neumann boundary conditions the translational potential corresponding to Eq. (3.25) is computed as the integral
of the scalar product of a prescribed traction force n N(ξ̃, t ) and boundary displacement u (ξ̃) over the Neumann
boundary ΓN :

W B-Rep,disp =
�
ΓN

n N ·u dΓ . (3.57)

Similarly the rotational potential corresponding to Eq. (3.26) is computed as

W B-Rep,rot =
�
ΓN

m N ·θ dΓ , (3.58)

with the prescribed moment m N(ξ̃, t ) and the boundary rotation θ (ξ̃). With the same discretization for displacements
and rotations as in the case of Dirichlet boundary conditions, see Eq. (3.46), the potentials can be written as

W B-Rep,disp =
�
ΓN

�

n N
�T
Φddisp dΓ , (3.59)

W B-Rep,rot =
�
ΓN

�

m N
�T
Φdrot dΓ . (3.60)

Differentiating the translational and rotational potentials with respect to ddisp and drot, respectively, the control point
forces and moments are obtained as

fB-Rep =
�
ΓN

ΦT n N dΓ , fB-Rep
A =

�
ΓN

ϕAn N dΓ , (3.61)

mB-Rep =
�
ΓN

ΦT m N dΓ , mB-Rep
A =

�
ΓN

ϕAm N dΓ . (3.62)

As can be seen, these force and moment expressions do not contain control point displacements ddisp or rotations drot.
Computing the corresponding stiffness matrices would require another partial differentiation with respect to ddisp

and drot, respectively. Thus, the stiffness vanishes. This makes clear that no additional stiffness is introduced by
B-Rep edge elements for Neumann boundary conditions. Since traction forces and moments are prescribed directly,
it can be furthermore seen that Neumann boundary conditions do not require a penalty approach. The obtained
control point forces and moments from B-Rep edge elements for Neumann boundary conditions can therefore be
interpreted as consistently computed forces and moments. With generalized displacements and the generalized
traction t = {n T , m T }T the control point forces and moments can be summarized as

f
B-Rep

A,N =
�
ΓN

ϕAt
N

dΓ . (3.63)

3.4 The enhanced B-Rep edge element formulation – Constraints on shell normals

3.4.1 Introduction

The standard B-Rep edge element formulation imposing direct constraints on the respective translational and
rotational DOFs as presented above and in [54], enforces all mechanically required boundary conditions for Reissner-
Mindlin shells, see Eq. (3.6). This is confirmed by the accurate results obtained for several benchmark problems
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3.4 The enhanced B-Rep edge element formulation – Constraints on shell normals

in [54]. In particular, the standard B-Rep edge element formulation, enforces rotational continuity (G 1 continuity
or a consistent angle) between patches solely based on rotational DOFs. Obviously, the quality of coupling and
boundary conditions strongly depends on the quality of the involved control point DOFs. That is, even the best
coupling approach cannot work as intended, if the underlying control point rotations are inaccurate. In fact, it turned
out that the rotational DOFs of the Reissner-Mindlin shell tend to show large, unrealistic rotations, especially for
trimmed elements in dynamic large deformation problems. The reasons for this effect are manifold. First of all, for
critical time step reasons, the rotational inertias are scaled up substantially [73]. Even if this scaling does not affect
the overall results, the actual control point rotations may differ significantly from the case without scaling. Second,
as described in Chapter 5, control points of very low mass and stiffness caused by small trimmed elements show, in
many cases, unstable behavior, particularly in the rotations. Although this unstable behavior can be avoided by the
approach proposed in Chapter 5, the accuracy of the control point rotations may still be affected. However, it should
again be noted that these inaccuracies in the rotational DOFs have very little influence on the actual results as long
as no patch coupling is involved.

The large deformation cantilever beam example [142] depicted in Figure 3.2 shall demonstrate the possible coupling
deficiencies of the standard B-Rep element formulation. This beam consists of two cubic NURBS patches, trimmed
such that no small trimmed elements appear and thus no stabilization is required, see Chapter 5. A line load P
linearly increasing over the simulation time of t = 0.01s is applied at the tip of the beam. Since the load and the
deformation of the beam increase during the analysis, the standard B-Rep element formulation achieves accurate
coupling results until a certain point, see the deformed shape at t = 0.0085s in Figure 3.2. Shortly before reaching
the maximum load, however, the rotational coupling condition “fails”, leading to a sudden and distinct kink along
the coupling edge between the two patches, clearly shown by the deformed shape at t = 0.0090 s in Figure 3.2. The
depicted control points furthermore show the expected behavior without large displacements, which would be
an indicator for instabilities, see Chapter 5. The reason for the failing rotational coupling are inaccuracies in the
rotational DOFs, evolving over simulation time.

It is worth noting that, although the rotational coupling does not work as intended, the weakly formulated coupling
constraint in Eq. (3.20) itself may still be fulfilled. One can, for example, imagine a solution in which the effective
rotations on both patch edges are identical (the constraint is therefore fulfilled), although the individual control point
rotations may have completely different values, canceling each other on each edge. Figure 3.3 depicts the y -rotations
of control points of patch 1 and 2 (marked in blue and black in Figure 3.2, respectively), which are involved in the
same B-Rep element formulation (marked in red in Figure 3.2). This plot shows reasonable y -rotations until shortly
before t = 0.009s, followed by large rotations quite evenly distributed in both, the positive and negative direction.
This indicates that the weak constraint is, in total, still fulfilled, but with meaningless control point rotations and
therefore bad results. Such effects are, in the literature, commonly denoted as spurious checkerboard modes, see for
instance [134], and a general drawback of weak constraint enforcement methods. The fact that the control points
can perform such large rotations is facilitated by trimming and the thereby loosened connection between control
points and the material domain. Indeed, the largest rotations are observed for the outermost control points with low
mass and stiffness. To increase the accuracy and numerical robustness of the coupling condition along trimmed
boundaries, an additional constraint on the rotation around the boundary curve tangent based on translational
DOFs only is introduced here.

This additional constraint is based on a Total Lagrangian normal coupling approach for thin rotation-free KL shells
proposed by Benson et al. [47]. In contrast to [47], the constraint is (i) not enforced point-wise, but in a weak integral
sense via B-Rep edge elements, and (ii) applied to RM shells. A B-Rep edge element formulation entirely based on
translational DOFs for (i) C 0 continuity as in the standard formulation and (ii) a consistent angle between patches
with this novel approach would be universally applicable and, of course, well-suited for rotation-free Kirchhoff-Love
shell elements, see [143]. However, the focus of this thesis is on shear deformable Reissner-Mindlin shells.

In the following, the translational DOF-based constraint on the rotation around the boundary (trimming) curve is
presented for coupling and Dirichlet boundary conditions. It should be noted that this constraint is intended to be
applied in addition to the displacement and rotation constraint presented in Section 3.3 above.

3.4.2 Element formulation for coupling conditions

The goal of this constraint is to preserve the angle around the boundary curved tangent a t between two (trimmed)
patches throughout the simulation, only via translational DOFs. Recalling Eq. (3.6), the virtual work expression
for Reissner-Mindlin shells, it can be seen that this constraint only entails a moment mt around the curve tangent
vector a t, but not a moment mu around a u. The latter still needs to be enforced via rotational DOFs as described in
Section 3.3 above.

In the following, the local orthonormal coordinate systems (a t, a u, a 3) resp. (At, Au, A3) in the current resp. initial
configuration as introduced in Section 2.3.1 are used. The arbitrary curvilinear surface coordinates Θ1 and Θ2 are
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E = 1.2×106 N/mm2

ν= 0

ρ = 7.8×10−9 t/mm3

L = 10 mm
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h = 0.1 mm

P = 4 N/mm

line load P in z -direction

clamped edge

t = 0.085 s

t = 0.090 s

Patch 1

Patch 2

Figure 3.2: Trimmed NURBS-based multi-patch cantilever beam (p = q = 3) loaded by a linearly increasing end shear
force in z -direction [142]: The two trimmed patches are coupled by standard B-Rep elements enforcing the rotational
constraints only via rotational DOFs. No small trimmed elements appear. The deformed shape at t = 0.009 s, obtained
by an explicit dynamic analysis, shows a distinct kink between the patches. The color plot indicates z -displacements
in mm.
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Figure 3.3: Trimmed NURBS-based multi-patch cantilever beam using standard B-Rep elements for the coupling:
Rotations around the y -direction for all control points of patch 1 and patch 2, marked in blue and black in Figure 3.2.
These control points are all involved in the same B-Rep element marked in red in Figure 3.2.
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3.4 The enhanced B-Rep edge element formulation – Constraints on shell normals

specifically defined as the NURBS parameters ξ and η, respectively. Also the boundary curve parameter Θ̃ is now
specifically defined as the trimming curve parameter ξ̃. The current angle between two patches is defined as the
angleϕ between the master and slave surface unit normal vectors a m

3 and a s
3, see Figure 3.4. Since a t is perpendicular

to both a m
3 and a s

3, ϕ describes the rotation around a t.

Ωm

Ωs

Current configuration at time t

Initial configuration

Ωm
0

Ωs
0As

3

Am
3

ϕ0

Am
t

a s
3 a m

3
ϕ

a m
t

Figure 3.4: Coupling kinematics between two trimmed NURBS surfaces (master and slave).

The unit normal vectors a (i )3 , (i ) =m, s on the master and slave surface S m and S s, respectively, are defined as

a (i )3 =
â (i )3

‖â (i )3 ‖
, (3.64)

â (i )3 = a (i )1 ×a (i )2 , (3.65)

with the surface tangent vectors a (i )1 and a (i )2 along the ξ- and η-directions

a (i )1 =
∂ S (i )

∂ ξ
=
∑

A

∂ N (i )
A

∂ ξ
PA , (3.66)

a (i )2 =
∂ S (i )

∂ η
=
∑

A

∂ N (i )
A

∂ η
PA . (3.67)

Differentiating the master surface S m with respect to the curve parameter ξ̃ of curve C (ξ̃) and normalization gives
the unit tangent vector on the master (trimming) curve as

a t =
â t

‖â t‖
, â t =

∂ S m

∂ ξ̃
=
∂ S m

∂ ξ

∂ ξ

∂ ξ̃
+
∂ S m

∂ η

∂ η

∂ ξ̃
. (3.68)

As mentioned above, ϕ shall be expressed with translational DOFs only. This can be done via the scalar and cross
product definitions

a ·b = ‖a‖‖b ‖cos(θ ), (3.69)

a ×b = ‖a‖‖b ‖sin(θ )n , (3.70)
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where a ,b ∈R3, are two arbitrary three-dimensional vectors with their Euclidean norms ‖a‖, ‖b ‖; θ is the angle
between a and b , and n ∈R3 is a unit vector normal to a and b . Transferred to the present case in Figure 3.4, ϕ
and ϕ0 can be expressed as

cos(ϕ) = a m
3 ·a

s
3, (3.71)

sin(ϕ) = a m
t · (a

m
3 ×a s

3), (3.72)

and

cos(ϕ0) = Am
3 · A

s
3, (3.73)

sin(ϕ0) = Am
t · (A

m
3 × As

3), (3.74)

as in [47]. This establishes a direct relation between ϕ and the translational DOFs in PA via Eqs. (3.64)–(3.68).

Since the aim is to preserve the initial angle ϕ0 (at t = 0) between two patches, the constraint should be on the
deviation between the current and the initial angleψ= (ϕ−ϕ0) = 0. Becauseψ should be kept small and close to
zero,ψ≈ sin(ψ) holds and the constraint [47] can be formulated as

g tan(ξ̃) =sin(ψ) = 0 (3.75)

=sin(ϕ−ϕ0) = 0 (3.76)

=sin(ϕ)cos(ϕ0)− cos(ϕ)sin(ϕ0) = 0 (3.77)

=a m
t · (a

m
3 ×a s

3)cos(ϕ0)− (a m
3 ·a

s
3)sin(ϕ0) = 0, (3.78)

where the superscript ‘tan’ indicates the rotational coupling around the curve tangent a t and where the trigonometric
addition theorems are exploited in order to enable using Eqs. (3.71) and (3.72) directly. The same applies for cos(ϕ0)
and sin(ϕ0) evaluated at t = 0.

Please note that

• for ϕ0 = 0◦: cos(ϕ0) = 1, sin(ϕ0) = 0 and the constraint simplifies to g tan = sin(ϕ) = a m
t · (a

m
3 ×a s

3) = 0,

• for ϕ0 = 90◦: cos(ϕ0) = 0, sin(ϕ0) = 1 and the constraint simplifies to g tan =−cos(ϕ) = a m
3 ·a

s
3 = 0.

It is also worth noting that g tan is a scalar constraint, in contrast to the vector-valued constraints in Section 3.3.

Inserting the constraint into the general virtual work expression for weak penalty-based constraints (3.33) and
integration along the master curve yields

δW B-Rep,tan =αtan

�
Γm

C

g tan(ddisp)δg tan(ddisp)dΓ =αtan

�
Γm

C

sin(ϕ−ϕ0)δ
�

sin(ϕ−ϕ0)
�

dΓ , (3.79)

where ddisp again denotes the vector of control point displacements and αtan the corresponding penalty factor. For
the sake of brevity, the superscript ’disp’ is skipped within the remainder of this section, since only translational DOFs
are involved anyway. Thus, the vector of control point displacements is in the following denoted as d= {. . . , dT

A , . . .}T ,
with dT

A = {uA1, uA2, uA3}T .

3.4.3 Element formulation for Dirichlet boundary conditions

This type of angular constraint can, of course, also be used to enforce rotational Dirichlet boundary conditions. In
this case only one domain Ω with one boundary Γ is considered and the slave unit normal vector a s

3 is formally
substituted with a prescribed Dirichlet normal vector a D

3 . The superscript m on the master side is skipped for brevity.
In accordance to the coupling case Eqs. (3.71)–(3.74), the trigonometric functions for the angles ϕD and ϕD

0 are
defined as

cos(ϕD) = a 3 ·a D
3 , (3.80)

sin(ϕD) = a t · (a 3×a D
3 ), (3.81)

and

cos(ϕD
0 ) = A3 · AD

3 , (3.82)

sin(ϕD
0 ) = At · (A3× AD

3 ). (3.83)
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This gives the constraint

g tan(ξ̃) =sin(ψD) = 0 (3.84)

=sin(ϕD −ϕD
0 ) = 0 (3.85)

=sin(ϕD)cos(ϕD
0 )− cos(ϕD)sin(ϕD

0 ) = 0 (3.86)

=a t · (a 3×a D
3 )cos(ϕD

0 )− (a 3 ·a D
3 )sin(ϕD

0 ) = 0, (3.87)

and the virtual work

δW B-Rep,tan =αtan

�
ΓD

sin(ϕD −ϕD
0 )δ

�

sin(ϕD −ϕD
0 )
�

dΓ , (3.88)

for weakly enforced penalty-based Dirichlet boundary conditions.

3.4.4 Control point forces and stiffness matrix for coupling conditions

Based on the general form of the potential for a weakly enforced penalty constraint as given in Eq. (3.35), the potential
for this coupling constraint can be computed as

W B-Rep,tan =
1

2
αtan

�
ΓC

sin2(ϕ−ϕ0)dΓ . (3.89)

The corresponding control point force is obtained by differentiating the potential with respect to control point
displacements:

fB-Rep,tan =
∂W B-Rep,tan

∂ d
=αtan

�
ΓC

g tan(d)
∂ g tan(d)
∂ d

dΓ , (3.90)

fB-Rep,tan
A =

∂W B-Rep,tan

∂ dA
=αtan

�
Γc

g tan(d)
∂ g tan(d)
∂ dA

dΓ . (3.91)

The corresponding tangential stiffness matrix1 is then computed as

K B-Rep,tan =
∂ 2W B-Rep,tan

∂ d∂ d
=αtan

�
Γc

∂ g tan(d)
∂ d

⊗
∂ g tan(d)
∂ d

dΓ , (3.92)

K B-Rep,tan
AB =

∂ 2W B-Rep,tan

∂ dA∂ dB
=αtan

�
Γc

∂ g tan(d)
∂ dA

⊗
∂ g tan(d)
∂ dB

dΓ . (3.93)

The constrained derivatives involved in the force and stiffness matrix definitions in Eqs. (3.90) and (3.92) are computed
next. For this reason, the cross product in Eq. (3.78) is rewritten in matrix form

g tan(d) =a m
t ·
�

�

a m
3 ×

�

a s
3

�

cos(ϕ0)− (a m
3 ·a

s
3)sin(ϕ0) = 0, (3.94)

with the skew-symmetric matrix

�

a m
3 ×

�

=











0 −a m
33 a m

32

a m
33 0 −a m

31

−a m
32 a m

31 0











. (3.95)

For the derivatives with respect to dA one needs to differentiate between master dm
A and slave ds

A coordinates. By
using the product rule and the identity

�

a m
3 ×

�

a s
3 = −

�

a s
3×
�

a m
3 , the constraint derivatives with respect to master

coordinates can be written as

∂ g tan(d)
∂ dm

A

=

�

�

�

a m
3 ×

�

a s
3

�

·
∂ a m

t

∂ dm
A

+a m
t ·
�

−
�

a s
3×
� ∂ a m

3

∂ dm
A

�

�

cos(ϕ0)−
�

a s
3 ·
∂ a m

3

∂ dm
A

�

sin(ϕ0) = 0. (3.96)

1 The constraint is assumed to be linear and thus the second derivative contribution is neglected here. Within this thesis, this only has an
effect on the eigenvalue analysis, since no stiffness matrix is used for explicit analysis anyway.
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With
�

a m
3 ×

�

a s
3 = a m

t it can be seen that the first term in Eq. (3.96) vanishes

a m
t ·
∂ a m

t

∂ dm
A

= 0, (3.97)

since the derivative of a unit vector is perpendicular to the unit vector, leading to a scalar product equal to zero.
Equation (3.96) therefore simplifies to

∂ g tan(d)
∂ dm

A

=a m
t ·
�

−
�

a s
3×
� ∂ a m

3

∂ dm
A

�

cos(ϕ0)−
�

a s
3 ·
∂ a m

3

∂ dm
A

�

sin(ϕ0) = 0, (3.98)

The only derivative left to evaluate is then ∂ a m
3 /∂ dm

A . By using Eq. (3.64), ∂ a m
3 /∂ dm

A can be expressed as

∂ a m
3

∂ dm
A

=
1

�

‖â m
3 ‖
�2

�

∂ â m
3

∂ dm
A

‖â m
3 ‖− â m

3 ⊗
∂ ‖â m

3 ‖
∂ dm

A

�

(3.99)

=
1

‖â m
3 ‖
∂ â m

3

∂ dm
A

−
1

‖â m
3 ‖3

â m
3 ⊗

�

â m
3 ·
∂ â m

3

∂ dm
A

�

(3.100)

=
1

‖â m
3 ‖

�

I −a m
3 ⊗a m

3

� ∂ â m
3

∂ dm
A

, (3.101)

where the following identity is used

∂ ‖â m
3 ‖

∂ dm
A

=
1

‖â m
3 ‖

â m
3 ·
∂ â m

3

∂ dm
A

. (3.102)

Rewriting Eq. (3.65) as

â m
3 = a m

1 ×a m
2 =

�

a m
1 ×

�

a m
2 =−a m

2 ×a m
1 =−

�

a m
2 ×

�

a m
1 , (3.103)

the derivative of the master normal vector â m
3 with respect to the vector of master displacements dm

A in Eq. (3.101)
can be expressed in terms of the master surface tangent vectors a m

1 and a m
2 :

∂ â m
3

∂ dm
A

=−
�

a m
2 ×

� ∂ a m
1

∂ dm
A

+
�

a m
1 ×

� ∂ a m
2

∂ dm
A

. (3.104)

With

∂ a m
1

∂ dm
A

=











∂ N m
A

∂ ξ 0 0

0
∂ N m

A
∂ ξ 0

0 0
∂ N m

A
∂ ξ











,
∂ a m

2

∂ dm
A

=











∂ N m
A

∂ η 0 0

0
∂ N m

A
∂ η 0

0 0
∂ N m

A
∂ η











, (3.105)

Eq. (3.104) simplifies to

∂ â m
3

∂ dm
A

=−
∂ N m

A

∂ ξ

�

a m
2 ×

�

+
∂ N m

A

∂ η

�

a m
1 ×

�

. (3.106)

The constraint derivative ∂ g tan(d)/∂ dm
A with respect to master control point displacements is now obtained by

combining Eqs. (3.106), (3.101) and (3.98).

The constraint derivative ∂ g tan(d)/∂ ds
A with respect to slave coordinates is very similar, because the first term of

Eq. (3.96) vanishes. The equivalent expressions for the slave side are then given as

∂ g tan(d)
∂ ds

A

=a m
t ·
�

�

a m
3 ×

� ∂ a s
3

∂ ds
A

�

cos(ϕ0)−
�

a m
3 ·
∂ a s

3

∂ ds
A

�

sin(ϕ0) = 0, (3.107)

with

∂ a s
3

∂ ds
A

=
1

‖â s
3‖
�

I −a s
3⊗a s

3

� ∂ â s
3

∂ ds
A

, and
∂ â s

3

∂ ds
A

=−
∂ N s

A

∂ ξ

�

a s
2×
�

+
∂ N s

A

∂ η

�

a s
1×
�

. (3.108)

Control point forces and stiffness matrices can now be obtained by inserting the master and slave constraint deriva-
tives into Eqs. (3.90) and (3.92), respectively. Since this gave rather lengthy equations, stating the complete formulas
for the control point force vectors and the stiffness matrix is omitted here.
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y x

z

(a) Standard B-Rep element formulation.

y x

z

(b) Enhanced B-Rep element formulation.

Figure 3.5: Trimmed NURBS-based multi-patch cantilever beam: Comparison of the deformed shapes at t = 0.009 s
between two explicit dynamic analyses using the standard B-Rep element formulation in (a) and the enhanced B-Rep
element formulation in (b). The color plots indicate z -displacements.

3.4.5 Control point forces and stiffness matrix for Dirichlet boundary conditions

With the potential along the Dirichlet boundary ΓD

W B-Rep,tan =
1

2
αtan

�
ΓD

sin2(ϕD −ϕD
0 )dΓ , (3.109)

and Eqs. (3.90) and (3.92), computing the control point force vector and the stiffness matrix for the case of Dirichlet
boundary conditions is straightforward. One only has to substitute (i) ϕ resp. ϕ0 with ϕD resp. ϕD

0 and (ii) a s
3 with

a prescribed Dirichlet normal vector a D
3 . Since a D

3 is independent of control point displacements, only constraint
derivatives with respect to one domain ∂ a 3/∂ dA need to be considered, i.e. no distinction between master and slave
domains is required.

3.4.6 Trimmed multi-patch cantilever beam with the enhanced B-Rep element formulation

Finally, the effectiveness of the enhanced B-Rep element formulation and the additional constraint on the shell
normals shall be demonstrated by means of the cantilever beam example already used for the problem description
in Section 3.4.1. The same model with the same material and analysis parameters as defined in Figure 3.2 is used,
but now with the enhanced instead of the standard B-Rep element formulation. Figure 3.5 provides a comparison
between the deformed shapes at t = 0.009 s obtained by explicit dynamic analyses using the standard (Figure 3.5a) and
the enhanced B-Rep element formulation (Figure 3.5b). As clearly visible, no kink along the coupling edge appears
when using the enhanced B-Rep element formulation, thus indicating its effectiveness and rotational coupling
accuracy. A comparison of the y -rotations over time for both B-Rep element formulations is provided in Figure 3.6.
In accordance to Figure 3.5b, the rotations obtained with the enhanced B-Rep element formulation in Figure 3.6b
show a plausible behavior without large unrealistic values.

To conclude, the additional rotational constraint imposed on the shell normals and thus on translational DOFs,
is an effective mean to eliminate the rotational coupling deficiencies observed with the standard B-Rep element
formulation.
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(a) Standard B-Rep element formulation.

0.000 0.002 0.004 0.006 0.008 0.010

Time (s)

-4

-3

-2

-1

0

1

2

y
-r

o
ta

ti
o

n
(r

ad
)

Patch 1
Patch 2

(b) Enhanced B-Rep element formulation.

Figure 3.6: Trimmed NURBS-based multi-patch cantilever beam: Comparison of rotations around the y -direction
between two explicit dynamic analyses using the standard B-Rep element formulation in (a) and the enhanced B-Rep
element formulation in (b), cf. Figure 3.5. Control points of patch 1 and patch 2, marked in blue and black in Figure 3.2
are considered. These control points are all involved in the same B-Rep element marked in red in Figure 3.2.

3.5 Numerical stability and time step estimation

As described in Section 2.9, explicit time integration schemes are only stable if the time step size is smaller than a
critical value. For the central difference method used within this thesis, this critical time step can be determined via
condition (2.67). The corresponding derivation via a linear stability analysis, as provided in the Appendix A, shows
that condition (2.67) only holds for symmetric and positive semidefinite system mass and stiffness matrix, and if a
Rayleigh damping matrix is used [54]. Moreover, Section 2.9 described several common time step estimates based
on the stability condition (2.67). The aim of this section is to demonstrate (i) that condition (2.67) remains valid and
(ii) which of the presented time step estimates to use for problems with weak penalty-based B-Rep elements.

3.5.1 Stability for weak penalty-based coupling and boundary conditions

The explicit central difference method is shown to be stable if the time step size does not exceed a critical time step
determined via (2.67). This, however, only holds if (i) a Rayleigh damping matrix is used and (ii) the system mass and
stiffness matrix are symmetric and positive semidefinite. In the following, the use of a Rayleigh damping matrix is
presumed, that is, the damping matrix is defined as a linear combination of M and K . Thus, premise (i) is fulfilled.
The task is now to show that premise (ii) is fulfilled when using penalty-based B-Rep elements; for the standard
B-Rep element formulation this was previously shown by Leidinger et al. [54]. To this end, the underlying shell mass
matrix M S and shell stiffness matrix K S are presumed as symmetric and positive semidefinite. Introducing B-Rep
elements does not introduce additional mass, therefore M = M S is symmetric and positive semidefinite. For the
investigations on the stiffness matrix, K shall be separated into a shell and a B-Rep penalty contribution, while the
latter may involve B-Rep stiffness contributions from displacement, rotation and shell normal constraints (tan):

K = K S+ K P = K S+ K B-Rep,disp+ K B-Rep,rot+ K B-Rep,tan. (3.110)

Since the shell stiffness K S is presumed to be symmetric and positive semidefinite, the task is to show that this is also
the case for K P . The symmetry of the displacement, rotation and shell normal (tan) constraint stiffness matrices is
evident from the symmetric definitions in Eqs. (3.42), (3.43) and (3.92), respectively. The penalty stiffness matrices
from the displacement and rotation constraints are formally identical and can be written as

K B-Rep,disp =α
�
Γ
ΦTΦdΓ , K B-Rep,rot =α

�
Γ
ΦTΦdΓ . (3.111)

To show the positive semidefiniteness of K B-Rep,disp and K B-Rep,rot, the following theorem is deployed, see also [54].

Theorem 3.1 (Positive definiteness of a matrix)
Let z ∈Rn , n ∈N be a non-zero real column vector and A ∈Rn×n a symmetric real matrix. Then, A is called positive
definite if z T Az > 0 for all non-zero z ∈Rn . Similarly, A is called positive semidefinite if z T Az ¾ 0 for all z ∈Rn .
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By pre- and post-multiplying Eq. (3.111) with z T and z , respectively, putting z T and z into the integral and re-
ordering terms gives

z T K B-Rep,dispz =α
�
Γ

z TΦTΦz dΓ =α
�
Γ
(Φz )T (Φz )dΓ =α

�
Γ

b T I b dΓ , (3.112)

with the introduced vector b =Φz . Since the identity matrix I is positive definite, the integrand b T I b is non-zero, if
the vector b is non-zero. The latter, however, is in general not guaranteed. Therefore, the integrand b T I b can only
be assumed to be non-negative. Together with a non-negative penalty factor α, z T K B-Rep,dispz is non-negative. This
shows that K B-Rep,disp is symmetric and positive semidefinite for a non-negative penalty factor α. The same of course
applies for K B-Rep,rot.

With the same assumption of a non-negative penalty factor α it can be seen that the stiffness matrix for the shell
normal constraint (tan) in the form

K B-Rep,tan =α
�
Γ

�

∂ g

∂ d

�T �
∂ g

∂ d

�

dΓ (3.113)

is also positive semidefinite. To this end K B-Rep,tan is again pre- and postmultiplied with z T and z , respectively. By
performing the same operations as above, one can write

z T K B-Rep,tanz =α
�
Γ

z T

�

∂ g

∂ d

�T �
∂ g

∂ d

�

z dΓ =α
�
Γ

�

∂ g

∂ d
z

�T �
∂ g

∂ d
z

�

dΓ =α
�
Γ

b 2 dΓ , (3.114)

with the introduced scalar value b = ∂ g
∂ d z ≥ 0. Since the integrand b 2 is always non-negative, also the stiffness matrix

for the shell normal constraint is positive semidefinite for a non-negative penalty factor.

In conclusion, the stability condition (2.67) remains valid when enforcing weak penalty-based coupling and boundary
conditions via B-Rep edge elements.

3.5.2 Stable time step estimation

The previous section showed that condition (2.67) can be used to determine the critical time step size for problems
including penalty-based B-Rep edge elements. Since condition (2.67) requires multiple evaluations of the maximum
system eigenvalue during nonlinear analysis, computationally more efficient estimates as described in Section 2.9.4
are commonly used within practical FEA. The question that arises is whether these estimates are able to account for
the effect of weak penalty-based coupling and boundary conditions on the critical time step size, i.e. for penalty-based
B-Rep edge elements.

The heuristic element estimate for the critical time step is based on a characteristic element length. In the literature,
one can find various definitions of the characteristic length for different types of elements within both FEA and
IGA [14, 45, 81]. However, none of these estimates accounts for the influence of B-Rep elements, preventing their
direct application to Explicit IBRA.

The nodal estimates based on the Gershgorin circle theorem and the Power iteration method, on the other hand, aim
at approximating the maximum system eigenvalue directly. That is, these estimates account for all effects represented
in the system matrix M−1 K and are therefore applicable to any kind of system in the form of Eq. (2.65), for which
condition (2.67) holds [54]. This includes penalty-based coupling and boundary conditions, which are accounted for
in the global stiffness matrix K .

In conclusion, both the nodal estimate and the Power iteration method can be used to efficiently estimate the critical
time step size for problems with penalty-based B-Rep edge elements [54].

3.6 Summary and conclusion of Chapter 3

This chapter presents the adaptations required for the extension of IBRA to (i) explicit dynamics and (ii) Reissner-
Mindlin shell theory. To achieve the latter, two novel B-Rep edge element formulations for RM shells with rotational
DOFs are proposed in Section 3.3 and Section 3.4, respectively. The standard B-Rep element formulation enforces
displacement and rotational continuity directly via the corresponding translational and rotational DOFs. Although
this is shown to be sufficient from a mechanical point of view, the rotational coupling quality may be poor in dynamic
large deformation problems due to occasionally appearing inaccuracies in the rotational DOFs of trimmed elements.
The enhanced B-Rep element formulation eliminates these deficiencies by enforcing additional translation-based
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coupling constraints on the shell normals. A comparison of results for a trimmed multi-patch cantilever beam
obtained with the standard and the enhanced B-Rep element formulation shows the effectiveness of the additional
constraint on the shell normals. Based on the derived stiffness matrices, Section 3.5 shows that the proposed B-Rep
element formulations maintain the symmetry and positive semidefiniteness of the system mass and stiffness matrices.
Thus, the stability condition (2.67) can also be used for problems with penalty-based B-Rep elements. Finally, it
is shown that all time step estimates that aim at estimating the maximum system eigenvalue in condition (2.67)
directly, also remain applicable when using B-Rep elements; an important component for efficient explicit analysis
of practical problems such as vehicle crash simulations.
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Chapter 4

Stable time step size in an Explicit IBRA setting

After having shown that the explicit central difference scheme maintains its conditional stability within an Explicit
IBRA setting, this chapter specifically investigates the different influencing factors on the size of the stable time
step. Section 4.1 describes the effect of continuity and boundary elements in open knot vector patches on the time
step, while Section 4.2 shows how trimming can be used to eliminate the time step restricting influence of boundary
elements. Section 4.3 studies the effect of trimming itself, and especially the role of small trimmed elements in explicit
analysis. Section 4.4 describes the effect of penalty-based B-Rep edge elements on the stable time step. Finally, in
Section 4.5 a local selective mass scaling approach is proposed as a measure to compensate for a possible decrease
in time step size caused by penalty-based B-Rep elements. Sections 4.1–4.4 expand on preliminary exploratory work
conducted within the Master’s theses of Murugan [144] and Pasch [145], and a student project of Lian [146]. The local
selective mass scaling approach was first implemented and tested within a student project by Pasch [147]. All these
studies were supervised by the author of this dissertation.

4.1 Effect of continuity and boundary elements on the time step

A remarkable property of B-spline and NURBS basis functions is the higher continuity across element boundaries,
in the following denoted as inter-element continuity. In standard FEA based on Lagrange polynomials, the inter-
element continuity is limited to C 0, while NURBS-based IGA allows for C p−1. This section describes the effect of this
higher continuity on the eigenfrequencies and thus on the critical time step size in explicit analysis.

As described in Chapter 2, the shape and thus the inter-element continuity of the n basis functions within a NURBS
patch of degree p are defined by the knot vectorΞ = {ξ1,ξ2, . . . ,ξn+p+1}. More specifically, the inter-element continuity
is determined as C p−mi , where mi is the multiplicity of the knot value ξi . In case a knot ξi has multiplicity mi = p ,
the continuity of the basis reduces to C 0. This implies that, at this knot, one basis function is equal to one, while all
others are equal to zero, see Figure 2.1. In that case, the basis is said to be interpolatory at ξi [121]. That is, a NURBS
curve generated from such a knot vector passes through the corresponding control point at ξi . In a similar manner,
this of course also applies to NURBS surfaces. For mi = p + 1 the basis becomes discontinuous (C −1), forming a
patch boundary. In CAD programs the first and the last knot values (ξ1 and ξn+p+1) are therefore commonly defined
with multiplicity mi = p +1, see also Figure 2.1. Such a knot vector is denoted as an open or clamped knot vector.
Thus, for open knot vectors the multiplicity of the first and the last knot value is prescribed. This affects the shape of
the p first and last basis functions in the p −1 first and last elements1. This can also be interpreted as a reduction of
continuity towards patch boundaries.

To summarize, regardless of whether interior or boundary knots are considered, varying the multiplicity of a knot
alters the shape and the inter-element continuity of basis functions. Since mass and stiffness matrix entries are
essentially determined by basis functions, the question arises, whether the type of basis function also affects the
eigenfrequencies and thus the stable explicit time step of the model.

In their work on stable time step estimates for explicit IGA [81], Adam et al. already found that inter-element continuity
is decisive for the critical time step, see Table 2 in [81]. That is, the higher the continuity, the higher the critical time

1 For the sake of brevity, the p −1 elements and p basis functions at the boundary of an open knot vector curve are denoted as boundary
elements and boundary basis functions. The same applies to the p −1 element and p basis function rows at the boundary of open knot vector
surface patches. Please note that these boundary elements have nothing to do with the elements in the Boundary Element Method (BEM).
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step. In [81] the authors also found that in open knot vector patches with an inter-element continuity of C p−1, the
boundary elements require a smaller time step than interior elements. The authors suggested two approaches to
remedy this negative effect of boundary elements, which will be discussed later in this section. Before that, it is
expedient to analyze the effect of shape and inter-element continuity of basis functions on the resulting mass and
stiffness matrix entries (MA and KAB ), and their impact on the eigenvalue problem

(K −ω2
I M )yI = (K −λI M )yI = 0 or (M−1 K −ω2

I I )yI = (M
−1 K −λI I )yI = 0. (4.1)

Via this eigenvalue problem the matrix entries MA and KAB indeed determine the eigenfrequenciesωA and thus the
critical time step size

∆tcrit =
2

ωmax
. (4.2)

To demonstrate this, one-dimensional bar and two-dimensional shell models with varying continuity are studied
here.

4.1.1 Open knot vector patches with C 0 inter-element continuity

At first, NURBS patches with C 0 inter-element continuity shall be considered (NURBS patches with C p−1 continuity
follow in Section 4.1.2) in order to investigate the effect on the eigenfrequencies and the size of the critical time step
in explicit analysis for different polynomial degrees p . For this purpose, one-dimensional bar and two-dimensional
shell models with the following properties are considered unless otherwise stated:

• A uniform open knot vector with C 0 inter-element continuity, i.e. a p -refined knot vector generated from a
linear knot vector.

• A control point distribution defined such that the Jacobian J1 of the mapping from the parameter space to the
geometry space is constant throughout the patch, which is standard in CAD programs. This corresponds to a
uniform control point distribution for patches with C 0 inter-element continuity.

• Linear elastic, isotropic and homogeneous material behavior without damping.

One-dimensional bar model

The one-dimensional NURBS-based bar models with constant cross-sectional area and p = 1 to 4 considered here
are generated from a linear C 0 open knot vector Ξ = {0,0,1,2,3,4,5,6,6} via p -refinement. That is, as the order is
elevated by one, the multiplicity of each distinct knot value is increased by one as well. The resulting basis functions
for p = 1 to 4 are depicted in the upper part of Figure 4.1b. It can be seen that the continuity drops to C 0 at element
boundaries and that all elements have identical basis functions. However, for p > 1 the basis functions within an
element vary. Without loss of generality, the mass density ρ, the cross-sectional area A and the Young’s modulus E
are set to ρ = A = E = 1 in the following. The values in all subsequent plots are provided in consistent units. The
control point distributions leading to a constant Jacobian J1 = 1 are given in Figure 4.1a. For the one-dimensional
bar models considered here, the entries of the lumped mass matrix are computed as

MA =
�

V
ρNA dV =ρA

�
x

NA dx =ρA

�
ξ

NA

�

�

�

�

∂ x

∂ ξ

�

�

�

�

dξ, (4.3)

and the entries of the stiffness matrix as

KAB =
�

V

∂ NA

∂ x
E
∂ NB

∂ x
dV = E A

�
x

∂ NA

∂ x

∂ NB

∂ x
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�
ξ

�

∂ NA

∂ ξ

∂ ξ

∂ x

��

∂ NB

∂ ξ

∂ ξ

∂ x

��

�
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�

∂ x

∂ ξ

�

�

�

�

dξ. (4.4)

From Eq. (4.3) one can see that, via the integral, the control point mass MA is directly proportional to the area
under the basis function NA . In fact, the area under the basis function remains the only distinguishing quantity
since the Jacobian J1 = |∂ x/∂ ξ| and all material parameters are constant throughout the bar. The control point
mass MA therefore varies with the varying shape and support of the basis functions, which can be seen in Figure 4.1b.
The stiffness matrix entries KAB in Eq. (4.4) on the other hand, are computed from the basis function derivatives
N ′

A(ξ) = ∂ NA/∂ ξ, which also vary for the different types of basis function, see Figure 4.2.

In order to show the influence of different types of basis functions on mass and stiffness, Figure 4.1a depicts control
point eigenfrequencies computed from lumped mass and lumped stiffness matrices, which are obtained by row
summing of absolute values. For p = 1, 2, the varying mass and stiffness values counterbalance, leading to constant
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4.1 Effect of continuity and boundary elements on the time step

nodal eigenfrequencies. For p = 3, 4 on the contrary, the control point eigenfrequencies vary periodically throughout
the patch and within an element. A general observation is the following: The further a control point is located away
from a C 0 continuity, the lower its eigenfrequency.

Since all elements are identical here, the maximum element eigenfrequencies depicted in Figure 4.1b are constant
throughout the patch. It is worth noting that the eigenfrequencies increase with increasing p . This can be explained
by the following facts: (i) the area under the basis functions decreases with increasing p , which gives smaller control
point masses, see Eq. (4.3), (ii) the maximum values of the basis function derivatives increase with increasing p , which
gives larger stiffness entries, see Eq. (4.4). From Eq. (4.1) and the eigenfrequency of a single DOF mass-spring-system

ω=
p

λ=

√

√ k

m
(4.5)

it can be seen that a smaller mass and a higher stiffness leads to a higher eigenfrequency and via Eq. (4.2) to a smaller
critical time step.

Another explanation for the higher eigenfrequencies with increasing p can be found in the control point distribution
in Figure 4.1a. For p -refinement, increasing p by one introduces one new basis function in each element, that is,
nel new basis functions in total, where nel is the number of elements. Thus, the higher p , the higher the number
of control points and the closer the control points are located to each other. For example for p = 4 the number of
control points is by 3nel times higher than for p = 1. This must lead to smaller control point masses and via the
stiffness formula of a spring with length l

k =
E A

l
(4.6)

also to higher stiffness, where l can be interpreted as the distance between control points.

Two-dimensional shell model

For the two-dimensional case, the effects and dependencies are very similar. To show this, square plates with a side
length of l = 10 mm and a discretization of 10×10 Reissner-Mindlin shell elements for p = 1 to 4 are considered as
depicted in Figure 4.3. The model is again generated from linear C 0 open knot vectors Ξ =H= {0, 0, 1, 2, 3, 4, 5, 6, 7, 8,
9,10,10} via p -refinement, maintaining C 0 continuity at element boundaries. The control point distributions of
the plate for the different p -refinement levels and a constant Jacobian J1 = 1 are depicted in Figure 4.3. It can be
seen that, due to the enforced C 0 continuity, the number of control points again strongly increases with p . The
mass density ρ, the Young’s modulus E , the shell thickness h and the Poisson’s ratio ν are, for simplicity, defined as
ρ = E = h = 1 and ν= 0.3. The values in the corresponding plots are again provided in consistent units.

As mentioned in Section 2.6.2, the RM shell elements use a lumped mass matrix in which the rotational inertias are
scaled such that the corresponding eigenmodes do not control the critical time step size. Thus, only considering the
translational DOFs, eigenmodes and eigenfrequencies of the shell is sufficient for studying the influence on the time
step size in this section.

Figure 4.4 depicts the maximum element eigenfrequency distribution of all four configurations p = 1 to 4 via a heat
map of the parameter space. The eigenfrequencies are normalized with respect to the linear case and the elements
are colored in accordance to their maximum eigenfrequency. The colorbar scales are identical for all four subplots.
Because of the enforced C 0 inter-element continuity, all elements within a patch have equal maximum element
eigenfrequencies. For the same reasons as in the one-dimensional bar model, the eigenfrequencies increase with p .
For instance the maximum element eigenfrequency for p = 4 is 1.93 times higher than for p = 1. This means that
p -refinement of C 0 continuous NURBS models would reduce the critical time step size in explicit analysis – a clearly
unfavorable behavior.

4.1.2 Open knot vector patches with maximum C p−1 inter-element continuity

In the previous section p -refined NURBS models with C 0 inter-element continuity as in standard FEA are studied
and it is found that elevating the order has a negative effect on the time step size. This section deals with k -refined
open knot vector NURBS models with higher inter-element continuity up to C p−1. According to Adam et al. [81], a
positive effect of higher continuity is expected.

Hereafter, one-dimensional bar and two-dimensional shell models with the following properties are considered
unless otherwise stated:

• A uniform open knot vector now with maximum C p−1 inter-element continuity, i.e. a k -refined knot vector,
which only has interior knots of multiplicity mi = 1.
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4 Stable time step size in an Explicit IBRA setting
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Figure 4.1: One-dimensional bar problem C 0: Models of polynomial degree p = 1 to 4, generated from an open
knot vector with six elements (for p = 1: Ξ = {0, 0, 1, 2, 3, 4, 5, 6, 6}, for p > 1: p -refined Ξ with C 0 continuity between
interior elements, i.e. interior knots of multiplicity mi = p ). Black dashed lines indicate element boundaries.
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4.1 Effect of continuity and boundary elements on the time step

(a) Bilinear elements, C 0 continuity. (b) Biquadratic elements, C 0 continuity.

(c) Bicubic elements, C 0 continuity. (d) Biquartic elements, C 0 continuity.

Figure 4.3: Two-dimensional square plate problem C 0: Shell models with 10×10 isogeometric elements, C 0 inter-
element continuity and p = 1 to 4 in (a) to (d), showing the elements and the control point distributions in the
geometry space. The NURBS patches are generated from open knot vectors with ten elements (for p = 1: Ξ =H=
{0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10}, for p > 1: p -refined Ξ and H with mi = p multiplicity of interior knot values).

• A control point distribution defined such that the Jacobian J1 of the mapping from the parameter space to the
geometry space is constant throughout the patch, which is standard in CAD programs. For p > 1 this leads to
an accumulation of control points near patch boundaries, see the upper part of Figure 4.5a.

• Linear elastic, isotropic and homogeneous material behavior without damping.

One-dimensional bar model

To demonstrate the effect of higher continuity on the time step, a one-dimensional NURBS-based bar model with a
constant cross-sectional area and an open knot vector Ξ = {0, 0, 1, 2, 3,4,5, 6, 6} for p = 1 is considered as a starting
point. By applying k -refinement for p = 2 to 4, only the multiplicity of the first and last knot value is increased to p +1.
The multiplicity of all other knot values remains to be mi = 1, leading to C p−1 inter-element continuity. Without loss
of generality, the model properties are again set to ρ = A = E = 1 and the values in the corresponding plots are given
in consistent units. The control point distributions leading to a constant Jacobian J1 = 1 are given in Figure 4.5a.
The resulting basis functions for p = 1 to 4 with C p−1 inter-element continuity are depicted in the upper part of
Figure 4.5b. Comparing these figures with the p -refined bar model in Figure 4.1, one can immediately recognize two
major differences: (i) The number of control points and basis functions for p > 1 is much lower, since k -refinement
only introduces one instead of nel new basis function per order elevation; (ii) the elements differ with regard to their
basis functions. More precisely, the support of a basis function reduces towards the patch boundary, i.e. towards a
point of reduced continuity. Thereby also the shape of the basis function changes. In the following, the p −1 elements
and p basis functions at the patch boundary are denoted as boundary elements and boundary basis functions in
order to distinguish them from interior elements and interior basis functions.
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(a) Bilinear elements, C 0 continuity.
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(b) Biquadratic elements, C 0 continuity.
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(c) Bicubic elements, C 0 continuity.
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(d) Biquartic elements, C 0 continuity.

Figure 4.4: Two-dimensional square plate problem C 0: Maximum element eigenfrequenciesωe
max for polynomial

degrees p = 1 to 4 in (a) to (d). The element eigenfrequencies are normalized with respect to linear elements.

As in the previous section, the effect of the different types of basis functions on the time step shall be explained by
means of the eigenvalue problem (4.1) and Eqs. (4.2), (4.3) and (4.4). Via Eq. (4.3) the control point mass MA is directly
proportional to the area under the basis function NA . For internal basis functions with full support on p +1 uniform
knot spans, the area under the basis function is equal to the element length, i.e.

�
ξ NA dξ= 1 in the present case. As

depicted in Figure 4.5b, the area under boundary basis functions NA is smaller than for interior basis functions and
even decreases with increasing p . Hence, boundary control points have a lower mass than internal control points.

The stiffness entries of boundary elements show a contrary behavior, since the basis function derivatives instead of
the basis function values appear in the integral in Eq. (4.4). Figure 4.5b clearly shows that the internal basis functions
flatten out with increasing p , while boundary basis functions get steeper with increasing p . Thus, the maximum
derivative values of boundary basis functions for p > 1 are higher than in the linear case (p = 1), while the derivative
values of internal basis functions are lower. The basis function derivatives N ′

A(ξ) = ∂ NA/∂ ξ for p = 1 to 4 are depicted
in Figure 4.6, approving these observations. By recalling Eq. (4.4) it becomes obvious that, due to the varying basis
function derivatives, (i) stiffness entries of boundary elements are higher than those of interior elements and that (ii)
for p > 1 the boundary/interior stiffness entries are higher/lower than in the linear case.

Equation (4.1) explains that boundary elements with higher stiffness and lower mass entries have a higher eigenfre-
quency and thus require a smaller critical time step compared to interior elements. Figure 4.5 clearly confirms this
effect by means of control point eigenfrequenciesωA in Figure 4.5a and maximum element eigenfrequenciesωe

max in
Figure 4.5b. For the linear case (p = 1), all control point and maximum element eigenfrequencies are constant since
no boundary basis functions and elements exist; all elements are equivalent. For higher p the nodal and maximum
element eigenfrequencies at the boundary are higher than in the interior and higher than in the linear case. For p = 4,
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4.1 Effect of continuity and boundary elements on the time step

for instance, boundary elements have an approximately 2.6 times higher eigenfrequency than interior elements.
Please note that the nodal eigenfrequencies are computed from lumped mass and lumped stiffness matrices obtained
through row summing of absolute values. The nodal eigenfrequencies can therefore only be used as a rough and
conservative estimate of the maximum system eigenfrequency. Nevertheless, the effect of boundary elements is
clearly visible. Through the element eigenvalue inequality [49, 135, 136], the element eigenfrequencies in Figure 4.5b
can also be used as a conservative estimate of the maximum system eigenfrequency.

The effect of boundary elements can, to some extent, also be intuitively explained by the control point distributions
shown in Figure 4.5a: at the patch boundaries, the control point distribution is denser in order to achieve a constant
Jacobian J1. For a constant mass density of the material, these boundary control points therefore need to have lower
mass. Moreover, a smaller distance between control points leads to stiffer elements. This can again be explained by
the analytical formula for the stiffness of a one-dimensional bar in Eq. (4.6). The lower mass in combination with a
higher stiffness at patch boundaries then leads to higher eigenfrequencies.

Comparing with the results for the p -refined C 0 NURBS models one can furthermore recognize that the eigenfrequen-
cies of interior elements with p > 1 are (i) lower than for linear elements (p = 1) and (ii) decrease with increasing p .
Since the p = 1 case is identical to linear finite elements based on Lagrange polynomials, this means that interior
higher-order C p−1 NURBS elements would allow for a larger time step size in explicit dynamic simulations than
linear finite elements.
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Figure 4.5: One-dimensional bar problem C p−1: Models of polynomial degree p = 1 to 4, generated from an open
knot vector with six elements (for p = 1:Ξ = {0, 0, 1, 2, 3, 4, 5, 6, 6}, for p > 1: k -refinedΞ with C p−1 continuity between
interior elements, i.e. interior knots of multiplicity mi = 1). Black dashed lines indicate element boundaries.

Two-dimensional shell model

Next, the effect of higher inter-element continuity and boundary elements on the eigenfrequency and the criti-
cal time step size is studied for two-dimensional shell models. To this end, the same square plate geometry as
in Figure 4.3 is considered. The difference is that the model is now generated from linear C 0 open knot vectors
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Figure 4.6: One-dimensional bar problem C p−1: Derivatives N ′
i ,p (ξ) of the basis functions for p = 1 to 4 depicted in

Figure 4.5b. Red dashed lines indicate the level for p = 1.

Ξ = H = {0,0,1,2,3,4,5,6,7,8,9,10,10} via k -refinement, which increases the continuity at element boundaries
to C p−1. The control point distributions of the plate for the different k -refinement levels and a constant Jaco-
bian J1 = 1 are depicted in Figure 4.7. In contrast to the p -refinement case, now only one control point row and
column is added per elevated degree, leading to a much lower number of control points. The distance between
interior control points even remains the same for all degrees.

Figure 4.8 depicts the maximum element eigenfrequencies of the square plate model for p = 1 to 4. The element
eigenfrequencies are normalized with respect to linear elements. Each element is colored in accordance to the level
of its maximum eigenfrequency. As for the one-dimensional bar model, for p = 1 all elements are equivalent with
identical eigenfrequencies (ωE

max = 2.39 without normalization). For p = 2 to 4, the effect of boundary elements is
again clearly visible: the (p −1) boundary element rows and columns have higher eigenfrequencies than interior
elements and linear elements. In this two-dimensional problem, corner elements appear, for which the boundary
effect enters from two directions and therefore is even more pronounced. For p = 4, for example, the corner elements
have an approximately 2.55 times higher eigenfrequency than interior elements.

Compared to the p -refined shell model with C 0 inter-element continuity, one can again see two beneficial effects:
(i) the eigenfrequencies of higher-order interior elements are lower than for the linear case (p = 1) and (ii) even
decrease with increasing p .

For completeness, the maximum element eigenfrequencies of the quartic shell model with C 1 and C 2 inter-element
continuity are provided in Figure 4.9. The shell models with C 1 and C 2 inter-element continuity in Figure 4.9a
and Figure 4.9b consist of 10× 10 isogeometric elements and are generated from the uniform open knot vectors
Ξ =H= {0,0,0,0,0,1,1,1,2,2,2, . . . ,9,9,9,10,10,10,10,10} and Ξ =H= {0,0,0,0,0,1,1,2,2, . . . ,9,9,10,10,10,10,10},
respectively. The element eigenfrequencies are normalized with respect to linear elements. The colorbar scales of
both subplots are identical. As can be seen, the eigenfrequencies of the C 1 continuous model are slightly higher
than the ones of the C 2 continuous model. Also the time step restricting boundary effect is again clearly visible.
Comparing with Figure 4.4d and Figure 4.8d, one can conclude that the higher the inter-element continuity, the
lower the eigenfrequencies and the larger the critical time step.

Interpretation via characteristic element length

These continuity effects can be described in yet another way, for which a one-dimensional bar problem is again
considered. A common explanation of the critical time step in explicit analysis is that the information in the analysis
must propagate faster than the wave speed c of the material in order for the analysis to be stable. This is a physical
interpretation of the stability condition

∆t ≤min
e

l e
c

c
, (4.7)

where l e
c is a characteristic element length. By studying the explicit central difference scheme, for instance, one can

see that for (higher-order) C 0 finite elements information propagates only across one element within each time step.
This is because the support of C 0 basis functions is limited to two elements. From this it becomes plausible that
linear bar elements have a characteristic length equal to their spatial extent, i.e. equal to the distance between the
two nodes/control points. For higher-order p -refined elements with C 0 continuity the spatial extent is the same, but
additional nodes/control points are introduced within the element, i.e. the distance between nodes/control points
becomes smaller, see Figure 4.1a. Since also the critical time step is smaller than for linear elements, higher-order C 0
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4.1 Effect of continuity and boundary elements on the time step

elements can be said to have a reduced characteristic element length, which is usually considered via an additional
factor in Eq. (4.7), see for instance [49, 81, 134]. In contrast to that, interior higher-order and higher-continuity
NURBS elements obtained via k -refinement have larger support (p +1 elements for C p−1) and information therefore
propagates further than only one element per time step. Also the distance between the outermost control points is
larger for a given physical element length. The larger critical time step of interior higher-order and higher-continuity
NURBS elements can therefore be interpreted as an increased characteristic element length. Boundary elements
also have only limited support and can therefore not benefit from the higher continuity, leading to a smaller time
step than interior elements.

Eliminating the boundary effect

For standard FEA with C 0 inter-element continuity higher-order elements lead to a smaller time step; in IGA, interior
elements with C p−1 inter-element continuity would allow for larger time steps. From these investigations one can
conclude that removing the negative effect of higher-order boundary elements would increase the critical time step
size in explicit analysis to a level even higher than in the linear (finite element) case. This would enable efficient usage
of higher-order elements in explicit analysis such as crash or metal forming simulations. Adam et al. [81] proposed
two approaches that allow removing the boundary effect:

• The first suggestion is to increase the physical extent of boundary elements. In accordance to the explanations
above, this can be interpreted as: (i) Introducing a higher Jacobian J1 of the mapping from the parameter to
the geometry space. This increases the control point mass and reduces the values of basis function derivatives
with respect to physical coordinates at the boundaries. (ii) Reducing the control point density, which increases
mass and reduces stiffness.

• The second suggestion is the use of unclamped (non-open) knot vectors, which yields identical basis functions
with full support as for interior elements.

The first remedy of increasing the size of boundary elements requires a coarser discretization at patch boundaries
and may therefore lead to poor accuracy if boundary effects are of interest [81]. It furthermore requires suitable
preprocessing capabilities in order to be practically applicable. Using unclamped knot vectors, on the other hand,
is an elegant remedy as it does not impair analysis results. However, this approach either requires CAD programs
able to generate patches with unclamped knot vectors or preprocessing capabilities to convert open (clamped) knot
vector patches into unclamped ones, see [81]. The authors in [81] also mentioned mass scaling as a general approach
to increase time step size in explicit analysis, but did not further elaborate on it, because of the drawback of artificially
added mass. Nonetheless, mass scaling is common in practical vehicle crash simulations and selectively scaling the
mass of only the boundary control points as needed would also limit its negative impact on the dynamic response of
the model.

Besides these suggestions, a novel, effective and practically applicable approach for eliminating the boundary effect
is proposed in the next section: Trimming.
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4 Stable time step size in an Explicit IBRA setting

(a) Bilinear elements. (b) Biquadratic elements.

(c) Bicubic elements. (d) Biquartic elements.

Figure 4.7: Two-dimensional square plate problem C p−1: Shell models with 10×10 isogeometric elements and p = 1
to 4 in (a) to (d), showing the elements and the control point distributions in the geometry space. The NURBS patches
are generated from an open knot vector with ten elements (for p = 1: Ξ =H = {0,0,1,2,3,4,5,6,7,8,9,10,10}, for
p > 1: k -refined Ξ and H with C p−1 continuity between interior elements, i.e. interior knots of multiplicity mi = 1).
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(a) Bilinear elements.
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(b) Biquadratic elements.
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(c) Bicubic elements.
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(d) Biquartic elements.

Figure 4.8: Two-dimensional square plate problem C p−1: Maximum element eigenfrequenciesωe
max for polynomial

degrees p = 1 to 4 in (a) to (d). The element eigenfrequencies are normalized with respect to linear elements.
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(a) Biquartic elements, C 1 continuity.
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(b) Biquartic elements, C 2 continuity.

Figure 4.9: Two-dimensional square plate problem C 1 and C 2, p = 4: Maximum element eigenfrequenciesωe
max

for C 1 and C 2 inter-element continuity in (a) and (b). The element eigenfrequencies are normalized with respect to
linear elements.
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4 Stable time step size in an Explicit IBRA setting

4.2 Eliminating the boundary effect through trimming

In this section, trimming is proposed as a remedy to eliminate the time step restricting effect of boundary elements
in open knot vector patches of higher order and higher continuity. As described in Section 2.2, directed trimming
loops divide the domain into visible/material and void domains. In order for the time step restricting boundary
effect to disappear, all boundary elements must be located in a void domain. The most obvious approach would be
to trim exactly along the knot lines that separate interior from boundary elements. For one-dimensional bar models
one only needs to trim at the corresponding knot values. Anyway, in order to obtain the desired model dimensions
after having trimmed away the boundary elements, the original geometry needs to be larger, i.e. extended beyond
the final boundary.

In the following, the one-dimensional bar and two-dimensional shell models from the previous section are again
considered.

4.2.1 One-dimensional bar model

For the bar model from Figure 4.5 this extension and trimming approach is demonstrated in Figure 4.10. The bar
model is extended by (p −1) elements on both ends and subsequently trimmed at the desired position (x = 0,ξ= 0).
Please note that Figure 4.10 only depicts the left end of the bar model and that the other end is treated equivalently.
Figure 4.10a shows the trimming position in the geometry space and the fact that boundary control points located
closely to each other are trimmed away. The control point eigenfrequenciesωA , which can serve as a rough conser-
vative estimate of the maximum system eigenfrequency, are decreased compared to Figure 4.5a. Figure 4.10b shows
the trimming position in the parameter space, trimmed-off boundary elements respectively basis functions and
constant element eigenvalues for each degree p . The shape of the remaining, interior basis functions is uniform
and therefore similar to those generated from an unclamped knot vector. The behavior of the critical time step for
the untrimmed bar model from Figure 4.5 and the trimmed bar model from Figure 4.10 for p = 1 to 4 is given in
Figure 4.11. The critical time steps plotted in Figure 4.11 are computed from the maximum system eigenfrequencies.
While the critical time step for the untrimmed model decreases with an increasing p , it increases for the model with
trimmed-off boundary elements.

4.2.2 Two-dimensional shell model

In Figure 4.12 the approach of extending and trimming is applied to a square plate problem with 4×4 elements and
degrees p = 1 to 4, with similar properties as the 2D models in the previous section. Now, the model is extended
by (p −1) elements in all four directions and subsequently trimmed along knot lines to obtain the desired dimensions.
Because of trimming, only interior elements with equal maximum element eigenfrequencies remain. The element
eigenfrequencies of trimmed-off boundary elements are set to zero. As in the trimmed bar model, the maximum
element eigenfrequencies decrease with increasing p . Figure 4.13 provides the behavior of the critical time step for
different degrees p for the untrimmed plate from Figure 4.8 and the trimmed plate from Figure 4.12, confirming the
trend observed for the bar model in Figure 4.11. The critical time steps plotted in Figure 4.13 are computed from the
maximum system eigenfrequencies. In this example, eliminating the boundary effect through trimming leads to an
increase in time step size by +54%, +128% and +221% for p = 2, 3 and 4, respectively.

4.2.3 Discussion

From these numerical experiments one can conclude that trimming is indeed an effective measure to eliminate
the time step restricting effect of boundary elements. Trimming exactly along knot lines separating interior from
boundary elements is very similar to the use of an unclamped knot vector. However, this entails a strong restriction in
the design freedom, since knot lines (isocurves) needed to be located exactly on the final, desired surface boundary.
Achieving this is hardly possible within current CAD programs.

Thus, for practical applicability, one must allow for arbitrary trimming curves not exactly located along knot lines.
A possible automated approach for CAD would be to (i) create a model with an open knot vector as usual in CAD
programs, (ii) store the boundary curve description in the geometry space, (iii) extend the surface patches beyond
the boundaries by introducing (p −1) element and control point rows (surface extrapolation is a standard feature
in CAD systems) and (iv) trim the patch along the initial boundaries. This approach provides an automated and
practically applicable procedure in CAD programs. However, it may lead to arbitrarily small trimmed elements. This
gives rise to the question of whether and how such small trimmed elements affect the critical time step in explicit
analysis. The next section aims at providing an answer.
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Figure 4.10: One-dimensional bar problem C p−1 with trimmed-off boundary elements: Models of polynomial
degree p = 1 to 4, generated from an open knot vector with 6+2(p −1) elements, similar to the ones in Figure 4.5.
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Figure 4.11: One-dimensional bar problem C p−1: Comparison of the critical time step ∆tcrit as a function of p
between the untrimmed case from Figure 4.5 and the case with trimmed-off boundary elements from Figure 4.10.
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(a) Untrimmed 4x4 bilinear element patch, C 0 continuity.
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(b) Trimmed 6x6 biquadratic element patch, C 1 continuity.
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(c) Trimmed 8x8 bicubic element patch, C 2 continuity.
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(d) Trimmed 10x10 biquartic element patch, C 3 continuity.

Figure 4.12: Two-dimensional square plate problem C p−1 with trimmed-off boundary elements: Maximum element
eigenfrequencies ωe

max of shell models with C p−1 elements and p = 1 to 4 in (a) to (d). Except for the linear case,
elements at the patch boundaries with higher eigenfrequencies (see Figure 4.8) are trimmed off and only interior
elements with lower eigenfrequencies remain. The element eigenfrequencies are again normalized with respect to
linear elements. The colorbar scales are identical to the ones in Figure 4.8.
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Figure 4.13: Two-dimensional square plate problem C p−1: Comparison of the critical time step∆tcrit as a function of p
between the untrimmed cases from Figure 4.8 and the cases with trimmed-off boundary elements from Figure 4.12.
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4.3 Effect of trimmed element size on the time step

In this section, the effect of trimmed element size on the critical time step in explicit analysis is studied. To this end,
the one-dimensional bar and two-dimensional shell models from the previous sections are again deployed. First, the
effect of trimming is studied for C 0 inter-element continuity, followed by models with C p−1 inter-element continuity.

4.3.1 Open knot vector patches with C 0 inter-element continuity

One-dimensional bar model

To study the effect of trimmed element size for NURBS models with C 0 inter-element continuity, bar models with
p = 1 to 4 are considered. These models are similar to the ones in Figure 4.1, but are assumed to consist of nel > 8
elements and np = nel p +1 control points. The bar models are successively and symmetrically trimmed from both
ends from the outside to the inside, in order to generate trimmed elements with varying size as depicted in Figure 4.14.
The trimming distance measured from both endpoints in the parameter space is denoted asξt. For each chosenξt the
maximum system eigenfrequencyωmax is evaluated. In Figure 4.15 the progression ofωmax is plotted over ξt ∈ [0, 4),
i.e. the bar is trimmed at different positions ξt within the four outermost elements on both sides. The corresponding
basis functions for p = 1 to 4 of the first four elements are depicted above the diagram in Figure 4.15.

Figure 4.15 can be interpreted as follows:

• For all trimming positions ξt,ωmax increases with increasing p .

• As the trimmed element size becomes smaller, that is, as ξt approaches a knot line from below,ωmax increases
and tends towards infinity.

• As soon as an element is trimmed off completely, e.g. for ξt = 1+ ε with ε << 1, ωmax recovers and takes
approximately the value of the untrimmed model.

• The progression of ωmax follows the same pattern in all elements, since all elements have identical basis
functions.

Recalling that the critical time step in explicit analysis is inversely proportional to the maximum system eigenfre-
quency, one can draw the following conclusion: For explicit analysis of NURBS-based bar models with C 0 inter-
element continuity, trimming is practically infeasible, because the critical time step strongly decreases as the trimmed
element size decreases. This would render practical explicit analysis impossible.

p=1
p=2
p=3
p=4

p = 1

p = 2

p = 3

p = 4

ξt ξt

Figure 4.14: One-dimensional trimmed bar problem C 0: Models with nel > 8 elements and C 0 inter-element conti-
nuity for p = 1 to 4. Colored circles indicate control points, black dashed lines indicate element boundaries and red
dashed lines indicate trimming positions. The trimming distance ξt is measured from the endpoints of both sides.

One-dimensional bar model – Analytical considerations

The fact thatωmax tends towards infinity as the size of a trimmed C 0 element tends towards zero can also be explained
analytically by studying the system matrix A= M−1 K . For this reason, the trimmed element length δ is introduced
as depicted in Figure 4.16. The following uniform open knot vectors for p = 1 to 3 are considered:
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Figure 4.15: One-dimensional trimmed bar problem C 0: Basis functions and maximum system eigenfrequencies
for p = 1 to 4. The bar models are trimmed symmetrically at a distance of ξt ∈ [0, 4) from both ends, see Figure 4.14.
Note that only the basis functions of the four outermost elements on the left are plotted.

• p = 1: Ξ = {0, 0, 1, 2, 3, . . .}

• p = 2: Ξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, . . .}

• p = 3: Ξ = {0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, . . .}

The mass and stiffness matrices are determined analytically by computing the basis functions Ni ,p and their deriva-
tives N ′

i ,p (ξ) = ∂ Ni ,p/∂ ξ, and by inserting them into Eqs. (4.3) and (4.4). In the following, the trimming position is
assumed to be located within the first element yielding ξt = 1−δ.

The first 4×4 entries of the resulting system matrix A for p = 1 are provided in Eq. (4.8), along with the limit δ→ 0
of A, which allows explaining the effect of small trimmed elements. Below, superscripts (p ) indicate the polynomial
degree. For clarity, the matrix entries Ai j in Eqs. (4.8), (4.10) and (4.11) are colored as follows:

• Green, if lim
δ→0

Ai j → 0.

• Orange, if lim
δ→0

Ai j →∞.

• Black, if the leading term is independent of δ.
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Figure 4.16: One-dimensional trimmed bar problem C 0: Models with nel > 8 elements and C 0 inter-element conti-
nuity for p = 1 to 4. Colored circles indicate control points, black dashed lines indicate element boundaries and red
dashed lines indicate the trimming positions within the first outermost elements. The trimming distance ξt = 1−δ is
measured from the endpoints of both sides, δ is the trimmed element length.
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For p = 2, the first 4×4 entries of A and lim
δ→0

A are computed as
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1/3 . . .
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

















, (4.9)

lim
δ→0

A(p=2) =























4 6/δ −6/δ 0 . . .

2 4/δ −4/δ 0 . . .

−6δ2 −12δ 4 −2 . . .

0 0 −2 4 . . .
...

...
...

...
...























. (4.10)

The first 5×5 entries of the mass and stiffness matrices M and K for p = 3 are given as

M1 =δ
4/4, M2 =−3δ4/4+δ3, M3 = 3δ4/4−2δ3+3δ2/2, M4 =−δ4/4+δ3−3δ2/2+δ−1/4, M5 = 1/4,

K11 = 9δ5/5, K12 =−27δ5/5+9δ4/2, K13 = 27δ5/5−9δ4+3δ3, K14 =−9δ5/5+9δ4/2−3δ3,

K22 = 81δ5/5−27δ4+12δ3, K23 =−81δ5/5+81δ4/2−33δ3+9δ2, K24 = 27δ5/5−18δ4+21δ3−9δ2,

K33 = 81δ5/5−54δ4+66δ3−36δ2+9δ, K34 =−27δ5/5+45δ4/2−36δ3+27δ2−9δ,

K44 = 9δ5/5−9δ4+18δ3−18δ2+9δ+9/5, K45 =−9/10, K55 = 6/5,
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and the resulting system matrix in the limit δ→ 0 as

A(p=3) = M−1 K , lim
δ→0

A(p=3) =





























36δ/5 18δ 12/δ 12/δ 0 . . .

9δ/2 12 9/δ −9/δ 0 . . .

2δ 6 6/δ −6/δ 0 . . .

12δ −36δ2 −36δ 36/5 −18/5 . . .

0 0 0 −18/5 24/5 . . .
...

...
...

...
...

...





























. (4.11)

The remaining entries Ai j not given in Eqs. (4.8), (4.10) and (4.11) do not depend on δ and are either zero or finite,
except for the last (p +1)× (p +1) entries, which are identical to the first (p +1)× (p +1) entries. From the matrices
lim
δ→0

A it can be seen that the p th entry in the main diagonal, which corresponds to the p th basis function, tends

towards infinity:

lim
δ→0

Ap p = lim
δ→0

c

δ
=∞, (4.12)

where c is a positive constant depending on the polynomial degree p . Since the considered bar model is symmetric,
the same applies for p th last entry in the main diagonal Ak k , k = np +1−p . Because all main diagonal entries are
positive,

lim
δ→0

tr(A) = lim
δ→0



2
c

δ
+
∑

i 6=p ,k

Ai i



=∞, k = np +1−p (4.13)

where tr(A) denotes the trace of A. The fact that the trace of an np ×np matrix is equal to the sum of all its eigenvalues

tr(A) =
np
∑

i=1

λi , (4.14)

shows that

lim
δ→0

np
∑

i=1

λi = lim
δ→0



2
c

δ
+
∑

i 6=p ,k

Ai i



= lim
δ→0

2
c

δ
=∞. (4.15)

That is, the sum of all eigenvalues tends towards infinity. In the last step in Eq. (4.15), the sum over the (np − 2)
finite values Ai i is neglected as it is small compared to c /δ. From Eq. (4.15) one can conclude that at least one
eigenvalue λi must tend towards infinity as δ→ 0. This can be shown by assuming an eigenvalue λ=C /δ with a
positive constant C of order O(1). For p = 3, for example, the determinant associated with the eigenvalue problem
(A−λ I )y= 0 in the limit δ→ 0 can then be written as

�

� lim
δ→0

�

A(p=3)−C /δ I
�
�

�=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

36δ/5−C /δ 18δ 12/δ 12/δ 0 . . .

9δ/2 12−C /δ 9/δ −9/δ 0 . . .

2δ 6 6/δ−C /δ −6/δ 0 . . .

12δ −36δ2 −36δ 36/5−C /δ 0 . . .

0 0 0 −18/5 24/5−C /δ . . .
...

...
...

...
...

...

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= 0 (4.16)

Compared to the orange entries of order O(1/δ), the green and black entries of order O(δ) and O(1), respectively, can
be neglected. Because no entries of order O(1/δ) appear below the main diagonal, the matrix (A(p=3)−λ I ) becomes
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an upper triangular matrix, for which the determinant is just the product of its diagonal entries:

�

� lim
δ→0

�

A(p=3)−C /δ I
�
�

�≈

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

−C /δ 0 12/δ 12/δ 0 . . .

0 −C /δ 9/δ −9/δ 0 . . .

0 0 6/δ−C /δ −6/δ 0 . . .

0 0 0 −C /δ 0 . . .

0 0 0 0 −C /δ . . .
...

...
...

...
...

...

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= (−C /δ)np−2

�

6−C

δ

�2

= 0 (4.17)

Equation (4.17) is fulfilled for C = 6 and thus λ = 6/δ is an eigenvalue of A that tends towards infinity for small
trimmed elements. Please note that the bar is assumed to be trimmed symmetrically on both ends, which is the
reason why the eigenvalue λ= 6/δ has multiplicity 2. In the same way it can be shown that λ= 2/δ is an eigenvalue
for p = 1 and that λ= 4/δ is an eigenvalue for p = 2.

To summarize, for one-dimensional bar models with C 0 inter-element continuity, it is shown that one system
eigenvalue of A= M−1 K tends to infinity as one trimmed element length δ approaches zero. Consequently, also
one system eigenfrequency tends to infinity as δ approaches zero, leading to an infinitely small critical time step in
explicit analysis.

Two-dimensional shell model

To study the effect of trimmed element size for two-dimensional shell models with C 0 inter-element continuity,
the square plate models from Figure 4.3 and Figure 4.4 for p = 1 to 4 are again considered. Now, these models are
trimmed by two smaller, rotated squares such that a large variety of trimmed element sizes is achieved, see Figure 4.17.
The square with a diagonal of 8.4 mm forms an outer loop, while the smaller square with a diagonal of 3.6 mm forms
an inner loop.

Figure 4.18 depicts the trimmed shell models for p = 1 to 4 with the elements colored according to the level of their
maximum element eigenfrequencies. The eigenfrequencies are again normalized with respect to linear untrimmed
elements. The maximum level of the colorbar corresponds to the maximum eigenfrequency of the quartic model in
Figure 4.18d. The results can be interpreted as follows:

• For all degrees p the maximum element eigenfrequencies of trimmed elements are higher than those of
untrimmed elements.

• The smaller the trimmed element size, the higher the eigenfrequencies for all p .

• The higher the degree p , the higher the eigenfrequencies of both trimmed and untrimmed elements.

These findings are in accordance with those from the one-dimensional bar model. One can thus conclude that
trimming in combination with NURBS-based bar and shell models with C 0 inter-element continuity, may lead to
arbitrarily small explicit time steps in case of arbitrarily small trimmed elements. Since small trimmed elements
can, in general, not be avoided in industrial models, trimmed C 0 NURBS patches can be classified as infeasible for
practical explicit analyses. For the same reason, the concept of trimming is also expected to be infeasible for explicit
analysis of standard finite element models based on C 0 Lagrange polynomials. However, the behavior of trimmed
NURBS models with higher inter-element continuity still remains to be clarified. This is the subject of the following
section.

4.3.2 Open knot vector patches with maximum C p−1 inter-element continuity

One-dimensional bar model

The aim of this section is to study whether higher inter-element continuity improves the time step restricting effect of
the trimmed element size in C 0 NURBS patches observed above. To this end, the bar models from Figure 4.5 with C p−1

inter-element continuity are again considered, but now with a number of nel > 8 elements and np = nel+p control
points as illustrated in Figure 4.19. As in the previous section, the bar models are successively and symmetrically
trimmed at a distance ξt from both ends in order to generate trimmed elements with varying size. The maximum
system eigenfrequencyωmax is again evaluated and plotted over ξt ∈ [0,4) in Figure 4.20. The corresponding basis
functions for p = 1 to 4 of the four outermost elements are again depicted above the diagram in Figure 4.20.
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Figure 4.17: Two-dimensional trimmed square plate problem: Shell model with 10×10 isogeometric elements. The
square plate is trimmed by two smaller concentric and rotated squares, resulting in a square shell model with a
square cut-out.

The behavior plotted in Figure 4.20 differs substantially from the C 0 case in Figure 4.15:

• For the untrimmed case (ξt = 0),ωmax still increases with increasing p .

• The maximum eigenfrequency ωmax only tends to infinity for p = 1 as the trimmed element size becomes
smaller. This is because for p = 1 the model is still C 0 continuous. This behavior is the same within all elements,
since the linear basis functions are again identical in all elements.

• For higher degrees (p > 1) one has to differentiate between the p −1 boundary elements and the remaining
interior elements. As described in Section 4.1.2, boundary elements possess the highest eigenfrequencies
and therefore restrict the time step. Section 4.2 furthermore showed that trimming off boundary elements
completely eliminates this effect. Figure 4.20 now demonstrates the behavior for trimming within (boundary)
elements. When increasing the trim position ξt within the first boundary element,ωmax decreases immediately
for p = 2 to 4. For p = 2 it slightly increases again after around ξt = 0.5, but clearly stays finite as ξt approaches
the first element boundary. This is in clear contrast to the behavior of an increase towards infinity observed
in the C 0 case. For p = 3,4,ωmax decreases steadily with an increasing ξt and reaches a level lower than the
untrimmed linearωmax at ξt = 1.

• By comparing with the basis functions above the diagram, one can see that for p = 2 the boundary effect is
removed after the first outermost element is trimmed off. At this point,ωmax drops instantaneously. Further
increasing the trimming position ξt then gives the same progression within all elements for p = 2:ωmax first
slightly increases and then decreases to a finite value shortly before the element boundary.

• For p = 3, 4 the maximum eigenfrequency even decreases further with increasing ξt until the p −1 boundary
elements are trimmed off. Trimming within an interior element seems to have no effect on the maximum
eigenfrequency at all.

These results show that the higher inter-element continuity for p > 1 completely removes the time step restricting
effect of small trimmed elements observed in C 0 continuous NURBS models. Quite the contrary, trimming can even
increase the critical time step.

One-dimensional bar model – Analytical considerations

The positive effect of higher inter-element continuity shall now be explained by means of the resulting system matrix
A= M−1 K . In analogy to the C 0 bar models in Figure 4.16, C p−1 bar models are trimmed within the first outermost
elements, yielding a trimmed element length of δ= 1−ξt, see Figure 4.21. The mass and stiffness matrices are again
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(a) Trimmed bilinear element patch, C 0 continuity.
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(b) Trimmed biquadratic element patch, C 0 continuity.
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(c) Trimmed bicubic element patch, C 0 continuity.
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(d) Trimmed biquartic element patch, C 0 continuity.

Figure 4.18: Two-dimensional trimmed square plate problem C 0: Maximum element eigenfrequenciesωe
max of shell

models generated from different patches with C 0 isogeometric elements and p = 1 to 4 in (a) to (d). The element
eigenfrequencies are again normalized with respect to untrimmed linear elements. For all degrees the maximum
element eigenfrequencies are sensitive to small trimmed elements.

determined analytically by computing the basis functions Ni ,p and the corresponding derivatives N ′
i ,p (ξ) = ∂ Ni ,p/∂ ξ,

and by inserting the resulting expressions into Eqs. (4.3) and (4.4). The following uniform open knot vectors are used:

• p = 1: Ξ = {0, 0, 1, 2, 3, . . .}

• p = 2: Ξ = {0, 0, 0, 1, 2, 3, . . .}

• p = 3: Ξ = {0, 0, 0, 0, 1, 2, 3, . . .}

For p = 1 the highest possible continuity is C p−1 =C 0, so the results are the same as in Section 4.3.1, see Eq. (4.8).
The first 4×4 entries of the resulting system matrix A for p = 2 and the corresponding limit δ→ 0 are given as

A(p=2) = M−1 K =























4δ3/3
δ3/3

δ2−2δ3

δ3/3
−δ2+2/3δ3

δ3/3 0 . . .

δ2−2δ3

1/6+δ/2+δ2/2−δ3/2
1/3+δ−3δ2+3δ3

1/6+δ/2+δ2/2−δ3/2
−1/6−δ+2δ2−δ3

1/6+δ/2+δ2/2−δ3/2
−1/6

1/6+δ/2+δ2/2−δ3/2 . . .
−δ2+2/3δ3

5/6+δ/2−δ2/2+δ3/6
−1/6−δ+2δ2−δ3

5/6+δ/2−δ2/2+δ3/6
2/3+δ−δ2+δ3/3

5/6+δ/2−δ2/2+δ3/6
−1/3

5/6+δ/2−δ2/2+δ3/6 . . .

0 −1/6 −1/3 1 . . .
...

...
...

...
...























, (4.18)
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Figure 4.19: One-dimensional trimmed bar problem C p−1: Models with nel > 8 elements and C p−1 inter-element
continuity for p = 1 to 4. Colored circles indicate control points, black dashed lines indicate element boundaries and
red dashed lines indicate trimming positions. The trimming distance ξt is measured from the endpoints of both
sides.
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Figure 4.20: One-dimensional trimmed bar problem C p−1: Basis functions and maximum system eigenfrequencies
for p = 1 to 4. The bar models are trimmed symmetrically at a distance of ξt from both ends. Note that only the basis
functions of the four outermost elements on the left are plotted.
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p=1
p=2
p=3
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ξt ξtδ δ

Figure 4.21: One-dimensional trimmed bar problem C p−1: Models with nel > 8 elements and C p−1 inter-element
continuity for p = 1 to 4. Colored circles indicate control points, black dashed lines indicate element boundaries and
red dashed lines indicate trimming positions. The trim position ξt = 1−δ is measured from the endpoints of both
sides, δ is the trimmed element length.

lim
δ→0
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. (4.19)

For p = 3 the first 5×5 entries of the mass and stiffness matrices are given as

M1 =δ
4/4, M2 =−7δ4/16+δ3/4+3δ2/8+δ/4+1/16,

M3 = 11δ4/48−5δ3/12−δ2/8+7δ/12+23/48, M4 =−δ4/24+δ3/6−δ2/4+δ/6+23/24,

K11 = 9δ5/5, K12 =−63δ5/20+9δ4/8+3δ3/4, K13 = 33δ5/20−15δ4/8−δ3/4,

K14 =−3δ5/10+3δ4/4−δ3/2, K22 = 441δ5/80−63δ4/16−15δ3/8+9δ2/8+9δ/16+9/80,

K23 =−231δ5/80+69δ4/16−δ3/8−9δ2/8−3δ/16+1/20, K24 = 21δ5/40−3δ4/2+5δ3/4−3δ/8−3/20,

K33 = 121δ5/80−55δ4/16+13δ3/8+5δ2/8+δ/16+23/80,

K34 =−11δ5/40+δ4−5δ3/4+δ2/2+δ/8−2/15, K44 =δ
5/20−δ4/4+δ3/2−δ2/2+δ/4+37/60,

and the resulting system matrix in the limit δ→ 0 as

A(p=3) = M−1 K , lim
δ→0

A(p=3) =
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






















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12δ3 9/5 4/5 −12/5 A25 . . .
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...
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. (4.20)

The color scheme from Section 4.3.1 is again used for clarity. All matrix entries not specified in Eqs. (4.18) and (4.20)
are again either zero or finite, except for the last (p +1)× (p +1) entries, which are identical to the first (p +1)× (p +1)
entries. From the matrices in Eqs. (4.18) and (4.20) one can immediately see one main difference to the C 0 cases: No
orange entries of order O(1/δ) appear in the main diagonal. This implies that the trace of A remains bounded and,
via Eq. (4.14) and the assumption of only non-negative eigenvalues, also that all eigenvalues are bounded. Increasing
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the trimming position to 1 ≤ ξt = 2−δ < 2, 2 ≤ ξt = 3−δ < 3, etc. gives qualitatively similar results, i.e. bounded
eigenvalues and eigenfrequencies as depicted in Figure 4.20. This proves the previous observation that bar models
with higher order (p > 1) and higher continuity (C p−1) elements do not suffer from high eigenfrequencies and small
critical time steps in case of small trimmed elements.

Two-dimensional shell model

The C p−1 continuous shell models from Figure 4.7 are now trimmed as depicted in Figure 4.17 in order to confirm
the positive effect of higher continuity for two-dimensional trimmed models.

The maximum element eigenvalues of linear, quadratic, cubic and quartic trimmed NURBS models with C p−1

inter-element continuity are depicted in Figure 4.22. The elements are again colored according to the level of their
maximum element eigenfrequency and normalized with respect to linear untrimmed elements. The maximum level
of the colorbar corresponds to the maximum eigenfrequency of the linear model in Figure 4.22a. The results of this
experiment show the following:

• The results for the linear case in Figure 4.22a are the same as in Figure 4.18a, since the model is still only C 0

continuous.

• For p = 2 to 4 the effect of small trimmed elements is nearly removed completely, which can be seen by
comparing Figs. 4.22b–4.22d with Figs. 4.18b–4.18d, respectively. For p = 4, for instance, the highest maximum
element eigenfrequency is around 9.1 times lower than in the C 0 case.

• Except for some (boundary) elements in the p = 2 case, all (trimmed) maximum element eigenfrequencies are
smaller than those of the untrimmed linear elements.

Please note again that maximum element eigenfrequencies only provide an upper bound for the maximum system
eigenfrequency, which determines the critical time step. To demonstrate the actual impact on explicit analysis,
the critical time steps of the C 0 models from Figure 4.18 and the C p−1 models from Figure 4.22 are plotted in
Figure 4.23. While∆tcrit reduces with increasing p for the C 0 models,∆tcrit increases significantly with increasing p
for the C p−1 models. For C 0 inter-element continuity, ∆tcrit approximately halves when increasing p from one
to four. For C p−1 inter-element continuity, on the contrary,∆tcrit increases by a factor of 2.8. The ratio between
trimmed and untrimmed element area of the smallest element in these models is 8.45×10−4. In practical models,
the trimmed element size may be arbitrarily small, which would scale up the difference in time step size between C 0

and C p−1 models even more. It should also be noted that the effect of boundary elements is not completely removed
for the C p−1 models.

4.3.3 Summary and conclusion of this section

The results observed in this section demonstrate that trimming in explicit analysis is only practically feasible for
elements with higher order (p > 1) and higher continuity (>C 0). Regardless of whether a model is trimmed or not,
higher order without higher continuity (i.e. C 0) gives even smaller time steps than in the case of linear elements.
Furthermore, for infinitely small trimmed elements with C 0 inter-element continuity, the time step also becomes in-
finitely small. This clearly demonstrates the superiority of isogeometric elements with higher inter-element continuity
over standard finite elements in terms of time step size and trimming in explicit analysis.
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(a) Trimmed bilinear element patch, C 0 continuity.
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(b) Trimmed biquadratic element patch, C 1 continuity.
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(c) Trimmed bicubic element patch, C 2 continuity.
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(d) Trimmed biquartic element patch, C 3 continuity.

Figure 4.22: Two-dimensional trimmed square plate problem C p−1: Maximum element eigenfrequenciesωe
max of a

trimmed square plate generated from different patches with isogeometric elements of p = 1 to 4 in (a) to (d) with
C p−1 inter-element continuity. Small trimmed elements only cause high element eigenfrequencies for the linear
case in (a), while for higher orders in (b) to (d) the element eigenfrequencies are much less sensitive to the trimmed
element size. The element eigenfrequencies are again normalized with respect to untrimmed linear elements.
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Figure 4.23: Two-dimensional trimmed square plate problem, C 0 versus C p−1: Comparison of the critical time
step∆tcrit as a function of p between the cases with C 0 and C p−1 inter-element continuity from Figures 4.18 and 4.22,
respectively. The critical time step is computed from the maximum system eigenfrequency.
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4 Stable time step size in an Explicit IBRA setting

4.4 Effect of weak penalty-based boundary conditions on the time step

Applying coupling or Dirichlet boundary conditions in a weak integral sense, for example via a penalty approach,
generally introduces stiffness into the system. And as described above, higher stiffness generally leads to higher
eigenfrequencies and thus smaller explicit time steps. In the present case of IBRA, penalty-based B-Rep elements
add stiffness to the underlying shell structure. The question to be answered is to what extent the critical time step
size suffers from the introduced penalty stiffness within Explicit IBRA.

This section therefore aims at providing a general understanding of the relation between the penalty factor and
time step size, along with a suitable a priori time step estimate. It furthermore investigates the combined effect of
penalty boundary conditions and trimming, again by means of simple one-dimensional bar and two-dimensional
shell models.

4.4.1 General relation between penalty factor and time step size

For the subsequent studies, the total stiffness matrix K is separated into its shell and penalty contributions K S

and K P , respectively, see Eqs. (2.33), (3.37) and (3.110), leading to an eigenvalue problem of the form

�

M−1(K S+ K P )
�

y=λy. (4.21)

While the shell stiffness is prescribed for a given discretization and a given material, the magnitude of the penalty
stiffness is strongly dependent on the chosen penalty factor α. For an easier understanding it is beneficial to consider
two cases:

• Case I: low relative penalty factors αr =
α
E << 1,

• Case II: high relative penalty factors αr =
α
E >> 1,

where E denotes the Young’s modulus. For case I, the penalty stiffness is small compared to the shell stiffness and
can therefore be neglected in the eigenvalue problem (4.21). This gives the well-known eigenvalue problem and
critical time step for shells as

(M−1 K S)y=λy, (4.22)

∆t S
crit =

2
Æ

λS
max

=
2

ωS
max

. (4.23)

For case II, the penalty stiffness dominates over the shell stiffness and therefore the latter can be neglected within
the eigenvalue problem. Assuming a constant penalty factor αwithin the system2 gives the following eigenvalue
problem

(M−1 K P )y= (M−1αǨ P )y=α (M−1 Ǩ P )y=αλ̌P y=λP y, (4.24)

where Ǩ P and λ̌P denote the penalty stiffness matrix and an eigenvalue for α= 1, respectively. From this, the critical
time step for dominating penalty stiffness can be computed as

∆t P
crit =

2

ωP
max

=
2

q

αλ̌P
max

=
1
p
α

2

ω̌P
max

(4.25)

Equation (4.25) reveals that for case II the critical time step is inversely proportional to
p
α, that is, the time step

decreases with an increasing penalty factor. It is worth noting that the relation in Eq. (4.25) is applicable to any kind
of penalty approach or model, since all information about the detailed penalty formulation, the material and the
discretization are accounted for in ω̌P

max. Determining ω̌P
max in a pre-processing step is relatively cheap because only

the DOFs involved in penalty-based boundary conditions are non-zero. Applying the logarithm to Eq. (4.25) yields

log
�

∆t P
crit

�

=−
1

2
log(α) + log

�

2

ω̌P
max

�

. (4.26)

2 In this eigenvalue problem a lumped mass matrix and a penalty stiffness matrix are considered, which do not couple different types of
DOFs (for instance no coupling between x - and y -translations or between translations and rotations). This allows to decouple the equation
system, to define individual penalty factors for each type of DOF or even smaller subdomains, and consequently to set up individual eigenvalue
problems of the same type as (4.24). The highest eigenvalue of all subproblems would be the critical one. However, this thesis is restricted to one
penalty factor for the whole system.
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4.4 Effect of weak penalty-based boundary conditions on the time step

Plotting∆t P
crit, and∆t S

crit from Eq. (4.23) as a function of α in a double-logarithmic diagram yields two straight curves
as schematically shown in Figure 4.24. From Eq. (4.26), the constant slope of the∆t P

crit curve can be identified as − 1
2 .

Modifying the discretization or the physical model would only shift the ∆t P
crit curve upwards or downwards, but

would not change its slope. The point at which both curves intersect can be computed as

∆t S
crit =∆t P

crit (4.27)

2

ωS
max

=
1
p
α

2

ω̌P
max

⇒ α′ =

�

ωS
max

ω̌P
max

�2

. (4.28)

This penalty factor α′ is of practical importance because it indicates the highest possible α that does not lead to a
reduction in time step size. A similar estimation of the penalty factor can be found in [47, 145]3. The actual critical
time step can then be estimated via

∆tcrit =min(∆t S
crit,∆t P

crit). (4.29)

Of course, the actual transition between∆t S
crit and∆t P

crit atα′ will not be perfectly sharp, but rather smooth. However,
as will be shown below, this bilinear progression is a reasonable approximation.

From Figure 4.24 it is now clear that the time step for small penalty factors is determined by the shell and that only
large penalty factors α/E >> 1 lead to a reduction in time step size; in fact, for α/E >> 1 the time step is directly
proportional to 1/

p
α.

The behavior of∆t S
crit andωS

max with respect to trimming, polynomial degree and continuity is shown in the previous
sections. The question that remains to be answered is how ω̌P

max behaves in combination with trimming (especially
small trimmed elements), for different polynomial degrees and different h-refinement levels. These effects are
investigated in the following sections. The behavior with respect to inter-element continuity is of less interest, since
the time step for trimmed NURBS shells demands for highest possible continuity anyway.
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∆

t c
ri
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Figure 4.24: Generic relation between critical time step size∆tcrit and the penalty factor α.

4.4.2 One-dimensional bar model

The main objectives of this section are (i) studying the behavior of ω̌P
max for trimming and different polynomial

degrees p = 1 to 4 and (ii) approving the general relation between critical time step and penalty factor shown in
Figure 4.24 by means of one-dimensional bar problems.

For this purpose, bar models with varying trimming position similar to the ones in the Figure 4.21 are used, but
with additional penalty-based Dirichlet boundary conditions applied on both trimmed ends, see Figure 4.25. As
mentioned above, only models with C p−1 inter-element continuity are considered, since maximum continuity is
desired for a reasonable time step size in trimmed shell problems.

In Figure 4.26, the maximum eigenfrequency ω̌P
max from the eigenvalue problem (4.24) only including penalty stiffness

is plotted as a function of the trim position ξt. From this plot, the following effects can be identified

3 A detailed study on the definition of penalty factors within Explicit IBRA is ongoing at the time this PhD thesis is written; results may be
found in the corresponding Master’s thesis by Theresa Pasch [145], supervised by the author.
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4 Stable time step size in an Explicit IBRA setting

• For p = 1, the behavior within all four trimmed elements is identical, while for p = 2 to 4 a boundary effect
again appears.

• For untrimmed models ω̌P
max increases with increasing p . This behavior reverses as soon as one half of the

outermost element is trimmed off, i.e. then a lower p leads to a lower ω̌P
max.

• None of the four curves tends towards infinity as the trim position ξt approaches a knot line. The p = 1 curve
indeed increases as the trimmed element size tends towards zero, but finally tends towards a finite value. For
p = 2 to 4, ω̌P

max steadily decreases with an increasing trim position ξt, especially within the first element, and
seems to be practically independent of the trimmed element size as soon as the boundary effect is eliminated.

These results have three important positive implications for trimmed NURBS shells with penalty-based boundary
conditions:

• The critical time step∆t P
crit stays finite as the trimmed element size tends towards zero, see Eq. (4.25).

• The penalty factor α′ until which penalty boundary conditions have no effect on the time step size stays finite
as the trimmed element size tends towards zero, see Eq. (4.28).

• For p > 1 the eigenfrequency ω̌P
max is practically independent of the trimmed element size. This means that

the same penalty factor α for different B-Rep edge elements, leads to similar maximum eigenfrequencies and
thus similar critical time steps, independent of the size of the underlying trimmed shell element. Thus, with
respect to time step size it is sufficient to use one consistent penalty factor throughout the system (provided
that material properties and discretization are uniform).

For completeness, the overall maximum eigenfrequencyωmax including shell and penalty stiffness contributions is
provided in Figure 4.27. This plot is basically a combination of the plots from Figure 4.20 and Figure 4.26, showing
the practical applicability of trimmed NURBS shells with p > 1 and penalty-based boundary conditions in explicit
analysis.

Figure 4.28 provides the relation between the critical time step∆tcrit and the relative penalty factor αr = α/E for
the bar models p = 1 to 4 with four different trimming positions ξt. The four plots Figure 4.28a–4.28d show that the
bilinear approximation in Figure 4.24 is expedient for different trimming positions and all considered p . It can also
be seen that the penalty factor α′ at which the time step starts to decrease varies between the cases. For the case
without trimming (ξt = 0, Figure 4.28a) the time step decreases with p for all αr . With a trim position of ξt = 0.5
(Figure 4.28b) the time step size is nearly identical for all degrees p , cf. Figure 4.27. For ξt = 3.5 (Figure 4.28c), the
boundary effect is completely removed and the time step now increases with increasing p . For ξt = 3.9 (Figure 4.28d)
the trend is similar, but the small trimmed element size now leads to a larger difference between the cases p = 1
and p > 1. Regardless of that, for α > α′, all curves decrease with a slope of −1/2 in the double-logarithmic plot,
independent of trimming position and degree.

4.4.3 One-dimensional bar model – Analytical considerations

As in the previous sections, the behavior of eigenfrequencies with respect to small trimmed elements can be explained
analytically via the mass and stiffness matrix entries. Now the focus is on the role of the penalty stiffness. The lumped
mass matrix entries MA and stiffness matrix entries KAB for the one-dimensional bar models are again computed
according to Eqs. (4.3) and (4.4). The stiffness matrix entries for penalty-based Dirichlet boundary conditions applied
to trimmed bar models are computed as

K P
AB =αNA(ξ)NB (ξ), (4.30)

where the basis functions NA(ξ) and NB (ξ) are evaluated at the trim position ξt. With a uniform open knot vector
H= {0, 0, 1, 2, 3, 4, . . .} and a trim position ξt = 1−δ, the resulting system matrix including shell and penalty stiffness
contributions for p = 1 is computed as

A(p=1) = M−1(K S+ K P ) =























δ+αδ2

δ2/2
−δ−α(δ−δ2)

δ2/2 0 0 . . .
−δ−α(δ−δ2)
−δ2/2+δ+1/2

(1+δ)+α(δ2−2δ+1)
−δ2/2+δ+1/2

−1
−δ2/2+δ+1/2 0 . . .

0 −1 2 −1 . . .

0 0 −1 2 . . .
...

...
...

...
...

...























. (4.31)
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ξt ξtδ δDirichlet BCs with penalty factor α

Figure 4.25: One-dimensional trimmed bar problem C p−1 with Dirichlet boundary conditions: Models with nel > 8
elements, penalty-based Dirichlet boundary conditions weakly enforced at both ends and C p−1 inter-element
continuity for p = 1 to 4. Colored circles indicate control points, black dashed lines indicate element boundaries
and red dashed lines indicate the trimming positions within the first outermost elements. The trimming distance
ξt = 1−δ is measured from the endpoints of both sides, δ is the trimmed element length.
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Figure 4.26: One-dimensional trimmed bar problem C p−1 with Dirichlet boundary conditions: Maximum eigenfre-
quencies ω̌P

max only including the penalty stiffness contribution K P . The bar models with p = 1 to 4 are trimmed
symmetrically at a distance of ξt ∈ [0, 4) from both ends. A relative penalty factor of αr = 1 is used.
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Figure 4.27: One-dimensional trimmed bar problem C p−1 with Dirichlet boundary conditions: Maximum system
eigenfrequenciesωmax including the shell and the penalty stiffness contributions K S and K P . The bar models with
p = 1 to 4 are trimmed symmetrically at a distance of ξt ∈ [0, 4) from both ends. A relative penalty factor of αr = 1 is
used.
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(a) Trim position ξt = 0.
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(b) Trim position ξt = 0.5.
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(c) Trim position ξt = 3.5.
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(d) Trim position ξt = 3.9.

Figure 4.28: One-dimensional trimmed bar problem C p−1 with Dirichlet boundary conditions: Critical time step size
∆tcrit versus relative penalty factor αr =α/E for different trim positions ξt (see Figure 4.25–4.27) and polynomial
degrees p = 1 to 4.
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In the limit δ→ 0 the matrix A(p=1) simplifies to

lim
δ→0

�

A(p=1)
�

=























2/δ+2α −2/δ−2α/δ 0 0 . . .

−2δ−2αδ 2+2α −2 0 . . .

0 −1 2 −1 . . .

0 0 −1 2 . . .
...

...
...

...
...

...























, (4.32)

in which entries tending towards infinity and zero are colored in orange and green, respectively. For p = 2 with a
uniform open knot vector H= {0, 0, 0, 1, 2, 3, 4, . . .} the first 3×3 penalty stiffness entries are obtained as

K P
11 =αδ

4, K P
12 =αδ

2/2
�

1+2δ−3δ2
�

, K P
13 =α/2

�

δ2−2δ3+δ4
�

, K P
22 =α/4

�

1+4δ−2δ2−12δ3+9δ4
�

,

K P
23 =α/4

�

1−6δ2+8δ3−3δ4
�

, K P
33 =α/4

�

1−4δ+6δ2−4δ3+δ4
�

,

which yields the matrix A(p=2) in the limit δ→ 0:

lim
δ→0

�

A(p=2)
�

=























4+3αδ 3/δ+3α/(2δ) −3/δ+3α/(2δ) 0 . . .

6δ2+3αδ2 2+3α/2 −1+3α/2 −1 . . .

−6δ2/5+3αδ2/5 −1/5+3α/10 4/5+3α/10 −2/5 . . .

0 −1/6 −1/3 1 . . .
...

...
...

...
...

...























. (4.33)

For the cubic case p = 3 and a uniform open knot vector H = {0,0,0,0,1,2,3,4, . . .} the first 4× 4 penalty stiffness
entries are

K P
11 =αδ

6, K P
12 =αδ

3/4
�

−7δ3+3δ2+3δ+1
�

, K P
13 =αδ

3/12
�

11δ3−15δ2−3δ+7
�

,

K P
14 =αδ

3/6
�

−δ3+3δ2−3δ+1
�

, K P
22 =α/16

�

49δ6−42δ5−33δ4+4δ3+15δ2+6δ+1
�

,

K P
23 =α

�

−48δ6/77+23δ5/8+3δ4/16−23δ3/12−δ2/16+3δ/8+7/48
�

,

K P
24 =α

�

7δ6/24−δ5+9δ4/8−δ3/3−δ2/8+1/24
�

,

K P
33 =α

�

121δ6/144−55δ5/24+53δ3/48+61δ3/36−67δ2/48−7δ/24+49/144
�

,

K P
34 =α

�

−11δ6/72+2δ5/3−25δ4/24+5δ3/9+5δ2/24−δ/3+7/72
�

,

K P
44 =α

�

δ6/36−δ5/6+5δ4/12−5δ3/9+5δ2/12−δ/6+1/36
�

.

The system matrix A(p=3) in the limit δ→ 0 can then be written as

lim
δ→0

�
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�
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






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


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
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.

(4.34)

All other entries not provided in (4.32), (4.33) and (4.34) are either zero or finite, except for the last (p +1)× (p +1)
entries, which are identical to the first (p +1)× (p +1) entries.

Recalling that the trace of a matrix is equal to the sum of all eigenvalues, one can see the following from the matrices A
in the limit δ→ 0 in (4.32), (4.33) and (4.34):
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• The penalty-related terms in the main diagonal all remain bounded or tend to zero for δ→ 0 in all three cases
p = 1, 2, 3. Recalling the fact that the trace of a matrix is equal to the sum of its eigenvalues, see Eq. (4.14), and
assuming only positive eigenvalues, this implies that also all eigenvalues remain bounded. As a result, penalty
boundary conditions do not introduce terms that would cause high eigenfrequencies and small time steps in
case of small trimmed shell elements.

• For p = 1, the first entry A11 contains a finite α term, while for p > 1 the α term in the first entry tends to zero as
δ→ 0. This is the reason why ω̌P

max increases (towards a value of 2 in the present example) for p = 1 as δ→ 0,
which is not the case for p > 1.

• All other terms not including α originate from the shell elements and are identical to the ones in Section 4.3.2.
Therefore, only the p = 1 case possesses a main diagonal entry and thus also an eigenvalue/eigenfrequency
tending to infinity forδ→ 0. The main diagonal entries for p = 2, 3 are all finite or tend to zero. These differences
in the matrix entries explain the qualitatively different behavior between p = 1 and p > 1 in Figure 4.27.

4.4.4 Two-dimensional shell model

The effect of penalty-based boundary conditions shall now be analyzed for two-dimensional trimmed NURBS shell
models. Finally, also the effect of mesh refinement via knot insertion is studied.

For this purpose, trimmed square plate models similar to the ones in the previous sections with 10×10 elements, the
same material properties and C p−1 inter-element continuity are considered. Additionally, penalty-based translational
Dirichlet boundary conditions are applied to all four edges. Figure 4.29 depicts the considered shell models with four
well-selected trim positions ξt.

The critical time step ∆tcrit as a function of the relative penalty factor αr = α/E for the four trim positions ξt is
given in Figure 4.30. These plots are very similar to the plots of the one-dimensional bar case in Figure 4.28 and
therefore allow drawing similar conclusions regarding the value of α′ and different trim positions ξt. The diagrams
in Figure 4.30 are also in accordance with the behavior previously reported in [54]. One can furthermore see that the
bilinear approximation from Figure 4.24 is also well-suited for two-dimensional trimmed NURBS shell problems and
that the curves still decrease with a slope of −1/2 for α>α′.

In order to also demonstrate the effect of mesh refinement via knot insertion on NURBS shells with penalty-based
boundary conditions, the untrimmed configuration4 from Figure 4.29a with p = 3 is considered in four different
mesh refinement levels from 5× 5 to 20× 20 elements, maintaining C p−1 continuity. The behavior of the critical
time step for these four meshes is plotted in Figure 4.31 and can be interpreted as follows: The finer the mesh, the
smaller the critical time step∆tcrit. This effect is more pronounced in the region of α<α′, in which the shell stiffness
dominates. This is because the shell stiffness matrix entries increase with a finer mesh, while the mass matrix entries
decrease. For the region of α>α′ the difference between the meshes is smaller, because the penalty stiffness entries
are hardly affected by the shell element size. The main difference is therefore caused by the varying mass matrix
entries.

4.4.5 Summary and conclusion of this section

The main findings of this section regarding the influence of penalty-based boundary conditions on the critical time
step can be summarized as follows:

• Penalty-based boundary conditions can indeed reduce the critical time step size, but only for penalty factors
larger than a certain value (α>α′). This value α′ can be determined by solving separate eigenvalue problems
for the shell contribution (ωS

max) and the penalty contribution (ω̌P
max), see Eq. (4.28).

• For NURBS patches with p > 1 and an inter-element continuity of C p−1, the critical time step is insensitive to
the size of trimmed shell elements involved in penalty-based boundary conditions. Thus, a feasible time step
size can be achieved even if penalty-based boundary and coupling conditions are applied to NURBS models
with arbitrarily small trimmed elements.

• In order to achieve a certain critical time step size one consistent penalty factor α can be used for all B-Rep
edge elements, independent of the size of the underlying trimmed shell element.

The behavior of the time step size in more complex examples including penalty-based coupling conditions is
demonstrated in Chapter 7.

4 Considering a trimmed configuration in this refinement study would vary the trim positions within elements and therefore cause different
effects on the time step for different refinement levels. To avoid this, the untrimmed configuration is chosen.
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4.4 Effect of weak penalty-based boundary conditions on the time step

Translational Dirichlet BCs with penalty
factor α applied to all four edges.

(a) Trim position ξt = 0.

ξt

Translational Dirichlet BCs with penalty
factor α applied to all four edges.

(b) Trim position ξt = 0.5.

ξt

Translational Dirichlet BCs with penalty
factor α applied to all four edges.

(c) Trim position ξt = 3.5.

ξt

Translational Dirichlet BCs with penalty
factor α applied to all four edges.

(d) Trim position ξt = 3.9.

Figure 4.29: Two-dimensional trimmed square plate problem C p−1 with Dirichlet boundary conditions: Double
symmetric shell models with 10× 10 isogeometric elements, polynomial degrees p = 1 to 4, C p−1 inter-element
continuity and four different trimming configurations defined by the trim position ξt. Penalty-based Dirichlet
boundary conditions are weakly enforced on all four (trimmed) edges.
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(a) Trim position ξt = 0.
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(b) Trim position ξt = 0.5.
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(c) Trim position ξt = 3.5.
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(d) Trim position ξt = 3.9.

Figure 4.30: Two-dimensional trimmed square plate problem C p−1 with Dirichlet boundary conditions: Critical
time step size ∆tcrit versus relative penalty factor αr = α/E for different trim positions ξt (see Figure 4.29), C p−1

inter-element continuity and p = 1 to 4.

5×5 elements
10×10 elements
15×15 elements
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Figure 4.31: Two-dimensional trimmed square plate problem C p−1 with Dirichlet boundary conditions: Critical
time step size∆tcrit versus relative penalty factor αr =α/E for the untrimmed model ξt = 0 from Figure 4.30 with
different mesh refinement levels, C p−1 inter-element continuity and p = 3.
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4.5 Local selective mass scaling for penalty-based B-Rep elements

4.5.1 Introduction

The previous section demonstrated the behavior of the critical time step with respect to penalty-based boundary
and coupling conditions. As shown in [54], in many cases accurate results are obtained without a restriction in time
step size. In case penalty-based B-Rep elements, however, lead to a reduced critical time step, mass scaling is a
convenient way to overcome this issue. In fact, mass scaling is employed in basically every practical vehicle crash
simulation with standard explicit FEA.

As described in Section 3.3, penalty-based boundary and coupling conditions only add stiffness to control points
involved in the corresponding B-Rep edge element formulations. Furthermore, the introduced stiffness is distributed
to control points according to the value of their basis function along the respective B-Rep edge element, see for
instance Eqs. (3.42), (3.43), (3.53) and (3.54). Thus, in order to minimize the amount of added mass, it is expedient to
only scale the involved control points and only to the extent required for balancing the impact of added stiffness on
the time step. That is, a local selective approach specifically scaling control points depending on the introduced
stiffness is desired. The difficulty is, however, to determine a suitable scaling factor for each control point. This section
proposes a simple yet effective local selective mass scaling approach based on the Gershgorin circle theorem [81,
138–140] and control point (nodal) time step estimates.

4.5.2 The local selective mass scaling approach

In the following, it is expedient to consider three different undamped systems with nDOF ×nDOF mass and stiffness
matrices, where nDOF denotes the number of degrees of freedom.

System I – No penalty-based B-Rep elements, no mass scaling: This system is described by a lumped mass matrix M
and a stiffness matrix K S with shell contributions only. The critical time step without B-Rep elements is then computed
as

∆t M−1 K S

crit =
2

ωM−1 K S

max

=
2

Æ

λM−1 K S

max

=
2

max
k

q

λM−1 K S

k

, k = 1, . . . , nDOF . (4.35)

System II – Penalty-based B-Rep elements, no mass scaling: This system is described by a lumped mass matrix M ,
a stiffness matrix with shell and penalty contributions K = K S+K P , and a critical time step including B-Rep elements
of

∆t M−1 K
crit =

2

ωM−1 K
max

=
2

Æ

λM−1 K
max

=
2

max
k

q

λM−1 K
k

, k = 1, . . . , nDOF . (4.36)

Due to the penalty stiffness introduced by B-Rep elements, the critical time step of System II will be smaller than or
equal to the one of System I.

System III – Penalty-based B-Rep elements, mass scaling: This system is described by a scaled lumped mass ma-
trix M̂ , a stiffness matrix with shell and penalty contributions K = K S+ K P , and a critical time step

∆t M̂−1 K
crit =

2

ωM̂−1 K
max

=
2

q

λM̂−1 K
max

=
2

max
k

q

λM̂−1 K
k

, k = 1, . . . , nDOF . (4.37)

The aim of the local selective mass scaling approach is to determine the scaled mass matrix M̂ , such that the critical
time step without penalty-based B-Rep elements (System I) is achieved, i.e. such that a (possible) time step restricting
effect by B-Rep elements is eliminated. This leads to the requirement

∆t M̂−1 K
crit

!
≥∆t M−1 K S

crit . (4.38)

As described above, each control point involved in a penalty-based B-Rep element receives a particular amount of
stiffness depending on the value of its basis function along the B-Rep edge element. Thus, for each control point a
particular amount of mass scaling is required to balance the impact on the critical time step. The difficult task now
is to assign the right amount of mass to each control point – as little as possible, but as much as needed. A simple
yet effective way to break down this requirement onto the control point level is to use the nodal time step estimate
based on the Gershgorin circle theorem, see Section 2.9.4, Eqs. (2.75)–(2.77). Applied to System III, which includes
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mass scaling, the nodal time step estimate gives a conservative estimation of the maximum system eigenvalue λM̂−1 K
max

via the maximum eigenvalue of the system with a lumped stiffness matrix K̃ :

λM̂−1 K
max ≤λM̂−1 K̃

max =max
A,i

�

K̃Ai Ai

M̂Ai Ai

�

. (4.39)

Herein the index A = {1, . . . , n} represents a control point and i = {1, . . . , 6} the degree of freedom (three translations
and three rotations). This upper bound λM̂−1 K̃

max can be interpreted as the maximum real value of all Gershgorin discs

D̂Ai





KAi Ai

M̂Ai Ai

,
∑

B j 6=Ai

|KAi B j |



 , (4.40)

see also Section 2.9.4. Based on the individual maxima of each Gershgorin disc, i.e. the entries of the lumped matrix
M̂−1 K̃ , one can formally assign a critical time step∆t M̂−1 K̃

Ai to each DOF:

∆t M̂−1 K̃
Ai =

2
r

K̃Ai Ai

M̂Ai Ai

. (4.41)

Based on that, a conservative lower bound for the critical time step of the mass-scaled System III can be computed as

∆t M̂−1 K̃
crit =min

A,i

�

∆t M̂−1 K̃
Ai

�

≤∆t M̂−1 K
crit . (4.42)

Through Eq. (4.42), requirement (4.38) can be formulated in terms of control point specific time steps as

∆t M̂−1 K
crit ≥∆t M̂−1 K̃

crit =min
A,i

�

∆t M̂−1 K̃
Ai

� !
≥∆t M−1 K S

crit . (4.43)

which is stronger than requirement (4.38) and thus conservative. Equation (4.43) is equivalent to the requirement
that all Gershgorin discs5 D̂Ai of System III must be entirely located below the maximum eigenvalue of System I. The
basic requirement to be fulfilled within the proposed mass scaling approach can then be concisely formulated as

∆t M̂−1 K̃
Ai

!
≥∆t M−1 K S

crit ∀Ai . (4.44)

With Eq.(4.39) and the relation between critical time step and maximum eigenvalue similar to Eq.(4.37), the required
control point mass to achieve∆t M−1 K S

crit can be computed as

M̂Ai Ai ≥
1

4
K̃Ai Ai

�

∆t M−1 K S

crit

�2
. (4.45)

In order to obtain an actual mass scaling factor, both sides of (4.45) are divided by the unscaled control point
mass MAi Ai , which, together with the nodal estimate for System II

∆t M−1 K̃
crit =

2
√

√ K̃Ai Ai

MAi Ai

, (4.46)

leads to a formula for the control point mass scaling factor:

fAi =
M̂Ai Ai

MAi Ai
=

 

∆t M−1 K S

crit

∆t M−1 K̃
Ai

!2

. (4.47)

Thus, the mass scaling factor is computed from the ratio between the desired time step and the respective nodal
time step of System II. Please note that the ‘≥’ is replaced by a ‘=’, since the lowest possible mass scaling is desired.

From Eq. (4.47) one can see that there are possibly six (i = 1−6) mass scaling factors per control point A. In practice,
a control point has exactly one translational and one rotational mass. Therefore the largest of the three translational
and the largest of the three rotational mass scaling factors are chosen as the effective control point mass scaling

5 In fact, the Gershgorin circle theorem does not claim that every disc contains an eigenvalue. Since requirement (4.43) considers all discs
D̂Ai , this means that there is a chance that control points may be scaled to a higher amount than necessary.
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factors. Furthermore mass scaling factors smaller than one are not permitted. This leads to the final formulas for the
translational and rotational mass scaling factors:

f disp
A =max

 

1, max
i∈Mdisp

i

�

fAi

�

!

, (4.48)

f rot
A =max

�

1, max
i∈Mrot

i

�

fAi

�

�

, (4.49)

where Mdisp
i and Mrot

i are the sets of translational and rotational matrix indices, respectively.

Of course, instead of the critical time step∆t M−1 K S

crit of System I without penalty-based B-Rep elements, any desired
time step∆t̄ can be specified in Eq. (4.47), leading to the generalized form

fAi =
M̂Ai Ai

MAi Ai
≥

 

∆t̄

∆t M−1 K̃
Ai

!2

. (4.50)

Due to the conservative nature of this approach, a higher critical time step than the one specified in (4.50) may be
achieved. For the same reason also control points not involved in B-Rep edge element formulations may be scaled
even though this is not necessary to achieve the desired time step. Control points not involved in B-Rep edge element
formulations are therefore excluded from this mass scaling approach.

4.5.3 Minimal numerical example – two-dimensional shell model

The working principle of the local selective mass scaling approach shall now be demonstrated by means of two-
dimensional (trimmed) square plate problems, similar to the ones in Figure 4.29. Here, penalty-based translational
Dirichlet boundary conditions are applied via B-Rep edge elements along all four edges.

As an example that includes trimming, the square plate with cubic shell elements trimmed at ξt = 0.5 is studied
in more detail here. Figure 4.32 depicts the control point mass distributions for the case without mass scaling
(Figure 4.32a) and with mass scaling for αr = 1, 10 and 100 (Figs. 4.32b–4.32d). In accordance to Eqs. (4.47)–(4.49) the
control points are scaled such that the critical time step of the case without penalty boundary conditions is achieved.
In these figures the control point volume represents the corresponding control point mass. All control points are
colored according their added mass normalized by the heaviest untrimmed and unscaled control point mass of the
model mmax =max

A
(MAA). A value of added mass equal to one, for instance, means that the mass of the scaled control

point is increased by the mass of the heaviest control point.

From Figure 4.32a, one can recognize the initial unscaled control point masses and the fact that control points
associated with trimmed elements are smaller, i.e. have lower mass. Figures 4.32b–4.32d clearly show that only the
p +1= 4 outer control point rows and columns involved in B-Rep edge elements are scaled. They furthermore show
that each control point receives a different amount of mass; in fact, the specific amount required to balance the
introduced penalty stiffness. For αr = 1, the maximum mass added to a control point is only 0.057 mmax, while this
value increases to 1.05mmax for αr = 10 and 11.97mmax for αr = 100. This corresponds to a total mass increase of
∆m =+3.6%, +62.3% and +861.3%, respectively. However, it should be noted that for this simple model the total
mass increase is not meaningful, since a majority of the control points (144 out of 169) are involved in B-Rep element
formulations. In practical models a much smaller fraction of control points is expected to be involved in B-Rep
element formulations, yielding a much smaller total mass increase.

A more meaningful quantity is the mass scaling factor per shell element, depicted in Figure 4.32. For instance an
element mass scaling factor of two means that the element mass doubled compared to its initial unscaled mass.
Figures 4.33b–4.33d show that the present mass scaling approach also leads to a specific element scaling, which
scales shell elements close to B-Rep edge elements the most. Shell elements without control points involved in
B-Rep edge elements are consequently not scaled. For αr = 1, 10 and 100 the maximum shell element mass scaling
factors are 1.41, 5.84 and 55. As a comparison, in practical vehicle crash simulations with explicit FEA, element mass
scaling factors of up to 400 are typically permitted as long as the total mass increase of the model remains within an
acceptable range.

In accordance with Figures 4.30a–4.30d, Figures 4.34a–4.34c depict mass scaling results for trimmed square plate
models with different trimming positions (ξt = 0, 0.5 and 1.9) and polynomial degrees p = 1 to 4. These figures plot
the critical time steps without mass scaling (solid lines), together with the required maximum shell element mass
scaling factors required to obtain∆tcrit without the influence of penalty boundary conditions (dashed lines). As can
be seen for all trim positions ξt, the required mass scaling factor correlates with the required increase in time step
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(a) No mass scaling,∆m = 0.
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(b) Mass scaling for αr = 1,∆m =+3.6%.
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(c) Mass scaling for αr = 10,∆m =+62.3%.
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(d) Mass scaling for αr = 100,∆m =+861.3%.

Figure 4.32: Two-dimensional trimmed square plate problem C p−1 with Dirichlet boundary conditions: Mass scaling
results per control point for different relative penalty factors αr = α/E = 1 to 100, a trim positions ξt = 0.5 (see
Figure 4.29b) and a polynomial degree p = 3. The control point mass is scaled such that the critical time step without
penalty boundary conditions is reached. The added mass per control point indicated by the colorbar is normalized
with respect to the highest untrimmed and unscaled control point mass. The sphere volume of the control points
represents the control point mass.
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(b) Element mass scaling factors for αr = 1.
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(c) Element mass scaling factors for αr = 10.
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(d) Element mass scaling factors for αr = 100.

Figure 4.33: Two-dimensional trimmed square plate problem C p−1 with Dirichlet boundary conditions: Mass scaling
factor per element for different relative penalty factors αr =α/E = 1 to 100, a trim positions ξt = 0.5 (see Figure 4.29b)
and a polynomial degree p = 3. The control point mass is scaled such that the critical time step without penalty
boundary conditions is reached. Elements are colored according to the factor of (trimmed) element mass increase
(m e

scaled/m
e ).

size – the higher the time step decrease through penalty, the more mass scaling is required to achieve the time step
without penalty. Furthermore, no specific influence of the trimmed element size on the required amount of mass
scaling can be identified. The reason why the max. element mass scaling factors do not exactly start from one (= no
mass scaling) for small penalty factors is the fact that the proposed mass scaling approach is conservative. Thus, a
small amount of mass scaling will be applied even if actually not necessary6.

Remark 4.1: In this example, translational Dirichlet boundary conditions are applied. For rotational Dirichlet bound-
ary or coupling conditions, also rotational masses needed to be scaled accordingly as described in Eq. (4.49). However,
as stated in Section 2.6.2 and [14, 73], the rotational masses are already significantly scaled in order to prevent a
time step restriction by rotational modes, which is common also in explicit FEA, see [45, 131, 132]. This scaling is
acceptable since the rotational masses have a relatively low impact on the overall solution accuracy. The amount of
additional rotational mass scaling for B-Rep elements will therefore not be predominant and no further investigations
on rotational mass scaling are conducted in this thesis.

6 The unexpected reduction of the max. element mass scaling factor at αr = 100 for p = 1 in (c) is very likely caused by the fact that some
shell and penalty stiffness entries have very similar magnitude and therefore nearly vanish. This leads to a smaller row sum and thus to a smaller
time step estimate than for the case with lower penalty factors.
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(a) Trim position ξt = 0.
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(b) Trim position ξt = 0.5.
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(c) Trim position ξt = 1.9.

Figure 4.34: Two-dimensional trimmed square plate problem C p−1 with Dirichlet boundary conditions: Critical
time step size∆tcrit without mass scaling (solid lines) and maximum element mass scaling factor required to obtain
the critical time step without penalty boundary conditions (dashed lines) versus relative factor αr =α/E for different
trim positions ξt (see Figure 4.29) and polynomial degrees p = 1 to 4.

4.5.4 Summary and discussion of this section

The local selective mass scaling approach proposed in this section is a simple and effective way to eliminate the
effect of penalty-based boundary and coupling conditions on the time step, while keeping the artificially added
control point mass low. The latter is achieved by determining control point specific scaling factors based on the
introduced penalty stiffness. The proposed mass scaling approach is simple because it only needs the desired time
step size, the lumped control point masses and the lumped stiffnesses as an input. This neither requires the assembly
of the whole stiffness matrix nor the solution of the full eigenvalue problem. Moreover, this scaling of masses only
needs to be performed once in the preprocessing step, in case the penalty stiffness is not intended to change during
the simulation. An increase in shell eigenfrequencies, for instance caused by strongly compressed elements in a
crash simulation, would either result in a smaller overall time step or could be handled via standard mass scaling
approaches as in standard explicit FEA. The proposed mass scaling approach is effective because it always assures
that the desired time step is achieved. In fact, the proposed method is conservative in the sense that slightly more
mass than actually required is added, which makes it not the optimal solution.

One idea to determine the minimum required scaling factor for each control point is to set up an optimization
problem in the preprocessing step with the objective to reduce the individual mass scaling factors and under the
constraint that the desired time step is achieved. The mass scaling distribution obtained by the proposed approach
would certainly be an excellent starting point for this optimization problem.

In the end, there is always a trade-off between computational cost (time step size) and accuracy (amount of mass
added), and the simulation engineer needs to define which amount of mass scaling to permit for the problem at
hand. In Chapter 7 the proposed mass scaling approach is demonstrated on several more complex examples.
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4.6 Summary and conclusion of Chapter 4

This chapter provides a systematic study on the stable time step size in an Explicit IBRA setting. This includes (i)
the effect of inter-element continuity, (ii) the negative effect of boundary elements and corresponding remedies to
remove it, (iii) the effect of trimming and especially small trimmed elements for models with different inter-element
continuity, (iv) the effect of penalty-based boundary and coupling conditions and (v) mass scaling for B-Rep elements.
The main findings and novelties from this chapter can be summarized as follows:

• Trimming off the p −1 boundary element rows and columns of a patch is a simple, effective and practically
applicable approach to eliminate their time step restricting effect. In this way, the stable time step size of the
presented two-dimensional shell examples could be increased by +54%, +128% and +221% for p = 2, 3 and 4,
respectively. With trimmed-off boundary elements, the stable time step is found to even increase with p , while
it decreases with p if this is not the case. This is in accordance with the results in [81], in which the boundary
effect was removed by using open knot vectors or extended boundary elements.

• Higher inter-element continuity is found to be the key aspect for the applicability of trimming in explicit
analysis. More precisely, for a maximum inter-element continuity of C p−1 and p ≥ 2, the stable time step size is
found to be practically independent of the trimmed element size (for interior elements). For C 0 inter-element
continuity, on the other hand, the stable time step size strongly depends on the trimmed element size and
actually tends towards zero as the trimmed element size approaches zero. It can therefore be concluded
that explicit analysis of trimmed models with C 0 inter-element continuity is practically infeasible. However,
practically more important is the finding and understanding that trimmed models with C p−1 and p ≥ 2 can be
efficiently used in explicit analysis.

• Penalty-based boundary conditions can lead to a reduced stable time step size in case the penalty factor α is
higher than a certain value α′. Below this value, the stable time step is found to be practically independent
of α. For patches with C p−1 and p ≥ 2 it is furthermore shown that the size of trimmed shell elements involved
in penalty-based boundary conditions, has no significant effect on the critical time step size. This means
that, from a time step point of view, a consistent penalty factor can be used throughout the whole model,
independent of the size of underlying trimmed shell elements – a finding that strongly facilitates the suitable
definition of the penalty factor.

• To compensate a possibly negative effect of penalty-based boundary conditions on the time step, a local
selective mass scaling approach for control points involved in B-Rep elements is proposed. This simple and
effective approach specifically scales the mass of affected control points based on their added penalty stiffness.
To achieve this, control point specific (nodal) time steps are computed via lumped stiffness matrices and the
Gershgorin circle theorem. Based on that, the proposed method scales the mass of affected control points such
that their control point specific time step is above the desired time step size.
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Chapter 5

Stabilization of small trimmed elements / light
control points

5.1 Introduction

The two previous chapters introduced Explicit IBRA for trimmed multi-patch B-Rep NURBS models and studied the
influencing factors like trimming and penalty coupling on the critical time step size in explicit analysis, respectively.
This chapter deals with numerical instabilities associated with trimmed models in explicit analysis.

Industrial B-Rep models can consist of a vast number of patches, including various trimming loops to represent
complex shapes, holes, cut-outs or beadings. Consequently, isogeometric NURBS elements may be trimmed in
various different ways and at arbitrary locations, leading to trimmed elements with varying sizes, including extremely
small trimmed elements. Hence, in industrial B-Rep models, small trimmed elements are ubiquitous and inevitable.
During isogeometric analysis, such elements often cause numerical problems. In fact, small trimmed elements lead
to ill-conditioned system matrices. In most cases mentioned in the literature, see Section 1.2.4, numerical problems
arise when solving equation systems including such ill-conditioned system matrices. However, in explicit dynamic
analysis numerical problems arise even though the total system matrices are not assembled and the equation system
is not actually solved.

This chapter provides a detailed investigation on the numerical instabilities associated with trimmed B-Rep NURBS
models in explicit dynamic isogeometric analysis. Section 5.2 investigates (i) the effects of small trimmed elements
on the numerical model, (ii) the reasons for these numerical instabilities, (iii) the related symptoms, furthermore
(iv) attempts to characterize and classify the instability, (v) deals with numerical problems in multi-patch models
and (vi) provides requirements for a potential stabilization scheme. In Section 5.3, a stabilization method based
on penalty constraints is presented as a remedy. Section 5.4 demonstrates that the classical stability condition and
time step estimation based on the maximum system eigenvalue for explicit dynamics, remain applicable with the
proposed stabilization approach. In order to quantify unstable behavior and the effectiveness of the stabilization
method, appropriate error measures are introduced in Section 5.5. In Section 5.6, the proposed stabilization method
is successfully applied to two minimal numerical problems, namely to a trimmed single- and a trimmed multi-patch
cantilever beam. The work presented in this chapter builds upon studies and developments conducted within the
Master’s thesis of Kwon [148], supervised by the author of this dissertation.

5.2 Stability issues in explicit analysis of trimmed NURBS shells

5.2.1 Small trimmed elements and light control points

As described in Section 2.2, trimming operations do not change the underlying surface description, but only disregard
the part of the domain located on the right hand side of a directed trimming curve. In CAD models in general, a NURBS
surface can be trimmed with arbitrary trimming curves, potentially leading to arbitrarily small trimmed elements.
Figure 5.1a depicts a trimmed double curved shell with two relatively small trimmed elements highlighted in orange.
As a consequence of these two small trimmed elements, the basis functions of control points P3 and P9 (highlighted
in orange in Figure 5.1a) have only very limited support on the material domain as shown in Figure 5.1b–5.1d. The
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basis functions belonging to control points P1, P2 and P8 in dark gray in Figure 5.1a, do not have any support on the
material domain as depicted in Figure 5.1e. Therefore, P1, P2 and P8 do no longer contribute to the solution, which is
why they are denoted as inactive control points. During analysis, inactive control points are disregarded and fixed
at their initial positions. Control points with trimmed basis functions, i.e. basis functions which do not have full
support on the material domain, are denoted as trimmed control points in this thesis.

Small trimmed elements and the consequently small support of basis functions as, for example, highlighted in orange
in Figure 5.1, cause the corresponding control points to have small mass and small stiffness matrix entries. This
becomes obvious when considering a simple one-dimensional bar problem like the one in Figure 5.2. For such a bar
problem the lumped control point masses MA are computed as

MA =
�

V
ρNA dV =ρA

�
x

NA dx =ρA

�
ξ

NA

�

�

�

�

∂ x

∂ ξ

�

�

�

�

dξ, (5.1)

where the mass density ρ and the cross-section area A are assumed to be constant throughout the beam. The
corresponding stiffness matrix entries can be computed as

KAB =
�

V

∂ NA

∂ x
E
∂ NB

∂ x
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∂ ξ
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dξ, (5.2)

with a uniform Young’s modulus E . Depending on the trimming position ξt, the size of a trimmed element varies
and therefore also the integration domains in Eqs. (5.1) and (5.2). This makes clear that arbitrarily small elements and
integration domains lead to arbitrarily small control point mass and stiffness entries. In addition to the integration
domain, also the magnitude of one basis function and its derivative are approaching zero as ξt approaches knot
values in the material domain, cf. N5,2 in Figure 5.2. That is, also integrands in the mass and stiffness integrals in
Eqs. (5.1) and (5.2) are small in case of small trimmed elements. Because of their small mass, such control points are
denoted as light control points in this thesis.

(a) (c) (d) (e)

(b)

light control points

inactive control points

Parameter spaceGeometry space

P3

P9

P8

P1

P2

Figure 5.1: Trimmed double curved shell: In (a) the trimmed shell is depicted in geometry space with two small
trimmed elements and two light control points highlighted in orange, and three inactive control points highlighted in
dark gray. In (b) the trimmed parameter space is depicted along with the two basis functions of the two light control
points. In (c)-(e) the trimmed parameter space is depicted with the support of the basis functions belonging to the
light control points P3 resp. P9 highlighted in orange in (c) resp. (d), and the support belonging to the three inactive
elements in dark gray in (e).

The quadratic four-element bar model in Figure 5.2 is defined by an open knot vector Ξ = {0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1}
and gets trimmed at ξt = 0.55. This causes (i) P6 to be an inactive control point because N6,2 has no longer support
on the material domain, and (ii) P5 to be a light control point because the support of N5,2 on the material domain
is small. Figure 5.3 clarifies this by depicting the normalized lumped mass and lumped stiffness values of control
points P5 and P6 for different trimming positions ξt. Both, lumped mass and lumped stiffness values, are obtained by
row summing of absolute values. It clearly shows that lumped mass and stiffness values tend towards zero as the
trimming position approaches the corresponding knot values with decreasing ξt. For instance, for a trimmed element
length of 4% of the untrimmed length, the lumped mass and stiffness values of P5 are around 2×10−5 and 6×10−4

times smaller than in the untrimmed case, respectively.
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Figure 5.2: Geometry and parameter space of a one-dimensional, trimmed bar model with four quadratic elements
and six control points. Control point P6 is inactive and control point P5 is a light control point.
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Figure 5.3: Lumped mass and stiffness values for P5 and P6 from Figure 5.2 for different trim positions ξt. The dashed
black vertical lines indicate knot values. Mass and stiffness are normalized with their untrimmed values. The strong
decrease of lumped mass and stiffness values with decreasing element length is clearly visible.
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5 Stabilization of small trimmed elements / light control points

5.2.2 Reasons for numerical instabilities

Still, the question why small trimmed elements lead to numerical problems in explicit dynamic analysis remains to
be answered. As described in Section 1.2.4, many authors have identified ill-conditioned system matrices caused
by small trimmed elements as the main reason for numerical problems when solving equation systems. Therefore,
the concept of condition number shall be briefly explained here for an equation system of the form Ax= b, with the
real square matrix A and the real column vectors x and b. Informally, the condition number κ(A) quantifies how
inaccuracies in the input b affect the accuracy of the solution x, see for instance [149]. For a real square matrix A, the
condition number can be computed as κ(A) = |λmax |

|λmin | , with the maximum and minimum eigenvalues λmax and λmin

of A. For general dynamic problems, the second order equation of motion

Mü+ Cu̇+ Ku= fext, (5.3)

needs to be considered. For implicit time integration schemes, solving Eq. (5.3) for the displacements un+1 at time
step n +1 involves matrix inversions of M , C and K . Consequently, the conditioning of M , C and K is decisive for
the accuracy of the results.

For explicit time integration schemes, things are usually different, because the equation system is not actually solved.
To show this, the equations of motion in Eq. (5.3) at time t n without damping are discretized in time by applying the
explicit central difference scheme:

1

∆t 2
M
�

un+1−2un +un−1
�

= fext,n − Kun . (5.4)

One can see that the stiffness matrix only appears in Kun , which gives the internal force vector f int,n . Thus, in order
to solve for un+1 only M has to be inverted. By using a diagonal lumped mass matrix, the equation system can be
decoupled and all computations including the matrix multiplication (Kun ) can be performed on an element level, see
for instance [76]. Therefore the global matrices do not need to be assembled. To enable this for cases with damping,
also C needed to be diagonalized. This decoupling through the use of lumped mass and lumped damping matrices
makes explicit analysis very efficient. The control point accelerations can then be computed as

an
A = M−1

A

�

fext,n
A − f int,n

A + fB-Rep,n
A

�

. (5.5)

Since, in contrast to implicit methods, the equation system is actually not solved, also numerical instability caused by
small trimmed elements cannot be directly explained by the ill-conditioned mass and stiffness matrices. Therefore,
the various steps within an explicit dynamic analysis with the central difference scheme shall be investigated in more
detail.

Consider a mechanical system at rest or in motion with constant velocity at t = 0. For this system, internal and
external forces1 are in equilibrium and all control point accelerations are zero. At t n an external force shall be applied.
This external force causes an imbalance in the force equilibrium, leading to accelerations (and therefore inertia
forces) at time t n via the inverse mass in Eq. (5.5). Based on these control point accelerations, velocities at the next
half time step n +1/2 are computed via linear extrapolation as

vn+1/2 = vn−1/2+∆t an . (5.6)

These velocities vn+1/2 are in turn used to compute the displacements at the next time step n +1 again via linear
extrapolation as

un+1 = un−1+∆t vn+1/2. (5.7)

The extrapolations in Eqs. (5.6) and (5.7) make clear that all obtained velocities and displacements are inherently
only approximations, afflicted by more or less high errors, depending on the time step size. The internal forces for
time step n +1 are then again computed from inexact displacements, and the control point accelerations at time
step n +1 are again computed via the force equilibrium between external and internal forces and the mass inverse in
Eq. (5.5).

Such small errors are usually not a problem in explicit analysis, because too high control point displacements are
immediately penalized/stabilized by internal forces in the opposite direction. Roughly spoken, the explicit scheme
balances itself to some extent from time step to time step, leading to more or less pronounced oscillations in the
control point forces and accelerations. Spurious high frequency oscillations for wave equations solved with the

1 B-Rep coupling and Dirichlet boundary conditions are considered as internal forces, while B-Rep Neumann boundary conditions are
considered as external forces here.
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central difference method are for example also reported in [150]. Figure 5.4 depicts such oscillations for a simple
cantilever beam model dynamically loaded by an end shear force P in z -direction. In Figure 5.4a, L denotes the length
of the beam, b the width, h the thickness, E the Young’s modulus, ν the Poisson ratio and ρ the mass density. The
same notation holds for the beam examples in subsequent sections. Displacements and forces in z -direction as well
as moments w.r.t. the y -direction of three control points are plotted in Figures 5.4b–5.4d. The control point forces
and moments show significant oscillations, especially for control point P69, which exhibits the highest displacements.
Despite that, the control point displacement response is smooth and the simulation remains stable since the time
step is below the critical time step.

For light control points, on the contrary, this penalization/stabilization via internal forces is much less effective. This
is because the force acting on light control points is extremely insensitive to light control point displacements, due to
the extremely small stiffness related to light control points (f= Ku). That means that (i) the penalization/stabilization
force remains low even for high light control point displacements and (ii) once a light control point shows strong
oscillations it can hardly be stabilized by internal forces. This effect is even aggravated by the fact that the extremely
large inverse mass of light control points in Eq. (5.5) acts as a very strong amplifier to errors in the force equilibrium.

In the following, a small uniform error ‖eA‖ shall be considered for all control point forces fA . This error might
be the result of (i) errors in the displacements due to the assumptions made in the central difference scheme, (ii)
inaccuracies due to the use of a lumped mass matrix and scaled rotational masses, (iii) inevitable inaccuracies in the
numerical integration of (trimmed) elements and (iv) round-of errors. For normal control points PA , ‖eA‖<< ‖fA‖
shall hold, i.e. the relative force error ‖eA‖

‖fA‖ is small. However, for light control points PB with ‖fB ‖<< ‖fA‖, the relative

error ‖eA‖
‖fB ‖ will be significantly larger. Via the extremely large inverse light control point mass in Eq. (5.5), this error is

amplified, leading to a large absolute error in the light control point accelerations, which can be hardly stabilized by
internal forces as described above. Over the ten or even hundred thousand time steps in an explicit analysis, this
error accumulates, probably causing the system to become unstable.

The unstable behavior of light control points can also be described in a physical manner. First, the extremely low
mass means that the light control point is very sensitive to forces applied, i.e. the inertia force will be low and even a
very small applied force can lead to high accelerations. Additionally, due to the small stiffness matrix entries, a light
control point is only loosely connected with the material domain. This means that the forces tying the light control
point to the actual shell are very low as well. This loose connection in combination with high sensitivity to forces,
can lead to unpredictable behavior with high accelerations, velocities and displacements.

5.2.3 Consequences of numerical instabilities

The numerical instability related with light control points appears as strong oscillations of control point displacements,
velocities, accelerations, forces, etc. It is important to note that oscillations and inaccuracies of light control point
quantities are not a problem for the overall accuracy of the solution per se, because the influence of these control
points on the overall solution is negligible compared to that of normal control points. However, these erroneous
effects tend to propagate to (coupled) adjacent normal control points. In such case, the accuracy of the overall results
is indeed affected. Moreover, extremely large values, regardless of which control point, can cause the solver to abort
the simulation prematurely due to overflow errors. In LS-DYNA, in particular, the simulation either continues with
useless results (indicated by ‘nan’ values in the output) or terminates with an error message indicating ‘out-of-range
velocities’.

In order to demonstrate these instabilities, the same cantilever problem as above is now solved with a trimmed
model, see Figure 5.5. The model is designed and trimmed with the aim to obtain a row of small trimmed elements
and subsequently a row of five light control points highlighted in orange in Figure 5.5a. Since one row of elements is
completely trimmed off, there is also a row of five inactive control points highlighted in dark gray. Control points
whose basis functions are partially trimmed, i.e. do not have full support, are highlighted in blue. In Figure 5.5b resp.
Figure 5.5c, z -displacements resp. y -rotations, are plotted for one light control point (P71), two trimmed control
points (P70 and P69) and two normal control points (P64 and P59) of the centered control point row. It can be seen
that the displacements and rotations of the light control point show excessive oscillations from the beginning, while
the responses of the other control points are reasonable and smooth. But as described above, with progressing
simulation time, the erroneous behavior of light control points propagates to adjacent control points and finally
affects the whole model. This is shown in Figure 5.5b and Figure 5.5c from around 2× 10−3 s. Finally, at around
t = 2.5×10−3 s, the solver terminates prematurely due to the appearing instability. The unrealistic behavior of light
control points prior to termination can be seen in the deformed configuration at t = 1.33×10−3 in Figure 5.5a. Despite
the high displacements of light control points, the deformed model geometry at t = 1.33× 10−3 seems to be still
unaffected by it. This shows the almost negligible contribution of light control points to the overall solution. Because
of their unpredictable behavior and loose connection to the material domain, light control points are also commonly
denoted as flying nodes in [30].
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(a) Problem description and deformed configuration. The color plot
indicates z -displacements.
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(c) Control point forces in z -direction.
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(d) Control point moments around the y -direction.

Figure 5.4: Explicit dynamic isogeometric analysis of a cantilever beam instantaneously loaded by an end shear force
in z -direction. The displacement response for three control points P59, P64 and P69 are plotted in (b). Corresponding
control point forces and moments for each time step are plotted for the first 10−4 s of the simulation in (c) and (d),
respectively. Please note the different time scales on the x-axis in (b), (c) and (d).

5.2.4 Type of instability

It is worth noting that numerical instabilities caused by light control points behave differently than classical instabili-
ties caused by a time step larger than the critical value. In fact, explicit simulations involving light control points
become unstable, although the critical time step for the central difference scheme is not exceeded. To clarify this
issue, the classification of time integration schemes with respect to stability is briefly reviewed. In the literature, see
for instance [151] and [152], the stability of time integration schemes is commonly classified into

• Unconditional and conditional stability: Implicit time integration schemes are usually unconditionally stable,
while explicit time integration schemes are conditionally stable, i.e. only stable for a time step smaller than the
critical time step.

• Strict and weak stability: A strictly stable time integration scheme is said to be stable for all times, whereas
a strictly unstable scheme is unstable immediately after the first time step. A weakly stable time integration
scheme on the contrary, is only initially stable and becomes unstable after a certain period of time. A decrease
in time step size can in some cases postpone the appearance of instabilities, but in other cases cause the
instability to appear even earlier, see [152]. Anyway, for weakly stable schemes, there is no critical time step
size below which instability can be completely avoided. Another characteristic of a weak instability is the
exponential growth of oscillation amplitudes [152].
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(a) Problem description and deformed configuration at t = 0.0133 s. The color plot indicates z -displacements.
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(c) y -rotation response.

Figure 5.5: Explicit dynamic isogeometric analysis of a trimmed cantilever beam instantaneously loaded by an end
shear force in z -direction. The beam is designed and trimmed such that a row of five light control points is obtained
as highlighted in orange in (a). The z -displacement and y -rotation response are plotted for one light control point
(P71), two trimmed control points (P70 and P69) and two normal control points (P64 and P59) of the centered control
point row in (b) and (c), respectively.
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5 Stabilization of small trimmed elements / light control points

The explicit central difference scheme, for instance, is (at least for linear problems) strictly stable under the condition
that the time step is smaller than the critical time step and strictly unstable in case this condition is not fulfilled.
However, the stability of the time integration scheme does not guarantee that the actual solution procedure remains
stable. The mathematical model problem also needs to be well-posed. For example for the partitioned solution
of fluid-structure-interaction problems in [152], even small violations of the continuity condition can impair the
stability behavior of the solution procedure and the appearance of weak instabilities.

The instability caused by light control points shows characteristics of a weak instability, since a smaller time step
cannot avoid the instability, but instead causes the instability to appear even earlier. In Figure 5.6 the trimmed
cantilever problem from Figure 5.5 is solved for various time steps smaller than the critical value. The z -displacement
and y -rotation responses for light control point P71 show that instability cannot be avoided by smaller time steps, and
that it tends to occur even earlier. This can be explained by the fact that the error increases with each computation
in each time step. Thus, the higher the number of steps per time, the larger the error becomes and the earlier the
instability appears.
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Figure 5.6: Explicit dynamic isogeometric analysis of a trimmed cantilever beam instantaneously loaded by an end
shear force. z -displacement (a) and y -rotation responses (b) of light control point P71 for different initial time step
sizes∆t0. Even the largest initial time step∆t0 = 5.75×10−7 is 10% below the estimated critical time step size.

5.2.5 Multi-patch problems

Weak boundary and coupling conditions are commonly enforced along trimming curves. Light control points are
therefore very likely to be involved in B-Rep edge element definitions. In case of coupling or Dirichlet boundary
conditions, stiffness is added to light control point entries. One could subsequently expect a positive stabilization
effect for light control points. However, basis function values of light control points in B-Rep element formulations
are evaluated along trimming curves. As shown in Figure 5.2, light control point basis function values are small and
therefore also the added stiffness is small. Because of this, no significant stabilization effect can be expected. For the
same reason, the influence of light control points on the coupling condition is also small. Nevertheless, as mentioned
above the erroneous effects of light control points tend to propagate to adjacent or coupled control points. Then, the
erroneous light control point behavior can even deteriorate the quality of coupling or boundary conditions, causing
bad results. In that case, the weak coupling or boundary condition might still be fulfilled in an integral sense, but with
strong individual oscillations in alternating directions. This effect is similar to what is often referred to as spurious
checkerboard modes in the literature, see for instance [134].

To demonstrate the negative effect of light control points involved in weak coupling conditions, the cantilever problem
from above is now modeled through two trimmed patches, see Figure 5.7. These two patches are coupled along
trimming lines, which are defined such that one row of light control points is obtained in each patch (highlighted
in orange). The coupling conditions in this example involve translational and rotational DOFs, as well as shell
normals, i.e. the enhanced B-Rep element formulation proposed in Section 3.4 is used. From Figure 5.7 one can
see two effects: First, the light control points highlighted in orange are again located at arbitrary positions. The
light control points of the left patch are not even visible in this figure, due to their high displacements. Second,
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5.2 Stability issues in explicit analysis of trimmed NURBS shells

the deformed cantilever beam shows a substantial kink between the coupled patches, because the erroneous light
control point behavior also affects the quality of the coupling conditions.

To conclude, numerical instabilities also appear when light control points are involved in the formulation of weak
boundary conditions, as in the case of coupled trimmed multi-patch models. In many instances, the coupling of
trimmed patches fails and causes useless results even if the simulation does not yet abort due to instability. Resolving
this issue is crucial for robust and accurate explicit multi-patch analyses.

E = 2×105 N/mm2

ν= 0.3

ρ = 7.8×10−9 t/mm3

L = 100 mm

b = 10 mm

h = 1 mm

P = 2 N/mm

clamped edge

line load P in z -direction

y
x

z

Figure 5.7: Trimmed NURBS-based multi-patch cantilever beam instantaneously loaded by an end shear force in
z -direction: Problem definition and deformed shape at t = 3.82×10−3 s. Both patches are trimmed such that each
patch has one row of light control points, highlighted in orange. Trimmed control points are highlighted in blue. The
substantial kink between the patches occurs because the coupling conditions are affected by the erroneous behavior
of light control points.

5.2.6 Stabilization

For explicit dynamic isogeometric B-Rep analysis of trimmed NURBS-based multi-patch models, the undesired
phenomena described above need to be resolved. A potential stabilization scheme should incorporate the following
aspects:

1. Prevention of extensively high control point displacements, velocities or accelerations in order to prevent the
solver to abort prematurely.

2. Compatibility with weakly applied coupling and boundary conditions via B-Rep elements. A rigid constraint
on the light control points was found to be incompatible with weak coupling conditions, leading to an over-
constrained system. The issue of light control points is similar to the issues related with the fictitious domain
in the Finite Cell Method (FCM). As mentioned in the PhD thesis of Schillinger [153], ‘[...] it is beneficial for
the quality of the FCM results, if the solution fields in the fictitious domain can “move” as freely as possible
to permit a smooth extension of the physical solution into the fictitious domain’. This rationale can also be
transferred to light control points in IBRA [30].

3. No modification of the physical model behavior.

4. Computational efficiency and no restriction of the stable time step size in explicit analysis.

5. Applicability to complex industrial B-Rep NURBS models.

6. Easy applicability to existing explicit dynamic solvers such as LS-DYNA.

The stabilization method presented in the following section, is designed with these aspects in mind.
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5 Stabilization of small trimmed elements / light control points

5.3 Penalty-based light control point stabilization

This section presents the actual light control point stabilization method, starting with a brief overview in Section 5.3.1.
The identification of problematic light control points and stable adjacent control points is introduced in Section 5.3.2
and Section 5.3.3, respectively. The estimation of a suitable reference behavior for light control points is discussed in
Section 5.3.4, before Section 5.3.5 presents an approach to determine control point specific penalty stabilization
factors. Finally, local mass scaling of light control points and the actual penalty-based stabilization constraints are
introduced in Section 5.3.6 and Section 5.3.7, respectively.

5.3.1 Overview on the stabilization method

As mentioned in the previous section, light control points in explicit dynamic analysis tend to show unpredictable
behavior with extremely high displacements, velocities and accelerations in both translations and rotations. Although
the influence of light control points on the overall solution is negligible, the erroneous behavior can either propagate
and infect other control points or simply cause the solver to terminate prematurely due to overflow/out-of-range
errors.

Because of the negligible influence of light control points, the task of the stabilization method is not to determine a
highly accurate solution for light control points, but to just prevent those control points from causing numerical
problems. Nevertheless, light control points are still degrees of freedom and should also be treated as such; imposing
rigid constraints on light control points turned out to be not consistent with (weak) boundary conditions applied
on trimmed elements. With these aspects in mind, a suitable stabilization method based on a penalty approach is
developed.

Simply spoken, the stabilization method constrains each light control point to a specific virtual reference point
determined via linear extrapolation of the control polygon from adjacent stable control points. The force and stiffness
introduced by penalty constraints g = 0 with a penalty factor β are, in a general form, given as

f=β g T ∂ g

∂ d
, (5.8)

K =β

�

∂ g

∂ d

�T
∂ g

∂ d
, (5.9)

where ∂ g /∂ d are the constraint derivatives with respect to control point displacements. Of course, the same applies
to rotational DOFs with moments and rotations. With these formulas at hand, the main task is to develop an effective
constraint formulation g .

The overall stabilization procedure can be divided into the following five steps, from which 1. to 4. are preprocessing
steps only performed once prior to analysis, while the final step 5. is performed at every time step during analysis:

1. Identification of light control points

2. Determination of a virtual reference point for each light control point

3. Determination of control point specific penalty factors

4. Local mass scaling of light control points

5. Enforcing stabilization constraints

Each of these steps is described in more detail in the following subsections.

5.3.2 Identification of light control points

One of the main challenges is the reliable, a priori determination of those trimmed control points that require stabi-
lization in the analysis. Considering all trimmed control points would introduce an unnecessarily high stabilization
stiffness, potentially leading to an altered physical model behavior and distorted results. Considering too few control
points, on the other hand, would not solve the problem, since even a single unstable control point can destroy the
whole simulation. In the literature such distinctions are made based on (i) the ratio between trimmed and untrim-
med element size [71, 100], (ii) the volume fraction of the basis function support within the material domain [94],
(iii) whether a basis function spans at least one element completely located in the material domain [101–106], (iv)
whether the anchor of a basis function is located in the material domain [34, 107], (v) the relative position of the
control point/basis function in the mesh with respect to the trimmed boundary [93], or (vi) the energy norm of basis
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5.3 Penalty-based light control point stabilization

functions [72, 95]. However, whether a trimmed element or control point requires stabilization or not depends on
the type of analysis and solution method. In order to modify the physical system as little as possible through the
stabilization, the goal is to specifically stabilize only affected control points. Therefore a control point related criterion
is desired. As described in the Section 5.2, problematic control points are characterized by a very low lumped mass,
as the notation light control point implies. The criterion chosen for identifying problematic (light) control points is
thus lumped control point mass. Via Eq. (5.1), the lumped control point mass is also related to the size of a trimmed
element. This yields a distinction of control points in three disjoint sets M(i )

st , M(i )
li and M(i )

in :

Definition 5.1: Light control points. Consider the set M of all control points in Ω and the subset M(i ) ⊆M of all
control points in Ω(i ). A control point A in M(i ) is considered as a light control point in the set of light control points
M(i )

li , if

0<MA ≤Cth max
B
(MB ) =m (i )

th for B ∈M(i ), and Cth ∈ (0, 1], (5.10)

where Cth is a threshold constant and m (i )
th the threshold mass for light control points in M(i ). This means that control

points are identified as light control points, if their lumped mass MA is smaller than a certain fraction of the maximum
control point mass of the respective patch and larger than zero.

Definition 5.2: Inactive control points. A control point A in M(i ) is considered as an inactive control point in the
set of inactive control points M(i )

in , if

MA = 0. (5.11)

Definition 5.3: Stable control points. The set of stable control points M(i )
st in the domain Ω(i ) is defined as

M(i )
st =M(i ) \ (M(i )

li ∪M
(i )
in ) (5.12)

This means that all control points of a patch that are neither light control points nor inactive control points are
considered as stable.

With the set of trimmed control points M(i )
t in Ω(i ), the following holds:

M(i )
li ⊆M(i )

t ⊆M(i ). (5.13)

Due to the tensor-product structure of NURBS surfaces, a control point in the control net can be directly connected
to up to four other control points in the four grid directions. A stable direction is defined as follows.

Definition 5.4: Stable direction. From a light control point’s perspective, a direction is considered as a stable dire-
ction, if the two consecutive adjacent control points in this direction are stable control points.

5.3.3 Identification of stable adjacent control points

Now that the problematic light control points are identified, a virtual reference point with reference position and
rotation is required for each light control point in order to enforce stabilization constraints. The reference estimation
presented below in Section 5.3.4 is based on a linear extrapolation of the control polygon, which requires the prior
identification of two stable control points per grid direction (N, E, S, W) in the vicinity of light control points.

This identification procedure for stable adjacent control points is given in Algorithm 5.1, in which P(A, j , k ) de-
notes the j th adjacent control point to light control point A in direction k , see also Figure 5.8. Algorithm 5.1 can
be explained as follows: For a light control point A in M(i )

li , the algorithm checks whether the first ( j = 1) and the

second ( j + 1) adjacent control point in any of the four directions (k = 1 to 4) are stable, i.e. within M(i )
st . If this is

the case for at least one direction, the stable adjacent control points are stored and the search is finished. If not, the
search radius is sequentially increased, i.e. next the second ( j = 2) and the third ( j +1) adjacent control point in
any of the four directions are checked. This search is continued until a search radius of j = p is reached. In the vast
majority of trimming cases stable adjacent control points are found with this approach. Further extending the search
radius would reduce the quality and accuracy of the reference estimation as the physical distance between reference
control points and light control point increases. Of course, different variations of this identification algorithm are
conceivable, e.g. considering all stable directions found in the p vicinity instead of only the stable direction(s) in the
nearest vicinity. However, the presented algorithm is found to be satisfactory.
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5 Stabilization of small trimmed elements / light control points

Remark 5.1: In some rare trimming scenarios, no stable control points may be found in any of the four directions. In
such a case, the stable reference control points of adjacent light control points are adopted, see the explanation in
the following section and Figure 5.10.

Algorithm 5.1

Loop over light control points A in M(i )
li :

Loop over the p vicinity of each light control point A, j = 1 to p :
Loop over the four directions (N, E, S, W), k = 1 to 4:

P(A, j , k ) = j th adjacent control point in direction k of light control point A
If (P(A, j , k ) and P(A, j +1, k )) in M(i )

st :
Assign reference control point R1 for light control point A in direction j :

PA
R1,k ← P(A, j , k )

Assign reference control point R2 for light control point A in direction j :
PA

R2,k ← P(A, j +1, k )
end

end
If PA

R1,k and PA
R2,k assigned for at least one direction j :

break loop
end

end

end

A

P(A, 1, 2)

P(A, 3, 1)

P(A, 3, 3)

P(A, 1, 4)

P(A, 2, 2)

P(A, 3, 2)

P(A, 2, 4)

P(A, 3, 4)

P(A, 1, 1)

P(A, 2, 1)

P(A, 2, 3)

P(A, 1, 3)

N

EW

S

Figure 5.8: Identification of stable adjacent control points P(A, j , k ) for light control point A in the four grid directions
(N, E, S, W). Point P(A, j , k ) denotes the j th adjacent control point in k -direction.

5.3.4 Estimation of a reference behavior

As previously mentioned, the intention is to penalize the deviation of a light control point from its virtual reference
point (position and rotation), i.e. to apply forces and moments in case a light control point starts deviating from its
reference. A good estimation of the reference point position and rotation is therefore crucial for a good stabilization.
In this section, a simple and effective virtual reference point estimation approach is presented.

An intuitive reference position for a light control point is the linear extrapolation of the control polygon from adjacent
stable control points. In the initial, undeformed state, this reference estimation is exact for plane shells. For highly
curved shells, on the other hand, the deviation between the actual and the reference position in the undeformed
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5.3 Penalty-based light control point stabilization

state depends on the refinement level. The finer the discretization, the better the reference estimation, see Figure 5.9.
Depending on the trimming scenario, a light control point A can have up to four stable directions, i.e. directions in
the control point grid with stable adjacent control points B ∈M(i )

st . In the deformed state, the reference positions
computed from different directions do not necessarily coincide. The final virtual reference point position x ′A for a
light control point A is therefore computed as the mean value of the reference positions x ′A,k in all k = {1, . . . , n A

d }
stable directions:

x ′A =
1

n A
d

n A
d

∑

k=1

x ′A,k . (5.14)

In Eq. (5.14), the position x ′A,k of the virtual reference point for light control point A in direction k is computed via
linear extrapolation of the control polygon as

x ′A,k = xA
R1,k + (x

A
R1,k −xA

R2,k )
L A

1,k

L A
12,k

with L A
1,k = ‖X A − X A

R1,k‖, L A
12,k = ‖X A

R1,k − X A
R2,k‖, (5.15)

where L A
1,k denotes the initial distance between the light control point A and its first stable adjacent reference control

point PA
R1,k , and where L A

12,k denotes the initial distance between the first and second stable adjacent reference control
point PA

R1,k and PA
R2,k , respectively, see Figure 5.9. As for the position, the rotation θ ′A of the virtual reference point for

a light control point A is also computed as the mean value of the reference rotations θ ′A,k in all k = {1, . . . , n A
d } stable

directions:

θ ′A =
1

n A
d

n A
d

∑

k=1

θ ′A,k (5.16)

In geometrical accordance with a linear extrapolation of the position, the reference rotation θ ′A,k in direction k is
defined as

θ ′A,k = θ
A
R1,k , (5.17)

that is, as the rotation of the first stable adjacent reference control point in direction k .

P9
R2,4

P9
R1,4

P3
R2,4

P3
R1,4 = P9

R1,1

P9
R2,1

P3
R1,1

P3
R2,1

P9

P3

Virtual reference point P′3

Virtual reference point P′9

Figure 5.9: Determination of virtual reference points for the trimmed double curved shell from Figure 5.1: Two small
trimmed elements and two light control points (P3 and P9) are highlighted in orange, the three inactive control
points are highlighted in dark gray. The position of the two virtual reference points P′3 and P′9 for the two light control
points P3 and P9 are determined via an averaged linear extrapolation of the control polygon from the stable adjacent
reference control points (P3

R1,1, P3
R2,1, P3

R1,4, P3
R2,4) and (P9

R1,1, P9
R2,1, P9

R1,4, P9
R2,4), respectively.

Remark 5.2: As mentioned in Remark 5.1 in the previous section, there may be cases in which a light control point
does not have stable adjacent control points in any of the four control grid directions. In this thesis such light
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5 Stabilization of small trimmed elements / light control points

control points are denoted as isolated light control points. In Figure 5.10 the double curved shell model is depicted
with a trimming configuration that leads to one isolated light control point highlighted in red (P1). As can be seen,
this isolated light control point has only light or inactive control points in both control grid directions. Therefore,
the stable adjacent control points of the neighboring light control points P2 and P8 are, together with a suitable
extrapolation, used to determine the virtual reference point P′1. This is indicated by red dotdashed lines in Figure 5.10.
The bonnet reinforcement structure in Section 7.3.3 includes isolated light control points, successfully stabilized via
stable control points of neighboring light control points.

Isolated light control point P1

Virtual reference point P′1

P2
R1,4 = P8

R1,1

P2P8

P2
R2,4

P8
R2,1

Figure 5.10: Trimmed double curved shell with five small trimmed elements and six normal light control points
highlighted in orange, and one isolated light control point P1 highlighted in red. This control point has only light
(orange) and inactive control points (dark gray) in both control grid directions. The virtual reference point P′1 is defined
by a suitable linear extrapolation from the stable adjacent reference control points (P2

R1,4 = P8
R1,1, P2

R2,4 and P8
R2,1) of

the neighboring light control points P2 and P8, as indicated by red dotdashed lines.

Remark 5.3: Also other reference estimation approaches are imaginable. One possibility would be to compute the
reference position directly as the mean value of adjacent stable reference control point positions. However, this
would result in a less accurate estimation, especially in large deformation scenarios, and no significant gain in
computational time, since determining adjacent control points and computing initial distances is only performed
once during the preprocessing step. Another possibility would be to choose an arbitrary point on the NURBS surface
of the trimmed element and to solve the surface equation (2.7) for the position of the light control point. Although
this seems to be more accurate at the first glance, solving the surface equation for the light control point position is
again an ill-conditioned problem, which could again result in a bad reference estimation. Furthermore, no reference
rotation can be computed in this way.

5.3.5 Determination of control point specific penalty factors

The next step is the determination of a specific penalty factor for each light control point. Specific penalty factors are
required for two reasons. First, in order to achieve an effective stabilization, one has to ensure that the (generalized)
force acting on the light control point is high enough and in the approximate range of other acting control point
forces from shell and B-Rep elements. This is because the acceleration of a stabilized light control point is computed
as

an
A = M

−1

A

�

f
ext,n

A − f
int,n

A + f
B-Rep,n

A + f
stab,n

A

�

. (5.18)

with the light control point stabilization force f
stab,n

A . The stabilization would be without effect, if the stabilization
force was much lower than the forces coming from shell and B-Rep elements. Second, the penalty factor must also
not be too high, since the introduced stiffness would affect the critical time step of the system in explicit analysis.
Thus, for an effective stabilization that does not impair the critical time step of the system, a specific and accurate
penalty factor estimation for each light control point is crucial.
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5.3 Penalty-based light control point stabilization

From Eq. (5.2) it is clear that the level of shell element forces depends on the size of the trimmed element. Therefore, a
measure for the size of the trimmed element related to the light control point seems reasonable for the penalty factor
estimation. Also the lumped light control point mass (see Eq. (5.1)) as a secondary quantity directly proportional to
the trimmed element mass could be used to estimate the light control point penalty factor. However, this would not
consider the influence of B-Rep elements and the size of the B-Rep penalty factors in Eq. (5.18). A better quantity
considering all these effects, except for external loads, is stiffness.

The task is now to compute a control point related stiffness value from the overall stiffness matrix. One could use
the diagonal stiffness entry of the light control point, but this would be a strong underestimation since it disregards
the coupling entries to other control points. A better choice that considers these coupling entries is to compute a
lumped stiffness matrix similar to the lumped mass matrix via row summing of absolute values as

K̃Ai Ai =
∑

B , j

|KAi B j |, (5.19)

where the indices i , j = {1, 2, 3, 4, 5, 6} represent the three translational {1, 2, 3} and rotational {4, 5, 6} entries. Since
the support of NURBS basis functions is local, only a local stiffness matrix considering the control points related to
the light control point A needs to be generated in the preprocessing step, which is computationally inexpensive. The

specific penalty factors for the translations β̃disp
A and rotations β̃ rot

A for light control point A are then computed as the
mean value of the three corresponding stiffness entries

β̃
disp
A =

1

3

3
∑

i=1

K̃Ai Ai , (5.20)

β̃ rot
A =

1

3

6
∑

i=4

K̃Ai Ai . (5.21)

To sum up, the individual light control point penalty factors for translations and rotations can now be computed via
local stiffness matrices considering shell and B-Rep elements. This ensures the correct amount of stabilization for all
light control points with masses and stiffnesses varying by several orders of magnitude.

The final penalty factors for translations and rotations are then computed as

β
disp
A = β̄ β̃disp

A , (5.22)

β rot
A = β̄ β̃ rot

A , (5.23)

where β̄ is a global penalty factor used to adjust the intensity of the stabilization.

5.3.6 Local mass scaling of light control points

Introducing a penalty stiffness between light control points and their stable adjacent control points can be seen
as a kind of preconditioning for small entries in the stiffness matrix. Since the system matrix in dynamic problems
is M−1 K , conditioning the mass matrix via local scaling of translational and rotational light control point masses
also seems reasonable2. For explicit dynamic analysis, this localized mass scaling has two important effects: (i)
it avoids a reduction in time step size due to the introduced stabilization stiffness and (ii) it reduces the error
amplification effects from forces to accelerations in Eq. (5.18), caused by extremely small control point masses M A .
It should be noted that excessive mass scaling would impair the effectiveness of stabilization techniques for highly
dynamic simulations, because of excessively high inertia effects, i.e. a high mass in combination with unaltered
forces/moments in Eq. (5.18) would lead to very low accelerations.

The scaled translational and rotational masses, see Eqs. (2.34) and (2.35), of a light control point A in M(i )
li are then

computed as

M̂A =MA f s+M (i )
ε (5.24)

ĴA = JA f s+ J (i )ε , (5.25)

in which f s is a constant mass scaling factor in the range of 10–100. Since light control points can have arbitrarily
small mass, the terms M (i )

ε and J (i )ε add extremely small translational and rotational masses ensuring that even

2 Please note that in explicit analysis neither the stiffness nor the mass matrix is actually constructed. Here, matrices are only used to
interpret the stabilization measures in a standard (implicit) FEA context.
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5 Stabilization of small trimmed elements / light control points

the lightest control point possesses a minimum amount of inertia. This yields extra numerical robustness. These
contributions are defined as

M (i )
ε =m (i )

th εl (5.26)

J (i )ε = κ
h 2

12
m (i )

th εl, (5.27)

where εl is a small constant of order O(10−6)–O(10−9) (for the definition of rotational inertia see also Eq. (2.35)). As
can be seen, these contributions are by magnitudes smaller than the threshold mass m (i )

th below which control points
are considered as light control points and thus only have an effect on the lightest control points.

In conclusion, it should be noted that mass scaling is only applied to light control points, whose mass is inherently
very low, see Eq. (5.10), and thus even large scaling factors f s hardly influence the overall model mass and solution.

5.3.7 Penalty-based stabilization constraints

In Section 5.3.4 above, a virtual reference point is defined for each light control point, based on position and rotation
of stable adjacent control points. In this section the actual constraint formulation between virtual reference points
and light control points is presented along with the corresponding derivatives required to compute control point
forces/moments and stiffness.

Translational constraints

Constraints on translational DOFs can be defined in different ways. The first possibility would be to enforce the
coordinates of the light control point to be the same as the coordinates of the virtual reference point, i.e. g A,disp =
xA −x ′A = 0. This formulation would successfully constrain the light control point to its reference, thereby avoiding
extremely large displacements, velocities and accelerations. However, one has to note that the reference position is
only an estimation of the actual light control point position, even in the initial state. The quality of this estimation
depends on mesh refinement and surface curvature, see Figure 5.9. Due to the initial distance between the virtual
reference point x ′A and the light control point xA , this constraint formulation leads to initial stabilization forces and
consequently to initial stresses in the model.

To avoid these initial stresses, the initial distance between the virtual reference point and the light control point
(X A−X ′A) is subtracted from g A,disp, leading to constraints on the displacements rather than on the absolute positions:

g A,disp = (xA −x ′A)− (X A −X ′A) = (uA −u ′A) (5.28)

This means that the light control point is enforced to have the same displacement as the virtual reference point, instead
of the same position. Inserting Eqs. (5.14) and (5.15) into Eq. (5.28) and expressing all quantities via displacements
finally yields the displacement constraint

g A,disp = uA −
1

n A
d

n A
d

∑

k=1

uA
R1,k + (u

A
R1,k −uA

R2,k )
L A

1,k

L A
12,k

. (5.29)

For the computation of control point forces and stiffness matrices in Eqs. (5.8) and (5.9), constraint derivatives with
respect to the displacement vector d are required. From Eq. (5.29) it can be seen that the only non-zero derivatives
are with respect to the light control point A, and the stable adjacent reference control points PA

R1,k and PA
R2,k . This

is consistent with the fact that stabilization forces are only applied to control points involved in the constraint
formulation. The constraint derivative matrix containing only the non-zero entries can be written as

∂ g A,disp
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The individual non-zero constraint derivative matrices can be computed as
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, (5.31)
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Based on this, the constraint stiffness matrix3 for light control point A, exemplarily shown for a light control point
with only one stable direction k , can then be written as

K A,disp =βdisp
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with
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Rotational constraints

For stabilization constraints on rotational DOFs, considerations on initial stresses as for translational DOFs are not
applicable because the initial rotations are zero anyway. Therefore the rotational constraints are defined as

g A,rot = θA −θ ′A . (5.37)

Inserting Eqs. (5.16) and (5.17) into Eq. (5.37) then yields

g A,rot = θA −
1

n A
d

n A
d

∑

k=1

θR1,k . (5.38)

To compute stabilization moments and stiffness, corresponding constraint derivatives are again required. For the
rotational constraints only the derivatives with respect to the light control point rotation θA and the reference control

3 The constraint stiffness matrix is required for the time step estimation via the maximum system eigenvalue and to demonstrate that the
overall stiffness matrix remains symmetric and positive semidefinite, which is a prerequisite for stability as shown in Section 5.4 below.
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point PA
R1,k are non-zero. This leads to the following constraint derivative matrix containing only the non-zero entries:
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with the individual constraint derivative matrices
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The corresponding stabilization stiffness matrix, again for a light control A with only one stable direction k , can be
computed as

K A,rot =β rot
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5.4 Numerical stability and time step estimation

In Section 2.9.3, the stability condition for the explicit central difference scheme is derived in order to compute
the critical time step size. It is furthermore shown that this stability condition relies on two premises: (i) use of a
Rayleigh damping matrix and (ii) symmetry and positive semidefiniteness of M and K . Thus, in order for the stability
condition to remain valid along with the presented stabilization technique, both premises still need to be fulfilled.
This shall be shown in this section.

Since the proposed stabilization method does not introduce damping, premise (i) is irrelevant and only the validity
of premise (ii) for M and K remains to be shown. From Eq. (5.24) one can see that only existing mass entries of
the lumped mass matrix are scaled, which means that the mass matrix remains diagonal and thus automatically
symmetric. Furthermore, all mass entries remain positive and therefore M also remains positive-definite. From
Eqs. (5.8), (5.34) and (5.42), it can also be seen that the translational and rotational stabilization stiffness matrices
for a light control point are symmetric. Because these stiffness matrices are added to the shell and B-Rep element
stiffness matrices, the total stiffness matrix K remains symmetric. Positive semidefiniteness of K A,disp ∈Rn×n and
K A,rot ∈Rn×n in the form

K A =β

�

∂ g

∂ d

�T
∂ g

∂ d
, (5.43)

can be shown by applying Theorem 3.1 from Section 3.5.1 in a similar manner: Pre-multiplying Eq. (5.43) with z T

and post-multiplying with z along with some reordering yields:
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where the vector b = ∂ g
∂ d z and the identity matrix I is introduced. Since b T I b ≥ 0 is automatically fulfilled for any

vector b , K A is positive semidefinite as long as β ≥ 0. Thus, also the total stiffness matrix K remains symmetric and
positive semidefinite, and the stability condition (2.67) remains valid.

To conclude, this section shows that the stability condition and the corresponding time step estimations are further
on applicable to models stabilized with above presented approach.

5.5 Error measures

In order to quantify the effectiveness of the proposed stabilization method for the numerical examples in Chapter 7
and Section 5.6, error measures for light control point translations and rotations are introduced. In addition to the
assessment of the stabilization method, these error measures can also be used to quantify the behavior of light
control points without stabilization.

The goal of the stabilization method is to prevent light control points from causing numerical problems by con-
straining their displacements and rotations to those of an estimated virtual reference point. Integrating the con-
straints g A,disp and g A,rot into the error measures in one way or another therefore seems obvious. To obtain one
scalar error measure for displacements respectively rotations, the vector-valued constraints are considered via their
Euclidean norm and summed up. The error measure for light control point displacements is then defined as

e disp =
∑

A

‖g A,disp‖
lmax nlcp

=
∑

A

‖(uA −u ′A)‖
lmax nlcp

. (5.45)

To achieve a comparable error measure, e disp is normalized with the maximum element length lmax and the number
of light control points nlcp. The error measure for light control point rotations is defined in a similar manner as

e rot =
∑

A

‖g A,rot‖
2πnlcp

=
∑

A

‖(θA −θ ′A)‖
2πnlcp

, (5.46)

where e rot is again normalized with nlcp and a rotation angle of 2π.

5.6 Minimal numerical examples

In this section, the trimmed single-patch and the trimmed multi-patch cantilever beam examples with light control
points from Section 5.2 are solved with the stabilization method proposed in Section 5.3. Results with and without
stabilization are compared visually and by means of the error measures introduced in the previous section. More
sophisticated numerical examples with stabilized light control points are solved in Chapter 7.

5.6.1 Trimmed single-patch cantilever beam

Here it shall be shown that the proposed stabilization method allows solving the trimmed single-patch cantilever
beam (one row of light control points) from Figure 5.5a without numerical instabilities. Figure 5.11 provides a
comparison between the results without and with stabilization. The unstabilized configuration in Figure 5.11a
shows large light control point displacements, which causes the simulation to terminate prematurely after around
2.45× 10−3 s. The stabilized configuration in Figure 5.11b, on the other hand, shows correct light control point
displacements and no premature termination. This is also clearly visible in the error measures for displacements and
rotations in Figure 5.11c. The normalized displacement and rotation errors of light control points for the unstabilized
configuration are high from the beginning of the simulation with values of around 101 and 102, respectively. This
means (i) that the average displacement difference of a light control point from its estimated reference displacement
is around 101 times the maximum element length and (ii) that the average rotation difference of a light control point
from its estimated reference rotation is around 102×2π. At around 2.0×10−3 s the simulation becomes unstable and the
errors increase drastically, before the simulation finally aborts. The stabilized configuration, on the contrary, shows
relatively low and consistent displacement and rotation errors of approximately 10−4 and 10−2, respectively, without
instabilities. For the stabilization, control points are considered as light control points if their mass is Cth = 10−2 times
smaller than the heaviest control point in the patch, see Eq. (5.10). A global penalty factor of β̄ = 0.1, see Eqs. (5.22)
and (5.23), and a local mass scaling factor of f s = 10, see Eqs. (5.24) and (5.25) are used. Both configurations are
solved with the same initial time step size, i.e. the time step size estimated by LS-DYNA times a safety factor of 0.9.
This shows that the proposed stabilization scheme does not affect the critical time step size.
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Figure 5.11: Trimmed single-patch cantilever beam: Comparison of deformed shapes obtained from simulations
without (a) and with stabilization (b), where the color plots indicate z -displacements. Light control points are
highlighted in orange, inactive control points in dark gray and trimmed control points in blue. Inactive control
points are visualized in their initial configuration. The corresponding displacement and rotation error measures are
depicted in (c). For the stabilization a global penalty factor of β̄ = 0.1 and a local mass scaling factor of f s = 10 are
used. The stabilized configuration shows the desired behavior without instabilities.

5.6.2 Trimmed multi-patch cantilever beam

The trimmed multi-patch cantilever beam from Figure 5.7 with one row of light control points in each patch is now
also solved with the proposed stabilization method. The results with and without stabilization are compared in
Figure 5.12. The unstabilized configuration in Figure 5.12a shows large light control point displacements and a kink
between the patches due to affected coupling conditions. The unstabilized simulation terminates prematurely at
around 3.94×10−3 s. The stabilized configuration in Figure 5.12b, on the contrary, shows light control points at the
desired position and continuously coupled patches without instabilities. The error measures in Figure 5.12c clearly
confirm these observations. For the unstabilized configuration, the displacement error seems to be quite constant at
the beginning, while the error in the rotations increases steadily. After around 2.0×10−3 s also the displacement error
increases significantly until the simulation becomes unstable at around 4.0×10−3 s, indicated by the sudden rise of
errors towards infinity. The errors of the stabilized configuration show the expected stable behavior with relatively
low consistent error values of around 10−4 to 10−3 over the entire simulation time. For the stabilization, the same
parameter setting as above is used (Cth = 10−2, β̄ = 0.1 and f s = 10). As in the previous example, both configurations
are solved with the same initial time step size, again indicating that the stabilization scheme does not affect the
critical time step size.

116



5.7 Summary and conclusion of Chapter 5

To sum up, the proposed stabilization scheme enables stable simulations of examples with small trimmed elements
and light control points that previously showed unstable behavior. Furthermore, no additional restriction in time
step size is observed for the stabilized examples.
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(c) Displacement and rotation error measures over time.

Figure 5.12: Trimmed multi-patch cantilever beam: Comparison of the deformed shapes obtained from simulations
without (a) and with stabilization (b), where the color plots indicate z -displacements. Light control points are
highlighted in orange and trimmed control points in blue. The corresponding displacement and rotation error
measures are depicted in (c). For the stabilization a global penalty factor of β̄ = 0.1 and a local mass scaling factor of
f s = 10 are used. The stabilized configuration shows the desired behavior without instabilities.

5.7 Summary and conclusion of Chapter 5

This chapter deals with numerical instabilities in explicit dynamic isogeometric analysis caused by small trimmed
NURBS elements and proposes a corresponding stabilization approach.

Section 5.2.1 first explains that small trimmed elements lead to control points with very low mass and stiffness
entries – thus the designation light control points. Section 5.2.2 then describes that ill-conditioned mass and stiffness
matrices are not the actual problem in explicit analysis, in which no equation systems are solved. The problems are
in fact (i) the extreme amplification of inevitable inaccuracies in the force evaluation by extremely large inverse mass
entries and (ii) the low stiffness and thereby loose connection between light control points and the material domain
of the shell that hardly restricts the movement of light control points. Section 5.2.3 demonstrates that numerical
instabilities caused by light control points propagate to adjacent control points, most likely leading to useless results
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5 Stabilization of small trimmed elements / light control points

or premature termination due to overflow errors. Section 5.2.4 shows that light control point instabilities are not a
matter of time step size, because even a time step reduction of magnitudes cannot prevent this instability to occur.
Light control points rather cause the system to be only weakly stable, with instabilities evolving over simulation time.
Section 5.2.5 furthermore demonstrates that the unstable behavior of light control points can also affect the quality
of weak coupling conditions, clearly shown by a kink between coupled patches.

In Section 5.3, a stabilization scheme for light control points is proposed. This method tackles both aforementioned
problems induced by light control points: (i) local mass scaling of light control points reduces the amplification effect
of inaccuracies from forces to accelerations via lower inverse masses and (ii) penalty-based constraints introduce
translational and rotational stiffness between light control points and stable adjacent control points to restrict
uncontrolled light control point movement.

Section 5.4 shows that the requirements of symmetry and positive semidefiniteness on the system matrices for the
stability condition are not violated by the stabilization. This allows using stable time step estimations based on the
maximum system eigenvalue.

In Section 5.5, appropriate displacement and rotation error measures are introduced to quantify unstable behavior
and the effectiveness of the stabilization.

The two minimal numerical examples in Section 5.6, a trimmed single-patch and a trimmed multi-patch cantilever
beam including light control points, demonstrate that the proposed stabilization scheme is indeed able to eliminate
the instability effects of light control points, allowing for reliable simulations without a restriction in time step size.

The advantages of the proposed stabilization approach are the following:

• Compatible with weak coupling and boundary conditions along trimmed edges.

• Computationally efficient, i.e. no time step restriction and low numerical effort.

• A non-intrusive implementation as an add-on to existing solver environments.

• Although originally designed for Reissner-Mindlin shells with rotational DOFs, the stabilization scheme is
universally applicable to other shell and even solid element formulations.

• Simple implementation for 2D shell and even 3D solid problems.

• Compared to the virtual domain with low density in FCM, no additional integration points are required.

The drawback of this penalty approach is the required definition of (i) a threshold value below which a control
point is considered as a light control point, (ii) a penalty factor and (iii) a local mass scaling factor. Nevertheless, the
somehow heuristic identification of problematic control points, nodes or elements is, and will be required for most
stabilization approaches, see the overview in Section 5.3.2. Furthermore, similar parameter settings could be used
for the examples solved within this thesis.
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Chapter 6

Integrated IBRA-based CAD/CAE process

The overall goal for developing Explicit IBRA is to speed up the virtual development process (for vehicle safety)
via a full integration of CAD and CAE. Certainly, this requires a consistent data structure for design and analysis,
well-matched interfaces and consistent bidirectional data transfer throughout the entire process. This chapter
presents a prototypical implementation of such a design process, demonstrating the possibility to fully connect
professional CAD and CAE software based on a smart and sophisticated exchange format. In particular, this closed
design process establishes a bidirectional connection between the CAD program Rhinoceros [116] and the FEA solver
LS-DYNA [45] via their corresponding application programing interfaces (APIs) and the IBRA exchange format [52],
see Figure 6.1. The most distinguishing aspects of this process are:

1. The fact that geometry and topology information is used throughout the entire process. This enables the
automatic definition of coupling conditions along edges and vertices.

2. The consistent feature-based data structure that allows identifying CAD features like holes, cut-outs, beadings
or trimmed edges as such also in the analysis model. This data structure also allows to assign analysis-related
information like material properties or boundary, coupling and loading conditions to features and not to
individual nodes or elements as in FEA. This is a particular advantage within the various design cycles of a
product development process because the same properties, coupling, boundary or loading conditions can be
automatically assigned to the same features regardless of whether the model or the underlying discretization
has changed.

3. The possibility to perform all design, pre- and postprocessing steps within the CAD environment.

The following sections are dedicated to different parts of this process and provide more implementation-specific
information.

IBRA
Exchange Format

Geometry

Solutions

Physics and
Material

B-Rep elements
Light control point stabilization

Local selective mass scaling
User integration points

LS-DYNA

IBRA
User Interface

Explicit/Implicit
IGA Solver

Explicit IBRA &
Translation Script

CAD

Rhinoceros

CAD Postprocessing

CAD Preprocessing

Integration
Domains

CAD-Analysis
Preprocessing

Analysis data

Solution data

Figure 6.1: Closed design-analysis process: Prototypical implementation based on the IBRA exchange format. Figure
taken from [54] in a slightly modified form.
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6.1 CAD environment for design, pre- and postprocessing

Starting point for the development process shown in Figure 6.1 is the generation of a suitable B-Rep model in CAD.
Since IBRA allows using NURBS-based B-Rep models for structural analysis, it is expedient to extend the scope of the
CAD software from pure geometrical modeling to analysis-related pre- and postprocessing capabilities. Through
this combination of design and analysis tools, switching between three different software environments for CAD,
preprocessing and postprocessing can be avoided.

The design process presented within this thesis uses the already existing IBRA pre- and postprocessing plug-in TeDA
(Tool to enhance Design by Analysis) [74] for the CAD system Rhinoceros [116], see Figure 6.2 and [30, 32, 52]. TeDA
allows to refine the B-Rep model (knot insertion, p -refinement, k -refinement), to apply different types of boundary
and loading conditions, to extract geometry and topology information and to finally output the required data in a
suitable exchange format, see the following section, all within the CAD environment.

After the analysis, TeDA is able to read the Solution files and to visualize results on control point or integration point
basis on the deformed shape directly in the CAD system. Necessary design modifications can then be directly applied
to the B-Rep model and within the CAD environment. With classical FEA, design modifications are either made on
the FE model only, which results in unsynchronized models for design and analysis, or on the CAD model, which
then requires to generate the FE model from scratch again. As shown in [30, 32, 52], such a pre- and postprocessing
environment can also be established in other CAD systems.

Figure 6.2: CAD environment for design, pre- and postprocessing: TeDA in Rhino.

6.2 IBRA exchange format

More important than the tools eventually used within the design process is a consistent data structure. The design
process presented here relies on the IBRA exchange format proposed by Teschemacher et al. [52]. This format is based
on the JavaScript Object Notation (JSON) and comprises all information required for Isogeometric B-Rep Analysis of
trimmed multi-patch NURBS models. Besides geometry and topology information of the B-Rep model, this includes
information on integration domains, boundary and loading conditions, material properties, and analysis results.
Figure 6.3 provides a brief overview on the four data containers Geometry, Integration Domains, Physics and Material,
and Solutions. Within this format, each entity is identified by a unique id, enabling a clear relation between geometric,
topologic and analysis-related entities.

Another characteristic of the IBRA format are the multiple data extraction levels reaching from pure CAD data
like geometry and topology information to integration points and evaluated basis functions, see Figure 6.4. These

120



6.3 Solver with IBRA interface

different levels allow a flexible data extraction depending on the IGA capabilities of the solver. That is, for an advanced
IGA solver it is sufficient to only extract geometry and topology data. For a standard FEA solver that does not know
NURBS, one would extract already evaluated basis function values. Via TeDA, typical CAD data can be directly read
from the CAD system and written to the Geometry container. For analysis-related data like integration points or
basis function values in the Integration Domains container, on the other hand, an additional preprocessing step is
required. In the present workflow this so-called CAD-Analysis Preprocessing step (see Figure 6.1) is performed by the
solver CARAT++ [154] developed at the Chair of Structural Analysis at the Technical University of Munich.

A detailed description of the IBRA exchange format can be found in the corresponding open access paper [52]. The
specific data extracted for usage in LS-DYNA within the present process is described in the following section.

Geometry

Solutions
Physics and
Material

Integration
Domains

faces

edges [topology information]

surfaces [degrees, knot vectors, control points]
boundary loops loop type

trimming curves [degree, knot vector, control points]

vertices [topology information]

control points [coordinates, weights]
2d elements [degrees, local knot vectors, control points, integration points (location, weight)]
b-rep elements id of coupled 2d elements

integration points [location master/slave patch, edge el. tangents, weight]

boundary conditions

material properties

solver-specific parameters

on control points (kinematic quantities,...)

on integration points (stresses, strains,...)

Figure 6.3: The IBRA exchange format: Essential file information [54].
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Figure 6.4: The IBRA exchange format: Overview on the different data extraction levels reaching from pure CAD (left)
to full analysis data (right). Figure taken from [52] in a slightly reduced form.

6.3 Solver with IBRA interface

A solver for explicit dynamic crash analysis on trimmed B-Rep models must (i) be able to handle trimming, and to
couple trimmed NURBS shells, and (ii) provide crash-relevant capabilities like explicit time integration, elasto-plastic
material behavior and contact for IGA. Explicit IBRA achieves this by combining the patch coupling capabilities
of IBRA with the already available crash-related features for IGA in LS-DYNA. At the time this thesis was started,
the IGA functionality in LS-DYNA included: isogeometric shell and solid elements, various NURBS-based shell
formulations [44, 73, 77], trimming [43], basically all standard material models, and contact for both implicit and
explicit analysis as well as mass scaling for explicit IGA [14]. More information regarding the current IGA capabilities
in LS-DYNA can be found in [78–80]. Referring to the different data levels of the IBRA exchange format described in
the previous section, this means that LS-DYNA is able to process data on CAD level, i.e. it is sufficient to provide knot
vectors, degrees, control point coordinates and trimming curve definitions of patches. Without further input, this
information allows for the analysis of single-patch models and multi-patch models with matching discretization.
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However, for general B-Rep models with trimmed patches and non-matching discretization, the solver must also be
able to first process topology information, e.g. which faces need to be joined along which edge, and then to actually
couple those faces/patches during analysis.

To achieve this, a B-Rep edge element formulation is prototypically implemented via the LS-DYNA user interface. The
implementation of this B-Rep edge element can be divided into two parts: The first part is basically data processing,
the second part is the implementation of the actual element formulation according to Section 3.3 and Section 3.4.
The crucial aspects for the generation of B-Rep edge elements are the appropriate definition of their spatial extent
and the determination of integration point locations on the master and slave patch via closest point projections in
the geometry space. In the workflow presented here, B-Rep edge elements are entirely generated in the CAD-Analysis
Preprocessing step including data on integration point and basis function level. The Explicit IBRA & Translation
Script depicted in Figure 6.1 and implemented in Python [155] processes this data and translates it into an LS-DYNA
readable input file. The resulting input for a fully defined B-Rep edge element implemented via the LS-DYNA user
interface is given in Table 6.1. As can be seen, integration point weights and even evaluated basis function (derivative)
values are provided. This kind of input is indeed not optimized for efficiency and thus not suitable for industrial
applications, but keeps the implementation in the LS-DYNA Fortran user interface simple. It is furthermore worth
noting that topology information is implicitly contained via the declaration of master and slave control point ids.

The Explicit IBRA & Translation Script also performs the preprocessing steps for the light control point stabilization,
the local selective mass scaling scheme and the user-defined integration points. The latter enables using any kind
of integration procedure, such as the AGIP [32] described in Section 2.7, in LS-DYNA. These three features are
implemented via the LS-DYNA user interface as well. The corresponding input data are provided in Tables 6.2, 6.3
and 6.4.

Variable # Entries Description

brform 1 B-Rep edge element formulation
("0": Coupling condition, "1": Dirichlet boundary condi-
tion, "2": Neumann boundary condition)

pen 1 Penalty factor α
(for brform= "0" and "1" only)

dofs 6 Active DOFs {x , y , z , r x , r y , r z }
("0"/"1" for active/inactive)

vars 6 Prescribed values {x , y , z , r x , r y , r z }
(float values, for brform= "1" and "2" only)

nm, ns 1, 1 Number of master and slave control points

cpidm, cpids nm, ns Ids of master and slave control points

nip 1 Number of integration points (IPs)

wgts nip Integration point weights w̃k including J̃2

shpm, shps nm×nip,
ns×nip

Master and slave basis function values at IPs
N m

A (ξk ,ηk ), N s
B (ξk ,ηk )

dshpmdxi, dshpmdeta,
dshpsdxi, dshpsdeta

nm×nip,
ns×nip

Master and slave basis function derivatives at IPs
∂ N m

A

∂ ξ

�

ξk ,ηk

�

,
∂ N m

A

∂ η

�

ξk ,ηk

�

,
∂ N s

B

∂ ξ

�

ξk ,ηk

�

,
∂ N s

B

∂ η

�

ξk ,ηk

�

tm1, tm2 nip, nip Trimming curve tangent vector t̃ on master side at IPs

Table 6.1: Input for B-Rep edge elements implemented via the LS-DYNA user interface.
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6.3 Solver with IBRA interface

Variable # Entries Description

spen 1 Stabilization penalty factor β (global)

msf 1 Mass scaling factor f s for light control points

nlcp 1 Number of light control points (LCPs)

lcpid nlcp Ids of light control points

nscp nlcp Number of stable adjacent control points per LCP

scpid
∑nlcp

A=1(nscpA) Ids of stable adjacent control points

spent nlcp Control point specific stabilization penalty factor β̃disp
A

(translations)

spenr nlcp Control point specific stabilization penalty factor β̃ rot
A

(rotations)

Table 6.2: Input for the light control point stabilization scheme implemented via the LS-DYNA user interface.

Variable # Entries Description

ncpt 1 Number of control points with mass scaling (translational
mass)

ncpr 1 Number of control points with mass scaling (rotational
mass)

cpidt ncpt Ids of control points with mass scaling (translational mass)

cpidr ncpr Ids of control points with mass scaling (rotational mass)

msft ncpt Control point specific mass scaling factor f disp
A (transla-

tional mass)

msfr ncpr Control point specific mass scaling factor f rot
A (rotational

mass)

Table 6.3: Input for the local selective mass scaling scheme implemented via the LS-DYNA user interface.

Variable # Entries Description

npid 1 NURBS patch id

nel 1 Number of elements per patch

niptot 1 Total number of integration points per patch

nip nel Number of integration points per element

ipr niptot Integration point ξ-coordinate

ips niptot Integration point η-coordinate

wgt niptot Integration point weight w̃k including J̃2

Table 6.4: Input for the definition of user integration points in LS-DYNA.
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6 Integrated IBRA-based CAD/CAE process

6.4 Isogeometric analysis-aware modeling

Achieving a real benefit from an integrated IBRA-based CAD/CAE process does not only require appropriate tools,
but also an appropriate and analysis-aware CAD modeling technique. The latter term analysis-aware CAD modeling
technique is not restricted to recommendations on the parametrization of surfaces like maximum polynomial degree,
minimum element size or continuity as discussed later in Section 7.3.1. It is rather concerned with the way how CAD
models are generated and structured with regard to subsequent isogeometric analyses.

As already mentioned in the introduction chapter of this thesis, within industrial applications, the design and the
analysis model will barely be completely identical, although theoretically possible with IGA. The three main reasons,
in the author’s opinion are:

• The design and the analysis model serve different purposes, each of which favors a slightly different model
description. While design models need to exhibit all details necessary for collision analysis and subsequent
manufacturing, analysis models require a parametrization that yields good approximation quality and an
acceptable time step size in explicit analysis.

• In industrial CAD, even thin sheet metal components are modeled as hollow B-Rep volume models, i.e. as a
volume only represented by its exterior surfaces. To make full vehicle (crash) simulations computationally
feasible, body-in-white (BIW) components are commonly modeled as shell structures represented by the
component’s midsurface. Simply because of that reason, the design and the analysis model will already differ.

• In case components are not modeled as dimensionally reduced shells in the analysis, but as solids, the genera-
tion of a trivariate volume description from the hollow B-Rep model is required1. In that case the boundary
representation may remain the same, but the model is enhanced with an additional volume discretization.
Several approaches for generating trivariate spline-based solid descriptions from B-Rep models are proposed
in the literature. These approaches may use immersed methods and structured spline technologies (for the
Finite Cell Method see for instance [42] and for V-Reps see [156]) or boundary fitted (unstructured) spline
technologies like T-splines, see [157].

Thus, simply because of these reasons, performing analysis directly on the CAD models we know today is not feasible.
However, CAD/CAE integration is not about using only one model for design and analysis. It is rather about using the
same design parameters, the same data base, the same feature-based modeling paradigm and about maintaining the
connection between design and analysis instead of creating a “dead” and independent analysis model. In that sense,
the concept of immersed methods suggests itself since it allows using the same feature-based data structure based
on boolean trimming operations. By using immersed methods, either analysis-suitable midsurface shell models or
trivariate solid models in active parametric relation to the actual B-Rep design model can be provided as a layer
and result of the design process. Ideally, modifying the B-Rep design model, for instance changing the position or
diameter of a hole, or the shape of a surface, would automatically update the analysis model.

For isogeometric B-Rep analysis on shells in particular, the design engineer would provide the midsurface right away
with the actual B-Rep design model as an associated offset of either the outer or inner surface and perform the same
boolean trimming operations on both descriptions. For most of the BIW components, the midsurface is uniquely
defined and can thus be generated automatically in the CAD program. In this way, also many problems encountered
with the post hoc construction of midsurfaces in probably different CAD kernels of postprocessors could be avoided.
For isogeometric solid analysis, for instance using the isogeometric Finite Cell Method [42], the B-Rep model can be
directly used as a “trimming surface” to define the analysis domain within a trivariate bounding box discretization.

Design modifications motivated through analysis results would then not be applied on the FEA model as done now,
but right on the B-Rep model, maintaining synchronicity between the design and analysis model. Immersed models
with a feature-based data structure independent of the underlying surface description would furthermore allow
applying boundary conditions and connections between components directly on features such as holes or boundary
edges uniquely identified by ids. In case design parameters are changed, these conditions and connections could
be automatically applied to the same features. In current FEA models this is not possible (since such conditions
are often applied to individual nodes that change if the mesh changes), unless the preprocessor includes a kind of
feature detection algorithm and is able to artificially add metadata to the analysis model.

Such an analysis-aware modeling paradigm also considering guidelines w.r.t. the model discretization as proposed
in Section 7.3.1, of course requires a little more effort (around 5–20 % as estimated by a BMW design engineer) in the
geometric design phase, but will save a lot of time during the model generation process, currently taking several
weeks for each of the multiple design phases.

1 This step is aptly denoted as model completion in [17].
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6.4 Isogeometric analysis-aware modeling

The integrated CAD/CAE process based on isogeometric B-Rep analysis presented in this thesis is focused on shell
structures. However, it should again be noted that the concept behind IBRA and the integrated CAD/CAE process
is not restricted to shells, and can thus also be extended to solid models – this would yield a complete solution for
practical applications.
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Chapter 7

Numerical examples

The numerical examples in this chapter aim at demonstrating the validity of the developments and findings presented
within this thesis, in particular:

• The novel penalty-based B-Rep element formulation for Reissner-Mindlin shells with rotational DOFs;

• The enhanced B-Rep element formulation including constraints on the shell normals;

• The influence of penalty-based coupling and boundary conditions on the critical time step;

• The penalty-based light control point stabilization scheme;

• The local selective mass scaling approach for B-Rep elements.

To this end various benchmark problems reaching from linear elastic quasi-static to highly nonlinear dynamic
elasto-plastic cases including contact are solved. Finally, the applicability of the proposed Explicit IBRA framework
to industrial problems is demonstrated through explicit dynamic analysis of actual BMW vehicle component models.

For clarity, the examples solved in this chapter are categorized into (i) small deformation problems (Section 7.1), (ii)
large deformation problems solved with light control point stabilization and the enhanced B-Rep element formulation
(Section 7.2) and (iii) industrial problems (Section 7.3).

All models are generated with the workflow presented in Chapter 6 (Rhino – TeDA – Python – IBRA exchange format
– LS-DYNA) and solved with LS-DYNA. IGA results are either visualized on the actual deformed NURBS geometry via
TeDA in Rhino or on an auxiliary background finite element mesh via the postprocessor Animator [158]. The latter is
also used to visualize FEA results.

Unless otherwise stated, all problems in this chapter are solved with (i) explicit dynamic analysis in LS-DYNA [45],
(ii) the Reissner-Mindlin shell with rotational DOFs proposed in [73], (iii) (p +1)× (q +1) in-plane integration points
for untrimmed elements, (iv) specific integration rules for trimmed element determined by the AGIP [32, 52] briefly
explained in Section 2.7, (v) three out-of-plane integration points and (vi) one consistent penalty factor for translations
and rotations.

Within this chapter E denotes the Young’s modulus, EH the tangent modulus, ν the Poisson’s ratio, σy the yield
strength, ρ the mass density, and h the shell thickness. For better comparability, the relative penalty factor αr =α/E
is commonly used. If no units are specified, the values are provided in consistent units. Below, the term critical time
step denotes the initial critical time step of the undeformed configuration.

7.1 Small deformation examples

7.1.1 Pinched cylinder

The pinched cylinder with rigid diaphragms is a popular benchmark problem of the obstacle course for linear
shell analysis proposed by Belytschko et al. in [159]. In [73], Benson et al. solved this problem with an untrimmed
model and the same Reissner-Mindlin shell formulation used in this thesis. Solving this linear elastic benchmark
problem with trimmed multi-patch NURBS models shall confirm the correct formulation and implementation of

127



7 Numerical examples

the standard B-Rep element formulation for Reissner-Mindlin shells with rotational DOFs proposed in Section 3.3
and [54]. Solving this intrinsically static problem as quasi-static with explicit analysis shall illustrate the relation
between the penalty factor α and the critical time step size for coupling conditions; in Section 4.4 already the relation
for Dirichlet boundary conditions is presented. The following results are already published in [54].

The problem description including material, model and load parameters is given in Figure 7.1. Due to the symmetric
nature of this problem it suffices to only consider one eight of the cylinder. The corresponding symmetry and
boundary conditions along the four edges are applied in a strong sense via single point constraints. As shown in
Figure 7.1, the model is artificially split into two trimmed patches by a smaller cylinder with an axis of rotation
in z -direction through point A. These two open knot vector patches with C p−1 continuity are only trimmed by the
smaller cylinder and exhibit a discretization corresponding to 16×16 and 17×17 elements in the untrimmed case.
During analysis, both patches are coupled via standard B-Rep edge elements. In order to achieve a quasi-static
simulation, the load P is monotonically increased over a simulation time of te = 0.1.

The explicit analysis results for different polynomial degrees p = q = 2 to 5 are depicted in Figure 7.2. In Figure 7.2a,
the displacement of the load application point A (top diagram) and the corresponding critical time step size (bottom
diagram) are plotted versus the relative penalty factor αr . As can be seen from the top diagram, the displacements
for all degrees, except for the p = q = 2, converge towards the reference solution of u = 1.8248×10−5 [159] as the
penalty factor increases. The fact that the displacements for the quadratic case converge towards the solution of a
quadratic untrimmed model with 16×16 elements (p = q = 2 untr.) indicates that a finer discretization is required
to achieve the reference solution, see also [73]. Regardless of that, all solutions in Figure 7.2a almost converged for
αr = 10−1. The bottom diagram confirms the trend observed for Dirichlet boundary conditions in Section 4.4. Again,
one can consider basically two cases:

• Case I: For small penalty factors αr << α
′
r ≈ 100, the critical time step1 is independent of α, because the

introduced penalty stiffness is small compared to the shell stiffness. For this case, the time step is entirely
determined by the shell, see Eq. (4.23) in Section 4.4.1. Due to the presence of boundary elements in the model,
the time step decreases with increasing degree, cf. Section 4.1 and Section 4.2. Because of the small penalty
factor, the solution accuracy for Case I is poor.

• Case II: For larger penalty factors αr >> α
′
r ≈ 100, the time step is determined by the penalty stiffness and

decreases with a slope of −1/2 in the double-logarithmic diagram, see Eq. (4.25) in Section 4.4.1. The high
penalty factor of this case yields high solution accuracy, but small time steps.

However, there is a feasible penalty range (highlighted in light blue) between these two cases in whichα is sufficiently
high (> 10−1) to obtain accurate results and still low enough (< 101) to not or only slightly decrease the time step. This
feasible penalty range shows that explicit analyses of trimmed penalty-coupled NURBS shells can be both accurate
and, in terms of time step size, also efficient. The scaled deformed shape of a cubic NURBS model with αr = 1
is depicted in Figure 7.2b. The accurate results obtained for this example confirm the correct formulation and
implementation of the standard B-Rep element formulation.

7.1.2 Plate dynamically loaded by a uniform pressure

The intention behind this benchmark example from [160] is to examine the behavior of the penalty-based standard
B-Rep element formulation and trimmed multi-patch shell models in a highly dynamic problem including plasticity.
Moreover, this problem shall assess the applicability of the local selective mass scaling approach proposed in
Section 4.5. In [73], Benson et al. solved this benchmark problem with the same Reissner-Mindlin shell formulation
used in this thesis, but with an untrimmed model. The following results, except for the considerations regarding
mass scaling, are already published in [54].

The problem description of the simply supported plate under pressure load modeled with elastic-perfectly-plastic
material behavior (material type 3 *MAT_PLASTIC_KINEMATIC in LS-DYNA) is provided in Figure 7.3. The plate
model consists of two open knot vector patches with a discretization of 8×8 resp. 9×9 elements in the untrimmed
case and maximum C p−1 inter-element continuity. The two patches are trimmed and coupled along a B-spline curve
defined by the control points P1 = (−6,2,0), P2 = (−1,3,0), P3 = (4,1,0) and P4 = (6,−4,0), see Figure 7.3. Boundary
conditions are applied in a strong sense, i.e. by fixing the translational DOFs of the control points along the four outer
edges. The uniform pressure load is applied instantaneously at t = 0 and held constant for t > 0. Since this problem

1 For all benchmark examples in Section 7.1 and 7.2, the critical time step size is obtained via the maximum system eigenvalue and Eq. (2.67)
without damping. The computed critical time step size turned out to coincide almost perfectly with the critical time step size obtained in numerical
experiments, i.e. it is observed that only slightly larger time steps immediately cause instabilities, while time steps only a bit smaller never lead to
instabilities. There are only a few rare cases, in which the simulation finishes without instabilities for time steps larger than the computed critical
time step.
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Figure 7.1: Pinched cylinder: Problem description. The one-eight cylinder model consists of two trimmed patches
split by a smaller cylinder of radius r . Figure taken from [54].
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achieving accurate results with a reasonable time step size.
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Figure 7.2: Pinched cylinder: Analysis results for a one-eighth cylinder model consisting of two trimmed patches
with a non-matching discretization. Figure taken from [54].
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Figure 7.3: Plate dynamically loaded by a uniform pressure: Problem description. Figure taken from [54].

causes relatively small deformations, neither the enhanced B-Rep element formulation described in Section 3.4 nor
the light control point stabilization from Chapter 5 is required and applied. Thus, the problem is solved as in [54].

The simulation results for all considered degrees p = q = 2, 3, 4 are depicted in Figure 7.4. Displacement responses of
the patch center point over time for the quadratic, cubic and quartic case are shown in Figure 7.4a - 7.4c, respectively.
The solutions for different penalty factors αr = 10−3 to αr = 102 are compared with the corresponding solution of
untrimmed models with a discretization of 8×8 elements, see also [73]. The relation between the penalty factor α
and the critical time step size is depicted in Figure 7.4d, along with the deformed shape of a cubic configuration
with αr = 1. The behavior is similar for all degrees p = 2 to 4: The higher the penalty factor, the smaller the deviation
to the untrimmed reference solution. As can be seen, already the solutions for αr = 1 match the reference solution
almost perfectly such that a further increase of αr does not yield a significantly higher accuracy. However, what a
further increase of αr does yield is a decrease in critical time step size, see Figure 7.4d. As can be seen, a penalty
factor of around αr = 1 gives both accurate results and an acceptable time step size2.

Yet, the reduction in time step size can be prevented by using the local selective mass scaling approach presented
in Section 4.5. Figure 7.5 visualizes the results of this mass scaling approach applied to configurations with cubic
NURBS patches and penalty factors of αr = 10−1 and αr = 100. For both configurations, the time step size without
penalty coupling is inserted into Eq. (4.50) as the desired time step size to be achieved. For αr = 10−1 only a minor
reduction in time step size from 4.63×10−6 s (without penalty) to 3.13×10−6 s needs to be compensated by mass
scaling. As Figure 7.5a shows, this only requires scaling of a few control points which are close to the patch boundaries
and involved in B-Rep element formulations. The corresponding basis functions of these control points are boundary
basis functions (see Section 4.1) and therefore have higher nodal eigenfrequencies than control points in the interior
of the patch. This of course also applies to the outermost control points, but the translational DOFs of those control
points are fixed by strong boundary conditions and therefore irrelevant for stability; the mass scaling approach
considers this. For αr = 10−1 this results in a total mass increase of∆m =+1.7% and a maximum added control point
mass of 0.186 mmax, where mmax is the maximum control point mass in the model. For the configuration withαr = 100,
on the other hand, a time step reduction from 4.63×10−6 s (without penalty) to 1.13×10−6 s needs to be compensated,
which requires more control points to be scaled and by a higher amount. As shown in Figure 7.5b, now several control
points in the vicinity of the trimming curve are scaled, all by a specific mass scaling factor depending on their nodal
eigenfrequency. This results in a total mass increase of ∆m = +8.1% and a maximum added control point mass
of 0.34 mmax.

Scaling control point masses is of course a model modification and the question is to which extent this modification
affects the solution, especially for highly dynamic problems with significant inertia effects. In order to assess this, the
displacement responses with and without mass scaling are compared in Figure 7.6. While the deviation for αr = 10−1

with a mass increase of∆m =+1.7% is negligible, a phase lag is apparent in the solution for αr = 100 with a mass
increase of∆m =+8.1%. However, since this is just a small academic benchmark example, no general statement
regarding the acceptable amount of mass scaling can be given. For larger practical models, the portion of scaled

2 The reason why the critical time step starts decreasing already for lower relative penalty factors compared to other examples is the relatively
coarse discretization used here. Because of that, the shell stiffness/eigenfrequency is relatively low and the penalty stiffness/eigenfrequency starts
to dominate already for smaller penalty factors, see Section 4.4.1 and Eq. (4.28).
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Figure 7.4: Plate dynamically loaded by a uniform pressure: Center point displacement over time for different relative
penalty factors αr compared to the untrimmed solutions with 8x8 elements for quadratic, cubic, and quartic NURBS
in (a)–(c). Critical time step size as a function of αr in (d). Figure taken from [54].

control points (which are involved in B-Rep element formulations) and thus the effect on the solution is expected to
be much smaller though3.

In conclusion, this example shows that the standard B-Rep element formulation allows coupling trimmed NURBS
patches both accurately and efficiently even in highly dynamic problems including plasticity. It is furthermore shown
that a possible decrease in time step size due to penalty coupling can be removed effectively by means of local
selective mass scaling of control points involved in B-Rep element formulations.

3 It should be noted that the local selective mass scaling approach for B-Rep elements also scales rotational masses accordingly. However,
as already mentioned in Section 2.6.2 and 4.5.3, rotational masses are scaled with relatively high factors by default such that the rotational modes
do not restrict the time step [14, 45, 73, 131, 132]. Furthermore, the influence of the rotational control point mass on the solution accuracy is small
compared to the influence of the translational control point mass. Thus, the focus of the discussions is on scaled translational masses.
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Figure 7.5: Plate dynamically loaded by a uniform pressure: Visualization of local selective mass scaling for cubic
NURBS patches with αr = 10−1 (a) and αr = 1 (b). The control point mass is scaled such that the critical time step
without penalty coupling is reached. The added mass per control point indicated by the colorbar is normalized with
respect to the highest unscaled control point mass. The sphere volume of the control points represents the control
point mass.
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Figure 7.6: Plate dynamically loaded by a uniform pressure: Center point displacement response for the cubic
configuration with and without local selective mass scaling for αr = 10−1 (a) and αr = 100 (b).
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7.2 Large deformation examples

7.2.1 Pinched cylinder with large deformations

The purpose of this pinched cylinder example with higher loads and large deformations [142] is to study: (i) The ability
of Explicit IBRA to solve problems with large deformations and nonlinear snap-through behavior modeled through
penalty-coupled trimmed NURBS shells, (ii) the validity and necessity of the enhanced B-Rep element formulation
presented in Section 3.4, (iii) the effectiveness of the light control point stabilization proposed in Chapter 5 and (iv)
the applicability of the local selective mass scaling approach proposed in Section 4.5.

In [142] this problem is solved through an implicit static analysis without inertia effects. It is worth noting that
performing an explicit dynamic analysis with inertia effects causes significant oscillations after the snap-through
which are not apparent in the implicit static reference solution.

This benchmark example was previously solved with Explicit IBRA in [54], but with a trimming configuration that
avoided small trimmed elements and thus the necessity of light control point stabilization. Furthermore, with the
trimming configuration in [54] accurate results were obtained without constraints on the shell normals, i.e. with the
standard instead of the enhanced B-Rep element formulation. However, the trimming configuration used here, see
Figure 7.7, involves small trimmed elements and therefore requires stabilization of light control points. Moreover, as
shown below, more accurate results are obtained with the enhanced B-Rep element formulation.

The problem setup is described in Figure 7.7. As in the previous pinched cylinder example, only one eighth of the
cylinder is modeled with corresponding symmetry boundary conditions applied in a strong sense. A smaller cylinder
with an axis of rotation in z -direction through point A splits the model into two patches. These two patches with
C p−1 continuity are generated from open knot vectors and exhibit a discretization corresponding to 32× 32 and
33× 33 elements in the untrimmed case. This relatively fine discretization is required to accurately capture the
nonlinear snap-through behavior. During analysis, both patches are coupled via enhanced B-Rep edge elements.
The load P is linearly increased to Pmax over the simulation time of t = 0.1.

E = 3×104

ν= 0.3

ρ = 7.8×10−9

R = 100

L = 200

r = 50

h = 1

Pmax = 1.2×104

P

P

rigid diaphragm

rigid diaphragm

cutting surface

R

z

x
y

L

B

Ar

Figure 7.7: Pinched cylinder with large deformations: Problem description.

The force-deformation curves of the pinch force P versus the radial deflections of points A and B for a model with
cubic elements and varying penalty factors are plotted in Figure 7.8a. For comparison, Figure 7.8a also provides an
explicit dynamic FEA solution with 64×64 Belytschko-Tsay elements (FE ref) as well as implicit static (IGA stat) and
explicit dynamic (IGA ref) solutions of an untrimmed IGA model with 32×32 cubic elements.

From Figure 7.8a it can be seen that the explicit solutions oscillate around the implicit static solution due to the inertia
effects appearing after the snap-through. The reference solutions obtained through explicit IGA and FEA match
very well. The solutions involving trimming and coupling (in blue) converge towards the reference IGA solution
as αr increases. For αr ≥ 10−1 the solutions are hardly distinguishable and almost perfectly match the reference IGA
solution. In Figure 7.8b the initial critical time step size is plotted as a function of the penalty factorαr . In this example
the critical time step is practically independent of the penalty factor until αr = 100 and only starts decreasing for
higher penalty factors. Comparing the results from Figure 7.8a and 7.8b, shows that accurate solutions are obtained
without a (significant) restriction in time step size for αr = 10−1 to αr = 100. The deformed shape of a configuration
with αr = 1 depicted in Figure 7.9 shows smooth results without visible discontinuities across the coupling edge.
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(a) Force versus radial deflection responses: Explicit dynamic solutions of
the trimmed configuration with different penalty factors αr (in blue) compared
to explicit dynamic untrimmed IGA (IGA ref) and FEA solutions (FEA ref). The
implicit static solution of an untrimmed IGA model (IGA stat) is also plotted for
comparison.
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(b) Critical time step size as a function of the relative
penalty factor αr .

Figure 7.8: Pinched cylinder with large deformations: Accuracy and critical time step size for a model with cubic
elements and different penalty factors αr .

(a) (b)

Figure 7.9: Pinched cylinder with large deformations: Deformed shapes of a configuration with αr = 1 at t = 0.1 with
(a) and without indicated knot lines (b). The color plot indicates z -displacements.

In order to achieve such accurate and stable results two measures are required: (i) the use of the enhanced B-Rep
element formulation including coupling of shell normals as described in Section 3.4 and (ii) stabilization of light
control points with the approach presented in Chapter 5. In Figure 7.10 results obtained with the standard and
the enhanced B-Rep element formulation are compared. As can be seen from Figure 7.10a, the force-deflection
response without coupling of shell normals (standard) deviates significantly from the reference solution. Until a
force P of around 1000, the response is in good agreement with the reference solution, but then appears to be stiffer
which causes the snap-through to occur later. The reason for this is a kink along the coupling edge as shown in the
top image of Figure 7.10b. With constraints on the shell normals (enhanced) this discontinuity along the coupling
edge can be avoided, see the bottom image of Figure 7.10b. Due to this postponed snap-through, the subsequent
oscillations show larger magnitudes.
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(a) Force versus radial deflection responses: Solutions without (standard)
and with constraints on the shell normals (enhanced) are compared to explicit
dynamic (IGA ref) and implicit static (IGA stat) solutions of untrimmed models.

standard, αr = 1, t = 0.009

enhanced, αr = 1, t = 0.006

(b) Comparison of deformed shapes: The standard B-
Rep element formulation (top) yields a kink along the
coupling edge, while the enhanced formulation (bottom)
achieves G 1 continuity.

Figure 7.10: Pinched cylinder with large deformations: Solutions with the standard and the enhanced B-Rep element
formulation, clearly showing the necessity for enhanced B-Rep elements in this example.

The necessity for stabilizing light control points caused by small trimmed elements is shown in Figures 7.11 and 7.12.
In Figure 7.11 deformed shapes including control points of simulations with and without stabilization are visualized.
Again, all control points with a mass lower than 1% of the maximum control point mass of the respective patch
are considered as light control points (Cth = 0.01, see Section 5.3.2). For the stabilization, a global penalty factor
of β̄ = 0.01 and a local mass scaling factor of f s = 10 are used, see Section 5.3.5 and 5.3.6, respectively. Figure 7.12
depicts the displacement and rotation error measures proposed in Section 5.5. These error measures basically
indicate how well the light control point constraints for displacements and rotations are fulfilled, see Eqs. (5.45)
and (5.46). For explicit analysis without stabilization, the displacements and rotations of light control points grow
quickly towards infinite values, causing the analysis to become unstable already at around t = 0.004. The analysis
with stabilization, on the other hand, finishes as expected and produces accurate results. The error measures for the
stabilized configuration in Figure 7.12 remain at a level of around 10−2, confirming the successful stabilization. Here,
it is worth recalling that an error of e disp ≈ 10−2 indicates that the displacement of a light control point deviates from
its estimated reference position by around 1 % of the maximum element length of the model on average. Moreover,
an error of e rot ≈ 10−2 indicates that the rotation of a light control point deviates from its estimated reference rotation
by around 1 % of a full rotation (2π) on average.

Finally, the performance of the local selective mass scaling approach proposed in Section 4.5 shall be assessed. As
mentioned above, in this example accurate results are obtained for penalty factors that do not cause a significant
reduction in time step size (αr = 10−1 to αr = 100). Nevertheless, for demonstration reasons, a penalty factor of
αr = 101 is chosen, which causes the critical time step to reduce from 9.92×10−7 to 3.21×10−7. The aim now is to
apply local selective mass scaling such that a stable analysis with αr = 101 and the original time step of 9.92×10−7

can be performed.

The result of the local selective mass scaling approach is depicted in Figure 7.13, where the control points are colored
according to their added mass normalized by the maximum control point mass of the model. The control point
volume is directly proportional to the control point mass. As visible, control points in the vicinity of the coupling
edge are specifically scaled according to their nodal eigenfrequencies. In this case, local selective mass scaling leads
to a maximum added control point mass of 3.1 mmax and a total mass increase of∆m =+16%. Figure 7.14 shows the
effect of this mass increase on the solution accuracy. Until the snap-through inertia effects do not play a significant
role and the results with and without mass scaling therefore coincide perfectly. After the snap-through the solution
with mass scaling oscillates slightly slower, but with a similar magnitude and still around the implicit static solution.
Thus, in this example, local selective mass scaling allows recovering the desired time step size without a significant
deterioration of solution accuracy.
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(a) Without light control point stabilization, t = 0.004. (b) With light control point stabilization, t = 0.1.

Figure 7.11: Pinched cylinder with large deformations: Comparison of analysis results without and with light control
point stabilization. Control points and control nets are visualized by black circles with white filling and dashed lines,
respectively. The analysis without stabilization in (a) becomes unstable after t = 0.004, which can be seen from the
extremely high displacements of light control points. The stabilized solution in (b) finishes and the stabilized light
control points behave as intended (β̄ = 0.01, f s = 10, Cth = 0.01).
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Figure 7.12: Pinched cylinder with large deformations: Comparison of displacement and rotation error measures for
solutions without and with light control point stabilization (αr = 1, β̄ = 0.01, f s = 10, Cth = 0.01)
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Figure 7.13: Pinched cylinder with large deformations: Results of the local selective mass scaling approach for
increasing the critical time step of a configuration with αr = 10 from 3.21×10−7 to 9.92×10−7 (+309%). The added
mass per control point indicated by the colorbar is normalized with respect to the highest unscaled control point
mass. The sphere volume of the control points represents the control point mass.
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Figure 7.14: Pinched cylinder with large deformations: Comparison of force versus radial deflection responses for
explicit analysis with (αr = 10 ms) and without (αr = 10) mass scaling as depicted in Figure 7.13. Explicit dynamic
(IGA ref) and implicit static (IGA stat) solutions of untrimmed models are plotted for comparison.

To conclude, this pinched cylinder example shows the ability of Explicit IBRA to accurately solve large deformation
problems with penalty-coupled trimmed NURBS shells and without a (significant) reduction in time step size.
Furthermore it shows that:

• Coupling translations and rotations along the coupling edge as done in [54]may not always be sufficient for
Reissner-Mindlin shells with rotational DOFs. Additionally coupling shell normals based on translational DOFs
via the enhanced B-Rep element formulation yields higher accuracy and robustness.

• Light control points caused by small trimmed elements may lead to stability problems in explicit analysis. The
light control point stabilization method proposed in this thesis is able to resolve this issue and enables stable
explicit analysis of high accuracy without a reduction in time step size.

• Local selective mass scaling is an effective way to eliminate a possible time step reduction caused by penalty-
based B-Rep elements, while keeping the added mass and the impact on the solution low.
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7.2.2 Dynamic buckling of an energy absorbing tube

This benchmark problem shall demonstrate the applicability of Explicit IBRA and penalty-coupled trimmed NURBS
shells to highly nonlinear and dynamic crash-type problems including large deformations, elasto-plastic material
behavior and contact. This energy absorbing tube example shall furthermore highlight the importance of the en-
hanced B-Rep element formulation (with coupling constraints on the shell normals) and the light control point
stabilization scheme. The latter becomes relevant because the tube is now modeled with cubic instead of quadratic
NURBS elements as in [54]; the higher the degree, the more control points have support on trimmed elements and
the higher is the probability of instabilities to be caused by light control points.

The problem setup is described in Figure 7.15. Model dimensions, material properties and boundary conditions
are similar to the buckling square tube solved in [44, 73, 161]. However, in order to highlight the superior modeling
abilities of NURBS compared to linear finite elements, the edges of the present model are rounded with a radius r .
For the analysis, only a quarter of the double-symmetric problem is modeled with the corresponding symmetry
and boundary conditions applied in a strong sense via single point constraints. The motion of the tube’s top edge is
prescribed by a constant velocity in z -direction. A tilted plane splits the quarter tube into an upper and a lower part
modeled by trimmed patches with a discretization corresponding to 30×40 and 33×43 elements in the untrimmed
case, respectively. Dynamic buckling of the tube is triggered by a small perturbation of ±0.05 mm applied to control
points at z = hp = 64mm on both faces (+0.05mm in x -direction on the y -z -face and −0.05mm in y -direction on
the x -z -face). The material behavior is defined as elasto-plastic with linear plastic hardening and modeled with
material type 3 *MAT_PLASTIC_KINEMATIC in LS-DYNA. To consider self-contact the standard single surface
contact algorithm in LS-DYNA [161] is applied to an auxiliary background mesh with p ×q linear finite elements per
NURBS element. The integration point locations and weights for trimmed elements are determined by the point
elimination algorithm [43], firmly implemented in LS-DYNA.
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Figure 7.15: Dynamic buckling of an energy absorbing tube: Problem description and mesh. The two patches are
discretized with meshes corresponding to 30×40 (bottom patch) resp. 33×43 elements (top patch) in the untrimmed
case. Figure similar as in [54].

Figure 7.16 depicts the dynamic buckling process of a configuration with αr = 1 via a sequence of six deformed
shapes. Even though the introduced perturbation is relatively small, the buckling process is triggered as intended.
Please note that this problem is highly sensitive to imperfections and that even minor variations in the discretization
are sufficient to alter the folding pattern. Although a varying discretization, trimming and coupling are indeed such
imperfections, the resultant force response in Figure 7.17a agrees very well with the response of an untrimmed model
with 30×40 cubic elements. Also the deformed shapes at t = 0.020s shown in Figure 7.17b are in good agreement.
This confirms the validity and accuracy of Explicit IBRA and the underlying B-Rep element formulation for patch
coupling.

However, in order to achieve such results, two measures are again required: (i) The enhanced B-Rep element
formulation including coupling constraints on the shell normals and (ii) stabilization of light control points.
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(d) t = 0.012 s (e) t = 0.016 s (f) t = 0.020 s

(a) t = 0.002 s (b) t = 0.004 s (c) t = 0.008 s

Figure 7.16: Dynamic buckling of an energy absorbing tube: Deformed shapes of a configuration with cubic NURBS
elements and αr = 1. The color plot indicates total displacements (magnitude of the displacement vector).
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(a) Resultant z -force over time.
(b) Deformed shapes at t = 0.020 s. Untrimmed model (left)

and trimmed, penalty-coupled model (right).

Figure 7.17: Dynamic buckling of an energy absorbing tube: Comparison of results between an untrimmed model
with 30× 40 cubic elements and a penalty-coupled trimmed model (αr = 1) with cubic elements and the mesh
provided in Figure 7.15.
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In Figure 7.18, the previously presented results are compared with the response of a configuration with the standard
B-Rep element formulation, i.e. without constraints on the shell normals. As can be seen, the three responses are
in good agreement until around t = 0.0105s, but then start to differ. The reason for this deviation is depicted in
Figure 7.18b: For the configuration without the coupling constraints on the shell normals (left), the desired G 1

continuity between patches cannot be maintained. This leads to a distinct kink along the coupling edge, clearly
visible when following the isolines across the coupling edge. Such coupling deficiencies obviously affect the folding
pattern and the force response. The configuration with the shell normal coupling constraint (right), on the other
hand, shows a smooth surface with no visible discontinuities.
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(b) Deformed shapes of configurations without (left) and with

constraints on the shell normals (right) at t = 0.0107 s.

Figure 7.18: Dynamic buckling of an energy absorbing tube: Comparison of results between penalty-coupled trimmed
models (p = q = 3, αr = 1) with the standard and the enhanced B-Rep element formulation. The result for an
untrimmed model with 30×40 cubic elements is plotted for comparison. Subfigure (b) shows deformed shapes at
the moment (t = 0.0107 s) when the force responses in (a) start to deviate significantly.

Simulation results of configurations without and with light control point stabilization are provided in Figure 7.19. The
configuration without stabilization in Figure 7.19a shows light control points with unrealistic behavior and extremely
high displacements. Over time this behavior propagates to adjacent control points until the entire simulation
becomes unstable at around t = 0.01s. For the stabilized configuration shown in Figure 7.19a, on the contrary,
light control points behave as intended and the simulation finishes. The corresponding error measures indicating
the effectiveness of the stabilization are depicted in Figure 7.20. While the errors for the configuration without
stabilization rise quickly, the errors for the stabilized configuration remain below a level of around 10−2. The sudden
increase of the displacement error e disp at around t = 0.01 s can be explained as follows: At that time the fold of the
top patch gets in contact with the area around the coupling edge, which leads to additional contact forces acting on
light control points. The stabilization scheme is able to balance these additional contact forces, but the error slightly
increases. This contact situation is also expected to be the main reason why this example requires higher stabilization
parameters than other examples, i.e. a stabilization penalty factor of β̄ = 1.0 and a light control point mass scaling
factor of f s = 100, resulting in a total mass increase of 1.1 %. The increased mass scaling factor of f s = 100 is required
to counterbalance the effect of added stabilization stiffness on the critical time step. Although a mass scaling factor
of 100 may seem to be high, it should be noted that this scaling is only applied to light control points, which have a
very low mass by definition. In fact, in this thesis a control point is only considered as a light control point if its mass
is lower than 1 % of the maximum control point mass in the corresponding patch (Cth = 0.01). This means that in the
worst case a light control point is scaled up to the mass of the heaviest control point. However, the average light
control point mass in this example is only 0.13 % of the maximum control point mass of both patches.

This example allows drawing the following conclusions:

1. Explicit IBRA for trimmed multi-patch NURBS shells is able to accurately solve highly nonlinear, dynamic
crash-type problems including large deformations, plasticity, structural instability and contact.

2. The enhanced B-Rep element formulation of RM shells comprising coupling conditions for translational DOFs,
rotational DOFs and shell normals achieves excellent coupling accuracy even in extreme deformation cases.
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3. The proposed light control point stabilization scheme enables robust explicit dynamic analysis of penalty-
coupled trimmed NURBS shells with arbitrarily small elements, large deformations, plasticity and contact.
Furthermore, this stabilization scheme does neither impair the solution quality nor the critical time step size.

(a) Without light control point stabilization, t = 0.009 s. (b) With light control point stabilization, t = 0.02 s.

Figure 7.19: Dynamic buckling of an energy absorbing tube: Comparison of analysis results without and with light
control point stabilization. Control points and control nets are visualized by black circles with white filling and
dashed lines, respectively. The analysis without stabilization in (a) becomes unstable after around t = 0.01 s, which
can be seen from the extremely high displacements of light control points. The stabilized solution in (b) finishes and
the stabilized light control points behave as intended (αr = 1, β̄ = 1.0, f s = 100, Cth = 0.01).
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Figure 7.20: Dynamic buckling of an energy absorbing tube: Displacement and rotation error measures for simula-
tions with and without light control point stabilization (αr = 1, β̄ = 1.0, f s = 100, Cth = 0.01).
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7.3 Industrial examples

In this final section, two actual BMW vehicle component models, namely the exterior skin and the reinforcement
structure of an engine bonnet are considered. These industrial examples shall demonstrate the ability of Explicit
IBRA and the related methods to solve explicit dynamic industry-type problems on trimmed multi-patch NURBS
models.

7.3.1 Excursus on analysis-suitable CAD modeling within industrial applications

Before dealing with the actual numerical examples, this short excursus provides some remarks on analysis-suitable
CAD modeling, crucial for the future industrial usage of IBRA.

At the time the bonnet models studied below were created, the BMW design engineers of course did not have analysis-
suitability in mind, because for FEA completely new simulation models following well-defined modeling guidelines
are generated anyway. To obtain accurate results in an efficient manner, IGA/IBRA models also need to fulfill certain
IGA-specific modeling criteria. Thus, performing the analysis on the initial CAD models depicted in Figure 7.21a and
Figure 7.31a, is not recommended although generally possible, see for instance [54]. Developing such IGA-specific
modeling guidelines, vital for industrial applications of IGA, is subject of current research. Some guidelines models
in explicit isogeometric (crash) analysis certainly have to follow are:

1. A prescribed minimum patch and element size to obtain reasonable time steps.

2. A maximum polynomial degree. In order to capture local deformations or local effects like wrinkling, the
model requires a relatively fine discretization and a moderate polynomial degree. In surface patches with
high polynomial degrees and high continuity (C p−1), occasionally observed in industrial B-Rep models, local
effects propagate due to the large support of basis functions. With the current integration rules using p ×q or
(p −1)× (q −1) integration points per element, a high polynomial degree furthermore becomes inefficient.

3. Preferably a uniform element size as well as uniform and maximum inter-element continuity.

Furthermore, the number of internal coupling edges can be easily reduced by merging patches obviously belonging
to the same geometric surface. Another way to increase efficiency is to extend patches beyond their physical model
boundaries and to subsequently trim off the time step restricting boundary elements, as shown in Section 4.2. So
far, design engineers and CAD algorithms hardly considered these modeling aspects, because it was simply not
necessary for the geometric representation. The bonnet exterior skin and the reinforcement structure depicted in
Figure 7.21b and Figure 7.31b largely conform with the three guidelines described above. To achieve this, narrow
and geometrically similar surface patches are merged and their polynomial degree of up to p = 13 is reduced to
a maximum of p = 4. In a final step both models are refined by inserting internal knots with multiplicity mi = 1
via a fully automated algorithm. Directly considering such modeling guidelines in future CAD models, will enable
isogeometric analysis on models without or with a minimum number of modifications. That this is technically
feasible is shown by the IGA capabilities recently implemented in the commercial preprocessor ANSA [162, 163].

7.3.2 Engine bonnet exterior skin

This example of a dynamically loaded bonnet exterior skin shall demonstrate that Explicit IBRA is able to achieve
good results with a reasonable time step size and that both the light control point stabilization scheme and the local
selective mass scaling approach for B-Rep elements are applicable to large problems with multiple trimmed patches.

The initial CAD model and the guideline-conforming analysis model are shown in Figure 7.21. The refined guideline-
conforming bonnet model (half model due to symmetry) incorporating 10 trimmed NURBS patches, 2,714 active
cubic and quartic shell elements4 with an average element length of around 22 mm, and 1, 122 B-Rep edge elements
is depicted in Figure 7.22 along with the problem description. Clamped boundary conditions are applied in a weak
sense via Dirichlet B-Rep elements along the outer edges. A uniform pressure distribution is instantaneously applied
at t = 0 s and held constant afterwards. The material behavior is assumed to be linear elastic isotropic. In this example,
the point elimination algorithm [43] is used for the numerical integration of trimmed elements. As a reference, the
problem is also solved on the actual finite element model of the bonnet, consisting of 95, 784 linear elements with an
average element size of around 4 mm.

Figure 7.24 depicts the scaled deformed shape of the bonnet at t = 0.10 s, solved with the enhanced B-Rep element
formulation, a penalty factor of αr = 1 and stabilized light control points. In this example, the application of weak

4 Please note that for maximum inter-element continuity (C p−1), multiple internal knots are removed. This step was not done in the bonnet
model presented in [54]. Otherwise the models are identical.
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(a) (b)

Figure 7.21: BMW engine bonnet exterior skin: Initial CAD model (a) and guideline-conforming model (b). Surface
patch boundaries are indicated by black lines. Figure taken from [54].
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Figure 7.22: BMW engine bonnet exterior skin loaded by a uniform pressure: The guideline-conforming analysis
model (half model) consists of 10 trimmed NURBS patches with 2, 714 active cubic and quartic shell elements (average
element length around 22 mm). Weak penalty and coupling conditions are applied via 1, 122 B-Rep edge elements.
Figure taken from [54] in a slightly modified form.
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Figure 7.23: BMW engine bonnet exterior skin: Reference finite element model with a discretization of 95, 784 linear
elements (average element length around 4 mm). Figure taken from [54].

penalty-based boundary and coupling conditions via B-Rep edge elements reduced the critical time step size to
4.22×10−7 s; the minimum critical time step size of the individual shell elements would be 9.84×10−7 s. In Figure 7.25
the z -displacement response of the bonnet measured at the four points A–D shown in Figure 7.22a is plotted and
compared with the FEA solution. Here, the goal is not to exactly reproduce the results obtained with the finely meshed
FEA model, but to rather have an idea of whether the IGA results are reasonable or not. Despite the fact that the
IGA model has a much coarser discretization and thus a stiffer behavior visible by the slightly faster response, the
IGA and FEA solutions are in good agreement until around t = 0.080s. Afterwards, the responses of both solutions
drift apart noticeably. Still, this comparison shows that the results obtained through Explicit IBRA on the trimmed
NURBS-based bonnet model are plausible. Figure 7.26 provides a comparison between the Explicit IBRA and the
FEA results for the z -displacements at t = 0.080 s. For this comparison, the results of the NURBS-based IGA model
are projected onto a background mesh with p ×q finite elements per NURBS element and visualized in a standard
postprocessing program.
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z

y

Figure 7.24: BMW engine bonnet exterior skin dynamically loaded by a uniform pressure: Scaled deformed shape of
a configuration with αr = 1 (scale factor 10). The color plot indicates z -displacements in mm.

Compared to the problem presented in [54], the pressure load is doubled here. This leads to larger deformations, higher
inertia effects, and hence requires a stabilization of light control points. Figure 7.27a depicts the deformed shape
and the corresponding control points of an explicit analysis without light control point stabilization at t = 0.026s,
slightly before the entire simulation becomes unstable. Light control points with extremely high displacements are
clearly visible. Figure 7.27b, on the other hand, shows the deformed shape and the corresponding control points of
an explicit analysis solved with the penalty-based light control point stabilization scheme presented in this thesis. As
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Figure 7.25: BMW engine bonnet exterior skin dynamically loaded by a uniform pressure: Comparison between
Explicit IBRA (αr = 1) and FEA results for the z -displacement responses of points A–D depicted in Figure 7.22a.

can be seen, the stabilization approach (β̄ = 0.01, f s = 10, Cth = 0.01) works as intended and the simulation finishes
without instabilities. The corresponding displacement and rotation error measures for simulations with and without
stabilization are provided in Figure 7.28. Without stabilization, the errors increase rapidly and tend towards infinity
at around t = 0.026 s. With stabilization, the displacement and rotation errors remain small at levels of around 10−5

to 10−3.

As mentioned before, a penalty factor of αr = 1 reduces the critical time step from 9.84×10−7 s (for shell elements
only) to 4.22×10−7 s. For comparison, the critical time step size of the FEA model with 6.51×10−7 s is in the same
range. Applying the local selective mass scaling approach proposed in this thesis allows recovering the critical time
step of 9.84×10−7 s by specifically scaling control points according to the added penalty stiffness. This mass scaling
achieves an increase in time step size by 133% with a total mass increase of∆m =+9.9%. The specifically scaled
control points are visualized in Figure 7.29. Herein, the control point volume is proportional to the control point
mass and the color indicates the amount of added mass normalized by the maximum control point mass of the
model mmax. In this example, the maximum mass added per control point is 0.55mmax.

The effect of this mass scaling on the z -displacement response of the four points A–D on the bonnet can be seen
in Figure 7.30. Overall, the responses with and without the local selective mass scaling are in good agreement. The
responses with mass scaling only lag slightly behind the responses without mass scaling. As already mentioned
before, it depends on the specific application and intention of the analysis whether such a model modification is
acceptable or not. Of course, also a smaller desired time step than the one without penalty (9.84× 10−7 s) can be
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(a) Explicit IBRA. (b) FEA.

Figure 7.26: BMW engine bonnet exterior skin dynamically loaded by a uniform pressure: Comparison of z -
displacement results (in mm) for Explicit IBRA with αr = 1 and FEA at t = 0.080 s.

(a) Without light control point stabilization, t = 0.026 s. (b) With light control point stabilization, t = 0.10 s.

Figure 7.27: BMW engine bonnet exterior skin dynamically loaded by a uniform pressure: Comparison of analysis
results without and with light control point stabilization. Control points and control nets are visualized by black
circles with white filling and dashed lines, respectively. The analysis without stabilization in (a) becomes unstable
after t = 0.026s, which can be seen from the extremely high displacements of light control points. The stabilized
solution in (b) finishes and the stabilized light control points behave as intended (β̄ = 0.01, f s = 10, Cth = 0.01).
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Figure 7.28: BMW engine bonnet exterior skin dynamically loaded by a uniform pressure: Comparison of displace-
ment and rotation error measures for simulations without and with light control point stabilization (αr = 1, β̄ = 0.01,
f s = 10, Cth = 0.01).

specified for the local selective mass scaling (see Eq. (4.50) in Section 4.5), leading to a smaller amount of added
mass and thus less impact on the solution.

In conclusion, this BMW engine bonnet example demonstrates the applicability of Explicit IBRA, the light control
point stabilization scheme and the local selective mass scaling approach to large trimmed multi-patch NURBS
models used in industrial CAD. Furthermore, it is shown that IGA models also need to conform with certain modeling
guidelines. For a model following a number of suggested modeling guidelines, plausible results are obtained with a
reasonable time step size.

7.3.3 Engine bonnet reinforcement structure

This example of a BMW bonnet reinforcement structure under dynamic loading is intended to demonstrate the
applicability and robustness of the enhanced B-Rep element formulation and the developed stabilization scheme to
even more complex models.

Figure 7.31 provides a comparison between the initial CAD model consisting of 5, 888 (very small) trimmed surfaces
and the guideline-conforming model consisting of 260 trimmed surface patches. For the guideline-conforming
model small geometrically similar surfaces are merged and the polynomial degree is limited to p = 4. The problem
description and an illustration of the refined model are provided in Figure 7.32. For the analysis of this symmetric
problem, again only one half of the model is considered with appropriately applied symmetry boundary conditions.
This half model consists of 130 trimmed patches and 14, 912 active shell elements of a maximum polynomial degree
of p = 4. Boundary and symmetry boundary conditions as well as internal coupling conditions are applied in a weak
sense via 12, 445 B-Rep edge elements in total. A uniform pressure load is applied in the form of a step function at
t = 0 s. Here it should be noted that, within this thesis, a user-defined element interface not optimized for efficiency is
used to implement B-Rep elements into LS-DYNA. Thus, one can imagine that such a (relatively) large model including
12, 445 B-Rep edge elements almost reaches the limit of what is practically computable with this implementation.

Figure 7.33 depicts the scaled deformed shapes and z -displacements of the reinforcement structure obtained with
a relative penalty factor of αr = 1 at t = 0.01s and t = 0.1s, visualized in the CAD program Rhinoceros with the
postprocessing plug-in TeDA. As can be seen, reasonable deformations with smooth surfaces and without gaps are
obtained, confirming the proper functioning of the enhanced B-Rep elements. In this example no restriction in
time step size due to penalty-based boundary or coupling conditions is observed, that is, the critical time step is
determined by the size of shell elements. During the analysis, 5601 light control points are successfully stabilized
by the proposed penalty-based scheme with a parameter setting of β̄ = 5×10−4, f s = 10, Cth = 0.01 and without a
restriction in time step size. As in the previous examples, without stabilization, light control points show extremely
large displacements and rotations, before the entire simulation becomes unstable at around t = 3×10−3 s.

Finally, it should be noted that also comparisons with results obtained from finite element analyses on a finely meshed
model used in full vehicle crash simulations were made, but are omitted here. The results are in fact qualitatively
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Figure 7.29: BMW engine bonnet exterior skin dynamically loaded by a uniform pressure: Results of the local selective
mass scaling approach applied to a configuration withαr = 1, leading to an increase in critical time step size of+133%
and a total mass increase of∆m =+9.9%. The added mass per control point indicated by the colorbar is normalized
with respect to the highest unscaled control point mass. The sphere volume of the control points represents the
control point mass.
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Figure 7.30: BMW engine bonnet exterior skin dynamically loaded by a uniform pressure: z -displacement responses
of points A–D for simulations with and without local selective mass scaling of B-Rep elements.

similar, but a much finer discretization than the one shown in Figure 7.32a would be required to obtain good
agreement in the dynamic response. Simulations with such a fine discretization, in turn, are not feasible with the
current user-defined element implementation of Explicit IBRA in LS-DYNA. Nevertheless, this example clearly
demonstrates the robustness of the Explicit IBRA framework and its applicability to large problems comprising
hundreds of trimmed NURBS patches.

7.3.4 Head impact simulations for pedestrian safety

Finally, the two engine bonnet component models presented above shall be studied in a practically more relevant
and more challenging scenario, namely a head impact test, commonly performed to assess the pedestrian safety of
vehicles, for example in the Euro NCAP consumer test [164]. An actual engine bonnet of a car consists of multiple
(partially bonded) components like the exterior skin and the reinforcement structure. Here, the exterior skin and the
reinforcement structure are studied as separate components, which in fact does not correspond to the real case.
Nevertheless, these problems still show the possibility to perform explicit dynamic impact simulations including
material plasticity, large deformations and contact on trimmed multi-patch NURBS shell structures. Because the indi-
vidual components have a lower stiffness, the problem setup is slightly adjusted compared to the actually conducted
crash test [164]. Since the impactor is modeled by conventional solid and shell finite elements, these simulations
furthermore demonstrate the capability of LS-DYNA to perform hybrid simulations comprising isogeometric and
conventional finite element components – a feature that will strongly facilitate the introduction of IGA in industry.
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(a) (b)

Figure 7.31: BMW engine bonnet reinforcement structure: Initial CAD model (a) and guideline-conforming model (b).
Surface patch boundaries are indicated by black lines.

boundary edges clamped p̄ x

z

y

L = 1510 mm

W = 1748 mm

H = 288 mm

h = 1 mm

E = 2.1×105 N/mm2

ν= 0.3

ρ = 7850 kg/m3

p̄ = 5×10−3 N/mm2

(a) Problem description and NURBS discretization: Clamped boundary edges are indicated by blue dashed curves.

L W

H

(b) CAD geometry and main model dimensions.

Figure 7.32: BMW engine bonnet reinforcement structures dynamically loaded by a uniform pressure: The guideline-
conforming analysis model (half model) consists of 130 trimmed NURBS patches with 14, 912 active shell elements
of maximum degree p = 4. Weak penalty and coupling conditions are applied via 12, 445 B-Rep edge elements.
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(a) Deformed shape at t = 0.01 s, scale factor 5.

(b) Deformed shape at t = 0.1 s, scale factor 10.

Figure 7.33: BMW engine bonnet reinforcement structure dynamically loaded by uniform pressure: Deformed
shapes obtained with a relative penalty factor αr = 1, visualized in the CAD program Rhinoceros with TeDA. The
color plots indicate z -displacements in mm. Light control points are successfully stabilized with a parameter setting
of (β̄ = 5×10−4, f s = 10, Cth = 0.01).

The problem description is given in Figure 7.34. As can be seen, the impactor hits the bonnet models with VI =
35km/h and at an angle of β = 25◦ to the vertical. The boundary edges of the models, which are identical to the
ones used in the previous sections, are clamped and again only half models are considered due to symmetry.
Boundary conditions are again applied via B-Rep elements and for the coupling, in particular, enhanced B-Rep
elements are employed. For all simulations a consistent penalty factor of αr = 1 is used. In contrast to the previous
bonnet examples, the material behavior is considered as elasto-plastic with a stress-strain curve defined via the
*MAT_PIECEWISE_LINEAR_PLASTICITY material model in LS-DYNA. A background finite element mesh on the
NURBS-based components allows modeling the contact between the finite element impactor and the isogeometric
bonnet models via the *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE keyword in LS-DYNA.

Simulation results for both models visualized via TeDA in the CAD program Rhino are provided in Figures 7.35–7.38.
A sequence of six deformed shapes of the half exterior skin model in side view is depicted in Figure 7.35, clearly
showing the head impact event and relatively large deformations. The corresponding deformed shapes of the full
model in perspective view with indicated total displacements are depicted in Figure 7.36. Figure 7.37 depicts the
impact event for the reinforcement structure via six deformed shapes in side view. Due to the stiffer behavior, the
resulting deformations are smaller than for the exterior skin, but with a maximum displacement of around 58mm
still significantly high. The deformed shapes of the full model in perspective view are give in Figure 7.38, in which the
color plot again indicates total displacements.
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boundary edges clamped

boundary edges clamped

β

VI = 35 km/h

β = 25◦

E = 2.1×105 N/mm2

ν= 0.3

σy = 350 N/mm2

ρ = 7850 kg/m3

VI = 35 km/h

β = 25◦

E = 2.1×105 N/mm2

ν= 0.3

σy = 350 N/mm2

ρ = 7850 kg/m3

β

Figure 7.34: Head impact simulations for pedestrian safety: Problem description. The bonnet exterior skin and the
reinforcement structure are modeled by trimmed multi-patch NURBS shells, see Figures 7.21a and 7.31b, respectively,
while the impactor is modeled by shell and solid finite elements. Clamped boundary edges are indicated by blue
dashed curves.

t = 0 s

t = 0.5×10−2 s

t = 1.0×10−2 s

t = 2.0×10−2 s

t = 3.0×10−2 s

t = 4.0×10−2 s

Figure 7.35: Head impact on the bonnet exterior skin: Sequence of six deformed shapes at different points in time in
side view.
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The smooth shapes visible in these figures show that the enhanced B-Rep element coupling works as intended, even
in such highly dynamic impact scenarios including large deformations, plasticity and contact. Also the numerous light
control points appearing in these relatively complex models are successfully stabilized in this impact scenario using
the same parameter settings as in the previous sections (exterior skin: β̄ = 0.01, f s = 10, Cth = 0.01, reinforcement
structure: β̄ = 5×10−4, f s = 10, Cth = 0.01). Furthermore, it is worth noting that the time step in these simulations is
restricted by the finite elements of the impactor and not by the NURBS-based elements or the penalty-based B-Rep
elements.

In conclusion, these head impact simulations clearly demonstrate the possibility to perform highly dynamic explicit
isogeometric analysis including large deformations, material plasticity and contact on industrial NURBS-based mod-
els. The fact that these examples already involve most of the analysis features required for vehicle crash simulations
enables first industrial applications of IGA in crash scenarios using hybrid vehicle models in LS-DYNA.

t = 0 s

t = 0.5×10−2 s

t = 1.0×10−2 s

t = 2.0×10−2 s

t = 3.0×10−2 s

t = 4.0×10−2 s

Figure 7.36: Head impact on the bonnet exterior skin: Sequence of six deformed shapes at different points in time.
The color plot indicates total displacements (magnitude of the displacement vector).
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t = 0 s

t = 0.5×10−2 s

t = 1.5×10−2 s

t = 2.0×10−2 s

t = 1.0×10−2 s t = 2.4×10−2 s

Figure 7.37: Head impact on the bonnet reinforcement structure: Sequence of six deformed shapes at different
points in time in side view.
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t = 0 s

t = 0.5×10−2 s

t = 1.5×10−2 s

t = 2.0×10−2 s

t = 1.0×10−2 s t = 2.4×10−2 s

Figure 7.38: Head impact on the bonnet reinforcement structure: Sequence of six deformed shapes at different
points in time. The color plot indicates total displacements (magnitude of the displacement vector).
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7.4 Summary and conclusion of Chapter 7

In this chapter Explicit IBRA for trimmed multi-patch NURBS shells is validated by means of well-selected benchmark
problems reaching from quasi-static linear elastic to highly dynamic nonlinear elasto-plastic cases including large
deformations and contact. Furthermore, the applicability of Explicit IBRA and the related methods to dynamic
(impact) problems on industrial trimmed multi-patch B-Rep models is demonstrated.

Weak penalty-based boundary and coupling conditions are applied via novel B-Rep element formulations for Reissner-
Mindlin shells with rotational DOFs. The influence of B-Rep elements on the critical time step size is studied and
accurate results are obtained with no or only a minor reduction in time step size.

It is shown that the enhanced B-Rep element formulation including coupled shell normals, as proposed in Section 3.4,
is able to accurately couple trimmed NURBS shells even in extreme deformation scenarios. This is a significant
improvement compared to the B-Rep element formulation only coupling translational and rotational DOFs as
proposed in [54].

All problems suffering from instabilities caused by light control points are successfully stabilized through the proposed
light control point stabilization scheme. Similar parameter settings are used for the considered examples and only
slight adjustments are required depending on the problem type, e.g. for some problems including contact. Accurate
results without a reduction in time step size are achieved through this penalty-based light control point stabilization
scheme.

For problems in which B-Rep elements lead to a decrease in time step size, the proposed local selective mass scaling
scheme for B-Rep elements is shown to be an effective measure to increase the critical time step size, while keeping
the amount of added mass low. Figures visualizing the control point mass and the amount of added mass per control
point, demonstrate the principle idea behind this mass scaling scheme, namely to specifically scale control point
masses according to the introduced penalty stiffness.

Finally, it should be emphasized that solving the rather challenging problems presented in this chapter is now only
possible because various difficulties associated with explicit dynamic analysis on trimmed multi-patch NURBS
models were (i) identified, (ii) systematically studied, and (iii) effectively solved through specific methods within this
thesis.
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Chapter 8

Conclusion and Outlook

With the long-term goal of achieving a virtual vehicle development process of higher efficiency and predictive
accuracy in mind, this thesis was devoted to Isogeometric Analysis (IGA) [12], a relatively young FEA technology that
uses the NURBS-based geometry description from CAD also for the analysis. By using NURBS for describing the
geometry and the solution field, IGA has not only the potential to connect design and analysis, but also to achieve
a higher solution accuracy due to a precise geometry representation and the higher-order and higher-continuity
nature of NURBS. Industrial CAD models typically consist of multiple trimmed surface patches, preventing a direct
application of IGA in its original form. In order to perform analysis on such models, Isogeometric B-Rep Analysis
(IBRA) [30] was chosen. IBRA uses so-called isogeometric B-Rep elements based on a penalty approach to apply
coupling and boundary conditions along trimming edges of shell structures in a weak integral sense. The focus of
this thesis was on explicit dynamic (crash) analysis. In the existing IBRA framework [30, 32], it was not possible to
perform crash-type simulations, and in fact, the applicability of IBRA to explicit dynamics has never been assessed
in the literature.

The aim of this thesis was to fill this gap by developing Explicit IBRA, the extension of IBRA to explicit dynamics.
Explicit IBRA should achieve accurate, efficient and robust explicit dynamic analyses on penalty-coupled trimmed
NURBS shells with the goal to enable an integrated design-analysis process for vehicular crashworthiness. This
included (i) the extension of the IBRA theory to explicit dynamics and shear deformable Reissner-Mindlin shells,
(ii) the development of novel B-Rep element formulations including rotational DOFs for coupling, Dirichlet and
Neumann boundary conditions, (iii) systematic studies on the influence of boundary elements, trimming and
penalty-based B-Rep elements on the critical time step size, (iv) the development of a local selective mass scaling
scheme to eliminate potential time step restricting effects, (v) the development of a stabilization scheme for small
trimmed elements applicable to explicit dynamic (crash) analysis on complex multi-patch shell structures, (vi) the
implementation of the novel B-Rep element formulations and the developed methods into LS-DYNA via a user-
defined interface, (vii) the set-up of an integrated design-analysis process between the CAD program Rhinoceros and
the solver LS-DYNA and (viii) the assessment of the accuracy, efficiency and robustness of the developed methods by
means of various benchmark examples and industry-type problems. The most important conclusions, developments
and findings are concisely summarized below, following the structure of the thesis.

8.1 Explicit IBRA

As a first step, IBRA was theoretically extended to explicit dynamic analysis by considering B-Rep element forces and
moments in the computations of accelerations within the explicit central difference scheme. Two novel types of
penalty-based B-Rep element formulations, the standard and the enhanced formulation, were derived for shear-
deformable RM shells with rotational DOFs defined in global coordinates. These B-Rep element formulations allow
the application of coupling, Dirichlet and Neumann boundary conditions along trimmed shell edges in a weak sense.
The standard B-Rep element formulation enforces the respective constraints directly on the three translational and
three rotational DOFs. This was shown to be sufficient from a mechanical and shell theory point of view, and yielded
accurate results for problems with small deformations. For large deformation and highly dynamic problems, on
the contrary, the standard B-Rep element formulation was found to not achieve the desired rotational coupling
accuracy. This was because rotational continuity was enforced solely based on rotational DOFs, whose inertias are
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commonly scaled up in explicit analysis such that the rotational modes do not restrict the time step. This scaling and
especially the loosened connection between trimmed control points and the material domain affect the accuracy
of rotational DOFs. Although this has only little effect on the overall behavior of the shell, rotational DOFs were
found to be not reliable enough for the imposition of rotational continuity between (trimmed) shells under large
deformations. The enhanced B-Rep element formulation was developed to overcome this issue by additionally
enforcing rotational continuity via constraints on the shell normals, uniquely defined by translational DOFs. It is
worth noting that this additional constraint was inspired by Benson et al. [47], who used it to enforce rotational
continuity between rotation-free Kirchhoff-Love shells. Thus, without the constraints on the rotational DOFs, the
enhanced B-Rep element formulation is also expected to work well for the coupling of rotation-free KL shells. Control
point forces and stiffness matrices were derived for both types of penalty-based B-Rep element formulations. These
B-Rep element formulations are therefore not restricted to explicit analysis, but can also be used in static and implicit
dynamic analysis. In fact, both B-Rep element formulations were implemented for explicit and implicit analysis into
LS-DYNA via a user-defined interface.

Howsoever, the focus of this thesis was on explicit analyses, which are only conditionally stable. For the explicit
central difference scheme, used within this thesis, the stability condition is only valid if the mass and stiffness
matrices remain symmetric and positive semidefinite. It was shown that this holds for Explicit IBRA with penalty-
based B-Rep elements as long as the penalty factor is positive. As a result, the well-known stability condition for
the central difference scheme based on the maximum system eigenfrequency can also be used within Explicit
IBRA. It is furthermore shown that those time step estimates that aim at directly estimating the maximum system
eigenvalue also consider the effects of trimming and penalty coupling. This makes estimates like the power iteration
method or the nodal time step estimate directly applicable to Explicit IBRA – a finding essential for efficient practical
applications.

8.2 Stable time step size

To understand the influencing factors on the critical time step size within an Explicit IBRA setting of penalty-coupled
trimmed NURBS patches, extensive analytical and numerical studies were conducted on one-dimensional bar and
two-dimensional shell models.

First, trimming was shown to be an effective mean to remove the time step restricting effect of elements at the
boundary of open knot vector patches. In this way, the critical time step of a quartic NURBS shell patch, for example,
could be increased by 221%. For practical applications it was proposed to extend patches beyond their physical
boundary and to subsequently trim off the problematic boundary elements.

Second, the effect of the trimmed element size on the critical time step size was studied both analytically and
numerically. Through this, inter-element continuity was identified to be the decisive factor for the behavior of the
critical time step. While for C 0 inter-element continuity the critical time step was observed to tend towards infinity
as the trimmed element size decreased, for interior elements with an inter-element continuity of C p−1 and p > 1,
trimming was found to have practically no influence on the time step. This fascinating result indicates that the
concept of trimming (and similarly any type of immersed method) in combination with explicit analysis is only
feasible with higher-order and higher-continuity basis functions such as NURBS. For FEA with C 0 continuous
basis functions, arbitrarily small trimmed elements, which are unavoidable in practical applications, would require
an arbitrarily small explicit time step. And as shown, increasing the order without increasing the inter-element
continuity makes things even worse. This is another argument for the superiority of isogeometric elements with
higher inter-element continuity over standard C 0 finite elements.

The third objective in this context was to study the behavior of the critical time step with respect to weak penalty-
based coupling and boundary conditions. In fact, it was shown that if the introduced penalty stiffness dominates
over the shell stiffness, which is the case for large penalty factors α>α′, the critical time step is determined by the
penalty stiffness. It was furthermore shown that this penalty factor α′ can be estimated by solving local eigenvalue
problems for the shell and penalty contributions separately. This enables the a priori estimation of a penalty factor
that does not lead to a reduction in time step size. For interior elements with p > 1, C p−1 and applied penalty-based
boundary conditions, the critical time step was also found to be insensitive to the trimmed element size.

Finally, a local selective mass scaling approach was proposed to compensate for a possibly negative effect of penalty-
based B-Rep elements on the time step. This approach specifically scales control points involved in B-Rep element
formulations according to their nodal eigenfrequency, computed via a lumped stiffness matrix and the Gershgorin
circle theorem. Through this approach the critical time step could be increased effectively by specifically adding the
right amount of mass to the right control points.
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8.3 Stabilization of small trimmed elements / light control points

8.3 Stabilization of small trimmed elements / light control points

Control points with low mass and stiffness caused by small trimmed elements, the so-called light control points,
were found to cause instabilities in highly dynamic explicit analyses. It is worth noting that ill-conditioned system
matrices are not the actual problem here, since no equation systems are solved in explicit analyses. The reasons for
these instabilities were in fact found to be (i) the extremely large inverse masses amplifying inevitable inaccuracies in
the forces when computing the accelerations within each of the probably hundreds of thousands time steps, and (ii)
the low stiffness between light control points and the remaining material domain, allowing for nearly unrestricted
movement. These instabilities were furthermore identified as closely related to weak instabilities, that is, steadily
evolving during the simulation and not avoidable through smaller time steps. To solve this issue, a stabilization
scheme appropriate for Explicit IBRA was developed, addressing the two aforementioned reasons for instabilities: (i)
mass scaling of light control points to reduce the strong error amplifications and (ii) penalty-based stabilization
constraints between light control points and stable adjacent control points to restrict the almost free movement
of light control points. In this way, even the complex bonnet reinforcement structure consisting of 130 trimmed
patches could be successfully stabilized. The proposed stabilization scheme is (a) compatible with weak coupling
and boundary conditions, (b) does not restrict the time step and requires low numerical effort, (c) maintains the
symmetry and positive semidefiniteness of the mass and stiffness matrices, and (d) is applicable to any type of shell
and solid element formulation. Furthermore, this stabilization scheme can be easily implemented as a preprocessing
add-on to existing solver environments, since it does neither require the deletion or modification of basis functions
nor additional integration points. A disadvantage of the proposed stabilization scheme is, however, the necessary
definition of a threshold value below which a control point is considered as a light control point, a penalty stabilization
factor and a mass scaling parameter. Nevertheless the identification of problematic control points, nodes or elements
as well as other stabilization parameters is required for almost all stabilization approaches proposed in the literature,
see Section 1.2.4. To conclude, the proposed stabilization scheme enables highly dynamic explicit analyses of trimmed
multi-patch shell structures that would not be possible otherwise.

8.4 Prototypical implementation of an integrated IBRA-based CAD/CAE process

The main motivation for this thesis was to achieve a more efficient virtual vehicle development process by connecting
the currently rather separated fields of design and analysis. The feasibility of a fully integrated IBRA-based CAD/CAE
process was demonstrated by a prototypical process between the commercial CAD program Rhinoceros [116] and
the commercial solver LS-DYNA [45] based on the IBRA exchange format [52]. Through the pre- and postprocessing
plug-in TeDA [74] for Rhinoceros, all design, pre- and postprocessing steps could be performed within the CAD
environment. Using the IBRA exchange format, TeDA enabled to first extract all necessary information from CAD,
and then to read analysis results for visualization in Rhinoceros. The integration of LS-DYNA into this process was
achieved via user-defined LS-DYNA interfaces. A distinctive feature of this integrated design-analysis process is
its consistent feature-based data structure containing geometry, topology and analysis information. Retaining the
feature-based structure allows identifying holes, cut-outs, beadings or trimmed edges as actual features in both the
design and the analysis model. This strongly facilitates a consistent assignment of material properties or boundary,
coupling and loading conditions throughout the entire process, independent of the underlying discretization that
may change frequently during the various design cycles.

8.5 Numerical examples

The validity and effectiveness of Explicit IBRA and the developed methods was assessed by means of several well-
selected benchmark problems reaching from quasi-static linear elastic with small deformations to highly dynamic
elasto-plastic with large deformations and contact. Furthermore, the practical applicability and robustness of the
Explicit IBRA framework was demonstrated through dynamic (impact) analyses on two BMW vehicle components:
the exterior skin and the reinforcement structure of an engine bonnet consisting of up to 130 trimmed NURBS
surfaces. Especially worth noting are the promising results of head impact simulations on the bonnet models for
pedestrian safety, which already include almost all relevant features for future vehicle crash simulations. The main
conclusions from these numerical examples are:

• The developed penalty-based B-Rep elements are able to accurately couple trimmed NURBS-based RM shells
with six DOFs. With the enhanced B-Rep element formulation even highly dynamic problems with large
deformations were accurately solved.

• Accurate results were obtained with penalty factors that cause no or only a minor decrease in time step size.
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• Local selective mass scaling of control points involved in B-Rep elements was found to be an effective mean to
compensate for a possible decrease in time step size, while keeping the amount of added mass low.

• The developed stabilization scheme for light control points could successfully stabilize all numerical examples
solved within this thesis, even the rather complex bonnet reinforcement structure consisting of 130 trimmed
NURBS patches under dynamic (impact) loading. The considered examples were solved without a reduction
in time step size and with similar parameter settings, requiring only small adjustments, e.g. for problems
including contact.

Here, it should again be highlighted that the challenging problems presented within this thesis could only be solved
because various difficulties associated with explicit dynamic analyses on trimmed multi-patch shell structures were
(i) identified, (ii) systematically studied, and (iii) effectively solved through the aforementioned methods.

8.6 Analysis-suitable model discretization

Finite element models used in industrial applications have to fulfill various well-defined modeling criteria and high
quality standards. In order to obtain accurate, efficient and robust (explicit) isogeometric analysis, similar criteria
are also required for isogeometric models. In the course of this thesis, the following IGA-specific modeling criteria
were identified:

• A prescribed minimum patch and element size to achieve reasonable time steps.

• A prescribed maximum polynomial degree in order to capture local effects accurately and to keep the cost of
numerical integration low.

• Preferably a uniform element size as well as uniform and maximum inter-element continuity.

These criteria may seem simple or obvious, but are not at all fulfilled in current CAD models, because it was simply
not necessary for geometric design so far. The BMW vehicle components studied within this thesis therefore had to
be modified to fulfill these criteria. Some of these criteria like maximum polynomial degree, uniform element size and
uniform continuity can be easily considered in CAD algorithms. Constructing future CAD models with a minimum
patch size, on the other hand, could require some additional effort in the geometric design phase. Nevertheless,
these criteria can result in CAD modeling guidelines for IGA, which the design engineer needs to follow in the future.

8.7 Practical aspects of an IGA/IBRA-based development process

Another often disregarded aspect is the need to generate a midsurface description from B-Rep volumes for shell
analysis. In this respect it was proposed to construct the midsurface as an associated offset of either the exterior
or the interior surface of the B-Rep volume model and to perform all boolean trim operations also directly on the
midsurface. Ideally, the associated midsurface model would then be automatically updated in case the volume
model is changed. Thus, the analysis model would be already provided as an output of the geometric design phase,
permanently in sync with the design model.

Here one could argue that, as in FEA, again two different models for design and analysis are deployed and that this is
not what IGA has originally promised. This is a good opportunity to qualify the often exaggerated expectations on IGA,
namely to perform analyses directly on existing CAD models without further preparation effort. In fact, using only
one model is theoretically possible, but as anyone familiar with numerical simulations knows, high quality results
are only obtained through high quality input, no matter which numerical method is used. The crucial difference
to FEA, however, is that these two models are in an active parametric relation, use the same consistent geometry
description, the same consistent data structure and the same consistent feature-based modeling paradigm. In this
way the efficiency of development processes is expected to be greatly improved, simply because “both worlds speak
the same language”, hence avoiding unnecessary and cumbersome conversions whenever one of those two changes.

The realization of such an integrated IBRA-based development process in industry will certainly take time since this
requires the involved individuals to rethink and adapt the current well-established processes, and to gain confidence
in the new methods. What is still lacking is the dedication from CAD vendors to implement pre- and postprocessing
capabilities for IGA. However, established preprocessing tools such as ANSA [120] already started to pave the way
for first productive applications of IGA. In fact, (temporary) using the same toolchain as in the current FEA-based
process without adaptations, will greatly facilitate the introduction of IGA. For example, nobody will set up a full
IGA vehicle crash model including dummies and barriers from scratch with a completely new and unestablished
tool. Using the familiar preprocessor environment with available IGA-features like ANSA in combination with the
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FEA/IGA solver LS-DYNA, the engineer can simply replace certain FEA components within a full vehicle model with
IGA components and perform tests without additional effort. Here it should again be emphasized that the key benefit
of IGA/IBRA is the possibility to use one consistent and accurate model description throughout the entire process
and not to just one tool.

8.8 Practical implications of this thesis

In conclusion, this thesis has shown that explicit dynamic (crash) analysis on trimmed multi-patch NURBS models
are technically feasible, also for large models. The extension of IBRA to explicit dynamics and the gained knowledge
provide another building block crucial for future applications in (automotive) industry and further implementations
of IGA features into commercial codes. The main practical implications can be summarized as follows:

• Through the developed B-Rep element formulations, nonlinear explicit dynamic analysis can now be performed
on trimmed multi-patch shell structures.

• The effects of trimming, and weak penalty-based coupling and boundary conditions on the critical time step
size in explicit analysis are now understood.

• Possible time step restrictions caused by weak penalty-based coupling and boundary conditions can now be
eliminated.

• Trimmed control points with low mass and stiffness can now be stabilized in explicit dynamic analysis.

• A fully-integrated IBRA-based CAD/CAE process was demonstrated to be technically feasible.

• First recommendations regarding analysis-aware CAD model structuring (e.g. integrated midsurface descrip-
tion) and criteria for an analysis-suitable model discretization are now available.

Some of these developments and findings have already found their way into commercial programs. This thesis has,
for example, contributed to the fact that penalty-based B-Rep elements are now firmly implemented and available in
the commercial solver LS-DYNA, see [143]. Such a professional implementation allows solving large problems on
multiple processors efficiently. Furthermore, the suggestion to extend patches beyond their physical boundary and
to subsequently trim off boundary elements in order to achieve a larger critical time step has been adopted in the
preprocessor ANSA, see [120].

8.9 Outlook

Still, further steps remain to be taken towards a fully integrated CAD/CAE development process. Although many
issues and features were already considered in the Explicit IBRA framework proposed in this work, several extensions
and improvements are of course possible. First of all, only one, rather heuristically determined penalty factor for
translations and rotations was used in the numerical examples, simply because no suitable criteria for the determi-
nation were available. Thus, methods for an a priori and objective determination of the penalty factor, for instance
based on a predefined time step size or solution accuracy, are desired. Such methods would probably also allow for a
further distinction between translational in-plane and out-of-plane penalty factors, as well as between rotational
bending and twisting penalty factors. However, to enable this, the current B-Rep element formulation based on
global coordinates needed to be adapted, i.e. a local coordinate system needed to be introduced along (trimmed)
edges.

A possible improvement for the stabilization scheme would be to specifically scale the light control point masses
according to the added stabilization penalty stiffness, based on the nodal eigenfrequency. This would, similarly to
the local selective mass scaling approach for B-Rep elements, only add the amount of mass required to not restrict
the time step.

Within this thesis, no systematic studies regarding the accuracy of stress evaluations in the vicinity of trimmed
coupling edges were conducted. Thus, thorough investigations especially for problems including plasticity are
suggested. In this context also the ability to consider material fracture and element deletion needs to be investigated.

The focus of thesis was on explicit dynamic analysis of shell structures. Similarly, the behavior of trimmed (or im-
mersed) trivariate solid structures such as cut finite cells or V-Reps within explicit dynamic analysis needs to be
studied. This would include the development of suitable (B-Rep) elements for the application of coupling and bound-
ary conditions, an extension of the proposed stabilization scheme, modeling guidelines as well as the enhancement
of the proposed design-analysis process. The combination of immersed shell and solid structures would provide a
complete analysis methodology for vehicle safety design based on trimmed B-Rep models.
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Another crucial aspect is the definition of further isogeometric analysis-suitable modeling guidelines, which are
expected to only be discovered when using IGA in real industrial applications. Thus, pilot projects with actual
productive use of NURBS-based components in full vehicle finite element simulations are suggested – as already
mentioned, ANSA and LS-DYNA provide the necessary capabilities. The possibility to perform hybrid simulations
on models with isogeometric and conventional finite element components enables first productive applications
without additional effort. A predestined first application scenario with actual practical benefit would be the use of
isogeometric models for critical, frequently modified components like the bumper system, as this would reduce
model generation effort and thus speed up design cycles.
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Appendix A

Linear stability analysis of the central difference
method

For completeness, the linear stability condition (2.67) for the explicit central difference method is derived here,
closely following [49] and similar to [54]. Starting point are the linearized semidiscrete equations of motion including
damping:

Md̈+ Cḋ+ Kd= fext. (A.1)

For the stability analysis it is convenient to decouple the actual problem into a single-degree-of-freedom problem by
means of a modal (spectral) decomposition that exploits the orthogonality of the eigenvectors with respect to the
undamped system, i.e. the eigenvectors yI of the undamped eigenproblem

KyI =λI MyI . (A.2)

Therefore, the damped equation system can only be decoupled if the damping matrix can be expressed in terms of M
and K . The Rayleigh damping matrix, for instance, is defined as a linear combination of mass and stiffness matrix as

C = a1 M +a2 K . (A.3)

For symmetric mass and stiffness matrices the eigenvectors yI are orthogonal with respect to M and K and the
corresponding eigenvalues λI are all real. In case the matrices are also positive semidefinite, all eigenvalues are
positive. For standard FEA and IGA, this usually holds true because M is symmetric and positive definite, and K is
symmetric and positive semidefinite. With eigenvectors orthonormalized with respect to M the following applies:

yT
J MyI =δI J and yT

J KyI =λIδI J (no sum on I ) (A.4)

where δI J denotes the Kronecker delta with δI J = 1 if I = J and δI J = 0 if I 6= J . Since the eigenvectors yJ describe a
basis in RnDOF , one can express d as a linear combination of the eigenvectors yJ :

d=
∑

J

αJ (t )yJ . (A.5)

Inserting Eq. (A.5) into Eq. (A.1), pre-multiplying it with yI and exploiting conditions (A.4) yields nDOF decoupled
equations

α̈I + (a1+a2ω
2
I )α̇I +ω

2
IαI = 0 where ω2

I =λI , I = 1, . . . , nDOF. (A.6)

With the modal damping ratio ξI for Rayleigh damping

ξI =
a1

2ωI
+

a2ωI

2
, (A.7)

one can write Eq. (A.6) as

α̈+2ξωα̇+ω2α= 0, (A.8)
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where the modal indices are omitted for brevity. Discretizing Eq. (A.8) in time and inserting the central difference
formulas for the acceleration (2.58) and the velocity (2.57) one obtains

αn+1−2αn +αn−1

∆t 2
+2ξω

αn −αn−1

∆t
+ω2αn = 0. (A.9)

Here, it should be noted that the velocity term is evaluated at t n−1/2 with a lag of a half time step, which is essential
for the time integration procedure to be fully explicit [49]. Equation (A.9) allows performing the stability analysis of
single-degree-of-freedom problems and carrying over the results to the actual problem (A.1). The validity of this
approach is evident from (A.5): d remains bounded as long as all αJ (t ) remain bounded. Applying an exponential
ansatz function αn =µn to Eq. (A.9) and performing some algebraic operations then yields

µ2+µ(g +h −2) + (1− g ) = 0 where g = 2ξω∆t , h =ω2∆t 2. (A.10)

As one can see, for n →∞ the coefficients αn = µn only remain bounded if |µ| ≤ 1. For a complex µ the stability
condition |µ| ≤ 1 requires µ to be located in the unit circle in the complex plane, which can be difficult to show (for
|µ|= 1 the multiplicity of the associated eigenvalue must not be greater than 1 for stability). Through the z-transform,
one can simplify this problem by mapping the unit circle in the complex µ-plane to the left-hand side of the z-plane
via

µ=
1+ z

1− z
. (A.11)

This allows assessing an integration procedure as stable if the roots of the z-polynomial

p
∑

i=0

ci z p−i = 0 with c0 > 0 (A.12)

have only negative real parts. This can be done by means of the Hurwitz matrix defined as

Hi j =

(

c2 j−i if 0≤ 2 j − i ≤ p

0 otherwise
(A.13)

and a theorem that states that all roots of (A.12) are negative if and only if the leading principal minors of (A.13) are
positive [165]. Applying the z-transform (A.11) to (A.10) then yields

z 2(4−2g −h ) + z (2g ) +h = 0 (A.14)

for which the Hurwitz matrix (p = 2) is given as

H =





c1 0

c0 c2



 . (A.15)

The conditions on the leading principal minors∆1 and∆2 in combination with the condition c0 > 0 then leads to

∆1 = c1 = 2g = 4ξω∆t ≥ 0, (A.16)

∆2 = c1c2 ≥ 0⇒ c2 = h =ω2∆t 2 ≥ 0, (A.17)

c0 = 4−2g −h = 4−4ξω∆t −ω2∆t 2 > 0. (A.18)

Condition (A.16) is fulfilled for a positive damping ratio (ξ≥ 0), condition (A.17) is fulfilled because it is a product
of c1 and squares, whereas condition (A.18) yields a quadratic equation inω∆t with the solution

ω∆t =−2ξ±2
p

ξ2+1. (A.19)

From this, the stability condition can be determined as a function of the time step. Since the negative root would
imply negative time steps, only the positive root is relevant, leading to the desired stability condition in terms of a
critical time step size as

∆tcrit =min
I

2

ωI

�
q

ξ2
I +1−ξI

�

. (A.20)

As one can see, within this derivation only two requirements are specified: (i) symmetric and positive semidefinite
matrices M and K and (ii) the use of a Rayleigh damping matrix. Thus, the stability condition for the explicit central
difference method (A.20) is applicable to any kind of problem of the form (A.1), for which these two requirements are
fulfilled.
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